diff --git a/src/HOL/BNF_Def.thy b/src/HOL/BNF_Def.thy --- a/src/HOL/BNF_Def.thy +++ b/src/HOL/BNF_Def.thy @@ -1,280 +1,280 @@ (* Title: HOL/BNF_Def.thy Author: Dmitriy Traytel, TU Muenchen Author: Jasmin Blanchette, TU Muenchen Copyright 2012, 2013, 2014 Definition of bounded natural functors. *) section \Definition of Bounded Natural Functors\ theory BNF_Def imports BNF_Cardinal_Arithmetic Fun_Def_Base keywords "print_bnfs" :: diag and "bnf" :: thy_goal_defn begin lemma Collect_case_prodD: "x \ Collect (case_prod A) \ A (fst x) (snd x)" by auto inductive rel_sum :: "('a \ 'c \ bool) \ ('b \ 'd \ bool) \ 'a + 'b \ 'c + 'd \ bool" for R1 R2 where "R1 a c \ rel_sum R1 R2 (Inl a) (Inl c)" | "R2 b d \ rel_sum R1 R2 (Inr b) (Inr d)" definition rel_fun :: "('a \ 'c \ bool) \ ('b \ 'd \ bool) \ ('a \ 'b) \ ('c \ 'd) \ bool" where "rel_fun A B = (\f g. \x y. A x y \ B (f x) (g y))" lemma rel_funI [intro]: assumes "\x y. A x y \ B (f x) (g y)" shows "rel_fun A B f g" using assms by (simp add: rel_fun_def) lemma rel_funD: assumes "rel_fun A B f g" and "A x y" shows "B (f x) (g y)" using assms by (simp add: rel_fun_def) lemma rel_fun_mono: "\ rel_fun X A f g; \x y. Y x y \ X x y; \x y. A x y \ B x y \ \ rel_fun Y B f g" by(simp add: rel_fun_def) lemma rel_fun_mono' [mono]: "\ \x y. Y x y \ X x y; \x y. A x y \ B x y \ \ rel_fun X A f g \ rel_fun Y B f g" by(simp add: rel_fun_def) definition rel_set :: "('a \ 'b \ bool) \ 'a set \ 'b set \ bool" where "rel_set R = (\A B. (\x\A. \y\B. R x y) \ (\y\B. \x\A. R x y))" lemma rel_setI: assumes "\x. x \ A \ \y\B. R x y" assumes "\y. y \ B \ \x\A. R x y" shows "rel_set R A B" using assms unfolding rel_set_def by simp lemma predicate2_transferD: "\rel_fun R1 (rel_fun R2 (=)) P Q; a \ A; b \ B; A \ {(x, y). R1 x y}; B \ {(x, y). R2 x y}\ \ P (fst a) (fst b) \ Q (snd a) (snd b)" unfolding rel_fun_def by (blast dest!: Collect_case_prodD) definition collect where "collect F x = (\f \ F. f x)" lemma fstI: "x = (y, z) \ fst x = y" by simp lemma sndI: "x = (y, z) \ snd x = z" by simp lemma bijI': "\\x y. (f x = f y) = (x = y); \y. \x. y = f x\ \ bij f" unfolding bij_def inj_on_def by auto blast (* Operator: *) definition "Gr A f = {(a, f a) | a. a \ A}" definition "Grp A f = (\a b. b = f a \ a \ A)" definition vimage2p where "vimage2p f g R = (\x y. R (f x) (g y))" lemma collect_comp: "collect F \ g = collect ((\f. f \ g) ` F)" by (rule ext) (simp add: collect_def) definition convol ("\(_,/ _)\") where "\f, g\ \ \a. (f a, g a)" lemma fst_convol: "fst \ \f, g\ = f" apply(rule ext) unfolding convol_def by simp lemma snd_convol: "snd \ \f, g\ = g" apply(rule ext) unfolding convol_def by simp lemma convol_mem_GrpI: "x \ A \ \id, g\ x \ (Collect (case_prod (Grp A g)))" unfolding convol_def Grp_def by auto definition csquare where "csquare A f1 f2 p1 p2 \ (\ a \ A. f1 (p1 a) = f2 (p2 a))" lemma eq_alt: "(=) = Grp UNIV id" unfolding Grp_def by auto lemma leq_conversepI: "R = (=) \ R \ R\\" by auto lemma leq_OOI: "R = (=) \ R \ R OO R" by auto lemma OO_Grp_alt: "(Grp A f)\\ OO Grp A g = (\x y. \z. z \ A \ f z = x \ g z = y)" unfolding Grp_def by auto lemma Grp_UNIV_id: "f = id \ (Grp UNIV f)\\ OO Grp UNIV f = Grp UNIV f" unfolding Grp_def by auto lemma Grp_UNIV_idI: "x = y \ Grp UNIV id x y" unfolding Grp_def by auto lemma Grp_mono: "A \ B \ Grp A f \ Grp B f" unfolding Grp_def by auto lemma GrpI: "\f x = y; x \ A\ \ Grp A f x y" unfolding Grp_def by auto lemma GrpE: "Grp A f x y \ (\f x = y; x \ A\ \ R) \ R" unfolding Grp_def by auto lemma Collect_case_prod_Grp_eqD: "z \ Collect (case_prod (Grp A f)) \ (f \ fst) z = snd z" unfolding Grp_def comp_def by auto lemma Collect_case_prod_Grp_in: "z \ Collect (case_prod (Grp A f)) \ fst z \ A" unfolding Grp_def comp_def by auto definition "pick_middlep P Q a c = (SOME b. P a b \ Q b c)" lemma pick_middlep: "(P OO Q) a c \ P a (pick_middlep P Q a c) \ Q (pick_middlep P Q a c) c" - unfolding pick_middlep_def apply(rule someI_ex) by auto + unfolding pick_middlep_def by (rule someI_ex) auto definition fstOp where "fstOp P Q ac = (fst ac, pick_middlep P Q (fst ac) (snd ac))" definition sndOp where "sndOp P Q ac = (pick_middlep P Q (fst ac) (snd ac), (snd ac))" lemma fstOp_in: "ac \ Collect (case_prod (P OO Q)) \ fstOp P Q ac \ Collect (case_prod P)" unfolding fstOp_def mem_Collect_eq by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct1]) lemma fst_fstOp: "fst bc = (fst \ fstOp P Q) bc" unfolding comp_def fstOp_def by simp lemma snd_sndOp: "snd bc = (snd \ sndOp P Q) bc" unfolding comp_def sndOp_def by simp lemma sndOp_in: "ac \ Collect (case_prod (P OO Q)) \ sndOp P Q ac \ Collect (case_prod Q)" unfolding sndOp_def mem_Collect_eq by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct2]) lemma csquare_fstOp_sndOp: "csquare (Collect (f (P OO Q))) snd fst (fstOp P Q) (sndOp P Q)" unfolding csquare_def fstOp_def sndOp_def using pick_middlep by simp lemma snd_fst_flip: "snd xy = (fst \ (%(x, y). (y, x))) xy" by (simp split: prod.split) lemma fst_snd_flip: "fst xy = (snd \ (%(x, y). (y, x))) xy" by (simp split: prod.split) lemma flip_pred: "A \ Collect (case_prod (R \\)) \ (%(x, y). (y, x)) ` A \ Collect (case_prod R)" by auto lemma predicate2_eqD: "A = B \ A a b \ B a b" by simp lemma case_sum_o_inj: "case_sum f g \ Inl = f" "case_sum f g \ Inr = g" by auto lemma map_sum_o_inj: "map_sum f g \ Inl = Inl \ f" "map_sum f g \ Inr = Inr \ g" by auto lemma card_order_csum_cone_cexp_def: "card_order r \ ( |A1| +c cone) ^c r = |Func UNIV (Inl ` A1 \ {Inr ()})|" unfolding cexp_def cone_def Field_csum Field_card_of by (auto dest: Field_card_order) lemma If_the_inv_into_in_Func: "\inj_on g C; C \ B \ {x}\ \ (\i. if i \ g ` C then the_inv_into C g i else x) \ Func UNIV (B \ {x})" unfolding Func_def by (auto dest: the_inv_into_into) lemma If_the_inv_into_f_f: "\i \ C; inj_on g C\ \ ((\i. if i \ g ` C then the_inv_into C g i else x) \ g) i = id i" unfolding Func_def by (auto elim: the_inv_into_f_f) lemma the_inv_f_o_f_id: "inj f \ (the_inv f \ f) z = id z" by (simp add: the_inv_f_f) lemma vimage2pI: "R (f x) (g y) \ vimage2p f g R x y" unfolding vimage2p_def . lemma rel_fun_iff_leq_vimage2p: "(rel_fun R S) f g = (R \ vimage2p f g S)" unfolding rel_fun_def vimage2p_def by auto lemma convol_image_vimage2p: "\f \ fst, g \ snd\ ` Collect (case_prod (vimage2p f g R)) \ Collect (case_prod R)" unfolding vimage2p_def convol_def by auto lemma vimage2p_Grp: "vimage2p f g P = Grp UNIV f OO P OO (Grp UNIV g)\\" unfolding vimage2p_def Grp_def by auto lemma subst_Pair: "P x y \ a = (x, y) \ P (fst a) (snd a)" by simp lemma comp_apply_eq: "f (g x) = h (k x) \ (f \ g) x = (h \ k) x" unfolding comp_apply by assumption lemma refl_ge_eq: "(\x. R x x) \ (=) \ R" by auto lemma ge_eq_refl: "(=) \ R \ R x x" by auto lemma reflp_eq: "reflp R = ((=) \ R)" by (auto simp: reflp_def fun_eq_iff) lemma transp_relcompp: "transp r \ r OO r \ r" by (auto simp: transp_def) lemma symp_conversep: "symp R = (R\\ \ R)" by (auto simp: symp_def fun_eq_iff) lemma diag_imp_eq_le: "(\x. x \ A \ R x x) \ \x y. x \ A \ y \ A \ x = y \ R x y" by blast definition eq_onp :: "('a \ bool) \ 'a \ 'a \ bool" where "eq_onp R = (\x y. R x \ x = y)" lemma eq_onp_Grp: "eq_onp P = BNF_Def.Grp (Collect P) id" unfolding eq_onp_def Grp_def by auto lemma eq_onp_to_eq: "eq_onp P x y \ x = y" by (simp add: eq_onp_def) lemma eq_onp_top_eq_eq: "eq_onp top = (=)" by (simp add: eq_onp_def) lemma eq_onp_same_args: "eq_onp P x x = P x" by (auto simp add: eq_onp_def) lemma eq_onp_eqD: "eq_onp P = Q \ P x = Q x x" unfolding eq_onp_def by blast lemma Ball_Collect: "Ball A P = (A \ (Collect P))" by auto lemma eq_onp_mono0: "\x\A. P x \ Q x \ \x\A. \y\A. eq_onp P x y \ eq_onp Q x y" unfolding eq_onp_def by auto lemma eq_onp_True: "eq_onp (\_. True) = (=)" unfolding eq_onp_def by simp lemma Ball_image_comp: "Ball (f ` A) g = Ball A (g \ f)" by auto lemma rel_fun_Collect_case_prodD: "rel_fun A B f g \ X \ Collect (case_prod A) \ x \ X \ B ((f \ fst) x) ((g \ snd) x)" unfolding rel_fun_def by auto lemma eq_onp_mono_iff: "eq_onp P \ eq_onp Q \ P \ Q" unfolding eq_onp_def by auto ML_file \Tools/BNF/bnf_util.ML\ ML_file \Tools/BNF/bnf_tactics.ML\ ML_file \Tools/BNF/bnf_def_tactics.ML\ ML_file \Tools/BNF/bnf_def.ML\ end