diff --git a/src/HOL/Bit_Operations.thy b/src/HOL/Bit_Operations.thy --- a/src/HOL/Bit_Operations.thy +++ b/src/HOL/Bit_Operations.thy @@ -1,3785 +1,3803 @@ (* Author: Florian Haftmann, TUM *) section \Bit operations in suitable algebraic structures\ theory Bit_Operations imports Presburger Groups_List begin subsection \Abstract bit structures\ class semiring_bits = semiring_parity + assumes bits_induct [case_names stable rec]: \(\a. a div 2 = a \ P a) \ (\a b. P a \ (of_bool b + 2 * a) div 2 = a \ P (of_bool b + 2 * a)) \ P a\ assumes bits_div_0 [simp]: \0 div a = 0\ and bits_div_by_1 [simp]: \a div 1 = a\ and bits_mod_div_trivial [simp]: \a mod b div b = 0\ and even_succ_div_2 [simp]: \even a \ (1 + a) div 2 = a div 2\ and even_mask_div_iff: \even ((2 ^ m - 1) div 2 ^ n) \ 2 ^ n = 0 \ m \ n\ and exp_div_exp_eq: \2 ^ m div 2 ^ n = of_bool (2 ^ m \ 0 \ m \ n) * 2 ^ (m - n)\ and div_exp_eq: \a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)\ and mod_exp_eq: \a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n\ and mult_exp_mod_exp_eq: \m \ n \ (a * 2 ^ m) mod (2 ^ n) = (a mod 2 ^ (n - m)) * 2 ^ m\ and div_exp_mod_exp_eq: \a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\ and even_mult_exp_div_exp_iff: \even (a * 2 ^ m div 2 ^ n) \ m > n \ 2 ^ n = 0 \ (m \ n \ even (a div 2 ^ (n - m)))\ fixes bit :: \'a \ nat \ bool\ assumes bit_iff_odd: \bit a n \ odd (a div 2 ^ n)\ begin text \ Having \<^const>\bit\ as definitional class operation takes into account that specific instances can be implemented differently wrt. code generation. \ lemma bits_div_by_0 [simp]: \a div 0 = 0\ by (metis add_cancel_right_right bits_mod_div_trivial mod_mult_div_eq mult_not_zero) lemma bits_1_div_2 [simp]: \1 div 2 = 0\ using even_succ_div_2 [of 0] by simp lemma bits_1_div_exp [simp]: \1 div 2 ^ n = of_bool (n = 0)\ using div_exp_eq [of 1 1] by (cases n) simp_all lemma even_succ_div_exp [simp]: \(1 + a) div 2 ^ n = a div 2 ^ n\ if \even a\ and \n > 0\ proof (cases n) case 0 with that show ?thesis by simp next case (Suc n) with \even a\ have \(1 + a) div 2 ^ Suc n = a div 2 ^ Suc n\ proof (induction n) case 0 then show ?case by simp next case (Suc n) then show ?case using div_exp_eq [of _ 1 \Suc n\, symmetric] by simp qed with Suc show ?thesis by simp qed lemma even_succ_mod_exp [simp]: \(1 + a) mod 2 ^ n = 1 + (a mod 2 ^ n)\ if \even a\ and \n > 0\ using div_mult_mod_eq [of \1 + a\ \2 ^ n\] that apply simp by (metis local.add.left_commute local.add_left_cancel local.div_mult_mod_eq) lemma bits_mod_by_1 [simp]: \a mod 1 = 0\ using div_mult_mod_eq [of a 1] by simp lemma bits_mod_0 [simp]: \0 mod a = 0\ using div_mult_mod_eq [of 0 a] by simp lemma bits_one_mod_two_eq_one [simp]: \1 mod 2 = 1\ by (simp add: mod2_eq_if) lemma bit_0: \bit a 0 \ odd a\ by (simp add: bit_iff_odd) lemma bit_Suc: \bit a (Suc n) \ bit (a div 2) n\ using div_exp_eq [of a 1 n] by (simp add: bit_iff_odd) lemma bit_rec: \bit a n \ (if n = 0 then odd a else bit (a div 2) (n - 1))\ by (cases n) (simp_all add: bit_Suc bit_0) lemma bit_0_eq [simp]: \bit 0 = bot\ by (simp add: fun_eq_iff bit_iff_odd) context fixes a assumes stable: \a div 2 = a\ begin lemma bits_stable_imp_add_self: \a + a mod 2 = 0\ proof - have \a div 2 * 2 + a mod 2 = a\ by (fact div_mult_mod_eq) then have \a * 2 + a mod 2 = a\ by (simp add: stable) then show ?thesis by (simp add: mult_2_right ac_simps) qed lemma stable_imp_bit_iff_odd: \bit a n \ odd a\ by (induction n) (simp_all add: stable bit_Suc bit_0) end lemma bit_iff_idd_imp_stable: \a div 2 = a\ if \\n. bit a n \ odd a\ using that proof (induction a rule: bits_induct) case (stable a) then show ?case by simp next case (rec a b) from rec.prems [of 1] have [simp]: \b = odd a\ by (simp add: rec.hyps bit_Suc bit_0) from rec.hyps have hyp: \(of_bool (odd a) + 2 * a) div 2 = a\ by simp have \bit a n \ odd a\ for n using rec.prems [of \Suc n\] by (simp add: hyp bit_Suc) then have \a div 2 = a\ by (rule rec.IH) then have \of_bool (odd a) + 2 * a = 2 * (a div 2) + of_bool (odd a)\ by (simp add: ac_simps) also have \\ = a\ using mult_div_mod_eq [of 2 a] by (simp add: of_bool_odd_eq_mod_2) finally show ?case using \a div 2 = a\ by (simp add: hyp) qed lemma exp_eq_0_imp_not_bit: \\ bit a n\ if \2 ^ n = 0\ using that by (simp add: bit_iff_odd) definition possible_bit :: "'a itself \ nat \ bool" where "possible_bit tyrep n = (2 ^ n \ (0 :: 'a))" lemma possible_bit_0[simp]: "possible_bit ty 0" by (simp add: possible_bit_def) lemma fold_possible_bit: "2 ^ n = (0 :: 'a) \ \ possible_bit TYPE('a) n" by (simp add: possible_bit_def) lemmas impossible_bit = exp_eq_0_imp_not_bit[simplified fold_possible_bit] lemma bit_imp_possible_bit: "bit a n \ possible_bit TYPE('a) n" by (rule ccontr) (simp add: impossible_bit) lemma possible_bit_less_imp: "possible_bit tyrep i \ j \ i \ possible_bit tyrep j" using power_add[of "2 :: 'a" j "i - j"] by (clarsimp simp: possible_bit_def eq_commute[where a=0]) lemma possible_bit_min[simp]: "possible_bit tyrep (min i j) \ possible_bit tyrep i \ possible_bit tyrep j" by (auto simp: min_def elim: possible_bit_less_imp) lemma bit_eqI: \a = b\ if \\n. possible_bit TYPE('a) n \ bit a n \ bit b n\ proof - have \bit a n \ bit b n\ for n proof (cases \2 ^ n = 0\) case True then show ?thesis by (simp add: exp_eq_0_imp_not_bit) next case False then show ?thesis by (rule that[unfolded possible_bit_def]) qed then show ?thesis proof (induction a arbitrary: b rule: bits_induct) case (stable a) from stable(2) [of 0] have **: \even b \ even a\ by (simp add: bit_0) have \b div 2 = b\ proof (rule bit_iff_idd_imp_stable) fix n from stable have *: \bit b n \ bit a n\ by simp also have \bit a n \ odd a\ using stable by (simp add: stable_imp_bit_iff_odd) finally show \bit b n \ odd b\ by (simp add: **) qed from ** have \a mod 2 = b mod 2\ by (simp add: mod2_eq_if) then have \a mod 2 + (a + b) = b mod 2 + (a + b)\ by simp then have \a + a mod 2 + b = b + b mod 2 + a\ by (simp add: ac_simps) with \a div 2 = a\ \b div 2 = b\ show ?case by (simp add: bits_stable_imp_add_self) next case (rec a p) from rec.prems [of 0] have [simp]: \p = odd b\ by (simp add: bit_0) from rec.hyps have \bit a n \ bit (b div 2) n\ for n using rec.prems [of \Suc n\] by (simp add: bit_Suc) then have \a = b div 2\ by (rule rec.IH) then have \2 * a = 2 * (b div 2)\ by simp then have \b mod 2 + 2 * a = b mod 2 + 2 * (b div 2)\ by simp also have \\ = b\ by (fact mod_mult_div_eq) finally show ?case by (auto simp add: mod2_eq_if) qed qed lemma bit_eq_iff: \a = b \ (\n. possible_bit TYPE('a) n \ bit a n \ bit b n)\ by (auto intro: bit_eqI) named_theorems bit_simps \Simplification rules for \<^const>\bit\\ lemma bit_exp_iff [bit_simps]: \bit (2 ^ m) n \ possible_bit TYPE('a) n \ m = n\ by (auto simp add: bit_iff_odd exp_div_exp_eq possible_bit_def) lemma bit_1_iff [bit_simps]: \bit 1 n \ n = 0\ using bit_exp_iff [of 0 n] by auto lemma bit_2_iff [bit_simps]: \bit 2 n \ possible_bit TYPE('a) 1 \ n = 1\ using bit_exp_iff [of 1 n] by auto lemma even_bit_succ_iff: \bit (1 + a) n \ bit a n \ n = 0\ if \even a\ using that by (cases \n = 0\) (simp_all add: bit_iff_odd) lemma bit_double_iff [bit_simps]: \bit (2 * a) n \ bit a (n - 1) \ n \ 0 \ possible_bit TYPE('a) n\ using even_mult_exp_div_exp_iff [of a 1 n] by (cases n, auto simp add: bit_iff_odd ac_simps possible_bit_def) lemma odd_bit_iff_bit_pred: \bit a n \ bit (a - 1) n \ n = 0\ if \odd a\ proof - from \odd a\ obtain b where \a = 2 * b + 1\ .. moreover have \bit (2 * b) n \ n = 0 \ bit (1 + 2 * b) n\ using even_bit_succ_iff by simp ultimately show ?thesis by (simp add: ac_simps) qed lemma bit_eq_rec: \a = b \ (even a \ even b) \ a div 2 = b div 2\ (is \?P = ?Q\) proof assume ?P then show ?Q by simp next assume ?Q then have \even a \ even b\ and \a div 2 = b div 2\ by simp_all show ?P proof (rule bit_eqI) fix n show \bit a n \ bit b n\ proof (cases n) case 0 with \even a \ even b\ show ?thesis by (simp add: bit_0) next case (Suc n) moreover from \a div 2 = b div 2\ have \bit (a div 2) n = bit (b div 2) n\ by simp ultimately show ?thesis by (simp add: bit_Suc) qed qed qed lemma bit_mod_2_iff [simp]: \bit (a mod 2) n \ n = 0 \ odd a\ by (cases a rule: parity_cases) (simp_all add: bit_iff_odd) lemma bit_mask_sub_iff: \bit (2 ^ m - 1) n \ possible_bit TYPE('a) n \ n < m\ by (simp add: bit_iff_odd even_mask_div_iff not_le possible_bit_def) lemma exp_add_not_zero_imp: \2 ^ m \ 0\ and \2 ^ n \ 0\ if \2 ^ (m + n) \ 0\ proof - have \\ (2 ^ m = 0 \ 2 ^ n = 0)\ proof (rule notI) assume \2 ^ m = 0 \ 2 ^ n = 0\ then have \2 ^ (m + n) = 0\ by (rule disjE) (simp_all add: power_add) with that show False .. qed then show \2 ^ m \ 0\ and \2 ^ n \ 0\ by simp_all qed lemma bit_disjunctive_add_iff: \bit (a + b) n \ bit a n \ bit b n\ if \\n. \ bit a n \ \ bit b n\ proof (cases \2 ^ n = 0\) case True then show ?thesis by (simp add: exp_eq_0_imp_not_bit) next case False with that show ?thesis proof (induction n arbitrary: a b) case 0 from "0.prems"(1) [of 0] show ?case by (auto simp add: bit_0) next case (Suc n) from Suc.prems(1) [of 0] have even: \even a \ even b\ by (auto simp add: bit_0) have bit: \\ bit (a div 2) n \ \ bit (b div 2) n\ for n using Suc.prems(1) [of \Suc n\] by (simp add: bit_Suc) from Suc.prems(2) have \2 * 2 ^ n \ 0\ \2 ^ n \ 0\ by (auto simp add: mult_2) have \a + b = (a div 2 * 2 + a mod 2) + (b div 2 * 2 + b mod 2)\ using div_mult_mod_eq [of a 2] div_mult_mod_eq [of b 2] by simp also have \\ = of_bool (odd a \ odd b) + 2 * (a div 2 + b div 2)\ using even by (auto simp add: algebra_simps mod2_eq_if) finally have \bit ((a + b) div 2) n \ bit (a div 2 + b div 2) n\ using \2 * 2 ^ n \ 0\ by simp (simp_all flip: bit_Suc add: bit_double_iff possible_bit_def) also have \\ \ bit (a div 2) n \ bit (b div 2) n\ using bit \2 ^ n \ 0\ by (rule Suc.IH) finally show ?case by (simp add: bit_Suc) qed qed lemma exp_add_not_zero_imp_left: \2 ^ m \ 0\ and exp_add_not_zero_imp_right: \2 ^ n \ 0\ if \2 ^ (m + n) \ 0\ proof - have \\ (2 ^ m = 0 \ 2 ^ n = 0)\ proof (rule notI) assume \2 ^ m = 0 \ 2 ^ n = 0\ then have \2 ^ (m + n) = 0\ by (rule disjE) (simp_all add: power_add) with that show False .. qed then show \2 ^ m \ 0\ and \2 ^ n \ 0\ by simp_all qed lemma exp_not_zero_imp_exp_diff_not_zero: \2 ^ (n - m) \ 0\ if \2 ^ n \ 0\ proof (cases \m \ n\) case True moreover define q where \q = n - m\ ultimately have \n = m + q\ by simp with that show ?thesis by (simp add: exp_add_not_zero_imp_right) next case False with that show ?thesis by simp qed end lemma nat_bit_induct [case_names zero even odd]: "P n" if zero: "P 0" and even: "\n. P n \ n > 0 \ P (2 * n)" and odd: "\n. P n \ P (Suc (2 * n))" proof (induction n rule: less_induct) case (less n) show "P n" proof (cases "n = 0") case True with zero show ?thesis by simp next case False with less have hyp: "P (n div 2)" by simp show ?thesis proof (cases "even n") case True then have "n \ 1" by auto with \n \ 0\ have "n div 2 > 0" by simp with \even n\ hyp even [of "n div 2"] show ?thesis by simp next case False with hyp odd [of "n div 2"] show ?thesis by simp qed qed qed instantiation nat :: semiring_bits begin definition bit_nat :: \nat \ nat \ bool\ where \bit_nat m n \ odd (m div 2 ^ n)\ instance proof show \P n\ if stable: \\n. n div 2 = n \ P n\ and rec: \\n b. P n \ (of_bool b + 2 * n) div 2 = n \ P (of_bool b + 2 * n)\ for P and n :: nat proof (induction n rule: nat_bit_induct) case zero from stable [of 0] show ?case by simp next case (even n) with rec [of n False] show ?case by simp next case (odd n) with rec [of n True] show ?case by simp qed show \q mod 2 ^ m mod 2 ^ n = q mod 2 ^ min m n\ for q m n :: nat apply (auto simp add: less_iff_Suc_add power_add mod_mod_cancel split: split_min_lin) apply (metis div_mult2_eq mod_div_trivial mod_eq_self_iff_div_eq_0 mod_mult_self2_is_0 power_commutes) done show \(q * 2 ^ m) mod (2 ^ n) = (q mod 2 ^ (n - m)) * 2 ^ m\ if \m \ n\ for q m n :: nat using that apply (auto simp add: mod_mod_cancel div_mult2_eq power_add mod_mult2_eq le_iff_add split: split_min_lin) done show \even ((2 ^ m - (1::nat)) div 2 ^ n) \ 2 ^ n = (0::nat) \ m \ n\ for m n :: nat using even_mask_div_iff' [where ?'a = nat, of m n] by simp show \even (q * 2 ^ m div 2 ^ n) \ n < m \ (2::nat) ^ n = 0 \ m \ n \ even (q div 2 ^ (n - m))\ for m n q r :: nat apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex) apply (metis (full_types) dvd_mult dvd_mult_imp_div dvd_power_iff_le not_less not_less_eq order_refl power_Suc) done qed (auto simp add: div_mult2_eq mod_mult2_eq power_add power_diff bit_nat_def) end lemma possible_bit_nat[simp]: "possible_bit TYPE(nat) n" by (simp add: possible_bit_def) lemma not_bit_Suc_0_Suc [simp]: \\ bit (Suc 0) (Suc n)\ by (simp add: bit_Suc) lemma not_bit_Suc_0_numeral [simp]: \\ bit (Suc 0) (numeral n)\ by (simp add: numeral_eq_Suc) lemma int_bit_induct [case_names zero minus even odd]: "P k" if zero_int: "P 0" and minus_int: "P (- 1)" and even_int: "\k. P k \ k \ 0 \ P (k * 2)" and odd_int: "\k. P k \ k \ - 1 \ P (1 + (k * 2))" for k :: int proof (cases "k \ 0") case True define n where "n = nat k" with True have "k = int n" by simp then show "P k" proof (induction n arbitrary: k rule: nat_bit_induct) case zero then show ?case by (simp add: zero_int) next case (even n) have "P (int n * 2)" by (rule even_int) (use even in simp_all) with even show ?case by (simp add: ac_simps) next case (odd n) have "P (1 + (int n * 2))" by (rule odd_int) (use odd in simp_all) with odd show ?case by (simp add: ac_simps) qed next case False define n where "n = nat (- k - 1)" with False have "k = - int n - 1" by simp then show "P k" proof (induction n arbitrary: k rule: nat_bit_induct) case zero then show ?case by (simp add: minus_int) next case (even n) have "P (1 + (- int (Suc n) * 2))" by (rule odd_int) (use even in \simp_all add: algebra_simps\) also have "\ = - int (2 * n) - 1" by (simp add: algebra_simps) finally show ?case using even.prems by simp next case (odd n) have "P (- int (Suc n) * 2)" by (rule even_int) (use odd in \simp_all add: algebra_simps\) also have "\ = - int (Suc (2 * n)) - 1" by (simp add: algebra_simps) finally show ?case using odd.prems by simp qed qed context semiring_bits begin lemma bit_of_bool_iff [bit_simps]: \bit (of_bool b) n \ b \ n = 0\ by (simp add: bit_1_iff) lemma bit_of_nat_iff [bit_simps]: \bit (of_nat m) n \ possible_bit TYPE('a) n \ bit m n\ proof (cases \(2::'a) ^ n = 0\) case True then show ?thesis by (simp add: exp_eq_0_imp_not_bit possible_bit_def) next case False then have \bit (of_nat m) n \ bit m n\ proof (induction m arbitrary: n rule: nat_bit_induct) case zero then show ?case by simp next case (even m) then show ?case by (cases n) (auto simp add: bit_double_iff Bit_Operations.bit_double_iff possible_bit_def bit_0 dest: mult_not_zero) next case (odd m) then show ?case by (cases n) (auto simp add: bit_double_iff even_bit_succ_iff possible_bit_def Bit_Operations.bit_Suc Bit_Operations.bit_0 dest: mult_not_zero) qed with False show ?thesis by (simp add: possible_bit_def) qed end instantiation int :: semiring_bits begin definition bit_int :: \int \ nat \ bool\ where \bit_int k n \ odd (k div 2 ^ n)\ instance proof show \P k\ if stable: \\k. k div 2 = k \ P k\ and rec: \\k b. P k \ (of_bool b + 2 * k) div 2 = k \ P (of_bool b + 2 * k)\ for P and k :: int proof (induction k rule: int_bit_induct) case zero from stable [of 0] show ?case by simp next case minus from stable [of \- 1\] show ?case by simp next case (even k) with rec [of k False] show ?case by (simp add: ac_simps) next case (odd k) with rec [of k True] show ?case by (simp add: ac_simps) qed show \(2::int) ^ m div 2 ^ n = of_bool ((2::int) ^ m \ 0 \ n \ m) * 2 ^ (m - n)\ for m n :: nat proof (cases \m < n\) case True then have \n = m + (n - m)\ by simp then have \(2::int) ^ m div 2 ^ n = (2::int) ^ m div 2 ^ (m + (n - m))\ by simp also have \\ = (2::int) ^ m div (2 ^ m * 2 ^ (n - m))\ by (simp add: power_add) also have \\ = (2::int) ^ m div 2 ^ m div 2 ^ (n - m)\ by (simp add: zdiv_zmult2_eq) finally show ?thesis using \m < n\ by simp next case False then show ?thesis by (simp add: power_diff) qed show \k mod 2 ^ m mod 2 ^ n = k mod 2 ^ min m n\ for m n :: nat and k :: int using mod_exp_eq [of \nat k\ m n] apply (auto simp add: mod_mod_cancel zdiv_zmult2_eq power_add zmod_zmult2_eq le_iff_add split: split_min_lin) apply (auto simp add: less_iff_Suc_add mod_mod_cancel power_add) apply (simp only: flip: mult.left_commute [of \2 ^ m\]) apply (subst zmod_zmult2_eq) apply simp_all done show \(k * 2 ^ m) mod (2 ^ n) = (k mod 2 ^ (n - m)) * 2 ^ m\ if \m \ n\ for m n :: nat and k :: int using that apply (auto simp add: power_add zmod_zmult2_eq le_iff_add split: split_min_lin) done show \even ((2 ^ m - (1::int)) div 2 ^ n) \ 2 ^ n = (0::int) \ m \ n\ for m n :: nat using even_mask_div_iff' [where ?'a = int, of m n] by simp show \even (k * 2 ^ m div 2 ^ n) \ n < m \ (2::int) ^ n = 0 \ m \ n \ even (k div 2 ^ (n - m))\ for m n :: nat and k l :: int apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex) apply (metis Suc_leI dvd_mult dvd_mult_imp_div dvd_power_le dvd_refl power.simps(2)) done qed (auto simp add: zdiv_zmult2_eq zmod_zmult2_eq power_add power_diff not_le bit_int_def) end lemma possible_bit_int[simp]: "possible_bit TYPE(int) n" by (simp add: possible_bit_def) lemma bit_not_int_iff': \bit (- k - 1) n \ \ bit k n\ for k :: int proof (induction n arbitrary: k) case 0 show ?case by (simp add: bit_0) next case (Suc n) have \- k - 1 = - (k + 2) + 1\ by simp also have \(- (k + 2) + 1) div 2 = - (k div 2) - 1\ proof (cases \even k\) case True then have \- k div 2 = - (k div 2)\ by rule (simp flip: mult_minus_right) with True show ?thesis by simp next case False have \4 = 2 * (2::int)\ by simp also have \2 * 2 div 2 = (2::int)\ by (simp only: nonzero_mult_div_cancel_left) finally have *: \4 div 2 = (2::int)\ . from False obtain l where k: \k = 2 * l + 1\ .. then have \- k - 2 = 2 * - (l + 2) + 1\ by simp then have \(- k - 2) div 2 + 1 = - (k div 2) - 1\ by (simp flip: mult_minus_right add: *) (simp add: k) with False show ?thesis by simp qed finally have \(- k - 1) div 2 = - (k div 2) - 1\ . with Suc show ?case by (simp add: bit_Suc) qed lemma bit_nat_iff [bit_simps]: \bit (nat k) n \ k \ 0 \ bit k n\ proof (cases \k \ 0\) case True moreover define m where \m = nat k\ ultimately have \k = int m\ by simp then show ?thesis by (simp add: bit_simps) next case False then show ?thesis by simp qed subsection \Bit operations\ class semiring_bit_operations = semiring_bits + fixes "and" :: \'a \ 'a \ 'a\ (infixr \AND\ 64) and or :: \'a \ 'a \ 'a\ (infixr \OR\ 59) and xor :: \'a \ 'a \ 'a\ (infixr \XOR\ 59) and mask :: \nat \ 'a\ and set_bit :: \nat \ 'a \ 'a\ and unset_bit :: \nat \ 'a \ 'a\ and flip_bit :: \nat \ 'a \ 'a\ and push_bit :: \nat \ 'a \ 'a\ and drop_bit :: \nat \ 'a \ 'a\ and take_bit :: \nat \ 'a \ 'a\ assumes bit_and_iff [bit_simps]: \bit (a AND b) n \ bit a n \ bit b n\ and bit_or_iff [bit_simps]: \bit (a OR b) n \ bit a n \ bit b n\ and bit_xor_iff [bit_simps]: \bit (a XOR b) n \ bit a n \ bit b n\ and mask_eq_exp_minus_1: \mask n = 2 ^ n - 1\ and set_bit_eq_or: \set_bit n a = a OR push_bit n 1\ and bit_unset_bit_iff [bit_simps]: \bit (unset_bit m a) n \ bit a n \ m \ n\ and flip_bit_eq_xor: \flip_bit n a = a XOR push_bit n 1\ and push_bit_eq_mult: \push_bit n a = a * 2 ^ n\ and drop_bit_eq_div: \drop_bit n a = a div 2 ^ n\ and take_bit_eq_mod: \take_bit n a = a mod 2 ^ n\ begin text \ We want the bitwise operations to bind slightly weaker than \+\ and \-\. Logically, \<^const>\push_bit\, \<^const>\drop_bit\ and \<^const>\take_bit\ are just aliases; having them as separate operations makes proofs easier, otherwise proof automation would fiddle with concrete expressions \<^term>\2 ^ n\ in a way obfuscating the basic algebraic relationships between those operations. For the sake of code generation operations are specified as definitional class operations, taking into account that specific instances of these can be implemented differently wrt. code generation. \ sublocale "and": semilattice \(AND)\ by standard (auto simp add: bit_eq_iff bit_and_iff) sublocale or: semilattice_neutr \(OR)\ 0 by standard (auto simp add: bit_eq_iff bit_or_iff) sublocale xor: comm_monoid \(XOR)\ 0 by standard (auto simp add: bit_eq_iff bit_xor_iff) lemma even_and_iff: \even (a AND b) \ even a \ even b\ using bit_and_iff [of a b 0] by (auto simp add: bit_0) lemma even_or_iff: \even (a OR b) \ even a \ even b\ using bit_or_iff [of a b 0] by (auto simp add: bit_0) lemma even_xor_iff: \even (a XOR b) \ (even a \ even b)\ using bit_xor_iff [of a b 0] by (auto simp add: bit_0) lemma zero_and_eq [simp]: \0 AND a = 0\ by (simp add: bit_eq_iff bit_and_iff) lemma and_zero_eq [simp]: \a AND 0 = 0\ by (simp add: bit_eq_iff bit_and_iff) lemma one_and_eq: \1 AND a = a mod 2\ by (simp add: bit_eq_iff bit_and_iff) (auto simp add: bit_1_iff bit_0) lemma and_one_eq: \a AND 1 = a mod 2\ using one_and_eq [of a] by (simp add: ac_simps) lemma one_or_eq: \1 OR a = a + of_bool (even a)\ by (simp add: bit_eq_iff bit_or_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff bit_0) lemma or_one_eq: \a OR 1 = a + of_bool (even a)\ using one_or_eq [of a] by (simp add: ac_simps) lemma one_xor_eq: \1 XOR a = a + of_bool (even a) - of_bool (odd a)\ by (simp add: bit_eq_iff bit_xor_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff odd_bit_iff_bit_pred bit_0 elim: oddE) lemma xor_one_eq: \a XOR 1 = a + of_bool (even a) - of_bool (odd a)\ using one_xor_eq [of a] by (simp add: ac_simps) lemma xor_self_eq [simp]: \a XOR a = 0\ by (rule bit_eqI) (simp add: bit_simps) lemma bit_iff_odd_drop_bit: \bit a n \ odd (drop_bit n a)\ by (simp add: bit_iff_odd drop_bit_eq_div) lemma even_drop_bit_iff_not_bit: \even (drop_bit n a) \ \ bit a n\ by (simp add: bit_iff_odd_drop_bit) lemma div_push_bit_of_1_eq_drop_bit: \a div push_bit n 1 = drop_bit n a\ by (simp add: push_bit_eq_mult drop_bit_eq_div) lemma bits_ident: "push_bit n (drop_bit n a) + take_bit n a = a" using div_mult_mod_eq by (simp add: push_bit_eq_mult take_bit_eq_mod drop_bit_eq_div) lemma push_bit_push_bit [simp]: "push_bit m (push_bit n a) = push_bit (m + n) a" by (simp add: push_bit_eq_mult power_add ac_simps) lemma push_bit_0_id [simp]: "push_bit 0 = id" by (simp add: fun_eq_iff push_bit_eq_mult) lemma push_bit_of_0 [simp]: "push_bit n 0 = 0" by (simp add: push_bit_eq_mult) lemma push_bit_of_1 [simp]: "push_bit n 1 = 2 ^ n" by (simp add: push_bit_eq_mult) lemma push_bit_Suc [simp]: "push_bit (Suc n) a = push_bit n (a * 2)" by (simp add: push_bit_eq_mult ac_simps) lemma push_bit_double: "push_bit n (a * 2) = push_bit n a * 2" by (simp add: push_bit_eq_mult ac_simps) lemma push_bit_add: "push_bit n (a + b) = push_bit n a + push_bit n b" by (simp add: push_bit_eq_mult algebra_simps) lemma push_bit_numeral [simp]: \push_bit (numeral l) (numeral k) = push_bit (pred_numeral l) (numeral (Num.Bit0 k))\ by (simp add: numeral_eq_Suc mult_2_right) (simp add: numeral_Bit0) lemma take_bit_0 [simp]: "take_bit 0 a = 0" by (simp add: take_bit_eq_mod) lemma take_bit_Suc: \take_bit (Suc n) a = take_bit n (a div 2) * 2 + a mod 2\ proof - have \take_bit (Suc n) (a div 2 * 2 + of_bool (odd a)) = take_bit n (a div 2) * 2 + of_bool (odd a)\ using even_succ_mod_exp [of \2 * (a div 2)\ \Suc n\] mult_exp_mod_exp_eq [of 1 \Suc n\ \a div 2\] by (auto simp add: take_bit_eq_mod ac_simps) then show ?thesis using div_mult_mod_eq [of a 2] by (simp add: mod_2_eq_odd) qed lemma take_bit_rec: \take_bit n a = (if n = 0 then 0 else take_bit (n - 1) (a div 2) * 2 + a mod 2)\ by (cases n) (simp_all add: take_bit_Suc) lemma take_bit_Suc_0 [simp]: \take_bit (Suc 0) a = a mod 2\ by (simp add: take_bit_eq_mod) lemma take_bit_of_0 [simp]: "take_bit n 0 = 0" by (simp add: take_bit_eq_mod) lemma take_bit_of_1 [simp]: "take_bit n 1 = of_bool (n > 0)" by (cases n) (simp_all add: take_bit_Suc) lemma drop_bit_of_0 [simp]: "drop_bit n 0 = 0" by (simp add: drop_bit_eq_div) lemma drop_bit_of_1 [simp]: "drop_bit n 1 = of_bool (n = 0)" by (simp add: drop_bit_eq_div) lemma drop_bit_0 [simp]: "drop_bit 0 = id" by (simp add: fun_eq_iff drop_bit_eq_div) lemma drop_bit_Suc: "drop_bit (Suc n) a = drop_bit n (a div 2)" using div_exp_eq [of a 1] by (simp add: drop_bit_eq_div) lemma drop_bit_rec: "drop_bit n a = (if n = 0 then a else drop_bit (n - 1) (a div 2))" by (cases n) (simp_all add: drop_bit_Suc) lemma drop_bit_half: "drop_bit n (a div 2) = drop_bit n a div 2" by (induction n arbitrary: a) (simp_all add: drop_bit_Suc) lemma drop_bit_of_bool [simp]: "drop_bit n (of_bool b) = of_bool (n = 0 \ b)" by (cases n) simp_all lemma even_take_bit_eq [simp]: \even (take_bit n a) \ n = 0 \ even a\ by (simp add: take_bit_rec [of n a]) lemma take_bit_take_bit [simp]: "take_bit m (take_bit n a) = take_bit (min m n) a" by (simp add: take_bit_eq_mod mod_exp_eq ac_simps) lemma drop_bit_drop_bit [simp]: "drop_bit m (drop_bit n a) = drop_bit (m + n) a" by (simp add: drop_bit_eq_div power_add div_exp_eq ac_simps) lemma push_bit_take_bit: "push_bit m (take_bit n a) = take_bit (m + n) (push_bit m a)" apply (simp add: push_bit_eq_mult take_bit_eq_mod power_add ac_simps) using mult_exp_mod_exp_eq [of m \m + n\ a] apply (simp add: ac_simps power_add) done lemma take_bit_push_bit: "take_bit m (push_bit n a) = push_bit n (take_bit (m - n) a)" proof (cases "m \ n") case True then show ?thesis apply (simp add:) apply (simp_all add: push_bit_eq_mult take_bit_eq_mod) apply (auto dest!: le_Suc_ex simp add: power_add ac_simps) using mult_exp_mod_exp_eq [of m m \a * 2 ^ n\ for n] apply (simp add: ac_simps) done next case False then show ?thesis using push_bit_take_bit [of n "m - n" a] by simp qed lemma take_bit_drop_bit: "take_bit m (drop_bit n a) = drop_bit n (take_bit (m + n) a)" by (simp add: drop_bit_eq_div take_bit_eq_mod ac_simps div_exp_mod_exp_eq) lemma drop_bit_take_bit: "drop_bit m (take_bit n a) = take_bit (n - m) (drop_bit m a)" proof (cases "m \ n") case True then show ?thesis using take_bit_drop_bit [of "n - m" m a] by simp next case False then obtain q where \m = n + q\ by (auto simp add: not_le dest: less_imp_Suc_add) then have \drop_bit m (take_bit n a) = 0\ using div_exp_eq [of \a mod 2 ^ n\ n q] by (simp add: take_bit_eq_mod drop_bit_eq_div) with False show ?thesis by simp qed lemma even_push_bit_iff [simp]: \even (push_bit n a) \ n \ 0 \ even a\ by (simp add: push_bit_eq_mult) auto lemma bit_push_bit_iff [bit_simps]: \bit (push_bit m a) n \ m \ n \ possible_bit TYPE('a) n \ bit a (n - m)\ by (auto simp add: bit_iff_odd push_bit_eq_mult even_mult_exp_div_exp_iff possible_bit_def) lemma bit_drop_bit_eq [bit_simps]: \bit (drop_bit n a) = bit a \ (+) n\ by (simp add: bit_iff_odd fun_eq_iff ac_simps flip: drop_bit_eq_div) lemma bit_take_bit_iff [bit_simps]: \bit (take_bit m a) n \ n < m \ bit a n\ by (simp add: bit_iff_odd drop_bit_take_bit not_le flip: drop_bit_eq_div) lemma stable_imp_drop_bit_eq: \drop_bit n a = a\ if \a div 2 = a\ by (induction n) (simp_all add: that drop_bit_Suc) lemma stable_imp_take_bit_eq: \take_bit n a = (if even a then 0 else 2 ^ n - 1)\ if \a div 2 = a\ proof (rule bit_eqI[unfolded possible_bit_def]) fix m assume \2 ^ m \ 0\ with that show \bit (take_bit n a) m \ bit (if even a then 0 else 2 ^ n - 1) m\ by (simp add: bit_take_bit_iff bit_mask_sub_iff possible_bit_def stable_imp_bit_iff_odd) qed lemma exp_dvdE: assumes \2 ^ n dvd a\ obtains b where \a = push_bit n b\ proof - from assms obtain b where \a = 2 ^ n * b\ .. then have \a = push_bit n b\ by (simp add: push_bit_eq_mult ac_simps) with that show thesis . qed lemma take_bit_eq_0_iff: \take_bit n a = 0 \ 2 ^ n dvd a\ (is \?P \ ?Q\) proof assume ?P then show ?Q by (simp add: take_bit_eq_mod mod_0_imp_dvd) next assume ?Q then obtain b where \a = push_bit n b\ by (rule exp_dvdE) then show ?P by (simp add: take_bit_push_bit) qed lemma take_bit_tightened: \take_bit m a = take_bit m b\ if \take_bit n a = take_bit n b\ and \m \ n\ proof - from that have \take_bit m (take_bit n a) = take_bit m (take_bit n b)\ by simp then have \take_bit (min m n) a = take_bit (min m n) b\ by simp with that show ?thesis by (simp add: min_def) qed lemma take_bit_eq_self_iff_drop_bit_eq_0: \take_bit n a = a \ drop_bit n a = 0\ (is \?P \ ?Q\) proof assume ?P show ?Q proof (rule bit_eqI) fix m from \?P\ have \a = take_bit n a\ .. also have \\ bit (take_bit n a) (n + m)\ unfolding bit_simps by (simp add: bit_simps) finally show \bit (drop_bit n a) m \ bit 0 m\ by (simp add: bit_simps) qed next assume ?Q show ?P proof (rule bit_eqI) fix m from \?Q\ have \\ bit (drop_bit n a) (m - n)\ by simp then have \ \ bit a (n + (m - n))\ by (simp add: bit_simps) then show \bit (take_bit n a) m \ bit a m\ by (cases \m < n\) (auto simp add: bit_simps) qed qed lemma drop_bit_exp_eq: \drop_bit m (2 ^ n) = of_bool (m \ n \ possible_bit TYPE('a) n) * 2 ^ (n - m)\ by (auto simp add: bit_eq_iff bit_simps) lemma take_bit_and [simp]: \take_bit n (a AND b) = take_bit n a AND take_bit n b\ by (auto simp add: bit_eq_iff bit_simps) lemma take_bit_or [simp]: \take_bit n (a OR b) = take_bit n a OR take_bit n b\ by (auto simp add: bit_eq_iff bit_simps) lemma take_bit_xor [simp]: \take_bit n (a XOR b) = take_bit n a XOR take_bit n b\ by (auto simp add: bit_eq_iff bit_simps) lemma push_bit_and [simp]: \push_bit n (a AND b) = push_bit n a AND push_bit n b\ by (auto simp add: bit_eq_iff bit_simps) lemma push_bit_or [simp]: \push_bit n (a OR b) = push_bit n a OR push_bit n b\ by (auto simp add: bit_eq_iff bit_simps) lemma push_bit_xor [simp]: \push_bit n (a XOR b) = push_bit n a XOR push_bit n b\ by (auto simp add: bit_eq_iff bit_simps) lemma drop_bit_and [simp]: \drop_bit n (a AND b) = drop_bit n a AND drop_bit n b\ by (auto simp add: bit_eq_iff bit_simps) lemma drop_bit_or [simp]: \drop_bit n (a OR b) = drop_bit n a OR drop_bit n b\ by (auto simp add: bit_eq_iff bit_simps) lemma drop_bit_xor [simp]: \drop_bit n (a XOR b) = drop_bit n a XOR drop_bit n b\ by (auto simp add: bit_eq_iff bit_simps) lemma bit_mask_iff [bit_simps]: \bit (mask m) n \ possible_bit TYPE('a) n \ n < m\ by (simp add: mask_eq_exp_minus_1 bit_mask_sub_iff) lemma even_mask_iff: \even (mask n) \ n = 0\ using bit_mask_iff [of n 0] by (auto simp add: bit_0) lemma mask_0 [simp]: \mask 0 = 0\ by (simp add: mask_eq_exp_minus_1) lemma mask_Suc_0 [simp]: \mask (Suc 0) = 1\ by (simp add: mask_eq_exp_minus_1 add_implies_diff sym) lemma mask_Suc_exp: \mask (Suc n) = 2 ^ n OR mask n\ by (auto simp add: bit_eq_iff bit_simps) lemma mask_Suc_double: \mask (Suc n) = 1 OR 2 * mask n\ by (auto simp add: bit_eq_iff bit_simps elim: possible_bit_less_imp) lemma mask_numeral: \mask (numeral n) = 1 + 2 * mask (pred_numeral n)\ by (simp add: numeral_eq_Suc mask_Suc_double one_or_eq ac_simps) lemma take_bit_of_mask [simp]: \take_bit m (mask n) = mask (min m n)\ by (rule bit_eqI) (simp add: bit_simps) lemma take_bit_eq_mask: \take_bit n a = a AND mask n\ by (auto simp add: bit_eq_iff bit_simps) lemma or_eq_0_iff: \a OR b = 0 \ a = 0 \ b = 0\ by (auto simp add: bit_eq_iff bit_or_iff) lemma disjunctive_add: \a + b = a OR b\ if \\n. \ bit a n \ \ bit b n\ by (rule bit_eqI) (use that in \simp add: bit_disjunctive_add_iff bit_or_iff\) lemma bit_iff_and_drop_bit_eq_1: \bit a n \ drop_bit n a AND 1 = 1\ by (simp add: bit_iff_odd_drop_bit and_one_eq odd_iff_mod_2_eq_one) lemma bit_iff_and_push_bit_not_eq_0: \bit a n \ a AND push_bit n 1 \ 0\ apply (cases \2 ^ n = 0\) apply (simp_all add: bit_eq_iff bit_and_iff bit_push_bit_iff exp_eq_0_imp_not_bit) apply (simp_all add: bit_exp_iff) done lemmas set_bit_def = set_bit_eq_or lemma bit_set_bit_iff [bit_simps]: \bit (set_bit m a) n \ bit a n \ (m = n \ possible_bit TYPE('a) n)\ by (auto simp add: set_bit_def bit_or_iff bit_exp_iff) lemma even_set_bit_iff: \even (set_bit m a) \ even a \ m \ 0\ using bit_set_bit_iff [of m a 0] by (auto simp add: bit_0) lemma even_unset_bit_iff: \even (unset_bit m a) \ even a \ m = 0\ using bit_unset_bit_iff [of m a 0] by (auto simp add: bit_0) lemma and_exp_eq_0_iff_not_bit: \a AND 2 ^ n = 0 \ \ bit a n\ (is \?P \ ?Q\) using bit_imp_possible_bit[of a n] by (auto simp add: bit_eq_iff bit_simps) lemmas flip_bit_def = flip_bit_eq_xor lemma bit_flip_bit_iff [bit_simps]: \bit (flip_bit m a) n \ (m = n \ \ bit a n) \ possible_bit TYPE('a) n\ by (auto simp add: bit_eq_iff bit_simps flip_bit_eq_xor bit_imp_possible_bit) lemma even_flip_bit_iff: \even (flip_bit m a) \ \ (even a \ m = 0)\ using bit_flip_bit_iff [of m a 0] by (auto simp: possible_bit_def bit_0) lemma set_bit_0 [simp]: \set_bit 0 a = 1 + 2 * (a div 2)\ by (auto simp add: bit_eq_iff bit_simps even_bit_succ_iff simp flip: bit_Suc) lemma bit_sum_mult_2_cases: assumes a: "\j. \ bit a (Suc j)" shows "bit (a + 2 * b) n = (if n = 0 then odd a else bit (2 * b) n)" proof - have a_eq: "bit a i \ i = 0 \ odd a" for i by (cases i) (simp_all add: a bit_0) show ?thesis by (simp add: disjunctive_add[simplified disj_imp] a_eq bit_simps) qed lemma set_bit_Suc: \set_bit (Suc n) a = a mod 2 + 2 * set_bit n (a div 2)\ by (auto simp add: bit_eq_iff bit_sum_mult_2_cases bit_simps bit_0 simp flip: bit_Suc elim: possible_bit_less_imp) lemma unset_bit_0 [simp]: \unset_bit 0 a = 2 * (a div 2)\ by (auto simp add: bit_eq_iff bit_simps even_bit_succ_iff simp flip: bit_Suc) lemma unset_bit_Suc: \unset_bit (Suc n) a = a mod 2 + 2 * unset_bit n (a div 2)\ by (auto simp add: bit_eq_iff bit_sum_mult_2_cases bit_simps bit_0 simp flip: bit_Suc elim: possible_bit_less_imp) lemma flip_bit_0 [simp]: \flip_bit 0 a = of_bool (even a) + 2 * (a div 2)\ by (auto simp add: bit_eq_iff bit_simps even_bit_succ_iff bit_0 simp flip: bit_Suc) lemma flip_bit_Suc: \flip_bit (Suc n) a = a mod 2 + 2 * flip_bit n (a div 2)\ by (auto simp add: bit_eq_iff bit_sum_mult_2_cases bit_simps bit_0 simp flip: bit_Suc elim: possible_bit_less_imp) lemma flip_bit_eq_if: \flip_bit n a = (if bit a n then unset_bit else set_bit) n a\ by (rule bit_eqI) (auto simp add: bit_set_bit_iff bit_unset_bit_iff bit_flip_bit_iff) lemma take_bit_set_bit_eq: \take_bit n (set_bit m a) = (if n \ m then take_bit n a else set_bit m (take_bit n a))\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_set_bit_iff) lemma take_bit_unset_bit_eq: \take_bit n (unset_bit m a) = (if n \ m then take_bit n a else unset_bit m (take_bit n a))\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_unset_bit_iff) lemma take_bit_flip_bit_eq: \take_bit n (flip_bit m a) = (if n \ m then take_bit n a else flip_bit m (take_bit n a))\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_flip_bit_iff) lemma bit_1_0 [simp]: \bit 1 0\ by (simp add: bit_0) lemma not_bit_1_Suc [simp]: \\ bit 1 (Suc n)\ by (simp add: bit_Suc) lemma push_bit_Suc_numeral [simp]: \push_bit (Suc n) (numeral k) = push_bit n (numeral (Num.Bit0 k))\ by (simp add: numeral_eq_Suc mult_2_right) (simp add: numeral_Bit0) lemma mask_eq_0_iff [simp]: \mask n = 0 \ n = 0\ by (cases n) (simp_all add: mask_Suc_double or_eq_0_iff) end class ring_bit_operations = semiring_bit_operations + ring_parity + fixes not :: \'a \ 'a\ (\NOT\) assumes bit_not_iff_eq: \\n. bit (NOT a) n \ 2 ^ n \ 0 \ \ bit a n\ assumes minus_eq_not_minus_1: \- a = NOT (a - 1)\ begin lemmas bit_not_iff[bit_simps] = bit_not_iff_eq[unfolded fold_possible_bit] text \ For the sake of code generation \<^const>\not\ is specified as definitional class operation. Note that \<^const>\not\ has no sensible definition for unlimited but only positive bit strings (type \<^typ>\nat\). \ lemma bits_minus_1_mod_2_eq [simp]: \(- 1) mod 2 = 1\ by (simp add: mod_2_eq_odd) lemma not_eq_complement: \NOT a = - a - 1\ using minus_eq_not_minus_1 [of \a + 1\] by simp lemma minus_eq_not_plus_1: \- a = NOT a + 1\ using not_eq_complement [of a] by simp lemma bit_minus_iff [bit_simps]: \bit (- a) n \ possible_bit TYPE('a) n \ \ bit (a - 1) n\ by (simp add: minus_eq_not_minus_1 bit_not_iff) lemma even_not_iff [simp]: \even (NOT a) \ odd a\ using bit_not_iff [of a 0] by (auto simp add: bit_0) lemma bit_not_exp_iff [bit_simps]: \bit (NOT (2 ^ m)) n \ possible_bit TYPE('a) n \ n \ m\ by (auto simp add: bit_not_iff bit_exp_iff) lemma bit_minus_1_iff [simp]: \bit (- 1) n \ possible_bit TYPE('a) n\ by (simp add: bit_minus_iff) lemma bit_minus_exp_iff [bit_simps]: \bit (- (2 ^ m)) n \ possible_bit TYPE('a) n \ n \ m\ by (auto simp add: bit_simps simp flip: mask_eq_exp_minus_1) lemma bit_minus_2_iff [simp]: \bit (- 2) n \ possible_bit TYPE('a) n \ n > 0\ by (simp add: bit_minus_iff bit_1_iff) lemma not_one_eq [simp]: \NOT 1 = - 2\ by (simp add: bit_eq_iff bit_not_iff) (simp add: bit_1_iff) sublocale "and": semilattice_neutr \(AND)\ \- 1\ by standard (rule bit_eqI, simp add: bit_and_iff) sublocale bit: abstract_boolean_algebra \(AND)\ \(OR)\ NOT 0 \- 1\ by standard (auto simp add: bit_and_iff bit_or_iff bit_not_iff intro: bit_eqI) sublocale bit: abstract_boolean_algebra_sym_diff \(AND)\ \(OR)\ NOT 0 \- 1\ \(XOR)\ apply standard apply (rule bit_eqI) apply (auto simp add: bit_simps) done lemma and_eq_not_not_or: \a AND b = NOT (NOT a OR NOT b)\ by simp lemma or_eq_not_not_and: \a OR b = NOT (NOT a AND NOT b)\ by simp lemma not_add_distrib: \NOT (a + b) = NOT a - b\ by (simp add: not_eq_complement algebra_simps) lemma not_diff_distrib: \NOT (a - b) = NOT a + b\ using not_add_distrib [of a \- b\] by simp lemma and_eq_minus_1_iff: \a AND b = - 1 \ a = - 1 \ b = - 1\ by (auto simp: bit_eq_iff bit_simps) lemma disjunctive_diff: \a - b = a AND NOT b\ if \\n. bit b n \ bit a n\ proof - have \NOT a + b = NOT a OR b\ by (rule disjunctive_add) (auto simp add: bit_not_iff dest: that) then have \NOT (NOT a + b) = NOT (NOT a OR b)\ by simp then show ?thesis by (simp add: not_add_distrib) qed lemma push_bit_minus: \push_bit n (- a) = - push_bit n a\ by (simp add: push_bit_eq_mult) lemma take_bit_not_take_bit: \take_bit n (NOT (take_bit n a)) = take_bit n (NOT a)\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff) lemma take_bit_not_iff: \take_bit n (NOT a) = take_bit n (NOT b) \ take_bit n a = take_bit n b\ apply (simp add: bit_eq_iff) apply (simp add: bit_not_iff bit_take_bit_iff bit_exp_iff) apply (use exp_eq_0_imp_not_bit in blast) done lemma take_bit_not_eq_mask_diff: \take_bit n (NOT a) = mask n - take_bit n a\ proof - have \take_bit n (NOT a) = take_bit n (NOT (take_bit n a))\ by (simp add: take_bit_not_take_bit) also have \\ = mask n AND NOT (take_bit n a)\ by (simp add: take_bit_eq_mask ac_simps) also have \\ = mask n - take_bit n a\ by (subst disjunctive_diff) (auto simp add: bit_take_bit_iff bit_mask_iff bit_imp_possible_bit) finally show ?thesis by simp qed lemma mask_eq_take_bit_minus_one: \mask n = take_bit n (- 1)\ by (simp add: bit_eq_iff bit_mask_iff bit_take_bit_iff conj_commute) lemma take_bit_minus_one_eq_mask [simp]: \take_bit n (- 1) = mask n\ by (simp add: mask_eq_take_bit_minus_one) lemma minus_exp_eq_not_mask: \- (2 ^ n) = NOT (mask n)\ by (rule bit_eqI) (simp add: bit_minus_iff bit_not_iff flip: mask_eq_exp_minus_1) lemma push_bit_minus_one_eq_not_mask [simp]: \push_bit n (- 1) = NOT (mask n)\ by (simp add: push_bit_eq_mult minus_exp_eq_not_mask) lemma take_bit_not_mask_eq_0: \take_bit m (NOT (mask n)) = 0\ if \n \ m\ by (rule bit_eqI) (use that in \simp add: bit_take_bit_iff bit_not_iff bit_mask_iff\) lemma unset_bit_eq_and_not: \unset_bit n a = a AND NOT (push_bit n 1)\ by (rule bit_eqI) (auto simp add: bit_simps) lemmas unset_bit_def = unset_bit_eq_and_not lemma push_bit_Suc_minus_numeral [simp]: \push_bit (Suc n) (- numeral k) = push_bit n (- numeral (Num.Bit0 k))\ apply (simp only: numeral_Bit0) apply simp apply (simp only: numeral_mult mult_2_right numeral_add) done lemma push_bit_minus_numeral [simp]: \push_bit (numeral l) (- numeral k) = push_bit (pred_numeral l) (- numeral (Num.Bit0 k))\ by (simp only: numeral_eq_Suc push_bit_Suc_minus_numeral) lemma take_bit_Suc_minus_1_eq: \take_bit (Suc n) (- 1) = 2 ^ Suc n - 1\ by (simp add: mask_eq_exp_minus_1) lemma take_bit_numeral_minus_1_eq: \take_bit (numeral k) (- 1) = 2 ^ numeral k - 1\ by (simp add: mask_eq_exp_minus_1) lemma push_bit_mask_eq: \push_bit m (mask n) = mask (n + m) AND NOT (mask m)\ apply (rule bit_eqI) apply (auto simp add: bit_simps not_less possible_bit_def) apply (drule sym [of 0]) apply (simp only:) using exp_not_zero_imp_exp_diff_not_zero apply (blast dest: exp_not_zero_imp_exp_diff_not_zero) done lemma slice_eq_mask: \push_bit n (take_bit m (drop_bit n a)) = a AND mask (m + n) AND NOT (mask n)\ by (rule bit_eqI) (auto simp add: bit_simps) lemma push_bit_numeral_minus_1 [simp]: \push_bit (numeral n) (- 1) = - (2 ^ numeral n)\ by (simp add: push_bit_eq_mult) end subsection \Instance \<^typ>\int\\ instantiation int :: ring_bit_operations begin definition not_int :: \int \ int\ where \not_int k = - k - 1\ lemma not_int_rec: \NOT k = of_bool (even k) + 2 * NOT (k div 2)\ for k :: int by (auto simp add: not_int_def elim: oddE) lemma even_not_iff_int: \even (NOT k) \ odd k\ for k :: int by (simp add: not_int_def) lemma not_int_div_2: \NOT k div 2 = NOT (k div 2)\ for k :: int by (cases k) (simp_all add: not_int_def divide_int_def nat_add_distrib) lemma bit_not_int_iff: \bit (NOT k) n \ \ bit k n\ for k :: int by (simp add: bit_not_int_iff' not_int_def) function and_int :: \int \ int \ int\ where \(k::int) AND l = (if k \ {0, - 1} \ l \ {0, - 1} then - of_bool (odd k \ odd l) else of_bool (odd k \ odd l) + 2 * ((k div 2) AND (l div 2)))\ by auto termination proof (relation \measure (\(k, l). nat (\k\ + \l\))\) show \wf (measure (\(k, l). nat (\k\ + \l\)))\ by simp show \((k div 2, l div 2), k, l) \ measure (\(k, l). nat (\k\ + \l\))\ if \\ (k \ {0, - 1} \ l \ {0, - 1})\ for k l proof - have less_eq: \\k div 2\ \ \k\\ for k :: int by (cases k) (simp_all add: divide_int_def nat_add_distrib) have less: \\k div 2\ < \k\\ if \k \ {0, - 1}\ for k :: int proof (cases k) case (nonneg n) with that show ?thesis by (simp add: int_div_less_self) next case (neg n) with that have \n \ 0\ by simp then have \n div 2 < n\ by (simp add: div_less_iff_less_mult) with neg that show ?thesis by (simp add: divide_int_def nat_add_distrib) qed from that have *: \k \ {0, - 1} \ l \ {0, - 1}\ by simp then have \0 < \k\ + \l\\ by auto moreover from * have \\k div 2\ + \l div 2\ < \k\ + \l\\ proof assume \k \ {0, - 1}\ then have \\k div 2\ < \k\\ by (rule less) with less_eq [of l] show ?thesis by auto next assume \l \ {0, - 1}\ then have \\l div 2\ < \l\\ by (rule less) with less_eq [of k] show ?thesis by auto qed ultimately show ?thesis by simp qed qed declare and_int.simps [simp del] lemma and_int_rec: \k AND l = of_bool (odd k \ odd l) + 2 * ((k div 2) AND (l div 2))\ for k l :: int proof (cases \k \ {0, - 1} \ l \ {0, - 1}\) case True then show ?thesis by auto (simp_all add: and_int.simps) next case False then show ?thesis by (auto simp add: ac_simps and_int.simps [of k l]) qed lemma bit_and_int_iff: \bit (k AND l) n \ bit k n \ bit l n\ for k l :: int proof (induction n arbitrary: k l) case 0 then show ?case by (simp add: and_int_rec [of k l] bit_0) next case (Suc n) then show ?case by (simp add: and_int_rec [of k l] bit_Suc) qed lemma even_and_iff_int: \even (k AND l) \ even k \ even l\ for k l :: int using bit_and_int_iff [of k l 0] by (auto simp add: bit_0) definition or_int :: \int \ int \ int\ where \k OR l = NOT (NOT k AND NOT l)\ for k l :: int lemma or_int_rec: \k OR l = of_bool (odd k \ odd l) + 2 * ((k div 2) OR (l div 2))\ for k l :: int using and_int_rec [of \NOT k\ \NOT l\] by (simp add: or_int_def even_not_iff_int not_int_div_2) (simp_all add: not_int_def) lemma bit_or_int_iff: \bit (k OR l) n \ bit k n \ bit l n\ for k l :: int by (simp add: or_int_def bit_not_int_iff bit_and_int_iff) definition xor_int :: \int \ int \ int\ where \k XOR l = k AND NOT l OR NOT k AND l\ for k l :: int lemma xor_int_rec: \k XOR l = of_bool (odd k \ odd l) + 2 * ((k div 2) XOR (l div 2))\ for k l :: int by (simp add: xor_int_def or_int_rec [of \k AND NOT l\ \NOT k AND l\] even_and_iff_int even_not_iff_int) (simp add: and_int_rec [of \NOT k\ \l\] and_int_rec [of \k\ \NOT l\] not_int_div_2) lemma bit_xor_int_iff: \bit (k XOR l) n \ bit k n \ bit l n\ for k l :: int by (auto simp add: xor_int_def bit_or_int_iff bit_and_int_iff bit_not_int_iff) definition mask_int :: \nat \ int\ where \mask n = (2 :: int) ^ n - 1\ definition push_bit_int :: \nat \ int \ int\ where \push_bit_int n k = k * 2 ^ n\ definition drop_bit_int :: \nat \ int \ int\ where \drop_bit_int n k = k div 2 ^ n\ definition take_bit_int :: \nat \ int \ int\ where \take_bit_int n k = k mod 2 ^ n\ definition set_bit_int :: \nat \ int \ int\ where \set_bit n k = k OR push_bit n 1\ for k :: int definition unset_bit_int :: \nat \ int \ int\ where \unset_bit n k = k AND NOT (push_bit n 1)\ for k :: int definition flip_bit_int :: \nat \ int \ int\ where \flip_bit n k = k XOR push_bit n 1\ for k :: int instance proof fix k l :: int and m n :: nat show \- k = NOT (k - 1)\ by (simp add: not_int_def) show \bit (k AND l) n \ bit k n \ bit l n\ by (fact bit_and_int_iff) show \bit (k OR l) n \ bit k n \ bit l n\ by (fact bit_or_int_iff) show \bit (k XOR l) n \ bit k n \ bit l n\ by (fact bit_xor_int_iff) show \bit (unset_bit m k) n \ bit k n \ m \ n\ proof - have \unset_bit m k = k AND NOT (push_bit m 1)\ by (simp add: unset_bit_int_def) also have \NOT (push_bit m 1 :: int) = - (push_bit m 1 + 1)\ by (simp add: not_int_def) finally show ?thesis by (simp only: bit_simps bit_and_int_iff) (auto simp add: bit_simps bit_not_int_iff' push_bit_int_def) qed qed (simp_all add: bit_not_int_iff mask_int_def set_bit_int_def flip_bit_int_def push_bit_int_def drop_bit_int_def take_bit_int_def) end lemma bit_push_bit_iff_int: \bit (push_bit m k) n \ m \ n \ bit k (n - m)\ for k :: int by (auto simp add: bit_push_bit_iff) lemma take_bit_nonnegative [simp]: \take_bit n k \ 0\ for k :: int by (simp add: take_bit_eq_mod) lemma not_take_bit_negative [simp]: \\ take_bit n k < 0\ for k :: int by (simp add: not_less) lemma take_bit_int_less_exp [simp]: \take_bit n k < 2 ^ n\ for k :: int by (simp add: take_bit_eq_mod) lemma take_bit_int_eq_self_iff: \take_bit n k = k \ 0 \ k \ k < 2 ^ n\ (is \?P \ ?Q\) for k :: int proof assume ?P moreover note take_bit_int_less_exp [of n k] take_bit_nonnegative [of n k] ultimately show ?Q by simp next assume ?Q then show ?P by (simp add: take_bit_eq_mod) qed lemma take_bit_int_eq_self: \take_bit n k = k\ if \0 \ k\ \k < 2 ^ n\ for k :: int using that by (simp add: take_bit_int_eq_self_iff) lemma mask_half_int: \mask n div 2 = (mask (n - 1) :: int)\ by (cases n) (simp_all add: mask_eq_exp_minus_1 algebra_simps) lemma mask_nonnegative_int [simp]: \mask n \ (0::int)\ by (simp add: mask_eq_exp_minus_1) lemma not_mask_negative_int [simp]: \\ mask n < (0::int)\ by (simp add: not_less) lemma not_nonnegative_int_iff [simp]: \NOT k \ 0 \ k < 0\ for k :: int by (simp add: not_int_def) lemma not_negative_int_iff [simp]: \NOT k < 0 \ k \ 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less not_le) lemma and_nonnegative_int_iff [simp]: \k AND l \ 0 \ k \ 0 \ l \ 0\ for k l :: int proof (induction k arbitrary: l rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) then show ?case using and_int_rec [of \k * 2\ l] by (simp add: pos_imp_zdiv_nonneg_iff zero_le_mult_iff) next case (odd k) from odd have \0 \ k AND l div 2 \ 0 \ k \ 0 \ l div 2\ by simp then have \0 \ (1 + k * 2) div 2 AND l div 2 \ 0 \ (1 + k * 2) div 2 \ 0 \ l div 2\ by simp with and_int_rec [of \1 + k * 2\ l] show ?case by (auto simp add: zero_le_mult_iff not_le) qed lemma and_negative_int_iff [simp]: \k AND l < 0 \ k < 0 \ l < 0\ for k l :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma and_less_eq: \k AND l \ k\ if \l < 0\ for k l :: int using that proof (induction k arbitrary: l rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) from even.IH [of \l div 2\] even.hyps even.prems show ?case by (simp add: and_int_rec [of _ l]) next case (odd k) from odd.IH [of \l div 2\] odd.hyps odd.prems show ?case by (simp add: and_int_rec [of _ l]) linarith qed lemma or_nonnegative_int_iff [simp]: \k OR l \ 0 \ k \ 0 \ l \ 0\ for k l :: int by (simp only: or_eq_not_not_and not_nonnegative_int_iff) simp lemma or_negative_int_iff [simp]: \k OR l < 0 \ k < 0 \ l < 0\ for k l :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma or_greater_eq: \k OR l \ k\ if \l \ 0\ for k l :: int using that proof (induction k arbitrary: l rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) from even.IH [of \l div 2\] even.hyps even.prems show ?case by (simp add: or_int_rec [of _ l]) linarith next case (odd k) from odd.IH [of \l div 2\] odd.hyps odd.prems show ?case by (simp add: or_int_rec [of _ l]) qed lemma xor_nonnegative_int_iff [simp]: \k XOR l \ 0 \ (k \ 0 \ l \ 0)\ for k l :: int by (simp only: bit.xor_def or_nonnegative_int_iff) auto lemma xor_negative_int_iff [simp]: \k XOR l < 0 \ (k < 0) \ (l < 0)\ for k l :: int by (subst Not_eq_iff [symmetric]) (auto simp add: not_less) lemma OR_upper: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes \0 \ x\ \x < 2 ^ n\ \y < 2 ^ n\ shows \x OR y < 2 ^ n\ using assms proof (induction x arbitrary: y n rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even x) from even.IH [of \n - 1\ \y div 2\] even.prems even.hyps show ?case by (cases n) (auto simp add: or_int_rec [of \_ * 2\] elim: oddE) next case (odd x) from odd.IH [of \n - 1\ \y div 2\] odd.prems odd.hyps show ?case by (cases n) (auto simp add: or_int_rec [of \1 + _ * 2\], linarith) qed lemma XOR_upper: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes \0 \ x\ \x < 2 ^ n\ \y < 2 ^ n\ shows \x XOR y < 2 ^ n\ using assms proof (induction x arbitrary: y n rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even x) from even.IH [of \n - 1\ \y div 2\] even.prems even.hyps show ?case by (cases n) (auto simp add: xor_int_rec [of \_ * 2\] elim: oddE) next case (odd x) from odd.IH [of \n - 1\ \y div 2\] odd.prems odd.hyps show ?case by (cases n) (auto simp add: xor_int_rec [of \1 + _ * 2\]) qed lemma AND_lower [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes \0 \ x\ shows \0 \ x AND y\ using assms by simp lemma OR_lower [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes \0 \ x\ \0 \ y\ shows \0 \ x OR y\ using assms by simp lemma XOR_lower [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes \0 \ x\ \0 \ y\ shows \0 \ x XOR y\ using assms by simp lemma AND_upper1 [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes \0 \ x\ shows \x AND y \ x\ using assms proof (induction x arbitrary: y rule: int_bit_induct) case (odd k) then have \k AND y div 2 \ k\ by simp then show ?case by (simp add: and_int_rec [of \1 + _ * 2\]) qed (simp_all add: and_int_rec [of \_ * 2\]) lemmas AND_upper1' [simp] = order_trans [OF AND_upper1] \<^marker>\contributor \Stefan Berghofer\\ lemmas AND_upper1'' [simp] = order_le_less_trans [OF AND_upper1] \<^marker>\contributor \Stefan Berghofer\\ lemma AND_upper2 [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes \0 \ y\ shows \x AND y \ y\ using assms AND_upper1 [of y x] by (simp add: ac_simps) lemmas AND_upper2' [simp] = order_trans [OF AND_upper2] \<^marker>\contributor \Stefan Berghofer\\ lemmas AND_upper2'' [simp] = order_le_less_trans [OF AND_upper2] \<^marker>\contributor \Stefan Berghofer\\ lemma plus_and_or: \(x AND y) + (x OR y) = x + y\ for x y :: int proof (induction x arbitrary: y rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even x) from even.IH [of \y div 2\] show ?case by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE) next case (odd x) from odd.IH [of \y div 2\] show ?case by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE) qed lemma push_bit_minus_one: "push_bit n (- 1 :: int) = - (2 ^ n)" by (simp add: push_bit_eq_mult) lemma minus_1_div_exp_eq_int: \- 1 div (2 :: int) ^ n = - 1\ by (induction n) (use div_exp_eq [symmetric, of \- 1 :: int\ 1] in \simp_all add: ac_simps\) lemma drop_bit_minus_one [simp]: \drop_bit n (- 1 :: int) = - 1\ by (simp add: drop_bit_eq_div minus_1_div_exp_eq_int) lemma take_bit_Suc_from_most: \take_bit (Suc n) k = 2 ^ n * of_bool (bit k n) + take_bit n k\ for k :: int by (simp only: take_bit_eq_mod power_Suc2) (simp_all add: bit_iff_odd odd_iff_mod_2_eq_one zmod_zmult2_eq) lemma take_bit_minus: \take_bit n (- take_bit n k) = take_bit n (- k)\ for k :: int by (simp add: take_bit_eq_mod mod_minus_eq) lemma take_bit_diff: \take_bit n (take_bit n k - take_bit n l) = take_bit n (k - l)\ for k l :: int by (simp add: take_bit_eq_mod mod_diff_eq) lemma bit_imp_take_bit_positive: \0 < take_bit m k\ if \n < m\ and \bit k n\ for k :: int proof (rule ccontr) assume \\ 0 < take_bit m k\ then have \take_bit m k = 0\ by (auto simp add: not_less intro: order_antisym) then have \bit (take_bit m k) n = bit 0 n\ by simp with that show False by (simp add: bit_take_bit_iff) qed lemma take_bit_mult: \take_bit n (take_bit n k * take_bit n l) = take_bit n (k * l)\ for k l :: int by (simp add: take_bit_eq_mod mod_mult_eq) lemma (in ring_1) of_nat_nat_take_bit_eq [simp]: \of_nat (nat (take_bit n k)) = of_int (take_bit n k)\ by simp lemma take_bit_minus_small_eq: \take_bit n (- k) = 2 ^ n - k\ if \0 < k\ \k \ 2 ^ n\ for k :: int proof - define m where \m = nat k\ with that have \k = int m\ and \0 < m\ and \m \ 2 ^ n\ by simp_all have \(2 ^ n - m) mod 2 ^ n = 2 ^ n - m\ using \0 < m\ by simp then have \int ((2 ^ n - m) mod 2 ^ n) = int (2 ^ n - m)\ by simp then have \(2 ^ n - int m) mod 2 ^ n = 2 ^ n - int m\ using \m \ 2 ^ n\ by (simp only: of_nat_mod of_nat_diff) simp with \k = int m\ have \(2 ^ n - k) mod 2 ^ n = 2 ^ n - k\ by simp then show ?thesis by (simp add: take_bit_eq_mod) qed lemma drop_bit_push_bit_int: \drop_bit m (push_bit n k) = drop_bit (m - n) (push_bit (n - m) k)\ for k :: int by (cases \m \ n\) (auto simp add: mult.left_commute [of _ \2 ^ n\] mult.commute [of _ \2 ^ n\] mult.assoc mult.commute [of k] drop_bit_eq_div push_bit_eq_mult not_le power_add dest!: le_Suc_ex less_imp_Suc_add) lemma push_bit_nonnegative_int_iff [simp]: \push_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: push_bit_eq_mult zero_le_mult_iff power_le_zero_eq) lemma push_bit_negative_int_iff [simp]: \push_bit n k < 0 \ k < 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma drop_bit_nonnegative_int_iff [simp]: \drop_bit n k \ 0 \ k \ 0\ for k :: int by (induction n) (auto simp add: drop_bit_Suc drop_bit_half) lemma drop_bit_negative_int_iff [simp]: \drop_bit n k < 0 \ k < 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma set_bit_nonnegative_int_iff [simp]: \set_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: set_bit_def) lemma set_bit_negative_int_iff [simp]: \set_bit n k < 0 \ k < 0\ for k :: int by (simp add: set_bit_def) lemma unset_bit_nonnegative_int_iff [simp]: \unset_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: unset_bit_def) lemma unset_bit_negative_int_iff [simp]: \unset_bit n k < 0 \ k < 0\ for k :: int by (simp add: unset_bit_def) lemma flip_bit_nonnegative_int_iff [simp]: \flip_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: flip_bit_def) lemma flip_bit_negative_int_iff [simp]: \flip_bit n k < 0 \ k < 0\ for k :: int by (simp add: flip_bit_def) lemma set_bit_greater_eq: \set_bit n k \ k\ for k :: int by (simp add: set_bit_def or_greater_eq) lemma unset_bit_less_eq: \unset_bit n k \ k\ for k :: int by (simp add: unset_bit_def and_less_eq) lemma set_bit_eq: \set_bit n k = k + of_bool (\ bit k n) * 2 ^ n\ for k :: int proof (rule bit_eqI) fix m show \bit (set_bit n k) m \ bit (k + of_bool (\ bit k n) * 2 ^ n) m\ proof (cases \m = n\) case True then show ?thesis apply (simp add: bit_set_bit_iff) apply (simp add: bit_iff_odd div_plus_div_distrib_dvd_right) done next case False then show ?thesis apply (clarsimp simp add: bit_set_bit_iff) apply (subst disjunctive_add) apply (clarsimp simp add: bit_exp_iff) apply (clarsimp simp add: bit_or_iff bit_exp_iff) done qed qed lemma unset_bit_eq: \unset_bit n k = k - of_bool (bit k n) * 2 ^ n\ for k :: int proof (rule bit_eqI) fix m show \bit (unset_bit n k) m \ bit (k - of_bool (bit k n) * 2 ^ n) m\ proof (cases \m = n\) case True then show ?thesis apply (simp add: bit_unset_bit_iff) apply (simp add: bit_iff_odd) using div_plus_div_distrib_dvd_right [of \2 ^ n\ \- (2 ^ n)\ k] apply (simp add: dvd_neg_div) done next case False then show ?thesis apply (clarsimp simp add: bit_unset_bit_iff) apply (subst disjunctive_diff) apply (clarsimp simp add: bit_exp_iff) apply (clarsimp simp add: bit_and_iff bit_not_iff bit_exp_iff) done qed qed lemma and_int_unfold [code]: \k AND l = (if k = 0 \ l = 0 then 0 else if k = - 1 then l else if l = - 1 then k else (k mod 2) * (l mod 2) + 2 * ((k div 2) AND (l div 2)))\ for k l :: int by (auto simp add: and_int_rec [of k l] zmult_eq_1_iff elim: oddE) lemma or_int_unfold [code]: \k OR l = (if k = - 1 \ l = - 1 then - 1 else if k = 0 then l else if l = 0 then k else max (k mod 2) (l mod 2) + 2 * ((k div 2) OR (l div 2)))\ for k l :: int by (auto simp add: or_int_rec [of k l] elim: oddE) lemma xor_int_unfold [code]: \k XOR l = (if k = - 1 then NOT l else if l = - 1 then NOT k else if k = 0 then l else if l = 0 then k else \k mod 2 - l mod 2\ + 2 * ((k div 2) XOR (l div 2)))\ for k l :: int by (auto simp add: xor_int_rec [of k l] not_int_def elim!: oddE) lemma bit_minus_int_iff: \bit (- k) n \ bit (NOT (k - 1)) n\ for k :: int by (simp add: bit_simps) lemma take_bit_incr_eq: \take_bit n (k + 1) = 1 + take_bit n k\ if \take_bit n k \ 2 ^ n - 1\ for k :: int proof - from that have \2 ^ n \ k mod 2 ^ n + 1\ by (simp add: take_bit_eq_mod) moreover have \k mod 2 ^ n < 2 ^ n\ by simp ultimately have *: \k mod 2 ^ n + 1 < 2 ^ n\ by linarith have \(k + 1) mod 2 ^ n = (k mod 2 ^ n + 1) mod 2 ^ n\ by (simp add: mod_simps) also have \\ = k mod 2 ^ n + 1\ using * by (simp add: zmod_trivial_iff) finally have \(k + 1) mod 2 ^ n = k mod 2 ^ n + 1\ . then show ?thesis by (simp add: take_bit_eq_mod) qed lemma take_bit_decr_eq: \take_bit n (k - 1) = take_bit n k - 1\ if \take_bit n k \ 0\ for k :: int proof - from that have \k mod 2 ^ n \ 0\ by (simp add: take_bit_eq_mod) moreover have \k mod 2 ^ n \ 0\ \k mod 2 ^ n < 2 ^ n\ by simp_all ultimately have *: \k mod 2 ^ n > 0\ by linarith have \(k - 1) mod 2 ^ n = (k mod 2 ^ n - 1) mod 2 ^ n\ by (simp add: mod_simps) also have \\ = k mod 2 ^ n - 1\ by (simp add: zmod_trivial_iff) (use \k mod 2 ^ n < 2 ^ n\ * in linarith) finally have \(k - 1) mod 2 ^ n = k mod 2 ^ n - 1\ . then show ?thesis by (simp add: take_bit_eq_mod) qed lemma take_bit_int_greater_eq: \k + 2 ^ n \ take_bit n k\ if \k < 0\ for k :: int proof - have \k + 2 ^ n \ take_bit n (k + 2 ^ n)\ proof (cases \k > - (2 ^ n)\) case False then have \k + 2 ^ n \ 0\ by simp also note take_bit_nonnegative finally show ?thesis . next case True with that have \0 \ k + 2 ^ n\ and \k + 2 ^ n < 2 ^ n\ by simp_all then show ?thesis by (simp only: take_bit_eq_mod mod_pos_pos_trivial) qed then show ?thesis by (simp add: take_bit_eq_mod) qed lemma take_bit_int_less_eq: \take_bit n k \ k - 2 ^ n\ if \2 ^ n \ k\ and \n > 0\ for k :: int using that zmod_le_nonneg_dividend [of \k - 2 ^ n\ \2 ^ n\] by (simp add: take_bit_eq_mod) lemma take_bit_int_less_eq_self_iff: \take_bit n k \ k \ 0 \ k\ (is \?P \ ?Q\) for k :: int proof assume ?P show ?Q proof (rule ccontr) assume \\ 0 \ k\ then have \k < 0\ by simp with \?P\ have \take_bit n k < 0\ by (rule le_less_trans) then show False by simp qed next assume ?Q then show ?P by (simp add: take_bit_eq_mod zmod_le_nonneg_dividend) qed lemma take_bit_int_less_self_iff: \take_bit n k < k \ 2 ^ n \ k\ for k :: int by (auto simp add: less_le take_bit_int_less_eq_self_iff take_bit_int_eq_self_iff intro: order_trans [of 0 \2 ^ n\ k]) lemma take_bit_int_greater_self_iff: \k < take_bit n k \ k < 0\ for k :: int using take_bit_int_less_eq_self_iff [of n k] by auto lemma take_bit_int_greater_eq_self_iff: \k \ take_bit n k \ k < 2 ^ n\ for k :: int by (auto simp add: le_less take_bit_int_greater_self_iff take_bit_int_eq_self_iff dest: sym not_sym intro: less_trans [of k 0 \2 ^ n\]) lemma not_exp_less_eq_0_int [simp]: \\ 2 ^ n \ (0::int)\ by (simp add: power_le_zero_eq) lemma half_nonnegative_int_iff [simp]: \k div 2 \ 0 \ k \ 0\ for k :: int proof (cases \k \ 0\) case True then show ?thesis by (auto simp add: divide_int_def sgn_1_pos) next case False then show ?thesis by (auto simp add: divide_int_def not_le elim!: evenE) qed lemma half_negative_int_iff [simp]: \k div 2 < 0 \ k < 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma int_bit_bound: fixes k :: int obtains n where \\m. n \ m \ bit k m \ bit k n\ and \n > 0 \ bit k (n - 1) \ bit k n\ proof - obtain q where *: \\m. q \ m \ bit k m \ bit k q\ proof (cases \k \ 0\) case True moreover from power_gt_expt [of 2 \nat k\] have \nat k < 2 ^ nat k\ by simp then have \int (nat k) < int (2 ^ nat k)\ by (simp only: of_nat_less_iff) ultimately have *: \k div 2 ^ nat k = 0\ by simp show thesis proof (rule that [of \nat k\]) fix m assume \nat k \ m\ then show \bit k m \ bit k (nat k)\ by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq dest!: le_Suc_ex) qed next case False moreover from power_gt_expt [of 2 \nat (- k)\] have \nat (- k) < 2 ^ nat (- k)\ by simp then have \int (nat (- k)) < int (2 ^ nat (- k))\ by (simp only: of_nat_less_iff) ultimately have \- k div - (2 ^ nat (- k)) = - 1\ by (subst div_pos_neg_trivial) simp_all then have *: \k div 2 ^ nat (- k) = - 1\ by simp show thesis proof (rule that [of \nat (- k)\]) fix m assume \nat (- k) \ m\ then show \bit k m \ bit k (nat (- k))\ by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq minus_1_div_exp_eq_int dest!: le_Suc_ex) qed qed show thesis proof (cases \\m. bit k m \ bit k q\) case True then have \bit k 0 \ bit k q\ by blast with True that [of 0] show thesis by simp next case False then obtain r where **: \bit k r \ bit k q\ by blast have \r < q\ by (rule ccontr) (use * [of r] ** in simp) define N where \N = {n. n < q \ bit k n \ bit k q}\ moreover have \finite N\ \r \ N\ using ** N_def \r < q\ by auto moreover define n where \n = Suc (Max N)\ ultimately have \\m. n \ m \ bit k m \ bit k n\ apply auto apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \finite N\ all_not_in_conv mem_Collect_eq not_le) apply (metis "*" Max_ge Suc_n_not_le_n \finite N\ linorder_not_less mem_Collect_eq) apply (metis "*" Max_ge Suc_n_not_le_n \finite N\ linorder_not_less mem_Collect_eq) apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \finite N\ all_not_in_conv mem_Collect_eq not_le) done have \bit k (Max N) \ bit k n\ by (metis (mono_tags, lifting) "*" Max_in N_def \\m. n \ m \ bit k m = bit k n\ \finite N\ \r \ N\ empty_iff le_cases mem_Collect_eq) show thesis apply (rule that [of n]) using \\m. n \ m \ bit k m = bit k n\ apply blast using \bit k (Max N) \ bit k n\ n_def by auto qed qed lemma take_bit_tightened_less_eq_int: \take_bit m k \ take_bit n k\ if \m \ n\ for k :: int proof - have \take_bit m (take_bit n k) \ take_bit n k\ by (simp only: take_bit_int_less_eq_self_iff take_bit_nonnegative) with that show ?thesis by simp qed context ring_bit_operations begin lemma even_of_int_iff: \even (of_int k) \ even k\ by (induction k rule: int_bit_induct) simp_all lemma bit_of_int_iff [bit_simps]: \bit (of_int k) n \ possible_bit TYPE('a) n \ bit k n\ proof (cases \possible_bit TYPE('a) n\) case False then show ?thesis by (simp add: impossible_bit) next case True then have \bit (of_int k) n \ bit k n\ proof (induction k arbitrary: n rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) then show ?case using bit_double_iff [of \of_int k\ n] Bit_Operations.bit_double_iff [of k n] by (cases n) (auto simp add: ac_simps possible_bit_def dest: mult_not_zero) next case (odd k) then show ?case using bit_double_iff [of \of_int k\ n] by (cases n) (auto simp add: ac_simps bit_double_iff even_bit_succ_iff Bit_Operations.bit_0 Bit_Operations.bit_Suc possible_bit_def dest: mult_not_zero) qed with True show ?thesis by simp qed lemma push_bit_of_int: \push_bit n (of_int k) = of_int (push_bit n k)\ by (simp add: push_bit_eq_mult Bit_Operations.push_bit_eq_mult) lemma of_int_push_bit: \of_int (push_bit n k) = push_bit n (of_int k)\ by (simp add: push_bit_eq_mult Bit_Operations.push_bit_eq_mult) lemma take_bit_of_int: \take_bit n (of_int k) = of_int (take_bit n k)\ by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_int_iff) lemma of_int_take_bit: \of_int (take_bit n k) = take_bit n (of_int k)\ by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_int_iff) lemma of_int_not_eq: \of_int (NOT k) = NOT (of_int k)\ by (rule bit_eqI) (simp add: bit_not_iff Bit_Operations.bit_not_iff bit_of_int_iff) lemma of_int_not_numeral: \of_int (NOT (numeral k)) = NOT (numeral k)\ by (simp add: local.of_int_not_eq) lemma of_int_and_eq: \of_int (k AND l) = of_int k AND of_int l\ by (rule bit_eqI) (simp add: bit_of_int_iff bit_and_iff Bit_Operations.bit_and_iff) lemma of_int_or_eq: \of_int (k OR l) = of_int k OR of_int l\ by (rule bit_eqI) (simp add: bit_of_int_iff bit_or_iff Bit_Operations.bit_or_iff) lemma of_int_xor_eq: \of_int (k XOR l) = of_int k XOR of_int l\ by (rule bit_eqI) (simp add: bit_of_int_iff bit_xor_iff Bit_Operations.bit_xor_iff) lemma of_int_mask_eq: \of_int (mask n) = mask n\ by (induction n) (simp_all add: mask_Suc_double Bit_Operations.mask_Suc_double of_int_or_eq) end subsection \Instance \<^typ>\nat\\ instantiation nat :: semiring_bit_operations begin definition and_nat :: \nat \ nat \ nat\ where \m AND n = nat (int m AND int n)\ for m n :: nat definition or_nat :: \nat \ nat \ nat\ where \m OR n = nat (int m OR int n)\ for m n :: nat definition xor_nat :: \nat \ nat \ nat\ where \m XOR n = nat (int m XOR int n)\ for m n :: nat definition mask_nat :: \nat \ nat\ where \mask n = (2 :: nat) ^ n - 1\ definition push_bit_nat :: \nat \ nat \ nat\ where \push_bit_nat n m = m * 2 ^ n\ definition drop_bit_nat :: \nat \ nat \ nat\ where \drop_bit_nat n m = m div 2 ^ n\ definition take_bit_nat :: \nat \ nat \ nat\ where \take_bit_nat n m = m mod 2 ^ n\ definition set_bit_nat :: \nat \ nat \ nat\ where \set_bit m n = n OR push_bit m 1\ for m n :: nat definition unset_bit_nat :: \nat \ nat \ nat\ where \unset_bit m n = nat (unset_bit m (int n))\ for m n :: nat definition flip_bit_nat :: \nat \ nat \ nat\ where \flip_bit m n = n XOR push_bit m 1\ for m n :: nat instance proof fix m n q :: nat show \bit (m AND n) q \ bit m q \ bit n q\ by (simp add: and_nat_def bit_simps) show \bit (m OR n) q \ bit m q \ bit n q\ by (simp add: or_nat_def bit_simps) show \bit (m XOR n) q \ bit m q \ bit n q\ by (simp add: xor_nat_def bit_simps) show \bit (unset_bit m n) q \ bit n q \ m \ q\ by (simp add: unset_bit_nat_def bit_simps) qed (simp_all add: mask_nat_def set_bit_nat_def flip_bit_nat_def push_bit_nat_def drop_bit_nat_def take_bit_nat_def) end lemma take_bit_nat_less_exp [simp]: \take_bit n m < 2 ^ n\ for n m ::nat by (simp add: take_bit_eq_mod) lemma take_bit_nat_eq_self_iff: \take_bit n m = m \ m < 2 ^ n\ (is \?P \ ?Q\) for n m :: nat proof assume ?P moreover note take_bit_nat_less_exp [of n m] ultimately show ?Q by simp next assume ?Q then show ?P by (simp add: take_bit_eq_mod) qed lemma take_bit_nat_eq_self: \take_bit n m = m\ if \m < 2 ^ n\ for m n :: nat using that by (simp add: take_bit_nat_eq_self_iff) lemma take_bit_nat_less_eq_self [simp]: \take_bit n m \ m\ for n m :: nat by (simp add: take_bit_eq_mod) lemma take_bit_nat_less_self_iff: \take_bit n m < m \ 2 ^ n \ m\ (is \?P \ ?Q\) for m n :: nat proof assume ?P then have \take_bit n m \ m\ by simp then show \?Q\ by (simp add: take_bit_nat_eq_self_iff) next have \take_bit n m < 2 ^ n\ by (fact take_bit_nat_less_exp) also assume ?Q finally show ?P . qed lemma bit_push_bit_iff_nat: \bit (push_bit m q) n \ m \ n \ bit q (n - m)\ for q :: nat by (auto simp add: bit_push_bit_iff) lemma and_nat_rec: \m AND n = of_bool (odd m \ odd n) + 2 * ((m div 2) AND (n div 2))\ for m n :: nat by (simp add: and_nat_def and_int_rec [of \int m\ \int n\] zdiv_int nat_add_distrib nat_mult_distrib) lemma or_nat_rec: \m OR n = of_bool (odd m \ odd n) + 2 * ((m div 2) OR (n div 2))\ for m n :: nat by (simp add: or_nat_def or_int_rec [of \int m\ \int n\] zdiv_int nat_add_distrib nat_mult_distrib) lemma xor_nat_rec: \m XOR n = of_bool (odd m \ odd n) + 2 * ((m div 2) XOR (n div 2))\ for m n :: nat by (simp add: xor_nat_def xor_int_rec [of \int m\ \int n\] zdiv_int nat_add_distrib nat_mult_distrib) lemma Suc_0_and_eq [simp]: \Suc 0 AND n = n mod 2\ using one_and_eq [of n] by simp lemma and_Suc_0_eq [simp]: \n AND Suc 0 = n mod 2\ using and_one_eq [of n] by simp lemma Suc_0_or_eq: \Suc 0 OR n = n + of_bool (even n)\ using one_or_eq [of n] by simp lemma or_Suc_0_eq: \n OR Suc 0 = n + of_bool (even n)\ using or_one_eq [of n] by simp lemma Suc_0_xor_eq: \Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)\ using one_xor_eq [of n] by simp lemma xor_Suc_0_eq: \n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)\ using xor_one_eq [of n] by simp lemma and_nat_unfold [code]: \m AND n = (if m = 0 \ n = 0 then 0 else (m mod 2) * (n mod 2) + 2 * ((m div 2) AND (n div 2)))\ for m n :: nat by (auto simp add: and_nat_rec [of m n] elim: oddE) lemma or_nat_unfold [code]: \m OR n = (if m = 0 then n else if n = 0 then m else max (m mod 2) (n mod 2) + 2 * ((m div 2) OR (n div 2)))\ for m n :: nat by (auto simp add: or_nat_rec [of m n] elim: oddE) lemma xor_nat_unfold [code]: \m XOR n = (if m = 0 then n else if n = 0 then m else (m mod 2 + n mod 2) mod 2 + 2 * ((m div 2) XOR (n div 2)))\ for m n :: nat by (auto simp add: xor_nat_rec [of m n] elim!: oddE) lemma [code]: \unset_bit 0 m = 2 * (m div 2)\ \unset_bit (Suc n) m = m mod 2 + 2 * unset_bit n (m div 2)\ for m n :: nat by (simp_all add: unset_bit_Suc) lemma push_bit_of_Suc_0 [simp]: \push_bit n (Suc 0) = 2 ^ n\ using push_bit_of_1 [where ?'a = nat] by simp lemma take_bit_of_Suc_0 [simp]: \take_bit n (Suc 0) = of_bool (0 < n)\ using take_bit_of_1 [where ?'a = nat] by simp lemma drop_bit_of_Suc_0 [simp]: \drop_bit n (Suc 0) = of_bool (n = 0)\ using drop_bit_of_1 [where ?'a = nat] by simp lemma Suc_mask_eq_exp: \Suc (mask n) = 2 ^ n\ by (simp add: mask_eq_exp_minus_1) lemma less_eq_mask: \n \ mask n\ by (simp add: mask_eq_exp_minus_1 le_diff_conv2) (metis Suc_mask_eq_exp diff_Suc_1 diff_le_diff_pow diff_zero le_refl not_less_eq_eq power_0) lemma less_mask: \n < mask n\ if \Suc 0 < n\ proof - define m where \m = n - 2\ with that have *: \n = m + 2\ by simp have \Suc (Suc (Suc m)) < 4 * 2 ^ m\ by (induction m) simp_all then have \Suc (m + 2) < Suc (mask (m + 2))\ by (simp add: Suc_mask_eq_exp) then have \m + 2 < mask (m + 2)\ by (simp add: less_le) with * show ?thesis by simp qed lemma mask_nat_less_exp [simp]: \(mask n :: nat) < 2 ^ n\ by (simp add: mask_eq_exp_minus_1) lemma mask_nat_positive_iff [simp]: \(0::nat) < mask n \ 0 < n\ proof (cases \n = 0\) case True then show ?thesis by simp next case False then have \0 < n\ by simp then have \(0::nat) < mask n\ using less_eq_mask [of n] by (rule order_less_le_trans) with \0 < n\ show ?thesis by simp qed lemma take_bit_tightened_less_eq_nat: \take_bit m q \ take_bit n q\ if \m \ n\ for q :: nat proof - have \take_bit m (take_bit n q) \ take_bit n q\ by (rule take_bit_nat_less_eq_self) with that show ?thesis by simp qed lemma push_bit_nat_eq: \push_bit n (nat k) = nat (push_bit n k)\ by (cases \k \ 0\) (simp_all add: push_bit_eq_mult nat_mult_distrib not_le mult_nonneg_nonpos2) lemma drop_bit_nat_eq: \drop_bit n (nat k) = nat (drop_bit n k)\ apply (cases \k \ 0\) apply (simp_all add: drop_bit_eq_div nat_div_distrib nat_power_eq not_le) apply (simp add: divide_int_def) done lemma take_bit_nat_eq: \take_bit n (nat k) = nat (take_bit n k)\ if \k \ 0\ using that by (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq) lemma nat_take_bit_eq: \nat (take_bit n k) = take_bit n (nat k)\ if \k \ 0\ using that by (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq) context semiring_bit_operations begin lemma push_bit_of_nat: \push_bit n (of_nat m) = of_nat (push_bit n m)\ by (simp add: push_bit_eq_mult Bit_Operations.push_bit_eq_mult) lemma of_nat_push_bit: \of_nat (push_bit m n) = push_bit m (of_nat n)\ by (simp add: push_bit_eq_mult Bit_Operations.push_bit_eq_mult) lemma take_bit_of_nat: \take_bit n (of_nat m) = of_nat (take_bit n m)\ by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_nat_iff) lemma of_nat_take_bit: \of_nat (take_bit n m) = take_bit n (of_nat m)\ by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_nat_iff) end context semiring_bit_operations begin lemma of_nat_and_eq: \of_nat (m AND n) = of_nat m AND of_nat n\ by (rule bit_eqI) (simp add: bit_of_nat_iff bit_and_iff Bit_Operations.bit_and_iff) lemma of_nat_or_eq: \of_nat (m OR n) = of_nat m OR of_nat n\ by (rule bit_eqI) (simp add: bit_of_nat_iff bit_or_iff Bit_Operations.bit_or_iff) lemma of_nat_xor_eq: \of_nat (m XOR n) = of_nat m XOR of_nat n\ by (rule bit_eqI) (simp add: bit_of_nat_iff bit_xor_iff Bit_Operations.bit_xor_iff) lemma of_nat_mask_eq: \of_nat (mask n) = mask n\ by (induction n) (simp_all add: mask_Suc_double Bit_Operations.mask_Suc_double of_nat_or_eq) end lemma nat_mask_eq: \nat (mask n) = mask n\ by (simp add: nat_eq_iff of_nat_mask_eq) subsection \Common algebraic structure\ class unique_euclidean_semiring_with_bit_operations = unique_euclidean_semiring_with_nat + semiring_bit_operations begin lemma possible_bit [simp]: \possible_bit TYPE('a) n\ by (simp add: possible_bit_def) lemma take_bit_of_exp [simp]: \take_bit m (2 ^ n) = of_bool (n < m) * 2 ^ n\ by (simp add: take_bit_eq_mod exp_mod_exp) lemma take_bit_of_2 [simp]: \take_bit n 2 = of_bool (2 \ n) * 2\ using take_bit_of_exp [of n 1] by simp lemma push_bit_eq_0_iff [simp]: "push_bit n a = 0 \ a = 0" by (simp add: push_bit_eq_mult) lemma take_bit_add: "take_bit n (take_bit n a + take_bit n b) = take_bit n (a + b)" by (simp add: take_bit_eq_mod mod_simps) lemma take_bit_of_1_eq_0_iff [simp]: "take_bit n 1 = 0 \ n = 0" by (simp add: take_bit_eq_mod) lemma drop_bit_Suc_bit0 [simp]: \drop_bit (Suc n) (numeral (Num.Bit0 k)) = drop_bit n (numeral k)\ by (simp add: drop_bit_Suc numeral_Bit0_div_2) lemma drop_bit_Suc_bit1 [simp]: \drop_bit (Suc n) (numeral (Num.Bit1 k)) = drop_bit n (numeral k)\ by (simp add: drop_bit_Suc numeral_Bit1_div_2) lemma drop_bit_numeral_bit0 [simp]: \drop_bit (numeral l) (numeral (Num.Bit0 k)) = drop_bit (pred_numeral l) (numeral k)\ by (simp add: drop_bit_rec numeral_Bit0_div_2) lemma drop_bit_numeral_bit1 [simp]: \drop_bit (numeral l) (numeral (Num.Bit1 k)) = drop_bit (pred_numeral l) (numeral k)\ by (simp add: drop_bit_rec numeral_Bit1_div_2) lemma take_bit_Suc_1 [simp]: \take_bit (Suc n) 1 = 1\ by (simp add: take_bit_Suc) lemma take_bit_Suc_bit0: \take_bit (Suc n) (numeral (Num.Bit0 k)) = take_bit n (numeral k) * 2\ by (simp add: take_bit_Suc numeral_Bit0_div_2) lemma take_bit_Suc_bit1: \take_bit (Suc n) (numeral (Num.Bit1 k)) = take_bit n (numeral k) * 2 + 1\ by (simp add: take_bit_Suc numeral_Bit1_div_2 mod_2_eq_odd) lemma take_bit_numeral_1 [simp]: \take_bit (numeral l) 1 = 1\ by (simp add: take_bit_rec [of \numeral l\ 1]) lemma take_bit_numeral_bit0: \take_bit (numeral l) (numeral (Num.Bit0 k)) = take_bit (pred_numeral l) (numeral k) * 2\ by (simp add: take_bit_rec numeral_Bit0_div_2) lemma take_bit_numeral_bit1: \take_bit (numeral l) (numeral (Num.Bit1 k)) = take_bit (pred_numeral l) (numeral k) * 2 + 1\ by (simp add: take_bit_rec numeral_Bit1_div_2 mod_2_eq_odd) lemma bit_of_nat_iff_bit [bit_simps]: \bit (of_nat m) n \ bit m n\ proof - have \even (m div 2 ^ n) \ even (of_nat (m div 2 ^ n))\ by simp also have \of_nat (m div 2 ^ n) = of_nat m div of_nat (2 ^ n)\ by (simp add: of_nat_div) finally show ?thesis by (simp add: bit_iff_odd semiring_bits_class.bit_iff_odd) qed lemma drop_bit_mask_eq: \drop_bit m (mask n) = mask (n - m)\ by (rule bit_eqI) (auto simp add: bit_simps possible_bit_def) lemma drop_bit_of_nat: "drop_bit n (of_nat m) = of_nat (drop_bit n m)" by (simp add: drop_bit_eq_div Bit_Operations.drop_bit_eq_div of_nat_div [of m "2 ^ n"]) lemma of_nat_drop_bit: \of_nat (drop_bit m n) = drop_bit m (of_nat n)\ by (simp add: drop_bit_eq_div Bit_Operations.drop_bit_eq_div of_nat_div) lemma take_bit_sum: "take_bit n a = (\k = 0..k = 0..k = Suc 0..k = Suc 0..k = 0..drop_bit (Suc n) (- numeral (Num.Bit0 k)) = drop_bit n (- numeral k :: int)\ by (simp add: drop_bit_Suc numeral_Bit0_div_2) lemma drop_bit_Suc_minus_bit1 [simp]: \drop_bit (Suc n) (- numeral (Num.Bit1 k)) = drop_bit n (- numeral (Num.inc k) :: int)\ by (simp add: drop_bit_Suc numeral_Bit1_div_2 add_One) lemma drop_bit_numeral_minus_bit0 [simp]: \drop_bit (numeral l) (- numeral (Num.Bit0 k)) = drop_bit (pred_numeral l) (- numeral k :: int)\ by (simp add: numeral_eq_Suc numeral_Bit0_div_2) lemma drop_bit_numeral_minus_bit1 [simp]: \drop_bit (numeral l) (- numeral (Num.Bit1 k)) = drop_bit (pred_numeral l) (- numeral (Num.inc k) :: int)\ by (simp add: numeral_eq_Suc numeral_Bit1_div_2) lemma take_bit_Suc_minus_bit0: \take_bit (Suc n) (- numeral (Num.Bit0 k)) = take_bit n (- numeral k) * (2 :: int)\ by (simp add: take_bit_Suc numeral_Bit0_div_2) lemma take_bit_Suc_minus_bit1: \take_bit (Suc n) (- numeral (Num.Bit1 k)) = take_bit n (- numeral (Num.inc k)) * 2 + (1 :: int)\ by (simp add: take_bit_Suc numeral_Bit1_div_2 add_One) lemma take_bit_numeral_minus_bit0: \take_bit (numeral l) (- numeral (Num.Bit0 k)) = take_bit (pred_numeral l) (- numeral k) * (2 :: int)\ by (simp add: numeral_eq_Suc numeral_Bit0_div_2 take_bit_Suc_minus_bit0) lemma take_bit_numeral_minus_bit1: \take_bit (numeral l) (- numeral (Num.Bit1 k)) = take_bit (pred_numeral l) (- numeral (Num.inc k)) * 2 + (1 :: int)\ by (simp add: numeral_eq_Suc numeral_Bit1_div_2 take_bit_Suc_minus_bit1) subsection \Symbolic computations on numeral expressions\ -context unique_euclidean_semiring_with_bit_operations +context semiring_bits begin -lemma bit_numeral_iff: - \bit (numeral m) n \ bit (numeral m :: nat) n\ - using bit_of_nat_iff_bit [of \numeral m\ n] by simp - lemma not_bit_numeral_Bit0_0 [simp]: \\ bit (numeral (Num.Bit0 m)) 0\ by (simp add: bit_0) lemma bit_numeral_Bit1_0 [simp]: \bit (numeral (Num.Bit1 m)) 0\ by (simp add: bit_0) +end + +context ring_bit_operations +begin + +lemma not_bit_minus_numeral_Bit0_0 [simp]: + \\ bit (- numeral (Num.Bit0 m)) 0\ + by (simp add: bit_0) + +lemma bit_minus_numeral_Bit1_0 [simp]: + \bit (- numeral (Num.Bit1 m)) 0\ + by (simp add: bit_0) + +end + +context unique_euclidean_semiring_with_bit_operations +begin + +lemma bit_numeral_iff: + \bit (numeral m) n \ bit (numeral m :: nat) n\ + using bit_of_nat_iff_bit [of \numeral m\ n] by simp + lemma bit_numeral_Bit0_Suc_iff [simp]: \bit (numeral (Num.Bit0 m)) (Suc n) \ bit (numeral m) n\ by (simp add: bit_Suc numeral_Bit0_div_2) lemma bit_numeral_Bit1_Suc_iff [simp]: \bit (numeral (Num.Bit1 m)) (Suc n) \ bit (numeral m) n\ by (simp add: bit_Suc numeral_Bit1_div_2) lemma bit_numeral_rec: \bit (numeral (Num.Bit0 w)) n \ (case n of 0 \ False | Suc m \ bit (numeral w) m)\ \bit (numeral (Num.Bit1 w)) n \ (case n of 0 \ True | Suc m \ bit (numeral w) m)\ by (cases n; simp add: bit_0)+ lemma bit_numeral_simps [simp]: \\ bit 1 (numeral n)\ \bit (numeral (Num.Bit0 w)) (numeral n) \ bit (numeral w) (pred_numeral n)\ \bit (numeral (Num.Bit1 w)) (numeral n) \ bit (numeral w) (pred_numeral n)\ by (simp_all add: bit_1_iff numeral_eq_Suc) lemma and_numerals [simp]: \1 AND numeral (Num.Bit0 y) = 0\ \1 AND numeral (Num.Bit1 y) = 1\ \numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = 2 * (numeral x AND numeral y)\ \numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = 2 * (numeral x AND numeral y)\ \numeral (Num.Bit0 x) AND 1 = 0\ \numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = 2 * (numeral x AND numeral y)\ \numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + 2 * (numeral x AND numeral y)\ \numeral (Num.Bit1 x) AND 1 = 1\ by (simp_all add: bit_eq_iff) (simp_all add: bit_0 bit_simps bit_Suc bit_numeral_rec split: nat.splits) fun and_num :: \num \ num \ num option\ \<^marker>\contributor \Andreas Lochbihler\\ where \and_num num.One num.One = Some num.One\ | \and_num num.One (num.Bit0 n) = None\ | \and_num num.One (num.Bit1 n) = Some num.One\ | \and_num (num.Bit0 m) num.One = None\ | \and_num (num.Bit0 m) (num.Bit0 n) = map_option num.Bit0 (and_num m n)\ | \and_num (num.Bit0 m) (num.Bit1 n) = map_option num.Bit0 (and_num m n)\ | \and_num (num.Bit1 m) num.One = Some num.One\ | \and_num (num.Bit1 m) (num.Bit0 n) = map_option num.Bit0 (and_num m n)\ | \and_num (num.Bit1 m) (num.Bit1 n) = (case and_num m n of None \ Some num.One | Some n' \ Some (num.Bit1 n'))\ lemma numeral_and_num: \numeral m AND numeral n = (case and_num m n of None \ 0 | Some n' \ numeral n')\ by (induction m n rule: and_num.induct) (simp_all add: split: option.split) lemma and_num_eq_None_iff: \and_num m n = None \ numeral m AND numeral n = 0\ by (simp add: numeral_and_num split: option.split) lemma and_num_eq_Some_iff: \and_num m n = Some q \ numeral m AND numeral n = numeral q\ by (simp add: numeral_and_num split: option.split) lemma or_numerals [simp]: \1 OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)\ \1 OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)\ \numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = 2 * (numeral x OR numeral y)\ \numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + 2 * (numeral x OR numeral y)\ \numeral (Num.Bit0 x) OR 1 = numeral (Num.Bit1 x)\ \numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + 2 * (numeral x OR numeral y)\ \numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + 2 * (numeral x OR numeral y)\ \numeral (Num.Bit1 x) OR 1 = numeral (Num.Bit1 x)\ by (simp_all add: bit_eq_iff) (simp_all add: bit_0 bit_simps bit_Suc bit_numeral_rec split: nat.splits) fun or_num :: \num \ num \ num\ \<^marker>\contributor \Andreas Lochbihler\\ where \or_num num.One num.One = num.One\ | \or_num num.One (num.Bit0 n) = num.Bit1 n\ | \or_num num.One (num.Bit1 n) = num.Bit1 n\ | \or_num (num.Bit0 m) num.One = num.Bit1 m\ | \or_num (num.Bit0 m) (num.Bit0 n) = num.Bit0 (or_num m n)\ | \or_num (num.Bit0 m) (num.Bit1 n) = num.Bit1 (or_num m n)\ | \or_num (num.Bit1 m) num.One = num.Bit1 m\ | \or_num (num.Bit1 m) (num.Bit0 n) = num.Bit1 (or_num m n)\ | \or_num (num.Bit1 m) (num.Bit1 n) = num.Bit1 (or_num m n)\ lemma numeral_or_num: \numeral m OR numeral n = numeral (or_num m n)\ by (induction m n rule: or_num.induct) simp_all lemma numeral_or_num_eq: \numeral (or_num m n) = numeral m OR numeral n\ by (simp add: numeral_or_num) lemma xor_numerals [simp]: \1 XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)\ \1 XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)\ \numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = 2 * (numeral x XOR numeral y)\ \numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + 2 * (numeral x XOR numeral y)\ \numeral (Num.Bit0 x) XOR 1 = numeral (Num.Bit1 x)\ \numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + 2 * (numeral x XOR numeral y)\ \numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = 2 * (numeral x XOR numeral y)\ \numeral (Num.Bit1 x) XOR 1 = numeral (Num.Bit0 x)\ by (simp_all add: bit_eq_iff) (simp_all add: bit_0 bit_simps bit_Suc bit_numeral_rec split: nat.splits) fun xor_num :: \num \ num \ num option\ \<^marker>\contributor \Andreas Lochbihler\\ where \xor_num num.One num.One = None\ | \xor_num num.One (num.Bit0 n) = Some (num.Bit1 n)\ | \xor_num num.One (num.Bit1 n) = Some (num.Bit0 n)\ | \xor_num (num.Bit0 m) num.One = Some (num.Bit1 m)\ | \xor_num (num.Bit0 m) (num.Bit0 n) = map_option num.Bit0 (xor_num m n)\ | \xor_num (num.Bit0 m) (num.Bit1 n) = Some (case xor_num m n of None \ num.One | Some n' \ num.Bit1 n')\ | \xor_num (num.Bit1 m) num.One = Some (num.Bit0 m)\ | \xor_num (num.Bit1 m) (num.Bit0 n) = Some (case xor_num m n of None \ num.One | Some n' \ num.Bit1 n')\ | \xor_num (num.Bit1 m) (num.Bit1 n) = map_option num.Bit0 (xor_num m n)\ lemma numeral_xor_num: \numeral m XOR numeral n = (case xor_num m n of None \ 0 | Some n' \ numeral n')\ by (induction m n rule: xor_num.induct) (simp_all split: option.split) lemma xor_num_eq_None_iff: \xor_num m n = None \ numeral m XOR numeral n = 0\ by (simp add: numeral_xor_num split: option.split) lemma xor_num_eq_Some_iff: \xor_num m n = Some q \ numeral m XOR numeral n = numeral q\ by (simp add: numeral_xor_num split: option.split) end lemma bit_Suc_0_iff [bit_simps]: \bit (Suc 0) n \ n = 0\ using bit_1_iff [of n, where ?'a = nat] by simp lemma and_nat_numerals [simp]: \Suc 0 AND numeral (Num.Bit0 y) = 0\ \Suc 0 AND numeral (Num.Bit1 y) = 1\ \numeral (Num.Bit0 x) AND Suc 0 = 0\ \numeral (Num.Bit1 x) AND Suc 0 = 1\ by (simp_all only: and_numerals flip: One_nat_def) lemma or_nat_numerals [simp]: \Suc 0 OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)\ \Suc 0 OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)\ \numeral (Num.Bit0 x) OR Suc 0 = numeral (Num.Bit1 x)\ \numeral (Num.Bit1 x) OR Suc 0 = numeral (Num.Bit1 x)\ by (simp_all only: or_numerals flip: One_nat_def) lemma xor_nat_numerals [simp]: \Suc 0 XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)\ \Suc 0 XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)\ \numeral (Num.Bit0 x) XOR Suc 0 = numeral (Num.Bit1 x)\ \numeral (Num.Bit1 x) XOR Suc 0 = numeral (Num.Bit0 x)\ by (simp_all only: xor_numerals flip: One_nat_def) context ring_bit_operations begin lemma minus_numeral_inc_eq: \- numeral (Num.inc n) = NOT (numeral n)\ by (simp add: not_eq_complement sub_inc_One_eq add_One) lemma sub_one_eq_not_neg: \Num.sub n num.One = NOT (- numeral n)\ by (simp add: not_eq_complement) lemma minus_numeral_eq_not_sub_one: \- numeral n = NOT (Num.sub n num.One)\ by (simp add: not_eq_complement) lemma not_numeral_eq [simp]: \NOT (numeral n) = - numeral (Num.inc n)\ by (simp add: minus_numeral_inc_eq) lemma not_minus_numeral_eq [simp]: \NOT (- numeral n) = Num.sub n num.One\ by (simp add: sub_one_eq_not_neg) lemma minus_not_numeral_eq [simp]: \- (NOT (numeral n)) = numeral (Num.inc n)\ by simp lemma not_numeral_BitM_eq: \NOT (numeral (Num.BitM n)) = - numeral (num.Bit0 n)\ by (simp add: inc_BitM_eq) lemma not_numeral_Bit0_eq: \NOT (numeral (Num.Bit0 n)) = - numeral (num.Bit1 n)\ by simp end lemma bit_minus_numeral_int [simp]: \bit (- numeral (num.Bit0 w) :: int) (numeral n) \ bit (- numeral w :: int) (pred_numeral n)\ \bit (- numeral (num.Bit1 w) :: int) (numeral n) \ \ bit (numeral w :: int) (pred_numeral n)\ by (simp_all add: bit_minus_iff bit_not_iff numeral_eq_Suc bit_Suc add_One sub_inc_One_eq) lemma bit_minus_numeral_Bit0_Suc_iff [simp]: \bit (- numeral (num.Bit0 w) :: int) (Suc n) \ bit (- numeral w :: int) n\ by (simp add: bit_Suc) lemma bit_minus_numeral_Bit1_Suc_iff [simp]: \bit (- numeral (num.Bit1 w) :: int) (Suc n) \ \ bit (numeral w :: int) n\ by (simp add: bit_Suc add_One flip: bit_not_int_iff) lemma and_not_numerals: \1 AND NOT 1 = (0 :: int)\ \1 AND NOT (numeral (Num.Bit0 n)) = (1 :: int)\ \1 AND NOT (numeral (Num.Bit1 n)) = (0 :: int)\ \numeral (Num.Bit0 m) AND NOT (1 :: int) = numeral (Num.Bit0 m)\ \numeral (Num.Bit0 m) AND NOT (numeral (Num.Bit0 n)) = (2 :: int) * (numeral m AND NOT (numeral n))\ \numeral (Num.Bit0 m) AND NOT (numeral (Num.Bit1 n)) = (2 :: int) * (numeral m AND NOT (numeral n))\ \numeral (Num.Bit1 m) AND NOT (1 :: int) = numeral (Num.Bit0 m)\ \numeral (Num.Bit1 m) AND NOT (numeral (Num.Bit0 n)) = 1 + (2 :: int) * (numeral m AND NOT (numeral n))\ \numeral (Num.Bit1 m) AND NOT (numeral (Num.Bit1 n)) = (2 :: int) * (numeral m AND NOT (numeral n))\ by (simp_all add: bit_eq_iff) (auto simp add: bit_0 bit_simps bit_Suc bit_numeral_rec BitM_inc_eq sub_inc_One_eq split: nat.split) fun and_not_num :: \num \ num \ num option\ \<^marker>\contributor \Andreas Lochbihler\\ where \and_not_num num.One num.One = None\ | \and_not_num num.One (num.Bit0 n) = Some num.One\ | \and_not_num num.One (num.Bit1 n) = None\ | \and_not_num (num.Bit0 m) num.One = Some (num.Bit0 m)\ | \and_not_num (num.Bit0 m) (num.Bit0 n) = map_option num.Bit0 (and_not_num m n)\ | \and_not_num (num.Bit0 m) (num.Bit1 n) = map_option num.Bit0 (and_not_num m n)\ | \and_not_num (num.Bit1 m) num.One = Some (num.Bit0 m)\ | \and_not_num (num.Bit1 m) (num.Bit0 n) = (case and_not_num m n of None \ Some num.One | Some n' \ Some (num.Bit1 n'))\ | \and_not_num (num.Bit1 m) (num.Bit1 n) = map_option num.Bit0 (and_not_num m n)\ lemma int_numeral_and_not_num: \numeral m AND NOT (numeral n) = (case and_not_num m n of None \ 0 :: int | Some n' \ numeral n')\ by (induction m n rule: and_not_num.induct) (simp_all del: not_numeral_eq not_one_eq add: and_not_numerals split: option.splits) lemma int_numeral_not_and_num: \NOT (numeral m) AND numeral n = (case and_not_num n m of None \ 0 :: int | Some n' \ numeral n')\ using int_numeral_and_not_num [of n m] by (simp add: ac_simps) lemma and_not_num_eq_None_iff: \and_not_num m n = None \ numeral m AND NOT (numeral n) = (0 :: int)\ by (simp del: not_numeral_eq add: int_numeral_and_not_num split: option.split) lemma and_not_num_eq_Some_iff: \and_not_num m n = Some q \ numeral m AND NOT (numeral n) = (numeral q :: int)\ by (simp del: not_numeral_eq add: int_numeral_and_not_num split: option.split) lemma and_minus_numerals [simp]: \1 AND - (numeral (num.Bit0 n)) = (0::int)\ \1 AND - (numeral (num.Bit1 n)) = (1::int)\ \numeral m AND - (numeral (num.Bit0 n)) = (case and_not_num m (Num.BitM n) of None \ 0 :: int | Some n' \ numeral n')\ \numeral m AND - (numeral (num.Bit1 n)) = (case and_not_num m (Num.Bit0 n) of None \ 0 :: int | Some n' \ numeral n')\ \- (numeral (num.Bit0 n)) AND 1 = (0::int)\ \- (numeral (num.Bit1 n)) AND 1 = (1::int)\ \- (numeral (num.Bit0 n)) AND numeral m = (case and_not_num m (Num.BitM n) of None \ 0 :: int | Some n' \ numeral n')\ \- (numeral (num.Bit1 n)) AND numeral m = (case and_not_num m (Num.Bit0 n) of None \ 0 :: int | Some n' \ numeral n')\ by (simp_all del: not_numeral_eq add: ac_simps and_not_numerals one_and_eq not_numeral_BitM_eq not_numeral_Bit0_eq and_not_num_eq_None_iff and_not_num_eq_Some_iff split: option.split) lemma and_minus_minus_numerals [simp]: \- (numeral m :: int) AND - (numeral n :: int) = NOT ((numeral m - 1) OR (numeral n - 1))\ by (simp add: minus_numeral_eq_not_sub_one) lemma or_not_numerals: \1 OR NOT 1 = NOT (0 :: int)\ \1 OR NOT (numeral (Num.Bit0 n)) = NOT (numeral (Num.Bit0 n) :: int)\ \1 OR NOT (numeral (Num.Bit1 n)) = NOT (numeral (Num.Bit0 n) :: int)\ \numeral (Num.Bit0 m) OR NOT (1 :: int) = NOT (1 :: int)\ \numeral (Num.Bit0 m) OR NOT (numeral (Num.Bit0 n)) = 1 + (2 :: int) * (numeral m OR NOT (numeral n))\ \numeral (Num.Bit0 m) OR NOT (numeral (Num.Bit1 n)) = (2 :: int) * (numeral m OR NOT (numeral n))\ \numeral (Num.Bit1 m) OR NOT (1 :: int) = NOT (0 :: int)\ \numeral (Num.Bit1 m) OR NOT (numeral (Num.Bit0 n)) = 1 + (2 :: int) * (numeral m OR NOT (numeral n))\ \numeral (Num.Bit1 m) OR NOT (numeral (Num.Bit1 n)) = 1 + (2 :: int) * (numeral m OR NOT (numeral n))\ by (simp_all add: bit_eq_iff) (auto simp add: bit_0 bit_simps bit_Suc bit_numeral_rec sub_inc_One_eq split: nat.split) fun or_not_num_neg :: \num \ num \ num\ \<^marker>\contributor \Andreas Lochbihler\\ where \or_not_num_neg num.One num.One = num.One\ | \or_not_num_neg num.One (num.Bit0 m) = num.Bit1 m\ | \or_not_num_neg num.One (num.Bit1 m) = num.Bit1 m\ | \or_not_num_neg (num.Bit0 n) num.One = num.Bit0 num.One\ | \or_not_num_neg (num.Bit0 n) (num.Bit0 m) = Num.BitM (or_not_num_neg n m)\ | \or_not_num_neg (num.Bit0 n) (num.Bit1 m) = num.Bit0 (or_not_num_neg n m)\ | \or_not_num_neg (num.Bit1 n) num.One = num.One\ | \or_not_num_neg (num.Bit1 n) (num.Bit0 m) = Num.BitM (or_not_num_neg n m)\ | \or_not_num_neg (num.Bit1 n) (num.Bit1 m) = Num.BitM (or_not_num_neg n m)\ lemma int_numeral_or_not_num_neg: \numeral m OR NOT (numeral n :: int) = - numeral (or_not_num_neg m n)\ by (induction m n rule: or_not_num_neg.induct) (simp_all del: not_numeral_eq not_one_eq add: or_not_numerals, simp_all) lemma int_numeral_not_or_num_neg: \NOT (numeral m) OR (numeral n :: int) = - numeral (or_not_num_neg n m)\ using int_numeral_or_not_num_neg [of n m] by (simp add: ac_simps) lemma numeral_or_not_num_eq: \numeral (or_not_num_neg m n) = - (numeral m OR NOT (numeral n :: int))\ using int_numeral_or_not_num_neg [of m n] by simp lemma or_minus_numerals [simp]: \1 OR - (numeral (num.Bit0 n)) = - (numeral (or_not_num_neg num.One (Num.BitM n)) :: int)\ \1 OR - (numeral (num.Bit1 n)) = - (numeral (num.Bit1 n) :: int)\ \numeral m OR - (numeral (num.Bit0 n)) = - (numeral (or_not_num_neg m (Num.BitM n)) :: int)\ \numeral m OR - (numeral (num.Bit1 n)) = - (numeral (or_not_num_neg m (Num.Bit0 n)) :: int)\ \- (numeral (num.Bit0 n)) OR 1 = - (numeral (or_not_num_neg num.One (Num.BitM n)) :: int)\ \- (numeral (num.Bit1 n)) OR 1 = - (numeral (num.Bit1 n) :: int)\ \- (numeral (num.Bit0 n)) OR numeral m = - (numeral (or_not_num_neg m (Num.BitM n)) :: int)\ \- (numeral (num.Bit1 n)) OR numeral m = - (numeral (or_not_num_neg m (Num.Bit0 n)) :: int)\ by (simp_all only: or.commute [of _ 1] or.commute [of _ \numeral m\] minus_numeral_eq_not_sub_one or_not_numerals numeral_or_not_num_eq arith_simps minus_minus numeral_One) lemma or_minus_minus_numerals [simp]: \- (numeral m :: int) OR - (numeral n :: int) = NOT ((numeral m - 1) AND (numeral n - 1))\ by (simp add: minus_numeral_eq_not_sub_one) lemma xor_minus_numerals [simp]: \- numeral n XOR k = NOT (neg_numeral_class.sub n num.One XOR k)\ \k XOR - numeral n = NOT (k XOR (neg_numeral_class.sub n num.One))\ for k :: int by (simp_all add: minus_numeral_eq_not_sub_one) definition take_bit_num :: \nat \ num \ num option\ where \take_bit_num n m = (if take_bit n (numeral m ::nat) = 0 then None else Some (num_of_nat (take_bit n (numeral m ::nat))))\ lemma take_bit_num_simps: \take_bit_num 0 m = None\ \take_bit_num (Suc n) Num.One = Some Num.One\ \take_bit_num (Suc n) (Num.Bit0 m) = (case take_bit_num n m of None \ None | Some q \ Some (Num.Bit0 q))\ \take_bit_num (Suc n) (Num.Bit1 m) = Some (case take_bit_num n m of None \ Num.One | Some q \ Num.Bit1 q)\ \take_bit_num (numeral r) Num.One = Some Num.One\ \take_bit_num (numeral r) (Num.Bit0 m) = (case take_bit_num (pred_numeral r) m of None \ None | Some q \ Some (Num.Bit0 q))\ \take_bit_num (numeral r) (Num.Bit1 m) = Some (case take_bit_num (pred_numeral r) m of None \ Num.One | Some q \ Num.Bit1 q)\ by (auto simp add: take_bit_num_def ac_simps mult_2 num_of_nat_double take_bit_Suc_bit0 take_bit_Suc_bit1 take_bit_numeral_bit0 take_bit_numeral_bit1) lemma take_bit_num_code [code]: \ \Ocaml-style pattern matching is more robust wrt. different representations of \<^typ>\nat\\ \take_bit_num n m = (case (n, m) of (0, _) \ None | (Suc n, Num.One) \ Some Num.One | (Suc n, Num.Bit0 m) \ (case take_bit_num n m of None \ None | Some q \ Some (Num.Bit0 q)) | (Suc n, Num.Bit1 m) \ Some (case take_bit_num n m of None \ Num.One | Some q \ Num.Bit1 q))\ by (cases n; cases m) (simp_all add: take_bit_num_simps) context semiring_bit_operations begin lemma take_bit_num_eq_None_imp: \take_bit m (numeral n) = 0\ if \take_bit_num m n = None\ proof - from that have \take_bit m (numeral n :: nat) = 0\ by (simp add: take_bit_num_def split: if_splits) then have \of_nat (take_bit m (numeral n)) = of_nat 0\ by simp then show ?thesis by (simp add: of_nat_take_bit) qed lemma take_bit_num_eq_Some_imp: \take_bit m (numeral n) = numeral q\ if \take_bit_num m n = Some q\ proof - from that have \take_bit m (numeral n :: nat) = numeral q\ by (auto simp add: take_bit_num_def Num.numeral_num_of_nat_unfold split: if_splits) then have \of_nat (take_bit m (numeral n)) = of_nat (numeral q)\ by simp then show ?thesis by (simp add: of_nat_take_bit) qed lemma take_bit_numeral_numeral: \take_bit (numeral m) (numeral n) = (case take_bit_num (numeral m) n of None \ 0 | Some q \ numeral q)\ by (auto split: option.split dest: take_bit_num_eq_None_imp take_bit_num_eq_Some_imp) end lemma take_bit_numeral_minus_numeral_int: \take_bit (numeral m) (- numeral n :: int) = (case take_bit_num (numeral m) n of None \ 0 | Some q \ take_bit (numeral m) (2 ^ numeral m - numeral q))\ (is \?lhs = ?rhs\) proof (cases \take_bit_num (numeral m) n\) case None then show ?thesis by (auto dest: take_bit_num_eq_None_imp [where ?'a = int] simp add: take_bit_eq_0_iff) next case (Some q) then have q: \take_bit (numeral m) (numeral n :: int) = numeral q\ by (auto dest: take_bit_num_eq_Some_imp) let ?T = \take_bit (numeral m) :: int \ int\ have *: \?T (2 ^ numeral m) = ?T (?T 0)\ by (simp add: take_bit_eq_0_iff) have \?lhs = ?T (0 - numeral n)\ by simp also have \\ = ?T (?T (?T 0) - ?T (?T (numeral n)))\ by (simp only: take_bit_diff) also have \\ = ?T (2 ^ numeral m - ?T (numeral n))\ by (simp only: take_bit_diff flip: *) also have \\ = ?rhs\ by (simp add: q Some) finally show ?thesis . qed declare take_bit_num_simps [simp] take_bit_numeral_numeral [simp] take_bit_numeral_minus_numeral_int [simp] subsection \More properties\ lemma take_bit_eq_mask_iff: \take_bit n k = mask n \ take_bit n (k + 1) = 0\ (is \?P \ ?Q\) for k :: int proof assume ?P then have \take_bit n (take_bit n k + take_bit n 1) = 0\ by (simp add: mask_eq_exp_minus_1 take_bit_eq_0_iff) then show ?Q by (simp only: take_bit_add) next assume ?Q then have \take_bit n (k + 1) - 1 = - 1\ by simp then have \take_bit n (take_bit n (k + 1) - 1) = take_bit n (- 1)\ by simp moreover have \take_bit n (take_bit n (k + 1) - 1) = take_bit n k\ by (simp add: take_bit_eq_mod mod_simps) ultimately show ?P by simp qed lemma take_bit_eq_mask_iff_exp_dvd: \take_bit n k = mask n \ 2 ^ n dvd k + 1\ for k :: int by (simp add: take_bit_eq_mask_iff flip: take_bit_eq_0_iff) subsection \Bit concatenation\ definition concat_bit :: \nat \ int \ int \ int\ where \concat_bit n k l = take_bit n k OR push_bit n l\ lemma bit_concat_bit_iff [bit_simps]: \bit (concat_bit m k l) n \ n < m \ bit k n \ m \ n \ bit l (n - m)\ by (simp add: concat_bit_def bit_or_iff bit_and_iff bit_take_bit_iff bit_push_bit_iff ac_simps) lemma concat_bit_eq: \concat_bit n k l = take_bit n k + push_bit n l\ by (simp add: concat_bit_def take_bit_eq_mask bit_and_iff bit_mask_iff bit_push_bit_iff disjunctive_add) lemma concat_bit_0 [simp]: \concat_bit 0 k l = l\ by (simp add: concat_bit_def) lemma concat_bit_Suc: \concat_bit (Suc n) k l = k mod 2 + 2 * concat_bit n (k div 2) l\ by (simp add: concat_bit_eq take_bit_Suc push_bit_double) lemma concat_bit_of_zero_1 [simp]: \concat_bit n 0 l = push_bit n l\ by (simp add: concat_bit_def) lemma concat_bit_of_zero_2 [simp]: \concat_bit n k 0 = take_bit n k\ by (simp add: concat_bit_def take_bit_eq_mask) lemma concat_bit_nonnegative_iff [simp]: \concat_bit n k l \ 0 \ l \ 0\ by (simp add: concat_bit_def) lemma concat_bit_negative_iff [simp]: \concat_bit n k l < 0 \ l < 0\ by (simp add: concat_bit_def) lemma concat_bit_assoc: \concat_bit n k (concat_bit m l r) = concat_bit (m + n) (concat_bit n k l) r\ by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps) lemma concat_bit_assoc_sym: \concat_bit m (concat_bit n k l) r = concat_bit (min m n) k (concat_bit (m - n) l r)\ by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps min_def) lemma concat_bit_eq_iff: \concat_bit n k l = concat_bit n r s \ take_bit n k = take_bit n r \ l = s\ (is \?P \ ?Q\) proof assume ?Q then show ?P by (simp add: concat_bit_def) next assume ?P then have *: \bit (concat_bit n k l) m = bit (concat_bit n r s) m\ for m by (simp add: bit_eq_iff) have \take_bit n k = take_bit n r\ proof (rule bit_eqI) fix m from * [of m] show \bit (take_bit n k) m \ bit (take_bit n r) m\ by (auto simp add: bit_take_bit_iff bit_concat_bit_iff) qed moreover have \push_bit n l = push_bit n s\ proof (rule bit_eqI) fix m from * [of m] show \bit (push_bit n l) m \ bit (push_bit n s) m\ by (auto simp add: bit_push_bit_iff bit_concat_bit_iff) qed then have \l = s\ by (simp add: push_bit_eq_mult) ultimately show ?Q by (simp add: concat_bit_def) qed lemma take_bit_concat_bit_eq: \take_bit m (concat_bit n k l) = concat_bit (min m n) k (take_bit (m - n) l)\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_concat_bit_iff min_def) lemma concat_bit_take_bit_eq: \concat_bit n (take_bit n b) = concat_bit n b\ by (simp add: concat_bit_def [abs_def]) subsection \Taking bits with sign propagation\ context ring_bit_operations begin definition signed_take_bit :: \nat \ 'a \ 'a\ where \signed_take_bit n a = take_bit n a OR (of_bool (bit a n) * NOT (mask n))\ lemma signed_take_bit_eq_if_positive: \signed_take_bit n a = take_bit n a\ if \\ bit a n\ using that by (simp add: signed_take_bit_def) lemma signed_take_bit_eq_if_negative: \signed_take_bit n a = take_bit n a OR NOT (mask n)\ if \bit a n\ using that by (simp add: signed_take_bit_def) lemma even_signed_take_bit_iff: \even (signed_take_bit m a) \ even a\ by (auto simp add: bit_0 signed_take_bit_def even_or_iff even_mask_iff bit_double_iff) lemma bit_signed_take_bit_iff [bit_simps]: \bit (signed_take_bit m a) n \ possible_bit TYPE('a) n \ bit a (min m n)\ by (simp add: signed_take_bit_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff min_def not_le) (blast dest: bit_imp_possible_bit) lemma signed_take_bit_0 [simp]: \signed_take_bit 0 a = - (a mod 2)\ by (simp add: bit_0 signed_take_bit_def odd_iff_mod_2_eq_one) lemma signed_take_bit_Suc: \signed_take_bit (Suc n) a = a mod 2 + 2 * signed_take_bit n (a div 2)\ by (simp add: bit_eq_iff bit_sum_mult_2_cases bit_simps bit_0 possible_bit_less_imp flip: bit_Suc min_Suc_Suc) lemma signed_take_bit_of_0 [simp]: \signed_take_bit n 0 = 0\ by (simp add: signed_take_bit_def) lemma signed_take_bit_of_minus_1 [simp]: \signed_take_bit n (- 1) = - 1\ by (simp add: signed_take_bit_def mask_eq_exp_minus_1 possible_bit_def) lemma signed_take_bit_Suc_1 [simp]: \signed_take_bit (Suc n) 1 = 1\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_numeral_of_1 [simp]: \signed_take_bit (numeral k) 1 = 1\ by (simp add: bit_1_iff signed_take_bit_eq_if_positive) lemma signed_take_bit_rec: \signed_take_bit n a = (if n = 0 then - (a mod 2) else a mod 2 + 2 * signed_take_bit (n - 1) (a div 2))\ by (cases n) (simp_all add: signed_take_bit_Suc) lemma signed_take_bit_eq_iff_take_bit_eq: \signed_take_bit n a = signed_take_bit n b \ take_bit (Suc n) a = take_bit (Suc n) b\ proof - have \bit (signed_take_bit n a) = bit (signed_take_bit n b) \ bit (take_bit (Suc n) a) = bit (take_bit (Suc n) b)\ by (simp add: fun_eq_iff bit_signed_take_bit_iff bit_take_bit_iff not_le less_Suc_eq_le min_def) (use bit_imp_possible_bit in fastforce) then show ?thesis by (auto simp add: fun_eq_iff intro: bit_eqI) qed lemma signed_take_bit_signed_take_bit [simp]: \signed_take_bit m (signed_take_bit n a) = signed_take_bit (min m n) a\ by (auto simp add: bit_eq_iff bit_simps ac_simps) lemma signed_take_bit_take_bit: \signed_take_bit m (take_bit n a) = (if n \ m then take_bit n else signed_take_bit m) a\ by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff) lemma take_bit_signed_take_bit: \take_bit m (signed_take_bit n a) = take_bit m a\ if \m \ Suc n\ using that by (rule le_SucE; intro bit_eqI) (auto simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def less_Suc_eq) end text \Modulus centered around 0\ lemma signed_take_bit_eq_concat_bit: \signed_take_bit n k = concat_bit n k (- of_bool (bit k n))\ by (simp add: concat_bit_def signed_take_bit_def) lemma signed_take_bit_add: \signed_take_bit n (signed_take_bit n k + signed_take_bit n l) = signed_take_bit n (k + l)\ for k l :: int proof - have \take_bit (Suc n) (take_bit (Suc n) (signed_take_bit n k) + take_bit (Suc n) (signed_take_bit n l)) = take_bit (Suc n) (k + l)\ by (simp add: take_bit_signed_take_bit take_bit_add) then show ?thesis by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_add) qed lemma signed_take_bit_diff: \signed_take_bit n (signed_take_bit n k - signed_take_bit n l) = signed_take_bit n (k - l)\ for k l :: int proof - have \take_bit (Suc n) (take_bit (Suc n) (signed_take_bit n k) - take_bit (Suc n) (signed_take_bit n l)) = take_bit (Suc n) (k - l)\ by (simp add: take_bit_signed_take_bit take_bit_diff) then show ?thesis by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_diff) qed lemma signed_take_bit_minus: \signed_take_bit n (- signed_take_bit n k) = signed_take_bit n (- k)\ for k :: int proof - have \take_bit (Suc n) (- take_bit (Suc n) (signed_take_bit n k)) = take_bit (Suc n) (- k)\ by (simp add: take_bit_signed_take_bit take_bit_minus) then show ?thesis by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_minus) qed lemma signed_take_bit_mult: \signed_take_bit n (signed_take_bit n k * signed_take_bit n l) = signed_take_bit n (k * l)\ for k l :: int proof - have \take_bit (Suc n) (take_bit (Suc n) (signed_take_bit n k) * take_bit (Suc n) (signed_take_bit n l)) = take_bit (Suc n) (k * l)\ by (simp add: take_bit_signed_take_bit take_bit_mult) then show ?thesis by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_mult) qed lemma signed_take_bit_eq_take_bit_minus: \signed_take_bit n k = take_bit (Suc n) k - 2 ^ Suc n * of_bool (bit k n)\ for k :: int proof (cases \bit k n\) case True have \signed_take_bit n k = take_bit (Suc n) k OR NOT (mask (Suc n))\ by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff less_Suc_eq True) then have \signed_take_bit n k = take_bit (Suc n) k + NOT (mask (Suc n))\ by (simp add: disjunctive_add bit_take_bit_iff bit_not_iff bit_mask_iff) with True show ?thesis by (simp flip: minus_exp_eq_not_mask) next case False show ?thesis by (rule bit_eqI) (simp add: False bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq) qed lemma signed_take_bit_eq_take_bit_shift: \signed_take_bit n k = take_bit (Suc n) (k + 2 ^ n) - 2 ^ n\ for k :: int proof - have *: \take_bit n k OR 2 ^ n = take_bit n k + 2 ^ n\ by (simp add: disjunctive_add bit_exp_iff bit_take_bit_iff) have \take_bit n k - 2 ^ n = take_bit n k + NOT (mask n)\ by (simp add: minus_exp_eq_not_mask) also have \\ = take_bit n k OR NOT (mask n)\ by (rule disjunctive_add) (simp add: bit_exp_iff bit_take_bit_iff bit_not_iff bit_mask_iff) finally have **: \take_bit n k - 2 ^ n = take_bit n k OR NOT (mask n)\ . have \take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (take_bit (Suc n) k + take_bit (Suc n) (2 ^ n))\ by (simp only: take_bit_add) also have \take_bit (Suc n) k = 2 ^ n * of_bool (bit k n) + take_bit n k\ by (simp add: take_bit_Suc_from_most) finally have \take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (2 ^ (n + of_bool (bit k n)) + take_bit n k)\ by (simp add: ac_simps) also have \2 ^ (n + of_bool (bit k n)) + take_bit n k = 2 ^ (n + of_bool (bit k n)) OR take_bit n k\ by (rule disjunctive_add) (auto simp add: disjunctive_add bit_take_bit_iff bit_double_iff bit_exp_iff) finally show ?thesis using * ** by (simp add: signed_take_bit_def concat_bit_Suc min_def ac_simps) qed lemma signed_take_bit_nonnegative_iff [simp]: \0 \ signed_take_bit n k \ \ bit k n\ for k :: int by (simp add: signed_take_bit_def not_less concat_bit_def) lemma signed_take_bit_negative_iff [simp]: \signed_take_bit n k < 0 \ bit k n\ for k :: int by (simp add: signed_take_bit_def not_less concat_bit_def) lemma signed_take_bit_int_greater_eq_minus_exp [simp]: \- (2 ^ n) \ signed_take_bit n k\ for k :: int by (simp add: signed_take_bit_eq_take_bit_shift) lemma signed_take_bit_int_less_exp [simp]: \signed_take_bit n k < 2 ^ n\ for k :: int using take_bit_int_less_exp [of \Suc n\] by (simp add: signed_take_bit_eq_take_bit_shift) lemma signed_take_bit_int_eq_self_iff: \signed_take_bit n k = k \ - (2 ^ n) \ k \ k < 2 ^ n\ for k :: int by (auto simp add: signed_take_bit_eq_take_bit_shift take_bit_int_eq_self_iff algebra_simps) lemma signed_take_bit_int_eq_self: \signed_take_bit n k = k\ if \- (2 ^ n) \ k\ \k < 2 ^ n\ for k :: int using that by (simp add: signed_take_bit_int_eq_self_iff) lemma signed_take_bit_int_less_eq_self_iff: \signed_take_bit n k \ k \ - (2 ^ n) \ k\ for k :: int by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_eq_self_iff algebra_simps) linarith lemma signed_take_bit_int_less_self_iff: \signed_take_bit n k < k \ 2 ^ n \ k\ for k :: int by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_self_iff algebra_simps) lemma signed_take_bit_int_greater_self_iff: \k < signed_take_bit n k \ k < - (2 ^ n)\ for k :: int by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_self_iff algebra_simps) linarith lemma signed_take_bit_int_greater_eq_self_iff: \k \ signed_take_bit n k \ k < 2 ^ n\ for k :: int by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_eq_self_iff algebra_simps) lemma signed_take_bit_int_greater_eq: \k + 2 ^ Suc n \ signed_take_bit n k\ if \k < - (2 ^ n)\ for k :: int using that take_bit_int_greater_eq [of \k + 2 ^ n\ \Suc n\] by (simp add: signed_take_bit_eq_take_bit_shift) lemma signed_take_bit_int_less_eq: \signed_take_bit n k \ k - 2 ^ Suc n\ if \k \ 2 ^ n\ for k :: int using that take_bit_int_less_eq [of \Suc n\ \k + 2 ^ n\] by (simp add: signed_take_bit_eq_take_bit_shift) lemma signed_take_bit_Suc_bit0 [simp]: \signed_take_bit (Suc n) (numeral (Num.Bit0 k)) = signed_take_bit n (numeral k) * (2 :: int)\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_Suc_bit1 [simp]: \signed_take_bit (Suc n) (numeral (Num.Bit1 k)) = signed_take_bit n (numeral k) * 2 + (1 :: int)\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_Suc_minus_bit0 [simp]: \signed_take_bit (Suc n) (- numeral (Num.Bit0 k)) = signed_take_bit n (- numeral k) * (2 :: int)\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_Suc_minus_bit1 [simp]: \signed_take_bit (Suc n) (- numeral (Num.Bit1 k)) = signed_take_bit n (- numeral k - 1) * 2 + (1 :: int)\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_numeral_bit0 [simp]: \signed_take_bit (numeral l) (numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (numeral k) * (2 :: int)\ by (simp add: signed_take_bit_rec) lemma signed_take_bit_numeral_bit1 [simp]: \signed_take_bit (numeral l) (numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (numeral k) * 2 + (1 :: int)\ by (simp add: signed_take_bit_rec) lemma signed_take_bit_numeral_minus_bit0 [simp]: \signed_take_bit (numeral l) (- numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (- numeral k) * (2 :: int)\ by (simp add: signed_take_bit_rec) lemma signed_take_bit_numeral_minus_bit1 [simp]: \signed_take_bit (numeral l) (- numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (- numeral k - 1) * 2 + (1 :: int)\ by (simp add: signed_take_bit_rec) lemma signed_take_bit_code [code]: \signed_take_bit n a = (let l = take_bit (Suc n) a in if bit l n then l + push_bit (Suc n) (- 1) else l)\ proof - have *: \take_bit (Suc n) a + push_bit n (- 2) = take_bit (Suc n) a OR NOT (mask (Suc n))\ by (auto simp add: bit_take_bit_iff bit_push_bit_iff bit_not_iff bit_mask_iff disjunctive_add simp flip: push_bit_minus_one_eq_not_mask) show ?thesis by (rule bit_eqI) (auto simp add: Let_def * bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq bit_not_iff bit_mask_iff bit_or_iff simp del: push_bit_minus_one_eq_not_mask) qed subsection \Horner sums\ context semiring_bit_operations begin lemma horner_sum_bit_eq_take_bit: \horner_sum of_bool 2 (map (bit a) [0.. proof (induction a arbitrary: n rule: bits_induct) case (stable a) moreover have \bit a = (\_. odd a)\ using stable by (simp add: stable_imp_bit_iff_odd fun_eq_iff) moreover have \{q. q < n} = {0.. by auto ultimately show ?case by (simp add: stable_imp_take_bit_eq horner_sum_eq_sum mask_eq_sum_exp) next case (rec a b) show ?case proof (cases n) case 0 then show ?thesis by simp next case (Suc m) have \map (bit (of_bool b + 2 * a)) [0.. by (simp only: upt_conv_Cons) (simp add: bit_0) also have \\ = b # map (bit a) [0.. by (simp only: flip: map_Suc_upt) (simp add: bit_Suc rec.hyps) finally show ?thesis using Suc rec.IH [of m] by (simp add: take_bit_Suc rec.hyps) (simp_all add: ac_simps mod_2_eq_odd) qed qed end context unique_euclidean_semiring_with_bit_operations begin lemma bit_horner_sum_bit_iff [bit_simps]: \bit (horner_sum of_bool 2 bs) n \ n < length bs \ bs ! n\ proof (induction bs arbitrary: n) case Nil then show ?case by simp next case (Cons b bs) show ?case proof (cases n) case 0 then show ?thesis by (simp add: bit_0) next case (Suc m) with bit_rec [of _ n] Cons.prems Cons.IH [of m] show ?thesis by simp qed qed lemma take_bit_horner_sum_bit_eq: \take_bit n (horner_sum of_bool 2 bs) = horner_sum of_bool 2 (take n bs)\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_horner_sum_bit_iff) end lemma horner_sum_of_bool_2_less: \(horner_sum of_bool 2 bs :: int) < 2 ^ length bs\ proof - have \(\n = 0.. (\n = 0.. by (rule sum_mono) simp also have \\ = 2 ^ length bs - 1\ by (induction bs) simp_all finally show ?thesis by (simp add: horner_sum_eq_sum) qed subsection \Key ideas of bit operations\ text \ When formalizing bit operations, it is tempting to represent bit values as explicit lists over a binary type. This however is a bad idea, mainly due to the inherent ambiguities in representation concerning repeating leading bits. Hence this approach avoids such explicit lists altogether following an algebraic path: \<^item> Bit values are represented by numeric types: idealized unbounded bit values can be represented by type \<^typ>\int\, bounded bit values by quotient types over \<^typ>\int\. \<^item> (A special case are idealized unbounded bit values ending in @{term [source] 0} which can be represented by type \<^typ>\nat\ but only support a restricted set of operations). \<^item> From this idea follows that \<^item> multiplication by \<^term>\2 :: int\ is a bit shift to the left and \<^item> division by \<^term>\2 :: int\ is a bit shift to the right. \<^item> Concerning bounded bit values, iterated shifts to the left may result in eliminating all bits by shifting them all beyond the boundary. The property \<^prop>\(2 :: int) ^ n \ 0\ represents that \<^term>\n\ is \<^emph>\not\ beyond that boundary. \<^item> The projection on a single bit is then @{thm bit_iff_odd [where ?'a = int, no_vars]}. \<^item> This leads to the most fundamental properties of bit values: \<^item> Equality rule: @{thm bit_eqI [where ?'a = int, no_vars]} \<^item> Induction rule: @{thm bits_induct [where ?'a = int, no_vars]} \<^item> Typical operations are characterized as follows: \<^item> Singleton \<^term>\n\th bit: \<^term>\(2 :: int) ^ n\ \<^item> Bit mask upto bit \<^term>\n\: @{thm mask_eq_exp_minus_1 [where ?'a = int, no_vars]} \<^item> Left shift: @{thm push_bit_eq_mult [where ?'a = int, no_vars]} \<^item> Right shift: @{thm drop_bit_eq_div [where ?'a = int, no_vars]} \<^item> Truncation: @{thm take_bit_eq_mod [where ?'a = int, no_vars]} \<^item> Negation: @{thm bit_not_iff [where ?'a = int, no_vars]} \<^item> And: @{thm bit_and_iff [where ?'a = int, no_vars]} \<^item> Or: @{thm bit_or_iff [where ?'a = int, no_vars]} \<^item> Xor: @{thm bit_xor_iff [where ?'a = int, no_vars]} \<^item> Set a single bit: @{thm set_bit_def [where ?'a = int, no_vars]} \<^item> Unset a single bit: @{thm unset_bit_def [where ?'a = int, no_vars]} \<^item> Flip a single bit: @{thm flip_bit_def [where ?'a = int, no_vars]} \<^item> Signed truncation, or modulus centered around \<^term>\0::int\: @{thm signed_take_bit_def [no_vars]} \<^item> Bit concatenation: @{thm concat_bit_def [no_vars]} \<^item> (Bounded) conversion from and to a list of bits: @{thm horner_sum_bit_eq_take_bit [where ?'a = int, no_vars]} \ no_notation not (\NOT\) and "and" (infixr \AND\ 64) and or (infixr \OR\ 59) and xor (infixr \XOR\ 59) bundle bit_operations_syntax begin notation not (\NOT\) and "and" (infixr \AND\ 64) and or (infixr \OR\ 59) and xor (infixr \XOR\ 59) end end