diff --git a/mlsource/MLCompiler/CodeTree/ByteCode/INTCODECONS.ML b/mlsource/MLCompiler/CodeTree/ByteCode/INTCODECONS.ML index 5169797d..8579b22c 100644 --- a/mlsource/MLCompiler/CodeTree/ByteCode/INTCODECONS.ML +++ b/mlsource/MLCompiler/CodeTree/ByteCode/INTCODECONS.ML @@ -1,1733 +1,1742 @@ (* Copyright (c) 2015-18, 2020 David C.J. Matthews Copyright (c) 2000 Cambridge University Technical Services Limited This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *) functor INTCODECONS ( structure DEBUG: DEBUG structure PRETTY: PRETTYSIG ) : INTCODECONSSIG = struct open CODE_ARRAY open DEBUG open Address open Misc infix 5 << <<+ <<- >> >>+ >>- ~>> ~>>+ ~>>- (* Shift operators *) infix 3 andb orb xorb andbL orbL xorbL andb8 orb8 xorb8 val op << = Word.<< and op >> = Word.>> and op ~>> = Word.~>> val wordToWord8 = Word8.fromLargeWord o Word.toLargeWord and word8ToWord = Word.fromLargeWord o Word8.toLargeWord (* Typically the compiler is built on a little-endian machine but it could be run on a machine with either endian-ness. We have to find out the endian-ness when we run. There are separate versions of the compiler for 32-bit and 64-bit so that can be a constant. *) local val isBigEndian: unit -> bool = RunCall.rtsCallFast1 "PolyIsBigEndian" in val isBigEndian = isBigEndian() end val opcode_jump = 0wx02 (* 8-bit unsigned jump forward. *) and opcode_jumpFalse = 0wx03 (* Test top of stack. Take 8-bit unsigned jump if false. *) and opcode_loadMLWord = 0wx04 and opcode_storeMLWord = 0wx05 and opcode_alloc_ref = 0wx06 and opcode_blockMoveWord = 0wx07 and opcode_loadUntagged = 0wx08 and opcode_storeUntagged = 0wx09 and opcode_case16 = 0wx0a and opcode_callClosure = 0wx0c and opcode_returnW = 0wx0d and opcode_containerB = 0wx0e and opcode_raiseEx = 0wx10 and opcode_callConstAddr16 = 0wx11 and opcode_callConstAddr8 = 0wx12 and opcode_localW = 0wx13 and opcode_callLocalB = 0wx16 and opcode_constAddr16 = 0wx1a and opcode_constIntW = 0wx1b and opcode_jumpBack8 = 0wx1e (* 8-bit unsigned jump backwards - relative to end of instr. *) and opcode_returnB = 0wx1f and opcode_jumpBack16 = 0wx20 (* 16-bit unsigned jump backwards - relative to end of instr. *) and opcode_indirectLocalBB = 0wx21 and opcode_localB = 0wx22 and opcode_indirectB = 0wx23 and opcode_moveToContainerB = 0wx24 and opcode_setStackValB = 0wx25 and opcode_resetB = 0wx26 and opcode_resetRB = 0wx27 and opcode_constIntB = 0wx28 and opcode_local_0 = 0wx29 and opcode_local_1 = 0wx2a and opcode_local_2 = 0wx2b and opcode_local_3 = 0wx2c and opcode_local_4 = 0wx2d and opcode_local_5 = 0wx2e and opcode_local_6 = 0wx2f and opcode_local_7 = 0wx30 and opcode_local_8 = 0wx31 and opcode_local_9 = 0wx32 and opcode_local_10 = 0wx33 and opcode_local_11 = 0wx34 and opcode_indirect_0 = 0wx35 and opcode_indirect_1 = 0wx36 and opcode_indirect_2 = 0wx37 and opcode_indirect_3 = 0wx38 and opcode_indirect_4 = 0wx39 and opcode_indirect_5 = 0wx3a and opcode_const_0 = 0wx3b and opcode_const_1 = 0wx3c and opcode_const_2 = 0wx3d and opcode_const_3 = 0wx3e and opcode_const_4 = 0wx3f and opcode_const_10 = 0wx40 and opcode_return_1 = 0wx42 and opcode_return_2 = 0wx43 and opcode_return_3 = 0wx44 and opcode_local_12 = 0wx45 and opcode_jumpTrue = 0wx46 and opcode_jump16True = 0wx47 and opcode_local_13 = 0wx49 and opcode_local_14 = 0wx4a and opcode_local_15 = 0wx4b and opcode_reset_1 = 0wx50 and opcode_reset_2 = 0wx51 and opcode_indirectClosureBB = 0wx54 and opcode_resetR_1 = 0wx64 and opcode_resetR_2 = 0wx65 and opcode_resetR_3 = 0wx66 and opcode_tupleB = 0wx68 and opcode_tuple_2 = 0wx69 and opcode_tuple_3 = 0wx6a and opcode_tuple_4 = 0wx6b and opcode_lock = 0wx6c and opcode_ldexc = 0wx6d and opcode_indirectContainerB= 0wx74 and opcode_moveToMutClosureB = 0wx75 and opcode_allocMutClosureB = 0wx76 and opcode_indirectClosureB0 = 0wx77 and opcode_pushHandler = 0wx78 and opcode_indirectClosureB1 = 0wx7a and opcode_tailbb = 0wx7b and opcode_indirectClosureB2 = 0wx7c and opcode_setHandler = 0wx81 and opcode_callFastRTS0 = 0wx83 and opcode_callFastRTS1 = 0wx84 and opcode_callFastRTS2 = 0wx85 and opcode_callFastRTS3 = 0wx86 and opcode_callFastRTS4 = 0wx87 and opcode_callFastRTS5 = 0wx88 (*and opcode_callFullRTS0 = 0wx89 (* Legacy *) and opcode_callFullRTS1 = 0wx8a and opcode_callFullRTS2 = 0wx8b and opcode_callFullRTS3 = 0wx8c and opcode_callFullRTS4 = 0wx8d and opcode_callFullRTS5 = 0wx8e*) and opcode_notBoolean = 0wx91 and opcode_isTagged = 0wx92 and opcode_cellLength = 0wx93 and opcode_cellFlags = 0wx94 and opcode_clearMutable = 0wx95 and opcode_atomicIncr = 0wx97 and opcode_atomicDecr = 0wx98 and opcode_equalWord = 0wxa0 and opcode_lessSigned = 0wxa2 and opcode_lessUnsigned = 0wxa3 and opcode_lessEqSigned = 0wxa4 and opcode_lessEqUnsigned = 0wxa5 and opcode_greaterSigned = 0wxa6 and opcode_greaterUnsigned = 0wxa7 and opcode_greaterEqSigned = 0wxa8 and opcode_greaterEqUnsigned = 0wxa9 and opcode_fixedAdd = 0wxaa and opcode_fixedSub = 0wxab and opcode_fixedMult = 0wxac and opcode_fixedQuot = 0wxad and opcode_fixedRem = 0wxae and opcode_wordAdd = 0wxb1 and opcode_wordSub = 0wxb2 and opcode_wordMult = 0wxb3 and opcode_wordDiv = 0wxb4 and opcode_wordMod = 0wxb5 and opcode_wordAnd = 0wxb7 and opcode_wordOr = 0wxb8 and opcode_wordXor = 0wxb9 and opcode_wordShiftLeft = 0wxba and opcode_wordShiftRLog = 0wxbb and opcode_allocByteMem = 0wxbd and opcode_indirectLocalB1 = 0wxc1 and opcode_isTaggedLocalB = 0wxc2 and opcode_jumpNEqLocalInd = 0wxc3 and opcode_jumpTaggedLocal = 0wxc4 and opcode_jumpNEqLocal = 0wxc5 and opcode_indirect0Local0 = 0wxc6 and opcode_indirectLocalB0 = 0wxc7 + and opcode_closureB = 0wxd0 and opcode_getThreadId = 0wxd9 and opcode_allocWordMemory = 0wxda and opcode_loadMLByte = 0wxdc and opcode_storeMLByte = 0wxe4 and opcode_blockMoveByte = 0wxec and opcode_blockEqualByte = 0wxed and opcode_blockCompareByte = 0wxee and opcode_deleteHandler = 0wxf1 (* Just deletes the handler - no jump. *) and opcode_jump16 = 0wxf7 and opcode_jump16False = 0wxf8 and opcode_setHandler16 = 0wxf9 and opcode_constAddr8 = 0wxfa (*and opcode_stackSize8 = 0wxfb*) and opcode_stackSize16 = 0wxfc and opcode_escape = 0wxfe (* For two-byte opcodes. *) (*and opcode_enterIntX86 = 0wxff*) (* Reserved - this is the first byte of a call *) (* Extended opcodes - preceded by 0xfe escape *) val ext_opcode_containerW = 0wx0b and ext_opcode_allocMutClosureW = 0wx0f (* Allocate a mutable closure for mutual recursion *) and ext_opcode_indirectClosureW = 0wx10 and ext_opcode_indirectContainerW= 0wx11 and ext_opcode_indirectW = 0wx14 and ext_opcode_moveToContainerW = 0wx15 and ext_opcode_moveToMutClosureW = 0wx16 and ext_opcode_setStackValW = 0wx17 and ext_opcode_resetW = 0wx18 and ext_opcode_resetR_w = 0wx19 and ext_opcode_callFastRTSRRtoR = 0wx1c and ext_opcode_callFastRTSRGtoR = 0wx1d and ext_opcode_jump32True = 0wx48 and ext_opcode_floatAbs = 0wx56 and ext_opcode_floatNeg = 0wx57 and ext_opcode_fixedIntToFloat = 0wx58 and ext_opcode_floatToReal = 0wx59 and ext_opcode_realToFloat = 0wx5a and ext_opcode_floatEqual = 0wx5b and ext_opcode_floatLess = 0wx5c and ext_opcode_floatLessEq = 0wx5d and ext_opcode_floatGreater = 0wx5e and ext_opcode_floatGreaterEq = 0wx5f and ext_opcode_floatAdd = 0wx60 and ext_opcode_floatSub = 0wx61 and ext_opcode_floatMult = 0wx62 and ext_opcode_floatDiv = 0wx63 and ext_opcode_tupleW = 0wx67 and ext_opcode_realToInt = 0wx6e and ext_opcode_floatToInt = 0wx6f and ext_opcode_callFastRTSFtoF = 0wx70 and ext_opcode_callFastRTSGtoF = 0wx71 and ext_opcode_callFastRTSFFtoF = 0wx72 and ext_opcode_callFastRTSFGtoF = 0wx73 and ext_opcode_realUnordered = 0wx79 and ext_opcode_floatUnordered = 0wx7a and ext_opcode_tail = 0wx7c and ext_opcode_callFastRTSRtoR = 0wx8f and ext_opcode_callFastRTSGtoR = 0wx90 and ext_opcode_atomicReset = 0wx99 and ext_opcode_longWToTagged = 0wx9a and ext_opcode_signedToLongW = 0wx9b and ext_opcode_unsignedToLongW = 0wx9c and ext_opcode_realAbs = 0wx9d and ext_opcode_realNeg = 0wx9e and ext_opcode_fixedIntToReal = 0wx9f and ext_opcode_fixedDiv = 0wxaf and ext_opcode_fixedMod = 0wxb0 and ext_opcode_wordShiftRArith = 0wxbc and ext_opcode_lgWordEqual = 0wxbe and ext_opcode_lgWordLess = 0wxc0 and ext_opcode_lgWordLessEq = 0wxc1 and ext_opcode_lgWordGreater = 0wxc2 and ext_opcode_lgWordGreaterEq = 0wxc3 and ext_opcode_lgWordAdd = 0wxc4 and ext_opcode_lgWordSub = 0wxc5 and ext_opcode_lgWordMult = 0wxc6 and ext_opcode_lgWordDiv = 0wxc7 and ext_opcode_lgWordMod = 0wxc8 and ext_opcode_lgWordAnd = 0wxc9 and ext_opcode_lgWordOr = 0wxca and ext_opcode_lgWordXor = 0wxcb and ext_opcode_lgWordShiftLeft = 0wxcc and ext_opcode_lgWordShiftRLog = 0wxcd and ext_opcode_lgWordShiftRArith = 0wxce and ext_opcode_realEqual = 0wxcf + and ext_opcode_closureW = 0wxd0 and ext_opcode_realLess = 0wxd1 and ext_opcode_realLessEq = 0wxd2 and ext_opcode_realGreater = 0wxd3 and ext_opcode_realGreaterEq = 0wxd4 and ext_opcode_realAdd = 0wxd5 and ext_opcode_realSub = 0wxd6 and ext_opcode_realMult = 0wxd7 and ext_opcode_realDiv = 0wxd8 and ext_opcode_loadC8 = 0wxdd and ext_opcode_loadC16 = 0wxde and ext_opcode_loadC32 = 0wxdf and ext_opcode_loadC64 = 0wxe0 and ext_opcode_loadCFloat = 0wxe1 and ext_opcode_loadCDouble = 0wxe2 and ext_opcode_storeC8 = 0wxe5 and ext_opcode_storeC16 = 0wxe6 and ext_opcode_storeC32 = 0wxe7 and ext_opcode_storeC64 = 0wxe8 and ext_opcode_storeCFloat = 0wxe9 and ext_opcode_storeCDouble = 0wxea and ext_opcode_jump32 = 0wxf2 (* 32-bit signed jump, forwards or backwards. *) and ext_opcode_jump32False = 0wxf3 (* Test top item. Take 32-bit signed jump if false. *) and ext_opcode_constAddr32 = 0wxf4 (* Followed by a 32-bit offset. Load a constant at that address. *) and ext_opcode_setHandler32 = 0wxf5 (* Setup a handler whose address is given by the 32-bit signed offset. *) and ext_opcode_case32 = 0wxf6 (* Indexed case with 32-bit offsets *) and ext_opcode_allocCSpace = 0wxfd and ext_opcode_freeCSpace = 0wxfe (* A Label is a ref that is later set to the location. Several labels can be linked together so that they are only set at a single point. Only forward jumps are linked so when we come to finally set the label we will have the full list. *) type labels = Word.word ref list ref (* Used for jump, jumpFalse, setHandler and delHandler. *) datatype jumpTypes = Jump | JumpBack | JumpFalse | JumpTrue | SetHandler datatype opcode = SimpleCode of Word8.word list (* Bytes that don't need any special treatment *) | LabelCode of labels (* A label - forwards or backwards. *) | JumpInstruction of { label: labels, jumpType: jumpTypes, size: jumpSize ref } (* Jumps or SetHandler. *) | PushConstant of { constNum: int, size : jumpSize ref, isCall: bool } | PushShort of Word.word | IndexedCase of { labels: labels list, size : jumpSize ref } | LoadLocal of Word8.word (* Locals - simplifies peephole optimisation. *) | IndirectLocal of { localAddr: Word8.word, indirect: Word8.word } (* Ditto *) | UncondTransfer of Word8.word list (* Raisex, return and tail. *) | IsTaggedLocalB of Word8.word | JumpOnIsTaggedLocalB of { label: labels, size: jumpSize ref, localAddr: Word8.word } | JumpNotEqualLocalInd0BB of { label: labels, size: jumpSize ref, localAddr: Word8.word, const: Word8.word } | JumpNotEqualLocalConstBB of { label: labels, size: jumpSize ref, localAddr: Word8.word, const: Word8.word } and jumpSize = Size8 | Size16 | Size32 and code = Code of { constVec: machineWord list ref, (* Vector of words to be put at end *) procName: string, (* Name of the procedure. *) printAssemblyCode:bool, (* Whether to print the code when we finish. *) printStream: string->unit, (* The stream to use *) stage1Code: opcode list ref, enterIntMode: int (* 0 => None, 1 => X86. *) } val getEnterIntMode: unit -> int = RunCall.rtsCallFast0 "PolyInterpretedEnterIntMode" (* create and initialise a code segment *) fun codeCreate (name : string, parameters) = let val printStream = PRETTY.getSimplePrinter(parameters, []) in Code { constVec = ref [], procName = name, printAssemblyCode = DEBUG.getParameter DEBUG.assemblyCodeTag parameters, printStream = printStream, stage1Code = ref [], enterIntMode = getEnterIntMode() } end (* Find the offset in the constant area of a constant. *) (* The first has offset 0. *) fun addConstToVec (valu, Code{constVec, ...}) = let (* Search the list to see if the constant is already there. *) fun findConst valu [] num = (* Add to the list *) ( constVec := ! constVec @ [valu]; num ) | findConst valu (h :: t) num = if wordEq (valu, h) then num else findConst valu t (num + 1) (* Not equal *) in findConst valu (! constVec) 0 end fun printCode (seg: codeVec, procName: string, endcode, printStream) = let val () = printStream "\n"; val () = if procName = "" (* No name *) then printStream "?" else printStream procName; val () = printStream ":\n"; (* prints a string representation of a number *) fun printHex (v) = printStream(Word.fmt StringCvt.HEX v); val ptr = ref 0w0; (* Gets "length" bytes from locations "addr", "addr"+1... Returns an unsigned number. *) fun getB (0, _, _) = 0w0 | getB (length, addr, seg) = (getB (length - 1, addr + 0w1, seg) << 0w8) + word8ToWord (codeVecGet (seg, addr)) (* Prints a relative address. *) fun printDisp (len, spacer: string) = let val ad = getB(len, !ptr, seg) + !ptr + Word.fromInt len val () = printStream spacer; val () = printHex ad; in ptr := !ptr + Word.fromInt len end (* Prints an operand of an instruction *) fun printOp (len, spacer : string) = let val () = printStream spacer; val () = printHex (getB (len, !ptr, seg)) in ptr := !ptr + Word.fromInt len end; in while !ptr < endcode do let val addr = !ptr in printHex addr; (* The address. *) let (* It's an instruction. *) val () = printStream "\t" val opc = codeVecGet (seg, !ptr) (* opcode *) val () = ptr := !ptr + 0w1 in case opc of 0wx02 => (printStream "jump"; printDisp (1, "\t\t")) | 0wx03 => (printStream "jumpFalse"; printDisp (1, "\t")) | 0wx04 => printStream "loadMLWord" | 0wx05 => printStream "storeMLWord" | 0wx06 => printStream "alloc_ref" | 0wx07 => printStream "blockMoveWord" | 0wx08 => printStream "loadUntagged" | 0wx09 => printStream "storeUntagged" | 0wx0a => let (* Have to find out how many items there are. *) val limit = getB (2, !ptr, seg); val () = printOp (2, "case16\t"); val base = !ptr; fun printEntry _ = (printStream "\n\t"; printHex(base + getB(2, !ptr, seg)); ptr := !ptr + 0w2) fun forLoop f i n = if i >= n then () else (f i; forLoop f (i + 0w1) n) in forLoop printEntry 0w0 limit end | 0wx0c => printStream "callClosure" | 0wx0d => printOp(2, "returnW\t") | 0wx0e => printStream "containerB" | 0wx0f => printOp(2, "allocMutClosure") | 0wx10 => printStream "raiseEx" | 0wx11 => printDisp (2, "callConstAddr16\t") | 0wx12 => printDisp (1, "callConstAddr8\t") | 0wx13 => printOp(2, "localW\t") | 0wx16 => printOp(1, "callLocalB\t") | 0wx1a => (printStream "constAddr16"; printDisp (2, "\t")) | 0wx1b => printOp(2, "constIntW\t") | 0wx1e => ((* Should be negative *) printStream "jumpBack8\t"; printHex((!ptr - 0w1) - getB(1, !ptr, seg)); ptr := !ptr + 0w1 ) | 0wx1f => printOp(1, "returnB\t") | 0wx20 => ( printStream "jumpBack16\t"; printHex((!ptr - 0w1) - getB(2, !ptr, seg)); ptr := !ptr + 0w2 ) | 0wx21 => (printOp(1, "indirectLocalBB\t"); printOp(1, ",")) | 0wx22 => printOp(1, "localB\t") | 0wx23 => printOp(1, "indirectB\t") | 0wx24 => printOp(1, "moveToContainerB\t") | 0wx25 => printOp(1, "setStackValB\t") | 0wx26 => printOp(1, "resetB\t") | 0wx27 => printOp(1, "resetRB\t") | 0wx28 => printOp(1, "constIntB\t") | 0wx29 => printStream "local_0" | 0wx2a => printStream "local_1" | 0wx2b => printStream "local_2" | 0wx2c => printStream "local_3" | 0wx2d => printStream "local_4" | 0wx2e => printStream "local_5" | 0wx2f => printStream "local_6" | 0wx30 => printStream "local_7" | 0wx31 => printStream "local_8" | 0wx32 => printStream "local_9" | 0wx33 => printStream "local_10" | 0wx34 => printStream "local_11" | 0wx35 => printStream "indirect_0" | 0wx36 => printStream "indirect_1" | 0wx37 => printStream "indirect_2" | 0wx38 => printStream "indirect_3" | 0wx39 => printStream "indirect_4" | 0wx3a => printStream "indirect_5" | 0wx3b => printStream "const_0" | 0wx3c => printStream "const_1" | 0wx3d => printStream "const_2" | 0wx3e => printStream "const_3" | 0wx3f => printStream "const_4" | 0wx40 => printStream "const_10" | 0wx41 => printStream "return_0" | 0wx42 => printStream "return_1" | 0wx43 => printStream "return_2" | 0wx44 => printStream "return_3" | 0wx45 => printStream "local_12" | 0wx46 => (printStream "jumpTrue"; printDisp (1, "\t")) | 0wx47 => (printStream "jumpTrue"; printDisp (2, "\t")) | 0wx49 => printStream "local_13" | 0wx4a => printStream "local_14" | 0wx4b => printStream "local_15" | 0wx50 => printStream "reset_1" | 0wx51 => printStream "reset_2" | 0wx54 => (printOp(1, "indirectClosureBB\t"); printOp(1, ", ")) | 0wx64 => printStream "resetR_1" | 0wx65 => printStream "resetR_2" | 0wx66 => printStream "resetR_3" | 0wx68 => printOp(1, "tupleB\t") | 0wx69 => printStream "tuple_2" | 0wx6a => printStream "tuple_3" | 0wx6b => printStream "tuple_4" | 0wx6c => printStream "lock" | 0wx6d => printStream "ldexc" | 0wx74 => printOp(1, "indirectContainerB\t") | 0wx75 => printOp(1, "moveToMutClosureB\t") | 0wx76 => printOp(1, "allocMutClosureB\t") | 0wx77 => printOp(1, "indirectClosureB0\t") | 0wx78 => printStream "pushHandler" | 0wx7a => printOp(1, "indirectClosureB1\t") | 0wx7b => (printOp (1, "tailbb\t"); printOp (1, ",")) | 0wx7c => printOp(1, "indirectClosureB2\t") | 0wx7d => printOp(1, "tail3b\t") | 0wx7e => printOp(1, "tail4b\t") | 0wx7f => printStream "tail3_2" | 0wx80 => printStream "tail3_3" | 0wx81 => (printStream "setHandler"; printDisp (1, "\t")) | 0wx83 => printStream "callFastRTS0" | 0wx84 => printStream "callFastRTS1" | 0wx85 => printStream "callFastRTS2" | 0wx86 => printStream "callFastRTS3" | 0wx87 => printStream "callFastRTS4" | 0wx88 => printStream "callFastRTS5" | 0wx91 => printStream "notBoolean" | 0wx92 => printStream "isTagged" | 0wx93 => printStream "cellLength" | 0wx94 => printStream "cellFlags" | 0wx95 => printStream "clearMutable" | 0wx97 => printStream "atomicIncr" | 0wx98 => printStream "atomicDecr" | 0wxa0 => printStream "equalWord" | 0wxa1 => printOp(1, "equalWordConstB\t") | 0wxa2 => printStream "lessSigned" | 0wxa3 => printStream "lessUnsigned" | 0wxa4 => printStream "lessEqSigned" | 0wxa5 => printStream "lessEqUnsigned" | 0wxa6 => printStream "greaterSigned" | 0wxa7 => printStream "greaterUnsigned" | 0wxa8 => printStream "greaterEqSigned" | 0wxa9 => printStream "greaterEqUnsigned" | 0wxaa => printStream "fixedAdd" | 0wxab => printStream "fixedSub" | 0wxac => printStream "fixedMult" | 0wxad => printStream "fixedQuot" | 0wxae => printStream "fixedRem" | 0wxb1 => printStream "wordAdd" | 0wxb2 => printStream "wordSub" | 0wxb3 => printStream "wordMult" | 0wxb4 => printStream "wordDiv" | 0wxb5 => printStream "wordMod" | 0wxb7 => printStream "wordAnd" | 0wxb8 => printStream "wordOr" | 0wxb9 => printStream "wordXor" | 0wxba => printStream "wordShiftLeft" | 0wxbb => printStream "wordShiftRLog" | 0wxbd => printStream "allocByteMem" | 0wxc1 => printOp(1, "indirectLocalB1\t") | 0wxc2 => printOp(1, "isTaggedLocalB\t") | 0wxc3 => (printOp(1, "jumpNEqLocalInd\t"); printOp(1, ","); printOp(1, ","); printDisp(1, "\t")) | 0wxc4 => (printOp(1, "jumpTaggedLocal\t"); printDisp(1, "\t")) | 0wxc5 => (printOp(1, "jumpNEqLocal\t"); printOp(1, ","); printOp(1, ","); printDisp(1, "\t")) | 0wxc6 => printStream "indirect0Local0" | 0wxc7 => printOp(1, "indirectLocalB0\t") + | 0wxd0 => printOp(1, "closureB\t") | 0wxd9 => printStream "getThreadId" | 0wxda => printStream "allocWordMemory" | 0wxdc => printStream "loadMLByte" | 0wxe4 => printStream "storeMLByte" | 0wxec => printStream "blockMoveByte" | 0wxed => printStream "blockEqualByte" | 0wxee => printStream "blockCompareByte" | 0wxf1 => printStream "deleteHandler" | 0wxf7 => printStream "jump16" | 0wxf8 => printStream "jump16False" | 0wxf9 => printStream "setHandler16" | 0wxfa => printDisp (1, "constAddr8\t") | 0wxfb => printOp(1, "stackSize8\t") | 0wxfc => printOp(2, "stackSize16\t") | 0wxff => printStream "enterIntX86" | 0wxfe => ( case codeVecGet (seg, !ptr) before ptr := !ptr + 0w1 of 0wx0b => printStream "containerW" | 0wx10 => printOp(2, "indirectClosureW\t") | 0wx11 => printOp(2, "indirectContainerW\t") | 0wx14 => printOp(2, "indirectW\t") | 0wx15 => printOp(2, "moveToContainerW\t") | 0wx16 => printOp(2, "moveToMutClosureW\t") | 0wx17 => printOp(2, "setStackValW\t") | 0wx18 => printOp(2, "resetW\t") | 0wx19 => printOp(2, "resetR_w\t") | 0wx1c => printStream "callFastRTSRRtoR" | 0wx1d => printStream "callFastRTSRGtoR" | 0wx48 => (printStream "jumpTrue"; printDisp (4, "\t")) | 0wx56 => printStream "floatAbs" | 0wx57 => printStream "floatNeg" | 0wx58 => printStream "fixedIntToFloat" | 0wx59 => printStream "floatToReal" | 0wx5a => printOp(1, "realToFloat\t") | 0wx5b => printStream "floatEqual" | 0wx5c => printStream "floatLess" | 0wx5d => printStream "floatLessEq" | 0wx5e => printStream "floatGreater" | 0wx5f => printStream "floatGreaterEq" | 0wx60 => printStream "floatAdd" | 0wx61 => printStream "floatSub" | 0wx62 => printStream "floatMult" | 0wx63 => printStream "floatDiv" | 0wx67 => printOp(2, "tupleW\t") | 0wx6e => printOp(1, "realToInt\t") | 0wx6f => printOp(1, "floatToInt\t") | 0wx70 => printStream "callFastRTSFtoF" | 0wx71 => printStream "callFastRTSGtoF" | 0wx72 => printStream "callFastRTSFFtoF" | 0wx73 => printStream "callFastRTSFGtoF" | 0wx79 => printStream "realUnordered" | 0wx7a => printStream "floatUnordered" | 0wx7c => (printOp (2, "tail\t"); printOp (2, ",")) | 0wx8f => printStream "callFastRTSRtoR" | 0wx90 => printStream "callFastRTSGtoR" | 0wx99 => printStream "atomicReset" | 0wx9a => printStream "longWToTagged" | 0wx9b => printStream "signedToLongW" | 0wx9c => printStream "unsignedToLongW" | 0wx9d => printStream "realAbs" | 0wx9e => printStream "realNeg" | 0wx9f => printStream "fixedIntToReal" | 0wxaf => printStream "fixedDiv" | 0wxb0 => printStream "fixedMod" | 0wxbc => printStream "wordShiftRArith" | 0wxbe => printStream "lgWordEqual" | 0wxc0 => printStream "lgWordLess" | 0wxc1 => printStream "lgWordLessEq" | 0wxc2 => printStream "lgWordGreater" | 0wxc3 => printStream "lgWordGreaterEq" | 0wxc4 => printStream "lgWordAdd" | 0wxc5 => printStream "lgWordSub" | 0wxc6 => printStream "lgWordMult" | 0wxc7 => printStream "lgWordDiv" | 0wxc8 => printStream "lgWordMod" | 0wxc9 => printStream "lgWordAnd" | 0wxca => printStream "lgWordOr" | 0wxcb => printStream "lgWordXor" | 0wxcc => printStream "lgWordShiftLeft" | 0wxcd => printStream "lgWordShiftRLog" | 0wxce => printStream "lgWordShiftRArith" | 0wxcf => printStream "realEqual" + | 0wxd0 => printOp(2, "closureW\t") | 0wxd1 => printStream "realLess" | 0wxd2 => printStream "realLessEq" | 0wxd3 => printStream "realGreater" | 0wxd4 => printStream "realGreaterEq" | 0wxd5 => printStream "realAdd" | 0wxd6 => printStream "realSub" | 0wxd7 => printStream "realMult" | 0wxd8 => printStream "realDiv" | 0wxdd => printStream "loadC8" | 0wxde => printStream "loadC16" | 0wxdf => printStream "loadC32" | 0wxe0 => printStream "loadC64" | 0wxe1 => printStream "loadCFloat" | 0wxe2 => printStream "loadCDouble" | 0wxe5 => printStream "storeC8" | 0wxe6 => printStream "storeC16" | 0wxe7 => printStream "storeC32" | 0wxe8 => printStream "storeC64" | 0wxe9 => printStream "storeCFloat" | 0wxea => printStream "storeCDouble" | 0wxf2 => printDisp (4, "jump32\t") | 0wxf3 => printDisp (4, "jump32False\t") | 0wxf4 => printDisp (4, "constAddr32\t") | 0wxf5 => printDisp (4, "setHandler32\t") | 0wxf6 => let (* Have to find out how many items there are. *) val limit = getB (2, !ptr, seg); val () = printOp (2, "case32\t"); val base = !ptr; fun printEntry _ = (printStream "\n\t"; printHex(base + getB(4, !ptr, seg)); ptr := !ptr + 0w4) fun forLoop f i n = if i >= n then () else (f i; forLoop f (i + 0w1) n) in forLoop printEntry 0w0 limit end | 0wxfd => printStream "allocCSpace" | 0wxfe => printStream "freeCSpace" | _ => printStream ("unknown:0xfe 0x" ^ Word8.toString opc) ) | opc => printStream("unknown:0x" ^ Word8.toString opc) end; (* an instruction. *) printStream "\n" end (* main loop *) end (* printCode *) fun codeSize (SimpleCode l) = List.length l | codeSize (LabelCode _) = 0 | codeSize (JumpInstruction{size=ref Size8, ...}) = 2 | codeSize (JumpInstruction{size=ref Size16, ...}) = 3 | codeSize (JumpInstruction{size=ref Size32, ...}) = 6 | codeSize (PushConstant{size=ref Size8, ...}) = 2 | codeSize (PushConstant{size=ref Size16, ...}) = 3 | codeSize (PushConstant{size=ref Size32, isCall=false, ...}) = 6 | codeSize (PushConstant{size=ref Size32, isCall=true, ...}) = 7 | codeSize (PushShort value) = if value <= 0w4 orelse value = 0w10 then 1 else if value < 0w256 then 2 else 3 | codeSize (IndexedCase{labels, size=ref Size32, ...}) = 4 + List.length labels * 4 | codeSize (IndexedCase{labels, size=ref Size16, ...}) = 3 + List.length labels * 2 | codeSize (IndexedCase{labels=_, size=ref Size8, ...}) = raise InternalError "codeSize" | codeSize (LoadLocal w) = if w <= 0w15 then 1 else 2 | codeSize (IndirectLocal{indirect=0w0, localAddr=0w0}) = 1 | codeSize (IndirectLocal{indirect=0w0, ...}) = 2 | codeSize (IndirectLocal{indirect=0w1, ...}) = 2 | codeSize (IndirectLocal _) = 3 | codeSize (UncondTransfer l) = List.length l | codeSize (IsTaggedLocalB _) = 2 | codeSize (JumpOnIsTaggedLocalB{size=ref Size8, ...}) = 3 | codeSize (JumpOnIsTaggedLocalB{size=ref Size16, ...}) = 5 | codeSize (JumpOnIsTaggedLocalB{size=ref Size32, ...}) = 8 | codeSize (JumpNotEqualLocalInd0BB{size=ref Size8, ...}) = 4 | codeSize (JumpNotEqualLocalInd0BB{label, size, localAddr, const}) = codeSize(IndirectLocal{localAddr=localAddr, indirect=0w0}) + codeSize(PushShort(word8ToWord const)) + 1 + codeSize(JumpInstruction{jumpType=JumpFalse, label=label, size=size}) | codeSize (JumpNotEqualLocalConstBB{size=ref Size8, ...}) = 4 | codeSize (JumpNotEqualLocalConstBB {label, size, localAddr, const}) = codeSize(LoadLocal localAddr) + codeSize(PushShort(word8ToWord const)) + 1 + codeSize(JumpInstruction{jumpType=JumpFalse, label=label, size=size}) (* General function to process the code. ic is the byte counter within the original code. *) fun foldCode startIc foldFn ops = let fun doFold(oper :: operList, ic) = doFold(operList, (* Get the size BEFORE any possible change. *) ic + Word.fromInt(codeSize oper) before foldFn(oper, ic)) | doFold(_, ic) = ic in doFold(ops, startIc) end (* Process the code, setting the destination of any labels. Return the length of the code. *) fun setLabels(LabelCode(ref labs) :: ops, ic) = (List.app(fn d => d := ic) labs; setLabels(ops, ic)) | setLabels(oper :: ops, ic) = setLabels(ops, ic + Word.fromInt(codeSize oper)) | setLabels([], ic) = ic (* Set the sizes of branches depending on the distance to the destination. *) fun setLabelsAndSizes ops = let val wordLength = wordSize (* Set the labels and adjust the sizes, repeating until it never gets smaller*) fun setLabAndSize(ops, lastSize) = let (* Calculate offsets for constants. *) val endIC = Word.andb(lastSize + wordLength - 0w1, ~ wordLength) val firstConstant = endIC + wordLength * 0w3 (* Because the constant area is word aligned we have to allow for the possibility that the distance between a "load constant" instruction and the target could actually increase. *) val alignment = wordLength - 0w1 fun adjust(JumpInstruction{size as ref Size32, label=ref lab, ...}, ic) = let val dest = !(hd lab) val diff = if dest <= ic (* N.B. Include infinite loops as backwards. *) then ic - dest (* Backwards - Counts from start of instruction. *) else dest - (ic + 0w6) (* Forwards - Relative to the current end. *) in if diff < 0wx100 then size := Size8 else if diff < 0wx10000 then size := Size16 else () end | adjust(JumpInstruction{size as ref Size16, label=ref lab, ...}, ic) = let val dest = !(hd lab) in if dest <= ic then if ic - dest < 0wx100 then size := Size8 else () else if dest - (ic + 0w3) < 0wx100 then size := Size8 else () end | adjust(IndexedCase{size as ref Size32, labels}, ic) = let val startAddr = ic+0w4 (* Use 16-bit case if all the offsets are 16-bits. *) fun is16bit(ref lab) = let val dest = !(hd lab) in dest > startAddr andalso dest < startAddr+0wx10000 end in if List.all is16bit labels then size := Size16 else () end | adjust(PushConstant{size as ref Size32, constNum, ...}, ic) = let val constAddr = firstConstant + Word.fromInt constNum * wordLength val offset = constAddr - (ic + 0w6) in if offset < 0wx100-alignment then size := Size8 else if offset < 0wx10000-alignment then size := Size16 else () end | adjust(PushConstant{size as ref Size16, constNum, ...}, ic) = let val constAddr = firstConstant + Word.fromInt constNum * wordLength val offset = constAddr - (ic + 0w3) in if offset < 0wx100-alignment then size := Size8 else () end | adjust(JumpOnIsTaggedLocalB{size as ref Size32, label=ref lab, ...}, ic) = let val dest = !(hd lab) val diff = dest - (ic + 0w8) in if diff < 0wx100 then size := Size8 else if diff < 0wx10000 then size := Size16 else () end | adjust(JumpOnIsTaggedLocalB{size as ref Size16, label=ref lab, ...}, ic) = let val dest = !(hd lab) in if dest - (ic + 0w5) < 0wx100 then size := Size8 else () end | adjust(j as JumpNotEqualLocalInd0BB{size as ref Size32, label=ref lab, ...}, ic) = let val dest = !(hd lab) val diff = dest - (ic + Word.fromInt(codeSize j)) in if diff < 0wx100 then size := Size8 else if diff < 0wx10000 then size := Size16 else () end | adjust(j as JumpNotEqualLocalInd0BB{size as ref Size16, label=ref lab, ...}, ic) = let val dest = !(hd lab) in if dest - (ic + Word.fromInt(codeSize j)) < 0wx100 then size := Size8 else () end | adjust(j as JumpNotEqualLocalConstBB{size as ref Size32, label=ref lab, ...}, ic) = let val dest = !(hd lab) val diff = dest - (ic + Word.fromInt(codeSize j)) in if diff < 0wx100 then size := Size8 else if diff < 0wx10000 then size := Size16 else () end | adjust(j as JumpNotEqualLocalConstBB{size as ref Size16, label=ref lab, ...}, ic) = let val dest = !(hd lab) in if dest - (ic + Word.fromInt(codeSize j)) < 0wx100 then size := Size8 else () end | adjust _ = () val _ = foldCode 0w0 adjust ops val nextSize = setLabels(ops, 0w0) in if nextSize < lastSize then setLabAndSize(ops, nextSize) else if nextSize = lastSize then lastSize else raise InternalError "setLabAndSize - size increased" end in setLabAndSize(ops, setLabels(ops, 0w0)) end fun genCode(ops, Code {constVec, ...}) = let (* First pass - set the labels. *) val codeSize = setLabelsAndSizes ops val wordSize = wordSize (* Align to wordLength. *) val endIC = Word.andb(codeSize + wordSize - 0w1, ~ wordSize) val paddingBytes = List.tabulate(Word.toInt(endIC - codeSize), fn _ => SimpleCode[opcode_const_0]) val endOfCode = endIC div wordSize val firstConstant = endIC + wordSize * 0w3 (* Add 3 for fn name, unused and profile count. *) val segSize = endOfCode + Word.fromInt(List.length(! constVec)) + 0w4 val codeVec = byteVecMake segSize val ic = ref 0w0 fun genByte b = byteVecSet(codeVec, !ic, b) before ic := !ic + 0w1 fun genByteCode(SimpleCode bytes, _) = (* Simple code - just generate the bytes. *) List.app genByte bytes | genByteCode(UncondTransfer bytes, _) = List.app genByte bytes | genByteCode(LabelCode _, _) = () | genByteCode(JumpInstruction{label=ref labs, jumpType, size=ref Size32, ...}, ic) = let val dest = !(hd labs) val extOpc = case jumpType of SetHandler => ext_opcode_setHandler32 | JumpFalse => ext_opcode_jump32False | JumpTrue => ext_opcode_jump32True | Jump => ext_opcode_jump32 | JumpBack => ext_opcode_jump32 val diff = dest - (ic + 0w6) in genByte opcode_escape; genByte extOpc; genByte(wordToWord8 diff); (* This may be negative so we must use an arithmetic shift. *) genByte(wordToWord8(diff ~>> 0w8)); genByte(wordToWord8(diff ~>> 0w16)); genByte(wordToWord8(diff ~>> 0w24)) end | genByteCode(JumpInstruction{label=ref labs, jumpType, size=ref Size16, ...}, ic) = let val dest = !(hd labs) in if dest <= ic then (* Jump back. *) let val _ = jumpType = JumpBack orelse raise InternalError "genByteCode - back jump" val diff = ic - dest val _ = diff < 0wx10000 orelse raise InternalError "genByteCode - jump range" in genByte opcode_jumpBack16; genByte(wordToWord8 diff); genByte(wordToWord8(diff >> 0w8)) end else let val opc = case jumpType of SetHandler => opcode_setHandler16 | JumpFalse => opcode_jump16False | JumpTrue => opcode_jump16True | Jump => opcode_jump16 | JumpBack => raise InternalError "genByteCode: JumpBack goes forward" val diff = dest - (ic + 0w3) val _ = diff < 0wx10000 orelse raise InternalError "genByteCode - jump range" in genByte opc; genByte(wordToWord8 diff); genByte(wordToWord8(diff >> 0w8)) end end | genByteCode(JumpInstruction{label=ref labs, jumpType, size=ref Size8, ...}, ic) = let val dest = !(hd labs) in if dest <= ic then (* Jump back. *) let val _ = jumpType = JumpBack orelse raise InternalError "genByteCode - back jump" val diff = ic - dest val _ = diff < 0wx100 orelse raise InternalError "genByteCode - jump range" in genByte opcode_jumpBack8; genByte(wordToWord8 diff) end else let val opc = case jumpType of SetHandler => opcode_setHandler | JumpFalse => opcode_jumpFalse | JumpTrue => opcode_jumpTrue | Jump => opcode_jump | JumpBack => raise InternalError "genByteCode: JumpBack goes forward" val diff = dest - (ic + 0w2) val _ = diff < 0wx100 orelse raise InternalError "genByteCode - jump range" in genByte opc; genByte(wordToWord8 diff) end end | genByteCode(PushConstant{ constNum, size=ref Size32, isCall=false, ... }, ic) = let val constAddr = firstConstant + Word.fromInt constNum * wordSize (* Offsets are calculated from the END of the instruction *) val offset = constAddr - (ic + 0w6) in genByte opcode_escape; genByte ext_opcode_constAddr32; genByte(wordToWord8 offset); genByte(wordToWord8(offset >> 0w8)); genByte(wordToWord8(offset >> 0w16)); genByte(wordToWord8(offset >> 0w24)) end | genByteCode(PushConstant{ constNum, size=ref Size32, isCall=true, ... }, ic) = ( (* Turn this back into a push of a constant and call-closure. *) genByteCode(PushConstant{ constNum=constNum, size=ref Size32, isCall=false }, ic); genByte opcode_callClosure ) | genByteCode(PushConstant{ constNum, size=ref Size16, isCall, ... }, ic) = let val constAddr = firstConstant + Word.fromInt constNum * wordSize val offset = constAddr - (ic + 0w3) val _ = offset < 0wx10000 orelse raise InternalError "genByteCode - constant range" in genByte(if isCall then opcode_callConstAddr16 else opcode_constAddr16); genByte(wordToWord8 offset); genByte(wordToWord8(offset >> 0w8)) end | genByteCode(PushConstant{ constNum, size=ref Size8, isCall, ... }, ic) = let val constAddr = firstConstant + Word.fromInt constNum * wordSize val offset = constAddr - (ic + 0w2) val _ = offset < 0wx100 orelse raise InternalError "genByteCode - constant range" in genByte(if isCall then opcode_callConstAddr8 else opcode_constAddr8); genByte(wordToWord8 offset) end | genByteCode(PushShort 0w0, _) = genByte opcode_const_0 | genByteCode(PushShort 0w1, _) = genByte opcode_const_1 | genByteCode(PushShort 0w2, _) = genByte opcode_const_2 | genByteCode(PushShort 0w3, _) = genByte opcode_const_3 | genByteCode(PushShort 0w4, _) = genByte opcode_const_4 | genByteCode(PushShort 0w10, _) = genByte opcode_const_10 | genByteCode(PushShort value, _) = if value < 0w256 then (genByte opcode_constIntB; genByte(wordToWord8 value)) else (genByte opcode_constIntW; genByte(wordToWord8 value); genByte(wordToWord8(value >> 0w8))) | genByteCode(IndexedCase{labels, size=ref Size32, ...}, ic) = let val nCases = List.length labels val () = genByte opcode_escape val () = genByte ext_opcode_case32 val () = genByte(Word8.fromInt nCases) val () = genByte(Word8.fromInt (nCases div 256)) val startOffset = ic+0w4 (* Offsets are relative to here. *) fun putLabel(ref labs) = let val dest = !(hd labs) val diff = dest - startOffset val _ = dest > startOffset orelse raise InternalError "genByteCode - indexed case" in genByte(wordToWord8 diff); genByte(wordToWord8(diff >> 0w8)); genByte(wordToWord8(diff >> 0w16)); genByte(wordToWord8(diff >> 0w24)) end in List.app putLabel labels end | genByteCode(IndexedCase{labels, size=ref Size16, ...}, ic) = let val nCases = List.length labels val () = genByte(opcode_case16) val () = genByte(Word8.fromInt nCases) val () = genByte(Word8.fromInt (nCases div 256)) val startOffset = ic+0w3 (* Offsets are relative to here. *) fun putLabel(ref labs) = let val dest = !(hd labs) val diff = dest - startOffset val _ = dest > startOffset orelse raise InternalError "genByteCode - indexed case" val _ = diff < 0wx10000 orelse raise InternalError "genByteCode - indexed case" in genByte(wordToWord8 diff); genByte(wordToWord8(diff >> 0w8)) end in List.app putLabel labels end | genByteCode(IndexedCase{size=ref Size8, ...}, _) = raise InternalError "genByteCode - IndexedCase byte" | genByteCode(LoadLocal 0w0, _) = genByte opcode_local_0 | genByteCode(LoadLocal 0w1, _) = genByte opcode_local_1 | genByteCode(LoadLocal 0w2, _) = genByte opcode_local_2 | genByteCode(LoadLocal 0w3, _) = genByte opcode_local_3 | genByteCode(LoadLocal 0w4, _) = genByte opcode_local_4 | genByteCode(LoadLocal 0w5, _) = genByte opcode_local_5 | genByteCode(LoadLocal 0w6, _) = genByte opcode_local_6 | genByteCode(LoadLocal 0w7, _) = genByte opcode_local_7 | genByteCode(LoadLocal 0w8, _) = genByte opcode_local_8 | genByteCode(LoadLocal 0w9, _) = genByte opcode_local_9 | genByteCode(LoadLocal 0w10, _) = genByte opcode_local_10 | genByteCode(LoadLocal 0w11, _) = genByte opcode_local_11 | genByteCode(LoadLocal 0w12, _) = genByte opcode_local_12 | genByteCode(LoadLocal 0w13, _) = genByte opcode_local_13 | genByteCode(LoadLocal 0w14, _) = genByte opcode_local_14 | genByteCode(LoadLocal 0w15, _) = genByte opcode_local_15 | genByteCode(LoadLocal w, _) = (genByte opcode_localB; genByte w) | genByteCode(IndirectLocal{localAddr=0w0, indirect=0w0}, _) = genByte opcode_indirect0Local0 | genByteCode(IndirectLocal{localAddr, indirect=0w0}, _) = (genByte opcode_indirectLocalB0; genByte localAddr) | genByteCode(IndirectLocal{localAddr, indirect=0w1}, _) = (genByte opcode_indirectLocalB1; genByte localAddr) | genByteCode(IndirectLocal{localAddr, indirect}, _) = (genByte opcode_indirectLocalBB; genByte localAddr; genByte indirect) | genByteCode(IsTaggedLocalB addr, _) = (genByte opcode_isTaggedLocalB; genByte addr) | genByteCode(JumpOnIsTaggedLocalB {label=ref labs, size=ref Size8, localAddr}, ic) = let val dest = !(hd labs) val diff = dest - (ic + 0w3) in genByte opcode_jumpTaggedLocal; genByte localAddr; genByte(wordToWord8 diff) end | genByteCode(JumpOnIsTaggedLocalB {label, size, localAddr}, ic) = ( (* Turn this back into the original sequence. *) genByteCode(IsTaggedLocalB localAddr, ic); genByteCode(JumpInstruction{jumpType=JumpTrue, label=label, size=size}, ic+0w2) ) | genByteCode(JumpNotEqualLocalInd0BB {label=ref labs, size=ref Size8, localAddr, const}, ic) = let val dest = !(hd labs) val diff = dest - (ic + 0w4) in genByte opcode_jumpNEqLocalInd; genByte localAddr; genByte const; genByte(wordToWord8 diff) end | genByteCode(JumpNotEqualLocalInd0BB {label, size, localAddr, const}, ic) = (* Turn this back into the original sequence. *) (foldCode ic genByteCode [IndirectLocal{localAddr=localAddr, indirect=0w0}, PushShort(word8ToWord const), SimpleCode[opcode_equalWord], JumpInstruction{jumpType=JumpFalse, label=label, size=size}]; ()) | genByteCode(JumpNotEqualLocalConstBB {label=ref labs, size=ref Size8, localAddr, const}, ic) = let val dest = !(hd labs) val diff = dest - (ic + 0w4) in genByte opcode_jumpNEqLocal; genByte localAddr; genByte const; genByte(wordToWord8 diff) end | genByteCode(JumpNotEqualLocalConstBB {label, size, localAddr, const}, ic) = (* Turn this back into the original sequence. *) (foldCode ic genByteCode [LoadLocal localAddr, PushShort(word8ToWord const), SimpleCode[opcode_equalWord], JumpInstruction{jumpType=JumpFalse, label=label, size=size}]; ()) in foldCode 0w0 genByteCode (ops @ paddingBytes); (codeVec (* Return the completed code. *), endIC (* And the size. *)) end fun setLong (value, addrs, seg) = let val wordLength = wordSize fun putBytes(value, a, seg, i) = if i = wordLength then () else ( byteVecSet(seg, if not isBigEndian then a+i else a+wordLength-i-0w1, Word8.fromInt(value mod 256)); putBytes(value div 256, a, seg, i+0w1) ) in putBytes(value, addrs, seg, 0w0) end (* Peephole optimisation. *) local fun peepHole([], _, output) = List.rev output | peepHole(LabelCode lab1 :: (instrs as LabelCode lab2 :: _), exited, output) = ( (* Consecutive labels. Merge these, discarding the first. *) lab2 := !lab1 @ !lab2; peepHole(instrs, exited, output) ) (* A label followed by an unconditional branch. Forward the original label. Although JumpBack is also unconditional we don't forward those because we don't have a conditional backwards jump. *) | peepHole((LabelCode lab1) :: (jump as JumpInstruction{jumpType=Jump, label=lab2, ...}) :: tl, exited, output) = ( lab2 := !lab1 @ !lab2; (* Leave the jump in the stream and leave "exited" unchanged. This will now be unreachable if we had previously exited but we need to take the jump if we hadn't. *) peepHole(jump :: tl, exited, output) ) (* Discard everything after an unconditional transfer until the next label. *) | peepHole((label as LabelCode _) :: tl, _, output) = peepHole(tl, false, label::output) | peepHole(_ :: tl, true, output) = peepHole(tl, true, output) | peepHole((jump as JumpInstruction{jumpType=Jump, ...}) :: tl, _, output) = peepHole(tl, true, jump :: output) (* Return, raise-exception and tail-call. *) | peepHole((uncond as UncondTransfer _) :: tl, _, output) = peepHole(tl, true, uncond :: output) (* A conditional branch round an unconditional branch. Replace by a conditional branch with the sense reversed. *) | peepHole((cond as JumpInstruction{jumpType=JumpFalse, label=lab1, ...}) :: (uncond as JumpInstruction{jumpType=Jump, label=lab2, size}) :: (tail as LabelCode lab3 :: _), _, output) = if lab1 = lab3 then peepHole(tail, false, JumpInstruction{jumpType=JumpTrue, label=lab2, size=size} :: output) else peepHole(uncond :: tail, false, cond :: output) | peepHole((cond as JumpInstruction{jumpType=JumpTrue, label=lab1, ...}) :: (uncond as JumpInstruction{jumpType=Jump, label=lab2, size}) :: (tail as LabelCode lab3 :: _), _, output) = if lab1 = lab3 then peepHole(tail, false, JumpInstruction{jumpType=JumpFalse, label=lab2, size=size} :: output) else peepHole(uncond :: tail, false, cond :: output) | peepHole(IsTaggedLocalB addr :: JumpInstruction{jumpType=JumpTrue, label, size} :: tail, _, output) = peepHole(tail, false, JumpOnIsTaggedLocalB {label=label, size=size, localAddr=addr} :: output) | peepHole((indLocal as IndirectLocal{localAddr, indirect=0w0}) :: (instrs as PushShort const :: SimpleCode[0wxa0(*opcode_equalWord*)] :: JumpInstruction{jumpType=JumpFalse, label, size} :: tail), _, output) = if const < 0w256 then peepHole(tail, false, JumpNotEqualLocalInd0BB {label=label, size=size, localAddr=localAddr, const=wordToWord8 const} :: output) else peepHole(instrs, false, indLocal :: output) | peepHole((load as LoadLocal localAddr) :: (instrs as PushShort const :: SimpleCode[0wxa0(*opcode_equalWord*)] :: JumpInstruction{jumpType=JumpFalse, label, size} :: tail), _, output) = if const < 0w256 then peepHole(tail, false, JumpNotEqualLocalConstBB {label=label, size=size, localAddr=localAddr, const=wordToWord8 const} :: output) else peepHole(instrs, false, load :: output) | peepHole(hd::tl, exited, output) = peepHole(tl, exited, hd::output) in fun optimise code = peepHole(code, false, []) end (* Generate the code sequence to enter the interpreter when this code is called or returned to or an exception is raised. This is only required when bootstrapping a native code compiler. *) fun genEnterInt(_, Code { enterIntMode = 0 (* None *), ...}) = [] | genEnterInt(b, Code { enterIntMode = 1 (* X86_32 *), ...}) = [SimpleCode[0wxff, 0wx55, 0wx24, b]] | genEnterInt(b, Code { enterIntMode = 2 (* X86_64 *), ...}) = [SimpleCode[0wxff, 0wx55, 0wx48, b]] | genEnterInt(b, Code { enterIntMode = 3 (* X86_32_64 *), ...}) = [SimpleCode[0wxff, 0wx55, 0wx48, b]] | genEnterInt _ = raise InternalError "genEnterInt: unknown architecture value" (* Adds the constants onto the code, and copies the code into a new segment *) fun copyCode {code as Code{ printAssemblyCode, printStream, procName, constVec, stage1Code, ...}, maxStack, numberOfArguments, resultClosure} = let val cvec = code local val revCode = optimise(List.rev(!stage1Code)) (* Add a stack check. This is only needed if the function needs more than 128 words since the call and tail functions check for this much. *) in val codeList = if maxStack < 128 then revCode else SimpleCode[opcode_stackSize16, Word8.fromInt maxStack, Word8.fromInt(maxStack div 256)] :: revCode end (* Add an enterInt if necessary *) (* If we need enter-int code it must go first. *) val enterInt = genEnterInt(Word8.fromInt numberOfArguments + 0wx80, cvec) val (byteVec, endIC) = genCode(enterInt @ codeList, cvec) val wordLength = wordSize (* +3 for profile count, function name and constants count *) val numOfConst = List.length(! constVec) val endOfCode = endIC div wordLength val segSize = endOfCode + Word.fromInt numOfConst + 0w4 val firstConstant = endIC + wordLength * 0w3 (* Add 3 for fn name, unused and profile count. *) (* Put in the number of constants. This must go in before we actually put in any constants. *) local val addr = ((segSize - 0w1) * wordLength) in val () = setLong (numOfConst + 3, addr, byteVec) end (* Now we've filled in all the size info we need to convert the segment into a proper code segment before it's safe to put in any ML values. *) val codeVec = byteVecToCodeVec(byteVec, resultClosure) local val name : string = procName val nameWord : machineWord = toMachineWord name in val () = codeVecPutWord (codeVec, endOfCode, nameWord) end (* This used to be used on X86 for the register mask. *) val () = codeVecPutWord (codeVec, endOfCode+0w1, toMachineWord 1) (* Profile ref. A byte ref used by the profiler in the RTS. *) local val v = RunCall.allocateByteMemory(0w1, Word.fromLargeWord(Word8.toLargeWord(Word8.orb(F_mutable, F_bytes)))) fun clear 0w0 = () | clear i = (assignByte(v, i-0w1, 0w0); clear (i-0w1)) val () = clear(wordSize) in val () = codeVecPutWord (codeVec, endOfCode+0w2, toMachineWord v) end (* and then copy the constants from the constant list. *) local fun setConstant(value, num) = let val constAddr = (firstConstant div wordLength) + num in codeVecPutWord (codeVec, constAddr, value); num+0w1 end in val _ = List.foldl setConstant 0w0 (!constVec) end in if printAssemblyCode then (* print out the code *) (printCode (codeVec, procName, endIC, printStream); printStream"\n") else (); codeVecLock(codeVec, resultClosure) end (* copyCode *) fun addItemToList(item, Code{stage1Code, ...}) = stage1Code := item :: !stage1Code val genOpcode = addItemToList fun putBranchInstruction(brOp, label, cvec) = addItemToList(JumpInstruction{label=label, jumpType=brOp, size = ref Size32}, cvec) fun setLabel(label, cvec) = addItemToList(LabelCode label, cvec) fun createLabel () = ref [ref 0w0] local fun genOpc(opc, cvec) = addItemToList(SimpleCode [opc], cvec) and genExtOpc(opc, cvec) = addItemToList(SimpleCode [opcode_escape, opc], cvec) and genOpcByte(opc, arg1, cvec) = if 0 <= arg1 andalso arg1 < 256 then addItemToList(SimpleCode [opc, Word8.fromInt arg1], cvec) else raise InternalError "genOpcByte" and genExtOpcByte(opc, arg1, cvec) = if 0 <= arg1 andalso arg1 < 256 then addItemToList(SimpleCode [opcode_escape, opc, Word8.fromInt arg1], cvec) else raise InternalError "genExtOpcByte" and genExtOpcWord(opc, arg1, cvec) = if 0 <= arg1 andalso arg1 < 65536 then addItemToList(SimpleCode[opcode_escape, opc, Word8.fromInt arg1, Word8.fromInt (arg1 div 256)], cvec) else raise InternalError "genExtOpcWord" open IEEEReal fun encodeRound TO_NEAREST = 0 | encodeRound TO_NEGINF = 1 | encodeRound TO_POSINF = 2 | encodeRound TO_ZERO = 3 in fun genRaiseEx cvec = addItemToList(UncondTransfer [opcode_raiseEx], cvec) fun genLock cvec = genOpc (opcode_lock, cvec) fun genLdexc cvec = genOpc (opcode_ldexc, cvec) fun genPushHandler cvec = genOpc (opcode_pushHandler, cvec) fun genRTSCallFast(0, cvec) = genOpc (opcode_callFastRTS0, cvec) | genRTSCallFast(1, cvec) = genOpc (opcode_callFastRTS1, cvec) | genRTSCallFast(2, cvec) = genOpc (opcode_callFastRTS2, cvec) | genRTSCallFast(3, cvec) = genOpc (opcode_callFastRTS3, cvec) | genRTSCallFast(4, cvec) = genOpc (opcode_callFastRTS4, cvec) | genRTSCallFast(5, cvec) = genOpc (opcode_callFastRTS5, cvec) | genRTSCallFast(_, _) = raise InternalError "genRTSFastCall" fun genContainer (size, cvec) = if size < 256 then genOpcByte(opcode_containerB, size, cvec) else genExtOpcWord(ext_opcode_containerW, size, cvec) fun genCase (nCases, cvec) = let val labels = List.tabulate(nCases, fn _ => createLabel()) in addItemToList(IndexedCase{labels=labels, size=ref Size32}, cvec); labels end (* For the moment don't try to merge stack resets. *) fun resetStack(0, _, _) = () | resetStack(1, true, cvec) = addItemToList(SimpleCode[opcode_resetR_1], cvec) | resetStack(2, true, cvec) = addItemToList(SimpleCode[opcode_resetR_2], cvec) | resetStack(3, true, cvec) = addItemToList(SimpleCode[opcode_resetR_3], cvec) | resetStack(offset, true, cvec) = if offset < 0 then raise InternalError "resetStack" else if offset > 255 then genExtOpcWord(ext_opcode_resetR_w, offset, cvec) else genOpcByte(opcode_resetRB, offset, cvec) | resetStack(1, false, cvec) = addItemToList(SimpleCode[opcode_reset_1], cvec) | resetStack(2, false, cvec) = addItemToList(SimpleCode[opcode_reset_2], cvec) | resetStack(offset, false, cvec) = if offset < 0 then raise InternalError "resetStack" else if offset > 255 then genExtOpcWord(ext_opcode_resetW, offset, cvec) else genOpcByte(opcode_resetB, offset, cvec) fun genCallClosure(Code{stage1Code as ref(PushConstant{constNum, size, isCall=false} :: tail), ...}) = stage1Code := PushConstant{constNum=constNum, size=size, isCall=true} :: tail | genCallClosure(Code{stage1Code as ref(LoadLocal w :: tail), ...}) = stage1Code := SimpleCode [opcode_callLocalB, w] :: tail | genCallClosure(Code{stage1Code, ...}) = stage1Code := SimpleCode [opcode_callClosure] :: !stage1Code fun genTailCall (toslide, slideby, cvec) = if toslide < 256 andalso slideby < 256 then (* General byte case *) addItemToList(UncondTransfer[opcode_tailbb, Word8.fromInt toslide, Word8.fromInt slideby], cvec) else (* General case. *) addItemToList( UncondTransfer[opcode_escape, ext_opcode_tail, Word8.fromInt toslide, Word8.fromInt(toslide div 256), Word8.fromInt slideby, Word8.fromInt (slideby div 256)], cvec) fun pushConst (value : machineWord, cvec) = if isShort value andalso toShort value < 0w32768 then addItemToList(PushShort(toShort value), cvec) else (* address or large short *) addItemToList(PushConstant{constNum = addConstToVec(value, cvec), size=ref Size32, isCall=false}, cvec) fun genRTSCallFastRealtoReal cvec = genExtOpc (ext_opcode_callFastRTSRtoR, cvec) and genRTSCallFastRealRealtoReal cvec = genExtOpc (ext_opcode_callFastRTSRRtoR, cvec) and genRTSCallFastGeneraltoReal cvec = genExtOpc (ext_opcode_callFastRTSGtoR, cvec) and genRTSCallFastRealGeneraltoReal cvec = genExtOpc (ext_opcode_callFastRTSRGtoR, cvec) and genRTSCallFastFloattoFloat cvec = genExtOpc (ext_opcode_callFastRTSFtoF, cvec) and genRTSCallFastFloatFloattoFloat cvec = genExtOpc (ext_opcode_callFastRTSFFtoF, cvec) and genRTSCallFastGeneraltoFloat cvec = genExtOpc (ext_opcode_callFastRTSGtoF, cvec) and genRTSCallFastFloatGeneraltoFloat cvec = genExtOpc (ext_opcode_callFastRTSFGtoF, cvec) fun genDoubleToFloat(SOME rnding, cvec) = genExtOpcByte(ext_opcode_realToFloat, encodeRound rnding, cvec) | genDoubleToFloat(NONE, cvec) = genExtOpcByte(ext_opcode_realToFloat, 5, cvec) and genRealToInt(rnding, cvec) = genExtOpcByte(ext_opcode_realToInt, encodeRound rnding, cvec) and genFloatToInt(rnding, cvec) = genExtOpcByte(ext_opcode_floatToInt, encodeRound rnding, cvec) fun genEqualWordConst(w, cvec) = (pushConst(toMachineWord w, cvec); genOpc(opcode_equalWord, cvec)) fun genIsTagged(Code{stage1Code as ref(LoadLocal addr :: tail), ...}) = stage1Code := IsTaggedLocalB addr :: tail | genIsTagged cvec = genOpc(opcode_isTagged, cvec) fun genIndirectSimple(0, cvec) = genOpc(opcode_indirect_0, cvec) | genIndirectSimple(1, cvec) = genOpc(opcode_indirect_1, cvec) | genIndirectSimple(2, cvec) = genOpc(opcode_indirect_2, cvec) | genIndirectSimple(3, cvec) = genOpc(opcode_indirect_3, cvec) | genIndirectSimple(4, cvec) = genOpc(opcode_indirect_4, cvec) | genIndirectSimple(5, cvec) = genOpc(opcode_indirect_5, cvec) | genIndirectSimple(arg1, cvec) = if arg1 < 256 then genOpcByte(opcode_indirectB, arg1, cvec) else genExtOpcWord(ext_opcode_indirectW, arg1, cvec) fun genIndirectContainer(arg1, cvec) = if arg1 < 256 then genOpcByte(opcode_indirectContainerB, arg1, cvec) else genExtOpcWord(ext_opcode_indirectContainerW, arg1, cvec) fun genMoveToContainer (arg1, cvec) = if arg1 < 256 then genOpcByte(opcode_moveToContainerB, arg1, cvec) else genExtOpcWord(ext_opcode_moveToContainerW, arg1, cvec) fun genMoveToMutClosure (arg1, cvec) = if arg1 < 256 then genOpcByte(opcode_moveToMutClosureB, arg1, cvec) else genExtOpcWord(ext_opcode_moveToMutClosureW, arg1, cvec) - + fun genSetStackVal (arg1, cvec) = if arg1 < 256 then genOpcByte(opcode_setStackValB, arg1, cvec) else genExtOpcWord(ext_opcode_setStackValW, arg1, cvec) fun genTuple (2, cvec) = genOpc(opcode_tuple_2, cvec) | genTuple (3, cvec) = genOpc(opcode_tuple_3, cvec) | genTuple (4, cvec) = genOpc(opcode_tuple_4, cvec) | genTuple (arg1, cvec) = if arg1 < 256 then genOpcByte(opcode_tupleB, arg1, cvec) else genExtOpcWord(ext_opcode_tupleW, arg1, cvec) fun genAllocMutableClosure(closureSize, cvec) = if closureSize < 256 then genOpcByte(opcode_allocMutClosureB, closureSize, cvec) else genExtOpcWord(ext_opcode_allocMutClosureW, closureSize, cvec) + fun genClosure (arg1, cvec) = + if arg1 < 256 + then genOpcByte(opcode_closureB, arg1, cvec) + else genExtOpcWord(ext_opcode_closureW, arg1, cvec) + fun genLocal (arg1, cvec) = if 0 <= arg1 andalso arg1 < 256 then addItemToList(LoadLocal(Word8.fromInt arg1), cvec) else addItemToList(SimpleCode[opcode_localW, Word8.fromInt arg1, Word8.fromInt(arg1 div 256)], cvec) fun genIndirectClosure{ addr, item, code=cvec } = if addr < 256 andalso item < 256 then ( case item of 0 => genOpcByte(opcode_indirectClosureB0, addr, cvec) | 1 => genOpcByte(opcode_indirectClosureB1, addr, cvec) | 2 => genOpcByte(opcode_indirectClosureB2, addr, cvec) | _ => addItemToList(SimpleCode[opcode_indirectClosureBB, Word8.fromInt addr, Word8.fromInt item], cvec) ) else ( genLocal (addr, cvec); addItemToList(SimpleCode[opcode_escape, ext_opcode_indirectClosureW, Word8.fromInt item, Word8.fromInt (item div 256)], cvec) ) end fun genReturn(1, cvec) = addItemToList(UncondTransfer[opcode_return_1], cvec) | genReturn(2, cvec) = addItemToList(UncondTransfer[opcode_return_2], cvec) | genReturn(3, cvec) = addItemToList(UncondTransfer[opcode_return_3], cvec) | genReturn(arg1, cvec) = addItemToList(UncondTransfer( if 0 <= arg1 andalso arg1 <= 255 then [opcode_returnB, Word8.fromInt arg1] else [opcode_returnW, Word8.fromInt arg1, Word8.fromInt(arg1 div 256)]), cvec) fun genIndirect (arg1, cvec as Code{stage1Code as ref(LoadLocal w :: tail), ...}) = if 0 <= arg1 andalso arg1 <= 255 then stage1Code := IndirectLocal{localAddr=w, indirect=Word8.fromInt arg1} :: tail else genIndirectSimple(arg1, cvec) | genIndirect (arg1, cvec) = genIndirectSimple(arg1, cvec) fun genEnterIntCatch(code as Code{stage1Code, ...}) = stage1Code := genEnterInt(0wxff, code) @ !stage1Code and genEnterIntCall(code as Code{stage1Code, ...}, args) = stage1Code := genEnterInt(Word8.fromInt args, code) @ !stage1Code val opcode_notBoolean = SimpleCode [opcode_notBoolean] val opcode_cellLength = SimpleCode [opcode_cellLength] and opcode_cellFlags = SimpleCode [opcode_cellFlags] and opcode_clearMutable = SimpleCode [opcode_clearMutable] and opcode_atomicIncr = SimpleCode [opcode_atomicIncr] and opcode_atomicDecr = SimpleCode [opcode_atomicDecr] and opcode_atomicReset = SimpleCode [opcode_escape, ext_opcode_atomicReset] and opcode_longWToTagged = SimpleCode [opcode_escape, ext_opcode_longWToTagged] and opcode_signedToLongW = SimpleCode [opcode_escape, ext_opcode_signedToLongW] and opcode_unsignedToLongW = SimpleCode [opcode_escape, ext_opcode_unsignedToLongW] and opcode_realAbs = SimpleCode [opcode_escape, ext_opcode_realAbs] and opcode_realNeg = SimpleCode [opcode_escape, ext_opcode_realNeg] and opcode_fixedIntToReal = SimpleCode [opcode_escape, ext_opcode_fixedIntToReal] and opcode_fixedIntToFloat = SimpleCode [opcode_escape, ext_opcode_fixedIntToFloat] and opcode_floatToReal = SimpleCode [opcode_escape, ext_opcode_floatToReal] val opcode_equalWord = SimpleCode [opcode_equalWord] and opcode_lessSigned = SimpleCode [opcode_lessSigned] and opcode_lessUnsigned = SimpleCode [opcode_lessUnsigned] and opcode_lessEqSigned = SimpleCode [opcode_lessEqSigned] and opcode_lessEqUnsigned = SimpleCode [opcode_lessEqUnsigned] and opcode_greaterSigned = SimpleCode [opcode_greaterSigned] and opcode_greaterUnsigned = SimpleCode [opcode_greaterUnsigned] and opcode_greaterEqSigned = SimpleCode [opcode_greaterEqSigned] and opcode_greaterEqUnsigned = SimpleCode [opcode_greaterEqUnsigned] val opcode_fixedAdd = SimpleCode [opcode_fixedAdd] val opcode_fixedSub = SimpleCode [opcode_fixedSub] val opcode_fixedMult = SimpleCode [opcode_fixedMult] val opcode_fixedQuot = SimpleCode [opcode_fixedQuot] val opcode_fixedRem = SimpleCode [opcode_fixedRem] val opcode_fixedDiv = SimpleCode [opcode_escape, ext_opcode_fixedDiv] val opcode_fixedMod = SimpleCode [opcode_escape, ext_opcode_fixedMod] val opcode_wordAdd = SimpleCode [opcode_wordAdd] val opcode_wordSub = SimpleCode [opcode_wordSub] val opcode_wordMult = SimpleCode [opcode_wordMult] val opcode_wordDiv = SimpleCode [opcode_wordDiv] val opcode_wordMod = SimpleCode [opcode_wordMod] val opcode_wordAnd = SimpleCode [opcode_wordAnd] val opcode_wordOr = SimpleCode [opcode_wordOr] val opcode_wordXor = SimpleCode [opcode_wordXor] val opcode_wordShiftLeft = SimpleCode [opcode_wordShiftLeft] val opcode_wordShiftRLog = SimpleCode [opcode_wordShiftRLog] val opcode_wordShiftRArith = SimpleCode [opcode_escape, ext_opcode_wordShiftRArith] val opcode_allocByteMem = SimpleCode [opcode_allocByteMem] val opcode_lgWordEqual = SimpleCode [opcode_escape, ext_opcode_lgWordEqual] val opcode_lgWordLess = SimpleCode [opcode_escape, ext_opcode_lgWordLess] val opcode_lgWordLessEq = SimpleCode [opcode_escape, ext_opcode_lgWordLessEq] val opcode_lgWordGreater = SimpleCode [opcode_escape, ext_opcode_lgWordGreater] val opcode_lgWordGreaterEq = SimpleCode [opcode_escape, ext_opcode_lgWordGreaterEq] val opcode_lgWordAdd = SimpleCode [opcode_escape, ext_opcode_lgWordAdd] val opcode_lgWordSub = SimpleCode [opcode_escape, ext_opcode_lgWordSub] val opcode_lgWordMult = SimpleCode [opcode_escape, ext_opcode_lgWordMult] val opcode_lgWordDiv = SimpleCode [opcode_escape, ext_opcode_lgWordDiv] val opcode_lgWordMod = SimpleCode [opcode_escape, ext_opcode_lgWordMod] val opcode_lgWordAnd = SimpleCode [opcode_escape, ext_opcode_lgWordAnd] val opcode_lgWordOr = SimpleCode [opcode_escape, ext_opcode_lgWordOr] val opcode_lgWordXor = SimpleCode [opcode_escape, ext_opcode_lgWordXor] val opcode_lgWordShiftLeft = SimpleCode [opcode_escape, ext_opcode_lgWordShiftLeft] val opcode_lgWordShiftRLog = SimpleCode [opcode_escape, ext_opcode_lgWordShiftRLog] val opcode_lgWordShiftRArith = SimpleCode [opcode_escape, ext_opcode_lgWordShiftRArith] val opcode_realEqual = SimpleCode [opcode_escape, ext_opcode_realEqual] val opcode_realLess = SimpleCode [opcode_escape, ext_opcode_realLess] val opcode_realLessEq = SimpleCode [opcode_escape, ext_opcode_realLessEq] val opcode_realGreater = SimpleCode [opcode_escape, ext_opcode_realGreater] val opcode_realGreaterEq = SimpleCode [opcode_escape, ext_opcode_realGreaterEq] val opcode_realUnordered = SimpleCode [opcode_escape, ext_opcode_realUnordered] val opcode_realAdd = SimpleCode [opcode_escape, ext_opcode_realAdd] val opcode_realSub = SimpleCode [opcode_escape, ext_opcode_realSub] val opcode_realMult = SimpleCode [opcode_escape, ext_opcode_realMult] val opcode_realDiv = SimpleCode [opcode_escape, ext_opcode_realDiv] and opcode_floatAbs = SimpleCode [opcode_escape, ext_opcode_floatAbs] and opcode_floatNeg = SimpleCode [opcode_escape, ext_opcode_floatNeg] val opcode_floatEqual = SimpleCode [opcode_escape, ext_opcode_floatEqual] val opcode_floatLess = SimpleCode [opcode_escape, ext_opcode_floatLess] val opcode_floatLessEq = SimpleCode [opcode_escape, ext_opcode_floatLessEq] val opcode_floatGreater = SimpleCode [opcode_escape, ext_opcode_floatGreater] val opcode_floatGreaterEq = SimpleCode [opcode_escape, ext_opcode_floatGreaterEq] val opcode_floatUnordered = SimpleCode [opcode_escape, ext_opcode_floatUnordered] val opcode_floatAdd = SimpleCode [opcode_escape, ext_opcode_floatAdd] val opcode_floatSub = SimpleCode [opcode_escape, ext_opcode_floatSub] val opcode_floatMult = SimpleCode [opcode_escape, ext_opcode_floatMult] val opcode_floatDiv = SimpleCode [opcode_escape, ext_opcode_floatDiv] val opcode_getThreadId = SimpleCode [opcode_getThreadId] val opcode_allocWordMemory = SimpleCode [opcode_allocWordMemory] val opcode_alloc_ref = SimpleCode [opcode_alloc_ref] val opcode_loadMLWord = SimpleCode [opcode_loadMLWord] val opcode_loadMLByte = SimpleCode [opcode_loadMLByte] val opcode_loadC8 = SimpleCode [opcode_escape, ext_opcode_loadC8] val opcode_loadC16 = SimpleCode [opcode_escape, ext_opcode_loadC16] val opcode_loadC32 = SimpleCode [opcode_escape, ext_opcode_loadC32] val opcode_loadC64 = SimpleCode [opcode_escape, ext_opcode_loadC64] val opcode_loadCFloat = SimpleCode [opcode_escape, ext_opcode_loadCFloat] val opcode_loadCDouble = SimpleCode [opcode_escape, ext_opcode_loadCDouble] val opcode_loadUntagged = SimpleCode [opcode_loadUntagged] val opcode_storeMLWord = SimpleCode [opcode_storeMLWord] val opcode_storeMLByte = SimpleCode [opcode_storeMLByte] val opcode_storeC8 = SimpleCode [opcode_escape, ext_opcode_storeC8] val opcode_storeC16 = SimpleCode [opcode_escape, ext_opcode_storeC16] val opcode_storeC32 = SimpleCode [opcode_escape, ext_opcode_storeC32] val opcode_storeC64 = SimpleCode [opcode_escape, ext_opcode_storeC64] val opcode_storeCFloat = SimpleCode [opcode_escape, ext_opcode_storeCFloat] val opcode_storeCDouble = SimpleCode [opcode_escape, ext_opcode_storeCDouble] val opcode_storeUntagged = SimpleCode [opcode_storeUntagged] val opcode_blockMoveWord = SimpleCode [opcode_blockMoveWord] val opcode_blockMoveByte = SimpleCode [opcode_blockMoveByte] val opcode_blockEqualByte = SimpleCode [opcode_blockEqualByte] val opcode_blockCompareByte = SimpleCode [opcode_blockCompareByte] val opcode_deleteHandler = SimpleCode [opcode_deleteHandler] val opcode_allocCSpace = SimpleCode [opcode_escape, ext_opcode_allocCSpace] val opcode_freeCSpace = SimpleCode [opcode_escape, ext_opcode_freeCSpace] structure Sharing = struct type code = code type opcode = opcode type labels = labels type closureRef = closureRef end end; diff --git a/mlsource/MLCompiler/CodeTree/ByteCode/INTCODECONSSIG.sml b/mlsource/MLCompiler/CodeTree/ByteCode/INTCODECONSSIG.sml index f6fd820d..cb882ac0 100644 --- a/mlsource/MLCompiler/CodeTree/ByteCode/INTCODECONSSIG.sml +++ b/mlsource/MLCompiler/CodeTree/ByteCode/INTCODECONSSIG.sml @@ -1,221 +1,222 @@ (* Copyright (c) 2016-18, 2020 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *) signature INTCODECONSSIG = sig type machineWord = Address.machineWord type address = Address.address type code type opcode type labels type closureRef val opcode_notBoolean: opcode val opcode_cellLength: opcode and opcode_cellFlags: opcode and opcode_clearMutable: opcode and opcode_atomicIncr: opcode and opcode_atomicDecr: opcode and opcode_atomicReset: opcode and opcode_longWToTagged: opcode and opcode_signedToLongW: opcode and opcode_unsignedToLongW: opcode and opcode_realAbs: opcode and opcode_realNeg: opcode and opcode_fixedIntToReal: opcode and opcode_fixedIntToFloat: opcode and opcode_floatToReal: opcode and opcode_floatAbs: opcode and opcode_floatNeg: opcode val opcode_equalWord: opcode and opcode_lessSigned: opcode and opcode_lessUnsigned: opcode and opcode_lessEqSigned: opcode and opcode_lessEqUnsigned: opcode and opcode_greaterSigned: opcode and opcode_greaterUnsigned: opcode and opcode_greaterEqSigned: opcode and opcode_greaterEqUnsigned: opcode val opcode_fixedAdd: opcode val opcode_fixedSub: opcode val opcode_fixedMult: opcode val opcode_fixedQuot: opcode val opcode_fixedRem: opcode val opcode_fixedDiv: opcode val opcode_fixedMod: opcode val opcode_wordAdd: opcode val opcode_wordSub: opcode val opcode_wordMult: opcode val opcode_wordDiv: opcode val opcode_wordMod: opcode val opcode_wordAnd: opcode val opcode_wordOr: opcode val opcode_wordXor: opcode val opcode_wordShiftLeft: opcode val opcode_wordShiftRLog: opcode val opcode_wordShiftRArith: opcode val opcode_allocByteMem: opcode val opcode_lgWordEqual: opcode val opcode_lgWordLess: opcode val opcode_lgWordLessEq: opcode val opcode_lgWordGreater: opcode val opcode_lgWordGreaterEq: opcode val opcode_lgWordAdd: opcode val opcode_lgWordSub: opcode val opcode_lgWordMult: opcode val opcode_lgWordDiv: opcode val opcode_lgWordMod: opcode val opcode_lgWordAnd: opcode val opcode_lgWordOr: opcode val opcode_lgWordXor: opcode val opcode_lgWordShiftLeft: opcode val opcode_lgWordShiftRLog: opcode val opcode_lgWordShiftRArith: opcode val opcode_realEqual: opcode val opcode_realLess: opcode val opcode_realLessEq: opcode val opcode_realGreater: opcode val opcode_realGreaterEq: opcode val opcode_realUnordered: opcode val opcode_realAdd: opcode val opcode_realSub: opcode val opcode_realMult: opcode val opcode_realDiv: opcode val opcode_floatEqual: opcode val opcode_floatLess: opcode val opcode_floatLessEq: opcode val opcode_floatGreater: opcode val opcode_floatGreaterEq: opcode val opcode_floatUnordered: opcode val opcode_floatAdd: opcode val opcode_floatSub: opcode val opcode_floatMult: opcode val opcode_floatDiv: opcode val opcode_getThreadId: opcode val opcode_allocWordMemory: opcode val opcode_alloc_ref: opcode val opcode_loadMLWord: opcode val opcode_loadMLByte: opcode val opcode_loadC8: opcode val opcode_loadC16: opcode val opcode_loadC32: opcode val opcode_loadC64: opcode val opcode_loadCFloat: opcode val opcode_loadCDouble: opcode val opcode_loadUntagged: opcode val opcode_storeMLWord: opcode val opcode_storeMLByte: opcode val opcode_storeC8: opcode val opcode_storeC16: opcode val opcode_storeC32: opcode val opcode_storeC64: opcode val opcode_storeCFloat: opcode val opcode_storeCDouble: opcode val opcode_storeUntagged: opcode val opcode_blockMoveWord: opcode val opcode_blockMoveByte: opcode val opcode_blockEqualByte: opcode val opcode_blockCompareByte: opcode val opcode_deleteHandler: opcode val opcode_allocCSpace: opcode val opcode_freeCSpace: opcode val codeCreate: string * Universal.universal list -> code (* makes the initial segment. *) (* GEN- routines all put a value at the instruction counter and add an appropriate amount to it. *) (* gen... - put instructions and their operands. *) val genCallClosure : code -> unit val genRaiseEx : code -> unit val genLock : code -> unit val genLdexc : code -> unit val genPushHandler : code -> unit val genReturn : int * code -> unit val genLocal : int * code -> unit val genIndirect : int * code -> unit val genSetStackVal : int * code -> unit val genCase : int * code -> labels list val genTuple : int * code -> unit val genTailCall : int * int * code -> unit val genIndirectClosure: { addr: int, item: int, code: code } -> unit and genIndirectContainer: int * code -> unit and genMoveToContainer: int * code -> unit and genMoveToMutClosure: int * code -> unit + and genClosure: int * code -> unit val genDoubleToFloat: IEEEReal.rounding_mode option * code -> unit and genRealToInt: IEEEReal.rounding_mode * code -> unit and genFloatToInt: IEEEReal.rounding_mode * code -> unit val genAllocMutableClosure: int * code -> unit val genRTSCallFast: int * code -> unit val genRTSCallFastRealtoReal: code -> unit val genRTSCallFastRealRealtoReal: code -> unit val genRTSCallFastGeneraltoReal: code -> unit val genRTSCallFastRealGeneraltoReal: code -> unit val genRTSCallFastFloattoFloat: code -> unit val genRTSCallFastFloatFloattoFloat: code -> unit val genRTSCallFastGeneraltoFloat: code -> unit val genRTSCallFastFloatGeneraltoFloat: code -> unit val genOpcode: opcode * code -> unit (* genEnter instructions are only needed when machine-code routines can call interpreted routines or vice-versa. The enterInt instruction causes the interpreter to be entered and the argument indicates the reason. *) val genEnterIntCatch : code -> unit val genEnterIntCall : code * int -> unit (* pushConst - Generates code to push a constant. *) val pushConst : machineWord * code -> unit (* Create a container on the stack *) val genContainer : int * code -> unit (* copyCode - Finish up after compiling a function. *) val copyCode : {code: code, maxStack: int, numberOfArguments: int, resultClosure: closureRef } -> unit (* putBranchInstruction puts in an instruction which involves a forward reference. *) datatype jumpTypes = Jump | JumpBack | JumpFalse | JumpTrue | SetHandler val putBranchInstruction: jumpTypes * labels * code -> unit val createLabel: unit -> labels (* Define the position of a label. *) val setLabel: labels * code -> unit val resetStack: int * bool * code -> unit (* Set a pending reset *) val genEqualWordConst: word * code -> unit val genIsTagged: code -> unit structure Sharing: sig type code = code type opcode = opcode type labels = labels type closureRef = closureRef end end ; diff --git a/mlsource/MLCompiler/CodeTree/ByteCode/INTGCODE.ML b/mlsource/MLCompiler/CodeTree/ByteCode/INTGCODE.ML index f06368f7..c7c84b16 100644 --- a/mlsource/MLCompiler/CodeTree/ByteCode/INTGCODE.ML +++ b/mlsource/MLCompiler/CodeTree/ByteCode/INTGCODE.ML @@ -1,1219 +1,1218 @@ (* Copyright (c) 2000 Cambridge University Technical Services Limited Further development copyright David C.J. Matthews 2016-18,2020 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *) (* Title: Generate interpretable code for Poly system from the code tree. Author: Dave Matthews, Cambridge University Computer Laboratory Copyright Cambridge University 1985 *) (* This generates byte-code that is interpreted by the run-time system. It is now used as a fall-back to allow Poly/ML to run on non-X86 architectures. Early versions were used as a porting aid while a native code-generator was being developed and the "enter-int" instructions that were needed for that have been retained although they no longer actually generate code. *) functor INTGCODE ( structure CODECONS : INTCODECONSSIG structure BACKENDTREE: BackendIntermediateCodeSig structure CODE_ARRAY: CODEARRAYSIG sharing CODECONS.Sharing = BACKENDTREE.Sharing = CODE_ARRAY.Sharing ) : GENCODESIG = struct open CODECONS open Address open BACKENDTREE open Misc open CODE_ARRAY val word0 = toMachineWord 0; val DummyValue : machineWord = word0; (* used as result of "raise e" etc. *) type caseForm = { cases : (backendIC * word) list, test : backendIC, caseType: caseType, default : backendIC } (* Where the result, if any, should go *) datatype whereto = NoResult (* discard result *) | ToStack (* Need a result but it can stay on the pseudo-stack *); (* Are we at the end of the function. *) datatype tail = EndOfProc | NotEnd (* Code generate a function or global declaration *) fun codegen (pt, cvec, resultClosure, numOfArgs, localCount, parameters) = let datatype decEntry = StackAddr of int | Empty val decVec = Array.array (localCount, Empty) (* Count of number of items on the stack. *) val realstackptr = ref 1 (* The closure ptr is already there *) (* Maximum size of the stack. *) val maxStack = ref 1 (* Push a value onto the stack. *) fun incsp () = ( realstackptr := !realstackptr + 1; if !realstackptr > !maxStack then maxStack := !realstackptr else () ) (* An entry has been removed from the stack. *) fun decsp () = realstackptr := !realstackptr - 1; fun pushLocalStackValue addr = ( genLocal(!realstackptr + addr, cvec); incsp() ) (* Loads a local, argument or closure value; translating local stack addresses to real stack offsets. *) fun locaddr(BICLoadArgument locn) = pushLocalStackValue (numOfArgs-locn) | locaddr(BICLoadLocal locn) = ( (* positive address - on the stack. *) case Array.sub (decVec, locn) of StackAddr n => pushLocalStackValue (~ n) | _ => (* Should be on the stack, not a function. *) raise InternalError "locaddr: bad stack address" ) | locaddr(BICLoadClosure locn) = (* closure-pointer relative *) ( genIndirectClosure{addr = !realstackptr-1, item=locn, code=cvec}; incsp() ) | locaddr BICLoadRecursive = pushLocalStackValue ~1 (* The closure itself - first value on the stack. *) (* generates code from the tree *) fun gencde (pt : backendIC, whereto : whereto, tailKind : tail, loopAddr) : unit = let (* Save the stack pointer value here. We may want to reset the stack. *) val oldsp = !realstackptr; (* Operations on ML memory always have the base as an ML address. Word operations are always word aligned. The higher level will have extracted any constant offset and scaled it if necessary. That's helpful for the X86 but not for the interpreter. We have to turn them back into indexes. *) fun genMLAddress({base, index, offset}, scale) = ( gencde (base, ToStack, NotEnd, loopAddr); offset mod scale = 0 orelse raise InternalError "genMLAddress"; case (index, offset div scale) of (NONE, soffset) => (pushConst (toMachineWord soffset, cvec); incsp()) | (SOME indexVal, 0) => gencde (indexVal, ToStack, NotEnd, loopAddr) | (SOME indexVal, soffset) => ( gencde (indexVal, ToStack, NotEnd, loopAddr); pushConst (toMachineWord soffset, cvec); genOpcode(opcode_wordAdd, cvec) ) ) (* Load the address, index value and offset for non-byte operations. Because the offset has already been scaled by the size of the operand we have to load the index and offset separately. *) fun genCAddress{base, index, offset} = ( gencde (base, ToStack, NotEnd, loopAddr); case index of NONE => (pushConst (toMachineWord 0, cvec); incsp()) | SOME indexVal => gencde (indexVal, ToStack, NotEnd, loopAddr); pushConst (toMachineWord offset, cvec); incsp() ) val () = case pt of BICEval evl => genEval (evl, tailKind) | BICExtract ext => (* This may just be being used to discard a value which isn't used on this branch. *) if whereto = NoResult then () else locaddr ext | BICField {base, offset} => (gencde (base, ToStack, NotEnd, loopAddr); genIndirect (offset, cvec)) | BICLoadContainer {base, offset} => (gencde (base, ToStack, NotEnd, loopAddr); genIndirectContainer (offset, cvec)) | BICLambda lam => genProc (lam, false, fn () => ()) | BICConstnt(w, _) => let val () = pushConst (w, cvec); in incsp () end | BICCond (testPart, thenPart, elsePart) => genCond (testPart, thenPart, elsePart, whereto, tailKind, loopAddr) | BICNewenv(decls, exp) => let (* Processes a list of entries. *) (* Mutually recursive declarations. May be either lambdas or constants. Recurse down the list pushing the addresses of the closure vectors, then unwind the recursion and fill them in. *) fun genMutualDecs [] = () | genMutualDecs ({lambda, addr, ...} :: otherDecs) = genProc (lambda, true, fn() => ( Array.update (decVec, addr, StackAddr (! realstackptr)); genMutualDecs (otherDecs) )) fun codeDecls(BICRecDecs dl) = genMutualDecs dl | codeDecls(BICDecContainer{size, addr}) = ( (* If this is a container we have to process it here otherwise it will be removed in the stack adjustment code. *) genContainer(size, cvec); (* Push the address of this container. *) realstackptr := !realstackptr + size + 1; (* Pushes N words plus the address. *) Array.update (decVec, addr, StackAddr(!realstackptr)) ) | codeDecls(BICDeclar{value, addr, ...}) = ( gencde (value, ToStack, NotEnd, loopAddr); Array.update (decVec, addr, StackAddr(!realstackptr)) ) | codeDecls(BICNullBinding exp) = gencde (exp, NoResult, NotEnd, loopAddr) in List.app codeDecls decls; gencde (exp, whereto, tailKind, loopAddr) end | BICBeginLoop {loop=body, arguments} => (* Execute the body which will contain at least one Loop instruction. There will also be path(s) which don't contain Loops and these will drop through. *) let val args = List.map #1 arguments (* Evaluate each of the arguments, pushing the result onto the stack. *) fun genLoopArg ({addr, value, ...}) = ( gencde (value, ToStack, NotEnd, loopAddr); Array.update (decVec, addr, StackAddr (!realstackptr)); !realstackptr (* Return the posn on the stack. *) ) val argIndexList = map genLoopArg args; val startSp = ! realstackptr; (* Remember the current top of stack. *) val startLoop = createLabel () val () = setLabel(startLoop, cvec) (* Start of loop *) in (* Process the body, passing the jump-back address down for the Loop instruction(s). *) gencde (body, whereto, tailKind, SOME(startLoop, startSp, argIndexList)) (* Leave the arguments on the stack. They can be cleared later if needed. *) end | BICLoop argList => (* Jump back to the enclosing BeginLoop. *) let val (startLoop, startSp, argIndexList) = case loopAddr of SOME l => l | NONE => raise InternalError "No BeginLoop for Loop instr" (* Evaluate the arguments. First push them to the stack because evaluating an argument may depend on the current value of others. Only when we've evaluated all of them can we overwrite the original argument positions. *) fun loadArgs ([], []) = !realstackptr - startSp (* The offset of all the args. *) | loadArgs (arg:: argList, _ :: argIndexList) = let (* Evaluate all the arguments. *) val () = gencde (arg, ToStack, NotEnd, NONE); val argOffset = loadArgs(argList, argIndexList); in genSetStackVal(argOffset, cvec); (* Copy the arg over. *) decsp(); (* The argument has now been popped. *) argOffset end | loadArgs _ = raise InternalError "loadArgs: Mismatched arguments"; val _: int = loadArgs(List.map #1 argList, argIndexList) in if !realstackptr <> startSp then resetStack (!realstackptr - startSp, false, cvec) (* Remove any local variables. *) else (); (* Jump back to the start of the loop. *) putBranchInstruction(JumpBack, startLoop, cvec) end | BICRaise exp => ( gencde (exp, ToStack, NotEnd, loopAddr); genRaiseEx cvec ) | BICHandle {exp, handler, exPacketAddr} => let (* Save old handler *) val () = genPushHandler cvec val () = incsp () val handlerLabel = createLabel() val () = putBranchInstruction (SetHandler, handlerLabel, cvec) val () = incsp() (* Code generate the body; "NotEnd" because we have to come back to remove the handler; "ToStack" because delHandler needs a result to carry down. *) val () = gencde (exp, ToStack, NotEnd, loopAddr) (* Now get out of the handler and restore the old one. *) val () = genOpcode(opcode_deleteHandler, cvec) val skipHandler = createLabel() val () = putBranchInstruction (Jump, skipHandler, cvec) (* Now process the handler itself. First we have to reset the stack. Note that we have to use "ToStack" again to be consistent with the stack-handling in the body-part. If we actually wanted "NoResult", the stack adjustment code at the end of gencde will take care of this. This means that I don't want to do any clever "end-of-function" optimisation either. SPF 6/1/97 *) val () = realstackptr := oldsp val () = setLabel (handlerLabel, cvec) (* If we were executing machine code we must re-enter the interpreter. *) val () = genEnterIntCatch cvec (* Push the exception packet and set the address. *) val () = genLdexc cvec val () = incsp () val () = Array.update (decVec, exPacketAddr, StackAddr(!realstackptr)) val () = gencde (handler, ToStack, NotEnd, loopAddr) (* Have to remove the exception packet. *) val () = resetStack(1, true, cvec) val () = decsp() (* Finally fix-up the jump around the handler *) val () = setLabel (skipHandler, cvec) in () end | BICCase ({cases, test, default, firstIndex, ...}) => let val () = gencde (test, ToStack, NotEnd, loopAddr) (* Label to jump to at the end of each case. *) val exitJump = createLabel() val () = if firstIndex = 0w0 then () else ( (* Subtract lower limit. Don't check for overflow. Instead allow large value to wrap around and check in "case" instruction. *) pushConst(toMachineWord firstIndex, cvec); genOpcode(opcode_wordSub, cvec) ) (* Generate the case instruction followed by the table of jumps. *) val nCases = List.length cases val caseLabels = genCase (nCases, cvec) val () = decsp () (* The default case, if any, follows the case statement. *) (* If we have a jump to the default set it to jump here. *) local fun fixDefault(NONE, defCase) = setLabel(defCase, cvec) | fixDefault(SOME _, _) = () in val () = ListPair.appEq fixDefault (cases, caseLabels) end val () = gencde (default, whereto, tailKind, loopAddr); fun genCases(SOME body, label) = ( (* First exit from the previous case or the default if this is the first. *) putBranchInstruction(Jump, exitJump, cvec); (* Remove the result - the last case will leave it. *) case whereto of ToStack => decsp () | NoResult => (); (* Fix up the jump to come here. *) setLabel(label, cvec); gencde (body, whereto, tailKind, loopAddr) ) | genCases(NONE, _) = () val () = ListPair.appEq genCases (cases, caseLabels) (* Finally set the exit jump to come here. *) val () = setLabel (exitJump, cvec) in () end | BICTuple recList => let val size = List.length recList in (* Move the fields into the vector. *) List.app(fn v => gencde (v, ToStack, NotEnd, loopAddr)) recList; genTuple (size, cvec); realstackptr := !realstackptr - (size - 1) end | BICSetContainer{container, tuple, filter} => (* Copy the contents of a tuple into a container. If the tuple is a Tuple instruction we can avoid generating the tuple and then unpacking it and simply copy the fields that make up the tuple directly into the container. *) ( case tuple of BICTuple cl => (* Simply set the container from the values. *) let (* Load the address of the container. *) val _ = gencde (container, ToStack, NotEnd, loopAddr); fun setValues([], _, _) = () | setValues(v::tl, sourceOffset, destOffset) = if sourceOffset < BoolVector.length filter andalso BoolVector.sub(filter, sourceOffset) then ( gencde (v, ToStack, NotEnd, loopAddr); (* Move the entry into the container. This instruction pops the value to be moved but not the destination. *) genMoveToContainer(destOffset, cvec); decsp(); setValues(tl, sourceOffset+1, destOffset+1) ) else setValues(tl, sourceOffset+1, destOffset) in setValues(cl, 0, 0) (* The container address is still on the stack. *) end | _ => let (* General case. *) (* First the target tuple, then the container. *) val () = gencde (tuple, ToStack, NotEnd, loopAddr) val () = gencde (container, ToStack, NotEnd, loopAddr) val last = BoolVector.foldli(fn (i, true, _) => i | (_, false, n) => n) ~1 filter fun copy (sourceOffset, destOffset) = if BoolVector.sub(filter, sourceOffset) then ( (* Duplicate the tuple address . *) genLocal(1, cvec); genIndirect(sourceOffset, cvec); genMoveToContainer(destOffset, cvec); if sourceOffset = last then () else copy (sourceOffset+1, destOffset+1) ) else copy(sourceOffset+1, destOffset) in copy (0, 0) (* The container and tuple addresses are still on the stack. *) end ) | BICTagTest { test, tag, ... } => ( gencde (test, ToStack, NotEnd, loopAddr); genEqualWordConst(tag, cvec) ) | BICNullary {oper=BuiltIns.GetCurrentThreadId} => ( genOpcode(opcode_getThreadId, cvec); incsp() ) | BICNullary {oper=BuiltIns.CheckRTSException} => ( (* Do nothing. This is done in the RTS call. *) ) | BICUnary { oper, arg1 } => let open BuiltIns val () = gencde (arg1, ToStack, NotEnd, loopAddr) in case oper of NotBoolean => genOpcode(opcode_notBoolean, cvec) | IsTaggedValue => genIsTagged cvec | MemoryCellLength => genOpcode(opcode_cellLength, cvec) | MemoryCellFlags => genOpcode(opcode_cellFlags, cvec) | ClearMutableFlag => genOpcode(opcode_clearMutable, cvec) | AtomicIncrement => genOpcode(opcode_atomicIncr, cvec) | AtomicDecrement => genOpcode(opcode_atomicDecr, cvec) | AtomicReset => genOpcode(opcode_atomicReset, cvec) | LongWordToTagged => genOpcode(opcode_longWToTagged, cvec) | SignedToLongWord => genOpcode(opcode_signedToLongW, cvec) | UnsignedToLongWord => genOpcode(opcode_unsignedToLongW, cvec) | RealAbs PrecDouble => genOpcode(opcode_realAbs, cvec) | RealNeg PrecDouble => genOpcode(opcode_realNeg, cvec) | RealFixedInt PrecDouble => genOpcode(opcode_fixedIntToReal, cvec) | RealAbs PrecSingle => genOpcode(opcode_floatAbs, cvec) | RealNeg PrecSingle => genOpcode(opcode_floatNeg, cvec) | RealFixedInt PrecSingle => genOpcode(opcode_fixedIntToFloat, cvec) | FloatToDouble => genOpcode(opcode_floatToReal, cvec) | DoubleToFloat rnding => genDoubleToFloat(rnding, cvec) | RealToInt (PrecDouble, rnding) => genRealToInt(rnding, cvec) | RealToInt (PrecSingle, rnding) => genFloatToInt(rnding, cvec) | TouchAddress => resetStack(1, false, cvec) (* Discard this *) | AllocCStack => genOpcode(opcode_allocCSpace, cvec) end | BICBinary { oper=BuiltIns.WordComparison{test=BuiltIns.TestEqual, ...}, arg1, arg2=BICConstnt(w, _) } => let val () = gencde (arg1, ToStack, NotEnd, loopAddr) in genEqualWordConst(toShort w, cvec) end | BICBinary { oper=BuiltIns.WordComparison{test=BuiltIns.TestEqual, ...}, arg1=BICConstnt(w, _), arg2 } => let val () = gencde (arg2, ToStack, NotEnd, loopAddr) in genEqualWordConst(toShort w, cvec) end | BICBinary { oper, arg1, arg2 } => let open BuiltIns val () = gencde (arg1, ToStack, NotEnd, loopAddr) val () = gencde (arg2, ToStack, NotEnd, loopAddr) in case oper of WordComparison{test=TestEqual, ...} => genOpcode(opcode_equalWord, cvec) | WordComparison{test=TestLess, isSigned=true} => genOpcode(opcode_lessSigned, cvec) | WordComparison{test=TestLessEqual, isSigned=true} => genOpcode(opcode_lessEqSigned, cvec) | WordComparison{test=TestGreater, isSigned=true} => genOpcode(opcode_greaterSigned, cvec) | WordComparison{test=TestGreaterEqual, isSigned=true} => genOpcode(opcode_greaterEqSigned, cvec) | WordComparison{test=TestLess, isSigned=false} => genOpcode(opcode_lessUnsigned, cvec) | WordComparison{test=TestLessEqual, isSigned=false} => genOpcode(opcode_lessEqUnsigned, cvec) | WordComparison{test=TestGreater, isSigned=false} => genOpcode(opcode_greaterUnsigned, cvec) | WordComparison{test=TestGreaterEqual, isSigned=false} => genOpcode(opcode_greaterEqUnsigned, cvec) | WordComparison{test=TestUnordered, ...} => raise InternalError "WordComparison: TestUnordered" | PointerEq => genOpcode(opcode_equalWord, cvec) | FixedPrecisionArith ArithAdd => genOpcode(opcode_fixedAdd, cvec) | FixedPrecisionArith ArithSub => genOpcode(opcode_fixedSub, cvec) | FixedPrecisionArith ArithMult => genOpcode(opcode_fixedMult, cvec) | FixedPrecisionArith ArithQuot => genOpcode(opcode_fixedQuot, cvec) | FixedPrecisionArith ArithRem => genOpcode(opcode_fixedRem, cvec) | FixedPrecisionArith ArithDiv => raise InternalError "TODO: FixedPrecisionArith ArithDiv" | FixedPrecisionArith ArithMod => raise InternalError "TODO: FixedPrecisionArith ArithMod" | WordArith ArithAdd => genOpcode(opcode_wordAdd, cvec) | WordArith ArithSub => genOpcode(opcode_wordSub, cvec) | WordArith ArithMult => genOpcode(opcode_wordMult, cvec) | WordArith ArithDiv => genOpcode(opcode_wordDiv, cvec) | WordArith ArithMod => genOpcode(opcode_wordMod, cvec) | WordArith _ => raise InternalError "WordArith - unimplemented instruction" | WordLogical LogicalAnd => genOpcode(opcode_wordAnd, cvec) | WordLogical LogicalOr => genOpcode(opcode_wordOr, cvec) | WordLogical LogicalXor => genOpcode(opcode_wordXor, cvec) | WordShift ShiftLeft => genOpcode(opcode_wordShiftLeft, cvec) | WordShift ShiftRightLogical => genOpcode(opcode_wordShiftRLog, cvec) | WordShift ShiftRightArithmetic => genOpcode(opcode_wordShiftRArith, cvec) | AllocateByteMemory => genOpcode(opcode_allocByteMem, cvec) | LargeWordComparison TestEqual => genOpcode(opcode_lgWordEqual, cvec) | LargeWordComparison TestLess => genOpcode(opcode_lgWordLess, cvec) | LargeWordComparison TestLessEqual => genOpcode(opcode_lgWordLessEq, cvec) | LargeWordComparison TestGreater => genOpcode(opcode_lgWordGreater, cvec) | LargeWordComparison TestGreaterEqual => genOpcode(opcode_lgWordGreaterEq, cvec) | LargeWordComparison TestUnordered => raise InternalError "LargeWordComparison: TestUnordered" | LargeWordArith ArithAdd => genOpcode(opcode_lgWordAdd, cvec) | LargeWordArith ArithSub => genOpcode(opcode_lgWordSub, cvec) | LargeWordArith ArithMult => genOpcode(opcode_lgWordMult, cvec) | LargeWordArith ArithDiv => genOpcode(opcode_lgWordDiv, cvec) | LargeWordArith ArithMod => genOpcode(opcode_lgWordMod, cvec) | LargeWordArith _ => raise InternalError "LargeWordArith - unimplemented instruction" | LargeWordLogical LogicalAnd => genOpcode(opcode_lgWordAnd, cvec) | LargeWordLogical LogicalOr => genOpcode(opcode_lgWordOr, cvec) | LargeWordLogical LogicalXor => genOpcode(opcode_lgWordXor, cvec) | LargeWordShift ShiftLeft => genOpcode(opcode_lgWordShiftLeft, cvec) | LargeWordShift ShiftRightLogical => genOpcode(opcode_lgWordShiftRLog, cvec) | LargeWordShift ShiftRightArithmetic => genOpcode(opcode_lgWordShiftRArith, cvec) | RealComparison (TestEqual, PrecDouble) => genOpcode(opcode_realEqual, cvec) | RealComparison (TestLess, PrecDouble) => genOpcode(opcode_realLess, cvec) | RealComparison (TestLessEqual, PrecDouble) => genOpcode(opcode_realLessEq, cvec) | RealComparison (TestGreater, PrecDouble) => genOpcode(opcode_realGreater, cvec) | RealComparison (TestGreaterEqual, PrecDouble) => genOpcode(opcode_realGreaterEq, cvec) | RealComparison (TestUnordered, PrecDouble) => genOpcode(opcode_realUnordered, cvec) | RealComparison (TestEqual, PrecSingle) => genOpcode(opcode_floatEqual, cvec) | RealComparison (TestLess, PrecSingle) => genOpcode(opcode_floatLess, cvec) | RealComparison (TestLessEqual, PrecSingle) => genOpcode(opcode_floatLessEq, cvec) | RealComparison (TestGreater, PrecSingle) => genOpcode(opcode_floatGreater, cvec) | RealComparison (TestGreaterEqual, PrecSingle) => genOpcode(opcode_floatGreaterEq, cvec) | RealComparison (TestUnordered, PrecSingle) => genOpcode(opcode_floatUnordered, cvec) | RealArith (ArithAdd, PrecDouble) => genOpcode(opcode_realAdd, cvec) | RealArith (ArithSub, PrecDouble) => genOpcode(opcode_realSub, cvec) | RealArith (ArithMult, PrecDouble) => genOpcode(opcode_realMult, cvec) | RealArith (ArithDiv, PrecDouble) => genOpcode(opcode_realDiv, cvec) | RealArith (ArithAdd, PrecSingle) => genOpcode(opcode_floatAdd, cvec) | RealArith (ArithSub, PrecSingle) => genOpcode(opcode_floatSub, cvec) | RealArith (ArithMult, PrecSingle) => genOpcode(opcode_floatMult, cvec) | RealArith (ArithDiv, PrecSingle) => genOpcode(opcode_floatDiv, cvec) | RealArith _ => raise InternalError "RealArith - unimplemented instruction" | FreeCStack => genOpcode(opcode_freeCSpace, cvec) ; decsp() (* Removes one item from the stack. *) end | BICAllocateWordMemory {numWords as BICConstnt(length, _), flags as BICConstnt(flagByte, _), initial } => if isShort length andalso toShort length = 0w1 andalso isShort flagByte andalso toShort flagByte = 0wx40 then (* This is a very common case. *) ( gencde (initial, ToStack, NotEnd, loopAddr); genOpcode(opcode_alloc_ref, cvec) ) else let val () = gencde (numWords, ToStack, NotEnd, loopAddr) val () = gencde (flags, ToStack, NotEnd, loopAddr) val () = gencde (initial, ToStack, NotEnd, loopAddr) in genOpcode(opcode_allocWordMemory, cvec); decsp(); decsp() end | BICAllocateWordMemory { numWords, flags, initial } => let val () = gencde (numWords, ToStack, NotEnd, loopAddr) val () = gencde (flags, ToStack, NotEnd, loopAddr) val () = gencde (initial, ToStack, NotEnd, loopAddr) in genOpcode(opcode_allocWordMemory, cvec); decsp(); decsp() end | BICLoadOperation { kind=LoadStoreMLWord _, address={base, index=NONE, offset}} => ( (* If the index is a constant, frequently zero, we can use indirection. The offset is a byte count so has to be divided by the word size but it should always be an exact multiple. *) gencde (base, ToStack, NotEnd, loopAddr); offset mod Word.toInt wordSize = 0 orelse raise InternalError "gencde: BICLoadOperation - not word multiple"; genIndirect (offset div Word.toInt wordSize, cvec) ) | BICLoadOperation { kind=LoadStoreMLWord _, address} => ( genMLAddress(address, Word.toInt wordSize); genOpcode(opcode_loadMLWord, cvec); decsp() ) | BICLoadOperation { kind=LoadStoreMLByte _, address} => ( genMLAddress(address, 1); genOpcode(opcode_loadMLByte, cvec); decsp() ) | BICLoadOperation { kind=LoadStoreC8, address} => ( genCAddress address; genOpcode(opcode_loadC8, cvec); decsp(); decsp() ) | BICLoadOperation { kind=LoadStoreC16, address} => ( genCAddress address; genOpcode(opcode_loadC16, cvec); decsp(); decsp() ) | BICLoadOperation { kind=LoadStoreC32, address} => ( genCAddress address; genOpcode(opcode_loadC32, cvec); decsp(); decsp() ) | BICLoadOperation { kind=LoadStoreC64, address} => ( - wordSize = 0w8 orelse raise InternalError "LoadStoreC64 but not 64-bit mode"; genCAddress address; genOpcode(opcode_loadC64, cvec); decsp(); decsp() ) | BICLoadOperation { kind=LoadStoreCFloat, address} => ( genCAddress address; genOpcode(opcode_loadCFloat, cvec); decsp(); decsp() ) | BICLoadOperation { kind=LoadStoreCDouble, address} => ( genCAddress address; genOpcode(opcode_loadCDouble, cvec); decsp(); decsp() ) | BICLoadOperation { kind=LoadStoreUntaggedUnsigned, address} => ( genMLAddress(address, Word.toInt wordSize); genOpcode(opcode_loadUntagged, cvec); decsp() ) | BICStoreOperation { kind=LoadStoreMLWord _, address, value } => ( genMLAddress(address, Word.toInt wordSize); gencde (value, ToStack, NotEnd, loopAddr); genOpcode(opcode_storeMLWord, cvec); decsp(); decsp() ) | BICStoreOperation { kind=LoadStoreMLByte _, address, value } => ( genMLAddress(address, 1); gencde (value, ToStack, NotEnd, loopAddr); genOpcode(opcode_storeMLByte, cvec); decsp(); decsp() ) | BICStoreOperation { kind=LoadStoreC8, address, value} => ( genCAddress address; gencde (value, ToStack, NotEnd, loopAddr); genOpcode(opcode_storeC8, cvec); decsp(); decsp(); decsp() ) | BICStoreOperation { kind=LoadStoreC16, address, value} => ( genCAddress address; gencde (value, ToStack, NotEnd, loopAddr); genOpcode(opcode_storeC16, cvec); decsp(); decsp(); decsp() ) | BICStoreOperation { kind=LoadStoreC32, address, value} => ( genCAddress address; gencde (value, ToStack, NotEnd, loopAddr); genOpcode(opcode_storeC32, cvec); decsp(); decsp(); decsp() ) | BICStoreOperation { kind=LoadStoreC64, address, value} => ( genCAddress address; gencde (value, ToStack, NotEnd, loopAddr); genOpcode(opcode_storeC64, cvec); decsp(); decsp(); decsp() ) | BICStoreOperation { kind=LoadStoreCFloat, address, value} => ( genCAddress address; gencde (value, ToStack, NotEnd, loopAddr); genOpcode(opcode_storeCFloat, cvec); decsp(); decsp(); decsp() ) | BICStoreOperation { kind=LoadStoreCDouble, address, value} => ( genCAddress address; gencde (value, ToStack, NotEnd, loopAddr); genOpcode(opcode_storeCDouble, cvec); decsp(); decsp(); decsp() ) | BICStoreOperation { kind=LoadStoreUntaggedUnsigned, address, value} => ( genMLAddress(address, Word.toInt wordSize); gencde (value, ToStack, NotEnd, loopAddr); genOpcode(opcode_storeUntagged, cvec); decsp(); decsp() ) | BICBlockOperation { kind=BlockOpMove{isByteMove=true}, sourceLeft, destRight, length } => ( genMLAddress(sourceLeft, 1); genMLAddress(destRight, 1); gencde (length, ToStack, NotEnd, loopAddr); genOpcode(opcode_blockMoveByte, cvec); decsp(); decsp(); decsp(); decsp() ) | BICBlockOperation { kind=BlockOpMove{isByteMove=false}, sourceLeft, destRight, length } => ( genMLAddress(sourceLeft, Word.toInt wordSize); genMLAddress(destRight, Word.toInt wordSize); gencde (length, ToStack, NotEnd, loopAddr); genOpcode(opcode_blockMoveWord, cvec); decsp(); decsp(); decsp(); decsp() ) | BICBlockOperation { kind=BlockOpEqualByte, sourceLeft, destRight, length } => ( genMLAddress(sourceLeft, 1); genMLAddress(destRight, 1); gencde (length, ToStack, NotEnd, loopAddr); genOpcode(opcode_blockEqualByte, cvec); decsp(); decsp(); decsp(); decsp() ) | BICBlockOperation { kind=BlockOpCompareByte, sourceLeft, destRight, length } => ( genMLAddress(sourceLeft, 1); genMLAddress(destRight, 1); gencde (length, ToStack, NotEnd, loopAddr); genOpcode(opcode_blockCompareByte, cvec); decsp(); decsp(); decsp(); decsp() ) | BICArbitrary { longCall, ... } => (* Just use the long-precision case in the interpreted version. *) ( gencde (longCall, whereto, tailKind, loopAddr) ) in (* body of gencde *) (* This ensures that there is precisely one item on the stack if whereto = ToStack and no items if whereto = NoResult. There are two points to note carefully here: (1) Negative stack adjustments are legal if we have exited. This is because matchFailFn can cut the stack back too far for its immediately enclosing expression. This is harmless because the code actually exits that expression. (2) A stack adjustment of ~1 is legal if we're generating a declaration in "ToStack" mode, because not all declarations actually generate the dummy value that we expect. This used to be handled in resetStack itself, but it's more transparent to do it here. (In addition, there was a bug in resetStack - it accumulated the stack resets, but didn't correctly accumulate these "~1" dummy value pushes.) It's all much better now. SPF 9/1/97 *) case whereto of ToStack => let val newsp = oldsp + 1; val adjustment = !realstackptr - newsp val () = if adjustment = 0 then () else if adjustment < ~1 then raise InternalError ("gencde: bad adjustment " ^ Int.toString adjustment) (* Hack for declarations that should push values, but don't *) else if adjustment = ~1 then pushConst (DummyValue, cvec) else resetStack (adjustment, true, cvec) in realstackptr := newsp end | NoResult => let val adjustment = !realstackptr - oldsp val () = if adjustment = 0 then () else if adjustment < 0 then raise InternalError ("gencde: bad adjustment " ^ Int.toString adjustment) else resetStack (adjustment, false, cvec) in realstackptr := oldsp end end (* gencde *) (* doNext is only used for mutually recursive functions where a function may not be able to fill in its closure if it does not have all the remaining declarations. *) (* TODO: This always creates the closure on the heap even when makeClosure is false. *) and genProc ({ closure=[], localCount, body, argTypes, name, ...}: bicLambdaForm, mutualDecs, doNext: unit -> unit) : unit = let (* Create a one word item for the closure. This is returned for recursive references and filled in with the address of the code when we've finished. *) val closure = makeConstantClosure() val newCode : code = codeCreate(name, parameters); (* Code-gen function. No non-local references. *) val () = codegen (body, newCode, closure, List.length argTypes, localCount, parameters); val () = pushConst(closureAsAddress closure, cvec); val () = incsp(); in if mutualDecs then doNext () else () end | genProc ({ localCount, body, name, argTypes, closure, ...}, mutualDecs, doNext) = let (* Full closure required. *) val resClosure = makeConstantClosure() val newCode = codeCreate (name, parameters) (* Code-gen function. *) val () = codegen (body, newCode, resClosure, List.length argTypes, localCount, parameters) - val sizeOfClosure = List.length closure + 1; + val closureVars = List.length closure (* Size excluding the code address *) in if mutualDecs then let (* Have to make the closure now and fill it in later. *) val () = pushConst(toMachineWord resClosure, cvec) - val () = genAllocMutableClosure(List.length closure, cvec) + val () = genAllocMutableClosure(closureVars, cvec) val () = incsp () val entryAddr : int = !realstackptr val () = doNext () (* Any mutually recursive functions. *) (* Push the address of the vector - If we have processed other closures the vector will no longer be on the top of the stack. *) val () = pushLocalStackValue (~ entryAddr) (* Load items for the closure. *) fun loadItems ([], _) = () | loadItems (v :: vs, addr : int) = let (* Generate an item and move it into the clsoure *) val () = gencde (BICExtract v, ToStack, NotEnd, NONE) (* The closure "address" excludes the code address. *) val () = genMoveToMutClosure(addr, cvec) val () = decsp () in loadItems (vs, addr + 1) end val () = loadItems (closure, 0) val () = genLock cvec (* Lock it. *) (* Remove the extra reference. *) val () = resetStack (1, false, cvec) in realstackptr := !realstackptr - 1 end else let (* Put it on the stack. *) - val () = pushConst (codeAddressFromClosure resClosure, cvec) + val () = pushConst (toMachineWord resClosure, cvec) val () = incsp () val () = List.app (fn pt => gencde (BICExtract pt, ToStack, NotEnd, NONE)) closure - val () = genTuple (sizeOfClosure, cvec) + val () = genClosure (closureVars, cvec) in - realstackptr := !realstackptr - (sizeOfClosure - 1) + realstackptr := !realstackptr - closureVars end end and genCond (testCode, thenCode, elseCode, whereto, tailKind, loopAddr) = let (* andalso and orelse are turned into conditionals with constants. Convert this into a series of tests. *) fun genTest(BICConstnt(w, _), jumpOn, targetLabel) = let val cVal = case toShort w of 0w0 => false | 0w1 => true | _ => raise InternalError "genTest" in if cVal = jumpOn then putBranchInstruction (Jump, targetLabel, cvec) else () end | genTest(BICUnary { oper=BuiltIns.NotBoolean, arg1 }, jumpOn, targetLabel) = genTest(arg1, not jumpOn, targetLabel) | genTest(BICCond (testPart, thenPart, elsePart), jumpOn, targetLabel) = let val toElse = createLabel() and exitJump = createLabel() in genTest(testPart, false, toElse); genTest(thenPart, jumpOn, targetLabel); putBranchInstruction (Jump, exitJump, cvec); setLabel (toElse, cvec); genTest(elsePart, jumpOn, targetLabel); setLabel (exitJump, cvec) end | genTest(testCode, jumpOn, targetLabel) = ( gencde (testCode, ToStack, NotEnd, loopAddr); putBranchInstruction(if jumpOn then JumpTrue else JumpFalse, targetLabel, cvec); decsp() (* conditional branch pops a value. *) ) val toElse = createLabel() and exitJump = createLabel() val () = genTest(testCode, false, toElse) val () = gencde (thenCode, whereto, tailKind, loopAddr) (* Get rid of the result from the stack. If there is a result then the ``else-part'' will push it. *) val () = case whereto of ToStack => decsp () | NoResult => () val () = putBranchInstruction (Jump, exitJump, cvec) (* start of "else part" *) val () = setLabel (toElse, cvec) val () = gencde (elseCode, whereto, tailKind, loopAddr) val () = setLabel (exitJump, cvec) in () end (* genCond *) and genEval (eval, tailKind : tail) : unit = let val argList : backendIC list = List.map #1 (#argList eval) val argsToPass : int = List.length argList; (* Load arguments *) fun loadArgs [] = () | loadArgs (v :: vs) = let (* Push each expression onto the stack. *) val () = gencde(v, ToStack, NotEnd, NONE) in loadArgs vs end; (* Called after the args and the closure to call have been pushed onto the stack. *) fun callClosure () : unit = case tailKind of NotEnd => (* Normal call. *) genCallClosure cvec | EndOfProc => (* Tail recursive call. *) let (* Get the return address onto the top of the stack. *) val () = pushLocalStackValue 0 (* Slide the return address, closure and args over the old closure, return address and args, and reset the stack. Then jump to the closure. *) val () = genTailCall(argsToPass + 2, !realstackptr - 1 + (numOfArgs - argsToPass), cvec); (* It's "-1" not "-2", because we didn't bump the realstackptr when we pushed the return address. SPF 3/1/97 *) in () end (* Have to guarantee that the expression to return the function is evaluated before the arguments. *) (* Returns true if evaluating it later is safe. *) fun safeToLeave (BICConstnt _) = true | safeToLeave (BICLambda _) = true | safeToLeave (BICExtract _) = true | safeToLeave (BICField {base, ...}) = safeToLeave base | safeToLeave (BICLoadContainer {base, ...}) = safeToLeave base | safeToLeave _ = false val () = if (case argList of [] => true | _ => safeToLeave (#function eval)) then let (* Can load the args first. *) val () = loadArgs argList in gencde (#function eval, ToStack, NotEnd, NONE) end else let (* The expression for the function is too complicated to risk leaving. It might have a side-effect and we must ensure that any side-effects it has are done before the arguments are loaded. *) val () = gencde(#function eval, ToStack, NotEnd, NONE); val () = loadArgs(argList); (* Load the function again. *) val () = genLocal(argsToPass, cvec); in incsp () end val () = callClosure () (* Call the function. *) (* Make sure we interpret when we return from the call *) val () = genEnterIntCall (cvec, argsToPass) in (* body of genEval *) realstackptr := !realstackptr - argsToPass (* Args popped by caller. *) end (* Generate the function. *) (* Assume we always want a result. There is otherwise a problem if the called routine returns a result of type void (i.e. no result) but the caller wants a result (e.g. the identity function). *) val () = gencde (pt, ToStack, EndOfProc, NONE) val () = genReturn (numOfArgs, cvec); in (* body of codegen *) (* Having code-generated the body of the function, it is copied into a new data segment. *) copyCode{code = cvec, maxStack = !maxStack, resultClosure=resultClosure, numberOfArguments=numOfArgs} end (* codegen *); fun gencodeLambda({ name, body, argTypes, localCount, ...}:bicLambdaForm, parameters, closure) = let (* make the code buffer for the new function. *) val newCode : code = codeCreate (name, parameters) (* This function must have no non-local references. *) in codegen (body, newCode, closure, List.length argTypes, localCount, parameters) end local val makeEntryPoint: string -> machineWord = RunCall.rtsCallFull1 "PolyCreateEntryPointObject" fun rtsCall makeCall (entryName: string, numOfArgs, debugArgs: Universal.universal list): machineWord = let open Address val cvec = codeCreate (entryName, debugArgs) val entryPointAddr = makeEntryPoint entryName (* Each argument is at the same offset, essentially we're just shifting them *) fun genLocals 0 = () | genLocals n = (genLocal(numOfArgs +1, cvec); genLocals (n-1)) val () = genLocals numOfArgs val () = pushConst(entryPointAddr, cvec) val () = makeCall(numOfArgs, cvec) val () = genReturn (numOfArgs, cvec) val closure = makeConstantClosure() val () = copyCode{code=cvec, maxStack=numOfArgs+1, numberOfArguments=numOfArgs, resultClosure=closure} in closureAsAddress closure end in structure Foreign = struct val rtsCallFast = rtsCall genRTSCallFast fun rtsCallFastRealtoReal(entryName, debugArgs) = rtsCall (fn (_, c) => genRTSCallFastRealtoReal c) (entryName, 1, debugArgs) and rtsCallFastRealRealtoReal(entryName, debugArgs) = rtsCall (fn (_, c) => genRTSCallFastRealRealtoReal c) (entryName, 2, debugArgs) and rtsCallFastGeneraltoReal(entryName, debugArgs) = rtsCall (fn (_, c) => genRTSCallFastGeneraltoReal c) (entryName, 1, debugArgs) and rtsCallFastRealGeneraltoReal(entryName, debugArgs) = rtsCall (fn (_, c) => genRTSCallFastRealGeneraltoReal c) (entryName, 2, debugArgs) fun rtsCallFastFloattoFloat(entryName, debugArgs) = rtsCall (fn (_, c) => genRTSCallFastFloattoFloat c) (entryName, 1, debugArgs) and rtsCallFastFloatFloattoFloat(entryName, debugArgs) = rtsCall (fn (_, c) => genRTSCallFastFloatFloattoFloat c) (entryName, 2, debugArgs) and rtsCallFastGeneraltoFloat(entryName, debugArgs) = rtsCall (fn (_, c) => genRTSCallFastGeneraltoFloat c) (entryName, 1, debugArgs) and rtsCallFastFloatGeneraltoFloat(entryName, debugArgs) = rtsCall (fn (_, c) => genRTSCallFastFloatGeneraltoFloat c) (entryName, 2, debugArgs) type abi = int (* This must match the type in Foreign.LowLevel. Once this is bootstrapped we could use that type but note that this is the type we use within the compiler and we build Foreign.LowLevel AFTER compiling this. *) datatype cTypeForm = CTypeFloatingPt | CTypePointer | CTypeSignedInt | CTypeUnsignedInt | CTypeStruct of cType list | CTypeVoid withtype cType = { typeForm: cTypeForm, align: word, size: word } val abiList: unit -> (string * abi) list = RunCall.rtsCallFull0 "PolyInterpretedGetAbiList" type cif = LargeWord.word val createCIF: abi * cType * cType list -> cif= RunCall.rtsCallFull3 "PolyInterpretedCreateCIF" val callCFunction: cif * LargeWord.word * LargeWord.word * LargeWord.word -> unit = RunCall.rtsCallFull4 "PolyInterpretedCallFunction" (* foreignCall returns a function that actually calls the foreign function. *) fun foreignCall(abi, argTypes, resultType) = let val cif = createCIF(abi, resultType, argTypes) val closure = makeConstantClosure() (* For compatibility with the native code version we have to construct a function that takes three arguments rather than a single triple. *) val bodyCode = BICEval{function=BICConstnt(toMachineWord callCFunction, []), argList=[ (BICTuple[ BICConstnt(toMachineWord cif, []), BICExtract(BICLoadArgument 0), BICExtract(BICLoadArgument 2), BICExtract(BICLoadArgument 1)], GeneralType) ], resultType=GeneralType} val lambdaCode = { body = bodyCode, name = "foreignCall", closure=[], argTypes=[GeneralType, GeneralType, GeneralType], resultType = GeneralType, localCount=0, heapClosure=false} val () = gencodeLambda(lambdaCode, [], closure) in closureAsAddress closure end fun buildCallBack((*abi*) _, (*argTypes*) _, (*resultType*)_) = let fun buildClosure ((*mlFun*)_: LargeWord.word*LargeWord.word -> unit) = (* The result is the SysWord.word holding the C function. *) raise Foreign.Foreign "foreignCall not implemented" in Address.toMachineWord buildClosure end end end structure Sharing = struct open BACKENDTREE.Sharing type closureRef = closureRef end end; diff --git a/mlsource/MLCompiler/CodeTree/CODE_ARRAY.ML b/mlsource/MLCompiler/CodeTree/CODE_ARRAY.ML index 173e59d0..d1a7c1b5 100644 --- a/mlsource/MLCompiler/CodeTree/CODE_ARRAY.ML +++ b/mlsource/MLCompiler/CodeTree/CODE_ARRAY.ML @@ -1,133 +1,137 @@ (* - Copyright (c) 2017, 2019 David C.J. Matthews + Copyright (c) 2017, 2019, 2020 David C.J. Matthews Copyright (c) 2000 Cambridge University Technical Services Limited This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *) structure CODE_ARRAY :> CODEARRAYSIG = struct open Address open Misc datatype csegStatus = Bytes | UnlockedCode type byteVec = address and codeVec = address and closureRef = address val objLength: address -> word = length val F_mutable_bytes = Word.fromLargeWord(Word8.toLargeWord(Word8.orb (F_mutable, F_bytes))) fun makeConstantClosure (): closureRef = let open Address + (* This is used during the bootstrap on the interpreted version so + we need to get the native word size when the code is run. + The compiler does not (currently) treated the ! ref as an identity + operation. *) + val wordsPerNativeWord = + length(toAddress(toMachineWord(LargeWord.fromInt(!(ref 0))))) in - if nativeWordSize <> wordSize - then (* 32-in-64 *) allocWordData(nativeWordSize div wordSize, Word8.orb(F_mutable, F_closure), toMachineWord 0w0) - else allocWordData(0w1, Word8.orb(F_mutable, F_words), toMachineWord 0w0) + allocWordData(wordsPerNativeWord, Word8.orb(F_mutable, F_closure), toMachineWord 0w0) end fun codeAddressFromClosure closure = if nativeWordSize <> wordSize then raise InternalError "codeAddressFromClosure" (* Not valid in 32-in-64 *) else loadWord(closure, 0w0) fun closureAsAddress closure = toMachineWord closure fun byteVecMake size = let val vec : address = RunCall.allocateByteMemory(size, F_mutable_bytes) (* allocateByteMemory does not clear the area. We have to do that at least to ensure that the constant area is cleared before we copy it into a real code area. In many cases we could get away with clearing less but for the moment this is the safest way. *) val byteLength = size * wordSize fun clear n = if n < byteLength then (assignByte(vec, n, 0w0); clear (n+0w1)) else () val () = clear 0w0 in vec end (* codeVec is a way of referring to the code in a mutable form. We now use the closure itself. *) local val byteVecToClosure = RunCall.rtsCallFull2 "PolyCopyByteVecToClosure" in fun byteVecToCodeVec(bvec, closure) = ( byteVecToClosure (bvec, closure); closure ) end local val cvecLock = RunCall.rtsCallFull1 "PolyLockMutableClosure" in fun codeVecLock(_, closure) = cvecLock closure end (* Return the address of the segment. Used when putting in "self" addresses. Only used in native 32-bit where we don't have relative addresses. *) val codeVecAddr = toAddress o codeAddressFromClosure (* Set a byte. Used when setting the byte data. *) fun byteVecSet (addr, byteIndex, value: Word8.word) = let val lengthWords = objLength addr val lengthBytes = wordSize * lengthWords in if byteIndex < lengthBytes then assignByte (addr, byteIndex, value) else raise Subscript end val codeVecGet = RunCall.rtsCallFast2 "PolyGetCodeByte" and codeVecSet = RunCall.rtsCallFast3 "PolySetCodeByte" datatype constantType = ConstAbsolute | ConstX86Relative local val setCodeConstantCall = RunCall.rtsCallFast4 "PolySetCodeConstant" in (* Store a constant into the code. This must be used if the constant is not on a word boundary or if it needs special treatment. *) fun codeVecPutConstant (addr, byteIndex, value:machineWord, option: constantType) = let val optValue = case option of ConstAbsolute => 0w2 | ConstX86Relative => 0w1 in setCodeConstantCall(addr, byteIndex, value, optValue) end (* Used to set constants in the constant area. *) fun codeVecPutWord(addr, wordIndex, value) = setCodeConstantCall(addr, wordIndex * wordSize, value, 0w0) end structure Sharing = struct type byteVec = byteVec and codeVec = codeVec and closureRef = closureRef and constantType = constantType end end;