diff --git a/src/HOL/Analysis/Affine.thy b/src/HOL/Analysis/Affine.thy --- a/src/HOL/Analysis/Affine.thy +++ b/src/HOL/Analysis/Affine.thy @@ -1,1641 +1,1639 @@ section "Affine Sets" theory Affine imports Linear_Algebra begin lemma if_smult: "(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by (fact if_distrib) lemma sum_delta_notmem: assumes "x \ s" shows "sum (\y. if (y = x) then P x else Q y) s = sum Q s" and "sum (\y. if (x = y) then P x else Q y) s = sum Q s" and "sum (\y. if (y = x) then P y else Q y) s = sum Q s" and "sum (\y. if (x = y) then P y else Q y) s = sum Q s" apply (rule_tac [!] sum.cong) using assms apply auto done lemmas independent_finite = independent_imp_finite lemma span_substd_basis: assumes d: "d \ Basis" shows "span d = {x. \i\Basis. i \ d \ x\i = 0}" (is "_ = ?B") proof - have "d \ ?B" using d by (auto simp: inner_Basis) moreover have s: "subspace ?B" using subspace_substandard[of "\i. i \ d"] . ultimately have "span d \ ?B" using span_mono[of d "?B"] span_eq_iff[of "?B"] by blast moreover have *: "card d \ dim (span d)" using independent_card_le_dim[of d "span d"] independent_substdbasis[OF assms] span_superset[of d] by auto moreover from * have "dim ?B \ dim (span d)" using dim_substandard[OF assms] by auto ultimately show ?thesis using s subspace_dim_equal[of "span d" "?B"] subspace_span[of d] by auto qed lemma basis_to_substdbasis_subspace_isomorphism: fixes B :: "'a::euclidean_space set" assumes "independent B" shows "\f d::'a set. card d = card B \ linear f \ f ` B = d \ f ` span B = {x. \i\Basis. i \ d \ x \ i = 0} \ inj_on f (span B) \ d \ Basis" proof - have B: "card B = dim B" using dim_unique[of B B "card B"] assms span_superset[of B] by auto have "dim B \ card (Basis :: 'a set)" using dim_subset_UNIV[of B] by simp from ex_card[OF this] obtain d :: "'a set" where d: "d \ Basis" and t: "card d = dim B" by auto let ?t = "{x::'a::euclidean_space. \i\Basis. i \ d \ x\i = 0}" have "\f. linear f \ f ` B = d \ f ` span B = ?t \ inj_on f (span B)" proof (intro basis_to_basis_subspace_isomorphism subspace_span subspace_substandard span_superset) show "d \ {x. \i\Basis. i \ d \ x \ i = 0}" using d inner_not_same_Basis by blast qed (auto simp: span_substd_basis independent_substdbasis dim_substandard d t B assms) with t \card B = dim B\ d show ?thesis by auto qed subsection \Affine set and affine hull\ definition\<^marker>\tag important\ affine :: "'a::real_vector set \ bool" where "affine s \ (\x\s. \y\s. \u v. u + v = 1 \ u *\<^sub>R x + v *\<^sub>R y \ s)" lemma affine_alt: "affine s \ (\x\s. \y\s. \u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \ s)" unfolding affine_def by (metis eq_diff_eq') lemma affine_empty [iff]: "affine {}" unfolding affine_def by auto lemma affine_sing [iff]: "affine {x}" unfolding affine_alt by (auto simp: scaleR_left_distrib [symmetric]) lemma affine_UNIV [iff]: "affine UNIV" unfolding affine_def by auto lemma affine_Inter [intro]: "(\s. s\f \ affine s) \ affine (\f)" unfolding affine_def by auto lemma affine_Int[intro]: "affine s \ affine t \ affine (s \ t)" unfolding affine_def by auto lemma affine_scaling: "affine s \ affine (image (\x. c *\<^sub>R x) s)" apply (clarsimp simp add: affine_def) apply (rule_tac x="u *\<^sub>R x + v *\<^sub>R y" in image_eqI) apply (auto simp: algebra_simps) done lemma affine_affine_hull [simp]: "affine(affine hull s)" unfolding hull_def using affine_Inter[of "{t. affine t \ s \ t}"] by auto lemma affine_hull_eq[simp]: "(affine hull s = s) \ affine s" by (metis affine_affine_hull hull_same) lemma affine_hyperplane: "affine {x. a \ x = b}" by (simp add: affine_def algebra_simps) (metis distrib_right mult.left_neutral) subsubsection\<^marker>\tag unimportant\ \Some explicit formulations\ text "Formalized by Lars Schewe." lemma affine: fixes V::"'a::real_vector set" shows "affine V \ (\S u. finite S \ S \ {} \ S \ V \ sum u S = 1 \ (\x\S. u x *\<^sub>R x) \ V)" proof - have "u *\<^sub>R x + v *\<^sub>R y \ V" if "x \ V" "y \ V" "u + v = (1::real)" and *: "\S u. \finite S; S \ {}; S \ V; sum u S = 1\ \ (\x\S. u x *\<^sub>R x) \ V" for x y u v proof (cases "x = y") case True then show ?thesis using that by (metis scaleR_add_left scaleR_one) next case False then show ?thesis using that *[of "{x,y}" "\w. if w = x then u else v"] by auto qed moreover have "(\x\S. u x *\<^sub>R x) \ V" if *: "\x y u v. \x\V; y\V; u + v = 1\ \ u *\<^sub>R x + v *\<^sub>R y \ V" and "finite S" "S \ {}" "S \ V" "sum u S = 1" for S u proof - define n where "n = card S" consider "card S = 0" | "card S = 1" | "card S = 2" | "card S > 2" by linarith then show "(\x\S. u x *\<^sub>R x) \ V" proof cases assume "card S = 1" then obtain a where "S={a}" by (auto simp: card_Suc_eq) then show ?thesis using that by simp next assume "card S = 2" then obtain a b where "S = {a, b}" by (metis Suc_1 card_1_singletonE card_Suc_eq) then show ?thesis using *[of a b] that by (auto simp: sum_clauses(2)) next assume "card S > 2" then show ?thesis using that n_def proof (induct n arbitrary: u S) case 0 then show ?case by auto next case (Suc n u S) have "sum u S = card S" if "\ (\x\S. u x \ 1)" using that unfolding card_eq_sum by auto with Suc.prems obtain x where "x \ S" and x: "u x \ 1" by force have c: "card (S - {x}) = card S - 1" by (simp add: Suc.prems(3) \x \ S\) have "sum u (S - {x}) = 1 - u x" by (simp add: Suc.prems sum_diff1 \x \ S\) with x have eq1: "inverse (1 - u x) * sum u (S - {x}) = 1" by auto have inV: "(\y\S - {x}. (inverse (1 - u x) * u y) *\<^sub>R y) \ V" proof (cases "card (S - {x}) > 2") case True then have S: "S - {x} \ {}" "card (S - {x}) = n" using Suc.prems c by force+ show ?thesis proof (rule Suc.hyps) show "(\a\S - {x}. inverse (1 - u x) * u a) = 1" by (auto simp: eq1 sum_distrib_left[symmetric]) qed (use S Suc.prems True in auto) next case False then have "card (S - {x}) = Suc (Suc 0)" using Suc.prems c by auto then obtain a b where ab: "(S - {x}) = {a, b}" "a\b" unfolding card_Suc_eq by auto then show ?thesis using eq1 \S \ V\ by (auto simp: sum_distrib_left distrib_left intro!: Suc.prems(2)[of a b]) qed have "u x + (1 - u x) = 1 \ u x *\<^sub>R x + (1 - u x) *\<^sub>R ((\y\S - {x}. u y *\<^sub>R y) /\<^sub>R (1 - u x)) \ V" by (rule Suc.prems) (use \x \ S\ Suc.prems inV in \auto simp: scaleR_right.sum\) moreover have "(\a\S. u a *\<^sub>R a) = u x *\<^sub>R x + (\a\S - {x}. u a *\<^sub>R a)" by (meson Suc.prems(3) sum.remove \x \ S\) ultimately show "(\x\S. u x *\<^sub>R x) \ V" by (simp add: x) qed qed (use \S\{}\ \finite S\ in auto) qed ultimately show ?thesis unfolding affine_def by meson qed lemma affine_hull_explicit: "affine hull p = {y. \S u. finite S \ S \ {} \ S \ p \ sum u S = 1 \ sum (\v. u v *\<^sub>R v) S = y}" (is "_ = ?rhs") proof (rule hull_unique) show "p \ ?rhs" proof (intro subsetI CollectI exI conjI) show "\x. sum (\z. 1) {x} = 1" by auto qed auto show "?rhs \ T" if "p \ T" "affine T" for T using that unfolding affine by blast show "affine ?rhs" unfolding affine_def proof clarify fix u v :: real and sx ux sy uy assume uv: "u + v = 1" and x: "finite sx" "sx \ {}" "sx \ p" "sum ux sx = (1::real)" and y: "finite sy" "sy \ {}" "sy \ p" "sum uy sy = (1::real)" have **: "(sx \ sy) \ sx = sx" "(sx \ sy) \ sy = sy" by auto show "\S w. finite S \ S \ {} \ S \ p \ sum w S = 1 \ (\v\S. w v *\<^sub>R v) = u *\<^sub>R (\v\sx. ux v *\<^sub>R v) + v *\<^sub>R (\v\sy. uy v *\<^sub>R v)" proof (intro exI conjI) show "finite (sx \ sy)" using x y by auto show "sum (\i. (if i\sx then u * ux i else 0) + (if i\sy then v * uy i else 0)) (sx \ sy) = 1" using x y uv by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] sum_distrib_left [symmetric] **) have "(\i\sx \ sy. ((if i \ sx then u * ux i else 0) + (if i \ sy then v * uy i else 0)) *\<^sub>R i) = (\i\sx. (u * ux i) *\<^sub>R i) + (\i\sy. (v * uy i) *\<^sub>R i)" using x y unfolding scaleR_left_distrib scaleR_zero_left if_smult by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] **) also have "\ = u *\<^sub>R (\v\sx. ux v *\<^sub>R v) + v *\<^sub>R (\v\sy. uy v *\<^sub>R v)" unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] by blast finally show "(\i\sx \ sy. ((if i \ sx then u * ux i else 0) + (if i \ sy then v * uy i else 0)) *\<^sub>R i) = u *\<^sub>R (\v\sx. ux v *\<^sub>R v) + v *\<^sub>R (\v\sy. uy v *\<^sub>R v)" . qed (use x y in auto) qed qed lemma affine_hull_finite: assumes "finite S" shows "affine hull S = {y. \u. sum u S = 1 \ sum (\v. u v *\<^sub>R v) S = y}" proof - have *: "\h. sum h S = 1 \ (\v\S. h v *\<^sub>R v) = x" if "F \ S" "finite F" "F \ {}" and sum: "sum u F = 1" and x: "(\v\F. u v *\<^sub>R v) = x" for x F u proof - have "S \ F = F" using that by auto show ?thesis proof (intro exI conjI) show "(\x\S. if x \ F then u x else 0) = 1" by (metis (mono_tags, lifting) \S \ F = F\ assms sum.inter_restrict sum) show "(\v\S. (if v \ F then u v else 0) *\<^sub>R v) = x" by (simp add: if_smult cong: if_cong) (metis (no_types) \S \ F = F\ assms sum.inter_restrict x) qed qed show ?thesis unfolding affine_hull_explicit using assms by (fastforce dest: *) qed subsubsection\<^marker>\tag unimportant\ \Stepping theorems and hence small special cases\ lemma affine_hull_empty[simp]: "affine hull {} = {}" by simp lemma affine_hull_finite_step: fixes y :: "'a::real_vector" shows "finite S \ (\u. sum u (insert a S) = w \ sum (\x. u x *\<^sub>R x) (insert a S) = y) \ (\v u. sum u S = w - v \ sum (\x. u x *\<^sub>R x) S = y - v *\<^sub>R a)" (is "_ \ ?lhs = ?rhs") proof - assume fin: "finite S" show "?lhs = ?rhs" proof assume ?lhs then obtain u where u: "sum u (insert a S) = w \ (\x\insert a S. u x *\<^sub>R x) = y" by auto show ?rhs proof (cases "a \ S") case True then show ?thesis using u by (simp add: insert_absorb) (metis diff_zero real_vector.scale_zero_left) next case False show ?thesis by (rule exI [where x="u a"]) (use u fin False in auto) qed next assume ?rhs then obtain v u where vu: "sum u S = w - v" "(\x\S. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto have *: "\x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto show ?lhs proof (cases "a \ S") case True show ?thesis by (rule exI [where x="\x. (if x=a then v else 0) + u x"]) (simp add: True scaleR_left_distrib sum.distrib sum_clauses fin vu * cong: if_cong) next case False then show ?thesis apply (rule_tac x="\x. if x=a then v else u x" in exI) apply (simp add: vu sum_clauses(2)[OF fin] *) by (simp add: sum_delta_notmem(3) vu) qed qed qed lemma affine_hull_2: fixes a b :: "'a::real_vector" shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs") proof - have *: "\x y z. z = x - y \ y + z = (x::real)" "\x y z. z = x - y \ y + z = (x::'a)" by auto have "?lhs = {y. \u. sum u {a, b} = 1 \ (\v\{a, b}. u v *\<^sub>R v) = y}" using affine_hull_finite[of "{a,b}"] by auto also have "\ = {y. \v u. u b = 1 - v \ u b *\<^sub>R b = y - v *\<^sub>R a}" by (simp add: affine_hull_finite_step[of "{b}" a]) also have "\ = ?rhs" unfolding * by auto finally show ?thesis by auto qed lemma affine_hull_3: fixes a b c :: "'a::real_vector" shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" proof - have *: "\x y z. z = x - y \ y + z = (x::real)" "\x y z. z = x - y \ y + z = (x::'a)" by auto show ?thesis apply (simp add: affine_hull_finite affine_hull_finite_step) unfolding * apply safe apply (metis add.assoc) apply (rule_tac x=u in exI, force) done qed lemma mem_affine: assumes "affine S" "x \ S" "y \ S" "u + v = 1" shows "u *\<^sub>R x + v *\<^sub>R y \ S" using assms affine_def[of S] by auto lemma mem_affine_3: assumes "affine S" "x \ S" "y \ S" "z \ S" "u + v + w = 1" shows "u *\<^sub>R x + v *\<^sub>R y + w *\<^sub>R z \ S" proof - have "u *\<^sub>R x + v *\<^sub>R y + w *\<^sub>R z \ affine hull {x, y, z}" using affine_hull_3[of x y z] assms by auto moreover have "affine hull {x, y, z} \ affine hull S" using hull_mono[of "{x, y, z}" "S"] assms by auto moreover have "affine hull S = S" using assms affine_hull_eq[of S] by auto ultimately show ?thesis by auto qed lemma mem_affine_3_minus: assumes "affine S" "x \ S" "y \ S" "z \ S" shows "x + v *\<^sub>R (y-z) \ S" using mem_affine_3[of S x y z 1 v "-v"] assms by (simp add: algebra_simps) corollary%unimportant mem_affine_3_minus2: "\affine S; x \ S; y \ S; z \ S\ \ x - v *\<^sub>R (y-z) \ S" by (metis add_uminus_conv_diff mem_affine_3_minus real_vector.scale_minus_left) subsubsection\<^marker>\tag unimportant\ \Some relations between affine hull and subspaces\ lemma affine_hull_insert_subset_span: "affine hull (insert a S) \ {a + v| v . v \ span {x - a | x . x \ S}}" proof - have "\v T u. x = a + v \ (finite T \ T \ {x - a |x. x \ S} \ (\v\T. u v *\<^sub>R v) = v)" if "finite F" "F \ {}" "F \ insert a S" "sum u F = 1" "(\v\F. u v *\<^sub>R v) = x" for x F u proof - have *: "(\x. x - a) ` (F - {a}) \ {x - a |x. x \ S}" using that by auto show ?thesis proof (intro exI conjI) show "finite ((\x. x - a) ` (F - {a}))" by (simp add: that(1)) show "(\v\(\x. x - a) ` (F - {a}). u(v+a) *\<^sub>R v) = x-a" by (simp add: sum.reindex[unfolded inj_on_def] algebra_simps sum_subtractf scaleR_left.sum[symmetric] sum_diff1 that) qed (use \F \ insert a S\ in auto) qed then show ?thesis unfolding affine_hull_explicit span_explicit by fast qed lemma affine_hull_insert_span: assumes "a \ S" shows "affine hull (insert a S) = {a + v | v . v \ span {x - a | x. x \ S}}" proof - have *: "\G u. finite G \ G \ {} \ G \ insert a S \ sum u G = 1 \ (\v\G. u v *\<^sub>R v) = y" if "v \ span {x - a |x. x \ S}" "y = a + v" for y v proof - from that obtain T u where u: "finite T" "T \ {x - a |x. x \ S}" "a + (\v\T. u v *\<^sub>R v) = y" unfolding span_explicit by auto define F where "F = (\x. x + a) ` T" have F: "finite F" "F \ S" "(\v\F. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding F_def using u by (auto simp: sum.reindex[unfolded inj_on_def]) have *: "F \ {a} = {}" "F \ - {a} = F" using F assms by auto show "\G u. finite G \ G \ {} \ G \ insert a S \ sum u G = 1 \ (\v\G. u v *\<^sub>R v) = y" apply (rule_tac x = "insert a F" in exI) apply (rule_tac x = "\x. if x=a then 1 - sum (\x. u (x - a)) F else u (x - a)" in exI) using assms F apply (auto simp: sum_clauses sum.If_cases if_smult sum_subtractf scaleR_left.sum algebra_simps *) done qed show ?thesis by (intro subset_antisym affine_hull_insert_subset_span) (auto simp: affine_hull_explicit dest!: *) qed lemma affine_hull_span: assumes "a \ S" shows "affine hull S = {a + v | v. v \ span {x - a | x. x \ S - {a}}}" using affine_hull_insert_span[of a "S - {a}", unfolded insert_Diff[OF assms]] by auto subsubsection\<^marker>\tag unimportant\ \Parallel affine sets\ definition affine_parallel :: "'a::real_vector set \ 'a::real_vector set \ bool" where "affine_parallel S T \ (\a. T = (\x. a + x) ` S)" lemma affine_parallel_expl_aux: fixes S T :: "'a::real_vector set" assumes "\x. x \ S \ a + x \ T" shows "T = (\x. a + x) ` S" proof - have "x \ ((\x. a + x) ` S)" if "x \ T" for x using that by (simp add: image_iff) (metis add.commute diff_add_cancel assms) moreover have "T \ (\x. a + x) ` S" using assms by auto ultimately show ?thesis by auto qed lemma affine_parallel_expl: "affine_parallel S T \ (\a. \x. x \ S \ a + x \ T)" by (auto simp add: affine_parallel_def) (use affine_parallel_expl_aux [of S _ T] in blast) lemma affine_parallel_reflex: "affine_parallel S S" unfolding affine_parallel_def using image_add_0 by blast lemma affine_parallel_commut: assumes "affine_parallel A B" shows "affine_parallel B A" proof - from assms obtain a where B: "B = (\x. a + x) ` A" unfolding affine_parallel_def by auto have [simp]: "(\x. x - a) = plus (- a)" by (simp add: fun_eq_iff) from B show ?thesis using translation_galois [of B a A] unfolding affine_parallel_def by blast qed lemma affine_parallel_assoc: assumes "affine_parallel A B" and "affine_parallel B C" shows "affine_parallel A C" proof - from assms obtain ab where "B = (\x. ab + x) ` A" unfolding affine_parallel_def by auto moreover from assms obtain bc where "C = (\x. bc + x) ` B" unfolding affine_parallel_def by auto ultimately show ?thesis using translation_assoc[of bc ab A] unfolding affine_parallel_def by auto qed lemma affine_translation_aux: fixes a :: "'a::real_vector" assumes "affine ((\x. a + x) ` S)" shows "affine S" proof - { fix x y u v assume xy: "x \ S" "y \ S" "(u :: real) + v = 1" then have "(a + x) \ ((\x. a + x) ` S)" "(a + y) \ ((\x. a + x) ` S)" by auto then have h1: "u *\<^sub>R (a + x) + v *\<^sub>R (a + y) \ (\x. a + x) ` S" using xy assms unfolding affine_def by auto have "u *\<^sub>R (a + x) + v *\<^sub>R (a + y) = (u + v) *\<^sub>R a + (u *\<^sub>R x + v *\<^sub>R y)" by (simp add: algebra_simps) also have "\ = a + (u *\<^sub>R x + v *\<^sub>R y)" using \u + v = 1\ by auto ultimately have "a + (u *\<^sub>R x + v *\<^sub>R y) \ (\x. a + x) ` S" using h1 by auto then have "u *\<^sub>R x + v *\<^sub>R y \ S" by auto } then show ?thesis unfolding affine_def by auto qed lemma affine_translation: "affine S \ affine ((+) a ` S)" for a :: "'a::real_vector" proof show "affine ((+) a ` S)" if "affine S" using that translation_assoc [of "- a" a S] by (auto intro: affine_translation_aux [of "- a" "((+) a ` S)"]) show "affine S" if "affine ((+) a ` S)" using that by (rule affine_translation_aux) qed lemma parallel_is_affine: fixes S T :: "'a::real_vector set" assumes "affine S" "affine_parallel S T" shows "affine T" proof - from assms obtain a where "T = (\x. a + x) ` S" unfolding affine_parallel_def by auto then show ?thesis using affine_translation assms by auto qed lemma subspace_imp_affine: "subspace s \ affine s" unfolding subspace_def affine_def by auto lemma affine_hull_subset_span: "(affine hull s) \ (span s)" by (metis hull_minimal span_superset subspace_imp_affine subspace_span) subsubsection\<^marker>\tag unimportant\ \Subspace parallel to an affine set\ lemma subspace_affine: "subspace S \ affine S \ 0 \ S" proof - have h0: "subspace S \ affine S \ 0 \ S" using subspace_imp_affine[of S] subspace_0 by auto { assume assm: "affine S \ 0 \ S" { fix c :: real fix x assume x: "x \ S" have "c *\<^sub>R x = (1-c) *\<^sub>R 0 + c *\<^sub>R x" by auto moreover have "(1 - c) *\<^sub>R 0 + c *\<^sub>R x \ S" using affine_alt[of S] assm x by auto ultimately have "c *\<^sub>R x \ S" by auto } then have h1: "\c. \x \ S. c *\<^sub>R x \ S" by auto { fix x y assume xy: "x \ S" "y \ S" define u where "u = (1 :: real)/2" have "(1/2) *\<^sub>R (x+y) = (1/2) *\<^sub>R (x+y)" by auto moreover have "(1/2) *\<^sub>R (x+y)=(1/2) *\<^sub>R x + (1-(1/2)) *\<^sub>R y" by (simp add: algebra_simps) moreover have "(1 - u) *\<^sub>R x + u *\<^sub>R y \ S" using affine_alt[of S] assm xy by auto ultimately have "(1/2) *\<^sub>R (x+y) \ S" using u_def by auto moreover have "x + y = 2 *\<^sub>R ((1/2) *\<^sub>R (x+y))" by auto ultimately have "x + y \ S" using h1[rule_format, of "(1/2) *\<^sub>R (x+y)" "2"] by auto } then have "\x \ S. \y \ S. x + y \ S" by auto then have "subspace S" using h1 assm unfolding subspace_def by auto } then show ?thesis using h0 by metis qed lemma affine_diffs_subspace: assumes "affine S" "a \ S" shows "subspace ((\x. (-a)+x) ` S)" proof - have [simp]: "(\x. x - a) = plus (- a)" by (simp add: fun_eq_iff) have "affine ((\x. (-a)+x) ` S)" using affine_translation assms by blast moreover have "0 \ ((\x. (-a)+x) ` S)" using assms exI[of "(\x. x\S \ -a+x = 0)" a] by auto ultimately show ?thesis using subspace_affine by auto qed lemma affine_diffs_subspace_subtract: "subspace ((\x. x - a) ` S)" if "affine S" "a \ S" using that affine_diffs_subspace [of _ a] by simp lemma parallel_subspace_explicit: assumes "affine S" and "a \ S" assumes "L \ {y. \x \ S. (-a) + x = y}" shows "subspace L \ affine_parallel S L" proof - from assms have "L = plus (- a) ` S" by auto then have par: "affine_parallel S L" unfolding affine_parallel_def .. then have "affine L" using assms parallel_is_affine by auto moreover have "0 \ L" using assms by auto ultimately show ?thesis using subspace_affine par by auto qed lemma parallel_subspace_aux: assumes "subspace A" and "subspace B" and "affine_parallel A B" shows "A \ B" proof - from assms obtain a where a: "\x. x \ A \ a + x \ B" using affine_parallel_expl[of A B] by auto then have "-a \ A" using assms subspace_0[of B] by auto then have "a \ A" using assms subspace_neg[of A "-a"] by auto then show ?thesis using assms a unfolding subspace_def by auto qed lemma parallel_subspace: assumes "subspace A" and "subspace B" and "affine_parallel A B" shows "A = B" proof show "A \ B" using assms parallel_subspace_aux by auto show "A \ B" using assms parallel_subspace_aux[of B A] affine_parallel_commut by auto qed lemma affine_parallel_subspace: assumes "affine S" "S \ {}" shows "\!L. subspace L \ affine_parallel S L" proof - have ex: "\L. subspace L \ affine_parallel S L" using assms parallel_subspace_explicit by auto { fix L1 L2 assume ass: "subspace L1 \ affine_parallel S L1" "subspace L2 \ affine_parallel S L2" then have "affine_parallel L1 L2" using affine_parallel_commut[of S L1] affine_parallel_assoc[of L1 S L2] by auto then have "L1 = L2" using ass parallel_subspace by auto } then show ?thesis using ex by auto qed subsection \Affine Dependence\ text "Formalized by Lars Schewe." definition\<^marker>\tag important\ affine_dependent :: "'a::real_vector set \ bool" where "affine_dependent s \ (\x\s. x \ affine hull (s - {x}))" lemma affine_dependent_imp_dependent: "affine_dependent s \ dependent s" unfolding affine_dependent_def dependent_def using affine_hull_subset_span by auto lemma affine_dependent_subset: "\affine_dependent s; s \ t\ \ affine_dependent t" apply (simp add: affine_dependent_def Bex_def) apply (blast dest: hull_mono [OF Diff_mono [OF _ subset_refl]]) done lemma affine_independent_subset: shows "\\ affine_dependent t; s \ t\ \ \ affine_dependent s" by (metis affine_dependent_subset) lemma affine_independent_Diff: "\ affine_dependent s \ \ affine_dependent(s - t)" by (meson Diff_subset affine_dependent_subset) proposition affine_dependent_explicit: "affine_dependent p \ (\S u. finite S \ S \ p \ sum u S = 0 \ (\v\S. u v \ 0) \ sum (\v. u v *\<^sub>R v) S = 0)" proof - have "\S u. finite S \ S \ p \ sum u S = 0 \ (\v\S. u v \ 0) \ (\w\S. u w *\<^sub>R w) = 0" if "(\w\S. u w *\<^sub>R w) = x" "x \ p" "finite S" "S \ {}" "S \ p - {x}" "sum u S = 1" for x S u proof (intro exI conjI) have "x \ S" using that by auto then show "(\v \ insert x S. if v = x then - 1 else u v) = 0" using that by (simp add: sum_delta_notmem) show "(\w \ insert x S. (if w = x then - 1 else u w) *\<^sub>R w) = 0" using that \x \ S\ by (simp add: if_smult sum_delta_notmem cong: if_cong) qed (use that in auto) moreover have "\x\p. \S u. finite S \ S \ {} \ S \ p - {x} \ sum u S = 1 \ (\v\S. u v *\<^sub>R v) = x" if "(\v\S. u v *\<^sub>R v) = 0" "finite S" "S \ p" "sum u S = 0" "v \ S" "u v \ 0" for S u v proof (intro bexI exI conjI) have "S \ {v}" using that by auto then show "S - {v} \ {}" using that by auto show "(\x \ S - {v}. - (1 / u v) * u x) = 1" unfolding sum_distrib_left[symmetric] sum_diff1[OF \finite S\] by (simp add: that) show "(\x\S - {v}. (- (1 / u v) * u x) *\<^sub>R x) = v" unfolding sum_distrib_left [symmetric] scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] sum_diff1[OF \finite S\] using that by auto show "S - {v} \ p - {v}" using that by auto qed (use that in auto) ultimately show ?thesis unfolding affine_dependent_def affine_hull_explicit by auto qed lemma affine_dependent_explicit_finite: fixes S :: "'a::real_vector set" assumes "finite S" shows "affine_dependent S \ (\u. sum u S = 0 \ (\v\S. u v \ 0) \ sum (\v. u v *\<^sub>R v) S = 0)" (is "?lhs = ?rhs") proof have *: "\vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else 0::'a)" by auto assume ?lhs then obtain t u v where "finite t" "t \ S" "sum u t = 0" "v\t" "u v \ 0" "(\v\t. u v *\<^sub>R v) = 0" unfolding affine_dependent_explicit by auto then show ?rhs apply (rule_tac x="\x. if x\t then u x else 0" in exI) apply (auto simp: * sum.inter_restrict[OF assms, symmetric] Int_absorb1[OF \t\S\]) done next assume ?rhs then obtain u v where "sum u S = 0" "v\S" "u v \ 0" "(\v\S. u v *\<^sub>R v) = 0" by auto then show ?lhs unfolding affine_dependent_explicit using assms by auto qed lemma dependent_imp_affine_dependent: assumes "dependent {x - a| x . x \ s}" and "a \ s" shows "affine_dependent (insert a s)" proof - from assms(1)[unfolded dependent_explicit] obtain S u v where obt: "finite S" "S \ {x - a |x. x \ s}" "v\S" "u v \ 0" "(\v\S. u v *\<^sub>R v) = 0" by auto define t where "t = (\x. x + a) ` S" have inj: "inj_on (\x. x + a) S" unfolding inj_on_def by auto have "0 \ S" using obt(2) assms(2) unfolding subset_eq by auto have fin: "finite t" and "t \ s" unfolding t_def using obt(1,2) by auto then have "finite (insert a t)" and "insert a t \ insert a s" by auto moreover have *: "\P Q. (\x\t. (if x = a then P x else Q x)) = (\x\t. Q x)" apply (rule sum.cong) using \a\s\ \t\s\ apply auto done have "(\x\insert a t. if x = a then - (\x\t. u (x - a)) else u (x - a)) = 0" unfolding sum_clauses(2)[OF fin] * using \a\s\ \t\s\ by auto moreover have "\v\insert a t. (if v = a then - (\x\t. u (x - a)) else u (v - a)) \ 0" using obt(3,4) \0\S\ by (rule_tac x="v + a" in bexI) (auto simp: t_def) moreover have *: "\P Q. (\x\t. (if x = a then P x else Q x) *\<^sub>R x) = (\x\t. Q x *\<^sub>R x)" using \a\s\ \t\s\ by (auto intro!: sum.cong) have "(\x\t. u (x - a)) *\<^sub>R a = (\v\t. u (v - a) *\<^sub>R v)" unfolding scaleR_left.sum unfolding t_def and sum.reindex[OF inj] and o_def using obt(5) by (auto simp: sum.distrib scaleR_right_distrib) then have "(\v\insert a t. (if v = a then - (\x\t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0" unfolding sum_clauses(2)[OF fin] using \a\s\ \t\s\ by (auto simp: *) ultimately show ?thesis unfolding affine_dependent_explicit apply (rule_tac x="insert a t" in exI, auto) done qed lemma affine_dependent_biggerset: fixes s :: "'a::euclidean_space set" assumes "finite s" "card s \ DIM('a) + 2" shows "affine_dependent s" proof - have "s \ {}" using assms by auto then obtain a where "a\s" by auto have *: "{x - a |x. x \ s - {a}} = (\x. x - a) ` (s - {a})" by auto have "card {x - a |x. x \ s - {a}} = card (s - {a})" unfolding * by (simp add: card_image inj_on_def) also have "\ > DIM('a)" using assms(2) - unfolding card_Diff_singleton[OF assms(1) \a\s\] by auto + unfolding card_Diff_singleton[OF \a\s\] by auto finally show ?thesis apply (subst insert_Diff[OF \a\s\, symmetric]) apply (rule dependent_imp_affine_dependent) apply (rule dependent_biggerset, auto) done qed lemma affine_dependent_biggerset_general: assumes "finite (S :: 'a::euclidean_space set)" and "card S \ dim S + 2" shows "affine_dependent S" proof - from assms(2) have "S \ {}" by auto then obtain a where "a\S" by auto have *: "{x - a |x. x \ S - {a}} = (\x. x - a) ` (S - {a})" by auto have **: "card {x - a |x. x \ S - {a}} = card (S - {a})" by (metis (no_types, lifting) "*" card_image diff_add_cancel inj_on_def) have "dim {x - a |x. x \ S - {a}} \ dim S" using \a\S\ by (auto simp: span_base span_diff intro: subset_le_dim) also have "\ < dim S + 1" by auto also have "\ \ card (S - {a})" - using assms - using card_Diff_singleton[OF assms(1) \a\S\] - by auto + using assms card_Diff_singleton[OF \a\S\] by auto finally show ?thesis apply (subst insert_Diff[OF \a\S\, symmetric]) apply (rule dependent_imp_affine_dependent) apply (rule dependent_biggerset_general) unfolding ** apply auto done qed subsection\<^marker>\tag unimportant\ \Some Properties of Affine Dependent Sets\ lemma affine_independent_0 [simp]: "\ affine_dependent {}" by (simp add: affine_dependent_def) lemma affine_independent_1 [simp]: "\ affine_dependent {a}" by (simp add: affine_dependent_def) lemma affine_independent_2 [simp]: "\ affine_dependent {a,b}" by (simp add: affine_dependent_def insert_Diff_if hull_same) lemma affine_hull_translation: "affine hull ((\x. a + x) ` S) = (\x. a + x) ` (affine hull S)" proof - have "affine ((\x. a + x) ` (affine hull S))" using affine_translation affine_affine_hull by blast moreover have "(\x. a + x) ` S \ (\x. a + x) ` (affine hull S)" using hull_subset[of S] by auto ultimately have h1: "affine hull ((\x. a + x) ` S) \ (\x. a + x) ` (affine hull S)" by (metis hull_minimal) have "affine((\x. -a + x) ` (affine hull ((\x. a + x) ` S)))" using affine_translation affine_affine_hull by blast moreover have "(\x. -a + x) ` (\x. a + x) ` S \ (\x. -a + x) ` (affine hull ((\x. a + x) ` S))" using hull_subset[of "(\x. a + x) ` S"] by auto moreover have "S = (\x. -a + x) ` (\x. a + x) ` S" using translation_assoc[of "-a" a] by auto ultimately have "(\x. -a + x) ` (affine hull ((\x. a + x) ` S)) >= (affine hull S)" by (metis hull_minimal) then have "affine hull ((\x. a + x) ` S) >= (\x. a + x) ` (affine hull S)" by auto then show ?thesis using h1 by auto qed lemma affine_dependent_translation: assumes "affine_dependent S" shows "affine_dependent ((\x. a + x) ` S)" proof - obtain x where x: "x \ S \ x \ affine hull (S - {x})" using assms affine_dependent_def by auto have "(+) a ` (S - {x}) = (+) a ` S - {a + x}" by auto then have "a + x \ affine hull ((\x. a + x) ` S - {a + x})" using affine_hull_translation[of a "S - {x}"] x by auto moreover have "a + x \ (\x. a + x) ` S" using x by auto ultimately show ?thesis unfolding affine_dependent_def by auto qed lemma affine_dependent_translation_eq: "affine_dependent S \ affine_dependent ((\x. a + x) ` S)" proof - { assume "affine_dependent ((\x. a + x) ` S)" then have "affine_dependent S" using affine_dependent_translation[of "((\x. a + x) ` S)" "-a"] translation_assoc[of "-a" a] by auto } then show ?thesis using affine_dependent_translation by auto qed lemma affine_hull_0_dependent: assumes "0 \ affine hull S" shows "dependent S" proof - obtain s u where s_u: "finite s \ s \ {} \ s \ S \ sum u s = 1 \ (\v\s. u v *\<^sub>R v) = 0" using assms affine_hull_explicit[of S] by auto then have "\v\s. u v \ 0" by auto then have "finite s \ s \ S \ (\v\s. u v \ 0 \ (\v\s. u v *\<^sub>R v) = 0)" using s_u by auto then show ?thesis unfolding dependent_explicit[of S] by auto qed lemma affine_dependent_imp_dependent2: assumes "affine_dependent (insert 0 S)" shows "dependent S" proof - obtain x where x: "x \ insert 0 S \ x \ affine hull (insert 0 S - {x})" using affine_dependent_def[of "(insert 0 S)"] assms by blast then have "x \ span (insert 0 S - {x})" using affine_hull_subset_span by auto moreover have "span (insert 0 S - {x}) = span (S - {x})" using insert_Diff_if[of "0" S "{x}"] span_insert_0[of "S-{x}"] by auto ultimately have "x \ span (S - {x})" by auto then have "x \ 0 \ dependent S" using x dependent_def by auto moreover { assume "x = 0" then have "0 \ affine hull S" using x hull_mono[of "S - {0}" S] by auto then have "dependent S" using affine_hull_0_dependent by auto } ultimately show ?thesis by auto qed lemma affine_dependent_iff_dependent: assumes "a \ S" shows "affine_dependent (insert a S) \ dependent ((\x. -a + x) ` S)" proof - have "((+) (- a) ` S) = {x - a| x . x \ S}" by auto then show ?thesis using affine_dependent_translation_eq[of "(insert a S)" "-a"] affine_dependent_imp_dependent2 assms dependent_imp_affine_dependent[of a S] by (auto simp del: uminus_add_conv_diff) qed lemma affine_dependent_iff_dependent2: assumes "a \ S" shows "affine_dependent S \ dependent ((\x. -a + x) ` (S-{a}))" proof - have "insert a (S - {a}) = S" using assms by auto then show ?thesis using assms affine_dependent_iff_dependent[of a "S-{a}"] by auto qed lemma affine_hull_insert_span_gen: "affine hull (insert a s) = (\x. a + x) ` span ((\x. - a + x) ` s)" proof - have h1: "{x - a |x. x \ s} = ((\x. -a+x) ` s)" by auto { assume "a \ s" then have ?thesis using affine_hull_insert_span[of a s] h1 by auto } moreover { assume a1: "a \ s" have "\x. x \ s \ -a+x=0" apply (rule exI[of _ a]) using a1 apply auto done then have "insert 0 ((\x. -a+x) ` (s - {a})) = (\x. -a+x) ` s" by auto then have "span ((\x. -a+x) ` (s - {a}))=span ((\x. -a+x) ` s)" using span_insert_0[of "(+) (- a) ` (s - {a})"] by (auto simp del: uminus_add_conv_diff) moreover have "{x - a |x. x \ (s - {a})} = ((\x. -a+x) ` (s - {a}))" by auto moreover have "insert a (s - {a}) = insert a s" by auto ultimately have ?thesis using affine_hull_insert_span[of "a" "s-{a}"] by auto } ultimately show ?thesis by auto qed lemma affine_hull_span2: assumes "a \ s" shows "affine hull s = (\x. a+x) ` span ((\x. -a+x) ` (s-{a}))" using affine_hull_insert_span_gen[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto lemma affine_hull_span_gen: assumes "a \ affine hull s" shows "affine hull s = (\x. a+x) ` span ((\x. -a+x) ` s)" proof - have "affine hull (insert a s) = affine hull s" using hull_redundant[of a affine s] assms by auto then show ?thesis using affine_hull_insert_span_gen[of a "s"] by auto qed lemma affine_hull_span_0: assumes "0 \ affine hull S" shows "affine hull S = span S" using affine_hull_span_gen[of "0" S] assms by auto lemma extend_to_affine_basis_nonempty: fixes S V :: "'n::real_vector set" assumes "\ affine_dependent S" "S \ V" "S \ {}" shows "\T. \ affine_dependent T \ S \ T \ T \ V \ affine hull T = affine hull V" proof - obtain a where a: "a \ S" using assms by auto then have h0: "independent ((\x. -a + x) ` (S-{a}))" using affine_dependent_iff_dependent2 assms by auto obtain B where B: "(\x. -a+x) ` (S - {a}) \ B \ B \ (\x. -a+x) ` V \ independent B \ (\x. -a+x) ` V \ span B" using assms by (blast intro: maximal_independent_subset_extend[OF _ h0, of "(\x. -a + x) ` V"]) define T where "T = (\x. a+x) ` insert 0 B" then have "T = insert a ((\x. a+x) ` B)" by auto then have "affine hull T = (\x. a+x) ` span B" using affine_hull_insert_span_gen[of a "((\x. a+x) ` B)"] translation_assoc[of "-a" a B] by auto then have "V \ affine hull T" using B assms translation_inverse_subset[of a V "span B"] by auto moreover have "T \ V" using T_def B a assms by auto ultimately have "affine hull T = affine hull V" by (metis Int_absorb1 Int_absorb2 hull_hull hull_mono) moreover have "S \ T" using T_def B translation_inverse_subset[of a "S-{a}" B] by auto moreover have "\ affine_dependent T" using T_def affine_dependent_translation_eq[of "insert 0 B"] affine_dependent_imp_dependent2 B by auto ultimately show ?thesis using \T \ V\ by auto qed lemma affine_basis_exists: fixes V :: "'n::real_vector set" shows "\B. B \ V \ \ affine_dependent B \ affine hull V = affine hull B" proof (cases "V = {}") case True then show ?thesis using affine_independent_0 by auto next case False then obtain x where "x \ V" by auto then show ?thesis using affine_dependent_def[of "{x}"] extend_to_affine_basis_nonempty[of "{x}" V] by auto qed proposition extend_to_affine_basis: fixes S V :: "'n::real_vector set" assumes "\ affine_dependent S" "S \ V" obtains T where "\ affine_dependent T" "S \ T" "T \ V" "affine hull T = affine hull V" proof (cases "S = {}") case True then show ?thesis using affine_basis_exists by (metis empty_subsetI that) next case False then show ?thesis by (metis assms extend_to_affine_basis_nonempty that) qed subsection \Affine Dimension of a Set\ definition\<^marker>\tag important\ aff_dim :: "('a::euclidean_space) set \ int" where "aff_dim V = (SOME d :: int. \B. affine hull B = affine hull V \ \ affine_dependent B \ of_nat (card B) = d + 1)" lemma aff_dim_basis_exists: fixes V :: "('n::euclidean_space) set" shows "\B. affine hull B = affine hull V \ \ affine_dependent B \ of_nat (card B) = aff_dim V + 1" proof - obtain B where "\ affine_dependent B \ affine hull B = affine hull V" using affine_basis_exists[of V] by auto then show ?thesis unfolding aff_dim_def some_eq_ex[of "\d. \B. affine hull B = affine hull V \ \ affine_dependent B \ of_nat (card B) = d + 1"] apply auto apply (rule exI[of _ "int (card B) - (1 :: int)"]) apply (rule exI[of _ "B"], auto) done qed lemma affine_hull_eq_empty [simp]: "affine hull S = {} \ S = {}" by (metis affine_empty subset_empty subset_hull) lemma empty_eq_affine_hull[simp]: "{} = affine hull S \ S = {}" by (metis affine_hull_eq_empty) lemma aff_dim_parallel_subspace_aux: fixes B :: "'n::euclidean_space set" assumes "\ affine_dependent B" "a \ B" shows "finite B \ ((card B) - 1 = dim (span ((\x. -a+x) ` (B-{a}))))" proof - have "independent ((\x. -a + x) ` (B-{a}))" using affine_dependent_iff_dependent2 assms by auto then have fin: "dim (span ((\x. -a+x) ` (B-{a}))) = card ((\x. -a + x) ` (B-{a}))" "finite ((\x. -a + x) ` (B - {a}))" using indep_card_eq_dim_span[of "(\x. -a+x) ` (B-{a})"] by auto show ?thesis proof (cases "(\x. -a + x) ` (B - {a}) = {}") case True have "B = insert a ((\x. a + x) ` (\x. -a + x) ` (B - {a}))" using translation_assoc[of "a" "-a" "(B - {a})"] assms by auto then have "B = {a}" using True by auto then show ?thesis using assms fin by auto next case False then have "card ((\x. -a + x) ` (B - {a})) > 0" using fin by auto moreover have h1: "card ((\x. -a + x) ` (B-{a})) = card (B-{a})" by (rule card_image) (use translate_inj_on in blast) ultimately have "card (B-{a}) > 0" by auto then have *: "finite (B - {a})" using card_gt_0_iff[of "(B - {a})"] by auto then have "card (B - {a}) = card B - 1" using card_Diff_singleton assms by auto with * show ?thesis using fin h1 by auto qed qed lemma aff_dim_parallel_subspace: fixes V L :: "'n::euclidean_space set" assumes "V \ {}" and "subspace L" and "affine_parallel (affine hull V) L" shows "aff_dim V = int (dim L)" proof - obtain B where B: "affine hull B = affine hull V \ \ affine_dependent B \ int (card B) = aff_dim V + 1" using aff_dim_basis_exists by auto then have "B \ {}" using assms B by auto then obtain a where a: "a \ B" by auto define Lb where "Lb = span ((\x. -a+x) ` (B-{a}))" moreover have "affine_parallel (affine hull B) Lb" using Lb_def B assms affine_hull_span2[of a B] a affine_parallel_commut[of "Lb" "(affine hull B)"] unfolding affine_parallel_def by auto moreover have "subspace Lb" using Lb_def subspace_span by auto moreover have "affine hull B \ {}" using assms B by auto ultimately have "L = Lb" using assms affine_parallel_subspace[of "affine hull B"] affine_affine_hull[of B] B by auto then have "dim L = dim Lb" by auto moreover have "card B - 1 = dim Lb" and "finite B" using Lb_def aff_dim_parallel_subspace_aux a B by auto ultimately show ?thesis using B \B \ {}\ card_gt_0_iff[of B] by auto qed lemma aff_independent_finite: fixes B :: "'n::euclidean_space set" assumes "\ affine_dependent B" shows "finite B" proof - { assume "B \ {}" then obtain a where "a \ B" by auto then have ?thesis using aff_dim_parallel_subspace_aux assms by auto } then show ?thesis by auto qed lemma aff_dim_empty: fixes S :: "'n::euclidean_space set" shows "S = {} \ aff_dim S = -1" proof - obtain B where *: "affine hull B = affine hull S" and "\ affine_dependent B" and "int (card B) = aff_dim S + 1" using aff_dim_basis_exists by auto moreover from * have "S = {} \ B = {}" by auto ultimately show ?thesis using aff_independent_finite[of B] card_gt_0_iff[of B] by auto qed lemma aff_dim_empty_eq [simp]: "aff_dim ({}::'a::euclidean_space set) = -1" by (simp add: aff_dim_empty [symmetric]) lemma aff_dim_affine_hull [simp]: "aff_dim (affine hull S) = aff_dim S" unfolding aff_dim_def using hull_hull[of _ S] by auto lemma aff_dim_affine_hull2: assumes "affine hull S = affine hull T" shows "aff_dim S = aff_dim T" unfolding aff_dim_def using assms by auto lemma aff_dim_unique: fixes B V :: "'n::euclidean_space set" assumes "affine hull B = affine hull V \ \ affine_dependent B" shows "of_nat (card B) = aff_dim V + 1" proof (cases "B = {}") case True then have "V = {}" using assms by auto then have "aff_dim V = (-1::int)" using aff_dim_empty by auto then show ?thesis using \B = {}\ by auto next case False then obtain a where a: "a \ B" by auto define Lb where "Lb = span ((\x. -a+x) ` (B-{a}))" have "affine_parallel (affine hull B) Lb" using Lb_def affine_hull_span2[of a B] a affine_parallel_commut[of "Lb" "(affine hull B)"] unfolding affine_parallel_def by auto moreover have "subspace Lb" using Lb_def subspace_span by auto ultimately have "aff_dim B = int(dim Lb)" using aff_dim_parallel_subspace[of B Lb] \B \ {}\ by auto moreover have "(card B) - 1 = dim Lb" "finite B" using Lb_def aff_dim_parallel_subspace_aux a assms by auto ultimately have "of_nat (card B) = aff_dim B + 1" using \B \ {}\ card_gt_0_iff[of B] by auto then show ?thesis using aff_dim_affine_hull2 assms by auto qed lemma aff_dim_affine_independent: fixes B :: "'n::euclidean_space set" assumes "\ affine_dependent B" shows "of_nat (card B) = aff_dim B + 1" using aff_dim_unique[of B B] assms by auto lemma affine_independent_iff_card: fixes s :: "'a::euclidean_space set" shows "\ affine_dependent s \ finite s \ aff_dim s = int(card s) - 1" apply (rule iffI) apply (simp add: aff_dim_affine_independent aff_independent_finite) by (metis affine_basis_exists [of s] aff_dim_unique card_subset_eq diff_add_cancel of_nat_eq_iff) lemma aff_dim_sing [simp]: fixes a :: "'n::euclidean_space" shows "aff_dim {a} = 0" using aff_dim_affine_independent[of "{a}"] affine_independent_1 by auto lemma aff_dim_2 [simp]: fixes a :: "'n::euclidean_space" shows "aff_dim {a,b} = (if a = b then 0 else 1)" proof (clarsimp) assume "a \ b" then have "aff_dim{a,b} = card{a,b} - 1" using affine_independent_2 [of a b] aff_dim_affine_independent by fastforce also have "\ = 1" using \a \ b\ by simp finally show "aff_dim {a, b} = 1" . qed lemma aff_dim_inner_basis_exists: fixes V :: "('n::euclidean_space) set" shows "\B. B \ V \ affine hull B = affine hull V \ \ affine_dependent B \ of_nat (card B) = aff_dim V + 1" proof - obtain B where B: "\ affine_dependent B" "B \ V" "affine hull B = affine hull V" using affine_basis_exists[of V] by auto then have "of_nat(card B) = aff_dim V+1" using aff_dim_unique by auto with B show ?thesis by auto qed lemma aff_dim_le_card: fixes V :: "'n::euclidean_space set" assumes "finite V" shows "aff_dim V \ of_nat (card V) - 1" proof - obtain B where B: "B \ V" "of_nat (card B) = aff_dim V + 1" using aff_dim_inner_basis_exists[of V] by auto then have "card B \ card V" using assms card_mono by auto with B show ?thesis by auto qed lemma aff_dim_parallel_eq: fixes S T :: "'n::euclidean_space set" assumes "affine_parallel (affine hull S) (affine hull T)" shows "aff_dim S = aff_dim T" proof - { assume "T \ {}" "S \ {}" then obtain L where L: "subspace L \ affine_parallel (affine hull T) L" using affine_parallel_subspace[of "affine hull T"] affine_affine_hull[of T] by auto then have "aff_dim T = int (dim L)" using aff_dim_parallel_subspace \T \ {}\ by auto moreover have *: "subspace L \ affine_parallel (affine hull S) L" using L affine_parallel_assoc[of "affine hull S" "affine hull T" L] assms by auto moreover from * have "aff_dim S = int (dim L)" using aff_dim_parallel_subspace \S \ {}\ by auto ultimately have ?thesis by auto } moreover { assume "S = {}" then have "S = {}" and "T = {}" using assms unfolding affine_parallel_def by auto then have ?thesis using aff_dim_empty by auto } moreover { assume "T = {}" then have "S = {}" and "T = {}" using assms unfolding affine_parallel_def by auto then have ?thesis using aff_dim_empty by auto } ultimately show ?thesis by blast qed lemma aff_dim_translation_eq: "aff_dim ((+) a ` S) = aff_dim S" for a :: "'n::euclidean_space" proof - have "affine_parallel (affine hull S) (affine hull ((\x. a + x) ` S))" unfolding affine_parallel_def apply (rule exI[of _ "a"]) using affine_hull_translation[of a S] apply auto done then show ?thesis using aff_dim_parallel_eq[of S "(\x. a + x) ` S"] by auto qed lemma aff_dim_translation_eq_subtract: "aff_dim ((\x. x - a) ` S) = aff_dim S" for a :: "'n::euclidean_space" using aff_dim_translation_eq [of "- a"] by (simp cong: image_cong_simp) lemma aff_dim_affine: fixes S L :: "'n::euclidean_space set" assumes "S \ {}" and "affine S" and "subspace L" and "affine_parallel S L" shows "aff_dim S = int (dim L)" proof - have *: "affine hull S = S" using assms affine_hull_eq[of S] by auto then have "affine_parallel (affine hull S) L" using assms by (simp add: *) then show ?thesis using assms aff_dim_parallel_subspace[of S L] by blast qed lemma dim_affine_hull: fixes S :: "'n::euclidean_space set" shows "dim (affine hull S) = dim S" proof - have "dim (affine hull S) \ dim S" using dim_subset by auto moreover have "dim (span S) \ dim (affine hull S)" using dim_subset affine_hull_subset_span by blast moreover have "dim (span S) = dim S" using dim_span by auto ultimately show ?thesis by auto qed lemma aff_dim_subspace: fixes S :: "'n::euclidean_space set" assumes "subspace S" shows "aff_dim S = int (dim S)" proof (cases "S={}") case True with assms show ?thesis by (simp add: subspace_affine) next case False with aff_dim_affine[of S S] assms subspace_imp_affine[of S] affine_parallel_reflex[of S] subspace_affine show ?thesis by auto qed lemma aff_dim_zero: fixes S :: "'n::euclidean_space set" assumes "0 \ affine hull S" shows "aff_dim S = int (dim S)" proof - have "subspace (affine hull S)" using subspace_affine[of "affine hull S"] affine_affine_hull assms by auto then have "aff_dim (affine hull S) = int (dim (affine hull S))" using assms aff_dim_subspace[of "affine hull S"] by auto then show ?thesis using aff_dim_affine_hull[of S] dim_affine_hull[of S] by auto qed lemma aff_dim_eq_dim: "aff_dim S = int (dim ((+) (- a) ` S))" if "a \ affine hull S" for S :: "'n::euclidean_space set" proof - have "0 \ affine hull (+) (- a) ` S" unfolding affine_hull_translation using that by (simp add: ac_simps) with aff_dim_zero show ?thesis by (metis aff_dim_translation_eq) qed lemma aff_dim_eq_dim_subtract: "aff_dim S = int (dim ((\x. x - a) ` S))" if "a \ affine hull S" for S :: "'n::euclidean_space set" using aff_dim_eq_dim [of a] that by (simp cong: image_cong_simp) lemma aff_dim_UNIV [simp]: "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))" using aff_dim_subspace[of "(UNIV :: 'n::euclidean_space set)"] dim_UNIV[where 'a="'n::euclidean_space"] by auto lemma aff_dim_geq: fixes V :: "'n::euclidean_space set" shows "aff_dim V \ -1" proof - obtain B where "affine hull B = affine hull V" and "\ affine_dependent B" and "int (card B) = aff_dim V + 1" using aff_dim_basis_exists by auto then show ?thesis by auto qed lemma aff_dim_negative_iff [simp]: fixes S :: "'n::euclidean_space set" shows "aff_dim S < 0 \S = {}" by (metis aff_dim_empty aff_dim_geq diff_0 eq_iff zle_diff1_eq) lemma aff_lowdim_subset_hyperplane: fixes S :: "'a::euclidean_space set" assumes "aff_dim S < DIM('a)" obtains a b where "a \ 0" "S \ {x. a \ x = b}" proof (cases "S={}") case True moreover have "(SOME b. b \ Basis) \ 0" by (metis norm_some_Basis norm_zero zero_neq_one) ultimately show ?thesis using that by blast next case False then obtain c S' where "c \ S'" "S = insert c S'" by (meson equals0I mk_disjoint_insert) have "dim ((+) (-c) ` S) < DIM('a)" by (metis \S = insert c S'\ aff_dim_eq_dim assms hull_inc insertI1 of_nat_less_imp_less) then obtain a where "a \ 0" "span ((+) (-c) ` S) \ {x. a \ x = 0}" using lowdim_subset_hyperplane by blast moreover have "a \ w = a \ c" if "span ((+) (- c) ` S) \ {x. a \ x = 0}" "w \ S" for w proof - have "w-c \ span ((+) (- c) ` S)" by (simp add: span_base \w \ S\) with that have "w-c \ {x. a \ x = 0}" by blast then show ?thesis by (auto simp: algebra_simps) qed ultimately have "S \ {x. a \ x = a \ c}" by blast then show ?thesis by (rule that[OF \a \ 0\]) qed lemma affine_independent_card_dim_diffs: fixes S :: "'a :: euclidean_space set" assumes "\ affine_dependent S" "a \ S" shows "card S = dim ((\x. x - a) ` S) + 1" proof - have non: "\ affine_dependent (insert a S)" by (simp add: assms insert_absorb) have "finite S" by (meson assms aff_independent_finite) with \a \ S\ have "card S \ 0" by auto moreover have "dim ((\x. x - a) ` S) = card S - 1" using aff_dim_eq_dim_subtract aff_dim_unique \a \ S\ hull_inc insert_absorb non by fastforce ultimately show ?thesis by auto qed lemma independent_card_le_aff_dim: fixes B :: "'n::euclidean_space set" assumes "B \ V" assumes "\ affine_dependent B" shows "int (card B) \ aff_dim V + 1" proof - obtain T where T: "\ affine_dependent T \ B \ T \ T \ V \ affine hull T = affine hull V" by (metis assms extend_to_affine_basis[of B V]) then have "of_nat (card T) = aff_dim V + 1" using aff_dim_unique by auto then show ?thesis using T card_mono[of T B] aff_independent_finite[of T] by auto qed lemma aff_dim_subset: fixes S T :: "'n::euclidean_space set" assumes "S \ T" shows "aff_dim S \ aff_dim T" proof - obtain B where B: "\ affine_dependent B" "B \ S" "affine hull B = affine hull S" "of_nat (card B) = aff_dim S + 1" using aff_dim_inner_basis_exists[of S] by auto then have "int (card B) \ aff_dim T + 1" using assms independent_card_le_aff_dim[of B T] by auto with B show ?thesis by auto qed lemma aff_dim_le_DIM: fixes S :: "'n::euclidean_space set" shows "aff_dim S \ int (DIM('n))" proof - have "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))" using aff_dim_UNIV by auto then show "aff_dim (S:: 'n::euclidean_space set) \ int(DIM('n))" using aff_dim_subset[of S "(UNIV :: ('n::euclidean_space) set)"] subset_UNIV by auto qed lemma affine_dim_equal: fixes S :: "'n::euclidean_space set" assumes "affine S" "affine T" "S \ {}" "S \ T" "aff_dim S = aff_dim T" shows "S = T" proof - obtain a where "a \ S" using assms by auto then have "a \ T" using assms by auto define LS where "LS = {y. \x \ S. (-a) + x = y}" then have ls: "subspace LS" "affine_parallel S LS" using assms parallel_subspace_explicit[of S a LS] \a \ S\ by auto then have h1: "int(dim LS) = aff_dim S" using assms aff_dim_affine[of S LS] by auto have "T \ {}" using assms by auto define LT where "LT = {y. \x \ T. (-a) + x = y}" then have lt: "subspace LT \ affine_parallel T LT" using assms parallel_subspace_explicit[of T a LT] \a \ T\ by auto then have "int(dim LT) = aff_dim T" using assms aff_dim_affine[of T LT] \T \ {}\ by auto then have "dim LS = dim LT" using h1 assms by auto moreover have "LS \ LT" using LS_def LT_def assms by auto ultimately have "LS = LT" using subspace_dim_equal[of LS LT] ls lt by auto moreover have "S = {x. \y \ LS. a+y=x}" using LS_def by auto moreover have "T = {x. \y \ LT. a+y=x}" using LT_def by auto ultimately show ?thesis by auto qed lemma aff_dim_eq_0: fixes S :: "'a::euclidean_space set" shows "aff_dim S = 0 \ (\a. S = {a})" proof (cases "S = {}") case True then show ?thesis by auto next case False then obtain a where "a \ S" by auto show ?thesis proof safe assume 0: "aff_dim S = 0" have "\ {a,b} \ S" if "b \ a" for b by (metis "0" aff_dim_2 aff_dim_subset not_one_le_zero that) then show "\a. S = {a}" using \a \ S\ by blast qed auto qed lemma affine_hull_UNIV: fixes S :: "'n::euclidean_space set" assumes "aff_dim S = int(DIM('n))" shows "affine hull S = (UNIV :: ('n::euclidean_space) set)" proof - have "S \ {}" using assms aff_dim_empty[of S] by auto have h0: "S \ affine hull S" using hull_subset[of S _] by auto have h1: "aff_dim (UNIV :: ('n::euclidean_space) set) = aff_dim S" using aff_dim_UNIV assms by auto then have h2: "aff_dim (affine hull S) \ aff_dim (UNIV :: ('n::euclidean_space) set)" using aff_dim_le_DIM[of "affine hull S"] assms h0 by auto have h3: "aff_dim S \ aff_dim (affine hull S)" using h0 aff_dim_subset[of S "affine hull S"] assms by auto then have h4: "aff_dim (affine hull S) = aff_dim (UNIV :: ('n::euclidean_space) set)" using h0 h1 h2 by auto then show ?thesis using affine_dim_equal[of "affine hull S" "(UNIV :: ('n::euclidean_space) set)"] affine_affine_hull[of S] affine_UNIV assms h4 h0 \S \ {}\ by auto qed lemma disjoint_affine_hull: fixes s :: "'n::euclidean_space set" assumes "\ affine_dependent s" "t \ s" "u \ s" "t \ u = {}" shows "(affine hull t) \ (affine hull u) = {}" proof - from assms(1) have "finite s" by (simp add: aff_independent_finite) with assms(2,3) have "finite t" "finite u" by (blast intro: finite_subset)+ have False if "y \ affine hull t" and "y \ affine hull u" for y proof - from that obtain a b where a1 [simp]: "sum a t = 1" and [simp]: "sum (\v. a v *\<^sub>R v) t = y" and [simp]: "sum b u = 1" "sum (\v. b v *\<^sub>R v) u = y" by (auto simp: affine_hull_finite \finite t\ \finite u\) define c where "c x = (if x \ t then a x else if x \ u then -(b x) else 0)" for x from assms(2,3,4) have [simp]: "s \ t = t" "s \ - t \ u = u" by auto have "sum c s = 0" by (simp add: c_def comm_monoid_add_class.sum.If_cases \finite s\ sum_negf) moreover have "\ (\v\s. c v = 0)" by (metis (no_types) IntD1 \s \ t = t\ a1 c_def sum.neutral zero_neq_one) moreover have "(\v\s. c v *\<^sub>R v) = 0" by (simp add: c_def if_smult sum_negf comm_monoid_add_class.sum.If_cases \finite s\) ultimately show ?thesis using assms(1) \finite s\ by (auto simp: affine_dependent_explicit) qed then show ?thesis by blast qed end \ No newline at end of file diff --git a/src/HOL/Quotient_Examples/Quotient_FSet.thy b/src/HOL/Quotient_Examples/Quotient_FSet.thy --- a/src/HOL/Quotient_Examples/Quotient_FSet.thy +++ b/src/HOL/Quotient_Examples/Quotient_FSet.thy @@ -1,1163 +1,1158 @@ (* Title: HOL/Quotient_Examples/Quotient_FSet.thy Author: Cezary Kaliszyk, TU Munich Author: Christian Urban, TU Munich Type of finite sets. *) (******************************************************************** WARNING: There is a formalization of 'a fset as a subtype of sets in HOL/Library/FSet.thy using Lifting/Transfer. The user should use that file rather than this file unless there are some very specific reasons. *********************************************************************) theory Quotient_FSet imports "HOL-Library.Multiset" "HOL-Library.Quotient_List" begin text \ The type of finite sets is created by a quotient construction over lists. The definition of the equivalence: \ definition list_eq :: "'a list \ 'a list \ bool" (infix "\" 50) where [simp]: "xs \ ys \ set xs = set ys" lemma list_eq_reflp: "reflp list_eq" by (auto intro: reflpI) lemma list_eq_symp: "symp list_eq" by (auto intro: sympI) lemma list_eq_transp: "transp list_eq" by (auto intro: transpI) lemma list_eq_equivp: "equivp list_eq" by (auto intro: equivpI list_eq_reflp list_eq_symp list_eq_transp) text \The \fset\ type\ quotient_type 'a fset = "'a list" / "list_eq" by (rule list_eq_equivp) text \ Definitions for sublist, cardinality, intersection, difference and respectful fold over lists. \ declare List.member_def [simp] definition sub_list :: "'a list \ 'a list \ bool" where [simp]: "sub_list xs ys \ set xs \ set ys" definition card_list :: "'a list \ nat" where [simp]: "card_list xs = card (set xs)" definition inter_list :: "'a list \ 'a list \ 'a list" where [simp]: "inter_list xs ys = [x \ xs. x \ set xs \ x \ set ys]" definition diff_list :: "'a list \ 'a list \ 'a list" where [simp]: "diff_list xs ys = [x \ xs. x \ set ys]" definition rsp_fold :: "('a \ 'b \ 'b) \ bool" where "rsp_fold f \ (\u v. f u \ f v = f v \ f u)" lemma rsp_foldI: "(\u v. f u \ f v = f v \ f u) \ rsp_fold f" by (simp add: rsp_fold_def) lemma rsp_foldE: assumes "rsp_fold f" obtains "f u \ f v = f v \ f u" using assms by (simp add: rsp_fold_def) definition fold_once :: "('a \ 'b \ 'b) \ 'a list \ 'b \ 'b" where "fold_once f xs = (if rsp_fold f then fold f (remdups xs) else id)" lemma fold_once_default [simp]: "\ rsp_fold f \ fold_once f xs = id" by (simp add: fold_once_def) lemma fold_once_fold_remdups: "rsp_fold f \ fold_once f xs = fold f (remdups xs)" by (simp add: fold_once_def) section \Quotient composition lemmas\ lemma list_all2_refl': assumes q: "equivp R" shows "(list_all2 R) r r" by (rule list_all2_refl) (metis equivp_def q) lemma compose_list_refl: assumes q: "equivp R" shows "(list_all2 R OOO (\)) r r" proof have *: "r \ r" by (rule equivp_reflp[OF fset_equivp]) show "list_all2 R r r" by (rule list_all2_refl'[OF q]) with * show "((\) OO list_all2 R) r r" .. qed lemma map_list_eq_cong: "b \ ba \ map f b \ map f ba" by (simp only: list_eq_def set_map) lemma quotient_compose_list_g: assumes q: "Quotient3 R Abs Rep" and e: "equivp R" shows "Quotient3 ((list_all2 R) OOO (\)) (abs_fset \ (map Abs)) ((map Rep) \ rep_fset)" unfolding Quotient3_def comp_def proof (intro conjI allI) fix a r s show "abs_fset (map Abs (map Rep (rep_fset a))) = a" by (simp add: abs_o_rep[OF q] Quotient3_abs_rep[OF Quotient3_fset] List.map.id) have b: "list_all2 R (map Rep (rep_fset a)) (map Rep (rep_fset a))" by (rule list_all2_refl'[OF e]) have c: "((\) OO list_all2 R) (map Rep (rep_fset a)) (map Rep (rep_fset a))" by (rule, rule equivp_reflp[OF fset_equivp]) (rule b) show "(list_all2 R OOO (\)) (map Rep (rep_fset a)) (map Rep (rep_fset a))" by (rule, rule list_all2_refl'[OF e]) (rule c) show "(list_all2 R OOO (\)) r s = ((list_all2 R OOO (\)) r r \ (list_all2 R OOO (\)) s s \ abs_fset (map Abs r) = abs_fset (map Abs s))" proof (intro iffI conjI) show "(list_all2 R OOO (\)) r r" by (rule compose_list_refl[OF e]) show "(list_all2 R OOO (\)) s s" by (rule compose_list_refl[OF e]) next assume a: "(list_all2 R OOO (\)) r s" then have b: "map Abs r \ map Abs s" proof (elim relcomppE) fix b ba assume c: "list_all2 R r b" assume d: "b \ ba" assume e: "list_all2 R ba s" have f: "map Abs r = map Abs b" using Quotient3_rel[OF list_quotient3[OF q]] c by blast have "map Abs ba = map Abs s" using Quotient3_rel[OF list_quotient3[OF q]] e by blast then have g: "map Abs s = map Abs ba" by simp then show "map Abs r \ map Abs s" using d f map_list_eq_cong by simp qed then show "abs_fset (map Abs r) = abs_fset (map Abs s)" using Quotient3_rel[OF Quotient3_fset] by blast next assume a: "(list_all2 R OOO (\)) r r \ (list_all2 R OOO (\)) s s \ abs_fset (map Abs r) = abs_fset (map Abs s)" then have s: "(list_all2 R OOO (\)) s s" by simp have d: "map Abs r \ map Abs s" by (subst Quotient3_rel [OF Quotient3_fset, symmetric]) (simp add: a) have b: "map Rep (map Abs r) \ map Rep (map Abs s)" by (rule map_list_eq_cong[OF d]) have y: "list_all2 R (map Rep (map Abs s)) s" by (fact rep_abs_rsp_left[OF list_quotient3[OF q], OF list_all2_refl'[OF e, of s]]) have c: "((\) OO list_all2 R) (map Rep (map Abs r)) s" by (rule relcomppI) (rule b, rule y) have z: "list_all2 R r (map Rep (map Abs r))" by (fact rep_abs_rsp[OF list_quotient3[OF q], OF list_all2_refl'[OF e, of r]]) then show "(list_all2 R OOO (\)) r s" using a c relcomppI by simp qed qed lemma quotient_compose_list[quot_thm]: shows "Quotient3 ((list_all2 (\)) OOO (\)) (abs_fset \ (map abs_fset)) ((map rep_fset) \ rep_fset)" by (rule quotient_compose_list_g, rule Quotient3_fset, rule list_eq_equivp) section \Quotient definitions for fsets\ subsection \Finite sets are a bounded, distributive lattice with minus\ instantiation fset :: (type) "{bounded_lattice_bot, distrib_lattice, minus}" begin quotient_definition "bot :: 'a fset" is "Nil :: 'a list" done abbreviation empty_fset ("{||}") where "{||} \ bot :: 'a fset" quotient_definition "less_eq_fset :: ('a fset \ 'a fset \ bool)" is "sub_list :: ('a list \ 'a list \ bool)" by simp abbreviation subset_fset :: "'a fset \ 'a fset \ bool" (infix "|\|" 50) where "xs |\| ys \ xs \ ys" definition less_fset :: "'a fset \ 'a fset \ bool" where "xs < ys \ xs \ ys \ xs \ (ys::'a fset)" abbreviation psubset_fset :: "'a fset \ 'a fset \ bool" (infix "|\|" 50) where "xs |\| ys \ xs < ys" quotient_definition "sup :: 'a fset \ 'a fset \ 'a fset" is "append :: 'a list \ 'a list \ 'a list" by simp abbreviation union_fset (infixl "|\|" 65) where "xs |\| ys \ sup xs (ys::'a fset)" quotient_definition "inf :: 'a fset \ 'a fset \ 'a fset" is "inter_list :: 'a list \ 'a list \ 'a list" by simp abbreviation inter_fset (infixl "|\|" 65) where "xs |\| ys \ inf xs (ys::'a fset)" quotient_definition "minus :: 'a fset \ 'a fset \ 'a fset" is "diff_list :: 'a list \ 'a list \ 'a list" by fastforce instance proof fix x y z :: "'a fset" show "x |\| y \ x |\| y \ \ y |\| x" by (unfold less_fset_def, descending) auto show "x |\| x" by (descending) (simp) show "{||} |\| x" by (descending) (simp) show "x |\| x |\| y" by (descending) (simp) show "y |\| x |\| y" by (descending) (simp) show "x |\| y |\| x" by (descending) (auto) show "x |\| y |\| y" by (descending) (auto) show "x |\| (y |\| z) = x |\| y |\| (x |\| z)" by (descending) (auto) next fix x y z :: "'a fset" assume a: "x |\| y" assume b: "y |\| z" show "x |\| z" using a b by (descending) (simp) next fix x y :: "'a fset" assume a: "x |\| y" assume b: "y |\| x" show "x = y" using a b by (descending) (auto) next fix x y z :: "'a fset" assume a: "y |\| x" assume b: "z |\| x" show "y |\| z |\| x" using a b by (descending) (simp) next fix x y z :: "'a fset" assume a: "x |\| y" assume b: "x |\| z" show "x |\| y |\| z" using a b by (descending) (auto) qed end subsection \Other constants for fsets\ quotient_definition "insert_fset :: 'a \ 'a fset \ 'a fset" is "Cons" by auto syntax "_insert_fset" :: "args => 'a fset" ("{|(_)|}") translations "{|x, xs|}" == "CONST insert_fset x {|xs|}" "{|x|}" == "CONST insert_fset x {||}" quotient_definition fset_member where "fset_member :: 'a fset \ 'a \ bool" is "List.member" by fastforce abbreviation in_fset :: "'a \ 'a fset \ bool" (infix "|\|" 50) where "x |\| S \ fset_member S x" abbreviation notin_fset :: "'a \ 'a fset \ bool" (infix "|\|" 50) where "x |\| S \ \ (x |\| S)" subsection \Other constants on the Quotient Type\ quotient_definition "card_fset :: 'a fset \ nat" is card_list by simp quotient_definition "map_fset :: ('a \ 'b) \ 'a fset \ 'b fset" is map by simp quotient_definition "remove_fset :: 'a \ 'a fset \ 'a fset" is removeAll by simp quotient_definition "fset :: 'a fset \ 'a set" is "set" by simp lemma fold_once_set_equiv: assumes "xs \ ys" shows "fold_once f xs = fold_once f ys" proof (cases "rsp_fold f") case False then show ?thesis by simp next case True then have "\x y. x \ set (remdups xs) \ y \ set (remdups xs) \ f x \ f y = f y \ f x" by (rule rsp_foldE) moreover from assms have "mset (remdups xs) = mset (remdups ys)" by (simp add: set_eq_iff_mset_remdups_eq) ultimately have "fold f (remdups xs) = fold f (remdups ys)" by (rule fold_multiset_equiv) with True show ?thesis by (simp add: fold_once_fold_remdups) qed quotient_definition "fold_fset :: ('a \ 'b \ 'b) \ 'a fset \ 'b \ 'b" is fold_once by (rule fold_once_set_equiv) lemma concat_rsp_pre: assumes a: "list_all2 (\) x x'" and b: "x' \ y'" and c: "list_all2 (\) y' y" and d: "\x\set x. xa \ set x" shows "\x\set y. xa \ set x" proof - obtain xb where e: "xb \ set x" and f: "xa \ set xb" using d by auto have "\y. y \ set x' \ xb \ y" by (rule list_all2_find_element[OF e a]) then obtain ya where h: "ya \ set x'" and i: "xb \ ya" by auto have "ya \ set y'" using b h by simp then have "\yb. yb \ set y \ ya \ yb" using c by (rule list_all2_find_element) then show ?thesis using f i by auto qed quotient_definition "concat_fset :: ('a fset) fset \ 'a fset" is concat proof (elim relcomppE) fix a b ba bb assume a: "list_all2 (\) a ba" with list_symp [OF list_eq_symp] have a': "list_all2 (\) ba a" by (rule sympE) assume b: "ba \ bb" with list_eq_symp have b': "bb \ ba" by (rule sympE) assume c: "list_all2 (\) bb b" with list_symp [OF list_eq_symp] have c': "list_all2 (\) b bb" by (rule sympE) have "\x. (\xa\set a. x \ set xa) = (\xa\set b. x \ set xa)" proof fix x show "(\xa\set a. x \ set xa) = (\xa\set b. x \ set xa)" proof assume d: "\xa\set a. x \ set xa" show "\xa\set b. x \ set xa" by (rule concat_rsp_pre[OF a b c d]) next assume e: "\xa\set b. x \ set xa" show "\xa\set a. x \ set xa" by (rule concat_rsp_pre[OF c' b' a' e]) qed qed then show "concat a \ concat b" by auto qed quotient_definition "filter_fset :: ('a \ bool) \ 'a fset \ 'a fset" is filter by force subsection \Compositional respectfulness and preservation lemmas\ lemma Nil_rsp2 [quot_respect]: shows "(list_all2 (\) OOO (\)) Nil Nil" by (rule compose_list_refl, rule list_eq_equivp) lemma Cons_rsp2 [quot_respect]: shows "((\) ===> list_all2 (\) OOO (\) ===> list_all2 (\) OOO (\)) Cons Cons" apply (auto intro!: rel_funI) apply (rule_tac b="x # b" in relcomppI) apply auto apply (rule_tac b="x # ba" in relcomppI) apply auto done lemma Nil_prs2 [quot_preserve]: assumes "Quotient3 R Abs Rep" shows "(Abs \ map f) [] = Abs []" by simp lemma Cons_prs2 [quot_preserve]: assumes q: "Quotient3 R1 Abs1 Rep1" and r: "Quotient3 R2 Abs2 Rep2" shows "(Rep1 ---> (map Rep1 \ Rep2) ---> (Abs2 \ map Abs1)) (#) = (id ---> Rep2 ---> Abs2) (#)" by (auto simp add: fun_eq_iff comp_def Quotient3_abs_rep [OF q]) lemma append_prs2 [quot_preserve]: assumes q: "Quotient3 R1 Abs1 Rep1" and r: "Quotient3 R2 Abs2 Rep2" shows "((map Rep1 \ Rep2) ---> (map Rep1 \ Rep2) ---> (Abs2 \ map Abs1)) (@) = (Rep2 ---> Rep2 ---> Abs2) (@)" by (simp add: fun_eq_iff abs_o_rep[OF q] List.map.id) lemma list_all2_app_l: assumes a: "reflp R" and b: "list_all2 R l r" shows "list_all2 R (z @ l) (z @ r)" using a b by (induct z) (auto elim: reflpE) lemma append_rsp2_pre0: assumes a:"list_all2 (\) x x'" shows "list_all2 (\) (x @ z) (x' @ z)" using a apply (induct x x' rule: list_induct2') by simp_all (rule list_all2_refl'[OF list_eq_equivp]) lemma append_rsp2_pre1: assumes a:"list_all2 (\) x x'" shows "list_all2 (\) (z @ x) (z @ x')" using a apply (induct x x' arbitrary: z rule: list_induct2') apply (rule list_all2_refl'[OF list_eq_equivp]) apply (simp_all del: list_eq_def) apply (rule list_all2_app_l) apply (simp_all add: reflpI) done lemma append_rsp2_pre: assumes "list_all2 (\) x x'" and "list_all2 (\) z z'" shows "list_all2 (\) (x @ z) (x' @ z')" using assms by (rule list_all2_appendI) lemma compositional_rsp3: assumes "(R1 ===> R2 ===> R3) C C" and "(R4 ===> R5 ===> R6) C C" shows "(R1 OOO R4 ===> R2 OOO R5 ===> R3 OOO R6) C C" by (auto intro!: rel_funI) (metis (full_types) assms rel_funE relcomppI) lemma append_rsp2 [quot_respect]: "(list_all2 (\) OOO (\) ===> list_all2 (\) OOO (\) ===> list_all2 (\) OOO (\)) append append" by (intro compositional_rsp3) (auto intro!: rel_funI simp add: append_rsp2_pre) lemma map_rsp2 [quot_respect]: "(((\) ===> (\)) ===> list_all2 (\) OOO (\) ===> list_all2 (\) OOO (\)) map map" proof (auto intro!: rel_funI) fix f f' :: "'a list \ 'b list" fix xa ya x y :: "'a list list" assume fs: "((\) ===> (\)) f f'" and x: "list_all2 (\) xa x" and xy: "set x = set y" and y: "list_all2 (\) y ya" have a: "(list_all2 (\)) (map f xa) (map f x)" using x by (induct xa x rule: list_induct2') (simp_all, metis fs rel_funE list_eq_def) have b: "set (map f x) = set (map f y)" using xy fs by (induct x y rule: list_induct2') (simp_all, metis image_insert) have c: "(list_all2 (\)) (map f y) (map f' ya)" using y fs by (induct y ya rule: list_induct2') (simp_all, metis apply_rsp' list_eq_def) show "(list_all2 (\) OOO (\)) (map f xa) (map f' ya)" by (metis a b c list_eq_def relcomppI) qed lemma map_prs2 [quot_preserve]: shows "((abs_fset ---> rep_fset) ---> (map rep_fset \ rep_fset) ---> abs_fset \ map abs_fset) map = (id ---> rep_fset ---> abs_fset) map" by (auto simp add: fun_eq_iff) (simp only: map_map[symmetric] map_prs_aux[OF Quotient3_fset Quotient3_fset]) section \Lifted theorems\ subsection \fset\ lemma fset_simps [simp]: shows "fset {||} = {}" and "fset (insert_fset x S) = insert x (fset S)" by (descending, simp)+ lemma finite_fset [simp]: shows "finite (fset S)" by (descending) (simp) lemma fset_cong: shows "fset S = fset T \ S = T" by (descending) (simp) lemma filter_fset [simp]: shows "fset (filter_fset P xs) = Collect P \ fset xs" by (descending) (auto) lemma remove_fset [simp]: shows "fset (remove_fset x xs) = fset xs - {x}" by (descending) (simp) lemma inter_fset [simp]: shows "fset (xs |\| ys) = fset xs \ fset ys" by (descending) (auto) lemma union_fset [simp]: shows "fset (xs |\| ys) = fset xs \ fset ys" by (lifting set_append) lemma minus_fset [simp]: shows "fset (xs - ys) = fset xs - fset ys" by (descending) (auto) subsection \in_fset\ lemma in_fset: shows "x |\| S \ x \ fset S" by descending simp lemma notin_fset: shows "x |\| S \ x \ fset S" by (simp add: in_fset) lemma notin_empty_fset: shows "x |\| {||}" by (simp add: in_fset) lemma fset_eq_iff: shows "S = T \ (\x. (x |\| S) = (x |\| T))" by descending auto lemma none_in_empty_fset: shows "(\x. x |\| S) \ S = {||}" by descending simp subsection \insert_fset\ lemma in_insert_fset_iff [simp]: shows "x |\| insert_fset y S \ x = y \ x |\| S" by descending simp lemma shows insert_fsetI1: "x |\| insert_fset x S" and insert_fsetI2: "x |\| S \ x |\| insert_fset y S" by simp_all lemma insert_absorb_fset [simp]: shows "x |\| S \ insert_fset x S = S" by (descending) (auto) lemma empty_not_insert_fset[simp]: shows "{||} \ insert_fset x S" and "insert_fset x S \ {||}" by (descending, simp)+ lemma insert_fset_left_comm: shows "insert_fset x (insert_fset y S) = insert_fset y (insert_fset x S)" by (descending) (auto) lemma insert_fset_left_idem: shows "insert_fset x (insert_fset x S) = insert_fset x S" by (descending) (auto) lemma singleton_fset_eq[simp]: shows "{|x|} = {|y|} \ x = y" by (descending) (auto) lemma in_fset_mdef: shows "x |\| F \ x |\| (F - {|x|}) \ F = insert_fset x (F - {|x|})" by (descending) (auto) subsection \union_fset\ lemmas [simp] = sup_bot_left[where 'a="'a fset"] sup_bot_right[where 'a="'a fset"] lemma union_insert_fset [simp]: shows "insert_fset x S |\| T = insert_fset x (S |\| T)" by (lifting append.simps(2)) lemma singleton_union_fset_left: shows "{|a|} |\| S = insert_fset a S" by simp lemma singleton_union_fset_right: shows "S |\| {|a|} = insert_fset a S" by (subst sup.commute) simp lemma in_union_fset: shows "x |\| S |\| T \ x |\| S \ x |\| T" by (descending) (simp) subsection \minus_fset\ lemma minus_in_fset: shows "x |\| (xs - ys) \ x |\| xs \ x |\| ys" by (descending) (simp) lemma minus_insert_fset: shows "insert_fset x xs - ys = (if x |\| ys then xs - ys else insert_fset x (xs - ys))" by (descending) (auto) lemma minus_insert_in_fset[simp]: shows "x |\| ys \ insert_fset x xs - ys = xs - ys" by (simp add: minus_insert_fset) lemma minus_insert_notin_fset[simp]: shows "x |\| ys \ insert_fset x xs - ys = insert_fset x (xs - ys)" by (simp add: minus_insert_fset) lemma in_minus_fset: shows "x |\| F - S \ x |\| S" unfolding in_fset minus_fset by blast lemma notin_minus_fset: shows "x |\| S \ x |\| F - S" unfolding in_fset minus_fset by blast subsection \remove_fset\ lemma in_remove_fset: shows "x |\| remove_fset y S \ x |\| S \ x \ y" by (descending) (simp) lemma notin_remove_fset: shows "x |\| remove_fset x S" by (descending) (simp) lemma notin_remove_ident_fset: shows "x |\| S \ remove_fset x S = S" by (descending) (simp) lemma remove_fset_cases: shows "S = {||} \ (\x. x |\| S \ S = insert_fset x (remove_fset x S))" by (descending) (auto simp add: insert_absorb) subsection \inter_fset\ lemma inter_empty_fset_l: shows "{||} |\| S = {||}" by simp lemma inter_empty_fset_r: shows "S |\| {||} = {||}" by simp lemma inter_insert_fset: shows "insert_fset x S |\| T = (if x |\| T then insert_fset x (S |\| T) else S |\| T)" by (descending) (auto) lemma in_inter_fset: shows "x |\| (S |\| T) \ x |\| S \ x |\| T" by (descending) (simp) subsection \subset_fset and psubset_fset\ lemma subset_fset: shows "xs |\| ys \ fset xs \ fset ys" by (descending) (simp) lemma psubset_fset: shows "xs |\| ys \ fset xs \ fset ys" unfolding less_fset_def by (descending) (auto) lemma subset_insert_fset: shows "(insert_fset x xs) |\| ys \ x |\| ys \ xs |\| ys" by (descending) (simp) lemma subset_in_fset: shows "xs |\| ys = (\x. x |\| xs \ x |\| ys)" by (descending) (auto) lemma subset_empty_fset: shows "xs |\| {||} \ xs = {||}" by (descending) (simp) lemma not_psubset_empty_fset: shows "\ xs |\| {||}" by (metis fset_simps(1) psubset_fset not_psubset_empty) subsection \map_fset\ lemma map_fset_simps [simp]: shows "map_fset f {||} = {||}" and "map_fset f (insert_fset x S) = insert_fset (f x) (map_fset f S)" by (descending, simp)+ lemma map_fset_image [simp]: shows "fset (map_fset f S) = f ` (fset S)" by (descending) (simp) lemma inj_map_fset_cong: shows "inj f \ map_fset f S = map_fset f T \ S = T" by (descending) (metis inj_vimage_image_eq list_eq_def set_map) lemma map_union_fset: shows "map_fset f (S |\| T) = map_fset f S |\| map_fset f T" by (descending) (simp) lemma in_fset_map_fset[simp]: "a |\| map_fset f X = (\b. b |\| X \ a = f b)" by descending auto subsection \card_fset\ lemma card_fset: shows "card_fset xs = card (fset xs)" by (descending) (simp) lemma card_insert_fset_iff [simp]: shows "card_fset (insert_fset x S) = (if x |\| S then card_fset S else Suc (card_fset S))" by (descending) (simp add: insert_absorb) lemma card_fset_0[simp]: shows "card_fset S = 0 \ S = {||}" by (descending) (simp) lemma card_empty_fset[simp]: shows "card_fset {||} = 0" by (simp add: card_fset) lemma card_fset_1: shows "card_fset S = 1 \ (\x. S = {|x|})" by (descending) (auto simp add: card_Suc_eq) lemma card_fset_gt_0: shows "x \ fset S \ 0 < card_fset S" by (descending) (auto simp add: card_gt_0_iff) lemma card_notin_fset: shows "(x |\| S) = (card_fset (insert_fset x S) = Suc (card_fset S))" by simp lemma card_fset_Suc: shows "card_fset S = Suc n \ \x T. x |\| T \ S = insert_fset x T \ card_fset T = n" apply(descending) apply(auto dest!: card_eq_SucD) by (metis Diff_insert_absorb set_removeAll) lemma card_remove_fset_iff [simp]: shows "card_fset (remove_fset y S) = (if y |\| S then card_fset S - 1 else card_fset S)" by (descending) (simp) lemma card_Suc_exists_in_fset: shows "card_fset S = Suc n \ \a. a |\| S" by (drule card_fset_Suc) (auto) lemma in_card_fset_not_0: shows "a |\| A \ card_fset A \ 0" by (descending) (auto) lemma card_fset_mono: shows "xs |\| ys \ card_fset xs \ card_fset ys" unfolding card_fset psubset_fset by (simp add: card_mono subset_fset) lemma card_subset_fset_eq: shows "xs |\| ys \ card_fset ys \ card_fset xs \ xs = ys" unfolding card_fset subset_fset by (auto dest: card_seteq[OF finite_fset] simp add: fset_cong) lemma psubset_card_fset_mono: shows "xs |\| ys \ card_fset xs < card_fset ys" unfolding card_fset subset_fset by (metis finite_fset psubset_fset psubset_card_mono) lemma card_union_inter_fset: shows "card_fset xs + card_fset ys = card_fset (xs |\| ys) + card_fset (xs |\| ys)" unfolding card_fset union_fset inter_fset by (rule card_Un_Int[OF finite_fset finite_fset]) lemma card_union_disjoint_fset: shows "xs |\| ys = {||} \ card_fset (xs |\| ys) = card_fset xs + card_fset ys" unfolding card_fset union_fset apply (rule card_Un_disjoint[OF finite_fset finite_fset]) by (metis inter_fset fset_simps(1)) lemma card_remove_fset_less1: shows "x |\| xs \ card_fset (remove_fset x xs) < card_fset xs" unfolding card_fset in_fset remove_fset by (rule card_Diff1_less[OF finite_fset]) lemma card_remove_fset_less2: shows "x |\| xs \ y |\| xs \ card_fset (remove_fset y (remove_fset x xs)) < card_fset xs" unfolding card_fset remove_fset in_fset by (rule card_Diff2_less[OF finite_fset]) lemma card_remove_fset_le1: shows "card_fset (remove_fset x xs) \ card_fset xs" - unfolding remove_fset card_fset - by (rule card_Diff1_le[OF finite_fset]) + by simp lemma card_psubset_fset: shows "ys |\| xs \ card_fset ys < card_fset xs \ ys |\| xs" unfolding card_fset psubset_fset subset_fset by (rule card_psubset[OF finite_fset]) lemma card_map_fset_le: shows "card_fset (map_fset f xs) \ card_fset xs" unfolding card_fset map_fset_image by (rule card_image_le[OF finite_fset]) lemma card_minus_insert_fset[simp]: assumes "a |\| A" and "a |\| B" shows "card_fset (A - insert_fset a B) = card_fset (A - B) - 1" - using assms - unfolding in_fset card_fset minus_fset - by (simp add: card_Diff_insert[OF finite_fset]) + using assms by (simp add: in_fset card_fset) lemma card_minus_subset_fset: assumes "B |\| A" shows "card_fset (A - B) = card_fset A - card_fset B" using assms - unfolding subset_fset card_fset minus_fset - by (rule card_Diff_subset[OF finite_fset]) + by (simp add: subset_fset card_fset card_Diff_subset) lemma card_minus_fset: shows "card_fset (A - B) = card_fset A - card_fset (A |\| B)" - unfolding inter_fset card_fset minus_fset - by (rule card_Diff_subset_Int) (simp) + by (simp add: card_fset card_Diff_subset_Int) subsection \concat_fset\ lemma concat_empty_fset [simp]: shows "concat_fset {||} = {||}" by descending simp lemma concat_insert_fset [simp]: shows "concat_fset (insert_fset x S) = x |\| concat_fset S" by descending simp lemma concat_union_fset [simp]: shows "concat_fset (xs |\| ys) = concat_fset xs |\| concat_fset ys" by descending simp lemma map_concat_fset: shows "map_fset f (concat_fset xs) = concat_fset (map_fset (map_fset f) xs)" by (lifting map_concat) subsection \filter_fset\ lemma subset_filter_fset: "filter_fset P xs |\| filter_fset Q xs = (\ x. x |\| xs \ P x \ Q x)" by descending auto lemma eq_filter_fset: "(filter_fset P xs = filter_fset Q xs) = (\x. x |\| xs \ P x = Q x)" by descending auto lemma psubset_filter_fset: "(\x. x |\| xs \ P x \ Q x) \ (x |\| xs & \ P x & Q x) \ filter_fset P xs |\| filter_fset Q xs" unfolding less_fset_def by (auto simp add: subset_filter_fset eq_filter_fset) subsection \fold_fset\ lemma fold_empty_fset: "fold_fset f {||} = id" by descending (simp add: fold_once_def) lemma fold_insert_fset: "fold_fset f (insert_fset a A) = (if rsp_fold f then if a |\| A then fold_fset f A else fold_fset f A \ f a else id)" by descending (simp add: fold_once_fold_remdups) lemma remdups_removeAll: "remdups (removeAll x xs) = remove1 x (remdups xs)" by (induct xs) auto lemma member_commute_fold_once: assumes "rsp_fold f" and "x \ set xs" shows "fold_once f xs = fold_once f (removeAll x xs) \ f x" proof - from assms have "fold f (remdups xs) = fold f (remove1 x (remdups xs)) \ f x" by (auto intro!: fold_remove1_split elim: rsp_foldE) then show ?thesis using \rsp_fold f\ by (simp add: fold_once_fold_remdups remdups_removeAll) qed lemma in_commute_fold_fset: "rsp_fold f \ h |\| b \ fold_fset f b = fold_fset f (remove_fset h b) \ f h" by descending (simp add: member_commute_fold_once) subsection \Choice in fsets\ lemma fset_choice: assumes a: "\x. x |\| A \ (\y. P x y)" shows "\f. \x. x |\| A \ P x (f x)" using a apply(descending) using finite_set_choice by (auto simp add: Ball_def) section \Induction and Cases rules for fsets\ lemma fset_exhaust [case_names empty insert, cases type: fset]: assumes empty_fset_case: "S = {||} \ P" and insert_fset_case: "\x S'. S = insert_fset x S' \ P" shows "P" using assms by (lifting list.exhaust) lemma fset_induct [case_names empty insert]: assumes empty_fset_case: "P {||}" and insert_fset_case: "\x S. P S \ P (insert_fset x S)" shows "P S" using assms by (descending) (blast intro: list.induct) lemma fset_induct_stronger [case_names empty insert, induct type: fset]: assumes empty_fset_case: "P {||}" and insert_fset_case: "\x S. \x |\| S; P S\ \ P (insert_fset x S)" shows "P S" proof(induct S rule: fset_induct) case empty show "P {||}" using empty_fset_case by simp next case (insert x S) have "P S" by fact then show "P (insert_fset x S)" using insert_fset_case by (cases "x |\| S") (simp_all) qed lemma fset_card_induct: assumes empty_fset_case: "P {||}" and card_fset_Suc_case: "\S T. Suc (card_fset S) = (card_fset T) \ P S \ P T" shows "P S" proof (induct S) case empty show "P {||}" by (rule empty_fset_case) next case (insert x S) have h: "P S" by fact have "x |\| S" by fact then have "Suc (card_fset S) = card_fset (insert_fset x S)" using card_fset_Suc by auto then show "P (insert_fset x S)" using h card_fset_Suc_case by simp qed lemma fset_raw_strong_cases: obtains "xs = []" | ys x where "\ List.member ys x" and "xs \ x # ys" proof (induct xs) case Nil then show thesis by simp next case (Cons a xs) have a: "\xs = [] \ thesis; \x ys. \\ List.member ys x; xs \ x # ys\ \ thesis\ \ thesis" by (rule Cons(1)) have b: "\x' ys'. \\ List.member ys' x'; a # xs \ x' # ys'\ \ thesis" by fact have c: "xs = [] \ thesis" using b apply(simp) by (metis list.set(1) emptyE empty_subsetI) have "\x ys. \\ List.member ys x; xs \ x # ys\ \ thesis" proof - fix x :: 'a fix ys :: "'a list" assume d:"\ List.member ys x" assume e:"xs \ x # ys" show thesis proof (cases "x = a") assume h: "x = a" then have f: "\ List.member ys a" using d by simp have g: "a # xs \ a # ys" using e h by auto show thesis using b f g by simp next assume h: "x \ a" then have f: "\ List.member (a # ys) x" using d by auto have g: "a # xs \ x # (a # ys)" using e h by auto show thesis using b f g by (simp del: List.member_def) qed qed then show thesis using a c by blast qed lemma fset_strong_cases: obtains "xs = {||}" | ys x where "x |\| ys" and "xs = insert_fset x ys" by (lifting fset_raw_strong_cases) lemma fset_induct2: "P {||} {||} \ (\x xs. x |\| xs \ P (insert_fset x xs) {||}) \ (\y ys. y |\| ys \ P {||} (insert_fset y ys)) \ (\x xs y ys. \P xs ys; x |\| xs; y |\| ys\ \ P (insert_fset x xs) (insert_fset y ys)) \ P xsa ysa" apply (induct xsa arbitrary: ysa) apply (induct_tac x rule: fset_induct_stronger) apply simp_all apply (induct_tac xa rule: fset_induct_stronger) apply simp_all done text \Extensionality\ lemma fset_eqI: assumes "\x. x \ fset A \ x \ fset B" shows "A = B" using assms proof (induct A arbitrary: B) case empty then show ?case by (auto simp add: in_fset none_in_empty_fset [symmetric] sym) next case (insert x A) from insert.prems insert.hyps(1) have "\z. z \ fset A \ z \ fset (B - {|x|})" by (auto simp add: in_fset) then have A: "A = B - {|x|}" by (rule insert.hyps(2)) with insert.prems [symmetric, of x] have "x |\| B" by (simp add: in_fset) with A show ?case by (metis in_fset_mdef) qed subsection \alternate formulation with a different decomposition principle and a proof of equivalence\ inductive list_eq2 :: "'a list \ 'a list \ bool" ("_ \2 _") where "(a # b # xs) \2 (b # a # xs)" | "[] \2 []" | "xs \2 ys \ ys \2 xs" | "(a # a # xs) \2 (a # xs)" | "xs \2 ys \ (a # xs) \2 (a # ys)" | "xs1 \2 xs2 \ xs2 \2 xs3 \ xs1 \2 xs3" lemma list_eq2_refl: shows "xs \2 xs" by (induct xs) (auto intro: list_eq2.intros) lemma cons_delete_list_eq2: shows "(a # (removeAll a A)) \2 (if List.member A a then A else a # A)" apply (induct A) apply (simp add: list_eq2_refl) apply (case_tac "List.member (aa # A) a") apply (simp_all) apply (case_tac [!] "a = aa") apply (simp_all) apply (case_tac "List.member A a") apply (auto)[2] apply (metis list_eq2.intros(3) list_eq2.intros(4) list_eq2.intros(5) list_eq2.intros(6)) apply (metis list_eq2.intros(1) list_eq2.intros(5) list_eq2.intros(6)) apply (auto simp add: list_eq2_refl) done lemma member_delete_list_eq2: assumes a: "List.member r e" shows "(e # removeAll e r) \2 r" using a cons_delete_list_eq2[of e r] by simp lemma list_eq2_equiv: "(l \ r) \ (list_eq2 l r)" proof show "list_eq2 l r \ l \ r" by (induct rule: list_eq2.induct) auto next { fix n assume a: "card_list l = n" and b: "l \ r" have "l \2 r" using a b proof (induct n arbitrary: l r) case 0 have "card_list l = 0" by fact then have "\x. \ List.member l x" by auto then have z: "l = []" by auto then have "r = []" using \l \ r\ by simp then show ?case using z list_eq2_refl by simp next case (Suc m) have b: "l \ r" by fact have d: "card_list l = Suc m" by fact then have "\a. List.member l a" apply(simp) apply(drule card_eq_SucD) apply(blast) done then obtain a where e: "List.member l a" by auto then have e': "List.member r a" using list_eq_def [simplified List.member_def [symmetric], of l r] b by auto have f: "card_list (removeAll a l) = m" using e d by (simp) have g: "removeAll a l \ removeAll a r" using remove_fset.rsp b by simp have "(removeAll a l) \2 (removeAll a r)" by (rule Suc.hyps[OF f g]) then have h: "(a # removeAll a l) \2 (a # removeAll a r)" by (rule list_eq2.intros(5)) have i: "l \2 (a # removeAll a l)" by (rule list_eq2.intros(3)[OF member_delete_list_eq2[OF e]]) have "l \2 (a # removeAll a r)" by (rule list_eq2.intros(6)[OF i h]) then show ?case using list_eq2.intros(6)[OF _ member_delete_list_eq2[OF e']] by simp qed } then show "l \ r \ l \2 r" by blast qed (* We cannot write it as "assumes .. shows" since Isabelle changes the quantifiers to schematic variables and reintroduces them in a different order *) lemma fset_eq_cases: "\a1 = a2; \a b xs. \a1 = insert_fset a (insert_fset b xs); a2 = insert_fset b (insert_fset a xs)\ \ P; \a1 = {||}; a2 = {||}\ \ P; \xs ys. \a1 = ys; a2 = xs; xs = ys\ \ P; \a xs. \a1 = insert_fset a (insert_fset a xs); a2 = insert_fset a xs\ \ P; \xs ys a. \a1 = insert_fset a xs; a2 = insert_fset a ys; xs = ys\ \ P; \xs1 xs2 xs3. \a1 = xs1; a2 = xs3; xs1 = xs2; xs2 = xs3\ \ P\ \ P" by (lifting list_eq2.cases[simplified list_eq2_equiv[symmetric]]) lemma fset_eq_induct: assumes "x1 = x2" and "\a b xs. P (insert_fset a (insert_fset b xs)) (insert_fset b (insert_fset a xs))" and "P {||} {||}" and "\xs ys. \xs = ys; P xs ys\ \ P ys xs" and "\a xs. P (insert_fset a (insert_fset a xs)) (insert_fset a xs)" and "\xs ys a. \xs = ys; P xs ys\ \ P (insert_fset a xs) (insert_fset a ys)" and "\xs1 xs2 xs3. \xs1 = xs2; P xs1 xs2; xs2 = xs3; P xs2 xs3\ \ P xs1 xs3" shows "P x1 x2" using assms by (lifting list_eq2.induct[simplified list_eq2_equiv[symmetric]]) ML \ fun dest_fsetT (Type (\<^type_name>\fset\, [T])) = T | dest_fsetT T = raise TYPE ("dest_fsetT: fset type expected", [T], []); \ no_notation list_eq (infix "\" 50) and list_eq2 (infix "\2" 50) end