diff --git a/basis/LargeWord.sml b/basis/LargeWord.sml index 3257f815..07370580 100644 --- a/basis/LargeWord.sml +++ b/basis/LargeWord.sml @@ -1,384 +1,384 @@ (* Title: Standard Basis Library: Word and LargeWord Structure Copyright David Matthews 1999, 2005, 2012, 2016 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *) (* This file contains definitions of both LargeWord and Word. SysWord is defined to be LargeWord. The only purpose of LargeWord is so that it can be used, as SysWord, to hold the full machine word values for certain operating-system calls. *) (* This uses the global definition of type "word" made in the compiler. That type has special status as the default for literals of the form 0wn in the absence of any other type information. *) local type largeword = LargeWord.word and shortword = Word.word (* Extract a word value from a character stream. *) (* There's a complication here which is similar to that with 0x for Int.scan. A word value may, optionally, be preceded by 0w or for hex values 0wx, 0wX, 0x or 0X. Since this is optional it is possible for the value after the 0w to be anything, not just a valid number, in which case the result is the 0 and the continuation is w... *) fun scanWord radix getc src = let (* Some of this code duplicates code in Int.scan. It would be better to avoid that if we could. The difficulty is that Int.scan allows the number to begin with a sign and also another 0x for hex values. *) val base: LargeInt.int = case radix of StringCvt.BIN => 2 | StringCvt.OCT => 8 | StringCvt.DEC => 10 | StringCvt.HEX => 16 (* Read the digits, accumulating the result in acc. isOk is true once we have read a valid digit. *) fun read_digits src acc isOk = case getc src of NONE => if isOk then SOME(acc, src) else NONE | SOME(ch, src') => if Char.ord ch >= Char.ord #"0" andalso Char.ord ch < (Char.ord #"0" + LargeInt.toInt base) then read_digits src' (acc*base + LargeInt.fromInt(Char.ord ch - Char.ord #"0")) true else (* Invalid character - either end of number or bad no. *) if isOk then SOME(acc, src) else NONE fun read_hex_digits src acc isOk = case getc src of NONE => if isOk then SOME(acc, src) else NONE | SOME(ch, src') => if Char.ord ch >= Char.ord #"0" andalso Char.ord ch <= Char.ord #"9" then read_hex_digits src' (acc*16 + LargeInt.fromInt(Char.ord ch - Char.ord #"0")) true else if Char.ord ch >= Char.ord #"A" andalso Char.ord ch <= Char.ord #"F" then read_hex_digits src' (acc*16 + LargeInt.fromInt(Char.ord ch - Char.ord #"A" + 10)) true else if Char.ord ch >= Char.ord #"a" andalso Char.ord ch <= Char.ord #"f" then read_hex_digits src' (acc*16 + LargeInt.fromInt(Char.ord ch - Char.ord #"a" + 10)) true else (* Invalid character - either end of number or bad no. *) if isOk then SOME(acc, src) else NONE fun read_number src = case radix of StringCvt.HEX => read_hex_digits src 0 false | _ => (* Binary, octal and decimal *) read_digits src 0 false in case getc src of NONE => NONE | SOME(#"0", src') => let (* May be the start of the number or may be 0w, 0x etc. *) val after0 = case getc src' of NONE => NONE | SOME(ch, src'') => if ch = #"w" then if radix = StringCvt.HEX then (* Is it 0wx, 0wX ? *) ( case getc src'' of NONE => NONE | SOME(ch, src''') => if ch = #"x" orelse ch = #"X" then read_number src''' (* Skip the 0wx *) else read_number src'' (* Skip the 0w *) ) else read_number src'' (* Skip the 0w *) else if (ch = #"x" orelse ch = #"X") andalso radix = StringCvt.HEX then read_number src'' else read_number src (* Include the 0 in the input *) in (* If the string *) case after0 of NONE => (* No valid number after it, return the zero .*) SOME(0, src') | res => res end | SOME(ch, src') => if Char.isSpace ch (* Skip white space. *) then scanWord radix getc src' (* Recurse *) else (* See if it's a valid digit. *) read_number src end (* scanWord *) (* Conversion from arbitrary precision integer may involve extracting the low-order word from a long-integer representation. *) local val getLowOrderWord: LargeInt.int -> LargeWord.word = RunCall.rtsCallFull1 "PolyGetLowOrderAsLargeWord" val isShortInt: LargeInt.int -> bool = RunCall.isShort in fun wordFromLargeInt (i: LargeInt.int): word = if isShortInt i then RunCall.unsafeCast i else Word.fromLargeWord(getLowOrderWord i) and largeWordFromLargeInt (i: LargeInt.int): LargeWord.word = if isShortInt i then Word.toLargeX(RunCall.unsafeCast i) else getLowOrderWord i end (* We have to use the full conversion if int is arbitrary precision. If int is fixed precision this will be optimised away. *) fun wordFromInt(i: int): word = if Bootstrap.intIsArbitraryPrecision then wordFromLargeInt(LargeInt.fromInt i) else RunCall.unsafeCast i (* The maximum word is the largest tagged value. The maximum large-word is the largest value that will fit in a machine word. *) local fun power2' n 0 : LargeInt.int = n | power2' n i = power2' (2*n) (i-1) val power2 = power2' 1 val bitsInWord: int = (RunCall.unsafeCast LibrarySupport.wordSize) * 8 val bitsInLargeWord: int = (RunCall.unsafeCast LibrarySupport.sysWordSize) * 8 in val wordSize = bitsInWord - 1 (* 31 or 63 bits *) val maxWordP1: LargeInt.int = power2 wordSize (* One more than the maximum word *) val maxWord: LargeInt.int = maxWordP1 - 1 val largeWordSize = bitsInLargeWord val maxLargeWord = power2 largeWordSize - 1 val maxWordAsWord = wordFromLargeInt maxWord end in structure Word :> WORD where type word = shortword = struct (* Word.word is represented using the short (tagged) integer format. It is, though, unsigned so large word values are represented in the same form as negative integers. *) type word = word val fromInt = wordFromInt and wordSize = wordSize and fromLargeInt = wordFromLargeInt (* Conversion to signed integer is simple. *) val toIntX: word->int = RunCall.unsafeCast and toLargeIntX: word -> LargeInt.int = RunCall.unsafeCast (* Conversion to unsigned integer has to treat values with the sign bit set specially. *) fun toLargeInt x = let val signed = toLargeIntX x in if signed < 0 then maxWordP1 + signed else signed end fun toInt x = LargeInt.toInt(toLargeInt x) fun scan radix getc src = case scanWord radix getc src of NONE => NONE | SOME(res, src') => if res > maxWord then raise General.Overflow else SOME(fromLargeInt res, src') (* TODO: Implement this directly? *) val fromString = StringCvt.scanString (scan StringCvt.HEX) infix >> << ~>> (* We can format the result using the large integer format function. *) fun fmt radix i = LargeInt.fmt radix (toLargeInt i) val toString = fmt StringCvt.HEX fun compare (i, j) = if i < j then General.LESS else if i > j then General.GREATER else General.EQUAL fun min (i, j) = if i < j then i else j and max (i, j) = if i > j then i else j open Word (* Include all the initial definitions. *) fun notb x = xorb(maxWordAsWord, x) end (* Word *) (* LargeWord.word values have one more bit of precision than Word,word values and are always "boxed" i.e. held in a one word piece of memory with the "byte" bit set. *) structure LargeWord:> WORD where type word = largeword = struct open LargeWord (* Add in the built-ins. *) type word = largeword val wordSize = largeWordSize (* As this is LargeWord we don't need to do anything here. *) fun toLargeWord x = x and toLargeWordX x = x and fromLargeWord x = x val toLarge = toLargeWord and toLargeX = toLargeWordX and fromLarge = fromLargeWord val fromLargeInt = largeWordFromLargeInt local val shortToWord: LargeInt.int -> largeword = Word.toLargeWordX o RunCall.unsafeCast val zero: largeword = shortToWord 0 infix << >> orb andb local open Int in val topBitAsLargeWord: largeword = (* The top bit *) shortToWord 1 << Word.fromInt(largeWordSize - 1) end fun topBitClear (x: largeword) : bool = (x andb topBitAsLargeWord) = zero val maxWordValueP1 = shortToWord 1 << Word.fromInt Word.wordSize in fun toLargeInt x = if x < maxWordValueP1 then Word.toLargeInt(Word.fromLargeWord x) else let open LargeInt in toLargeInt(x >> Word.fromInt Word.wordSize) * maxWordP1 + Word.toLargeInt(Word.fromLargeWord x) end val zero = zero val maxLargeWordAsLargeWord = fromLargeInt maxLargeWord fun toLargeIntX x = if topBitClear x then toLargeInt x else LargeInt.~(toLargeInt(zero - x)) end fun ~ x = zero - x fun notb x = xorb(maxLargeWordAsLargeWord, x) (* If int is fixed precision an int is the same size as a word and will always fit within a large-word value. *) fun fromInt(i: int): word = if Bootstrap.intIsArbitraryPrecision then fromLargeInt(LargeInt.fromInt i) - else Word.toLargeWord(Word.fromInt i) + else Word.toLargeWordX(Word.fromInt i) and toInt(w: word): int = if Bootstrap.intIsArbitraryPrecision then LargeInt.toInt(toLargeInt w) else Word.toInt(Word.fromLargeWord w) and toIntX(w: word): int = if Bootstrap.intIsArbitraryPrecision then LargeInt.toInt(toLargeIntX w) else Word.toIntX(Word.fromLargeWord w) fun scan radix getc src = case scanWord radix getc src of NONE => NONE | SOME(res, src') => if LargeInt.>(res, maxLargeWord) then raise General.Overflow else SOME(fromLargeInt res, src') val fromString = StringCvt.scanString (scan StringCvt.HEX) fun compare (i, j) = if i < j then General.LESS else if i > j then General.GREATER else General.EQUAL fun min (i, j) = if i < j then i else j and max (i, j) = if i > j then i else j (* We can format the result using the large integer format function. Large unsigned values may be outside the short integer range. *) fun fmt radix i = LargeInt.fmt radix (toLargeInt i) val toString = fmt StringCvt.HEX end; end; local (* Install the pretty printer for Word.word *) fun prettyWord _ _ x = PolyML.PrettyString("0wx" ^ Word.toString x) and prettyLarge _ _ x = PolyML.PrettyString("0wx" ^ LargeWord.toString x) in val () = PolyML.addPrettyPrinter prettyWord val () = PolyML.addPrettyPrinter prettyLarge end; (* Converter to word values. These must be installed outside the structure because they depend on the type identifiers. *) local (* The string may be either 0wnnn or 0wxXXX *) fun getRadix s = if String.size s > 2 andalso String.sub(s, 2) = #"x" then StringCvt.HEX else StringCvt.DEC fun convWord s = let val radix = getRadix s in case StringCvt.scanString (Word.scan radix) s of NONE => raise RunCall.Conversion "Invalid word constant" | SOME res => res end and convLarge s = let val radix = getRadix s in case StringCvt.scanString (LargeWord.scan radix) s of NONE => raise RunCall.Conversion "Invalid word constant" | SOME res => res end in (* Install this as a conversion function for word literals. Unlike other overloaded functions there's no need to ensure that overloaded conversion functions are installed at the top-level. The compiler has type "word" built in and will use this conversion function for literals of the form 0w... in preference to any other (e.g. for Word8.word) if unification does not give an explicit type. However, because LargeWord.word is abstract we have to install the convertor outside the structure. *) val () = RunCall.addOverload convWord "convWord" val () = RunCall.addOverload convLarge "convWord" end; structure SysWord = LargeWord; (* Add the overloaded operators. Do this outside the structure so that we can capture the inline code. We've already done this for word (=Word.word) in the prelude. *) val () = RunCall.addOverload LargeWord.~ "~"; val () = RunCall.addOverload LargeWord.+ "+"; val () = RunCall.addOverload LargeWord.- "-"; val () = RunCall.addOverload LargeWord.* "*"; val () = RunCall.addOverload LargeWord.div "div"; val () = RunCall.addOverload LargeWord.mod "mod"; val () = RunCall.addOverload LargeWord.< "<"; val () = RunCall.addOverload LargeWord.> ">"; val () = RunCall.addOverload LargeWord.<= "<="; val () = RunCall.addOverload LargeWord.>= ">=";