diff --git a/basis/Foreign.sml b/basis/Foreign.sml index dae179ae..e9bb37f5 100644 --- a/basis/Foreign.sml +++ b/basis/Foreign.sml @@ -1,2899 +1,2903 @@ (* Title: Foreign Function Interface: main part Author: David Matthews Copyright David Matthews 2015-16, 2018-20 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *) signature FOREIGN = sig exception Foreign of string structure Memory: sig eqtype volatileRef val volatileRef: SysWord.word -> volatileRef val setVolatileRef: volatileRef * SysWord.word -> unit val getVolatileRef: volatileRef -> SysWord.word eqtype voidStar val voidStar2Sysword: voidStar -> SysWord.word val sysWord2VoidStar: SysWord.word -> voidStar val null: voidStar val ++ : voidStar * word -> voidStar val -- : voidStar * word -> voidStar (* Remember an address except across loads. *) val memoise: ('a -> voidStar) ->'a -> unit -> voidStar exception Memory (* malloc - allocate memory. N.B. argument is the number of bytes. Raises Memory exception if it cannot allocate. *) val malloc: word -> voidStar (* free - free allocated memory. *) val free: voidStar -> unit (* alloca: allocate temporary memory on the C-stack and call the function. The memory is deallocated when the function returns or raises and exception. *) val alloca: word * (voidStar -> 'a) -> 'a val get8: voidStar * Word.word -> Word8.word val get16: voidStar * Word.word -> Word.word val get32: voidStar * Word.word -> Word32.word val get64: voidStar * Word.word -> SysWord.word val set8: voidStar * Word.word * Word8.word -> unit val set16: voidStar * Word.word * Word.word -> unit val set32: voidStar * Word.word * Word32.word -> unit val set64: voidStar * Word.word * SysWord.word -> unit val getFloat: voidStar * Word.word -> real val getDouble: voidStar * Word.word -> real val setFloat: voidStar * Word.word * real -> unit val setDouble: voidStar * Word.word * real -> unit val getAddress: voidStar * Word.word -> voidStar val setAddress: voidStar * Word.word * voidStar -> unit end structure System: sig type voidStar = Memory.voidStar type externalSymbol val loadLibrary: string -> voidStar and loadExecutable: unit -> voidStar and freeLibrary: voidStar -> unit and getSymbol: voidStar * string -> voidStar and externalFunctionSymbol: string -> externalSymbol and externalDataSymbol: string -> externalSymbol and addressOfExternal: externalSymbol -> voidStar end structure Error: sig type syserror = LibrarySupport.syserror val getLastError: unit -> SysWord.word val setLastError: SysWord.word -> unit val fromWord: SysWord.word -> syserror and toWord: syserror -> SysWord.word end type library type symbol (** Provide the path to a library. The library will only be opened when a symbol is actually used to call a function. If the library cannot be found the Foreign exception will be raised. **) val loadLibrary: string -> library (** Load a library. The path to the library is provided by a function that is called when the library is actually accessed. Normally this will be the first time that a foreign function is used from the library in the session. **) val loadLibraryIndirect: (unit->string) -> library val loadExecutable: unit -> library (** Provide a symbol to be looked up in a library. This will only actually look up the symbol when the symbol is used, typically in a call to a foreign function. **) val getSymbol: library -> string -> symbol (** Get the address of a symbol. If the symbol is in a library the library will actually be loaded and the symbol looked up. **) val symbolAsAddress: symbol -> Memory.voidStar (** Create an external reference and return the value as a symbol. This is only useful when the code is to be exported as an object file using `PolyML.export`. When used with the buildCall functions it can be used to call a function in a library that will be linked with the object file. On most platforms `externalFunctionSymbol` and `externalDataSymbol` can be used interchangeably however there are a few platforms that treat external references to code and data differently. **) val externalFunctionSymbol: string -> symbol and externalDataSymbol: string -> symbol structure LowLevel: sig datatype cTypeForm = CTypeFloatingPt | CTypePointer | CTypeSignedInt | CTypeUnsignedInt | CTypeStruct of cType list | CTypeVoid withtype cType = { typeForm: cTypeForm, align: word, size: word } eqtype abi val abiList: (string * abi) list val abiDefault: abi val cTypeVoid: cType and cTypePointer: cType and cTypeInt8: cType and cTypeChar: cType and cTypeUint8: cType and cTypeUchar: cType and cTypeInt16: cType and cTypeUint16: cType and cTypeInt32: cType and cTypeUint32: cType and cTypeInt64: cType and cTypeUint64: cType and cTypeInt: cType and cTypeUint: cType and cTypeLong: cType and cTypeUlong: cType and cTypeFloat: cType and cTypeDouble: cType val cStruct: cType list -> cType val callwithAbi: abi -> cType list -> cType -> symbol -> Memory.voidStar * Memory.voidStar -> unit val call: cType list -> cType -> symbol -> Memory.voidStar * Memory.voidStar -> unit val cFunctionWithAbi: abi -> cType list -> cType -> (Memory.voidStar * Memory.voidStar -> unit) -> Memory.voidStar val cFunction: cType list -> cType -> (Memory.voidStar * Memory.voidStar -> unit) -> Memory.voidStar (** Create a symbol value from a function that returns an address. The function will be called each time the address is required. Often this will use `Memory.memoise` to remember the value so that it can be reused. **) val symbolFromAddress: (unit -> Memory.voidStar) -> symbol end type 'a conversion val makeConversion: { load: Memory.voidStar -> 'a, (* Load a value from C memory *) store: Memory.voidStar * 'a -> unit -> unit, (* Store value and return free function. *) ctype: LowLevel.cType } -> 'a conversion val breakConversion: 'a conversion -> { load: Memory.voidStar -> 'a, (* Load a value from C memory *) store: Memory.voidStar * 'a -> unit -> unit, (* Store value and return free function. *) ctype: LowLevel.cType } val cVoid: unit conversion val cPointer: Memory.voidStar conversion val cInt8: int conversion val cUint8: int conversion val cChar: char conversion val cUchar: Word8.word conversion val cInt16: int conversion val cUint16: int conversion val cInt32: int conversion val cUint32: int conversion val cInt64: int conversion val cUint64: int conversion val cInt32Large: LargeInt.int conversion val cUint32Large: LargeInt.int conversion val cInt64Large: LargeInt.int conversion val cUint64Large: LargeInt.int conversion val cShort: int conversion val cUshort: int conversion val cInt: int conversion val cUint: int conversion val cLong: int conversion val cUlong: int conversion val cIntLarge: LargeInt.int conversion val cUintLarge: LargeInt.int conversion val cLongLarge: LargeInt.int conversion val cUlongLarge: LargeInt.int conversion val cString: string conversion val cByteArray: Word8Vector.vector conversion val cFloat: real conversion val cDouble: real conversion (* When a pointer e.g. a string may be null. *) val cOptionPtr: 'a conversion -> 'a option conversion type 'a closure val cFunction: ('a->'b) closure conversion (** Build a callback (closure). The first application creates a piece of code that handles type conversion; the second captures an ML function. The second application is relatively light-weight but still involves generating a small piece of code. Callbacks are garbage-collected if they are not referenced from ML. If necessary call touchClosure at the end of any possible use to ensure that it cannot be garbage-collected earlier. **) val buildCallback0withAbi: LowLevel.abi * unit * 'a conversion -> (unit -> 'a) -> (unit -> 'a) closure val buildCallback0: unit * 'a conversion -> (unit -> 'a) -> (unit -> 'a) closure val buildCallback1withAbi: LowLevel.abi * 'a conversion * 'b conversion -> ('a -> 'b) -> ('a -> 'b) closure val buildCallback1: 'a conversion * 'b conversion -> ('a -> 'b) -> ('a -> 'b) closure val buildCallback2withAbi: LowLevel.abi * ('a conversion * 'b conversion) * 'c conversion -> ('a * 'b -> 'c) -> ('a * 'b -> 'c) closure val buildCallback2: ('a conversion * 'b conversion) * 'c conversion -> ('a * 'b -> 'c) -> ('a * 'b -> 'c) closure val buildCallback3withAbi: LowLevel.abi * ('a conversion * 'b conversion * 'c conversion) * 'd conversion -> ('a * 'b *'c -> 'd) -> ('a * 'b *'c -> 'd) closure val buildCallback3: ('a conversion * 'b conversion * 'c conversion) * 'd conversion -> ('a * 'b *'c -> 'd) -> ('a * 'b *'c -> 'd) closure val buildCallback4withAbi: LowLevel.abi * ('a conversion * 'b conversion * 'c conversion* 'd conversion) * 'e conversion -> ('a * 'b * 'c * 'd -> 'e) -> ('a * 'b * 'c * 'd -> 'e) closure val buildCallback4: ('a conversion * 'b conversion * 'c conversion* 'd conversion) * 'e conversion -> ('a * 'b * 'c * 'd -> 'e) -> ('a * 'b * 'c * 'd -> 'e) closure val buildCallback5withAbi: LowLevel.abi * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion) * 'f conversion -> ('a * 'b * 'c * 'd * 'e -> 'f) -> ('a * 'b * 'c * 'd * 'e -> 'f) closure val buildCallback5: ('a conversion * 'b conversion * 'c conversion* 'd conversion * 'e conversion) * 'f conversion -> ('a * 'b * 'c * 'd * 'e -> 'f) -> ('a * 'b * 'c * 'd * 'e -> 'f) closure val buildCallback6withAbi: LowLevel.abi * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion) * 'g conversion -> ('a * 'b * 'c * 'd * 'e * 'f -> 'g) -> ('a * 'b * 'c * 'd * 'e * 'f -> 'g) closure val buildCallback6: ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion) * 'g conversion -> ('a * 'b * 'c * 'd * 'e * 'f -> 'g) -> ('a * 'b * 'c * 'd * 'e * 'f -> 'g) closure (** This ensures that a value can be referenced at the point it is called. It has no other effect. **) - val touchClosure: 'a -> unit + val touchClosure: 'a closure -> unit (** Closure functions provided for backwards compatibility. These are not garbage-collected and once created will persist until the end of the session. **) val buildClosure0: (unit -> 'a) * unit * 'a conversion -> (unit -> 'a) closure val buildClosure1: ('a -> 'b) * 'a conversion * 'b conversion -> ('a -> 'b) closure val buildClosure2: ('a * 'b -> 'c) * ('a conversion * 'b conversion) * 'c conversion -> ('a * 'b -> 'c) closure val buildClosure3: ('a * 'b *'c -> 'd) * ('a conversion * 'b conversion * 'c conversion) * 'd conversion -> ('a * 'b *'c -> 'd) closure val buildClosure4: ('a * 'b * 'c * 'd -> 'e) * ('a conversion * 'b conversion * 'c conversion* 'd conversion) * 'e conversion -> ('a * 'b * 'c * 'd -> 'e) closure val buildClosure5: ('a * 'b * 'c * 'd * 'e -> 'f) * ('a conversion * 'b conversion * 'c conversion* 'd conversion * 'e conversion) * 'f conversion -> ('a * 'b * 'c * 'd * 'e -> 'f) closure val buildClosure6: ('a * 'b * 'c * 'd * 'e * 'f -> 'g) * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion) * 'g conversion -> ('a * 'b * 'c * 'd * 'e * 'f -> 'g) closure (* Remove the "free" from a conversion. Used if extra memory allocated by the argument must not be freed when the function returns. *) val permanent: 'a conversion -> 'a conversion (* Call by reference. *) val cStar: 'a conversion -> 'a ref conversion (* Pass a const pointer *) val cConstStar: 'a conversion -> 'a conversion (* Fixed size vector. It is treated as a struct and passed by value or embedded in a structure. *) val cVectorFixedSize: int * 'a conversion -> 'a vector conversion (* Pass an ML vector as a pointer to a C array. *) and cVectorPointer: 'a conversion -> 'a vector conversion (* Pass an ML array as a pointer to a C array and, on return, update each element of the ML array from the C array. *) and cArrayPointer: 'a conversion -> 'a array conversion (* structs. *) val cStruct2: 'a conversion * 'b conversion -> ('a * 'b) conversion val cStruct3: 'a conversion * 'b conversion * 'c conversion -> ('a*'b*'c)conversion val cStruct4: 'a conversion * 'b conversion * 'c conversion * 'd conversion -> ('a*'b*'c*'d)conversion val cStruct5: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion -> ('a*'b*'c*'d*'e)conversion val cStruct6: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion -> ('a*'b*'c*'d*'e*'f)conversion val cStruct7: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion -> ('a*'b*'c*'d*'e*'f*'g)conversion val cStruct8: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion -> ('a*'b*'c*'d*'e*'f*'g*'h)conversion val cStruct9: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i)conversion val cStruct10: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j)conversion val cStruct11: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k)conversion val cStruct12: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l)conversion val cStruct13: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m)conversion val cStruct14: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion * 'n conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n)conversion val cStruct15: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion * 'n conversion * 'o conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o)conversion val cStruct16: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion * 'n conversion * 'o conversion * 'p conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p)conversion val cStruct17: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion * 'n conversion * 'o conversion * 'p conversion * 'q conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p*'q)conversion val cStruct18: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion * 'n conversion * 'o conversion * 'p conversion * 'q conversion * 'r conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p*'q*'r)conversion val cStruct19: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion * 'n conversion * 'o conversion * 'p conversion * 'q conversion * 'r conversion * 's conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p*'q*'r*'s)conversion val cStruct20: 'a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion * 'n conversion * 'o conversion * 'p conversion * 'q conversion * 'r conversion * 's conversion * 't conversion -> ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p*'q*'r*'s*'t)conversion val buildCall0withAbi: LowLevel.abi * symbol * unit * 'a conversion -> unit -> 'a val buildCall0: symbol * unit * 'a conversion -> unit -> 'a val buildCall1withAbi: LowLevel.abi * symbol * 'a conversion * 'b conversion -> 'a -> 'b val buildCall1: symbol * 'a conversion * 'b conversion -> 'a -> 'b val buildCall2withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion) * 'c conversion -> 'a * 'b -> 'c val buildCall2: symbol * ('a conversion * 'b conversion) * 'c conversion -> 'a * 'b -> 'c val buildCall3withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion) * 'd conversion -> 'a * 'b * 'c -> 'd val buildCall3: symbol * ('a conversion * 'b conversion * 'c conversion) * 'd conversion -> 'a * 'b * 'c -> 'd val buildCall4withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion) * 'e conversion -> 'a * 'b * 'c * 'd -> 'e val buildCall4: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion) * 'e conversion -> 'a * 'b * 'c * 'd -> 'e val buildCall5withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion) * 'f conversion -> 'a * 'b * 'c * 'd * 'e -> 'f val buildCall5: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion) * 'f conversion -> 'a * 'b * 'c * 'd * 'e -> 'f val buildCall6withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion) * 'g conversion -> 'a * 'b * 'c * 'd * 'e * 'f -> 'g val buildCall6: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion) * 'g conversion -> 'a * 'b * 'c * 'd * 'e * 'f -> 'g val buildCall7withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion) * 'h conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g -> 'h val buildCall7: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion) * 'h conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g -> 'h val buildCall8withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion) * 'i conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h -> 'i val buildCall8: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion) * 'i conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h -> 'i val buildCall9withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion) * 'j conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i -> 'j val buildCall9: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion) * 'j conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i -> 'j val buildCall10withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion) * 'k conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j -> 'k val buildCall10: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion) * 'k conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j -> 'k val buildCall11withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion) * 'l conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k -> 'l val buildCall11: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion) * 'l conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k -> 'l val buildCall12withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion) * 'm conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l -> 'm val buildCall12: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion) * 'm conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l -> 'm val buildCall13withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion) * 'n conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l * 'm -> 'n val buildCall13: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion) * 'n conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l * 'm -> 'n val buildCall14withAbi: LowLevel.abi * symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion * 'n conversion) * 'o conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l * 'm * 'n -> 'o val buildCall14: symbol * ('a conversion * 'b conversion * 'c conversion * 'd conversion * 'e conversion * 'f conversion * 'g conversion * 'h conversion * 'i conversion * 'j conversion * 'k conversion * 'l conversion * 'm conversion * 'n conversion) * 'o conversion -> 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l * 'm * 'n -> 'o end; structure Foreign:> FOREIGN = struct open Foreign open ForeignConstants structure Memory = ForeignMemory infix 6 ++ -- (* Internal utility function. *) fun alignUp(s, align) = Word.andb(s + align-0w1, ~ align) structure System = struct type voidStar = Memory.voidStar type externalSymbol = voidStar val loadLibrary: string -> voidStar = RunCall.rtsCallFull1 "PolyFFILoadLibrary" and loadExecutable: unit -> voidStar = RunCall.rtsCallFull0 "PolyFFILoadExecutable" and freeLibrary: voidStar -> unit = RunCall.rtsCallFull1 "PolyFFIUnloadLibrary" and getSymbol: voidStar * string -> voidStar = RunCall.rtsCallFull2 "PolyFFIGetSymbolAddress" (* Create an external symbol object. The first word of this is filled in with the address after the code is exported and linked. On a small number of platforms different relocations are required for functions and for data. *) val externalFunctionSymbol: string -> externalSymbol = RunCall.rtsCallFull1 "PolyFFICreateExtFn" and externalDataSymbol: string -> externalSymbol = RunCall.rtsCallFull1 "PolyFFICreateExtData" (* An external symbol is a memory cell containing the value in the first word followed by the symbol name. Because the first word is the value it can be treated as a Sysword.word value. When it is created the value is zero and the address of the target is only set once the symbol has been exported and the value set by the linker. *) fun addressOfExternal(ext: externalSymbol): voidStar = if Memory.voidStar2Sysword ext = 0w0 then raise Foreign "External symbol has not been set" else ext end structure Error = struct type syserror = LibrarySupport.syserror val toWord = LibrarySupport.syserrorToWord and fromWord = LibrarySupport.syserrorFromWord local val callGetError = RunCall.rtsCallFast1 "PolyFFIGetError" in fun getLastError(): SysWord.word = let val mem = RunCall.allocateByteMemory(0w1, 0wx41) val () = callGetError mem val () = RunCall.clearMutableBit mem in RunCall.unsafeCast mem end end val setLastError: SysWord.word -> unit = RunCall.rtsCallFast1 "PolyFFISetError" end type library = unit -> Memory.voidStar type symbol = unit -> Memory.voidStar (* Load the library but memoise it so if we reference the library in another session we will reload it. We load the library immediately so that if there is an error we get the error immediately. *) fun loadLibrary (name: string): library = Memory.memoise System.loadLibrary name and loadExecutable (): library = Memory.memoise System.loadExecutable () and loadLibraryIndirect(getName: unit->string) = Memory.memoise (fn () => System.loadLibrary(getName())) () (* To get a symbol we memoise a function that forces a library load if necessary and then gets the symbol. *) fun getSymbol(lib: library) (name: string): symbol = Memory.memoise (fn s => System.getSymbol(lib(), s)) name (* This forces the symbol to be loaded. The result is NOT memoised. *) fun symbolAsAddress(s: symbol): Memory.voidStar = s() (* Create an external symbol. This can only be used after linking. *) fun externalFunctionSymbol(name: string): symbol = let val r = System.externalFunctionSymbol name in fn () => System.addressOfExternal r end and externalDataSymbol(name: string): symbol = let val r = System.externalDataSymbol name in fn () => System.addressOfExternal r end structure LowLevel = struct fun symbolFromAddress s = s (* This must match the type in ForeignCall. *) datatype cTypeForm = CTypeFloatingPt | CTypePointer | CTypeSignedInt | CTypeUnsignedInt | CTypeStruct of cType list | CTypeVoid withtype cType = { typeForm: cTypeForm, align: word, size: word } type abi = Foreign.abi val abiList = Foreign.abiList (* One of the items in the list should be ("default", abi) *) val abiDefault = #2(valOf(List.find(fn ("default", _) => true | _ => false) abiList)) local open Memory in (* Fixed size int-like types. *) val cTypeInt8 = { size= 0w1, align= 0w1, typeForm = CTypeSignedInt } val cTypeUint8 = { size= 0w1, align= 0w1, typeForm = CTypeUnsignedInt } val cTypeInt16 = { size= 0w2, align= 0w2, typeForm = CTypeSignedInt } val cTypeUint16 = { size= 0w2, align= 0w2, typeForm = CTypeUnsignedInt } val cTypeInt32 = { size= 0w4, align= 0w4, typeForm = CTypeSignedInt } val cTypeUint32 = { size= 0w4, align= 0w4, typeForm = CTypeUnsignedInt } val cTypeInt64 = { size= 0w8, align= 0w8, typeForm = CTypeSignedInt } val cTypeUint64 = { size= 0w8, align= 0w8, typeForm = CTypeUnsignedInt } val cTypeChar = cTypeInt8 (* Apparently C99 defines sizeof(char) to be 1 *) val cTypeUchar = cTypeUint8 (* Void: doesn't really have a size but GCC treats it as 1. *) val cTypeVoid = { size= 0w1, align= 0w1, typeForm = CTypeVoid } (* Pointer - this is the same as the size of SysWord.word. *) val cTypePointer = { size= LibrarySupport.sysWordSize, align= LibrarySupport.sysWordSize, typeForm = CTypePointer } (* int: always size 4 on X86 but could be different on other platforms. *) val cTypeInt = { size= #size saInt, align= #align saInt, typeForm = CTypeSignedInt } val cTypeUint = { size= #size saInt, align= #align saInt, typeForm = CTypeSignedInt } (* long: 8 bytes on X86/64 Unix but 4 on X86 Windows. *) val cTypeLong = { size= #size saLong, align= #align saLong, typeForm = CTypeSignedInt } val cTypeUlong = { size= #size saLong, align= #align saLong, typeForm = CTypeSignedInt } (* Float: 4 on X86 *) val cTypeFloat = { size= #size saFloat, align= #align saFloat, typeForm = CTypeFloatingPt } (* Double: 8 on X86 *) val cTypeDouble = { size= #size saDouble, align= #align saDouble, typeForm = CTypeFloatingPt } fun cStruct(fields: cType list): cType = let (* The total alignment is the maximum alignment of the fields. *) val align = foldl(fn ({align, ...}, a) => Word.max(align, a)) 0w1 fields (* Each field needs to be on its alignment. Finally we round up the size to the total alignment. *) val size = alignUp(foldl(fn ({align, size, ...}, s) => alignUp(s, align) + size) 0w0 fields, align) in {align=align, size=size, typeForm=CTypeStruct fields} end local fun getType (ctype: cType) : ctype = RunCall.unsafeCast ctype - val callbackException: unit -> unit = RunCall.rtsCallFast0 "PolyFFICallbackException" + val callbackException: string -> unit = RunCall.rtsCallFast1 "PolyFFICallbackException" in fun callwithAbi (abi: abi) (argTypes: cType list) (resType: cType): symbol -> voidStar * voidStar -> unit = let (* Compile the intermediate function. *) val functionCaller: LargeWord.word * LargeWord.word * LargeWord.word -> unit = (*Foreign.*)foreignCall(abi, List.map getType argTypes, getType resType) (* The result function. *) fun callFunction (fnAddr: unit->voidStar) (args, resMem) = functionCaller(voidStar2Sysword(fnAddr()), voidStar2Sysword args, voidStar2Sysword resMem) in callFunction end fun call x = callwithAbi abiDefault x (* Have to make it a fun to avoid value restriction *) (* Build a call-back function. Returns a function to take the actual ML function, create a callback and then return the address. *) fun cFunctionWithAbi (abi: abi) (argTypes: cType list) (resType: cType) (cbFun: voidStar * voidStar -> unit): voidStar = let fun callBack(args, resMem) = cbFun(sysWord2VoidStar args, sysWord2VoidStar resMem) - handle _ => callbackException() + handle exn => callbackException(General.exnMessage exn) val cCallBack = (*Foreign.*)buildCallBack(abi, List.map getType argTypes, getType resType) callBack in sysWord2VoidStar cCallBack end fun cFunction x = cFunctionWithAbi abiDefault x end end end type 'a conversion = { load: Memory.voidStar -> 'a, (* Load a value from C memory *) store: Memory.voidStar * 'a -> unit -> unit, (* Store a value in C memory *) updateML: Memory.voidStar * 'a -> unit, (* Update ML value after call - only used in cStar. *) updateC: Memory.voidStar * 'a -> unit, (* Update C value after callback - only used in cStar. *) ctype: LowLevel.cType } fun makeConversion { load, store, ctype } = { load = load, store = store, ctype = ctype, updateML = fn _ => (), updateC = fn _ => () } fun breakConversion({load, store, ctype, ... }: 'a conversion) = { load = load, store = store, ctype = ctype } (* Conversions *) local open Memory LowLevel fun checkRangeShort(i, min, max) = if i < min orelse i > max then raise Overflow else i fun checkRangeLong(i: LargeInt.int, min, max) = if i < min orelse i > max then raise Overflow else i (* Previously there was a "noFree" function and that was used for the fn _ => () cases. For some reason it wasn't optimised away so explicit fn values are used now. *) in val cVoid: unit conversion = makeConversion{ load=fn _ => (), store=fn _ => fn _ => (), ctype = cTypeVoid } (* cPointer should only be used to base other conversions on. *) val cPointer: voidStar conversion = makeConversion { load=fn a => getAddress(a, 0w0), store=fn(a, v) => (setAddress(a, 0w0, v); fn _ => ()), ctype = cTypePointer } local fun load(m: voidStar): int = Word8.toIntX(get8(m, 0w0)) fun store(m: voidStar, i: int) = (set8(m, 0w0, Word8.fromInt(checkRangeShort(i, ~128, 127))); fn _ => ()) in val cInt8: int conversion = makeConversion { load=load, store=store, ctype = cTypeInt8 } end local (* Char is signed in C but unsigned in ML. *) fun load(m: voidStar): char = Char.chr(Word8.toInt(get8(m, 0w0))) fun store(m: voidStar, i: char) = (set8(m, 0w0, Word8.fromInt(Char.ord i)); fn _ => ()) in val cChar: char conversion = makeConversion{ load=load, store=store, ctype = cTypeChar } end local (* Uchar - convert as Word8.word. *) fun load(m: voidStar): Word8.word = get8(m, 0w0) fun store(m: voidStar, i: Word8.word) = (set8(m, 0w0, i); fn _ => ()) in val cUchar: Word8.word conversion = makeConversion{ load=load, store=store, ctype = cTypeUchar } end local fun load(m: voidStar): int = Word8.toInt(get8(m, 0w0)) fun store(m: voidStar, i: int) = (set8(m, 0w0, Word8.fromInt(checkRangeShort(i, 0, 255))); fn _ => ()) in val cUint8: int conversion = makeConversion{ load=load, store=store, ctype = cTypeUint8 } end local (* Because the word length is greater than the length returned by get16 we have to do something special to get the sign bit correct. That isn't necessary in the other cases. *) fun load(m: voidStar): int = let (* Could be done with shifts *) val r = Word.toInt(get16(m, 0w0)) in if r >= 32768 then r - 65536 else r end fun store(m: voidStar, i: int) = (set16(m, 0w0, Word.fromInt(checkRangeShort(i, ~32768, 32767))); fn _ => ()) in val cInt16: int conversion = makeConversion{ load=load, store=store, ctype = cTypeInt16 } end local fun load(m: voidStar): int = Word.toInt(get16(m, 0w0)) fun store(m: voidStar, i: int) = (set16(m, 0w0, Word.fromInt(checkRangeShort(i, 0, 65535))); fn _ => ()) in val cUint16: int conversion = makeConversion{ load=load, store=store, ctype = cTypeUint16 } end local fun load(m: voidStar): int = Word32.toIntX(get32(m, 0w0)) val checkRange = if wordSize = 0w4 andalso isSome (Int.maxInt) then fn i => i (* We're using fixed precision 31-bit - no check necessary. *) else let (* These will overflow on fixed precision 31-bit. *) val max32 = Int32.toInt(valOf Int32.maxInt) val min32 = ~max32 - 1 in fn i => checkRangeShort(i, min32, max32) end fun store(m: voidStar, i: int) = (set32(m, 0w0, Word32.fromInt(checkRange i)); fn _ => ()) in val cInt32: int conversion = makeConversion{ load=load, store=store, ctype = cTypeInt32 } end local fun load(m: voidStar): LargeInt.int = Word32.toLargeIntX(get32(m, 0w0)) fun store(m: voidStar, i: LargeInt.int) = (set32(m, 0w0, Word32.fromLargeInt(checkRangeLong(i, ~2147483648, 2147483647))); fn _ => ()) in val cInt32Large: LargeInt.int conversion = makeConversion{ load=load, store=store, ctype = cTypeInt32 } end local fun load(m: voidStar): int = Word32.toInt(get32(m, 0w0)) val checkRange = if wordSize = 0w4 andalso isSome (Int.maxInt) then fn i => if i < 0 then raise Overflow else i (* Fixed precision 31-bit *) else let (* This will overflow on fixed precision 31-bit. *) val max32 = Int32.toInt(valOf Int32.maxInt) val max32Unsigned = max32 * 2 + 1 in fn i => checkRangeShort(i, 0, max32Unsigned) end fun store(m: voidStar, i: int) = (set32(m, 0w0, Word32.fromInt(checkRange i)); fn _ => ()) in val cUint32: int conversion = makeConversion{ load=load, store=store, ctype = cTypeUint32 } end local fun load(m: voidStar): LargeInt.int = Word32.toLargeInt(get32(m, 0w0)) fun store(m: voidStar, i: LargeInt.int) = (set32(m, 0w0, Word32.fromLargeInt(checkRangeLong(i, 0, 4294967295))); fn _ => ()) in val cUint32Large: LargeInt.int conversion = makeConversion{ load=load, store=store, ctype = cTypeUint32 } end local fun loadLarge(m: voidStar): LargeInt.int = if sysWordSize = 0w4 then let val v1 = get32(m, 0w0) and v2 = get32(m, 0w1) in if bigEndian then IntInf.<<(Word32.toLargeIntX v1, 0w32) + Word32.toLargeInt v2 else IntInf.<<(Word32.toLargeIntX v2, 0w32) + Word32.toLargeInt v1 end else SysWord.toLargeIntX(get64(m, 0w0)) fun loadShort(m: voidStar): int = if sysWordSize = 0w4 then Int.fromLarge(loadLarge m) else SysWord.toIntX(get64(m, 0w0)) val max = IntInf.<<(1, 0w63) - 1 and min = ~ (IntInf.<<(1, 0w63)) fun storeLarge(m: voidStar, i: LargeInt.int) = if sysWordSize = 0w4 then let val _ = checkRangeLong(i, min, max) val lo = Word32.fromLargeInt i and hi = Word32.fromLargeInt (IntInf.~>>(i, 0w32)) in if bigEndian then (set32(m, 0w0, hi); set32(m, 0w1, lo)) else (set32(m, 0w0, lo); set32(m, 0w1, hi)); fn _ => () end else (set64(m, 0w0, SysWord.fromLargeInt(checkRangeLong(i, min, max))); fn _ => ()) fun storeShort(m: voidStar, i: int) = if sysWordSize = 0w4 orelse not (isSome Int.maxInt) then (* 32-bit or arbitrary precision. *) storeLarge(m, LargeInt.fromInt i) else (* Fixed precision 64-bit - no need for a range check. *) (set64(m, 0w0, SysWord.fromInt i); fn _ => ()) in val cInt64: int conversion = makeConversion{ load=loadShort, store=storeShort, ctype = cTypeInt64 } and cInt64Large: LargeInt.int conversion = makeConversion{ load=loadLarge, store=storeLarge, ctype = cTypeInt64 } end local fun loadLarge(m: voidStar): LargeInt.int = if sysWordSize = 0w4 then let val v1 = get32(m, 0w0) and v2 = get32(m, 0w1) in if bigEndian then IntInf.<<(Word32.toLargeInt v1, 0w32) + Word32.toLargeInt v2 else IntInf.<<(Word32.toLargeInt v2, 0w32) + Word32.toLargeInt v1 end else SysWord.toLargeInt(get64(m, 0w0)) fun loadShort(m: voidStar): int = if wordSize = 0w4 then Int.fromLarge(loadLarge m) else SysWord.toInt(get64(m, 0w0)) val max = IntInf.<<(1, 0w64) - 1 fun storeLarge(m: voidStar, i: LargeInt.int) = if sysWordSize = 0w4 then let val _ = checkRangeLong(i, 0, max) val lo = Word32.fromLargeInt i and hi = Word32.fromLargeInt (IntInf.~>>(i, 0w32)) in if bigEndian then (set32(m, 0w0, hi); set32(m, 0w1, lo)) else (set32(m, 0w0, lo); set32(m, 0w1, hi)); fn _ => () end else (set64(m, 0w0, SysWord.fromLargeInt(checkRangeLong(i, 0, max))); fn _ => ()) fun storeShort(m: voidStar, i: int) = if sysWordSize = 0w4 orelse not (isSome Int.maxInt) then (* 32-bit or arbitrary precision. *) storeLarge(m, LargeInt.fromInt i) else if i < 0 (* Fixed precision 64-bit - just check it's not negative. *) then raise Overflow else (set64(m, 0w0, SysWord.fromInt i); fn _ => ()) in val cUint64: int conversion = makeConversion{ load=loadShort, store=storeShort, ctype = cTypeUint64 } and cUint64Large: LargeInt.int conversion = makeConversion{ load=loadLarge, store=storeLarge, ctype = cTypeUint64 } end local fun load(m: voidStar): real = getFloat(m, 0w0) fun store(m: voidStar, v: real) = (setFloat(m, 0w0, v); fn _ => ()) in val cFloat: real conversion = makeConversion{ load=load, store=store, ctype = cTypeFloat } end local fun load(m: voidStar): real = getDouble(m, 0w0) fun store(m: voidStar, v: real) = (setDouble(m, 0w0, v); fn _ => ()) in val cDouble: real conversion = makeConversion{ load=load, store=store, ctype = cTypeDouble } end val cShort = if #size saShort = #size (#ctype cInt16) then cInt16 else raise Foreign "Unable to find type for short" val cUshort = if #size saShort = #size (#ctype cUint16) then cUint16 else raise Foreign "Unable to find type for unsigned" val cInt = if #size saInt = #size (#ctype cInt32) then cInt32 else if #size saInt = #size (#ctype cInt64) then cInt64 else raise Foreign "Unable to find type for int" val cIntLarge = if #size saInt = #size (#ctype cInt32Large) then cInt32Large else if #size saInt = #size (#ctype cInt64Large) then cInt64Large else raise Foreign "Unable to find type for int" val cUint = if #size saInt = #size (#ctype cUint32) then cUint32 else if #size saInt = #size (#ctype cUint64) then cUint64 else raise Foreign "Unable to find type for unsigned" val cUintLarge = if #size saInt = #size (#ctype cUint32Large) then cUint32Large else if #size saInt = #size (#ctype cUint64Large) then cUint64Large else raise Foreign "Unable to find type for unsigned" val cLong = if #size saLong = #size (#ctype cInt32) then cInt32 else if #size saLong = #size (#ctype cInt64) then cInt64 else raise Foreign "Unable to find type for long" val cLongLarge = if #size saLong = #size (#ctype cInt32Large) then cInt32Large else if #size saLong = #size (#ctype cInt64Large) then cInt64Large else raise Foreign "Unable to find type for long" val cUlong = if #size saLong = #size (#ctype cUint32) then cUint32 else if #size saLong = #size (#ctype cUint64) then cUint64 else raise Foreign "Unable to find type for unsigned long" val cUlongLarge = if #size saLong = #size (#ctype cUint32Large) then cUint32Large else if #size saLong = #size (#ctype cUint64Large) then cUint64Large else raise Foreign "Unable to find type for unsigned long" local fun load(s: voidStar): string = let (* The location contains the address of the string. *) val sAddr = getAddress(s, 0w0) fun sLen i = if get8(sAddr, i) = 0w0 then i else sLen(i+0w1) val length = sLen 0w0 fun loadChar i = Char.chr(Word8.toInt(get8(sAddr, Word.fromInt i))) in CharVector.tabulate(Word.toInt length, loadChar) end fun store(v: voidStar, s: string) = let val sLen = Word.fromInt(String.size s) val sMem = malloc(sLen + 0w1) val () = CharVector.appi(fn(i, ch) => set8(sMem, Word.fromInt i, Word8.fromInt(Char.ord ch))) s val () = set8(sMem, sLen, 0w0) in setAddress(v, 0w0, sMem); fn () => Memory.free sMem end in val cString: string conversion = makeConversion { load=load, store=store, ctype = cTypePointer } end (* This is used if we want to pass NULL rather than a pointer in some cases. *) fun cOptionPtr({load, store, updateML, updateC, ctype={typeForm=CTypePointer, ...}}:'a conversion): 'a option conversion = let fun loadOpt(s: voidStar) = if getAddress(s, 0w0) = null then NONE else SOME(load s) fun storeOpt(v: voidStar, NONE) = (setAddress(v, 0w0, null); fn _ => ()) | storeOpt(v: voidStar, SOME s) = store(v, s) (* Do we have update here? *) fun updateMLOpt(_, NONE) = () | updateMLOpt(v: voidStar, SOME s) = updateML(v, s) fun updateCOpt(_, NONE) = () | updateCOpt(v, SOME s) = updateC(v, s) in { load=loadOpt, store=storeOpt, updateML = updateMLOpt, updateC = updateCOpt, ctype = cTypePointer } end | cOptionPtr _ = raise Foreign "cOptionPtr must be applied to a pointer type" local (* Word8Vector.vector to C array of bytes. It is only possible to do this one way because conversion from a C array requires us to know the size. *) fun load _ = raise Foreign "cByteArray cannot convert from C to ML" fun store(v: voidStar, s: Word8Vector.vector) = let open Word8Vector val sLen = Word.fromInt(length s) val sMem = malloc sLen val () = appi(fn(i, b) => set8(sMem, Word.fromInt i, b)) s in setAddress(v, 0w0, sMem); fn () => Memory.free sMem end in val cByteArray: Word8Vector.vector conversion = makeConversion{ load=load, store=store, ctype = cTypePointer } end end (* Remove the free part from the store fn. This is intended for situations where an argument should not be deleted once the function completes. *) fun permanent({load, store, ctype, updateML, updateC }: 'a conversion): 'a conversion = let fun storeP args = (ignore (store args); fn () => ()) in { load=load, store=storeP, updateML = updateML, updateC = updateC, ctype=ctype } end val op ++ = Memory.++ (* structs. These are also used when preparing arguments for function calls. The usual case is to apply these to existing conversions. We want the sizes and alignments to be compile-time constants and that means avoiding folds that will be compiled into loops. *) fun cStruct2(a: 'a conversion, b: 'b conversion): ('a*'b)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ... }} = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ... }} = b val offsetb = alignUp(sizea, alignb) fun load s = (loada s, loadb(s ++ offsetb)) and store (x, (a, b)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) in fn () => ( freea(); freeb() ) end and updateML(s, (a, b)) = (updateMLa(s, a); updateMLb(s ++ offsetb, b)) and updateC(x, (a, b)) = (updateCa(x, a); updateCb(x ++ offsetb, b)) (* These are frequently constants but if we use LowLevel.cStruct we use foldl and that doesn't reduce constants. *) val align = Word.max(aligna, alignb) val size = offsetb + sizeb val ctype = {align=align, size=size, typeForm=LowLevel.CTypeStruct[ctypea, ctypeb]} in {load=load, store=store, updateML = updateML, updateC=updateC, ctype = ctype} end fun cStruct3(a: 'a conversion, b: 'b conversion, c: 'c conversion): ('a*'b*'c)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc)) and store (x, (a, b, c)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) in fn () => ( freea(); freeb(); freec() ) end and updateML(s, (a, b, c)) = (updateMLa(s, a); updateMLb(s ++ offsetb, b); updateMLc(s ++ offsetc, c)) and updateC(x, (a, b, c)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c)) val align = Word.max(aligna, Word.max(alignb, alignc)) val size = offsetc + sizec val typeForm = LowLevel.CTypeStruct [ctypea, ctypeb, ctypec] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct4(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion): ('a*'b*'c*'d)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd)) and store (x, (a, b, c, d)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) in fn () => ( freea(); freeb(); freec(); freed() ) end and updateML(s, (a, b, c, d)) = (updateMLa(s, a); updateMLb(s ++ offsetb, b); updateMLc(s ++ offsetc, c); updateMLd(s ++ offsetd, d)) and updateC(x, (a, b, c, d)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, alignd))) val size = offsetd + sized val typeForm = LowLevel.CTypeStruct [ctypea, ctypeb, ctypec, ctyped] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct5(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion): ('a*'b*'c*'d*'e)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete)) and store (x, (a, b, c, d, e)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) in fn () => ( freea(); freeb(); freec(); freed(); freee() ) end and updateML(s, (a, b, c, d, e)) = (updateMLa(s, a); updateMLb(s ++ offsetb, b); updateMLc(s ++ offsetc, c); updateMLd(s ++ offsetd, d); updateMLe(s ++ offsete, e)) and updateC(x, (a, b, c, d, e)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, aligne)))) val size = offsete + sizee val typeForm = LowLevel.CTypeStruct [ctypea, ctypeb, ctypec, ctyped, ctypee] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct6(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion): ('a*'b*'c*'d*'e*'f)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf)) and store (x, (a, b, c, d, e, f)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef() ) end and updateML(s, (a, b, c, d, e, f)) = (updateMLa(s, a); updateMLb(s ++ offsetb, b); updateMLc(s ++ offsetc, c); updateMLd(s ++ offsetd, d); updateMLe(s ++ offsete, e); updateMLf(s ++ offsetf, f)) and updateC(x, (a, b, c, d, e, f)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, alignf))))) val size = offsetf + sizef val typeForm = LowLevel.CTypeStruct [ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct7(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion): ('a*'b*'c*'d*'e*'f*'g)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg)) and store (x, (a, b, c, d, e, f, g)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg() ) end and updateML(x, (a, b, c, d, e, f, g)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g)) and updateC(x, (a, b, c, d, e, f, g)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, aligng)))))) val size = offsetg + sizeg val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct8(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion): ('a*'b*'c*'d*'e*'f*'g*'h)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth)) and store (x, (a, b, c, d, e, f, g, h)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh() ) end and updateML(x, (a, b, c, d, e, f, g, h)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h)) and updateC(x, (a, b, c, d, e, f, g, h)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, alignh))))))) val size = offseth + sizeh val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct9(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti)) and store (x, (a, b, c, d, e, f, g, h, i)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei() ) end and updateML(x, (a, b, c, d, e, f, g, h, i)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i)) and updateC(x, (a, b, c, d, e, f, g, h, i)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, aligni)))))))) val size = offseti + sizei val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct10(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj)) and store (x, (a, b, c, d, e, f, g, h, i, j)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j)) and updateC(x, (a, b, c, d, e, f, g, h, i, j)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, alignj))))))))) val size = offsetj + sizej val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct11(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk)) and store (x, (a, b, c, d, e, f, g, h, i, j, k)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, alignk)))))))))) val size = offsetk + sizek val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct12(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion, l: 'l conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k and {load=loadl, store=storel, updateML=updateMLl, updateC=updateCl, ctype = ctypel as {size=sizel, align=alignl, ...} } = l val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) val offsetl = alignUp(offsetk + sizek, alignl) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk), loadl(s ++ offsetl)) and store (x, (a, b, c, d, e, f, g, h, i, j, k, l)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) and freel = storel(x ++ offsetl, l) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek(); freel() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k, l)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k); updateMLl(x ++ offsetl, l)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k, l)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k); updateCl(x ++ offsetl, l)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, Word.max(alignk, alignl))))))))))) val size = offsetl + sizel val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek, ctypel] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct13(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion, l: 'l conversion, m: 'm conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k and {load=loadl, store=storel, updateML=updateMLl, updateC=updateCl, ctype = ctypel as {size=sizel, align=alignl, ...} } = l and {load=loadm, store=storem, updateML=updateMLm, updateC=updateCm, ctype = ctypem as {size=sizem, align=alignm, ...} } = m val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) val offsetl = alignUp(offsetk + sizek, alignl) val offsetm = alignUp(offsetl + sizel, alignm) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk), loadl(s ++ offsetl), loadm(s ++ offsetm)) and store (x, (a, b, c, d, e, f, g, h, i, j, k, l, m)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) and freel = storel(x ++ offsetl, l) and freem = storem(x ++ offsetm, m) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek(); freel(); freem() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k, l, m)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k); updateMLl(x ++ offsetl, l); updateMLm(x ++ offsetm, m)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k, l, m)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k); updateCl(x ++ offsetl, l); updateCm(x ++ offsetm, m)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, Word.max(alignk, Word.max(alignl, alignm)))))))))))) val size = offsetm + sizem val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek, ctypel, ctypem] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end nonfix o fun cStruct14(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion, l: 'l conversion, m: 'm conversion, n: 'n conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k and {load=loadl, store=storel, updateML=updateMLl, updateC=updateCl, ctype = ctypel as {size=sizel, align=alignl, ...} } = l and {load=loadm, store=storem, updateML=updateMLm, updateC=updateCm, ctype = ctypem as {size=sizem, align=alignm, ...} } = m and {load=loadn, store=storen, updateML=updateMLn, updateC=updateCn, ctype = ctypen as {size=sizen, align=alignn, ...} } = n val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) val offsetl = alignUp(offsetk + sizek, alignl) val offsetm = alignUp(offsetl + sizel, alignm) val offsetn = alignUp(offsetm + sizem, alignn) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk), loadl(s ++ offsetl), loadm(s ++ offsetm), loadn(s ++ offsetn)) and store (x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) and freel = storel(x ++ offsetl, l) and freem = storem(x ++ offsetm, m) and freen = storen(x ++ offsetn, n) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek(); freel(); freem(); freen() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k); updateMLl(x ++ offsetl, l); updateMLm(x ++ offsetm, m); updateMLn(x ++ offsetn, n)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k); updateCl(x ++ offsetl, l); updateCm(x ++ offsetm, m); updateCn(x ++ offsetn, n)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, Word.max(alignk, Word.max(alignl, Word.max(alignm, alignn))))))))))))) val size = offsetn + sizen val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek, ctypel, ctypem, ctypen] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct15(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion, l: 'l conversion, m: 'm conversion, n: 'n conversion, o: 'o conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k and {load=loadl, store=storel, updateML=updateMLl, updateC=updateCl, ctype = ctypel as {size=sizel, align=alignl, ...} } = l and {load=loadm, store=storem, updateML=updateMLm, updateC=updateCm, ctype = ctypem as {size=sizem, align=alignm, ...} } = m and {load=loadn, store=storen, updateML=updateMLn, updateC=updateCn, ctype = ctypen as {size=sizen, align=alignn, ...} } = n and {load=loado, store=storeo, updateML=updateMLo, updateC=updateCo, ctype = ctypeo as {size=sizeo, align=aligno, ...} } = o val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) val offsetl = alignUp(offsetk + sizek, alignl) val offsetm = alignUp(offsetl + sizel, alignm) val offsetn = alignUp(offsetm + sizem, alignn) val offseto = alignUp(offsetn + sizen, aligno) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk), loadl(s ++ offsetl), loadm(s ++ offsetm), loadn(s ++ offsetn), loado(s ++ offseto)) and store (x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) and freel = storel(x ++ offsetl, l) and freem = storem(x ++ offsetm, m) and freen = storen(x ++ offsetn, n) and freeo = storeo(x ++ offseto, o) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek(); freel(); freem(); freen(); freeo() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k); updateMLl(x ++ offsetl, l); updateMLm(x ++ offsetm, m); updateMLn(x ++ offsetn, n); updateMLo(x ++ offseto, o)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k); updateCl(x ++ offsetl, l); updateCm(x ++ offsetm, m); updateCn(x ++ offsetn, n); updateCo(x ++ offseto, o)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, Word.max(alignk, Word.max(alignl, Word.max(alignm, Word.max(alignn, aligno)))))))))))))) val size = offseto + sizeo val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek, ctypel, ctypem, ctypen, ctypeo] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct16(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion, l: 'l conversion, m: 'm conversion, n: 'n conversion, o: 'o conversion, p: 'p conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k and {load=loadl, store=storel, updateML=updateMLl, updateC=updateCl, ctype = ctypel as {size=sizel, align=alignl, ...} } = l and {load=loadm, store=storem, updateML=updateMLm, updateC=updateCm, ctype = ctypem as {size=sizem, align=alignm, ...} } = m and {load=loadn, store=storen, updateML=updateMLn, updateC=updateCn, ctype = ctypen as {size=sizen, align=alignn, ...} } = n and {load=loado, store=storeo, updateML=updateMLo, updateC=updateCo, ctype = ctypeo as {size=sizeo, align=aligno, ...} } = o and {load=loadp, store=storep, updateML=updateMLp, updateC=updateCp, ctype = ctypep as {size=sizep, align=alignp, ...} } = p val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) val offsetl = alignUp(offsetk + sizek, alignl) val offsetm = alignUp(offsetl + sizel, alignm) val offsetn = alignUp(offsetm + sizem, alignn) val offseto = alignUp(offsetn + sizen, aligno) val offsetp = alignUp(offseto + sizeo, alignp) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk), loadl(s ++ offsetl), loadm(s ++ offsetm), loadn(s ++ offsetn), loado(s ++ offseto), loadp(s ++ offsetp)) and store (x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) and freel = storel(x ++ offsetl, l) and freem = storem(x ++ offsetm, m) and freen = storen(x ++ offsetn, n) and freeo = storeo(x ++ offseto, o) and freep = storep(x ++ offsetp, p) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek(); freel(); freem(); freen(); freeo(); freep() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k); updateMLl(x ++ offsetl, l); updateMLm(x ++ offsetm, m); updateMLn(x ++ offsetn, n); updateMLo(x ++ offseto, o); updateMLp(x ++ offsetp, p)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k); updateCl(x ++ offsetl, l); updateCm(x ++ offsetm, m); updateCn(x ++ offsetn, n); updateCo(x ++ offseto, o); updateCp(x ++ offsetp, p)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, Word.max(alignk, Word.max(alignl, Word.max(alignm, Word.max(alignn, Word.max(aligno, alignp))))))))))))))) val size = offsetp + sizep val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek, ctypel, ctypem, ctypen, ctypeo, ctypep] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct17(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion, l: 'l conversion, m: 'm conversion, n: 'n conversion, o: 'o conversion, p: 'p conversion, q: 'q conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p*'q)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k and {load=loadl, store=storel, updateML=updateMLl, updateC=updateCl, ctype = ctypel as {size=sizel, align=alignl, ...} } = l and {load=loadm, store=storem, updateML=updateMLm, updateC=updateCm, ctype = ctypem as {size=sizem, align=alignm, ...} } = m and {load=loadn, store=storen, updateML=updateMLn, updateC=updateCn, ctype = ctypen as {size=sizen, align=alignn, ...} } = n and {load=loado, store=storeo, updateML=updateMLo, updateC=updateCo, ctype = ctypeo as {size=sizeo, align=aligno, ...} } = o and {load=loadp, store=storep, updateML=updateMLp, updateC=updateCp, ctype = ctypep as {size=sizep, align=alignp, ...} } = p and {load=loadq, store=storeq, updateML=updateMLq, updateC=updateCq, ctype = ctypeq as {size=sizeq, align=alignq, ...} } = q val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) val offsetl = alignUp(offsetk + sizek, alignl) val offsetm = alignUp(offsetl + sizel, alignm) val offsetn = alignUp(offsetm + sizem, alignn) val offseto = alignUp(offsetn + sizen, aligno) val offsetp = alignUp(offseto + sizeo, alignp) val offsetq = alignUp(offsetp + sizep, alignq) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk), loadl(s ++ offsetl), loadm(s ++ offsetm), loadn(s ++ offsetn), loado(s ++ offseto), loadp(s ++ offsetp), loadq(s ++ offsetq)) and store (x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) and freel = storel(x ++ offsetl, l) and freem = storem(x ++ offsetm, m) and freen = storen(x ++ offsetn, n) and freeo = storeo(x ++ offseto, o) and freep = storep(x ++ offsetp, p) and freeq = storeq(x ++ offsetq, q) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek(); freel(); freem(); freen(); freeo(); freep(); freeq() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k); updateMLl(x ++ offsetl, l); updateMLm(x ++ offsetm, m); updateMLn(x ++ offsetn, n); updateMLo(x ++ offseto, o); updateMLp(x ++ offsetp, p); updateMLq(x ++ offsetq, q)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k); updateCl(x ++ offsetl, l); updateCm(x ++ offsetm, m); updateCn(x ++ offsetn, n); updateCo(x ++ offseto, o); updateCp(x ++ offsetp, p); updateCq(x ++ offsetq, q)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, Word.max(alignk, Word.max(alignl, Word.max(alignm, Word.max(alignn, Word.max(aligno, Word.max(alignp, alignq)))))))))))))))) val size = offsetq + sizeq val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek, ctypel, ctypem, ctypen, ctypeo, ctypep, ctypeq] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct18(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion, l: 'l conversion, m: 'm conversion, n: 'n conversion, o: 'o conversion, p: 'p conversion, q: 'q conversion, r: 'r conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p*'q*'r)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k and {load=loadl, store=storel, updateML=updateMLl, updateC=updateCl, ctype = ctypel as {size=sizel, align=alignl, ...} } = l and {load=loadm, store=storem, updateML=updateMLm, updateC=updateCm, ctype = ctypem as {size=sizem, align=alignm, ...} } = m and {load=loadn, store=storen, updateML=updateMLn, updateC=updateCn, ctype = ctypen as {size=sizen, align=alignn, ...} } = n and {load=loado, store=storeo, updateML=updateMLo, updateC=updateCo, ctype = ctypeo as {size=sizeo, align=aligno, ...} } = o and {load=loadp, store=storep, updateML=updateMLp, updateC=updateCp, ctype = ctypep as {size=sizep, align=alignp, ...} } = p and {load=loadq, store=storeq, updateML=updateMLq, updateC=updateCq, ctype = ctypeq as {size=sizeq, align=alignq, ...} } = q and {load=loadr, store=storer, updateML=updateMLr, updateC=updateCr, ctype = ctyper as {size=sizer, align=alignr, ...} } = r val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) val offsetl = alignUp(offsetk + sizek, alignl) val offsetm = alignUp(offsetl + sizel, alignm) val offsetn = alignUp(offsetm + sizem, alignn) val offseto = alignUp(offsetn + sizen, aligno) val offsetp = alignUp(offseto + sizeo, alignp) val offsetq = alignUp(offsetp + sizep, alignq) val offsetr = alignUp(offsetq + sizeq, alignr) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk), loadl(s ++ offsetl), loadm(s ++ offsetm), loadn(s ++ offsetn), loado(s ++ offseto), loadp(s ++ offsetp), loadq(s ++ offsetq), loadr(s ++ offsetr)) and store (x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) and freel = storel(x ++ offsetl, l) and freem = storem(x ++ offsetm, m) and freen = storen(x ++ offsetn, n) and freeo = storeo(x ++ offseto, o) and freep = storep(x ++ offsetp, p) and freeq = storeq(x ++ offsetq, q) and freer = storer(x ++ offsetr, r) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek(); freel(); freem(); freen(); freeo(); freep(); freeq(); freer() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k); updateMLl(x ++ offsetl, l); updateMLm(x ++ offsetm, m); updateMLn(x ++ offsetn, n); updateMLo(x ++ offseto, o); updateMLp(x ++ offsetp, p); updateMLq(x ++ offsetq, q); updateMLr(x ++ offsetr, r)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k); updateCl(x ++ offsetl, l); updateCm(x ++ offsetm, m); updateCn(x ++ offsetn, n); updateCo(x ++ offseto, o); updateCp(x ++ offsetp, p); updateCq(x ++ offsetq, q); updateCr(x ++ offsetr, r)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, Word.max(alignk, Word.max(alignl, Word.max(alignm, Word.max(alignn, Word.max(aligno, Word.max(alignp, Word.max(alignq, alignr))))))))))))))))) val size = offsetr + sizer val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek, ctypel, ctypem, ctypen, ctypeo, ctypep, ctypeq, ctyper] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct19(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion, l: 'l conversion, m: 'm conversion, n: 'n conversion, o: 'o conversion, p: 'p conversion, q: 'q conversion, r: 'r conversion, s: 's conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p*'q*'r*'s)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k and {load=loadl, store=storel, updateML=updateMLl, updateC=updateCl, ctype = ctypel as {size=sizel, align=alignl, ...} } = l and {load=loadm, store=storem, updateML=updateMLm, updateC=updateCm, ctype = ctypem as {size=sizem, align=alignm, ...} } = m and {load=loadn, store=storen, updateML=updateMLn, updateC=updateCn, ctype = ctypen as {size=sizen, align=alignn, ...} } = n and {load=loado, store=storeo, updateML=updateMLo, updateC=updateCo, ctype = ctypeo as {size=sizeo, align=aligno, ...} } = o and {load=loadp, store=storep, updateML=updateMLp, updateC=updateCp, ctype = ctypep as {size=sizep, align=alignp, ...} } = p and {load=loadq, store=storeq, updateML=updateMLq, updateC=updateCq, ctype = ctypeq as {size=sizeq, align=alignq, ...} } = q and {load=loadr, store=storer, updateML=updateMLr, updateC=updateCr, ctype = ctyper as {size=sizer, align=alignr, ...} } = r and {load=loads, store=stores, updateML=updateMLs, updateC=updateCs, ctype = ctypes as {size=sizes, align=aligns, ...} } = s val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) val offsetl = alignUp(offsetk + sizek, alignl) val offsetm = alignUp(offsetl + sizel, alignm) val offsetn = alignUp(offsetm + sizem, alignn) val offseto = alignUp(offsetn + sizen, aligno) val offsetp = alignUp(offseto + sizeo, alignp) val offsetq = alignUp(offsetp + sizep, alignq) val offsetr = alignUp(offsetq + sizeq, alignr) val offsets = alignUp(offsetr + sizer, aligns) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk), loadl(s ++ offsetl), loadm(s ++ offsetm), loadn(s ++ offsetn), loado(s ++ offseto), loadp(s ++ offsetp), loadq(s ++ offsetq), loadr(s ++ offsetr), loads(s ++ offsets)) and store (x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) and freel = storel(x ++ offsetl, l) and freem = storem(x ++ offsetm, m) and freen = storen(x ++ offsetn, n) and freeo = storeo(x ++ offseto, o) and freep = storep(x ++ offsetp, p) and freeq = storeq(x ++ offsetq, q) and freer = storer(x ++ offsetr, r) and frees = stores(x ++ offsets, s) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek(); freel(); freem(); freen(); freeo(); freep(); freeq(); freer(); frees() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k); updateMLl(x ++ offsetl, l); updateMLm(x ++ offsetm, m); updateMLn(x ++ offsetn, n); updateMLo(x ++ offseto, o); updateMLp(x ++ offsetp, p); updateMLq(x ++ offsetq, q); updateMLr(x ++ offsetr, r); updateMLs(x ++ offsets, s)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k); updateCl(x ++ offsetl, l); updateCm(x ++ offsetm, m); updateCn(x ++ offsetn, n); updateCo(x ++ offseto, o); updateCp(x ++ offsetp, p); updateCq(x ++ offsetq, q); updateCr(x ++ offsetr, r); updateCs(x ++ offsets, s)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, Word.max(alignk, Word.max(alignl, Word.max(alignm, Word.max(alignn, Word.max(aligno, Word.max(alignp, Word.max(alignq, Word.max(alignr, aligns)))))))))))))))))) val size = offsets + sizes val typeForm = LowLevel.CTypeStruct [ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek, ctypel, ctypem, ctypen, ctypeo, ctypep, ctypeq, ctyper, ctypes] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end fun cStruct20(a: 'a conversion, b: 'b conversion, c: 'c conversion, d: 'd conversion, e: 'e conversion, f: 'f conversion, g: 'g conversion, h: 'h conversion, i: 'i conversion, j: 'j conversion, k: 'k conversion, l: 'l conversion, m: 'm conversion, n: 'n conversion, o: 'o conversion, p: 'p conversion, q: 'q conversion, r: 'r conversion, s: 's conversion, t: 't conversion): ('a*'b*'c*'d*'e*'f*'g*'h*'i*'j*'k*'l*'m*'n*'o*'p*'q*'r*'s*'t)conversion = let val {load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype = ctypea as {size=sizea, align=aligna, ...} } = a and {load=loadb, store=storeb, updateML=updateMLb, updateC=updateCb, ctype = ctypeb as {size=sizeb, align=alignb, ...} } = b and {load=loadc, store=storec, updateML=updateMLc, updateC=updateCc, ctype = ctypec as {size=sizec, align=alignc, ...} } = c and {load=loadd, store=stored, updateML=updateMLd, updateC=updateCd, ctype = ctyped as {size=sized, align=alignd, ...} } = d and {load=loade, store=storee, updateML=updateMLe, updateC=updateCe, ctype = ctypee as {size=sizee, align=aligne, ...} } = e and {load=loadf, store=storef, updateML=updateMLf, updateC=updateCf, ctype = ctypef as {size=sizef, align=alignf, ...} } = f and {load=loadg, store=storeg, updateML=updateMLg, updateC=updateCg, ctype = ctypeg as {size=sizeg, align=aligng, ...} } = g and {load=loadh, store=storeh, updateML=updateMLh, updateC=updateCh, ctype = ctypeh as {size=sizeh, align=alignh, ...} } = h and {load=loadi, store=storei, updateML=updateMLi, updateC=updateCi, ctype = ctypei as {size=sizei, align=aligni, ...} } = i and {load=loadj, store=storej, updateML=updateMLj, updateC=updateCj, ctype = ctypej as {size=sizej, align=alignj, ...} } = j and {load=loadk, store=storek, updateML=updateMLk, updateC=updateCk, ctype = ctypek as {size=sizek, align=alignk, ...} } = k and {load=loadl, store=storel, updateML=updateMLl, updateC=updateCl, ctype = ctypel as {size=sizel, align=alignl, ...} } = l and {load=loadm, store=storem, updateML=updateMLm, updateC=updateCm, ctype = ctypem as {size=sizem, align=alignm, ...} } = m and {load=loadn, store=storen, updateML=updateMLn, updateC=updateCn, ctype = ctypen as {size=sizen, align=alignn, ...} } = n and {load=loado, store=storeo, updateML=updateMLo, updateC=updateCo, ctype = ctypeo as {size=sizeo, align=aligno, ...} } = o and {load=loadp, store=storep, updateML=updateMLp, updateC=updateCp, ctype = ctypep as {size=sizep, align=alignp, ...} } = p and {load=loadq, store=storeq, updateML=updateMLq, updateC=updateCq, ctype = ctypeq as {size=sizeq, align=alignq, ...} } = q and {load=loadr, store=storer, updateML=updateMLr, updateC=updateCr, ctype = ctyper as {size=sizer, align=alignr, ...} } = r and {load=loads, store=stores, updateML=updateMLs, updateC=updateCs, ctype = ctypes as {size=sizes, align=aligns, ...} } = s and {load=loadt, store=storet, updateML=updateMLt, updateC=updateCt, ctype = ctypet as {size=sizet, align=alignt, ...} } = t val offsetb = alignUp(sizea, alignb) val offsetc = alignUp(offsetb + sizeb, alignc) val offsetd = alignUp(offsetc + sizec, alignd) val offsete = alignUp(offsetd + sized, aligne) val offsetf = alignUp(offsete + sizee, alignf) val offsetg = alignUp(offsetf + sizef, aligng) val offseth = alignUp(offsetg + sizeg, alignh) val offseti = alignUp(offseth + sizeh, aligni) val offsetj = alignUp(offseti + sizei, alignj) val offsetk = alignUp(offsetj + sizej, alignk) val offsetl = alignUp(offsetk + sizek, alignl) val offsetm = alignUp(offsetl + sizel, alignm) val offsetn = alignUp(offsetm + sizem, alignn) val offseto = alignUp(offsetn + sizen, aligno) val offsetp = alignUp(offseto + sizeo, alignp) val offsetq = alignUp(offsetp + sizep, alignq) val offsetr = alignUp(offsetq + sizeq, alignr) val offsets = alignUp(offsetr + sizer, aligns) val offsett = alignUp(offsets + sizes, alignt) fun load s = (loada s, loadb(s ++ offsetb), loadc(s ++ offsetc), loadd(s ++ offsetd), loade(s ++ offsete), loadf(s ++ offsetf), loadg(s ++ offsetg), loadh(s ++ offseth), loadi(s ++ offseti), loadj(s ++ offsetj), loadk(s ++ offsetk), loadl(s ++ offsetl), loadm(s ++ offsetm), loadn(s ++ offsetn), loado(s ++ offseto), loadp(s ++ offsetp), loadq(s ++ offsetq), loadr(s ++ offsetr), loads(s ++ offsets), loadt(s ++ offsett)) and store (x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t)) = let val freea = storea(x, a) and freeb = storeb(x ++ offsetb, b) and freec = storec(x ++ offsetc, c) and freed = stored(x ++ offsetd, d) and freee = storee(x ++ offsete, e) and freef = storef(x ++ offsetf, f) and freeg = storeg(x ++ offsetg, g) and freeh = storeh(x ++ offseth, h) and freei = storei(x ++ offseti, i) and freej = storej(x ++ offsetj, j) and freek = storek(x ++ offsetk, k) and freel = storel(x ++ offsetl, l) and freem = storem(x ++ offsetm, m) and freen = storen(x ++ offsetn, n) and freeo = storeo(x ++ offseto, o) and freep = storep(x ++ offsetp, p) and freeq = storeq(x ++ offsetq, q) and freer = storer(x ++ offsetr, r) and frees = stores(x ++ offsets, s) and freet = storet(x ++ offsett, t) in fn () => ( freea(); freeb(); freec(); freed(); freee(); freef(); freeg(); freeh(); freei(); freej(); freek(); freel(); freem(); freen(); freeo(); freep(); freeq(); freer(); frees(); freet() ) end and updateML(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t)) = (updateMLa(x, a); updateMLb(x ++ offsetb, b); updateMLc(x ++ offsetc, c); updateMLd(x ++ offsetd, d); updateMLe(x ++ offsete, e); updateMLf(x ++ offsetf, f); updateMLg(x ++ offsetg, g); updateMLh(x ++ offseth, h); updateMLi(x ++ offseti, i); updateMLj(x ++ offsetj, j); updateMLk(x ++ offsetk, k); updateMLl(x ++ offsetl, l); updateMLm(x ++ offsetm, m); updateMLn(x ++ offsetn, n); updateMLo(x ++ offseto, o); updateMLp(x ++ offsetp, p); updateMLq(x ++ offsetq, q); updateMLr(x ++ offsetr, r); updateMLs(x ++ offsets, s); updateMLt(x ++ offsett, t)) and updateC(x, (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t)) = (updateCa(x, a); updateCb(x ++ offsetb, b); updateCc(x ++ offsetc, c); updateCd(x ++ offsetd, d); updateCe(x ++ offsete, e); updateCf(x ++ offsetf, f); updateCg(x ++ offsetg, g); updateCh(x ++ offseth, h); updateCi(x ++ offseti, i); updateCj(x ++ offsetj, j); updateCk(x ++ offsetk, k); updateCl(x ++ offsetl, l); updateCm(x ++ offsetm, m); updateCn(x ++ offsetn, n); updateCo(x ++ offseto, o); updateCp(x ++ offsetp, p); updateCq(x ++ offsetq, q); updateCr(x ++ offsetr, r); updateCs(x ++ offsets, s); updateCt(x ++ offsett, t)) val align = Word.max(aligna, Word.max(alignb, Word.max(alignc, Word.max(alignd, Word.max(aligne, Word.max(alignf, Word.max(aligng, Word.max(alignh, Word.max(aligni, Word.max(alignj, Word.max(alignk, Word.max(alignl, Word.max(alignm, Word.max(alignn, Word.max(aligno, Word.max(alignp, Word.max(alignq, Word.max(alignr, Word.max(aligns, alignt))))))))))))))))))) val size = offsett + sizet val typeForm = LowLevel.CTypeStruct[ctypea, ctypeb, ctypec, ctyped, ctypee, ctypef, ctypeg, ctypeh, ctypei, ctypej, ctypek, ctypel, ctypem, ctypen, ctypeo, ctypep, ctypeq, ctyper, ctypes, ctypet] val ctype = {align=align, size=size, typeForm=typeForm} in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = ctype} end (* Conversion for call-by-reference. *) local open Memory LowLevel in fun cStar({load=loada, store=storea, ctype=ctypea, ...}: 'a conversion): 'a ref conversion = let fun store(m, ref s) = let (* When we pass a ref X into a cStar cX function we need to allocate a memory cell big enough for a cX value. Then we copy the current value of the ML into this. We set the argument, a pointer, to the address of the cell. *) val mem = malloc(#size ctypea) val () = setAddress(m, 0w0, mem) val freea = storea(mem, s) in fn () => (free mem; freea()) end (* Called to update the ML value when the C . *) fun updateML(m, s) = s := loada(getAddress(m, 0w0)) (* Used when an ML callback receives a cStar argument. *) fun load s = ref(loada(getAddress(s, 0w0))) (* Used when a callback has returned to update the C value. If storea allocates then there's nothing we can do. *) fun updateC(m, ref s) = ignore(storea(getAddress(m, 0w0), s)) in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = cTypePointer} end (* Similar to cStar but without the need to update the result. *) fun cConstStar({load=loada, store=storea, updateML=updateMLa, updateC=updateCa, ctype=ctypea}: 'a conversion): 'a conversion = let fun load s = loada(getAddress(s, 0w0)) fun store(m, s) = let val mem = malloc(#size ctypea) val () = setAddress(m, 0w0, mem) val freea = storea(mem, s) in fn () => (free mem; freea()) end (* Do we have to do anything here? Could we pass a const pointer to a structure with variable fields? *) fun updateML(m, s) = updateMLa(getAddress(m, 0w0), s) and updateC(m, s) = updateCa(getAddress(m, 0w0), s) in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = cTypePointer} end (* Fixed size vector. It is treated as a struct and passed by value or embedded in a structure. *) fun cVectorFixedSize(n, {load=loadEl, store=storeEl, updateML=updateMLel, updateC=updateCel, ctype=ctypeEl as {size=sizeEl, align=alignEl, ...}, ...}: 'a conversion) : 'a vector conversion = let val arraySize = sizeEl * Word.fromInt n val ffiTypeArray = LowLevel.CTypeStruct(List.tabulate (n, fn _ => ctypeEl)) val arrayType = { size = arraySize, align = alignEl, typeForm = ffiTypeArray } fun load(v: voidStar): 'a vector = Vector.tabulate(n, fn i => loadEl(v ++ Word.fromInt i)) fun store(v: voidStar, s: 'a vector) = let val sLen = Vector.length s val _ = sLen <= n orelse raise Foreign "vector too long" (* Store the values. Make a list of the free fns in case they allocate *) val frees = Vector.foldli(fn(i, el, l) => storeEl(v ++ Word.fromInt i, el) :: l) [] s; in fn () => List.app (fn f => f()) frees end (* If we have a ref in here we need to update *) fun updateML(v, s) = Vector.appi(fn (i, el) => updateMLel(v ++ Word.fromInt i, el)) s and updateC(v, s) = Vector.appi(fn (i, el) => updateCel(v ++ Word.fromInt i, el)) s in { load = load, store = store, updateML=updateML, updateC=updateC, ctype = arrayType } end (* Pass an ML vector as a pointer to a C array. *) fun cVectorPointer ({store=storeEl, updateML=updateMLel, ctype={size=sizeEl, ...}, ...}: 'a conversion) : 'a vector conversion = let (* We can't determine the size so can't construct a suitable ML value. *) fun load _ = raise Foreign "Cannot return a cVectorPointer from C to ML" fun store(m, s) = let val mem = malloc(sizeEl * Word.fromInt(Vector.length s)) val () = setAddress(m, 0w0, mem) (* Store the values. Make a list of the free fns in case they allocate *) val frees = Vector.foldli(fn(i, el, l) => storeEl(mem ++ (sizeEl * Word.fromInt i), el) :: l) [] s; in fn () => (List.app (fn f => f()) frees; free mem) end (* This is only appropriate if the elements are refs. *) fun updateML(v, s) = let val addr = getAddress(v, 0w0) in Vector.appi(fn (i, el) => updateMLel(addr ++ (sizeEl * Word.fromInt i), el)) s end (* updateC can't actually be used because we can't load a suitable value *) and updateC _ = raise Foreign "Cannot return a cVectorPointer from C to ML" in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = cTypePointer} end (* Pass an ML array as a pointer to a C array and, on return, update each element of the ML array from the C array. *) fun cArrayPointer ({load=loadEl, store=storeEl, ctype={size=sizeEl, ...}, ...}: 'a conversion) : 'a array conversion = let (* We can't determine the size so can't construct a suitable ML value. *) fun load _ = raise Foreign "Cannot return a cArrayPointer from C to ML" fun store(m, s) = let val mem = malloc(sizeEl * Word.fromInt(Array.length s)) val () = setAddress(m, 0w0, mem) (* Store the values. Make a list of the free fns in case they allocate *) val frees = Array.foldli(fn(i, el, l) => storeEl(mem ++ (sizeEl * Word.fromInt i), el) :: l) [] s; in fn () => (List.app (fn f => f()) frees; free mem) end (* updateML is used after a C function returns. It needs to update each element. *) fun updateML(v, s) = let val addr = getAddress(v, 0w0) in Array.modifyi(fn (i, _) => loadEl(addr ++ (sizeEl * Word.fromInt i))) s end (* updateC can't actually be used because we can't load a suitable value *) and updateC _ = raise Foreign "Cannot return a cArrayPointer from C to ML" in {load=load, store=store, updateML=updateML, updateC=updateC, ctype = cTypePointer} end end (* Calls with conversion. *) (* Note: it may be possible to have general functions to compute offsets but we don't do that because this way the compiler can compute the offsets as constants during inline expansion. *) local open Memory LowLevel fun buildCall(argConv, resConv, callF) = let val { ctype = resType, load = resLoad, ...} = resConv val { store=storeArgs, ctype={size=argSize, ...}, updateML=updateArgs, ...} = argConv val resultOffset = alignUp(argSize, #align resType) val argResSpace = resultOffset + #size resType in fn mlArgs => alloca(argResSpace, fn rMem => let val freeArgs = storeArgs(rMem, mlArgs) val resultAddr = rMem++resultOffset in let val () = callF(rMem, resultAddr) val result = resLoad resultAddr in updateArgs(rMem, mlArgs); freeArgs(); result end handle exn => (freeArgs(); raise exn) end) end in fun buildCall0withAbi(abi: abi, fnAddr, (), {ctype = resType, load= resLoad, ...} : 'a conversion): unit->'a = let val callF = callwithAbi abi [] resType fnAddr in fn () => alloca(#size resType, fn rMem => (callF(Memory.null, rMem); resLoad rMem)) end fun buildCall0(symbol, argTypes, resType) = buildCall0withAbi (abiDefault, symbol, argTypes, resType) fun buildCall1withAbi (abi: abi, fnAddr, { ctype = argType, store = argStore, updateML = argUpdate, ...}: 'a conversion, { ctype = resType, load= resLoad, ...}: 'b conversion): 'a ->'b = let val callF = callwithAbi abi [argType] resType fnAddr (* Allocate space for argument and result. *) val argOffset = alignUp(#size resType, #align argType) val argSpace = argOffset + #size argType in fn x => alloca(argSpace, fn rMem => let val argAddr = rMem ++ argOffset val freea = argStore (argAddr, x) in let val () = callF(argAddr, rMem) val result = resLoad rMem in argUpdate (argAddr, x); freea (); result end handle exn => (freea(); raise exn) end) end fun buildCall1(symbol, argTypes, resType) = buildCall1withAbi (abiDefault, symbol, argTypes, resType) fun buildCall2withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion), resConv: 'c conversion): 'a * 'b -> 'c = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv] (#ctype resConv) fnAddr val argConv = cStruct2(arg1Conv, arg2Conv) in buildCall(argConv, resConv, callF) end fun buildCall2(symbol, argTypes, resType) = buildCall2withAbi (abiDefault, symbol, argTypes, resType) fun buildCall3withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion), resConv: 'd conversion): 'a * 'b *'c -> 'd = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv] (#ctype resConv) fnAddr val argConv = cStruct3(arg1Conv, arg2Conv, arg3Conv) in buildCall(argConv, resConv, callF) end fun buildCall3(symbol, argTypes, resType) = buildCall3withAbi (abiDefault, symbol, argTypes, resType) fun buildCall4withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion), resConv: 'e conversion): 'a * 'b *'c * 'd -> 'e = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv] (#ctype resConv) fnAddr val argConv = cStruct4(arg1Conv, arg2Conv, arg3Conv, arg4Conv) in buildCall(argConv, resConv, callF) end fun buildCall4(symbol, argTypes, resType) = buildCall4withAbi (abiDefault, symbol, argTypes, resType) fun buildCall5withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion), resConv: 'f conversion): 'a * 'b *'c * 'd * 'e -> 'f = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv] (#ctype resConv) fnAddr val argConv = cStruct5(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv) in buildCall(argConv, resConv, callF) end fun buildCall5(symbol, argTypes, resType) = buildCall5withAbi (abiDefault, symbol, argTypes, resType) fun buildCall6withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion), resConv: 'g conversion): 'a * 'b *'c * 'd * 'e * 'f -> 'g = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv] (#ctype resConv) fnAddr val argConv = cStruct6(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv) in buildCall(argConv, resConv, callF) end fun buildCall6(symbol, argTypes, resType) = buildCall6withAbi (abiDefault, symbol, argTypes, resType) fun buildCall7withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion, arg7Conv: 'g conversion), resConv: 'h conversion): 'a * 'b *'c * 'd * 'e * 'f * 'g -> 'h = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv, #ctype arg7Conv] (#ctype resConv) fnAddr val argConv = cStruct7(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv, arg7Conv) in buildCall(argConv, resConv, callF) end fun buildCall7(symbol, argTypes, resType) = buildCall7withAbi (abiDefault, symbol, argTypes, resType) fun buildCall8withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion, arg7Conv: 'g conversion, arg8Conv: 'h conversion), resConv: 'i conversion): 'a * 'b *'c * 'd * 'e * 'f * 'g * 'h -> 'i = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv, #ctype arg7Conv, #ctype arg8Conv] (#ctype resConv) fnAddr val argConv = cStruct8(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv, arg7Conv, arg8Conv) in buildCall(argConv, resConv, callF) end fun buildCall8(symbol, argTypes, resType) = buildCall8withAbi (abiDefault, symbol, argTypes, resType) fun buildCall9withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion, arg7Conv: 'g conversion, arg8Conv: 'h conversion, arg9Conv: 'i conversion), resConv: 'j conversion): 'a * 'b *'c * 'd * 'e * 'f * 'g * 'h * 'i -> 'j = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv, #ctype arg7Conv, #ctype arg8Conv, #ctype arg9Conv] (#ctype resConv) fnAddr val argConv = cStruct9(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv, arg7Conv, arg8Conv, arg9Conv) in buildCall(argConv, resConv, callF) end fun buildCall9(symbol, argTypes, resType) = buildCall9withAbi (abiDefault, symbol, argTypes, resType) fun buildCall10withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion, arg7Conv: 'g conversion, arg8Conv: 'h conversion, arg9Conv: 'i conversion, arg10Conv: 'j conversion), resConv: 'k conversion): 'a * 'b *'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j -> 'k = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv, #ctype arg7Conv, #ctype arg8Conv, #ctype arg9Conv, #ctype arg10Conv] (#ctype resConv) fnAddr val argConv = cStruct10(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv, arg7Conv, arg8Conv, arg9Conv, arg10Conv) in buildCall(argConv, resConv, callF) end fun buildCall10(symbol, argTypes, resType) = buildCall10withAbi (abiDefault, symbol, argTypes, resType) fun buildCall11withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion, arg7Conv: 'g conversion, arg8Conv: 'h conversion, arg9Conv: 'i conversion, arg10Conv: 'j conversion, arg11Conv: 'k conversion), resConv: 'l conversion): 'a * 'b *'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k -> 'l = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv, #ctype arg7Conv, #ctype arg8Conv, #ctype arg9Conv, #ctype arg10Conv, #ctype arg11Conv] (#ctype resConv) fnAddr val argConv = cStruct11(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv, arg7Conv, arg8Conv, arg9Conv, arg10Conv, arg11Conv) in buildCall(argConv, resConv, callF) end fun buildCall11(symbol, argTypes, resType) = buildCall11withAbi (abiDefault, symbol, argTypes, resType) fun buildCall12withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion, arg7Conv: 'g conversion, arg8Conv: 'h conversion, arg9Conv: 'i conversion, arg10Conv: 'j conversion, arg11Conv: 'k conversion, arg12Conv: 'l conversion), resConv: 'm conversion): 'a * 'b *'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l -> 'm = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv, #ctype arg7Conv, #ctype arg8Conv, #ctype arg9Conv, #ctype arg10Conv, #ctype arg11Conv, #ctype arg12Conv] (#ctype resConv) fnAddr val argConv = cStruct12(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv, arg7Conv, arg8Conv, arg9Conv, arg10Conv, arg11Conv, arg12Conv) in buildCall(argConv, resConv, callF) end fun buildCall12(symbol, argTypes, resType) = buildCall12withAbi (abiDefault, symbol, argTypes, resType) fun buildCall13withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion, arg7Conv: 'g conversion, arg8Conv: 'h conversion, arg9Conv: 'i conversion, arg10Conv: 'j conversion, arg11Conv: 'k conversion, arg12Conv: 'l conversion, arg13Conv: 'm conversion), resConv: 'n conversion): 'a * 'b *'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l * 'm -> 'n = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv, #ctype arg7Conv, #ctype arg8Conv, #ctype arg9Conv, #ctype arg10Conv, #ctype arg11Conv, #ctype arg12Conv, #ctype arg13Conv] (#ctype resConv) fnAddr val argConv = cStruct13(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv, arg7Conv, arg8Conv, arg9Conv, arg10Conv, arg11Conv, arg12Conv, arg13Conv) in buildCall(argConv, resConv, callF) end fun buildCall13(symbol, argTypes, resType) = buildCall13withAbi (abiDefault, symbol, argTypes, resType) fun buildCall14withAbi (abi: abi, fnAddr, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion, arg7Conv: 'g conversion, arg8Conv: 'h conversion, arg9Conv: 'i conversion, arg10Conv: 'j conversion, arg11Conv: 'k conversion, arg12Conv: 'l conversion, arg13Conv: 'm conversion, arg14Conv: 'n conversion), resConv: 'o conversion): 'a * 'b *'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l * 'm * 'n -> 'o = let val callF = callwithAbi abi [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv, #ctype arg7Conv, #ctype arg8Conv, #ctype arg9Conv, #ctype arg10Conv, #ctype arg11Conv, #ctype arg12Conv, #ctype arg13Conv, #ctype arg14Conv] (#ctype resConv) fnAddr val argConv = cStruct14(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv, arg7Conv, arg8Conv, arg9Conv, arg10Conv, arg11Conv, arg12Conv, arg13Conv, arg14Conv) in buildCall(argConv, resConv, callF) end fun buildCall14(symbol, argTypes, resType) = buildCall14withAbi (abiDefault, symbol, argTypes, resType) end (* A closure is now a "closure cell" (in 32-in-64) or a single word cell containing the address of a code (in native address versions). It can be used exactly like a SysWord.word except that the code can be garbage-collected if the cell is no longer reachable. *) type 'a closure = Memory.voidStar local open Memory LowLevel - fun load _ = raise Foreign "Cannot return a closure" (* Store the address of the code. Touch the closure after the function returns to ensure it cannot be GCed earlier. That would only happen if this resulted in a callback to a different function during the execution. *) - and store(v, cl: ('a->'b) closure) = + fun store(v, cl: ('a->'b) closure) = (Memory.setAddress(v, 0w0, cl); fn () => RunCall.touch cl) + (* Load a callback address. This is rare and only occurs if we return + the address of a C function from a C function or if we pass a C function + as an address to a callback. There isn't currently any way to turn + a closure into an ML function. *) + and load a = getAddress(a, 0w0): ('a->'b) closure in val cFunction: ('a->'b) closure conversion = makeConversion { load=load, store=store, ctype = LowLevel.cTypePointer } end val touchClosure = RunCall.touch local open Memory LowLevel in fun buildCallback0withAbi(abi: abi, (), resConv: 'a conversion): (unit-> 'a) -> (unit->'a) closure = let fun callback (f: unit -> 'a) (_: voidStar, res: voidStar): unit = ignore(#store resConv (res, f ())) (* Ignore the result of #store resConv. What this means is if the callback returns something, e.g. a string, that requires dynamic allocation there will be a memory leak. *) val makeCallback = cFunctionWithAbi abi [] (#ctype resConv) in fn f => makeCallback(callback f) end fun buildCallback0(argConv, resConv) = buildCallback0withAbi(abiDefault, argConv, resConv) fun buildCallback1withAbi (abi: abi, argConv: 'a conversion, resConv: 'b conversion) : ('a -> 'b) -> ('a -> 'b) closure = let fun callback (f: 'a -> 'b) (args: voidStar, res: voidStar): unit = let val arg1 = #load argConv args val result = f arg1 val () = #updateC argConv (args, arg1) in ignore(#store resConv (res, result)) end val makeCallback = cFunctionWithAbi abi [#ctype argConv] (#ctype resConv) in fn f => makeCallback(callback f) end fun buildCallback1(argConv, resConv) = buildCallback1withAbi(abiDefault, argConv, resConv) fun buildCallback2withAbi (abi: abi, (arg1Conv: 'a conversion, arg2Conv: 'b conversion), resConv: 'c conversion) : ('a * 'b -> 'c) -> ('a * 'b -> 'c) closure = let val { load=loadArgs, updateC=updateArgs, ...} = cStruct2(arg1Conv, arg2Conv) fun callback (f: 'a *'b -> 'c) (args: voidStar, res: voidStar): unit = let val mlArgs = loadArgs args val result = f mlArgs val () = updateArgs(args, mlArgs) in ignore(#store resConv (res, result)) end val argTypes = [#ctype arg1Conv, #ctype arg2Conv] and resType = #ctype resConv val makeCallback = cFunctionWithAbi abi argTypes resType in fn f => makeCallback(callback f) end fun buildCallback2(argConv, resConv) = buildCallback2withAbi(abiDefault, argConv, resConv) fun buildCallback3withAbi (abi, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion), resConv: 'd conversion) = let val { load=loadArgs, updateC=updateArgs, ...} = cStruct3(arg1Conv, arg2Conv, arg3Conv) fun callback (f: 'a *'b * 'c -> 'd) (args: voidStar, res: voidStar): unit = let val mlArgs = loadArgs args val result = f mlArgs val () = updateArgs(args, mlArgs) in ignore(#store resConv (res, result)) end val argTypes = [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv] and resType = #ctype resConv val makeCallback = cFunctionWithAbi abi argTypes resType in fn f => makeCallback(callback f) end fun buildCallback3(argConv, resConv) = buildCallback3withAbi(abiDefault, argConv, resConv) fun buildCallback4withAbi (abi, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion), resConv: 'e conversion) = let val { load=loadArgs, updateC=updateArgs, ...} = cStruct4(arg1Conv, arg2Conv, arg3Conv, arg4Conv) fun callback (f: 'a *'b * 'c * 'd -> 'e) (args: voidStar, res: voidStar): unit = let val mlArgs = loadArgs args val result = f mlArgs val () = updateArgs(args, mlArgs) in ignore(#store resConv (res, result)) end val argTypes = [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv] and resType = #ctype resConv val makeCallback = cFunctionWithAbi abi argTypes resType in fn f => makeCallback(callback f) end fun buildCallback4(argConv, resConv) = buildCallback4withAbi(abiDefault, argConv, resConv) fun buildCallback5withAbi (abi, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion), resConv: 'f conversion) = let val { load=loadArgs, updateC=updateArgs, ...} = cStruct5(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv) fun callback (f: 'a *'b * 'c * 'd * 'e -> 'f) (args: voidStar, res: voidStar): unit = let val mlArgs = loadArgs args val result = f mlArgs val () = updateArgs(args, mlArgs) in ignore(#store resConv (res, result)) end val argTypes = [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv] and resType = #ctype resConv val makeCallback = cFunctionWithAbi abi argTypes resType in fn f => makeCallback(callback f) end fun buildCallback5(argConv, resConv) = buildCallback5withAbi(abiDefault, argConv, resConv) fun buildCallback6withAbi (abi, (arg1Conv: 'a conversion, arg2Conv: 'b conversion, arg3Conv: 'c conversion, arg4Conv: 'd conversion, arg5Conv: 'e conversion, arg6Conv: 'f conversion), resConv: 'g conversion) = let val { load=loadArgs, updateC=updateArgs, ...} = cStruct6(arg1Conv, arg2Conv, arg3Conv, arg4Conv, arg5Conv, arg6Conv) fun callback (f: 'a *'b * 'c * 'd * 'e * 'f -> 'g) (args: voidStar, res: voidStar): unit = let val mlArgs = loadArgs args val result = f mlArgs val () = updateArgs(args, mlArgs) in ignore(#store resConv (res, result)) end val argTypes = [#ctype arg1Conv, #ctype arg2Conv, #ctype arg3Conv, #ctype arg4Conv, #ctype arg5Conv, #ctype arg6Conv] and resType = #ctype resConv val makeCallback = cFunctionWithAbi abi argTypes resType in fn f => makeCallback(callback f) end fun buildCallback6(argConv, resConv) = buildCallback6withAbi(abiDefault, argConv, resConv) end local (* Backwards compatibility. Closures were never garbage collected so to ensure that any closure created by these we put them in a list and touch them on exit. *) val closures = LibrarySupport.volatileListRef () val closureLock = Thread.Mutex.mutex () fun touchAll () = List.app (fn f => f()) (! closures) val () = LibrarySupport.addOnEntry(fn () => LibrarySupport.addAtExit touchAll) fun buildClosure buildCallback (f, a, b) = let val c = buildCallback(a, b) f fun touch () = touchClosure c val () = ThreadLib.protect closureLock (fn () => closures := touch :: !closures) () in c end in fun buildClosure0(f, a, b) = buildClosure buildCallback0(f, a, b) and buildClosure1(f, a, b) = buildClosure buildCallback1(f, a, b) and buildClosure2(f, a, b) = buildClosure buildCallback2(f, a, b) and buildClosure3(f, a, b) = buildClosure buildCallback3(f, a, b) and buildClosure4(f, a, b) = buildClosure buildCallback4(f, a, b) and buildClosure5(f, a, b) = buildClosure buildCallback5(f, a, b) and buildClosure6(f, a, b) = buildClosure buildCallback6(f, a, b) end end; diff --git a/basis/PackReal32Tagged.sml b/basis/PackReal32Tagged.sml index c79f27fb..66d4bbc0 100644 --- a/basis/PackReal32Tagged.sml +++ b/basis/PackReal32Tagged.sml @@ -1,115 +1,124 @@ (* Title: Standard Basis Library: Pack Real32 structures for 64-bit platforms Author: David Matthews Copyright David Matthews 2021 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public Licence version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public Licence for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *) (* On 64-bit platforms Real32.real values are held as tagged values with the floating point value in the high-order 32-bits. *) local val r32AsWord: Real32.real -> word = RunCall.unsafeCast and wordAsR32: word -> Real32.real = RunCall.unsafeCast infix << >> infix orb val op orb = Word.orb and op << = Word.<< and op >> = Word.>> val wordToW8 = Word8.fromLarge o Word.toLarge and w8ToWord = Word.fromLarge o Word8.toLarge + + (* Word values are already shifted by one bit so the + actual shifts are 31, 39, 47 and 55 bits. *) + val shift0 = Word.fromInt Word.wordSize - 0w32 + and shift1 = Word.fromInt Word.wordSize - 0w24 + and shift2 = Word.fromInt Word.wordSize - 0w16 + and shift3 = Word.fromInt Word.wordSize - 0w08 in structure PackReal32Little: PACK_REAL = struct type real = Real32.real val bytesPerElem = 4 val isBigEndian = false fun toBytes r = let val w: word = r32AsWord r in - Word8Vector.fromList[wordToW8(w >> 0w32), wordToW8(w >> 0w40), wordToW8(w >> 0w48), wordToW8(w >> 0w56)] + Word8Vector.fromList[wordToW8(w >> shift0), wordToW8(w >> shift1), + wordToW8(w >> shift2), wordToW8(w >> shift3)] end fun subVec(v, i) = - wordAsR32((w8ToWord(Word8Vector.sub(v, i)) << 0w32) orb - (w8ToWord(Word8Vector.sub(v, i+1)) << 0w40) orb - (w8ToWord(Word8Vector.sub(v, i+2)) << 0w48) orb - (w8ToWord(Word8Vector.sub(v, i+3)) << 0w56)) + wordAsR32((w8ToWord(Word8Vector.sub(v, i)) << shift0) orb + (w8ToWord(Word8Vector.sub(v, i+1)) << shift1) orb + (w8ToWord(Word8Vector.sub(v, i+2)) << shift2) orb + (w8ToWord(Word8Vector.sub(v, i+3)) << shift3)) fun fromBytes v = subVec(v, 0) fun subArr(v, i) = - wordAsR32((w8ToWord(Word8Array.sub(v, i)) << 0w32) orb - (w8ToWord(Word8Array.sub(v, i+1)) << 0w40) orb - (w8ToWord(Word8Array.sub(v, i+2)) << 0w48) orb - (w8ToWord(Word8Array.sub(v, i+3)) << 0w56)) + wordAsR32((w8ToWord(Word8Array.sub(v, i)) << shift0) orb + (w8ToWord(Word8Array.sub(v, i+1)) << shift1) orb + (w8ToWord(Word8Array.sub(v, i+2)) << shift2) orb + (w8ToWord(Word8Array.sub(v, i+3)) << shift3)) fun update(v, i, r) = let val w: word = r32AsWord r open Word8Array in - Word8Array.update(v, i, wordToW8(w >> 0w32)); - Word8Array.update(v, i+1, wordToW8(w >> 0w40)); - Word8Array.update(v, i+2, wordToW8(w >> 0w48)); - Word8Array.update(v, i+3, wordToW8(w >> 0w56)) + Word8Array.update(v, i, wordToW8(w >> shift0)); + Word8Array.update(v, i+1, wordToW8(w >> shift1)); + Word8Array.update(v, i+2, wordToW8(w >> shift2)); + Word8Array.update(v, i+3, wordToW8(w >> shift3)) end end structure PackReal32Big: PACK_REAL = struct type real = Real32.real val bytesPerElem = 4 val isBigEndian = false fun toBytes r = let val w: word = r32AsWord r in - Word8Vector.fromList[wordToW8(w >> 0w56), wordToW8(w >> 0w48), wordToW8(w >> 0w40), wordToW8(w >> 0w32)] + Word8Vector.fromList[wordToW8(w >> shift3), wordToW8(w >> shift2), + wordToW8(w >> shift1), wordToW8(w >> shift0)] end fun subVec(v, i) = - wordAsR32((w8ToWord(Word8Vector.sub(v, i)) << 0w56) orb - (w8ToWord(Word8Vector.sub(v, i+1)) << 0w48) orb - (w8ToWord(Word8Vector.sub(v, i+2)) << 0w40) orb - (w8ToWord(Word8Vector.sub(v, i+3)) << 0w32)) + wordAsR32((w8ToWord(Word8Vector.sub(v, i)) << shift3) orb + (w8ToWord(Word8Vector.sub(v, i+1)) << shift2) orb + (w8ToWord(Word8Vector.sub(v, i+2)) << shift1) orb + (w8ToWord(Word8Vector.sub(v, i+3)) << shift0)) fun fromBytes v = subVec(v, 0) fun subArr(v, i) = - wordAsR32((w8ToWord(Word8Array.sub(v, i)) << 0w56) orb - (w8ToWord(Word8Array.sub(v, i+1)) << 0w48) orb - (w8ToWord(Word8Array.sub(v, i+2)) << 0w40) orb - (w8ToWord(Word8Array.sub(v, i+3)) << 0w32)) + wordAsR32((w8ToWord(Word8Array.sub(v, i)) << shift3) orb + (w8ToWord(Word8Array.sub(v, i+1)) << shift2) orb + (w8ToWord(Word8Array.sub(v, i+2)) << shift1) orb + (w8ToWord(Word8Array.sub(v, i+3)) << shift0)) fun update(v, i, r) = let val w: word = r32AsWord r open Word8Array in - Word8Array.update(v, i, wordToW8(w >> 0w56)); - Word8Array.update(v, i+1, wordToW8(w >> 0w48)); - Word8Array.update(v, i+2, wordToW8(w >> 0w40)); - Word8Array.update(v, i+3, wordToW8(w >> 0w32)) + Word8Array.update(v, i, wordToW8(w >> shift3)); + Word8Array.update(v, i+1, wordToW8(w >> shift2)); + Word8Array.update(v, i+2, wordToW8(w >> shift1)); + Word8Array.update(v, i+3, wordToW8(w >> shift0)) end end end; diff --git a/libpolyml/polyffi.cpp b/libpolyml/polyffi.cpp index 0db374cb..2a3e7aff 100644 --- a/libpolyml/polyffi.cpp +++ b/libpolyml/polyffi.cpp @@ -1,409 +1,410 @@ /* Title: New Foreign Function Interface Copyright (c) 2015, 2018, 2019 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #elif defined(_WIN32) #include "winconfig.h" #else #error "No configuration file" #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_DLFCN_H #include #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) 0 #endif #ifdef HAVE_STDIO_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_MALLOC_H #include #endif #ifdef HAVE_STRING_H #include #endif #include "globals.h" // TODO: Do we need this?? // We need to include globals.h before in mingw64 otherwise // it messes up POLYUFMT/POLYSFMT. #include #include "arb.h" #include "save_vec.h" #include "polyffi.h" #include "run_time.h" #include "sys.h" #include "processes.h" #include "polystring.h" #if (defined(_WIN32)) #include #include "winstartup.h" /* For hApplicationInstance. */ #endif #include "scanaddrs.h" #include "diagnostics.h" #include "reals.h" #include "rts_module.h" #include "rtsentry.h" extern "C" { POLYEXTERNALSYMBOL POLYUNSIGNED PolySizeFloat(); POLYEXTERNALSYMBOL POLYUNSIGNED PolySizeDouble(); POLYEXTERNALSYMBOL POLYUNSIGNED PolySizeShort(); POLYEXTERNALSYMBOL POLYUNSIGNED PolySizeInt(); POLYEXTERNALSYMBOL POLYUNSIGNED PolySizeLong(); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFIGetError(PolyWord addr); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFISetError(PolyWord err); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFICreateExtFn(FirstArgument threadId, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFICreateExtData(FirstArgument threadId, PolyWord arg); - POLYEXTERNALSYMBOL void PolyFFICallbackException(); + POLYEXTERNALSYMBOL void PolyFFICallbackException(PolyWord exnMessage); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFIMalloc(FirstArgument threadId, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFIFree(PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFILoadLibrary(FirstArgument threadId, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFILoadExecutable(FirstArgument threadId); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFIUnloadLibrary(FirstArgument threadId, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFIGetSymbolAddress(FirstArgument threadId, PolyWord moduleAddress, PolyWord symbolName); } static Handle toSysWord(TaskData *taskData, void *p) { return Make_sysword(taskData, (uintptr_t)p); } // Malloc memory - Needs to allocate the SysWord.word value on the heap. POLYUNSIGNED PolyFFIMalloc(FirstArgument threadId, PolyWord arg) { TaskData* taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle result = 0; try { POLYUNSIGNED size = getPolyUnsigned(taskData, arg); result = toSysWord(taskData, malloc(size)); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // Free memory. Not currently used: freed memory is just added back to the free list. POLYUNSIGNED PolyFFIFree(PolyWord arg) { void* mem = *(void**)(arg.AsObjPtr()); free(mem); return TAGGED(0).AsUnsigned(); } POLYUNSIGNED PolyFFILoadLibrary(FirstArgument threadId, PolyWord arg) { TaskData* taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle result = 0; try { TempString libName(arg); #if (defined(_WIN32)) HINSTANCE lib = LoadLibrary(libName); if (lib == NULL) { char buf[256]; #if (defined(UNICODE)) _snprintf(buf, sizeof(buf), "Loading <%S> failed. Error %lu", (LPCTSTR)libName, GetLastError()); #else _snprintf(buf, sizeof(buf), "Loading <%s> failed. Error %lu", (const char*)libName, GetLastError()); #endif buf[sizeof(buf) - 1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #else void* lib = dlopen(libName, RTLD_LAZY); if (lib == NULL) { char buf[256]; snprintf(buf, sizeof(buf), "Loading <%s> failed: %s", (const char*)libName, dlerror()); buf[sizeof(buf) - 1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif result = toSysWord(taskData, lib); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // Get the address of the executable as a library. POLYUNSIGNED PolyFFILoadExecutable(FirstArgument threadId) { TaskData* taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle result = 0; try { #if (defined(_WIN32)) HINSTANCE lib = hApplicationInstance; #else void* lib = dlopen(NULL, RTLD_LAZY); if (lib == NULL) { char buf[256]; snprintf(buf, sizeof(buf), "Loading address of executable failed: %s", dlerror()); buf[sizeof(buf) - 1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif result = toSysWord(taskData, lib); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // Unload library - Is this actually going to be used? POLYUNSIGNED PolyFFIUnloadLibrary(FirstArgument threadId, PolyWord arg) { TaskData* taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); try { #if (defined(_WIN32)) HMODULE hMod = *(HMODULE*)(arg.AsObjPtr()); if (!FreeLibrary(hMod)) raise_syscall(taskData, "FreeLibrary failed", GetLastError()); #else void* lib = *(void**)(arg.AsObjPtr()); if (dlclose(lib) != 0) { char buf[256]; snprintf(buf, sizeof(buf), "dlclose failed: %s", dlerror()); buf[sizeof(buf) - 1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); } // Load the address of a symbol from a library. POLYUNSIGNED PolyFFIGetSymbolAddress(FirstArgument threadId, PolyWord moduleAddress, PolyWord symbolName) { TaskData* taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle result = 0; try { TempCString symName(symbolName); #if (defined(_WIN32)) HMODULE hMod = *(HMODULE*)(moduleAddress.AsObjPtr()); void* sym = (void*)GetProcAddress(hMod, symName); if (sym == NULL) { char buf[256]; _snprintf(buf, sizeof(buf), "Loading symbol <%s> failed. Error %lu", (LPCSTR)symName, GetLastError()); buf[sizeof(buf) - 1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #else void* lib = *(void**)(moduleAddress.AsObjPtr()); void* sym = dlsym(lib, symName); if (sym == NULL) { char buf[256]; snprintf(buf, sizeof(buf), "load_sym <%s> : %s", (const char*)symName, dlerror()); buf[sizeof(buf) - 1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif result = toSysWord(taskData, sym); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // These functions are needed in the compiler POLYUNSIGNED PolySizeFloat() { return TAGGED((POLYSIGNED)sizeof(float)).AsUnsigned(); } POLYUNSIGNED PolySizeDouble() { return TAGGED((POLYSIGNED)sizeof(double)).AsUnsigned(); } POLYUNSIGNED PolySizeShort() { return TAGGED((POLYSIGNED)sizeof(short)).AsUnsigned(); } POLYUNSIGNED PolySizeInt() { return TAGGED((POLYSIGNED)sizeof(int)).AsUnsigned(); } POLYUNSIGNED PolySizeLong() { return TAGGED((POLYSIGNED)sizeof(long)).AsUnsigned(); } // Get either errno or GetLastError POLYUNSIGNED PolyFFIGetError(PolyWord addr) { #if (defined(_WIN32)) addr.AsObjPtr()->Set(0, PolyWord::FromUnsigned(GetLastError())); #else addr.AsObjPtr()->Set(0, PolyWord::FromUnsigned((POLYUNSIGNED)errno)); #endif return 0; } // The argument is a SysWord.word value i.e. the address of a byte cell. POLYUNSIGNED PolyFFISetError(PolyWord err) { #if (defined(_WIN32)) SetLastError((DWORD)(err.AsObjPtr()->Get(0).AsUnsigned())); #else errno = err.AsObjPtr()->Get(0).AsSigned(); #endif return 0; } // Create an external function reference. The value returned has space for // an address followed by the name of the external symbol. Because the // address comes at the beginning it can be used in the same way as the // SysWord value returned by the get-symbol call from a library. POLYUNSIGNED PolyFFICreateExtFn(FirstArgument threadId, PolyWord arg) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedArg = taskData->saveVec.push(arg); Handle result = 0; try { result = creatEntryPointObject(taskData, pushedArg, true); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); // Ensure the save vec is reset taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // Create an external reference to data. On a small number of platforms // different forms of relocation are needed for data and for functions. POLYUNSIGNED PolyFFICreateExtData(FirstArgument threadId, PolyWord arg) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedArg = taskData->saveVec.push(arg); Handle result = 0; try { result = creatEntryPointObject(taskData, pushedArg, false); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); // Ensure the save vec is reset taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // Called if a callback raises an exception. There's nothing we // can do because we don't have anything to pass back to C. -void PolyFFICallbackException() +void PolyFFICallbackException(PolyWord exnMessage) { - Crash("An ML function called from foreign code raised an exception. Unable to continue."); + TempCString exception(exnMessage); + Crash("An ML function called from foreign code raised an exception: (%s). Unable to continue.", (const char *)exception); } struct _entrypts polyFFIEPT[] = { { "PolySizeFloat", (polyRTSFunction)&PolySizeFloat}, { "PolySizeDouble", (polyRTSFunction)&PolySizeDouble}, { "PolySizeShort", (polyRTSFunction)&PolySizeShort}, { "PolySizeInt", (polyRTSFunction)&PolySizeInt}, { "PolySizeLong", (polyRTSFunction)&PolySizeLong}, { "PolyFFIGetError", (polyRTSFunction)&PolyFFIGetError}, { "PolyFFISetError", (polyRTSFunction)&PolyFFISetError}, { "PolyFFICreateExtFn", (polyRTSFunction)&PolyFFICreateExtFn}, { "PolyFFICreateExtData", (polyRTSFunction)&PolyFFICreateExtData }, { "PolyFFICallbackException", (polyRTSFunction)&PolyFFICallbackException }, { "PolyFFIMalloc", (polyRTSFunction)&PolyFFIMalloc }, { "PolyFFIFree", (polyRTSFunction)&PolyFFIFree }, { "PolyFFILoadLibrary", (polyRTSFunction)&PolyFFILoadLibrary }, { "PolyFFILoadExecutable", (polyRTSFunction)&PolyFFILoadExecutable }, { "PolyFFIUnloadLibrary", (polyRTSFunction)&PolyFFIUnloadLibrary }, { "PolyFFIGetSymbolAddress", (polyRTSFunction)&PolyFFIGetSymbolAddress }, { NULL, NULL} // End of list. }; diff --git a/mlsource/MLCompiler/CodeTree/X86Code/X86FOREIGNCALL.sml b/mlsource/MLCompiler/CodeTree/X86Code/X86FOREIGNCALL.sml index a0370d76..bc32d30b 100644 --- a/mlsource/MLCompiler/CodeTree/X86Code/X86FOREIGNCALL.sml +++ b/mlsource/MLCompiler/CodeTree/X86Code/X86FOREIGNCALL.sml @@ -1,1724 +1,1735 @@ (* - Copyright (c) 2016-20 David C.J. Matthews + Copyright (c) 2016-21 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *) functor X86FOREIGNCALL( structure X86CODE: X86CODESIG structure X86OPTIMISE: sig type operation type code type operations = operation list type closureRef (* Optimise and code-generate. *) val generateCode: {code: code, ops: operations, labelCount: int, resultClosure: closureRef} -> unit structure Sharing: sig type operation = operation type code = code type closureRef = closureRef end end structure DEBUG: DEBUG structure CODE_ARRAY: CODEARRAYSIG sharing X86CODE.Sharing = X86OPTIMISE.Sharing = CODE_ARRAY.Sharing ): FOREIGNCALLSIG = struct open X86CODE open Address open CODE_ARRAY (* Unix X64. The first six arguments are in rdi, rsi, rdx, rcx, r8, r9. The rest are on the stack. Windows X64. The first four arguments are in rcx, rdx, r8 and r9. The rest are on the stack. The caller must ensure the stack is aligned on 16-byte boundary and must allocate 32-byte save area for the register args. rbx, rbp, rdi, rsi, rsp, r12-r15 are saved by the called function. X86/32. Arguments are pushed to the stack. ebx, edi, esi, ebp and esp are saved by the called function. We use esi to hold the argument data pointer and edi to save the ML stack pointer Our ML conventions use eax, ebx for the first two arguments in X86/32, rax, ebx, r8, r9, r10 for the first five arguments in X86/64 and rax, rsi, r8, r9 and r10 for the first five arguments in X86/64-32 bit. *) val memRegSize = 0 val (polyWordOpSize, nativeWordOpSize) = case targetArch of Native32Bit => (OpSize32, OpSize32) | Native64Bit => (OpSize64, OpSize64) | ObjectId32Bit => (OpSize32, OpSize64) (* Ebx/Rbx is used for the second argument on the native architectures but is replaced by esi on the object ID arch because ebx is used as the global base register. *) val mlArg2Reg = case targetArch of ObjectId32Bit => esi | _ => ebx exception InternalError = Misc.InternalError fun opSizeToMove OpSize32 = Move32 | opSizeToMove OpSize64 = Move64 val pushR = PushToStack o RegisterArg fun moveRR{source, output, opSize} = Move{source=RegisterArg source, destination=RegisterArg output, moveSize=opSizeToMove opSize} fun loadMemory(reg, base, offset, opSize) = Move{source=MemoryArg{base=base, offset=offset, index=NoIndex}, destination=RegisterArg reg, moveSize=opSizeToMove opSize} and storeMemory(reg, base, offset, opSize) = Move{source=RegisterArg reg, destination=MemoryArg {base=base, offset=offset, index=NoIndex}, moveSize=opSizeToMove opSize} val loadHeapMemory = case targetArch of ObjectId32Bit => ( fn (reg, base, offset, opSize) => Move{source=MemoryArg{base=ebx, offset=offset, index=Index4 base}, destination=RegisterArg reg, moveSize=opSizeToMove opSize} ) | _ => loadMemory fun loadAddress{source=(srcReg, 0), destination} = Move{source=RegisterArg srcReg, destination=RegisterArg destination, moveSize=opSizeToMove nativeWordOpSize} | loadAddress{source=(srcReg, srcOffset), destination} = LoadAddress{offset=srcOffset, base=SOME srcReg, index=NoIndex, output=destination, opSize=nativeWordOpSize } (* Sequence of operations to move memory. *) fun moveMemory{source, destination, length} = [ loadAddress{source=source, destination=rsi}, loadAddress{source=destination, destination=rdi}, (* N.B. When moving a struct in a Win64 callback the source could be rcx so only move this after copying the source to rsi. *) Move{source=NonAddressConstArg(LargeInt.fromInt length), destination=RegisterArg rcx, moveSize=opSizeToMove nativeWordOpSize}, RepeatOperation MOVS8 ] fun createProfileObject _ (*functionName*) = let (* The profile object is a single mutable with the F_bytes bit set. *) open Address val profileObject = RunCall.allocateByteMemory(0w1, Word.fromLargeWord(Word8.toLargeWord(Word8.orb(F_mutable, F_bytes)))) fun clear 0w0 = () | clear i = (assignByte(profileObject, i-0w1, 0w0); clear (i-0w1)) val () = clear wordSize in toMachineWord profileObject end val makeEntryPoint: string -> machineWord = RunCall.rtsCallFull1 "PolyCreateEntryPointObject" datatype abi = X86_32 | X64Win | X64Unix local (* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *) val getABICall: unit -> int = RunCall.rtsCallFast0 "PolyGetABI" in fun getABI() = case getABICall() of 0 => X86_32 | 1 => X64Unix | 2 => X64Win | n => raise InternalError ("Unknown ABI type " ^ Int.toString n) end (* This is now the standard entry call code. *) datatype fastArgs = FastArgFixed | FastArgDouble | FastArgFloat fun rtsCallFastGeneral (functionName, argFormats, (*resultFormat*) _, debugSwitches) = let val entryPointAddr = makeEntryPoint functionName (* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *) val abi = getABI() val entryPtrReg = if targetArch <> Native32Bit then r11 else ecx val nArgs = List.length argFormats local (* Compute stack space. The actual number of args passed is nArgs. *) val argSpace = case abi of X64Unix => Int.max(0, nArgs-6)*8 | X64Win => Int.max(0, nArgs-4)*8 | X86_32 => List.foldl(fn (FastArgDouble, n) => n+8 | (_, n) => n+4) 0 argFormats val align = argSpace mod 16 in (* Add sufficient space so that esp will be 16-byte aligned after we have pushed any arguments we need to push. *) val stackSpace = if align = 0 then memRegSize else memRegSize + 16 - align end (* The number of ML arguments passed on the stack. *) val mlArgsOnStack = Int.max(case abi of X86_32 => nArgs - 2 | _ => nArgs - 5, 0) val code = [ Move{source=AddressConstArg entryPointAddr, destination=RegisterArg entryPtrReg, moveSize=opSizeToMove polyWordOpSize}, (* Load the entry point ref. *) loadHeapMemory(entryPtrReg, entryPtrReg, 0, nativeWordOpSize)(* Load its value. *) ] @ ( (* Save heap ptr. This is in r15 in X86/64 *) if targetArch <> Native32Bit then [storeMemory(r15, ebp, memRegLocalMPointer, nativeWordOpSize)] (* Save heap ptr *) else [] ) @ ( if (case abi of X86_32 => nArgs >= 3 | _ => nArgs >= 6) then [moveRR{source=esp, output=edi, opSize=nativeWordOpSize}] (* Needed if we have to load from the stack. *) else [] ) @ [ storeMemory(esp, ebp, memRegStackPtr, nativeWordOpSize), (* Save ML stack and switch to C stack. *) loadMemory(esp, ebp, memRegCStackPtr, nativeWordOpSize), (* Set the stack pointer past the data on the stack. For Windows/64 add in a 32 byte save area *) ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt stackSpace), opSize=nativeWordOpSize} ] @ ( case abi of (* Set the argument registers. *) X86_32 => let fun pushReg(reg, FastArgFixed) = [pushR reg] | pushReg(reg, FastArgDouble) = (* reg contains the address of the value. This must be unboxed onto the stack. *) [ FPLoadFromMemory{address={base=reg, offset=0, index=NoIndex}, precision=DoublePrecision}, ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 8, opSize=nativeWordOpSize}, FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=DoublePrecision, andPop=true } ] | pushReg(reg, FastArgFloat) = (* reg contains the address of the value. This must be unboxed onto the stack. *) [ FPLoadFromMemory{address={base=reg, offset=0, index=NoIndex}, precision=SinglePrecision}, ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 4, opSize=nativeWordOpSize}, FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=SinglePrecision, andPop=true } ] (* The stack arguments have to be copied first followed by the ebx and finally eax. *) fun pushArgs (_, []) = [] | pushArgs (_, [argType]) = pushReg(eax, argType) | pushArgs (_, [arg2Type, arg1Type]) = pushReg(ebx, arg2Type) @ pushReg(eax, arg1Type) | pushArgs (n, FastArgFixed :: argTypes) = PushToStack(MemoryArg{base=edi, offset=(nArgs-n+1)* 4, index=NoIndex}) :: pushArgs(n-1, argTypes) | pushArgs (n, argType :: argTypes) = (* Use esi as a temporary register. *) loadMemory(esi, edi, (nArgs-n+1)* 4, polyWordOpSize) :: pushReg(esi, argType) @ pushArgs(n-1, argTypes) in pushArgs(nArgs, List.rev argFormats) end | X64Unix => ( if List.all (fn FastArgFixed => true | _ => false) argFormats then let fun pushArgs 0 = [] | pushArgs 1 = [moveRR{source=eax, output=edi, opSize=polyWordOpSize}] | pushArgs 2 = moveRR{source=mlArg2Reg, output=esi, opSize=polyWordOpSize} :: pushArgs 1 | pushArgs 3 = moveRR{source=r8, output=edx, opSize=polyWordOpSize} :: pushArgs 2 | pushArgs 4 = moveRR{source=r9, output=ecx, opSize=polyWordOpSize} :: pushArgs 3 | pushArgs 5 = (* We have to move r8 into edx before we can move r10 into r8 *) moveRR{source=r8, output=edx, opSize=polyWordOpSize} :: moveRR{source=r9, output=ecx, opSize=polyWordOpSize} :: moveRR{source=r10, output=r8, opSize=polyWordOpSize} :: pushArgs 2 | pushArgs 6 = (* We have to move r9 into edi before we can load r9 from the stack. *) moveRR{source=r8, output=edx, opSize=polyWordOpSize} :: moveRR{source=r9, output=ecx, opSize=polyWordOpSize} :: loadMemory(r9, edi, 8, polyWordOpSize) :: moveRR{source=r10, output=r8, opSize=polyWordOpSize} :: pushArgs 2 | pushArgs _ = raise InternalError "rtsCall: Abi/argument count not implemented" in pushArgs nArgs end else case argFormats of [] => [] | [FastArgFixed] => [ moveRR{source=eax, output=edi, opSize=polyWordOpSize} ] | [FastArgFixed, FastArgFixed] => (* Since mlArgs2Reg is esi on 32-in-64 this is redundant. *) [ moveRR{source=mlArg2Reg, output=esi, opSize=polyWordOpSize}, moveRR{source=eax, output=edi, opSize=polyWordOpSize} ] | [FastArgFixed, FastArgFixed, FastArgFixed] => [ moveRR{source=mlArg2Reg, output=esi, opSize=polyWordOpSize}, moveRR{source=eax, output=edi, opSize=polyWordOpSize}, moveRR{source=r8, output=edx, opSize=polyWordOpSize} ] | [FastArgFixed, FastArgFixed, FastArgFixed, FastArgFixed] => [ moveRR{source=mlArg2Reg, output=esi, opSize=polyWordOpSize}, moveRR{source=eax, output=edi, opSize=polyWordOpSize}, moveRR{source=r8, output=edx, opSize=polyWordOpSize}, moveRR{source=r9, output=ecx, opSize=polyWordOpSize} ] (* One "double" argument. The value needs to be unboxed. *) | [FastArgDouble] => [] (* Already in xmm0 *) (* X64 on both Windows and Unix take the first arg in xmm0 and the second in xmm1. They are already there. *) | [FastArgDouble, FastArgDouble] => [] | [FastArgDouble, FastArgFixed] => [ moveRR{source=eax, output=edi, opSize=nativeWordOpSize} ] | [FastArgFloat] => [] (* Already in xmm0 *) | [FastArgFloat, FastArgFloat] => [] (* Already in xmm0 and xmm1 *) (* One float argument and one fixed. *) | [FastArgFloat, FastArgFixed] => [moveRR{source=mlArg2Reg, output=edi, opSize=polyWordOpSize} ] | _ => raise InternalError "rtsCall: Abi/argument count not implemented" ) | X64Win => ( if List.all (fn FastArgFixed => true | _ => false) argFormats then let fun pushArgs 0 = [] | pushArgs 1 = [moveRR{source=eax, output=ecx, opSize=polyWordOpSize}] | pushArgs 2 = moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize} :: pushArgs 1 | pushArgs 3 = (* Already in r8 *) pushArgs 2 | pushArgs 4 = (* Already in r9, and r8 *) pushArgs 2 | pushArgs 5 = pushR r10 :: pushArgs 2 | pushArgs 6 = PushToStack(MemoryArg{base=edi, offset=8, index=NoIndex}) :: pushArgs 5 | pushArgs _ = raise InternalError "rtsCall: Abi/argument count not implemented" in pushArgs nArgs end else case argFormats of [FastArgFixed] => [ moveRR{source=eax, output=ecx, opSize=polyWordOpSize} ] | [FastArgFixed, FastArgFixed] => [ moveRR{source=eax, output=ecx, opSize=polyWordOpSize}, moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize} ] | [FastArgFixed, FastArgFixed, FastArgFixed] => [ moveRR{source=eax, output=ecx, opSize=polyWordOpSize}, moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize} (* Arg3 is already in r8. *) ] | [FastArgFixed, FastArgFixed, FastArgFixed, FastArgFixed] => [ moveRR{source=eax, output=ecx, opSize=polyWordOpSize}, moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize} (* Arg3 is already in r8 and arg4 in r9. *) ] | [FastArgDouble] => [ (* Already in xmm0 *) ] (* X64 on both Windows and Unix take the first arg in xmm0 and the second in xmm1. They are already there. *) | [FastArgDouble, FastArgDouble] => [ ] (* X64 on both Windows and Unix take the first arg in xmm0. On Unix the integer argument is treated as the first argument and goes into edi. On Windows it's treated as the second and goes into edx. N.B. It's also the first argument in ML so is in rax. *) | [FastArgDouble, FastArgFixed] => [ moveRR{source=eax, output=edx, opSize=nativeWordOpSize} ] | [FastArgFloat] => [] | [FastArgFloat, FastArgFloat] => [] (* Already in xmm0 and xmm1 *) | [FastArgFloat, FastArgFixed] => [moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize}] | _ => raise InternalError "rtsCall: Abi/argument count not implemented" ) ) @ (* For Windows/64 add in a 32 byte save area ater we've pushed any arguments. *) (case abi of X64Win => [ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg 32, opSize=nativeWordOpSize}] | _ => []) @ [ CallAddress(RegisterArg entryPtrReg), (* Call the function *) loadMemory(esp, ebp, memRegStackPtr, nativeWordOpSize) (* Restore the ML stack pointer. *) ] @ ( if targetArch <> Native32Bit then [loadMemory(r15, ebp, memRegLocalMPointer, nativeWordOpSize) ] (* Copy back the heap ptr *) else [] ) @ [ (* Since this is an ML function we need to remove any ML stack arguments. *) ReturnFromFunction mlArgsOnStack ] val profileObject = createProfileObject functionName val newCode = codeCreate (functionName, profileObject, debugSwitches) val closure = makeConstantClosure() val () = X86OPTIMISE.generateCode{code=newCode, labelCount=0, ops=code, resultClosure=closure} in closureAsAddress closure end fun rtsCallFast (functionName, nArgs, debugSwitches) = rtsCallFastGeneral (functionName, List.tabulate(nArgs, fn _ => FastArgFixed), FastArgFixed, debugSwitches) (* RTS call with one double-precision floating point argument and a floating point result. *) fun rtsCallFastRealtoReal (functionName, debugSwitches) = rtsCallFastGeneral (functionName, [FastArgDouble], FastArgDouble, debugSwitches) (* RTS call with two double-precision floating point arguments and a floating point result. *) fun rtsCallFastRealRealtoReal (functionName, debugSwitches) = rtsCallFastGeneral (functionName, [FastArgDouble, FastArgDouble], FastArgDouble, debugSwitches) (* RTS call with one double-precision floating point argument, one fixed point argument and a floating point result. *) fun rtsCallFastRealGeneraltoReal (functionName, debugSwitches) = rtsCallFastGeneral (functionName, [FastArgDouble, FastArgFixed], FastArgDouble, debugSwitches) (* RTS call with one general (i.e. ML word) argument and a floating point result. This is used only to convert arbitrary precision values to floats. *) fun rtsCallFastGeneraltoReal (functionName, debugSwitches) = rtsCallFastGeneral (functionName, [FastArgFixed], FastArgDouble, debugSwitches) (* Operations on Real32.real values. *) fun rtsCallFastFloattoFloat (functionName, debugSwitches) = rtsCallFastGeneral (functionName, [FastArgFloat], FastArgFloat, debugSwitches) fun rtsCallFastFloatFloattoFloat (functionName, debugSwitches) = rtsCallFastGeneral (functionName, [FastArgFloat, FastArgFloat], FastArgFloat, debugSwitches) (* RTS call with one double-precision floating point argument, one fixed point argument and a floating point result. *) fun rtsCallFastFloatGeneraltoFloat (functionName, debugSwitches) = rtsCallFastGeneral (functionName, [FastArgFloat, FastArgFixed], FastArgFloat, debugSwitches) (* RTS call with one general (i.e. ML word) argument and a floating point result. This is used only to convert arbitrary precision values to floats. *) fun rtsCallFastGeneraltoFloat (functionName, debugSwitches) = rtsCallFastGeneral (functionName, [FastArgFixed], FastArgFloat, debugSwitches) datatype ffiABI = FFI_SYSV (* Unix 32 bit and Windows GCC 32-bit *) | FFI_STDCALL (* Windows 32-bit system ABI. Callee clears the stack. *) | FFI_MS_CDECL (* VS 32-bit. Same as SYSV except when returning a struct. Default on Windows including GCC in Mingw. *) | FFI_WIN64 (* Windows 64 bit *) | FFI_UNIX64 (* Unix 64 bit. libffi also implements this on X86/32. *) (* We don't include various other 32-bit Windows ABIs. *) local val getOSType: unit -> int = RunCall.rtsCallFast0 "PolyGetOSType" in (* This actually a constant since each exported saved state has a distinct ABI. However for compatibility with the interpreted version we make this a function. *) fun abiList () = case getABI() of X86_32 => [("sysv", FFI_SYSV), ("stdcall", FFI_STDCALL), ("ms_cdecl", FFI_MS_CDECL), (* Default to MS_CDECL on Windows otherwise SYSV. *) ("default", if getOSType() = 1 then FFI_MS_CDECL else FFI_SYSV)] | X64Win => [("win64", FFI_WIN64), ("default", FFI_WIN64)] | X64Unix => [("unix64", FFI_UNIX64), ("default", FFI_UNIX64)] type abi = ffiABI end fun alignUp(s, align) = Word.andb(s + align-0w1, ~ align) fun intAlignUp(s, align) = Word.toInt(alignUp(Word.fromInt s, align)) val getThreadDataCall = makeEntryPoint "PolyX86GetThreadData" local val sysWordSize = Word.toInt(nativeWordSize div wordSize) in (* Code to box an address as a SysWord.word value *) fun boxRegAsSysWord(boxReg, outputReg, saveRegs) = AllocStore{ size=sysWordSize, output=outputReg, saveRegs=saveRegs } :: ( if targetArch = Native64Bit then [ Move{source=NonAddressConstArg(LargeInt.fromInt sysWordSize), destination=MemoryArg {offset= ~ (Word.toInt wordSize), base=outputReg, index=NoIndex}, moveSize=opSizeToMove polyWordOpSize}, Move{moveSize=Move8, source=NonAddressConstArg 1 (* byte *), destination=MemoryArg {offset= ~1, base=outputReg, index=NoIndex}} ] else let val lengthWord = IntInf.orb(IntInf.fromInt sysWordSize, IntInf.<<(1, 0w24)) in [Move{source=NonAddressConstArg lengthWord, destination=MemoryArg {offset= ~ (Word.toInt wordSize), base=outputReg, index=NoIndex}, moveSize=opSizeToMove polyWordOpSize}] end ) @ Move{source=RegisterArg boxReg, destination=MemoryArg {offset=0, base=outputReg, index=NoIndex}, moveSize=opSizeToMove nativeWordOpSize} :: ( if targetArch = ObjectId32Bit then [ ArithToGenReg{ opc=SUB, output=outputReg, source=RegisterArg rbx, opSize=nativeWordOpSize }, ShiftConstant{ shiftType=SHR, output=outputReg, shift=0w2, opSize=OpSize64 } ] else [] ) @ [StoreInitialised] end (* Build a foreign call function. The arguments are the abi, the list of argument types and the result type. The result is the code of the ML function that takes three arguments: the C function to call, the arguments as a vector of C values and the address of the memory for the result. *) (* This must match the type in Foreign.LowLevel. Once this is bootstrapped we could use that type but note that this is the type we use within the compiler and we build Foreign.LowLevel AFTER compiling this. *) datatype cTypeForm = CTypeFloatingPt | CTypePointer | CTypeSignedInt | CTypeUnsignedInt | CTypeStruct of cType list | CTypeVoid withtype cType = { typeForm: cTypeForm, align: word, size: word } fun call32Bits(abi, args, result) = let (* 32-bit arguments. These all go to the stack so we can simply push them. The arguments go on the stack in reverse order. *) fun loadArgs32([], stackOffset, argOffset, code, continue) = continue(stackOffset, argOffset, code) | loadArgs32(arg::args, stackOffset, argOffset, code, continue) = let val {size, align, typeForm} = arg val newArgOffset = alignUp(argOffset, align) val baseAddr = {base=mlArg2Reg, offset=Word.toInt newArgOffset, index=NoIndex} in case (typeForm, size) of (CTypeStruct elements, _) => (* structs passed as values are recursively unpacked. *) loadArgs32(elements, stackOffset, newArgOffset (* Struct is aligned. *), code, fn (so, ao, code) => loadArgs32(args, so, ao, code, continue)) | (CTypeVoid, _) => raise Foreign.Foreign "Void cannot be used for a function argument" | (CTypeUnsignedInt, 0w1) => (* Unsigned char. *) loadArgs32(args, stackOffset+4, newArgOffset+size, Move{source=MemoryArg baseAddr, destination=RegisterArg edx, moveSize=Move8 } :: PushToStack(RegisterArg edx) :: code, continue) | (CTypeSignedInt, 0w1) => (* Signed char. *) loadArgs32(args, stackOffset+4, newArgOffset+size, Move{source=MemoryArg baseAddr, destination=RegisterArg edx, moveSize=Move8X32 } :: PushToStack(RegisterArg edx) :: code, continue) | (CTypeUnsignedInt, 0w2) => (* Unsigned 16-bits. *) loadArgs32(args, stackOffset+4, newArgOffset+size, Move{source=MemoryArg baseAddr, destination=RegisterArg edx, moveSize=Move16 } :: PushToStack(RegisterArg edx) :: code, continue) | (CTypeSignedInt, 0w2) => (* Signed 16-bits. *) loadArgs32(args, stackOffset+4, newArgOffset+size, Move{source=MemoryArg baseAddr, destination=RegisterArg edx, moveSize=Move16X32 } :: PushToStack(RegisterArg edx) :: code, continue) | (_, 0w4) => (* 32-bits. *) loadArgs32(args, stackOffset+4, newArgOffset+size, PushToStack(MemoryArg baseAddr) :: code, continue) | (CTypeFloatingPt, 0w8) =>(* Double: push the two words. High-order word first, then low-order. *) loadArgs32(args, stackOffset+8, newArgOffset+size, PushToStack(MemoryArg{base=mlArg2Reg, offset=Word.toInt newArgOffset+4, index=NoIndex}) :: PushToStack(MemoryArg{base=mlArg2Reg, offset=Word.toInt newArgOffset, index=NoIndex}) :: code, continue) | _ => raise Foreign.Foreign "argument type not supported" end val {typeForm, size, ...} = result val resultMemory = {base=ecx, offset=0, index=NoIndex} (* Structures are passed by reference by storing the address of the result as the first argument except that in MS_CDECL (and STDCALL?) structures of size 1, 2, 4 and 8 are returned in EAX, and for 8, EDX. *) val (getResult, needResultAddress) = if (case typeForm of CTypeStruct _ => true | _ => false) andalso (abi = FFI_SYSV orelse (size <> 0w1 andalso size <> 0w2 andalso size <> 0w4 andalso size <> 0w8)) (* TODO: We have to get the address of the destination area. *) then ([], true) else if typeForm = CTypeVoid then ([], false) else (loadMemory(ecx, esp, 4, nativeWordOpSize) :: loadHeapMemory(ecx, ecx, 0, nativeWordOpSize) :: (if size = 0w1 then (* Single byte *) [Move{source=RegisterArg eax, destination=MemoryArg resultMemory, moveSize=Move8}] else if size = 0w2 then (* 16-bits *) [Move{source=RegisterArg eax, destination=MemoryArg resultMemory, moveSize=Move16}] else if typeForm = CTypeFloatingPt andalso size = 0w4 then [FPStoreToMemory{address=resultMemory, precision=SinglePrecision, andPop=true }] else if size = 0w4 then [Move{source=RegisterArg eax, destination=MemoryArg resultMemory, moveSize=Move32}] else if typeForm = CTypeFloatingPt andalso size = 0w8 then [FPStoreToMemory{address=resultMemory, precision=DoublePrecision, andPop=true }] else if size = 0w8 then [ Move{source=RegisterArg eax, destination=MemoryArg resultMemory, moveSize=Move32}, Move{source=RegisterArg edx, destination=MemoryArg {base=ecx, offset=4, index=NoIndex}, moveSize=Move32} ] else raise Foreign.Foreign "Unrecognised result type"), false) local (* Load the arguments. If we need to pass the return address for a struct that is the first arg. *) val (startStack, startCode) = if needResultAddress then (4, [PushToStack(MemoryArg{base=ecx, offset=0, index=NoIndex})]) else (0, []) in val (argCode, argStack) = loadArgs32(args, startStack, 0w0, startCode, fn (stackOffset, _, code) => (code, stackOffset)) end local val align = argStack mod 16 in (* Always align the stack. It's not always necessary on 32-bits but GCC prefers it. *) val preArgAlign = if align = 0 then 0 else 16-align (* Adjustment to be made when the function returns. Stdcall resets the stack in the callee. *) val postCallStackReset = preArgAlign + (if abi = FFI_STDCALL then 0 else argStack) end in ( (* If we're returning a struct we need the result address before we call. *) if needResultAddress then [loadMemory(ecx, esp, 4, nativeWordOpSize)] else [] ) @ [ (* Save the stack pointer. *) storeMemory(esp, ebp, memRegStackPtr, nativeWordOpSize), (* Save ML stack and switch to C stack. *) loadMemory(esp, ebp, memRegCStackPtr, nativeWordOpSize) (* Load the saved C stack pointer. *) ] @ ( if preArgAlign = 0 then [] else [ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt preArgAlign), opSize=nativeWordOpSize}] ) @ ( (* The second argument is a SysWord containing the address of a malloced area of memory with the actual arguments in it. *) if null args then [] else [loadHeapMemory(mlArg2Reg, mlArg2Reg, 0, nativeWordOpSize)] ) @ argCode @ CallAddress(MemoryArg{base=eax, offset=0, index=NoIndex}) :: (* Restore the C stack. This is really only necessary if we've called a callback since that will store its esp value. *) ( if postCallStackReset = 0 then [] else [ArithToGenReg{opc=ADD, output=esp, source=NonAddressConstArg(LargeInt.fromInt postCallStackReset), opSize=nativeWordOpSize}] ) @ [ storeMemory(esp, ebp, memRegCStackPtr, nativeWordOpSize), loadMemory(esp, ebp, memRegStackPtr, nativeWordOpSize) (* Restore the ML stack pointer. *) ] @ getResult @ (* Store the result in the destination. *) [ ReturnFromFunction 1 ] end fun closure32Bits(abi, args, result) = let (* Arguments are copied from the stack into a struct that is then passed to the ML function. *) fun copyArgs([], nArgs, argOffset, code, continue) = continue(nArgs, argOffset, code) | copyArgs(arg::args, nArgs, argOffset, code, continue) = let val {size, align, typeForm} = arg val newArgOffset = alignUp(argOffset, align) val sourceAddr = {base=ebx, offset=nArgs*4, index=NoIndex} val destAddr = {base=esp, offset=Word.toInt newArgOffset, index=NoIndex} in case (typeForm, size) of (CTypeStruct elements, _) => (* structs passed as values are recursively unpacked. *) copyArgs(elements, nArgs, newArgOffset (* Struct is aligned. *), code, fn (na, ao, c) => copyArgs(args, na, ao, c, continue)) | (CTypeVoid, _) => raise Foreign.Foreign "Void cannot be used for a function argument" | (CTypeFloatingPt, 0w8) => (* Double: copy the two words. High-order word first, then low-order. *) copyArgs(args, nArgs+2, argOffset+size, Move{source=MemoryArg sourceAddr, destination=RegisterArg eax, moveSize=Move32} :: Move{source=RegisterArg eax, destination=MemoryArg destAddr, moveSize=Move32} :: Move{source=MemoryArg {base=ebx, offset=nArgs*4+4, index=NoIndex}, destination=RegisterArg eax, moveSize=Move32} :: Move{source=RegisterArg eax, destination=MemoryArg{base=esp, offset=Word.toInt newArgOffset + 4, index=NoIndex}, moveSize=Move32} :: code, continue) | _ => (* Everything else is a single word on the stack. *) let val moveOp = case size of 0w1 => Move8 | 0w2 => Move16 | 0w4 => Move32 | _ => raise Foreign.Foreign "copyArgs: Invalid size" in copyArgs(args, nArgs+1, argOffset+size, Move{source=MemoryArg sourceAddr, destination=RegisterArg eax, moveSize=Move32} :: Move{source=RegisterArg eax, destination=MemoryArg destAddr, moveSize=moveOp} :: code, continue) end end val {typeForm, size, align, ...} = result (* Struct results are normally passed by reference. *) val resultStructByRef = (case typeForm of CTypeStruct _ => true | _ => false) andalso (abi = FFI_SYSV orelse (size <> 0w1 andalso size <> 0w2 andalso size <> 0w4 andalso size <> 0w8)) val (argCount, argumentSpace, copyArgsFromStack) = copyArgs(args, if resultStructByRef then 1 else 0, 0w0, [], fn result => result) val resultOffset = alignUp(argumentSpace, align) (* Offset of result area *) val (loadResults, resultSize) = if typeForm = CTypeVoid orelse resultStructByRef then ([], 0w0) else let val resultMem = {base=esp, offset=Word.toInt resultOffset, index=NoIndex} val resultCode = case (typeForm, size) of (CTypeSignedInt, 0w1) => [Move{source=MemoryArg resultMem, destination=RegisterArg eax, moveSize=Move8X32 }] | (_, 0w1) => [Move{source=MemoryArg resultMem, destination=RegisterArg eax, moveSize=Move8 }] | (CTypeSignedInt, 0w2) => [Move{source=MemoryArg resultMem, destination=RegisterArg eax, moveSize=Move16X32 }] | (_, 0w2) => [Move{source=MemoryArg resultMem, destination=RegisterArg eax, moveSize=Move16 }] | (CTypeFloatingPt, 0w4) => [FPLoadFromMemory{ address=resultMem, precision=SinglePrecision }] | (_, 0w4) => [Move{source=MemoryArg resultMem, destination=RegisterArg eax, moveSize=Move32 }] | (CTypeFloatingPt, 0w8) => [FPLoadFromMemory{ address=resultMem, precision=DoublePrecision }] | (_, 0w8) => (* MSC only. Struct returned in eax/edx. *) [ Move{source=MemoryArg resultMem, destination=RegisterArg eax, moveSize=Move32 }, Move{source=MemoryArg {base=esp, offset=Word.toInt resultOffset + 4, index=NoIndex}, destination=RegisterArg edx, moveSize=Move32 } ] | _ => raise Foreign.Foreign "Unrecognised result type" in (resultCode, size) end val stackSpace = Word.toInt(resultOffset + resultSize) local val align = stackSpace mod 16 in (* Stack space. In order to align the stack correctly for GCC we need the value in memRegCStackPtr to be a multiple of 16 bytes + 8. esp would have been on a 16 byte boundary before the return address was pushed so after pushing the return address and four registers we need a further 4 bytes to get the alignment back again. The effect of this is that the argument and result area is on an 8-byte boundary. *) val stackToAllocate = stackSpace + (if align = 0 then 0 else 16-align) + 4 end in [ (* Push callee-save registers. *) PushToStack(RegisterArg ebp), PushToStack(RegisterArg ebx), PushToStack(RegisterArg edi), PushToStack(RegisterArg esi), (* Set ebx to point to the original args. *) LoadAddress{ output=ebx, offset=20, base=SOME esp, index=NoIndex, opSize=OpSize32}, (* Allocate stack space. *) ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt stackToAllocate), opSize=OpSize32}, (* Move the function address in eax into esi since that's a callee-save register. *) Move{source=RegisterArg eax, destination=RegisterArg esi, moveSize=Move32} ] @ copyArgsFromStack @ [ (* Get the value for ebp. *) Move{source=AddressConstArg getThreadDataCall, destination=RegisterArg ecx, moveSize=Move32}, CallAddress(MemoryArg{base=ecx, offset=0, index=NoIndex}), (* Get the address - N.B. Heap addr in 32-in-64. *) moveRR{source=eax, output=ebp, opSize=OpSize32}, (* Save the address of the argument and result area. *) moveRR{source=esp, output=ecx, opSize=OpSize32}, (* Switch to the ML stack. *) storeMemory(esp, ebp, memRegCStackPtr, OpSize32), loadMemory(esp, ebp, memRegStackPtr, OpSize32), (* Move esi into the closure register edx *) Move{source=RegisterArg esi, destination=RegisterArg edx, moveSize=Move32} ] @ boxRegAsSysWord(ecx, eax, []) @ ( (* If we're returning a struct the address for the result will have been passed in the first argument. We use that as the result area. Otherwise point to the result area on the stack. *) if resultStructByRef then Move{source=MemoryArg {offset=0, base=ebx, index=NoIndex}, destination=RegisterArg ecx, moveSize=Move32} else ArithToGenReg{opc=ADD, output=ecx, source=NonAddressConstArg(Word.toLargeInt resultOffset), opSize=OpSize32} ) :: boxRegAsSysWord(ecx, ebx, [eax]) @ [ (* Call the ML function using the full closure call. *) CallAddress(MemoryArg{offset=0, base=edx, index=NoIndex}), (* Save the ML stack pointer because we may have grown the stack. Switch to the C stack. *) storeMemory(esp, ebp, memRegStackPtr, OpSize32), loadMemory(esp, ebp, memRegCStackPtr, OpSize32) ] @ loadResults @ [ (* Remove the stack space. *) ArithToGenReg{opc=ADD, output=esp, source=NonAddressConstArg(LargeInt.fromInt stackToAllocate), opSize=OpSize32}, PopR esi, PopR edi, PopR ebx, PopR ebp (* Restore callee-save registers. *) ] @ ( (* If we've passed in the address of the area for the result structure we're supposed to pass that back in eax. *) if resultStructByRef then [loadMemory(eax, esp, 4, OpSize32)] else [] ) @ [ (* Callee removes arguments in StdCall. *) ReturnFromFunction (if abi = FFI_STDCALL then argCount else 0) ] end local (* Windows on X64. *) val win64ArgRegs = [ (rcx, xmm0), (rdx, xmm1), (r8, xmm2), (r9, xmm3) ] in fun callWindows64Bits(args, result) = let val extraStackReg = r10 (* Not used for any arguments. *) fun loadWin64Args([], stackOffset, _, _, code, extraStack, preCode) = (code, stackOffset, preCode, extraStack) | loadWin64Args(arg::args, stackOffset, argOffset, regs, code, extraStack, preCode) = let val {size, align, typeForm, ...} = arg val newArgOffset = alignUp(argOffset, align) val baseAddr = {base=mlArg2Reg, offset=Word.toInt newArgOffset, index=NoIndex} val workReg = rcx (* rcx: the last to be loaded. *) (* Integer arguments. *) fun loadIntArg moveOp = case regs of (areg, _) :: regs' => loadWin64Args(args, stackOffset, newArgOffset+size, regs', Move{source=MemoryArg baseAddr, destination=RegisterArg areg, moveSize=moveOp } :: code, extraStack, preCode) | [] => loadWin64Args(args, stackOffset+8, newArgOffset+size, [], if size = 0w8 then PushToStack(MemoryArg baseAddr) :: code else (* Need to load it into a register first. *) Move{source=MemoryArg baseAddr, destination=RegisterArg workReg, moveSize=moveOp } :: PushToStack(RegisterArg workReg) :: code, extraStack, preCode) in (* Structs of 1, 2, 4 and 8 bytes are passed as the corresponding int. It may not be necessary to sign-extend 1, 2 or 4-byte values. 2, 4 or 8-byte structs may not be aligned onto the appropriate boundary but it should still work. *) case (size, typeForm) of (0w1, CTypeSignedInt) => (* Signed char. *) loadIntArg Move8X64 | (0w1, _) => (* Unsigned char or single byte struct *) loadIntArg Move8 | (0w2, CTypeSignedInt) =>(* Signed 16-bits. *) loadIntArg Move16X64 | (0w2, _) => (* Unsigned 16-bits. *) loadIntArg Move16 | (0w4, CTypeFloatingPt) => ( case regs of (_, fpReg) :: regs' => loadWin64Args(args, stackOffset, newArgOffset+size, regs', XMMArith{opc=SSE2MoveFloat, source=MemoryArg baseAddr, output=fpReg } :: code, extraStack, preCode) | [] => loadWin64Args(args, stackOffset+8, newArgOffset+size, [], Move{source=MemoryArg baseAddr, destination=RegisterArg workReg, moveSize=Move32 } :: PushToStack(RegisterArg workReg) :: code, extraStack, preCode) ) | (0w4, CTypeSignedInt) => (* Signed 32-bits. *) loadIntArg Move32X64 | (0w4, _) => (* Unsigned 32-bits. *) loadIntArg Move32 | (0w8, CTypeFloatingPt) => ( case regs of (_, fpReg) :: regs' => loadWin64Args(args, stackOffset, newArgOffset+size, regs', XMMArith{opc=SSE2MoveDouble, source=MemoryArg baseAddr, output=fpReg } :: code, extraStack, preCode) | [] => loadWin64Args(args, stackOffset+8, newArgOffset+size, [], Move{source=MemoryArg baseAddr, destination=RegisterArg workReg, moveSize=Move64 } :: PushToStack(RegisterArg workReg) :: code, extraStack, preCode) ) | (0w8, _) => (* 64-bits. *) loadIntArg Move64 | (_, CTypeStruct _) => let (* Structures of other sizes are passed by reference. They are first copied into new areas on the stack. This ensures that the called function can update the structure without changing the original values. *) val newExtra = intAlignUp(extraStack + Word.toInt size, 0w16) val newPreCode = moveMemory{source=(mlArg2Reg, Word.toInt newArgOffset), destination=(extraStackReg, extraStack), length=Word.toInt size} @ preCode in case regs of (areg, _) :: regs' => loadWin64Args(args, stackOffset, newArgOffset+size, regs', loadAddress{source=(extraStackReg, extraStack), destination=areg} :: code, newExtra, newPreCode) | [] => loadWin64Args(args, stackOffset+8, newArgOffset+size, [], loadAddress{source=(extraStackReg, extraStack), destination=workReg} :: PushToStack(RegisterArg workReg) :: code, newExtra, newPreCode) end | _ => raise Foreign.Foreign "Unrecognised type for function argument" end val {typeForm, size, ...} = result val resultAreaPtr = r12 (* Saved value of r8 - This is callee save. *) val resultMemory = {base=resultAreaPtr, offset=0, index=NoIndex} fun storeIntValue moveOp = ([Move{source=RegisterArg eax, destination=MemoryArg resultMemory, moveSize=moveOp}], false) and storeFloatValue precision = ([XMMStoreToMemory{toStore=xmm0, address=resultMemory, precision=precision}], false) val (getResult, passStructAddress) = case (typeForm, size) of (CTypeVoid, _) => ([], false) | (_, 0w1) (* Includes structs *) => (* Single byte *) storeIntValue Move8 | (_, 0w2) => (* 16-bits *) storeIntValue Move16 | (CTypeFloatingPt, 0w4) => storeFloatValue SinglePrecision | (_, 0w4) => storeIntValue Move32 | (CTypeFloatingPt, 0w8) => storeFloatValue DoublePrecision | (_, 0w8) => storeIntValue Move64 | (CTypeStruct _, _) => ([], true) | _ => raise Foreign.Foreign "Unrecognised result type" (* argCode is the code to load and push the arguments. argStack is the amount of stack space the arguments will take. It's only used to ensure that the stack is aligned onto a 16-byte boundary. preArgCode is any code that is needed to copy the arguments before they are actually loaded. Because it is done before the argument registers are loaded it can use rcx, rdi and rsi. extraStack is local stack space needed. It is usually zero but if it is non-zero it must be a multiple of 16 bytes. The address of this area is loaded into r10 before preArgCode is called. *) val (argCode, argStack, preArgCode, extraStack) = if passStructAddress then (* The address of the result structure goes in the first argument register: rcx *) loadWin64Args(args, 0, 0w0, tl win64ArgRegs, [moveRR{source=resultAreaPtr, output=rcx, opSize=nativeWordOpSize}], 0, []) else loadWin64Args(args, 0, 0w0, win64ArgRegs, [], 0, []) local val align = argStack mod 16 in (* Always align the stack. *) val preArgAlign = if align = 0 then 0 else 16-align (* The total space on the stack that needs to be removed at the end. *) val postCallStackReset = argStack + preArgAlign + extraStack + 32 end in (* Save heap ptr. Needed in case we have a callback. *) [storeMemory(r15, ebp, memRegLocalMPointer, nativeWordOpSize)] @ ( (* Put the destination address into a callee save resgister. We have to put the C address in there now because an ML address wouldn't be updated by a possible GC in a callback. *) if #typeForm( result) <> CTypeVoid then [loadHeapMemory(resultAreaPtr, r8, 0, nativeWordOpSize)] else [] ) @ [ (* Save the stack pointer. *) storeMemory(esp, ebp, memRegStackPtr, nativeWordOpSize), (* Save ML stack and switch to C stack. *) loadMemory(esp, ebp, memRegCStackPtr, nativeWordOpSize) (* Load the saved C stack pointer. *) ] @ ( if extraStack = 0 then [] else [ ArithToGenReg{opc=SUB, output=rsp, source=NonAddressConstArg(LargeInt.fromInt extraStack), opSize=nativeWordOpSize}, Move{source=RegisterArg rsp, destination=RegisterArg extraStackReg, moveSize=Move64} ] ) @ ( if preArgAlign = 0 then [] else [ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt preArgAlign), opSize=nativeWordOpSize}] ) @ ( (* The second argument is a SysWord containing the address of a malloced area of memory with the actual arguments in it. *) if null args then [] else [loadHeapMemory(mlArg2Reg, mlArg2Reg, 0, nativeWordOpSize)] ) @ preArgCode @ argCode @ [ (* Reserve a 32-byte area after the arguments. This is specific to the Windows ABI. *) ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt 32), opSize=nativeWordOpSize}, let (* The entry point is in a SysWord.word value in RAX. *) val entryPoint = case targetArch of ObjectId32Bit => MemoryArg{base=ebx, offset=0, index=Index4 eax} | _ => MemoryArg{base=eax, offset=0, index=NoIndex} in (* Call the function. We're discarding the value in rsp so no need to remove args. *) CallAddress entryPoint end, (* Restore the C stack value in case it's been changed by a callback. *) ArithToGenReg{opc=ADD, output=rsp, source=NonAddressConstArg(LargeInt.fromInt postCallStackReset), opSize=nativeWordOpSize}, storeMemory(rsp, rbp, memRegCStackPtr, nativeWordOpSize), loadMemory(rsp, rbp, memRegStackPtr, nativeWordOpSize), (* Restore the ML stack pointer. *) (* Reload the heap pointer. If we've called back to ML this could well have changed. *) loadMemory(r15, rbp, memRegLocalMPointer, nativeWordOpSize) ] @ (* Store the result in the destination. *) getResult @ [ReturnFromFunction 0 ] end (* callWindows64Bits *) fun closureWindows64Bits(args, result) = let val {typeForm, size, align, ...} = result (* Struct results are normally passed by reference. *) val resultStructByRef = (* If true we've copied rcx (the first arg) into r9 *) (case typeForm of CTypeStruct _ => true | _ => false) andalso size <> 0w1 andalso size <> 0w2 andalso size <> 0w4 andalso size <> 0w8 (* Store the register arguments and copy everything else into the argument structure on the stack. The code is ordered so that the early arguments are stored first. *) fun copyWin64Args([], _, _, _) = [] | copyWin64Args(arg::args, nStackArgs, argOffset, regs) = let val {size, align, typeForm, ...} = arg val newArgOffset = alignUp(argOffset, align) val destAddr = {base=rsp, offset=Word.toInt newArgOffset, index=NoIndex} (* Integer arguments. *) fun moveIntArg moveOp = case regs of (areg, _) :: regs' => Move{source=RegisterArg areg, destination=MemoryArg destAddr, moveSize=moveOp } :: copyWin64Args(args, nStackArgs, newArgOffset+size, regs') | [] => Move{source=MemoryArg {base=r10, offset=nStackArgs*8, index=NoIndex}, destination=RegisterArg rax, moveSize=Move64} :: Move{source=RegisterArg rax, destination=MemoryArg destAddr, moveSize=moveOp} :: copyWin64Args(args, nStackArgs+1, newArgOffset+size, []) in (* Structs of 1, 2, 4 and 8 bytes are passed as the corresponding int. *) case (typeForm, size) of (_, 0w1) => moveIntArg Move8 | (_, 0w2) => moveIntArg Move16 | (CTypeFloatingPt, 0w4) => ( case regs of (_, fpReg) :: regs' => XMMStoreToMemory{ toStore=fpReg, address=destAddr, precision=SinglePrecision} :: copyWin64Args(args, nStackArgs, newArgOffset+size, regs') | [] => moveIntArg Move32 ) | (_, 0w4) => (* 32-bits *) moveIntArg Move32 | (CTypeFloatingPt, 0w8) => ( case regs of (_, fpReg) :: regs' => XMMStoreToMemory{ toStore=fpReg, address=destAddr, precision=DoublePrecision} :: copyWin64Args(args, nStackArgs, newArgOffset+size, regs') | [] => moveIntArg Move64 ) | (_, 0w8) => (* 64-bits. *) moveIntArg Move64 | (CTypeStruct _, _) => (* Structures of other size are passed by reference. We need to copy the source structure into our stack area. Since rsi and rdi aren't used as args and rcx is only used for the first argument we can copy the argument now. *) ( case regs of (arg, _) :: regs' => moveMemory{source=(arg, 0), destination=(rsp, Word.toInt newArgOffset), length=Word.toInt size} @ copyWin64Args(args, nStackArgs, newArgOffset+size, regs') | [] => moveMemory{source=(r10, nStackArgs*8), destination=(rsp, Word.toInt newArgOffset), length=Word.toInt size} @ copyWin64Args(args, nStackArgs+1, newArgOffset+size, []) ) | _ => raise Foreign.Foreign "Unrecognised type for function argument" end val copyArgsFromRegsAndStack = if resultStructByRef then (* If we're returning a struct by reference we copy the address into r9 and pass that as the result address. *) Move{source=RegisterArg rcx, destination=RegisterArg r9, moveSize=Move64} :: copyWin64Args(args, 0, 0w0, tl win64ArgRegs) else copyWin64Args(args, 0, 0w0, win64ArgRegs) local fun getNextSize (arg, argOffset) = let val {size, align, ...} = arg in alignUp(argOffset, align) + size end in val argumentSpace = List.foldl getNextSize 0w0 args end val resultOffset = alignUp(argumentSpace, align) (* Offset of result area *) val (loadResults, resultSize) = if typeForm = CTypeVoid orelse resultStructByRef then ([], 0w0) else let val resultMem = {base=rsp, offset=Word.toInt resultOffset, index=NoIndex} val resultCode = case (typeForm, size) of (CTypeSignedInt, 0w1) => [Move{source=MemoryArg resultMem, destination=RegisterArg rax, moveSize=Move8X64}] | (_, 0w1) => [Move{source=MemoryArg resultMem, destination=RegisterArg rax, moveSize=Move8}] | (CTypeSignedInt, 0w2) => [Move{source=MemoryArg resultMem, destination=RegisterArg rax, moveSize=Move16X64}] | (_, 0w2) => [Move{source=MemoryArg resultMem, destination=RegisterArg rax, moveSize=Move16}] | (CTypeFloatingPt, 0w4) => [XMMArith{opc=SSE2MoveFloat, source=MemoryArg resultMem, output=xmm0}] | (CTypeSignedInt, 0w4) => [Move{source=MemoryArg resultMem, destination=RegisterArg rax, moveSize=Move32X64}] | (_, 0w4) => [Move{source=MemoryArg resultMem, destination=RegisterArg rax, moveSize=Move32}] | (CTypeFloatingPt, 0w8) => [XMMArith{opc=SSE2MoveDouble, source=MemoryArg resultMem, output=xmm0}] | (_, 0w8) => [Move{source=MemoryArg resultMem, destination=RegisterArg rax, moveSize=Move64}] | _ => raise Foreign.Foreign "Unrecognised result type" in (resultCode, size) end (* Stack space. The stack must be 16 byte aligned. We've pushed 8 regs and a return address so add a further 8 bytes to bring it back into alignment. If we're returning a struct by reference, though, we've pushed 9 regs so don't add 8. *) val stackToAllocate = Word.toInt(alignUp(resultOffset + resultSize, 0w16)) + (if resultStructByRef then 0 else 8) in [ (* Push callee-save registers. *) PushToStack(RegisterArg rbp), PushToStack(RegisterArg rbx), PushToStack(RegisterArg r12), PushToStack(RegisterArg r13), PushToStack(RegisterArg r14), PushToStack(RegisterArg r15), PushToStack(RegisterArg rdi), PushToStack(RegisterArg rsi) ] @ ( (* If we're returning a struct by reference we have to return the address in rax even though it's been set by the caller. Save this address. *) if resultStructByRef then [PushToStack(RegisterArg rcx)] else [] ) @ [ (* Set r10 to point to the original stack args if any. This is beyond the pushed regs and also the 32-byte area. *) LoadAddress{ output=r10, offset=if resultStructByRef then 112 else 104, base=SOME rsp, index=NoIndex, opSize=nativeWordOpSize}, (* Allocate stack space. *) ArithToGenReg{opc=SUB, output=rsp, source=NonAddressConstArg(LargeInt.fromInt stackToAllocate), opSize=nativeWordOpSize}, (* Move the function we're calling, in rax, into r13, a callee-save register *) moveRR{source=rax, output=r13, opSize=polyWordOpSize} ] @ copyArgsFromRegsAndStack @ [ (* Get the value for rbp. *) (* This is a problem for 32-in-64. The value of getThreadDataCall is an object ID but rbx may well no longer hold the heap base address. We use a special inline constant to hold the full 64-bit address. *) LoadAbsolute{value=getThreadDataCall, destination=rcx}, CallAddress(MemoryArg{base=rcx, offset=0, index=NoIndex}), moveRR{source=rax, output=rbp, opSize=nativeWordOpSize}, (* Save the address of the argument and result area. *) moveRR{source=rsp, output=rcx, opSize=nativeWordOpSize}, (* Switch to the ML stack. *) storeMemory(rsp, rbp, memRegCStackPtr, nativeWordOpSize), loadMemory(rsp, rbp, memRegStackPtr, nativeWordOpSize), (* Load the ML heap pointer. *) loadMemory(r15, rbp, memRegLocalMPointer, nativeWordOpSize), (* Now move the function closure into the closure register ready for the call. *) moveRR{source=r13, output=rdx, opSize=polyWordOpSize} ] @ (* Reload the heap base address in 32-in-64. *) ( if targetArch = ObjectId32Bit then [loadMemory(rbx, rbp, memRegSavedRbx, nativeWordOpSize)] else [] ) @ boxRegAsSysWord(rcx, rax, []) @ ( (* If we're returning a struct by reference the address for the result will have been passed in the first argument. We use that as the result area. Otherwise point to the result area on the stack. *) if resultStructByRef then loadMemory(rcx, r10, ~112, nativeWordOpSize) else ArithToGenReg{opc=ADD, output=rcx, source=NonAddressConstArg(Word.toLargeInt resultOffset), opSize=nativeWordOpSize} ) :: boxRegAsSysWord(rcx, mlArg2Reg, [rax]) @ [ (* Call the ML function using the full closure call. *) CallAddress( if targetArch = ObjectId32Bit then MemoryArg{base=rbx, index=Index4 rdx, offset=0} else MemoryArg{base=rdx, index=NoIndex, offset=0}), (* Save the ML stack pointer because we may have grown the stack. Switch to the C stack. *) storeMemory(rsp, rbp, memRegStackPtr, nativeWordOpSize), loadMemory(rsp, rbp, memRegCStackPtr, nativeWordOpSize), storeMemory(r15, rbp, memRegLocalMPointer, nativeWordOpSize) ] @ loadResults @ [ (* Remove the stack space. *) ArithToGenReg{opc=ADD, output=rsp, source=NonAddressConstArg(LargeInt.fromInt stackToAllocate), opSize=nativeWordOpSize} ] @ ( if resultStructByRef then [PopR rax] else [] ) @ [ PopR rsi, PopR rdi, PopR r15, PopR r14, PopR r13, PopR r12, PopR rbx, PopR rbp, (* Restore callee-save registers. *) ReturnFromFunction 0 (* Caller removes any stack arguments. *) ] end end local (* The rules for passing structs in SysV on X86/64 are complicated but most of the special cases don't apply. We don't support floating point larger than 8 bytes, packed structures or C++ constructors. It then reduces to the following: Structures of up to 8 bytes are passed in a single register and of 8-16 bytes in two registers. Larger structures are passed on the stack. The question is whether to use general registers or SSE2 registers. Each 8 byte chunk is considered independently after any internal structs have been unwrapped. Each chunk will consist of either a single 8-byte value (i.e.. a pointer, int64_t or a double) or one or more smaller values and possibly some padding. An SSE2 register is used if the value is a double, two floats or a single float and padding. Otherwise it must have at least one shorter int-like type (e.g. int, char, short etc) in which case a general register is used. That applies even if it also contains a float. If, having selected the kind of registers to be used, there are not enough for the whole struct it is passed on the stack. We don't really need this for simple arguments but it's easier to consider them all together. *) datatype argClass = ArgInMemory | ArgInRegs of { firstInSSE: bool, secondInSSE: bool } fun classifyArg arg = let val {size, ...} = arg (* Unwrap the struct and any internal structs. *) fun getFields([], _) = [] | getFields(field::fields, offset) = let val {size, align, typeForm} = field val alignedOffset = alignUp(offset, align) (* Align this even if it's a sub-struct *) in case typeForm of CTypeVoid => raise Foreign.Foreign "Void cannot be used for a function argument" | CTypeStruct elements => getFields(elements, alignedOffset) @ getFields(fields, alignedOffset+size) | _ => (typeForm, alignedOffset) :: getFields(fields, alignedOffset+size) end val isSSE = List.all (fn (CTypeFloatingPt, _) => true | _ => false) in if size > 0w16 then ArgInMemory else let val fieldsAndOffsets = getFields([arg], 0w0) in if size <= 0w8 (* Only the first register will be used. *) then ArgInRegs{firstInSSE=isSSE fieldsAndOffsets, secondInSSE=false} else let val (first8Bytes, second8Bytes) = List.partition (fn (_, off) => off <= 0w8) fieldsAndOffsets in ArgInRegs{firstInSSE=isSSE first8Bytes, secondInSSE=isSSE second8Bytes} end end end val sysVGenRegs = [rdi, rsi, rdx, rcx, r8, r9] and sysVFPRegs = [xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7] (* Store a register into upto 8 bytes. Most values will involve a single store but odd-sized structs can require shifts and multiple stores. N.B. May modify the source register. *) fun storeUpTo8(reg, base, offset, size) = let val moveOp = if size = 0w8 then Move64 else if size >= 0w4 then Move32 else if size >= 0w2 then Move16 else Move8 in [Move{source=RegisterArg reg, destination=MemoryArg {base=base, offset=offset, index=NoIndex}, moveSize=moveOp}] end @ ( if size = 0w6 orelse size = 0w7 then [ ShiftConstant{ shiftType=SHR, output=reg, shift=0w32, opSize=OpSize64 }, Move{source=RegisterArg reg, destination=MemoryArg {base=base, offset=offset+4, index=NoIndex}, moveSize=Move16} ] else [] ) @ ( if size = 0w3 orelse size = 0w5 orelse size = 0w7 then [ ShiftConstant{ shiftType=SHR, output=reg, shift=Word8.fromLargeWord(Word.toLargeWord((size-0w1)*0w8)), opSize=OpSize64 }, Move{source=RegisterArg reg, destination=MemoryArg {base=base, offset=offset+Word.toInt(size-0w1), index=NoIndex}, moveSize=Move8} ] else [] ) in fun callUnix64Bits(args, result) = let val argWorkReg = r10 (* Not used for any arguments. *) val resultAreaPtr = r12 (* Saved value of r8 - This is callee save. *) val argPtrReg = r11 (* Pointer to argument area - Can't use mlArg2Reg since that's RSI on 32-in-64. *) fun loadSysV64Args([], stackOffset, _, _, _, code, preCode) = (code, stackOffset, preCode) | loadSysV64Args(arg::args, stackOffset, argOffset, gRegs, fpRegs, code, preCode) = let val {size, align, typeForm, ...} = arg (* Load a value into a register. Normally the size will be 1, 2, 4 or 8 bytes and this will just involve a simple load. Structs, though, can be of any size up to 8 bytes. *) fun loadRegister(reg, offset, size) = let (* We don't necessarily have to sign-extend. There's a comment in libffi that suggests that LVM expects it even though the SysV ABI doesn't require it. *) val moveOp = if size = 0w8 then Move64 else if typeForm = CTypeSignedInt andalso size = 0w4 then Move32X64 else if size >= 0w4 then Move32 else if typeForm = CTypeSignedInt andalso size = 0w2 then Move16X64 else if size >= 0w2 then Move16 else if typeForm = CTypeSignedInt andalso size = 0w1 then Move8X64 else Move8 in [Move{source=MemoryArg{base=argPtrReg, offset=Word.toInt offset, index=NoIndex}, destination=RegisterArg reg, moveSize=moveOp}] end @ ( if size = 0w6 orelse size = 0w7 then [ Move{source=MemoryArg{base=argPtrReg, offset=Word.toInt offset + 4, index=NoIndex}, destination=RegisterArg argWorkReg, moveSize=Move16}, ShiftConstant{ shiftType=SHL, output=argWorkReg, shift=0w32, opSize=OpSize64 }, ArithToGenReg{ opc=OR, output=reg, source=RegisterArg argWorkReg, opSize=OpSize64 } ] else [] ) @ ( if size = 0w3 orelse size = 0w5 orelse size = 0w7 then [ Move{source=MemoryArg{base=argPtrReg, offset=Word.toInt offset + Word.toInt(size-0w1), index=NoIndex}, destination=RegisterArg argWorkReg, moveSize=Move8}, ShiftConstant{ shiftType=SHL, output=argWorkReg, shift=Word8.fromLargeWord(Word.toLargeWord((size-0w1)*0w8)), opSize=OpSize64 }, ArithToGenReg{ opc=OR, output=reg, source=RegisterArg argWorkReg, opSize=OpSize64 } ] else [] ) val newArgOffset = alignUp(argOffset, align) val word1Addr = {base=argPtrReg, offset=Word.toInt newArgOffset, index=NoIndex} val word2Addr = {base=argPtrReg, offset=Word.toInt newArgOffset + 8, index=NoIndex} in case (classifyArg arg, size > 0w8, gRegs, fpRegs) of (* 8 bytes or smaller - single general reg. This is the usual case. *) (ArgInRegs{firstInSSE=false, ...}, false, gReg :: gRegs', fpRegs') => loadSysV64Args(args, stackOffset, newArgOffset+size, gRegs', fpRegs', loadRegister(gReg, newArgOffset, size) @ code, preCode) (* 8 bytes or smaller - single SSE reg. Usual case for real arguments. *) | (ArgInRegs{firstInSSE=true, ...}, false, gRegs', fpReg :: fpRegs') => loadSysV64Args(args, stackOffset, newArgOffset+size, gRegs', fpRegs', XMMArith{opc=if size = 0w4 then SSE2MoveFloat else SSE2MoveDouble, source=MemoryArg word1Addr, output=fpReg } :: code, preCode) (* 9-16 bytes - both values in general regs. *) | (ArgInRegs{firstInSSE=false, secondInSSE=false}, true, gReg1 :: gReg2 :: gRegs', fpRegs') => loadSysV64Args(args, stackOffset, newArgOffset+size, gRegs', fpRegs', Move{source=MemoryArg word1Addr, destination=RegisterArg gReg1, moveSize=Move64} :: loadRegister(gReg2, newArgOffset+0w8, size-0w8) @ code, preCode) (* 9-16 bytes - first in general, second in SSE. *) | (ArgInRegs{firstInSSE=false, secondInSSE=true}, true, gReg :: gRegs', fpReg :: fpRegs') => loadSysV64Args(args, stackOffset, newArgOffset+size, gRegs', fpRegs', Move{source=MemoryArg word1Addr, destination=RegisterArg gReg, moveSize=Move64} :: XMMArith{opc=if size = 0w12 then SSE2MoveFloat else SSE2MoveDouble, source=MemoryArg word2Addr, output=fpReg } :: code, preCode) (* 9-16 bytes - first in SSE, second in general. *) | (ArgInRegs{firstInSSE=true, secondInSSE=false}, true, gReg :: gRegs', fpReg :: fpRegs') => loadSysV64Args(args, stackOffset, newArgOffset+size, gRegs', fpRegs', XMMArith{opc=SSE2MoveDouble, source=MemoryArg word1Addr, output=fpReg } :: loadRegister(gReg, newArgOffset+0w8, size-0w8) @ code, preCode) | (* 9-16 bytes - both values in SSE regs. *) (ArgInRegs{firstInSSE=true, secondInSSE=true}, true, gRegs', fpReg1 :: fpReg2 :: fpRegs') => loadSysV64Args(args, stackOffset, newArgOffset+size, gRegs', fpRegs', XMMArith{opc=SSE2MoveDouble, source=MemoryArg word1Addr, output=fpReg1 } :: XMMArith{opc=if size = 0w12 then SSE2MoveFloat else SSE2MoveDouble, source=MemoryArg word2Addr, output=fpReg2 } :: code, preCode) | (_, _, gRegs', fpRegs') => (* Either larger than 16 bytes or we've run out of the right kind of registers. *) (* Move the argument in the preCode. It's possible a large struct could be the first argument and if we left it until the end RDI and RSI would already have been loaded. Structs are passed by value on the stack not, as in Win64, by reference. *) let val space = intAlignUp(Word.toInt size, 0w8) in loadSysV64Args(args, stackOffset+space, newArgOffset+size, gRegs', fpRegs', code, ArithToGenReg{opc=SUB, output=rsp, source=NonAddressConstArg(LargeInt.fromInt space), opSize=nativeWordOpSize} :: moveMemory{source=(argPtrReg, Word.toInt newArgOffset), destination=(rsp, 0), length=Word.toInt size} @ preCode) end end (* The rules for returning structs are similar to those for parameters. *) local (* Store a result register into the result area. In almost all cases this is very simple: the only complication is with structs of odd sizes. *) fun storeResult(reg, offset, size) = storeUpTo8(reg, resultAreaPtr, offset, size) val {size, typeForm, ...} = result in val (getResult, passArgAddress) = if typeForm = CTypeVoid then ([], false) else case (classifyArg result, size > 0w8) of (* 8 bytes or smaller - returned in RAX - Normal case for int-like results. *) (ArgInRegs{firstInSSE=false, ...}, false) => (storeResult(rax, 0, size), false) (* 8 bytes or smaller - returned in XMM0 - Normal case for real results. *) | (ArgInRegs{firstInSSE=true, ...}, false) => ([XMMStoreToMemory{toStore=xmm0, address={base=resultAreaPtr, offset=0, index=NoIndex}, precision=if size = 0w4 then SinglePrecision else DoublePrecision}], false) (* 9-16 bytes - returned in RAX/RDX. *) | (ArgInRegs{firstInSSE=false, secondInSSE=false}, true) => (storeResult(rax, 0, 0w8) @ storeResult(rdx, 0, size-0w8), false) (* 9-16 bytes - first in RAX, second in XMM0. *) | (ArgInRegs{firstInSSE=false, secondInSSE=true}, true) => (XMMStoreToMemory{toStore=xmm0, address={base=resultAreaPtr, offset=8, index=NoIndex}, precision=if size = 0w12 then SinglePrecision else DoublePrecision} :: storeResult(rax, 0, 0w8), false) (* 9-16 bytes - first in XMM0, second in RAX. *) | (ArgInRegs{firstInSSE=true, secondInSSE=false}, true) => (XMMStoreToMemory{toStore=xmm0, address={base=resultAreaPtr, offset=0, index=NoIndex}, precision=DoublePrecision} :: storeResult(rax, 8, size-0w8), false) (* 9-16 bytes - both values in SSE regs.*) | (ArgInRegs{firstInSSE=true, secondInSSE=true}, true) => ([XMMStoreToMemory{toStore=xmm0, address={base=resultAreaPtr, offset=0, index=NoIndex}, precision=DoublePrecision}, XMMStoreToMemory{toStore=xmm1, address={base=resultAreaPtr, offset=8, index=NoIndex}, precision=if size = 0w12 then SinglePrecision else DoublePrecision}], false) | _ => ([], true) (* Have to pass the address of the area in memory *) end val (argCode, argStack, preArgCode) = if passArgAddress (* If we have to pass the address of the result struct it goes in rdi. *) then loadSysV64Args(args, 0, 0w0, tl sysVGenRegs, sysVFPRegs, [moveRR{source=resultAreaPtr, output=rdi, opSize=nativeWordOpSize}], []) else loadSysV64Args(args, 0, 0w0, sysVGenRegs, sysVFPRegs, [], []) local val align = argStack mod 16 in (* Always align the stack. *) val preArgAlign = if align = 0 then 0 else 16-align + (* The total space on the stack that needs to be removed at the end. *) + val postCallStackReset = argStack + preArgAlign end in (* Save heap ptr. Needed in case we have a callback. *) [storeMemory(r15, ebp, memRegLocalMPointer, nativeWordOpSize)] @ ( (* Put the destination address into a callee save resgister. We have to put the C address in there now because an ML address wouldn't be updated by a possible GC in a callback. *) if #typeForm( result) <> CTypeVoid then [loadHeapMemory(resultAreaPtr, r8, 0, nativeWordOpSize)] else [] ) @ [ (* Save the stack pointer. *) storeMemory(esp, ebp, memRegStackPtr, nativeWordOpSize), (* Save ML stack and switch to C stack. *) loadMemory(esp, ebp, memRegCStackPtr, nativeWordOpSize) (* Load the saved C stack pointer. *) ] @ ( if preArgAlign = 0 then [] else [ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt preArgAlign), opSize=nativeWordOpSize}] ) @ ( (* The second argument is a SysWord containing the address of a malloced area of memory with the actual arguments in it. *) if null args then [] else [loadHeapMemory(argPtrReg, mlArg2Reg, 0, nativeWordOpSize)] ) @ preArgCode @ argCode @ [ let (* The entry point is in a SysWord.word value in RAX. *) val entryPoint = case targetArch of ObjectId32Bit => MemoryArg{base=ebx, offset=0, index=Index4 eax} | _ => MemoryArg{base=eax, offset=0, index=NoIndex} in (* Call the function. We're discarding the value in rsp so no need to remove args. *) CallAddress entryPoint - end, + end + ] @ + (* Restore the C stack value in case it's been changed by a callback. *) + ( + if postCallStackReset = 0 + then [] + else [ArithToGenReg{opc=ADD, output=rsp, source=NonAddressConstArg(LargeInt.fromInt postCallStackReset), opSize=nativeWordOpSize}] + ) @ + [ + storeMemory(rsp, rbp, memRegCStackPtr, nativeWordOpSize), loadMemory(esp, ebp, memRegStackPtr, nativeWordOpSize), (* Restore the ML stack pointer. *) (* Reload the heap pointer. If we've called back to ML this could well have changed. *) loadMemory(r15, ebp, memRegLocalMPointer, nativeWordOpSize) ] @ (* Store the result in the destination. *) getResult @ [ ReturnFromFunction 0 ] end (* callUnix64Bits *) fun closureUnix64Bits(args, result) = let fun moveSysV64Args([], _, _, _, _, moveFromStack) = moveFromStack | moveSysV64Args(arg::args, stackSpace, argOffset, gRegs, fpRegs, moveFromStack) = let val {size, align, ...} = arg fun storeRegister(reg, offset, size) = storeUpTo8(reg, rsp, offset, size) val newArgOffset = alignUp(argOffset, align) val word1Addr = {base=rsp, offset=Word.toInt newArgOffset, index=NoIndex} val word2Addr = {base=rsp, offset=Word.toInt newArgOffset + 8, index=NoIndex} in case (classifyArg arg, size > 0w8, gRegs, fpRegs) of (* 8 bytes or smaller - single general reg. This is the usual case. *) (ArgInRegs{firstInSSE=false, ...}, false, gReg :: gRegs', fpRegs') => storeRegister(gReg, Word.toInt newArgOffset, size) @ moveSysV64Args(args, stackSpace, newArgOffset+size, gRegs', fpRegs', moveFromStack) (* 8 bytes or smaller - single SSE reg. Usual case for real arguments. *) | (ArgInRegs{firstInSSE=true, ...}, false, gRegs', fpReg :: fpRegs') => XMMStoreToMemory{precision=if size = 0w4 then SinglePrecision else DoublePrecision, address=word1Addr, toStore=fpReg } :: moveSysV64Args(args, stackSpace, newArgOffset+size, gRegs', fpRegs', moveFromStack) (* 9-16 bytes - both values in general regs. *) | (ArgInRegs{firstInSSE=false, secondInSSE=false}, true, gReg1 :: gReg2 :: gRegs', fpRegs') => Move{source=MemoryArg word1Addr, destination=RegisterArg gReg1, moveSize=Move64} :: storeRegister(gReg2, Word.toInt newArgOffset+8, size-0w8) @ moveSysV64Args(args, stackSpace, newArgOffset+size, gRegs', fpRegs', moveFromStack) (* 9-16 bytes - first in general, second in SSE. *) | (ArgInRegs{firstInSSE=false, secondInSSE=true}, true, gReg :: gRegs', fpReg :: fpRegs') => Move{source=MemoryArg word1Addr, destination=RegisterArg gReg, moveSize=Move64} :: XMMStoreToMemory{precision=if size = 0w12 then SinglePrecision else DoublePrecision, address=word2Addr, toStore=fpReg } :: moveSysV64Args(args, stackSpace, newArgOffset+size, gRegs', fpRegs', moveFromStack) (* 9-16 bytes - first in SSE, second in general. *) | (ArgInRegs{firstInSSE=true, secondInSSE=false}, true, gReg :: gRegs', fpReg :: fpRegs') => XMMStoreToMemory{precision=DoublePrecision, address=word1Addr, toStore=fpReg } :: storeRegister(gReg, Word.toInt newArgOffset+8, size-0w8) @ moveSysV64Args(args, stackSpace, newArgOffset+size, gRegs', fpRegs', moveFromStack) | (* 9-16 bytes - both values in SSE regs. *) (ArgInRegs{firstInSSE=true, secondInSSE=true}, true, gRegs', fpReg1 :: fpReg2 :: fpRegs') => XMMStoreToMemory{precision=DoublePrecision, address=word1Addr, toStore=fpReg1 } :: XMMStoreToMemory{precision=if size = 0w12 then SinglePrecision else DoublePrecision, address=word2Addr, toStore=fpReg2 } :: moveSysV64Args(args, stackSpace, newArgOffset+size, gRegs', fpRegs', moveFromStack) | (_, _, gRegs', fpRegs') => (* Either larger than 16 bytes or we've run out of the right kind of register. Structs larger than 16 bytes are passed by value on the stack. Move the argument after we've stored all the registers in particular rsi and rdi. *) let val space = intAlignUp(Word.toInt size, 0w8) in moveSysV64Args(args, stackSpace+space, newArgOffset+size, gRegs', fpRegs', moveMemory{source=(r10, stackSpace), destination=(rsp, Word.toInt newArgOffset), length=Word.toInt size} @ moveFromStack) end end (* Result structs larger than 16 bytes are returned by reference. *) val resultStructByRef = #size ( result) > 0w16 val copyArgsFromRegsAndStack = if resultStructByRef (* rdi contains the address for the result. *) then moveSysV64Args(args, 0, 0w0, tl sysVGenRegs, sysVFPRegs, []) else moveSysV64Args(args, 0, 0w0, sysVGenRegs, sysVFPRegs, []) local fun getNextSize (arg, argOffset) = let val {size, align, ...} = arg in alignUp(argOffset, align) + size end in val argumentSpace = List.foldl getNextSize 0w0 args end (* Allocate a 16-byte area for any results returned in registers. This will not be used if the result is a structure larger than 16-bytes. *) val resultOffset = alignUp(argumentSpace, 0w8) (* Ensure the stack is 16 bytes aligned. We've pushed 6 regs and a return address so add a further 8 bytes to bring it back into alignment. If we're returning a struct by reference, though, we've pushed 7 regs so don't add 8. *) val stackToAllocate = Word.toInt(alignUp(resultOffset + 0w16, 0w16)) + (if resultStructByRef then 0 else 8) (* The rules for returning structs are similar to those for parameters. *) local (* The result area is always 16 bytes wide so we can load the result without risking reading outside. At least at the moment we ignore any sign extension. *) val {size, typeForm, ...} = result val resultOffset = Word.toInt resultOffset in val loadResults = if typeForm = CTypeVoid then [] else case (classifyArg result, size > 0w8) of (* 8 bytes or smaller - returned in RAX - Normal case for int-like results. *) (ArgInRegs{firstInSSE=false, ...}, false) => [Move{source=MemoryArg {base=rsp, offset=resultOffset, index=NoIndex}, destination=RegisterArg rax, moveSize=Move64}] (* 8 bytes or smaller - returned in XMM0 - Normal case for real results. *) | (ArgInRegs{firstInSSE=true, ...}, false) => [XMMStoreToMemory{toStore=xmm0, address={base=rsp, offset=resultOffset, index=NoIndex}, precision=if size = 0w4 then SinglePrecision else DoublePrecision}] (* 9-16 bytes - returned in RAX/RDX. *) | (ArgInRegs{firstInSSE=false, secondInSSE=false}, true) => [Move{source=MemoryArg {base=rsp, offset=resultOffset, index=NoIndex}, destination=RegisterArg rax, moveSize=Move64}, Move{source=MemoryArg {base=rsp, offset=resultOffset+8, index=NoIndex}, destination=RegisterArg rdx, moveSize=Move64}] (* 9-16 bytes - first in RAX, second in XMM0. *) | (ArgInRegs{firstInSSE=false, secondInSSE=true}, true) => [Move{source=MemoryArg {base=rsp, offset=resultOffset, index=NoIndex}, destination=RegisterArg rax, moveSize=Move64}, XMMStoreToMemory{toStore=xmm0, address={base=rsp, offset=resultOffset+8, index=NoIndex}, precision=if size = 0w12 then SinglePrecision else DoublePrecision}] (* 9-16 bytes - first in XMM0, second in RAX. *) | (ArgInRegs{firstInSSE=true, secondInSSE=false}, true) => [XMMStoreToMemory{toStore=xmm0, address={base=rsp, offset=resultOffset, index=NoIndex}, precision=DoublePrecision}, Move{source=MemoryArg {base=rsp, offset=resultOffset+8, index=NoIndex}, destination=RegisterArg rax, moveSize=Move64}] (* 9-16 bytes - both values in SSE regs.*) | (ArgInRegs{firstInSSE=true, secondInSSE=true}, true) => [XMMStoreToMemory{toStore=xmm0, address={base=rsp, offset=resultOffset, index=NoIndex}, precision=DoublePrecision}, XMMStoreToMemory{toStore=xmm1, address={base=rsp, offset=resultOffset+8, index=NoIndex}, precision=if size = 0w12 then SinglePrecision else DoublePrecision}] | _ => [] (* Have to pass the address of the area in memory *) end in [ (* Push callee-save registers. *) PushToStack(RegisterArg rbp), PushToStack(RegisterArg rbx), PushToStack(RegisterArg r12), PushToStack(RegisterArg r13), PushToStack(RegisterArg r14), PushToStack(RegisterArg r15) ] @ ( (* If we're returning a struct by reference we have to return the address in rax even though it's been set by the caller. Save this address. *) if resultStructByRef then [PushToStack(RegisterArg rdi)] else [] ) @ [ (* Set r10 to point to the original stack args if any. *) LoadAddress{ output=r10, offset=if resultStructByRef then 64 else 56, base=SOME rsp, index=NoIndex, opSize=nativeWordOpSize}, (* Allocate stack space. *) ArithToGenReg{opc=SUB, output=rsp, source=NonAddressConstArg(LargeInt.fromInt stackToAllocate), opSize=nativeWordOpSize}, (* Move the function we're calling, in rax, into r13, a callee-save register *) moveRR{source=rax, output=r13, opSize=polyWordOpSize} ] @ copyArgsFromRegsAndStack @ [ (* Get the value for rbp. This has to be an absolute address in 32-in-64. *) LoadAbsolute{value=getThreadDataCall, destination=rcx}, CallAddress(MemoryArg{base=rcx, offset=0, index=NoIndex}), moveRR{source=rax, output=rbp, opSize=nativeWordOpSize}, (* Save the address of the argument and result area. *) moveRR{source=rsp, output=rcx, opSize=nativeWordOpSize}, (* Switch to the ML stack. *) storeMemory(rsp, rbp, memRegCStackPtr, nativeWordOpSize), loadMemory(rsp, rbp, memRegStackPtr, nativeWordOpSize), (* Load the ML heap pointer. *) loadMemory(r15, rbp, memRegLocalMPointer, nativeWordOpSize), (* Now move the function closure into the closure register ready for the call. *) moveRR{source=r13, output=rdx, opSize=polyWordOpSize} ] @ (* Reload the heap base address in 32-in-64. *) ( if targetArch = ObjectId32Bit then [loadMemory(rbx, rbp, memRegSavedRbx, nativeWordOpSize)] else [] ) @ boxRegAsSysWord(rcx, rax, []) @ ( (* If we're returning a struct by reference the address for the result will have been passed in the first argument. We use that as the result area. Otherwise point to the result area on the stack. *) if resultStructByRef then loadMemory(rcx, r10, ~64, nativeWordOpSize) else ArithToGenReg{opc=ADD, output=rcx, source=NonAddressConstArg(Word.toLargeInt resultOffset), opSize=nativeWordOpSize} ) :: boxRegAsSysWord(rcx, mlArg2Reg, [rax]) @ [ (* Call the ML function using the full closure call. *) CallAddress( if targetArch = ObjectId32Bit then MemoryArg{base=rbx, index=Index4 rdx, offset=0} else MemoryArg{base=rdx, index=NoIndex, offset=0}), (* Save the ML stack pointer because we may have grown the stack. Switch to the C stack. *) storeMemory(rsp, rbp, memRegStackPtr, nativeWordOpSize), loadMemory(rsp, rbp, memRegCStackPtr, nativeWordOpSize), storeMemory(r15, rbp, memRegLocalMPointer, nativeWordOpSize) ] @ loadResults @ [ (* Remove the stack space. *) ArithToGenReg{opc=ADD, output=rsp, source=NonAddressConstArg(LargeInt.fromInt stackToAllocate), opSize=nativeWordOpSize} ] @ ( if resultStructByRef then [PopR rax] else [] ) @ [ PopR r15, PopR r14, PopR r13, PopR r12, PopR rbx, PopR rbp, (* Restore callee-save registers. *) ReturnFromFunction 0 (* Caller removes any stack arguments. *) ] end end fun foreignCall(abi: ffiABI, args: cType list, result: cType): Address.machineWord = let val code = case abi of FFI_UNIX64 => callUnix64Bits(args, result) | FFI_WIN64 => callWindows64Bits(args, result) | abi => call32Bits(abi, args, result) val functionName = "foreignCall" val debugSwitches = [(*Universal.tagInject Pretty.compilerOutputTag (Pretty.prettyPrint(print, 70)), Universal.tagInject DEBUG.assemblyCodeTag true*)] val profileObject = createProfileObject functionName val newCode = codeCreate (functionName, profileObject, debugSwitches) val closure = makeConstantClosure() val () = X86OPTIMISE.generateCode{code=newCode, labelCount=0, ops=code, resultClosure=closure} in closureAsAddress closure end (* Build a callback function. The arguments are the abi, the list of argument types and the result type. The result is an ML function that takes an ML function, f, as its argument, registers it as a callback and returns the C function as its result. When the C function is called the arguments are copied into temporary memory and the vector passed to f along with the address of the memory for the result. "f" stores the result in it when it returns and the result is then passed back as the result of the callback. N.B. This returns a closure cell which contains the address of the code. It can be used as a SysWord.word value except that while it exists the code will not be GCed. *) fun buildCallBack(abi: ffiABI, args: cType list, result: cType): Address.machineWord = let val code = case abi of FFI_UNIX64 => closureUnix64Bits(args, result) | FFI_WIN64 => closureWindows64Bits(args, result) | abi => closure32Bits(abi, args, result) val functionName = "foreignCallBack(2)" val debugSwitches = [(*Universal.tagInject Pretty.compilerOutputTag (Pretty.prettyPrint(print, 70)), Universal.tagInject DEBUG.assemblyCodeTag true*)] val profileObject = createProfileObject functionName val newCode = codeCreate (functionName, profileObject, debugSwitches) val closure = makeConstantClosure() val () = X86OPTIMISE.generateCode{code=newCode, labelCount=0, ops=code, resultClosure=closure} val stage2Code = closureAsAddress closure fun resultFunction f = let (* Generate a small function to load the address of f into rax/eax and then jump to stage2. The idea is that it should be possible to generate this eventually in a single RTS call. That could be done by using a version of this as a model. *) val codeAddress = (* In the native code versions we extract the code address from the closure. We don't do that in 32-in-64 and instead the RTS does it. *) if targetArch = ObjectId32Bit then stage2Code else Address.loadWord(Address.toAddress stage2Code, 0w0) val code = [ Move{source=AddressConstArg(Address.toMachineWord f), destination=RegisterArg rax, moveSize=opSizeToMove polyWordOpSize}, JumpAddress(AddressConstArg codeAddress) ] val functionName = "foreignCallBack(1)" val debugSwitches = [(*Universal.tagInject Pretty.compilerOutputTag (Pretty.prettyPrint(print, 70)), Universal.tagInject DEBUG.assemblyCodeTag true*)] val profileObject = createProfileObject functionName val newCode = codeCreate (functionName, profileObject, debugSwitches) val closure = makeConstantClosure() val () = X86OPTIMISE.generateCode{code=newCode, labelCount=0, ops=code, resultClosure=closure} val res = closureAsAddress closure (*val _ = print("Address is " ^ (LargeWord.toString(RunCall.unsafeCast res)) ^ "\n")*) in res end in Address.toMachineWord resultFunction end end;