diff --git a/src/HOL/SMT_Examples/SMT_Examples_Verit.thy b/src/HOL/SMT_Examples/SMT_Examples_Verit.thy --- a/src/HOL/SMT_Examples/SMT_Examples_Verit.thy +++ b/src/HOL/SMT_Examples/SMT_Examples_Verit.thy @@ -1,741 +1,740 @@ (* Title: HOL/SMT_Examples/SMT_Examples_Verit.thy Author: Sascha Boehme, TU Muenchen Author: Mathias Fleury, JKU Half of the examples come from the corresponding file for z3, the others come from the Isabelle distribution or the AFP. *) section \Examples for the (smt (verit)) binding\ theory SMT_Examples_Verit imports Complex_Main begin external_file \SMT_Examples_Verit.certs\ declare [[smt_certificates = "SMT_Examples_Verit.certs"]] declare [[smt_read_only_certificates = true]] section \Propositional and first-order logic\ lemma "True" by (smt (verit)) lemma "p \ \p" by (smt (verit)) lemma "(p \ True) = p" by (smt (verit)) lemma "(p \ q) \ \p \ q" by (smt (verit)) lemma "(a \ b) \ (c \ d) \ (a \ b) \ (c \ d)" by (smt (verit)) lemma "(p1 \ p2) \ p3 \ (p1 \ (p3 \ p2) \ (p1 \ p3)) \ p1" by (smt (verit)) lemma "P = P = P = P = P = P = P = P = P = P" by (smt (verit)) lemma assumes "a \ b \ c \ d" and "e \ f \ (a \ d)" and "\ (a \ (c \ ~c)) \ b" and "\ (b \ (x \ \ x)) \ c" and "\ (d \ False) \ c" and "\ (c \ (\ p \ (p \ (q \ \ q))))" shows False using assms by (smt (verit)) axiomatization symm_f :: "'a \ 'a \ 'a" where symm_f: "symm_f x y = symm_f y x" lemma "a = a \ symm_f a b = symm_f b a" by (smt (verit) symm_f) (* Taken from ~~/src/HOL/ex/SAT_Examples.thy. Translated from TPTP problem library: PUZ015-2.006.dimacs *) lemma assumes "~x0" and "~x30" and "~x29" and "~x59" and "x1 \ x31 \ x0" and "x2 \ x32 \ x1" and "x3 \ x33 \ x2" and "x4 \ x34 \ x3" and "x35 \ x4" and "x5 \ x36 \ x30" and "x6 \ x37 \ x5 \ x31" and "x7 \ x38 \ x6 \ x32" and "x8 \ x39 \ x7 \ x33" and "x9 \ x40 \ x8 \ x34" and "x41 \ x9 \ x35" and "x10 \ x42 \ x36" and "x11 \ x43 \ x10 \ x37" and "x12 \ x44 \ x11 \ x38" and "x13 \ x45 \ x12 \ x39" and "x14 \ x46 \ x13 \ x40" and "x47 \ x14 \ x41" and "x15 \ x48 \ x42" and "x16 \ x49 \ x15 \ x43" and "x17 \ x50 \ x16 \ x44" and "x18 \ x51 \ x17 \ x45" and "x19 \ x52 \ x18 \ x46" and "x53 \ x19 \ x47" and "x20 \ x54 \ x48" and "x21 \ x55 \ x20 \ x49" and "x22 \ x56 \ x21 \ x50" and "x23 \ x57 \ x22 \ x51" and "x24 \ x58 \ x23 \ x52" and "x59 \ x24 \ x53" and "x25 \ x54" and "x26 \ x25 \ x55" and "x27 \ x26 \ x56" and "x28 \ x27 \ x57" and "x29 \ x28 \ x58" and "~x1 \ ~x31" and "~x1 \ ~x0" and "~x31 \ ~x0" and "~x2 \ ~x32" and "~x2 \ ~x1" and "~x32 \ ~x1" and "~x3 \ ~x33" and "~x3 \ ~x2" and "~x33 \ ~x2" and "~x4 \ ~x34" and "~x4 \ ~x3" and "~x34 \ ~x3" and "~x35 \ ~x4" and "~x5 \ ~x36" and "~x5 \ ~x30" and "~x36 \ ~x30" and "~x6 \ ~x37" and "~x6 \ ~x5" and "~x6 \ ~x31" and "~x37 \ ~x5" and "~x37 \ ~x31" and "~x5 \ ~x31" and "~x7 \ ~x38" and "~x7 \ ~x6" and "~x7 \ ~x32" and "~x38 \ ~x6" and "~x38 \ ~x32" and "~x6 \ ~x32" and "~x8 \ ~x39" and "~x8 \ ~x7" and "~x8 \ ~x33" and "~x39 \ ~x7" and "~x39 \ ~x33" and "~x7 \ ~x33" and "~x9 \ ~x40" and "~x9 \ ~x8" and "~x9 \ ~x34" and "~x40 \ ~x8" and "~x40 \ ~x34" and "~x8 \ ~x34" and "~x41 \ ~x9" and "~x41 \ ~x35" and "~x9 \ ~x35" and "~x10 \ ~x42" and "~x10 \ ~x36" and "~x42 \ ~x36" and "~x11 \ ~x43" and "~x11 \ ~x10" and "~x11 \ ~x37" and "~x43 \ ~x10" and "~x43 \ ~x37" and "~x10 \ ~x37" and "~x12 \ ~x44" and "~x12 \ ~x11" and "~x12 \ ~x38" and "~x44 \ ~x11" and "~x44 \ ~x38" and "~x11 \ ~x38" and "~x13 \ ~x45" and "~x13 \ ~x12" and "~x13 \ ~x39" and "~x45 \ ~x12" and "~x45 \ ~x39" and "~x12 \ ~x39" and "~x14 \ ~x46" and "~x14 \ ~x13" and "~x14 \ ~x40" and "~x46 \ ~x13" and "~x46 \ ~x40" and "~x13 \ ~x40" and "~x47 \ ~x14" and "~x47 \ ~x41" and "~x14 \ ~x41" and "~x15 \ ~x48" and "~x15 \ ~x42" and "~x48 \ ~x42" and "~x16 \ ~x49" and "~x16 \ ~x15" and "~x16 \ ~x43" and "~x49 \ ~x15" and "~x49 \ ~x43" and "~x15 \ ~x43" and "~x17 \ ~x50" and "~x17 \ ~x16" and "~x17 \ ~x44" and "~x50 \ ~x16" and "~x50 \ ~x44" and "~x16 \ ~x44" and "~x18 \ ~x51" and "~x18 \ ~x17" and "~x18 \ ~x45" and "~x51 \ ~x17" and "~x51 \ ~x45" and "~x17 \ ~x45" and "~x19 \ ~x52" and "~x19 \ ~x18" and "~x19 \ ~x46" and "~x52 \ ~x18" and "~x52 \ ~x46" and "~x18 \ ~x46" and "~x53 \ ~x19" and "~x53 \ ~x47" and "~x19 \ ~x47" and "~x20 \ ~x54" and "~x20 \ ~x48" and "~x54 \ ~x48" and "~x21 \ ~x55" and "~x21 \ ~x20" and "~x21 \ ~x49" and "~x55 \ ~x20" and "~x55 \ ~x49" and "~x20 \ ~x49" and "~x22 \ ~x56" and "~x22 \ ~x21" and "~x22 \ ~x50" and "~x56 \ ~x21" and "~x56 \ ~x50" and "~x21 \ ~x50" and "~x23 \ ~x57" and "~x23 \ ~x22" and "~x23 \ ~x51" and "~x57 \ ~x22" and "~x57 \ ~x51" and "~x22 \ ~x51" and "~x24 \ ~x58" and "~x24 \ ~x23" and "~x24 \ ~x52" and "~x58 \ ~x23" and "~x58 \ ~x52" and "~x23 \ ~x52" and "~x59 \ ~x24" and "~x59 \ ~x53" and "~x24 \ ~x53" and "~x25 \ ~x54" and "~x26 \ ~x25" and "~x26 \ ~x55" and "~x25 \ ~x55" and "~x27 \ ~x26" and "~x27 \ ~x56" and "~x26 \ ~x56" and "~x28 \ ~x27" and "~x28 \ ~x57" and "~x27 \ ~x57" and "~x29 \ ~x28" and "~x29 \ ~x58" and "~x28 \ ~x58" shows False using assms by (smt (verit)) lemma "\x::int. P x \ (\y::int. P x \ P y)" by (smt (verit)) lemma assumes "(\x y. P x y = x)" shows "(\y. P x y) = P x c" using assms by (smt (verit)) lemma assumes "(\x y. P x y = x)" and "(\x. \y. P x y) = (\x. P x c)" shows "(\y. P x y) = P x c" using assms by (smt (verit)) lemma assumes "if P x then \(\y. P y) else (\y. \P y)" shows "P x \ P y" using assms by (smt (verit)) section \Arithmetic\ subsection \Linear arithmetic over integers and reals\ lemma "(3::int) = 3" by (smt (verit)) lemma "(3::real) = 3" by (smt (verit)) lemma "(3 :: int) + 1 = 4" by (smt (verit)) lemma "x + (y + z) = y + (z + (x::int))" by (smt (verit)) lemma "max (3::int) 8 > 5" by (smt (verit)) lemma "\x :: real\ + \y\ \ \x + y\" by (smt (verit)) lemma "P ((2::int) < 3) = P True" supply[[smt_trace]] by (smt (verit)) lemma "x + 3 \ 4 \ x < (1::int)" by (smt (verit)) lemma assumes "x \ (3::int)" and "y = x + 4" shows "y - x > 0" using assms by (smt (verit)) lemma "let x = (2 :: int) in x + x \ 5" by (smt (verit)) lemma fixes x :: int assumes "3 * x + 7 * a < 4" and "3 < 2 * x" shows "a < 0" using assms by (smt (verit)) lemma "(0 \ y + -1 * x \ \ 0 \ x \ 0 \ (x::int)) = (\ False)" by (smt (verit)) lemma " (n < m \ m < n') \ (n < m \ m = n') \ (n < n' \ n' < m) \ (n = n' \ n' < m) \ (n = m \ m < n') \ (n' < m \ m < n) \ (n' < m \ m = n) \ (n' < n \ n < m) \ (n' = n \ n < m) \ (n' = m \ m < n) \ (m < n \ n < n') \ (m < n \ n' = n) \ (m < n' \ n' < n) \ (m = n \ n < n') \ (m = n' \ n' < n) \ (n' = m \ m = (n::int))" by (smt (verit)) text\ The following example was taken from HOL/ex/PresburgerEx.thy, where it says: This following theorem proves that all solutions to the recurrence relation $x_{i+2} = |x_{i+1}| - x_i$ are periodic with period 9. The example was brought to our attention by John Harrison. It does does not require Presburger arithmetic but merely quantifier-free linear arithmetic and holds for the rationals as well. Warning: it takes (in 2006) over 4.2 minutes! There, it is proved by "arith". (smt (verit)) is able to prove this within a fraction of one second. With proof reconstruction, it takes about 13 seconds on a Core2 processor. \ lemma "\ x3 = \x2\ - x1; x4 = \x3\ - x2; x5 = \x4\ - x3; x6 = \x5\ - x4; x7 = \x6\ - x5; x8 = \x7\ - x6; x9 = \x8\ - x7; x10 = \x9\ - x8; x11 = \x10\ - x9 \ \ x1 = x10 \ x2 = (x11::int)" - supply [[smt_timeout=360]] by (smt (verit)) lemma "let P = 2 * x + 1 > x + (x::real) in P \ False \ P" by (smt (verit)) subsection \Linear arithmetic with quantifiers\ lemma "~ (\x::int. False)" by (smt (verit)) lemma "~ (\x::real. False)" by (smt (verit)) lemma "\x y::int. (x = 0 \ y = 1) \ x \ y" by (smt (verit)) lemma "\x y::int. x < y \ (2 * x + 1) < (2 * y)" by (smt (verit)) lemma "\x y::int. x + y > 2 \ x + y = 2 \ x + y < 2" by (smt (verit)) lemma "\x::int. if x > 0 then x + 1 > 0 else 1 > x" by (smt (verit)) lemma "(if (\x::int. x < 0 \ x > 0) then -1 else 3) > (0::int)" by (smt (verit)) lemma "\x::int. \x y. 0 < x \ 0 < y \ (0::int) < x + y" by (smt (verit)) lemma "\u::int. \(x::int) y::real. 0 < x \ 0 < y \ -1 < x" by (smt (verit)) lemma "\(a::int) b::int. 0 < b \ b < 1" by (smt (verit)) subsection \Linear arithmetic for natural numbers\ declare [[smt_nat_as_int]] lemma "2 * (x::nat) \ 1" by (smt (verit)) lemma "a < 3 \ (7::nat) > 2 * a" by (smt (verit)) lemma "let x = (1::nat) + y in x - y > 0 * x" by (smt (verit)) lemma "let x = (1::nat) + y in let P = (if x > 0 then True else False) in False \ P = (x - 1 = y) \ (\P \ False)" by (smt (verit)) lemma "int (nat \x::int\) = \x\" by (smt (verit) int_nat_eq) definition prime_nat :: "nat \ bool" where "prime_nat p = (1 < p \ (\m. m dvd p --> m = 1 \ m = p))" lemma "prime_nat (4*m + 1) \ m \ (1::nat)" by (smt (verit) prime_nat_def) lemma "2 * (x::nat) \ 1" by (smt (verit)) lemma \2*(x :: int) \ 1\ by (smt (verit)) declare [[smt_nat_as_int = false]] section \Pairs\ lemma "fst (x, y) = a \ x = a" using fst_conv by (smt (verit)) lemma "p1 = (x, y) \ p2 = (y, x) \ fst p1 = snd p2" using fst_conv snd_conv by (smt (verit)) section \Higher-order problems and recursion\ lemma "i \ i1 \ i \ i2 \ (f (i1 := v1, i2 := v2)) i = f i" using fun_upd_same fun_upd_apply by (smt (verit)) lemma "(f g (x::'a::type) = (g x \ True)) \ (f g x = True) \ (g x = True)" by (smt (verit)) lemma "id x = x \ id True = True" by (smt (verit) id_def) lemma "i \ i1 \ i \ i2 \ ((f (i1 := v1)) (i2 := v2)) i = f i" using fun_upd_same fun_upd_apply by (smt (verit)) lemma "f (\x. g x) \ True" "f (\x. g x) \ True" by (smt (verit))+ lemma True using let_rsp by (smt (verit)) lemma "le = (\) \ le (3::int) 42" by (smt (verit)) lemma "map (\i::int. i + 1) [0, 1] = [1, 2]" by (smt (verit) list.map) lemma "(\x. P x) \ \ All P" by (smt (verit)) fun dec_10 :: "int \ int" where "dec_10 n = (if n < 10 then n else dec_10 (n - 10))" lemma "dec_10 (4 * dec_10 4) = 6" by (smt (verit) dec_10.simps) context complete_lattice begin lemma assumes "Sup {a | i::bool. True} \ Sup {b | i::bool. True}" and "Sup {b | i::bool. True} \ Sup {a | i::bool. True}" shows "Sup {a | i::bool. True} \ Sup {a | i::bool. True}" using assms by (smt (verit) order_trans) end lemma "eq_set (List.coset xs) (set ys) = rhs" if "\ys. subset' (List.coset xs) (set ys) = (let n = card (UNIV::'a set) in 0 < n \ card (set (xs @ ys)) = n)" and "\uu A. (uu::'a) \ - A \ uu \ A" and "\uu. card (set (uu::'a list)) = length (remdups uu)" and "\uu. finite (set (uu::'a list))" and "\uu. (uu::'a) \ UNIV" and "(UNIV::'a set) \ {}" and "\c A B P. \(c::'a) \ A \ B; c \ A \ P; c \ B \ P\ \ P" and "\a b. (a::nat) + b = b + a" and "\a b. ((a::nat) = a + b) = (b = 0)" and "card' (set xs) = length (remdups xs)" and "card' = (card :: 'a set \ nat)" and "\A B. \finite (A::'a set); finite B\ \ card A + card B = card (A \ B) + card (A \ B)" and "\A. (card (A::'a set) = 0) = (A = {} \ infinite A)" and "\A. \finite (UNIV::'a set); card (A::'a set) = card (UNIV::'a set)\ \ A = UNIV" and "\xs. - List.coset (xs::'a list) = set xs" and "\xs. - set (xs::'a list) = List.coset xs" and "\A B. (A \ B = {}) = (\x. (x::'a) \ A \ x \ B)" and "eq_set = (=)" and "\A. finite (A::'a set) \ finite (- A) = finite (UNIV::'a set)" and "rhs \ let n = card (UNIV::'a set) in if n = 0 then False else let xs' = remdups xs; ys' = remdups ys in length xs' + length ys' = n \ (\x\set xs'. x \ set ys') \ (\y\set ys'. y \ set xs')" and "\xs ys. set ((xs::'a list) @ ys) = set xs \ set ys" and "\A B. ((A::'a set) = B) = (A \ B \ B \ A)" and "\xs. set (remdups (xs::'a list)) = set xs" and "subset' = (\)" and "\A B. (\x. (x::'a) \ A \ x \ B) \ A \ B" and "\A B. \(A::'a set) \ B; B \ A\ \ A = B" and "\A ys. (A \ List.coset ys) = (\y\set ys. (y::'a) \ A)" using that by (smt (verit, default)) notepad begin have "line_integral F {i, j} g = line_integral F {i} g + line_integral F {j} g" if \(k, g) \ one_chain_typeI\ \\A b B. ({} = (A::(real \ real) set) \ insert (b::real \ real) (B::(real \ real) set)) = (b \ A \ {} = A \ B)\ \finite ({} :: (real \ real) set)\ \\a A. finite (A::(real \ real) set) \ finite (insert (a::real \ real) A)\ \(i::real \ real) = (1::real, 0::real)\ \ \a A. (a::real \ real) \ (A::(real \ real) set) \ insert a A = A\ \j = (0, 1)\ \\x. (x::(real \ real) set) \ {} = {}\ \\y x A. insert (x::real \ real) (insert (y::real \ real) (A::(real \ real) set)) = insert y (insert x A)\ \\a A. insert (a::real \ real) (A::(real \ real) set) = {a} \ A\ \\F u basis2 basis1 \. finite (u :: (real \ real) set) \ line_integral_exists F basis1 \ \ line_integral_exists F basis2 \ \ basis1 \ basis2 = u \ basis1 \ basis2 = {} \ line_integral F u \ = line_integral F basis1 \ + line_integral F basis2 \\ \one_chain_line_integral F {i} one_chain_typeI = one_chain_line_integral F {i} one_chain_typeII \ (\(k, \)\one_chain_typeI. line_integral_exists F {i} \) \ (\(k, \)\one_chain_typeII. line_integral_exists F {i} \)\ \ one_chain_line_integral (F::real \ real \ real \ real) {j::real \ real} (one_chain_typeII::(int \ (real \ real \ real)) set) = one_chain_line_integral F {j} (one_chain_typeI::(int \ (real \ real \ real)) set) \ (\(k::int, \::real \ real \ real)\one_chain_typeII. line_integral_exists F {j} \) \ (\(k::int, \::real \ real \ real)\one_chain_typeI. line_integral_exists F {j} \)\ for F i j g one_chain_typeI one_chain_typeII and line_integral :: \(real \ real \ real \ real) \ (real \ real) set \ (real \ real \ real) \ real\ and line_integral_exists :: \(real \ real \ real \ real) \ (real \ real) set \ (real \ real \ real) \ bool\ and one_chain_line_integral :: \(real \ real \ real \ real) \ (real \ real) set \ (int \ (real \ real \ real)) set \ real\ and k using prod.case_eq_if singleton_inject snd_conv that by (smt (verit)) end lemma fixes x y z :: real assumes \x + 2 * y > 0\ and \x - 2 * y > 0\ and \x < 0\ shows False using assms by (smt (verit)) (*test for arith reconstruction*) lemma fixes d :: real assumes \0 < d\ \diamond_y \ \t. d / 2 - \t\\ \\a b c :: real. (a / c < b / c) = ((0 < c \ a < b) \ (c < 0 \ b < a) \ c \ 0)\ \\a b c :: real. (a / c < b / c) = ((0 < c \ a < b) \ (c < 0 \ b < a) \ c \ 0)\ \\a b :: real. - a / b = - (a / b)\ \\a b :: real. - a * b = - (a * b)\ \\(x1 :: real) x2 y1 y2 :: real. ((x1, x2) = (y1, y2)) = (x1 = y1 \ x2 = y2)\ shows \(\y. (d / 2, (2 * y - 1) * diamond_y (d / 2))) \ (\x. ((x - 1 / 2) * d, - diamond_y ((x - 1 / 2) * d))) \ (\y. (- (d / 2), (2 * y - 1) * diamond_y (- (d / 2)))) = (\x. ((x - 1 / 2) * d, diamond_y ((x - 1 / 2) * d))) \ False\ using assms by (smt (verit,del_insts)) lemma fixes d :: real assumes \0 < d\ \diamond_y \ \t. d / 2 - \t\\ \\a b c :: real. (a / c < b / c) = ((0 < c \ a < b) \ (c < 0 \ b < a) \ c \ 0)\ \\a b c :: real. (a / c < b / c) = ((0 < c \ a < b) \ (c < 0 \ b < a) \ c \ 0)\ \\a b :: real. - a / b = - (a / b)\ \\a b :: real. - a * b = - (a * b)\ \\(x1 :: real) x2 y1 y2 :: real. ((x1, x2) = (y1, y2)) = (x1 = y1 \ x2 = y2)\ shows \(\y. (d / 2, (2 * y - 1) * diamond_y (d / 2))) \ (\x. ((x - 1 / 2) * d, - diamond_y ((x - 1 / 2) * d))) \ (\y. (- (d / 2), (2 * y - 1) * diamond_y (- (d / 2)))) = (\x. ((x - 1 / 2) * d, diamond_y ((x - 1 / 2) * d))) \ False\ using assms by (smt (verit,ccfv_threshold)) (*qnt_rm_unused example*) lemma assumes \\z y x. P z y\ \P z y \ False\ shows False using assms by (smt (verit)) lemma "max (x::int) y \ y" supply [[smt_trace]] by (smt (verit))+ context begin abbreviation finite' :: "'a set \ bool" where "finite' A \ finite A \ A \ {}" lemma fixes f :: "'b \ 'c :: linorder" assumes \\(S::'b::type set) f::'b::type \ 'c::linorder. finite' S \ arg_min_on f S \ S\ \\(S::'a::type set) f::'a::type \ 'c::linorder. finite' S \ arg_min_on f S \ S\ \\(S::'b::type set) (y::'b::type) f::'b::type \ 'c::linorder. finite S \ S \ {} \ y \ S \ f (arg_min_on f S) \ f y\ \\(S::'a::type set) (y::'a::type) f::'a::type \ 'c::linorder. finite S \ S \ {} \ y \ S \ f (arg_min_on f S) \ f y\ \\(f::'b::type \ 'c::linorder) (g::'a::type \ 'b::type) x::'a::type. (f \ g) x = f (g x)\ \\(F::'b::type set) h::'b::type \ 'a::type. finite F \ finite (h ` F)\ \\(F::'b::type set) h::'b::type \ 'b::type. finite F \ finite (h ` F)\ \\(F::'a::type set) h::'a::type \ 'b::type. finite F \ finite (h ` F)\ \\(F::'a::type set) h::'a::type \ 'a::type. finite F \ finite (h ` F)\ \\(b::'a::type) (f::'b::type \ 'a::type) A::'b::type set. b \ f ` A \ (\x::'b::type. b = f x \ x \ A \ False) \ False\ \\(b::'b::type) (f::'b::type \ 'b::type) A::'b::type set. b \ f ` A \ (\x::'b::type. b = f x \ x \ A \ False) \ False\ \\(b::'b::type) (f::'a::type \ 'b::type) A::'a::type set. b \ f ` A \ (\x::'a::type. b = f x \ x \ A \ False) \ False\ \\(b::'a::type) (f::'a::type \ 'a::type) A::'a::type set. b \ f ` A \ (\x::'a::type. b = f x \ x \ A \ False) \ False\ \\(b::'a::type) (f::'b::type \ 'a::type) (x::'b::type) A::'b::type set. b = f x \ x \ A \ b \ f ` A \ \\(b::'b::type) (f::'b::type \ 'b::type) (x::'b::type) A::'b::type set. b = f x \ x \ A \ b \ f ` A \ \\(b::'b::type) (f::'a::type \ 'b::type) (x::'a::type) A::'a::type set. b = f x \ x \ A \ b \ f ` A \ \\(b::'a::type) (f::'a::type \ 'a::type) (x::'a::type) A::'a::type set. b = f x \ x \ A \ b \ f ` A \ \\(f::'b::type \ 'a::type) A::'b::type set. (f ` A = {}) = (A = {}) \ \\(f::'b::type \ 'b::type) A::'b::type set. (f ` A = {}) = (A = {}) \ \\(f::'a::type \ 'b::type) A::'a::type set. (f ` A = {}) = (A = {}) \ \\(f::'a::type \ 'a::type) A::'a::type set. (f ` A = {}) = (A = {}) \ \\(f::'b::type \ 'c::linorder) (A::'b::type set) (x::'b::type) y::'b::type. inj_on f A \ f x = f y \ x \ A \ y \ A \ x = y\ \\(x::'c::linorder) y::'c::linorder. (x < y) = (x \ y \ x \ y)\ \inj_on (f::'b::type \ 'c::linorder) ((g::'a::type \ 'b::type) ` (B::'a::type set))\ \finite (B::'a::type set)\ \(B::'a::type set) \ {}\ \arg_min_on ((f::'b::type \ 'c::linorder) \ (g::'a::type \ 'b::type)) (B::'a::type set) \ B\ \\x::'a::type. x \ (B::'a::type set) \ ((f::'b::type \ 'c::linorder) \ (g::'a::type \ 'b::type)) x < (f \ g) (arg_min_on (f \ g) B)\ \\(f::'b::type \ 'c::linorder) (P::'b::type \ bool) a::'b::type. inj_on f (Collect P) \ P a \ (\y::'b::type. P y \ f a \ f y) \ arg_min f P = a\ \\(S::'b::type set) f::'b::type \ 'c::linorder. finite' S \ arg_min_on f S \ S\ \\(S::'a::type set) f::'a::type \ 'c::linorder. finite' S \ arg_min_on f S \ S\ \\(S::'b::type set) (y::'b::type) f::'b::type \ 'c::linorder. finite S \ S \ {} \ y \ S \ f (arg_min_on f S) \ f y\ \\(S::'a::type set) (y::'a::type) f::'a::type \ 'c::linorder. finite S \ S \ {} \ y \ S \ f (arg_min_on f S) \ f y\ \\(f::'b::type \ 'c::linorder) (g::'a::type \ 'b::type) x::'a::type. (f \ g) x = f (g x)\ \\(F::'b::type set) h::'b::type \ 'a::type. finite F \ finite (h ` F)\ \\(F::'b::type set) h::'b::type \ 'b::type. finite F \ finite (h ` F)\ \\(F::'a::type set) h::'a::type \ 'b::type. finite F \ finite (h ` F)\ \\(F::'a::type set) h::'a::type \ 'a::type. finite F \ finite (h ` F)\ \\(b::'a::type) (f::'b::type \ 'a::type) A::'b::type set. b \ f ` A \ (\x::'b::type. b = f x \ x \ A \ False) \ False\ \\(b::'b::type) (f::'b::type \ 'b::type) A::'b::type set. b \ f ` A \ (\x::'b::type. b = f x \ x \ A \ False) \ False\ \\(b::'b::type) (f::'a::type \ 'b::type) A::'a::type set. b \ f ` A \ (\x::'a::type. b = f x \ x \ A \ False) \ False\ \\(b::'a::type) (f::'a::type \ 'a::type) A::'a::type set. b \ f ` A \ (\x::'a::type. b = f x \ x \ A \ False) \ False\ \\(b::'a::type) (f::'b::type \ 'a::type) (x::'b::type) A::'b::type set. b = f x \ x \ A \ b \ f ` A \ \\(b::'b::type) (f::'b::type \ 'b::type) (x::'b::type) A::'b::type set. b = f x \ x \ A \ b \ f ` A \ \\(b::'b::type) (f::'a::type \ 'b::type) (x::'a::type) A::'a::type set. b = f x \ x \ A \ b \ f ` A \ \\(b::'a::type) (f::'a::type \ 'a::type) (x::'a::type) A::'a::type set. b = f x \ x \ A \ b \ f ` A \ \\(f::'b::type \ 'a::type) A::'b::type set. (f ` A = {}) = (A = {}) \ \\(f::'b::type \ 'b::type) A::'b::type set. (f ` A = {}) = (A = {}) \ \\(f::'a::type \ 'b::type) A::'a::type set. (f ` A = {}) = (A = {}) \ \\(f::'a::type \ 'a::type) A::'a::type set. (f ` A = {}) = (A = {})\ \\(f::'b::type \ 'c::linorder) (A::'b::type set) (x::'b::type) y::'b::type. inj_on f A \ f x = f y \ x \ A \ y \ A \ x = y\ \\(x::'c::linorder) y::'c::linorder. (x < y) = (x \ y \ x \ y)\ \arg_min_on (f::'b::type \ 'c::linorder) ((g::'a::type \ 'b::type) ` (B::'a::type set)) \ g (arg_min_on (f \ g) B) \ shows False using assms by (smt (verit)) end experiment begin private datatype abort = Rtype_error | Rtimeout_error private datatype ('a) error_result = Rraise " 'a " \ \\ Should only be a value of type exn \\ | Rabort " abort " private datatype( 'a, 'b) result = Rval " 'a " | Rerr " ('b) error_result " lemma fixes clock :: \'astate \ nat\ and fun_evaluate_match :: \'astate \ 'vsemv_env \ _ \ ('pat \ 'exp0) list \ _ \ 'astate*((('v)list),('v))result\ assumes " fix_clock (st::'astate) (fun_evaluate st (env::'vsemv_env) [e::'exp0]) = (st'::'astate, r::('v list, 'v) result)" " clock (fst (fun_evaluate (st::'astate) (env::'vsemv_env) [e::'exp0])) \ clock st" "\(b::nat) (a::nat) c::nat. b \ a \ c \ b \ c \ a" "\(a::'astate) p::'astate \ ('v list, 'v) result. (a = fst p) = (\b::('v list, 'v) result. p = (a, b))" "\y::'v error_result. (\x1::'v. y = Rraise x1 \ False) \ (\x2::abort. y = Rabort x2 \ False) \ False" "\(f1::'v \ 'astate \ ('v list, 'v) result) (f2::abort \ 'astate \ ('v list, 'v) result) x1::'v. (case Rraise x1 of Rraise (x::'v) \ f1 x | Rabort (x::abort) \ f2 x) = f1 x1" " \(f1::'v \ 'astate \ ('v list, 'v) result) (f2::abort \ 'astate \ ('v list, 'v) result) x2::abort. (case Rabort x2 of Rraise (x::'v) \ f1 x | Rabort (x::abort) \ f2 x) = f2 x2" "\(s1::'astate) (s2::'astate) (x::('v list, 'v) result) s::'astate. fix_clock s1 (s2, x) = (s, x) \ clock s \ clock s2" "\(s::'astate) (s'::'astate) res::('v list, 'v) result. fix_clock s (s', res) = (update_clock (\_::nat. if clock s' \ clock s then clock s' else clock s) s', res)" "\(x2::'v error_result) x1::'v. (r::('v list, 'v) result) = Rerr x2 \ x2 = Rraise x1 \ clock (fst (fun_evaluate_match (st'::'astate) (env::'vsemv_env) x1 (pes::('pat \ 'exp0) list) x1)) \ clock st'" shows "((r::('v list, 'v) result) = Rerr (x2::'v error_result) \ clock (fst (case x2 of Rraise (v2::'v) \ fun_evaluate_match (st'::'astate) (env::'vsemv_env) v2 (pes::('pat \ 'exp0) list) v2 | Rabort (abort::abort) \ (st', Rerr (Rabort abort)))) \ clock (st::'astate)) " using assms by (smt (verit)) end context fixes piecewise_C1 :: "('real :: {one,zero,ord} \ 'a :: {one,zero,ord}) \ 'real set \ bool" and joinpaths :: "('real \ 'a) \ ('real \ 'a) \ 'real \ 'a" begin notation piecewise_C1 (infixr "piecewise'_C1'_differentiable'_on" 50) notation joinpaths (infixr "+++" 75) lemma \(\v1. \v0. (rec_join v0 = v1 \ (v0 = [] \ (\uu. 0) = v1 \ False) \ (\v2. v0 = [v2] \ v1 = coeff_cube_to_path v2 \ False) \ (\v2 v3 v4. v0 = v2 # v3 # v4 \ v1 = coeff_cube_to_path v2 +++ rec_join (v3 # v4) \ False) \ False) = (rec_join v0 = rec_join v0 \ (v0 = [] \ (\uu. 0) = rec_join v0 \ False) \ (\v2. v0 = [v2] \ rec_join v0 = coeff_cube_to_path v2 \ False) \ (\v2 v3 v4. v0 = v2 # v3 # v4 \ rec_join v0 = coeff_cube_to_path v2 +++ rec_join (v3 # v4) \ False) \ False)) \ (\v0 v1. rec_join v0 = v1 \ (v0 = [] \ (\uu. 0) = v1 \ False) \ (\v2. v0 = [v2] \ v1 = coeff_cube_to_path v2 \ False) \ (\v2 v3 v4. v0 = v2 # v3 # v4 \ v1 = coeff_cube_to_path v2 +++ rec_join (v3 # v4) \ False) \ False) = (\v0. rec_join v0 = rec_join v0 \ (v0 = [] \ (\uu. 0) = rec_join v0 \ False) \ (\v2. v0 = [v2] \ rec_join v0 = coeff_cube_to_path v2 \ False) \ (\v2 v3 v4. v0 = v2 # v3 # v4 \ rec_join v0 = coeff_cube_to_path v2 +++ rec_join (v3 # v4) \ False) \ False)\ by (smt (verit)) end section \Monomorphization examples\ definition Pred :: "'a \ bool" where "Pred x = True" lemma poly_Pred: "Pred x \ (Pred [x] \ \ Pred [x])" by (simp add: Pred_def) lemma "Pred (1::int)" by (smt (verit) poly_Pred) axiomatization g :: "'a \ nat" axiomatization where g1: "g (Some x) = g [x]" and g2: "g None = g []" and g3: "g xs = length xs" lemma "g (Some (3::int)) = g (Some True)" by (smt (verit) g1 g2 g3 list.size) end \ No newline at end of file