diff --git a/src/HOL/Analysis/Change_Of_Vars.thy b/src/HOL/Analysis/Change_Of_Vars.thy --- a/src/HOL/Analysis/Change_Of_Vars.thy +++ b/src/HOL/Analysis/Change_Of_Vars.thy @@ -1,3478 +1,3478 @@ (* Title: HOL/Analysis/Change_Of_Vars.thy Authors: LC Paulson, based on material from HOL Light *) section\Change of Variables Theorems\ theory Change_Of_Vars imports Vitali_Covering_Theorem Determinants begin subsection \Measurable Shear and Stretch\ proposition fixes a :: "real^'n" assumes "m \ n" and ab_ne: "cbox a b \ {}" and an: "0 \ a$n" shows measurable_shear_interval: "(\x. \ i. if i = m then x$m + x$n else x$i) ` (cbox a b) \ lmeasurable" (is "?f ` _ \ _") and measure_shear_interval: "measure lebesgue ((\x. \ i. if i = m then x$m + x$n else x$i) ` cbox a b) = measure lebesgue (cbox a b)" (is "?Q") proof - have lin: "linear ?f" by (rule linearI) (auto simp: plus_vec_def scaleR_vec_def algebra_simps) show fab: "?f ` cbox a b \ lmeasurable" by (simp add: lin measurable_linear_image_interval) let ?c = "\ i. if i = m then b$m + b$n else b$i" let ?mn = "axis m 1 - axis n (1::real)" have eq1: "measure lebesgue (cbox a ?c) = measure lebesgue (?f ` cbox a b) + measure lebesgue (cbox a ?c \ {x. ?mn \ x \ a$m}) + measure lebesgue (cbox a ?c \ {x. ?mn \ x \ b$m})" proof (rule measure_Un3_negligible) show "cbox a ?c \ {x. ?mn \ x \ a$m} \ lmeasurable" "cbox a ?c \ {x. ?mn \ x \ b$m} \ lmeasurable" by (auto simp: convex_Int convex_halfspace_le convex_halfspace_ge bounded_Int measurable_convex) have "negligible {x. ?mn \ x = a$m}" by (metis \m \ n\ axis_index_axis eq_iff_diff_eq_0 negligible_hyperplane) moreover have "?f ` cbox a b \ (cbox a ?c \ {x. ?mn \ x \ a $ m}) \ {x. ?mn \ x = a$m}" using \m \ n\ antisym_conv by (fastforce simp: algebra_simps mem_box_cart inner_axis') ultimately show "negligible ((?f ` cbox a b) \ (cbox a ?c \ {x. ?mn \ x \ a $ m}))" by (rule negligible_subset) have "negligible {x. ?mn \ x = b$m}" by (metis \m \ n\ axis_index_axis eq_iff_diff_eq_0 negligible_hyperplane) moreover have "(?f ` cbox a b) \ (cbox a ?c \ {x. ?mn \ x \ b$m}) \ {x. ?mn \ x = b$m}" using \m \ n\ antisym_conv by (fastforce simp: algebra_simps mem_box_cart inner_axis') ultimately show "negligible (?f ` cbox a b \ (cbox a ?c \ {x. ?mn \ x \ b$m}))" by (rule negligible_subset) have "negligible {x. ?mn \ x = b$m}" by (metis \m \ n\ axis_index_axis eq_iff_diff_eq_0 negligible_hyperplane) moreover have "(cbox a ?c \ {x. ?mn \ x \ a $ m} \ (cbox a ?c \ {x. ?mn \ x \ b$m})) \ {x. ?mn \ x = b$m}" using \m \ n\ ab_ne apply (auto simp: algebra_simps mem_box_cart inner_axis') apply (drule_tac x=m in spec)+ apply simp done ultimately show "negligible (cbox a ?c \ {x. ?mn \ x \ a $ m} \ (cbox a ?c \ {x. ?mn \ x \ b$m}))" by (rule negligible_subset) show "?f ` cbox a b \ cbox a ?c \ {x. ?mn \ x \ a $ m} \ cbox a ?c \ {x. ?mn \ x \ b$m} = cbox a ?c" (is "?lhs = _") proof show "?lhs \ cbox a ?c" by (auto simp: mem_box_cart add_mono) (meson add_increasing2 an order_trans) show "cbox a ?c \ ?lhs" apply (auto simp: algebra_simps image_iff inner_axis' lambda_add_Galois [OF \m \ n\]) apply (auto simp: mem_box_cart split: if_split_asm) done qed qed (fact fab) let ?d = "\ i. if i = m then a $ m - b $ m else 0" have eq2: "measure lebesgue (cbox a ?c \ {x. ?mn \ x \ a $ m}) + measure lebesgue (cbox a ?c \ {x. ?mn \ x \ b$m}) = measure lebesgue (cbox a (\ i. if i = m then a $ m + b $ n else b $ i))" proof (rule measure_translate_add[of "cbox a ?c \ {x. ?mn \ x \ a$m}" "cbox a ?c \ {x. ?mn \ x \ b$m}" "(\ i. if i = m then a$m - b$m else 0)" "cbox a (\ i. if i = m then a$m + b$n else b$i)"]) show "(cbox a ?c \ {x. ?mn \ x \ a$m}) \ lmeasurable" "cbox a ?c \ {x. ?mn \ x \ b$m} \ lmeasurable" by (auto simp: convex_Int convex_halfspace_le convex_halfspace_ge bounded_Int measurable_convex) have "\x. \x $ n + a $ m \ x $ m\ \ x \ (+) (\ i. if i = m then a $ m - b $ m else 0) ` {x. x $ n + b $ m \ x $ m}" using \m \ n\ by (rule_tac x="x - (\ i. if i = m then a$m - b$m else 0)" in image_eqI) (simp_all add: mem_box_cart) then have imeq: "(+) ?d ` {x. b $ m \ ?mn \ x} = {x. a $ m \ ?mn \ x}" using \m \ n\ by (auto simp: mem_box_cart inner_axis' algebra_simps) have "\x. \0 \ a $ n; x $ n + a $ m \ x $ m; \i. i \ m \ a $ i \ x $ i \ x $ i \ b $ i\ \ a $ m \ x $ m" using \m \ n\ by force then have "(+) ?d ` (cbox a ?c \ {x. b $ m \ ?mn \ x}) = cbox a (\ i. if i = m then a $ m + b $ n else b $ i) \ {x. a $ m \ ?mn \ x}" using an ab_ne apply (simp add: cbox_translation [symmetric] translation_Int interval_ne_empty_cart imeq) apply (auto simp: mem_box_cart inner_axis' algebra_simps if_distrib all_if_distrib) by (metis (full_types) add_mono mult_2_right) then show "cbox a ?c \ {x. ?mn \ x \ a $ m} \ (+) ?d ` (cbox a ?c \ {x. b $ m \ ?mn \ x}) = cbox a (\ i. if i = m then a $ m + b $ n else b $ i)" (is "?lhs = ?rhs") using an \m \ n\ apply (auto simp: mem_box_cart inner_axis' algebra_simps if_distrib all_if_distrib, force) apply (drule_tac x=n in spec)+ by (meson ab_ne add_mono_thms_linordered_semiring(3) dual_order.trans interval_ne_empty_cart(1)) have "negligible{x. ?mn \ x = a$m}" by (metis \m \ n\ axis_index_axis eq_iff_diff_eq_0 negligible_hyperplane) moreover have "(cbox a ?c \ {x. ?mn \ x \ a $ m} \ (+) ?d ` (cbox a ?c \ {x. b $ m \ ?mn \ x})) \ {x. ?mn \ x = a$m}" using \m \ n\ antisym_conv by (fastforce simp: algebra_simps mem_box_cart inner_axis') ultimately show "negligible (cbox a ?c \ {x. ?mn \ x \ a $ m} \ (+) ?d ` (cbox a ?c \ {x. b $ m \ ?mn \ x}))" by (rule negligible_subset) qed have ac_ne: "cbox a ?c \ {}" using ab_ne an by (clarsimp simp: interval_eq_empty_cart) (meson add_less_same_cancel1 le_less_linear less_le_trans) have ax_ne: "cbox a (\ i. if i = m then a $ m + b $ n else b $ i) \ {}" using ab_ne an by (clarsimp simp: interval_eq_empty_cart) (meson add_less_same_cancel1 le_less_linear less_le_trans) have eq3: "measure lebesgue (cbox a ?c) = measure lebesgue (cbox a (\ i. if i = m then a$m + b$n else b$i)) + measure lebesgue (cbox a b)" by (simp add: content_cbox_if_cart ab_ne ac_ne ax_ne algebra_simps prod.delta_remove if_distrib [of "\u. u - z" for z] prod.remove) show ?Q using eq1 eq2 eq3 by (simp add: algebra_simps) qed proposition fixes S :: "(real^'n) set" assumes "S \ lmeasurable" shows measurable_stretch: "((\x. \ k. m k * x$k) ` S) \ lmeasurable" (is "?f ` S \ _") and measure_stretch: "measure lebesgue ((\x. \ k. m k * x$k) ` S) = \prod m UNIV\ * measure lebesgue S" (is "?MEQ") proof - have "(?f ` S) \ lmeasurable \ ?MEQ" proof (cases "\k. m k \ 0") case True have m0: "0 < \prod m UNIV\" using True by simp have "(indicat_real (?f ` S) has_integral \prod m UNIV\ * measure lebesgue S) UNIV" proof (clarsimp simp add: has_integral_alt [where i=UNIV]) fix e :: "real" assume "e > 0" have "(indicat_real S has_integral (measure lebesgue S)) UNIV" using assms lmeasurable_iff_has_integral by blast then obtain B where "B>0" and B: "\a b. ball 0 B \ cbox a b \ \z. (indicat_real S has_integral z) (cbox a b) \ \z - measure lebesgue S\ < e / \prod m UNIV\" by (simp add: has_integral_alt [where i=UNIV]) (metis (full_types) divide_pos_pos m0 m0 \e > 0\) show "\B>0. \a b. ball 0 B \ cbox a b \ (\z. (indicat_real (?f ` S) has_integral z) (cbox a b) \ \z - \prod m UNIV\ * measure lebesgue S\ < e)" proof (intro exI conjI allI) let ?C = "Max (range (\k. \m k\)) * B" show "?C > 0" using True \B > 0\ by (simp add: Max_gr_iff) show "ball 0 ?C \ cbox u v \ (\z. (indicat_real (?f ` S) has_integral z) (cbox u v) \ \z - \prod m UNIV\ * measure lebesgue S\ < e)" for u v proof assume uv: "ball 0 ?C \ cbox u v" with \?C > 0\ have cbox_ne: "cbox u v \ {}" using centre_in_ball by blast let ?\ = "\k. u$k / m k" let ?\ = "\k. v$k / m k" have invm0: "\k. inverse (m k) \ 0" using True by auto have "ball 0 B \ (\x. \ k. x $ k / m k) ` ball 0 ?C" proof clarsimp fix x :: "real^'n" assume x: "norm x < B" have [simp]: "\Max (range (\k. \m k\))\ = Max (range (\k. \m k\))" by (meson Max_ge abs_ge_zero abs_of_nonneg finite finite_imageI order_trans rangeI) have "norm (\ k. m k * x $ k) \ norm (Max (range (\k. \m k\)) *\<^sub>R x)" by (rule norm_le_componentwise_cart) (auto simp: abs_mult intro: mult_right_mono) also have "\ < ?C" using x by simp (metis \B > 0\ \?C > 0\ mult.commute real_mult_less_iff1 zero_less_mult_pos) finally have "norm (\ k. m k * x $ k) < ?C" . then show "x \ (\x. \ k. x $ k / m k) ` ball 0 ?C" using stretch_Galois [of "inverse \ m"] True by (auto simp: image_iff field_simps) qed then have Bsub: "ball 0 B \ cbox (\ k. min (?\ k) (?\ k)) (\ k. max (?\ k) (?\ k))" using cbox_ne uv image_stretch_interval_cart [of "inverse \ m" u v, symmetric] by (force simp: field_simps) obtain z where zint: "(indicat_real S has_integral z) (cbox (\ k. min (?\ k) (?\ k)) (\ k. max (?\ k) (?\ k)))" and zless: "\z - measure lebesgue S\ < e / \prod m UNIV\" using B [OF Bsub] by blast have ind: "indicat_real (?f ` S) = (\x. indicator S (\ k. x$k / m k))" using True stretch_Galois [of m] by (force simp: indicator_def) show "\z. (indicat_real (?f ` S) has_integral z) (cbox u v) \ \z - \prod m UNIV\ * measure lebesgue S\ < e" proof (simp add: ind, intro conjI exI) have "((\x. indicat_real S (\ k. x $ k/ m k)) has_integral z *\<^sub>R \prod m UNIV\) ((\x. \ k. x $ k * m k) ` cbox (\ k. min (?\ k) (?\ k)) (\ k. max (?\ k) (?\ k)))" using True has_integral_stretch_cart [OF zint, of "inverse \ m"] by (simp add: field_simps prod_dividef) moreover have "((\x. \ k. x $ k * m k) ` cbox (\ k. min (?\ k) (?\ k)) (\ k. max (?\ k) (?\ k))) = cbox u v" using True image_stretch_interval_cart [of "inverse \ m" u v, symmetric] image_stretch_interval_cart [of "\k. 1" u v, symmetric] \cbox u v \ {}\ by (simp add: field_simps image_comp o_def) ultimately show "((\x. indicat_real S (\ k. x $ k/ m k)) has_integral z *\<^sub>R \prod m UNIV\) (cbox u v)" by simp have "\z *\<^sub>R \prod m UNIV\ - \prod m UNIV\ * measure lebesgue S\ = \prod m UNIV\ * \z - measure lebesgue S\" by (metis (no_types, hide_lams) abs_abs abs_scaleR mult.commute real_scaleR_def right_diff_distrib') also have "\ < e" using zless True by (simp add: field_simps) finally show "\z *\<^sub>R \prod m UNIV\ - \prod m UNIV\ * measure lebesgue S\ < e" . qed qed qed qed then show ?thesis by (auto simp: has_integral_integrable integral_unique lmeasure_integral_UNIV measurable_integrable) next case False then obtain k where "m k = 0" and prm: "prod m UNIV = 0" by auto have nfS: "negligible (?f ` S)" by (rule negligible_subset [OF negligible_standard_hyperplane_cart]) (use \m k = 0\ in auto) then have "(?f ` S) \ lmeasurable" by (simp add: negligible_iff_measure) with nfS show ?thesis by (simp add: prm negligible_iff_measure0) qed then show "(?f ` S) \ lmeasurable" ?MEQ by metis+ qed proposition fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes "linear f" "S \ lmeasurable" shows measurable_linear_image: "(f ` S) \ lmeasurable" and measure_linear_image: "measure lebesgue (f ` S) = \det (matrix f)\ * measure lebesgue S" (is "?Q f S") proof - have "\S \ lmeasurable. (f ` S) \ lmeasurable \ ?Q f S" proof (rule induct_linear_elementary [OF \linear f\]; intro ballI) fix f g and S :: "(real,'n) vec set" assume "linear f" and "linear g" and f [rule_format]: "\S \ lmeasurable. f ` S \ lmeasurable \ ?Q f S" and g [rule_format]: "\S \ lmeasurable. g ` S \ lmeasurable \ ?Q g S" and S: "S \ lmeasurable" then have gS: "g ` S \ lmeasurable" by blast show "(f \ g) ` S \ lmeasurable \ ?Q (f \ g) S" using f [OF gS] g [OF S] matrix_compose [OF \linear g\ \linear f\] by (simp add: o_def image_comp abs_mult det_mul) next fix f :: "real^'n::_ \ real^'n::_" and i and S :: "(real^'n::_) set" assume "linear f" and 0: "\x. f x $ i = 0" and "S \ lmeasurable" then have "\ inj f" by (metis (full_types) linear_injective_imp_surjective one_neq_zero surjE vec_component) have detf: "det (matrix f) = 0" using \\ inj f\ det_nz_iff_inj[OF \linear f\] by blast show "f ` S \ lmeasurable \ ?Q f S" proof show "f ` S \ lmeasurable" using lmeasurable_iff_indicator_has_integral \linear f\ \\ inj f\ negligible_UNIV negligible_linear_singular_image by blast have "measure lebesgue (f ` S) = 0" by (meson \\ inj f\ \linear f\ negligible_imp_measure0 negligible_linear_singular_image) also have "\ = \det (matrix f)\ * measure lebesgue S" by (simp add: detf) finally show "?Q f S" . qed next fix c and S :: "(real^'n::_) set" assume "S \ lmeasurable" show "(\a. \ i. c i * a $ i) ` S \ lmeasurable \ ?Q (\a. \ i. c i * a $ i) S" proof show "(\a. \ i. c i * a $ i) ` S \ lmeasurable" by (simp add: \S \ lmeasurable\ measurable_stretch) show "?Q (\a. \ i. c i * a $ i) S" by (simp add: measure_stretch [OF \S \ lmeasurable\, of c] axis_def matrix_def det_diagonal) qed next fix m :: "'n" and n :: "'n" and S :: "(real, 'n) vec set" assume "m \ n" and "S \ lmeasurable" let ?h = "\v::(real, 'n) vec. \ i. v $ Fun.swap m n id i" have lin: "linear ?h" by (rule linearI) (simp_all add: plus_vec_def scaleR_vec_def) have meq: "measure lebesgue ((\v::(real, 'n) vec. \ i. v $ Fun.swap m n id i) ` cbox a b) = measure lebesgue (cbox a b)" for a b proof (cases "cbox a b = {}") case True then show ?thesis by simp next case False then have him: "?h ` (cbox a b) \ {}" by blast have eq: "?h ` (cbox a b) = cbox (?h a) (?h b)" by (auto simp: image_iff lambda_swap_Galois mem_box_cart) (metis swap_id_eq)+ show ?thesis using him prod.permute [OF permutes_swap_id, where S=UNIV and g="\i. (b - a)$i", symmetric] by (simp add: eq content_cbox_cart False) qed have "(\ i j. if Fun.swap m n id i = j then 1 else 0) = (\ i j. if j = Fun.swap m n id i then 1 else (0::real))" by (auto intro!: Cart_lambda_cong) then have "matrix ?h = transpose(\ i j. mat 1 $ i $ Fun.swap m n id j)" by (auto simp: matrix_eq transpose_def axis_def mat_def matrix_def) then have 1: "\det (matrix ?h)\ = 1" by (simp add: det_permute_columns permutes_swap_id sign_swap_id abs_mult) show "?h ` S \ lmeasurable \ ?Q ?h S" proof show "?h ` S \ lmeasurable" "?Q ?h S" using measure_linear_sufficient [OF lin \S \ lmeasurable\] meq 1 by force+ qed next fix m n :: "'n" and S :: "(real, 'n) vec set" assume "m \ n" and "S \ lmeasurable" let ?h = "\v::(real, 'n) vec. \ i. if i = m then v $ m + v $ n else v $ i" have lin: "linear ?h" by (rule linearI) (auto simp: algebra_simps plus_vec_def scaleR_vec_def vec_eq_iff) consider "m < n" | " n < m" using \m \ n\ less_linear by blast then have 1: "det(matrix ?h) = 1" proof cases assume "m < n" have *: "matrix ?h $ i $ j = (0::real)" if "j < i" for i j :: 'n proof - have "axis j 1 = (\ n. if n = j then 1 else (0::real))" using axis_def by blast then have "(\ p q. if p = m then axis q 1 $ m + axis q 1 $ n else axis q 1 $ p) $ i $ j = (0::real)" using \j < i\ axis_def \m < n\ by auto with \m < n\ show ?thesis by (auto simp: matrix_def axis_def cong: if_cong) qed show ?thesis using \m \ n\ by (subst det_upperdiagonal [OF *]) (auto simp: matrix_def axis_def cong: if_cong) next assume "n < m" have *: "matrix ?h $ i $ j = (0::real)" if "j > i" for i j :: 'n proof - have "axis j 1 = (\ n. if n = j then 1 else (0::real))" using axis_def by blast then have "(\ p q. if p = m then axis q 1 $ m + axis q 1 $ n else axis q 1 $ p) $ i $ j = (0::real)" using \j > i\ axis_def \m > n\ by auto with \m > n\ show ?thesis by (auto simp: matrix_def axis_def cong: if_cong) qed show ?thesis using \m \ n\ by (subst det_lowerdiagonal [OF *]) (auto simp: matrix_def axis_def cong: if_cong) qed have meq: "measure lebesgue (?h ` (cbox a b)) = measure lebesgue (cbox a b)" for a b proof (cases "cbox a b = {}") case True then show ?thesis by simp next case False then have ne: "(+) (\ i. if i = n then - a $ n else 0) ` cbox a b \ {}" by auto let ?v = "\ i. if i = n then - a $ n else 0" have "?h ` cbox a b = (+) (\ i. if i = m \ i = n then a $ n else 0) ` ?h ` (+) ?v ` (cbox a b)" using \m \ n\ unfolding image_comp o_def by (force simp: vec_eq_iff) then have "measure lebesgue (?h ` (cbox a b)) = measure lebesgue ((\v. \ i. if i = m then v $ m + v $ n else v $ i) ` (+) ?v ` cbox a b)" by (rule ssubst) (rule measure_translation) also have "\ = measure lebesgue ((\v. \ i. if i = m then v $ m + v $ n else v $ i) ` cbox (?v +a) (?v + b))" by (metis (no_types, lifting) cbox_translation) also have "\ = measure lebesgue ((+) (\ i. if i = n then - a $ n else 0) ` cbox a b)" apply (subst measure_shear_interval) using \m \ n\ ne apply auto apply (simp add: cbox_translation) by (metis cbox_borel cbox_translation measure_completion sets_lborel) also have "\ = measure lebesgue (cbox a b)" by (rule measure_translation) finally show ?thesis . qed show "?h ` S \ lmeasurable \ ?Q ?h S" using measure_linear_sufficient [OF lin \S \ lmeasurable\] meq 1 by force qed with assms show "(f ` S) \ lmeasurable" "?Q f S" by metis+ qed lemma fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes f: "orthogonal_transformation f" and S: "S \ lmeasurable" shows measurable_orthogonal_image: "f ` S \ lmeasurable" and measure_orthogonal_image: "measure lebesgue (f ` S) = measure lebesgue S" proof - have "linear f" by (simp add: f orthogonal_transformation_linear) then show "f ` S \ lmeasurable" by (metis S measurable_linear_image) show "measure lebesgue (f ` S) = measure lebesgue S" by (simp add: measure_linear_image \linear f\ S f) qed proposition measure_semicontinuous_with_hausdist_explicit: assumes "bounded S" and neg: "negligible(frontier S)" and "e > 0" obtains d where "d > 0" "\T. \T \ lmeasurable; \y. y \ T \ \x. x \ S \ dist x y < d\ \ measure lebesgue T < measure lebesgue S + e" proof (cases "S = {}") case True with that \e > 0\ show ?thesis by force next case False then have frS: "frontier S \ {}" using \bounded S\ frontier_eq_empty not_bounded_UNIV by blast have "S \ lmeasurable" by (simp add: \bounded S\ measurable_Jordan neg) have null: "(frontier S) \ null_sets lebesgue" by (metis neg negligible_iff_null_sets) have "frontier S \ lmeasurable" and mS0: "measure lebesgue (frontier S) = 0" using neg negligible_imp_measurable negligible_iff_measure by blast+ with \e > 0\ sets_lebesgue_outer_open obtain U where "open U" and U: "frontier S \ U" "U - frontier S \ lmeasurable" "emeasure lebesgue (U - frontier S) < e" by (metis fmeasurableD) with null have "U \ lmeasurable" by (metis borel_open measurable_Diff_null_set sets_completionI_sets sets_lborel) have "measure lebesgue (U - frontier S) = measure lebesgue U" using mS0 by (simp add: \U \ lmeasurable\ fmeasurableD measure_Diff_null_set null) with U have mU: "measure lebesgue U < e" by (simp add: emeasure_eq_measure2 ennreal_less_iff) show ?thesis proof have "U \ UNIV" using \U \ lmeasurable\ by auto then have "- U \ {}" by blast with \open U\ \frontier S \ U\ show "setdist (frontier S) (- U) > 0" by (auto simp: \bounded S\ open_closed compact_frontier_bounded setdist_gt_0_compact_closed frS) fix T assume "T \ lmeasurable" and T: "\t. t \ T \ \y. y \ S \ dist y t < setdist (frontier S) (- U)" then have "measure lebesgue T - measure lebesgue S \ measure lebesgue (T - S)" by (simp add: \S \ lmeasurable\ measure_diff_le_measure_setdiff) also have "\ \ measure lebesgue U" proof - have "T - S \ U" proof clarify fix x assume "x \ T" and "x \ S" then obtain y where "y \ S" and y: "dist y x < setdist (frontier S) (- U)" using T by blast have "closed_segment x y \ frontier S \ {}" using connected_Int_frontier \x \ S\ \y \ S\ by blast then obtain z where z: "z \ closed_segment x y" "z \ frontier S" by auto with y have "dist z x < setdist(frontier S) (- U)" by (auto simp: dist_commute dest!: dist_in_closed_segment) with z have False if "x \ -U" using setdist_le_dist [OF \z \ frontier S\ that] by auto then show "x \ U" by blast qed then show ?thesis by (simp add: \S \ lmeasurable\ \T \ lmeasurable\ \U \ lmeasurable\ fmeasurableD measure_mono_fmeasurable sets.Diff) qed finally have "measure lebesgue T - measure lebesgue S \ measure lebesgue U" . with mU show "measure lebesgue T < measure lebesgue S + e" by linarith qed qed proposition fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes S: "S \ lmeasurable" and deriv: "\x. x \ S \ (f has_derivative f' x) (at x within S)" and int: "(\x. \det (matrix (f' x))\) integrable_on S" and bounded: "\x. x \ S \ \det (matrix (f' x))\ \ B" shows measurable_bounded_differentiable_image: "f ` S \ lmeasurable" and measure_bounded_differentiable_image: "measure lebesgue (f ` S) \ B * measure lebesgue S" (is "?M") proof - have "f ` S \ lmeasurable \ measure lebesgue (f ` S) \ B * measure lebesgue S" proof (cases "B < 0") case True then have "S = {}" by (meson abs_ge_zero bounded empty_iff equalityI less_le_trans linorder_not_less subsetI) then show ?thesis by auto next case False then have "B \ 0" by arith let ?\ = "measure lebesgue" have f_diff: "f differentiable_on S" using deriv by (auto simp: differentiable_on_def differentiable_def) have eps: "f ` S \ lmeasurable" "?\ (f ` S) \ (B+e) * ?\ S" (is "?ME") if "e > 0" for e proof - have eps_d: "f ` S \ lmeasurable" "?\ (f ` S) \ (B+e) * (?\ S + d)" (is "?MD") if "d > 0" for d proof - obtain T where T: "open T" "S \ T" and TS: "(T-S) \ lmeasurable" and "emeasure lebesgue (T-S) < ennreal d" using S \d > 0\ sets_lebesgue_outer_open by blast then have "?\ (T-S) < d" by (metis emeasure_eq_measure2 ennreal_leI not_less) with S T TS have "T \ lmeasurable" and Tless: "?\ T < ?\ S + d" by (auto simp: measurable_measure_Diff dest!: fmeasurable_Diff_D) have "\r. 0 < r \ r < d \ ball x r \ T \ f ` (S \ ball x r) \ lmeasurable \ ?\ (f ` (S \ ball x r)) \ (B + e) * ?\ (ball x r)" if "x \ S" "d > 0" for x d proof - have lin: "linear (f' x)" and lim0: "((\y. (f y - (f x + f' x (y - x))) /\<^sub>R norm(y - x)) \ 0) (at x within S)" using deriv \x \ S\ by (auto simp: has_derivative_within bounded_linear.linear field_simps) have bo: "bounded (f' x ` ball 0 1)" by (simp add: bounded_linear_image linear_linear lin) have neg: "negligible (frontier (f' x ` ball 0 1))" using deriv has_derivative_linear \x \ S\ by (auto intro!: negligible_convex_frontier [OF convex_linear_image]) let ?unit_vol = "content (ball (0 :: real ^ 'n :: {finite, wellorder}) 1)" have 0: "0 < e * ?unit_vol" using \e > 0\ by (simp add: content_ball_pos) obtain k where "k > 0" and k: "\U. \U \ lmeasurable; \y. y \ U \ \z. z \ f' x ` ball 0 1 \ dist z y < k\ \ ?\ U < ?\ (f' x ` ball 0 1) + e * ?unit_vol" using measure_semicontinuous_with_hausdist_explicit [OF bo neg 0] by blast obtain l where "l > 0" and l: "ball x l \ T" using \x \ S\ \open T\ \S \ T\ openE by blast obtain \ where "0 < \" and \: "\y. \y \ S; y \ x; dist y x < \\ \ norm (f y - (f x + f' x (y - x))) / norm (y - x) < k" using lim0 \k > 0\ by (simp add: Lim_within) (auto simp add: field_simps) define r where "r \ min (min l (\/2)) (min 1 (d/2))" show ?thesis proof (intro exI conjI) show "r > 0" "r < d" using \l > 0\ \\ > 0\ \d > 0\ by (auto simp: r_def) have "r \ l" by (auto simp: r_def) with l show "ball x r \ T" by auto have ex_lessK: "\x' \ ball 0 1. dist (f' x x') ((f y - f x) /\<^sub>R r) < k" if "y \ S" and "dist x y < r" for y proof (cases "y = x") case True with lin linear_0 \k > 0\ that show ?thesis by (rule_tac x=0 in bexI) (auto simp: linear_0) next case False then show ?thesis proof (rule_tac x="(y - x) /\<^sub>R r" in bexI) have "f' x ((y - x) /\<^sub>R r) = f' x (y - x) /\<^sub>R r" by (simp add: lin linear_scale) then have "dist (f' x ((y - x) /\<^sub>R r)) ((f y - f x) /\<^sub>R r) = norm (f' x (y - x) /\<^sub>R r - (f y - f x) /\<^sub>R r)" by (simp add: dist_norm) also have "\ = norm (f' x (y - x) - (f y - f x)) / r" using \r > 0\ by (simp add: divide_simps scale_right_diff_distrib [symmetric]) also have "\ \ norm (f y - (f x + f' x (y - x))) / norm (y - x)" using that \r > 0\ False by (simp add: field_split_simps dist_norm norm_minus_commute mult_right_mono) also have "\ < k" using that \0 < \\ by (simp add: dist_commute r_def \ [OF \y \ S\ False]) finally show "dist (f' x ((y - x) /\<^sub>R r)) ((f y - f x) /\<^sub>R r) < k" . show "(y - x) /\<^sub>R r \ ball 0 1" using that \r > 0\ by (simp add: dist_norm divide_simps norm_minus_commute) qed qed let ?rfs = "(\x. x /\<^sub>R r) ` (+) (- f x) ` f ` (S \ ball x r)" have rfs_mble: "?rfs \ lmeasurable" proof (rule bounded_set_imp_lmeasurable) have "f differentiable_on S \ ball x r" using f_diff by (auto simp: fmeasurableD differentiable_on_subset) with S show "?rfs \ sets lebesgue" by (auto simp: sets.Int intro!: lebesgue_sets_translation differentiable_image_in_sets_lebesgue) let ?B = "(\(x, y). x + y) ` (f' x ` ball 0 1 \ ball 0 k)" have "bounded ?B" by (simp add: bounded_plus [OF bo]) moreover have "?rfs \ ?B" apply (auto simp: dist_norm image_iff dest!: ex_lessK) by (metis (no_types, hide_lams) add.commute diff_add_cancel dist_0_norm dist_commute dist_norm mem_ball) ultimately show "bounded (?rfs)" by (rule bounded_subset) qed then have "(\x. r *\<^sub>R x) ` ?rfs \ lmeasurable" by (simp add: measurable_linear_image) with \r > 0\ have "(+) (- f x) ` f ` (S \ ball x r) \ lmeasurable" by (simp add: image_comp o_def) then have "(+) (f x) ` (+) (- f x) ` f ` (S \ ball x r) \ lmeasurable" using measurable_translation by blast then show fsb: "f ` (S \ ball x r) \ lmeasurable" by (simp add: image_comp o_def) have "?\ (f ` (S \ ball x r)) = ?\ (?rfs) * r ^ CARD('n)" using \r > 0\ fsb by (simp add: measure_linear_image measure_translation_subtract measurable_translation_subtract field_simps cong: image_cong_simp) also have "\ \ (\det (matrix (f' x))\ * ?unit_vol + e * ?unit_vol) * r ^ CARD('n)" proof - have "?\ (?rfs) < ?\ (f' x ` ball 0 1) + e * ?unit_vol" using rfs_mble by (force intro: k dest!: ex_lessK) then have "?\ (?rfs) < \det (matrix (f' x))\ * ?unit_vol + e * ?unit_vol" by (simp add: lin measure_linear_image [of "f' x"]) with \r > 0\ show ?thesis by auto qed also have "\ \ (B + e) * ?\ (ball x r)" using bounded [OF \x \ S\] \r > 0\ by (simp add: algebra_simps content_ball_conv_unit_ball[of r] content_ball_pos) finally show "?\ (f ` (S \ ball x r)) \ (B + e) * ?\ (ball x r)" . qed qed then obtain r where r0d: "\x d. \x \ S; d > 0\ \ 0 < r x d \ r x d < d" and rT: "\x d. \x \ S; d > 0\ \ ball x (r x d) \ T" and r: "\x d. \x \ S; d > 0\ \ (f ` (S \ ball x (r x d))) \ lmeasurable \ ?\ (f ` (S \ ball x (r x d))) \ (B + e) * ?\ (ball x (r x d))" by metis obtain C where "countable C" and Csub: "C \ {(x,r x t) |x t. x \ S \ 0 < t}" and pwC: "pairwise (\i j. disjnt (ball (fst i) (snd i)) (ball (fst j) (snd j))) C" and negC: "negligible(S - (\i \ C. ball (fst i) (snd i)))" apply (rule Vitali_covering_theorem_balls [of S "{(x,r x t) |x t. x \ S \ 0 < t}" fst snd]) apply auto by (metis dist_eq_0_iff r0d) let ?UB = "(\(x,s) \ C. ball x s)" have eq: "f ` (S \ ?UB) = (\(x,s) \ C. f ` (S \ ball x s))" by auto have mle: "?\ (\(x,s) \ K. f ` (S \ ball x s)) \ (B + e) * (?\ S + d)" (is "?l \ ?r") if "K \ C" and "finite K" for K proof - have gt0: "b > 0" if "(a, b) \ K" for a b using Csub that \K \ C\ r0d by auto have inj: "inj_on (\(x, y). ball x y) K" by (force simp: inj_on_def ball_eq_ball_iff dest: gt0) have disjnt: "disjoint ((\(x, y). ball x y) ` K)" using pwC that apply (clarsimp simp: pairwise_def case_prod_unfold ball_eq_ball_iff) by (metis subsetD fst_conv snd_conv) have "?l \ (\i\K. ?\ (case i of (x, s) \ f ` (S \ ball x s)))" proof (rule measure_UNION_le [OF \finite K\], clarify) fix x r assume "(x,r) \ K" then have "x \ S" using Csub \K \ C\ by auto show "f ` (S \ ball x r) \ sets lebesgue" by (meson Int_lower1 S differentiable_on_subset f_diff fmeasurableD lmeasurable_ball order_refl sets.Int differentiable_image_in_sets_lebesgue) qed also have "\ \ (\(x,s) \ K. (B + e) * ?\ (ball x s))" apply (rule sum_mono) using Csub r \K \ C\ by auto also have "\ = (B + e) * (\(x,s) \ K. ?\ (ball x s))" by (simp add: prod.case_distrib sum_distrib_left) also have "\ = (B + e) * sum ?\ ((\(x, y). ball x y) ` K)" using \B \ 0\ \e > 0\ by (simp add: inj sum.reindex prod.case_distrib) also have "\ = (B + e) * ?\ (\(x,s) \ K. ball x s)" using \B \ 0\ \e > 0\ that by (subst measure_Union') (auto simp: disjnt measure_Union') also have "\ \ (B + e) * ?\ T" using \B \ 0\ \e > 0\ that apply simp apply (rule measure_mono_fmeasurable [OF _ _ \T \ lmeasurable\]) using Csub rT by force+ also have "\ \ (B + e) * (?\ S + d)" using \B \ 0\ \e > 0\ Tless by simp finally show ?thesis . qed have fSUB_mble: "(f ` (S \ ?UB)) \ lmeasurable" unfolding eq using Csub r False \e > 0\ that by (auto simp: intro!: fmeasurable_UN_bound [OF \countable C\ _ mle]) have fSUB_meas: "?\ (f ` (S \ ?UB)) \ (B + e) * (?\ S + d)" (is "?MUB") unfolding eq using Csub r False \e > 0\ that by (auto simp: intro!: measure_UN_bound [OF \countable C\ _ mle]) have neg: "negligible ((f ` (S \ ?UB) - f ` S) \ (f ` S - f ` (S \ ?UB)))" proof (rule negligible_subset [OF negligible_differentiable_image_negligible [OF order_refl negC, where f=f]]) show "f differentiable_on S - (\i\C. ball (fst i) (snd i))" by (meson DiffE differentiable_on_subset subsetI f_diff) qed force show "f ` S \ lmeasurable" by (rule lmeasurable_negligible_symdiff [OF fSUB_mble neg]) show ?MD using fSUB_meas measure_negligible_symdiff [OF fSUB_mble neg] by simp qed show "f ` S \ lmeasurable" using eps_d [of 1] by simp show ?ME proof (rule field_le_epsilon) fix \ :: real assume "0 < \" then show "?\ (f ` S) \ (B + e) * ?\ S + \" using eps_d [of "\ / (B+e)"] \e > 0\ \B \ 0\ by (auto simp: divide_simps mult_ac) qed qed show ?thesis proof (cases "?\ S = 0") case True with eps have "?\ (f ` S) = 0" by (metis mult_zero_right not_le zero_less_measure_iff) then show ?thesis using eps [of 1] by (simp add: True) next case False have "?\ (f ` S) \ B * ?\ S" proof (rule field_le_epsilon) fix e :: real assume "e > 0" then show "?\ (f ` S) \ B * ?\ S + e" using eps [of "e / ?\ S"] False by (auto simp: algebra_simps zero_less_measure_iff) qed with eps [of 1] show ?thesis by auto qed qed then show "f ` S \ lmeasurable" ?M by blast+ qed lemma m_diff_image_weak: fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes S: "S \ lmeasurable" and deriv: "\x. x \ S \ (f has_derivative f' x) (at x within S)" and int: "(\x. \det (matrix (f' x))\) integrable_on S" shows "f ` S \ lmeasurable \ measure lebesgue (f ` S) \ integral S (\x. \det (matrix (f' x))\)" proof - let ?\ = "measure lebesgue" have aint_S: "(\x. \det (matrix (f' x))\) absolutely_integrable_on S" using int unfolding absolutely_integrable_on_def by auto define m where "m \ integral S (\x. \det (matrix (f' x))\)" have *: "f ` S \ lmeasurable" "?\ (f ` S) \ m + e * ?\ S" if "e > 0" for e proof - define T where "T \ \n. {x \ S. n * e \ \det (matrix (f' x))\ \ \det (matrix (f' x))\ < (Suc n) * e}" have meas_t: "T n \ lmeasurable" for n proof - have *: "(\x. \det (matrix (f' x))\) \ borel_measurable (lebesgue_on S)" using aint_S by (simp add: S borel_measurable_restrict_space_iff fmeasurableD set_integrable_def) have [intro]: "x \ sets (lebesgue_on S) \ x \ sets lebesgue" for x using S sets_restrict_space_subset by blast have "{x \ S. real n * e \ \det (matrix (f' x))\} \ sets lebesgue" using * by (auto simp: borel_measurable_iff_halfspace_ge space_restrict_space) then have 1: "{x \ S. real n * e \ \det (matrix (f' x))\} \ lmeasurable" using S by (simp add: fmeasurableI2) have "{x \ S. \det (matrix (f' x))\ < (1 + real n) * e} \ sets lebesgue" using * by (auto simp: borel_measurable_iff_halfspace_less space_restrict_space) then have 2: "{x \ S. \det (matrix (f' x))\ < (1 + real n) * e} \ lmeasurable" using S by (simp add: fmeasurableI2) show ?thesis using fmeasurable.Int [OF 1 2] by (simp add: T_def Int_def cong: conj_cong) qed have aint_T: "\k. (\x. \det (matrix (f' x))\) absolutely_integrable_on T k" using set_integrable_subset [OF aint_S] meas_t T_def by blast have Seq: "S = (\n. T n)" apply (auto simp: T_def) apply (rule_tac x="nat(floor(abs(det(matrix(f' x))) / e))" in exI) using that apply auto using of_int_floor_le pos_le_divide_eq apply blast by (metis add.commute pos_divide_less_eq real_of_int_floor_add_one_gt) have meas_ft: "f ` T n \ lmeasurable" for n proof (rule measurable_bounded_differentiable_image) show "T n \ lmeasurable" by (simp add: meas_t) next fix x :: "(real,'n) vec" assume "x \ T n" show "(f has_derivative f' x) (at x within T n)" - by (metis (no_types, lifting) \x \ T n\ deriv has_derivative_within_subset mem_Collect_eq subsetI T_def) + by (metis (no_types, lifting) \x \ T n\ deriv has_derivative_subset mem_Collect_eq subsetI T_def) show "\det (matrix (f' x))\ \ (Suc n) * e" using \x \ T n\ T_def by auto next show "(\x. \det (matrix (f' x))\) integrable_on T n" using aint_T absolutely_integrable_on_def by blast qed have disT: "disjoint (range T)" unfolding disjoint_def proof clarsimp show "T m \ T n = {}" if "T m \ T n" for m n using that proof (induction m n rule: linorder_less_wlog) case (less m n) with \e > 0\ show ?case unfolding T_def proof (clarsimp simp add: Collect_conj_eq [symmetric]) fix x assume "e > 0" "m < n" "n * e \ \det (matrix (f' x))\" "\det (matrix (f' x))\ < (1 + real m) * e" then have "n < 1 + real m" by (metis (no_types, hide_lams) less_le_trans mult.commute not_le real_mult_le_cancel_iff2) then show "False" using less.hyps by linarith qed qed auto qed have injT: "inj_on T ({n. T n \ {}})" unfolding inj_on_def proof clarsimp show "m = n" if "T m = T n" "T n \ {}" for m n using that proof (induction m n rule: linorder_less_wlog) case (less m n) have False if "T n \ T m" "x \ T n" for x using \e > 0\ \m < n\ that apply (auto simp: T_def mult.commute intro: less_le_trans dest!: subsetD) by (metis add.commute less_le_trans nat_less_real_le not_le real_mult_le_cancel_iff2) then show ?case using less.prems by blast qed auto qed have sum_eq_Tim: "(\k\n. f (T k)) = sum f (T ` {..n})" if "f {} = 0" for f :: "_ \ real" and n proof (subst sum.reindex_nontrivial) fix i j assume "i \ {..n}" "j \ {..n}" "i \ j" "T i = T j" with that injT [unfolded inj_on_def] show "f (T i) = 0" by simp metis qed (use atMost_atLeast0 in auto) let ?B = "m + e * ?\ S" have "(\k\n. ?\ (f ` T k)) \ ?B" for n proof - have "(\k\n. ?\ (f ` T k)) \ (\k\n. ((k+1) * e) * ?\(T k))" proof (rule sum_mono [OF measure_bounded_differentiable_image]) show "(f has_derivative f' x) (at x within T k)" if "x \ T k" for k x - using that unfolding T_def by (blast intro: deriv has_derivative_within_subset) + using that unfolding T_def by (blast intro: deriv has_derivative_subset) show "(\x. \det (matrix (f' x))\) integrable_on T k" for k using absolutely_integrable_on_def aint_T by blast show "\det (matrix (f' x))\ \ real (k + 1) * e" if "x \ T k" for k x using T_def that by auto qed (use meas_t in auto) also have "\ \ (\k\n. (k * e) * ?\(T k)) + (\k\n. e * ?\(T k))" by (simp add: algebra_simps sum.distrib) also have "\ \ ?B" proof (rule add_mono) have "(\k\n. real k * e * ?\ (T k)) = (\k\n. integral (T k) (\x. k * e))" by (simp add: lmeasure_integral [OF meas_t] flip: integral_mult_right integral_mult_left) also have "\ \ (\k\n. integral (T k) (\x. (abs (det (matrix (f' x))))))" proof (rule sum_mono) fix k assume "k \ {..n}" show "integral (T k) (\x. k * e) \ integral (T k) (\x. \det (matrix (f' x))\)" proof (rule integral_le [OF integrable_on_const [OF meas_t]]) show "(\x. \det (matrix (f' x))\) integrable_on T k" using absolutely_integrable_on_def aint_T by blast next fix x assume "x \ T k" show "k * e \ \det (matrix (f' x))\" using \x \ T k\ T_def by blast qed qed also have "\ = sum (\T. integral T (\x. \det (matrix (f' x))\)) (T ` {..n})" by (auto intro: sum_eq_Tim) also have "\ = integral (\k\n. T k) (\x. \det (matrix (f' x))\)" proof (rule integral_unique [OF has_integral_Union, symmetric]) fix S assume "S \ T ` {..n}" then show "((\x. \det (matrix (f' x))\) has_integral integral S (\x. \det (matrix (f' x))\)) S" using absolutely_integrable_on_def aint_T by blast next show "pairwise (\S S'. negligible (S \ S')) (T ` {..n})" using disT unfolding disjnt_iff by (auto simp: pairwise_def intro!: empty_imp_negligible) qed auto also have "\ \ m" unfolding m_def proof (rule integral_subset_le) have "(\x. \det (matrix (f' x))\) absolutely_integrable_on (\k\n. T k)" apply (rule set_integrable_subset [OF aint_S]) apply (intro measurable meas_t fmeasurableD) apply (force simp: Seq) done then show "(\x. \det (matrix (f' x))\) integrable_on (\k\n. T k)" using absolutely_integrable_on_def by blast qed (use Seq int in auto) finally show "(\k\n. real k * e * ?\ (T k)) \ m" . next have "(\k\n. ?\ (T k)) = sum ?\ (T ` {..n})" by (auto intro: sum_eq_Tim) also have "\ = ?\ (\k\n. T k)" using S disT by (auto simp: pairwise_def meas_t intro: measure_Union' [symmetric]) also have "\ \ ?\ S" using S by (auto simp: Seq intro: meas_t fmeasurableD measure_mono_fmeasurable) finally have "(\k\n. ?\ (T k)) \ ?\ S" . then show "(\k\n. e * ?\ (T k)) \ e * ?\ S" by (metis less_eq_real_def ordered_comm_semiring_class.comm_mult_left_mono sum_distrib_left that) qed finally show "(\k\n. ?\ (f ` T k)) \ ?B" . qed moreover have "measure lebesgue (\k\n. f ` T k) \ (\k\n. ?\ (f ` T k))" for n by (simp add: fmeasurableD meas_ft measure_UNION_le) ultimately have B_ge_m: "?\ (\k\n. (f ` T k)) \ ?B" for n by (meson order_trans) have "(\n. f ` T n) \ lmeasurable" by (rule fmeasurable_countable_Union [OF meas_ft B_ge_m]) moreover have "?\ (\n. f ` T n) \ m + e * ?\ S" by (rule measure_countable_Union_le [OF meas_ft B_ge_m]) ultimately show "f ` S \ lmeasurable" "?\ (f ` S) \ m + e * ?\ S" by (auto simp: Seq image_Union) qed show ?thesis proof show "f ` S \ lmeasurable" using * linordered_field_no_ub by blast let ?x = "m - ?\ (f ` S)" have False if "?\ (f ` S) > integral S (\x. \det (matrix (f' x))\)" proof - have ml: "m < ?\ (f ` S)" using m_def that by blast then have "?\ S \ 0" using "*"(2) bgauge_existence_lemma by fastforce with ml have 0: "0 < - (m - ?\ (f ` S))/2 / ?\ S" using that zero_less_measure_iff by force then show ?thesis using * [OF 0] that by (auto simp: field_split_simps m_def split: if_split_asm) qed then show "?\ (f ` S) \ integral S (\x. \det (matrix (f' x))\)" by fastforce qed qed theorem fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes S: "S \ sets lebesgue" and deriv: "\x. x \ S \ (f has_derivative f' x) (at x within S)" and int: "(\x. \det (matrix (f' x))\) integrable_on S" shows measurable_differentiable_image: "f ` S \ lmeasurable" and measure_differentiable_image: "measure lebesgue (f ` S) \ integral S (\x. \det (matrix (f' x))\)" (is "?M") proof - let ?I = "\n::nat. cbox (vec (-n)) (vec n) \ S" let ?\ = "measure lebesgue" have "x \ cbox (vec (- real (nat \norm x\))) (vec (real (nat \norm x\)))" for x :: "real^'n::_" apply (auto simp: mem_box_cart) apply (metis abs_le_iff component_le_norm_cart minus_le_iff of_nat_ceiling order.trans) by (meson abs_le_D1 norm_bound_component_le_cart real_nat_ceiling_ge) then have Seq: "S = (\n. ?I n)" by auto have fIn: "f ` ?I n \ lmeasurable" and mfIn: "?\ (f ` ?I n) \ integral S (\x. \det (matrix (f' x))\)" (is ?MN) for n proof - have In: "?I n \ lmeasurable" by (simp add: S bounded_Int bounded_set_imp_lmeasurable sets.Int) moreover have "\x. x \ ?I n \ (f has_derivative f' x) (at x within ?I n)" - by (meson Int_iff deriv has_derivative_within_subset subsetI) + by (meson Int_iff deriv has_derivative_subset subsetI) moreover have int_In: "(\x. \det (matrix (f' x))\) integrable_on ?I n" proof - have "(\x. \det (matrix (f' x))\) absolutely_integrable_on S" using int absolutely_integrable_integrable_bound by force then have "(\x. \det (matrix (f' x))\) absolutely_integrable_on ?I n" by (metis (no_types) Int_lower1 In fmeasurableD inf_commute set_integrable_subset) then show ?thesis using absolutely_integrable_on_def by blast qed ultimately have "f ` ?I n \ lmeasurable" "?\ (f ` ?I n) \ integral (?I n) (\x. \det (matrix (f' x))\)" using m_diff_image_weak by metis+ moreover have "integral (?I n) (\x. \det (matrix (f' x))\) \ integral S (\x. \det (matrix (f' x))\)" by (simp add: int_In int integral_subset_le) ultimately show "f ` ?I n \ lmeasurable" ?MN by auto qed have "?I k \ ?I n" if "k \ n" for k n by (rule Int_mono) (use that in \auto simp: subset_interval_imp_cart\) then have "(\k\n. f ` ?I k) = f ` ?I n" for n by (fastforce simp add:) with mfIn have "?\ (\k\n. f ` ?I k) \ integral S (\x. \det (matrix (f' x))\)" for n by simp then have "(\n. f ` ?I n) \ lmeasurable" "?\ (\n. f ` ?I n) \ integral S (\x. \det (matrix (f' x))\)" by (rule fmeasurable_countable_Union [OF fIn] measure_countable_Union_le [OF fIn])+ then show "f ` S \ lmeasurable" ?M by (metis Seq image_UN)+ qed lemma borel_measurable_simple_function_limit_increasing: fixes f :: "'a::euclidean_space \ real" shows "(f \ borel_measurable lebesgue \ (\x. 0 \ f x)) \ (\g. (\n x. 0 \ g n x \ g n x \ f x) \ (\n x. g n x \ (g(Suc n) x)) \ (\n. g n \ borel_measurable lebesgue) \ (\n. finite(range (g n))) \ (\x. (\n. g n x) \ f x))" (is "?lhs = ?rhs") proof assume f: ?lhs have leb_f: "{x. a \ f x \ f x < b} \ sets lebesgue" for a b proof - have "{x. a \ f x \ f x < b} = {x. f x < b} - {x. f x < a}" by auto also have "\ \ sets lebesgue" using borel_measurable_vimage_halfspace_component_lt [of f UNIV] f by auto finally show ?thesis . qed have "g n x \ f x" if inc_g: "\n x. 0 \ g n x \ g n x \ g (Suc n) x" and meas_g: "\n. g n \ borel_measurable lebesgue" and fin: "\n. finite(range (g n))" and lim: "\x. (\n. g n x) \ f x" for g n x proof - have "\r>0. \N. \n\N. dist (g n x) (f x) \ r" if "g n x > f x" proof - have g: "g n x \ g (N + n) x" for N by (rule transitive_stepwise_le) (use inc_g in auto) have "\na\N. g n x - f x \ dist (g na x) (f x)" for N apply (rule_tac x="N+n" in exI) using g [of N] by (auto simp: dist_norm) with that show ?thesis using diff_gt_0_iff_gt by blast qed with lim show ?thesis apply (auto simp: lim_sequentially) by (meson less_le_not_le not_le_imp_less) qed moreover let ?\ = "\n k. indicator {y. k/2^n \ f y \ f y < (k+1)/2^n}" let ?g = "\n x. (\k::real | k \ \ \ \k\ \ 2 ^ (2*n). k/2^n * ?\ n k x)" have "\g. (\n x. 0 \ g n x \ g n x \ (g(Suc n) x)) \ (\n. g n \ borel_measurable lebesgue) \ (\n. finite(range (g n))) \(\x. (\n. g n x) \ f x)" proof (intro exI allI conjI) show "0 \ ?g n x" for n x proof (clarify intro!: ordered_comm_monoid_add_class.sum_nonneg) fix k::real assume "k \ \" and k: "\k\ \ 2 ^ (2*n)" show "0 \ k/2^n * ?\ n k x" using f \k \ \\ apply (auto simp: indicator_def field_split_simps Ints_def) apply (drule spec [where x=x]) using zero_le_power [of "2::real" n] mult_nonneg_nonneg [of "f x" "2^n"] by linarith qed show "?g n x \ ?g (Suc n) x" for n x proof - have "?g n x = (\k | k \ \ \ \k\ \ 2 ^ (2*n). k/2^n * (indicator {y. k/2^n \ f y \ f y < (k+1/2)/2^n} x + indicator {y. (k+1/2)/2^n \ f y \ f y < (k+1)/2^n} x))" by (rule sum.cong [OF refl]) (simp add: indicator_def field_split_simps) also have "\ = (\k | k \ \ \ \k\ \ 2 ^ (2*n). k/2^n * indicator {y. k/2^n \ f y \ f y < (k+1/2)/2^n} x) + (\k | k \ \ \ \k\ \ 2 ^ (2*n). k/2^n * indicator {y. (k+1/2)/2^n \ f y \ f y < (k+1)/2^n} x)" by (simp add: comm_monoid_add_class.sum.distrib algebra_simps) also have "\ = (\k | k \ \ \ \k\ \ 2 ^ (2*n). (2 * k)/2 ^ Suc n * indicator {y. (2 * k)/2 ^ Suc n \ f y \ f y < (2 * k+1)/2 ^ Suc n} x) + (\k | k \ \ \ \k\ \ 2 ^ (2*n). (2 * k)/2 ^ Suc n * indicator {y. (2 * k+1)/2 ^ Suc n \ f y \ f y < ((2 * k+1) + 1)/2 ^ Suc n} x)" by (force simp: field_simps indicator_def intro: sum.cong) also have "\ \ (\k | k \ \ \ \k\ \ 2 ^ (2 * Suc n). k/2 ^ Suc n * (indicator {y. k/2 ^ Suc n \ f y \ f y < (k+1)/2 ^ Suc n} x))" (is "?a + _ \ ?b") proof - have *: "\sum f I \ sum h I; a + sum h I \ b\ \ a + sum f I \ b" for I a b f and h :: "real\real" by linarith let ?h = "\k. (2*k+1)/2 ^ Suc n * (indicator {y. (2 * k+1)/2 ^ Suc n \ f y \ f y < ((2*k+1) + 1)/2 ^ Suc n} x)" show ?thesis proof (rule *) show "(\k | k \ \ \ \k\ \ 2 ^ (2*n). 2 * k/2 ^ Suc n * indicator {y. (2 * k+1)/2 ^ Suc n \ f y \ f y < (2 * k+1 + 1)/2 ^ Suc n} x) \ sum ?h {k \ \. \k\ \ 2 ^ (2*n)}" by (rule sum_mono) (simp add: indicator_def field_split_simps) next have \: "?a = (\k \ (*)2 ` {k \ \. \k\ \ 2 ^ (2*n)}. k/2 ^ Suc n * indicator {y. k/2 ^ Suc n \ f y \ f y < (k+1)/2 ^ Suc n} x)" by (auto simp: inj_on_def field_simps comm_monoid_add_class.sum.reindex) have \: "sum ?h {k \ \. \k\ \ 2 ^ (2*n)} = (\k \ (\x. 2*x + 1) ` {k \ \. \k\ \ 2 ^ (2*n)}. k/2 ^ Suc n * indicator {y. k/2 ^ Suc n \ f y \ f y < (k+1)/2 ^ Suc n} x)" by (auto simp: inj_on_def field_simps comm_monoid_add_class.sum.reindex) have 0: "(*) 2 ` {k \ \. P k} \ (\x. 2 * x + 1) ` {k \ \. P k} = {}" for P :: "real \ bool" proof - have "2 * i \ 2 * j + 1" for i j :: int by arith thus ?thesis unfolding Ints_def by auto (use of_int_eq_iff in fastforce) qed have "?a + sum ?h {k \ \. \k\ \ 2 ^ (2*n)} = (\k \ (*)2 ` {k \ \. \k\ \ 2 ^ (2*n)} \ (\x. 2*x + 1) ` {k \ \. \k\ \ 2 ^ (2*n)}. k/2 ^ Suc n * indicator {y. k/2 ^ Suc n \ f y \ f y < (k+1)/2 ^ Suc n} x)" unfolding \ \ using finite_abs_int_segment [of "2 ^ (2*n)"] by (subst sum_Un) (auto simp: 0) also have "\ \ ?b" proof (rule sum_mono2) show "finite {k::real. k \ \ \ \k\ \ 2 ^ (2 * Suc n)}" by (rule finite_abs_int_segment) show "(*) 2 ` {k::real. k \ \ \ \k\ \ 2^(2*n)} \ (\x. 2*x + 1) ` {k \ \. \k\ \ 2^(2*n)} \ {k \ \. \k\ \ 2 ^ (2 * Suc n)}" apply auto using one_le_power [of "2::real" "2*n"] by linarith have *: "\x \ (S \ T) - U; \x. x \ S \ x \ U; \x. x \ T \ x \ U\ \ P x" for S T U P by blast have "0 \ b" if "b \ \" "f x * (2 * 2^n) < b + 1" for b proof - have "0 \ f x * (2 * 2^n)" by (simp add: f) also have "\ < b+1" by (simp add: that) finally show "0 \ b" using \b \ \\ by (auto simp: elim!: Ints_cases) qed then show "0 \ b/2 ^ Suc n * indicator {y. b/2 ^ Suc n \ f y \ f y < (b + 1)/2 ^ Suc n} x" if "b \ {k \ \. \k\ \ 2 ^ (2 * Suc n)} - ((*) 2 ` {k \ \. \k\ \ 2 ^ (2*n)} \ (\x. 2*x + 1) ` {k \ \. \k\ \ 2 ^ (2*n)})" for b using that by (simp add: indicator_def divide_simps) qed finally show "?a + sum ?h {k \ \. \k\ \ 2 ^ (2*n)} \ ?b" . qed qed finally show ?thesis . qed show "?g n \ borel_measurable lebesgue" for n apply (intro borel_measurable_indicator borel_measurable_times borel_measurable_sum) using leb_f sets_restrict_UNIV by auto show "finite (range (?g n))" for n proof - have "(\k | k \ \ \ \k\ \ 2 ^ (2*n). k/2^n * ?\ n k x) \ (\k. k/2^n) ` {k \ \. \k\ \ 2 ^ (2*n)}" for x proof (cases "\k. k \ \ \ \k\ \ 2 ^ (2*n) \ k/2^n \ f x \ f x < (k+1)/2^n") case True then show ?thesis by (blast intro: indicator_sum_eq) next case False then have "(\k | k \ \ \ \k\ \ 2 ^ (2*n). k/2^n * ?\ n k x) = 0" by auto then show ?thesis by force qed then have "range (?g n) \ ((\k. (k/2^n)) ` {k. k \ \ \ \k\ \ 2 ^ (2*n)})" by auto moreover have "finite ((\k::real. (k/2^n)) ` {k \ \. \k\ \ 2 ^ (2*n)})" by (intro finite_imageI finite_abs_int_segment) ultimately show ?thesis by (rule finite_subset) qed show "(\n. ?g n x) \ f x" for x proof (clarsimp simp add: lim_sequentially) fix e::real assume "e > 0" obtain N1 where N1: "2 ^ N1 > abs(f x)" using real_arch_pow by fastforce obtain N2 where N2: "(1/2) ^ N2 < e" using real_arch_pow_inv \e > 0\ by fastforce have "dist (\k | k \ \ \ \k\ \ 2 ^ (2*n). k/2^n * ?\ n k x) (f x) < e" if "N1 + N2 \ n" for n proof - let ?m = "real_of_int \2^n * f x\" have "\?m\ \ 2^n * 2^N1" using N1 apply (simp add: f) by (meson floor_mono le_floor_iff less_le_not_le mult_le_cancel_left_pos zero_less_numeral zero_less_power) also have "\ \ 2 ^ (2*n)" by (metis that add_leD1 add_le_cancel_left mult.commute mult_2_right one_less_numeral_iff power_add power_increasing_iff semiring_norm(76)) finally have m_le: "\?m\ \ 2 ^ (2*n)" . have "?m/2^n \ f x" "f x < (?m + 1)/2^n" by (auto simp: mult.commute pos_divide_le_eq mult_imp_less_div_pos) then have eq: "dist (\k | k \ \ \ \k\ \ 2 ^ (2*n). k/2^n * ?\ n k x) (f x) = dist (?m/2^n) (f x)" by (subst indicator_sum_eq [of ?m]) (auto simp: m_le) have "\2^n\ * \?m/2^n - f x\ = \2^n * (?m/2^n - f x)\" by (simp add: abs_mult) also have "\ < 2 ^ N2 * e" using N2 by (simp add: divide_simps mult.commute) linarith also have "\ \ \2^n\ * e" using that \e > 0\ by auto finally have "dist (?m/2^n) (f x) < e" by (simp add: dist_norm) then show ?thesis using eq by linarith qed then show "\no. \n\no. dist (\k | k \ \ \ \k\ \ 2 ^ (2*n). k * ?\ n k x/2^n) (f x) < e" by force qed qed ultimately show ?rhs by metis next assume RHS: ?rhs with borel_measurable_simple_function_limit [of f UNIV, unfolded lebesgue_on_UNIV_eq] show ?lhs by (blast intro: order_trans) qed subsection\Borel measurable Jacobian determinant\ lemma lemma_partial_derivatives0: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "linear f" and lim0: "((\x. f x /\<^sub>R norm x) \ 0) (at 0 within S)" and lb: "\v. v \ 0 \ (\k>0. \e>0. \x. x \ S - {0} \ norm x < e \ k * norm x \ \v \ x\)" shows "f x = 0" proof - interpret linear f by fact have "dim {x. f x = 0} \ DIM('a)" by (rule dim_subset_UNIV) moreover have False if less: "dim {x. f x = 0} < DIM('a)" proof - obtain d where "d \ 0" and d: "\y. f y = 0 \ d \ y = 0" using orthogonal_to_subspace_exists [OF less] orthogonal_def by (metis (mono_tags, lifting) mem_Collect_eq span_base) then obtain k where "k > 0" and k: "\e. e > 0 \ \y. y \ S - {0} \ norm y < e \ k * norm y \ \d \ y\" using lb by blast have "\h. \n. ((h n \ S \ h n \ 0 \ k * norm (h n) \ \d \ h n\) \ norm (h n) < 1 / real (Suc n)) \ norm (h (Suc n)) < norm (h n)" proof (rule dependent_nat_choice) show "\y. (y \ S \ y \ 0 \ k * norm y \ \d \ y\) \ norm y < 1 / real (Suc 0)" by simp (metis DiffE insertCI k not_less not_one_le_zero) qed (use k [of "min (norm x) (1/(Suc n + 1))" for x n] in auto) then obtain \ where \: "\n. \ n \ S - {0}" and kd: "\n. k * norm(\ n) \ \d \ \ n\" and norm_lt: "\n. norm(\ n) < 1/(Suc n)" by force let ?\ = "\n. \ n /\<^sub>R norm (\ n)" have com: "\g. (\n. g n \ sphere (0::'a) 1) \ \l \ sphere 0 1. \\::nat\nat. strict_mono \ \ (g \ \) \ l" using compact_sphere compact_def by metis moreover have "\n. ?\ n \ sphere 0 1" using \ by auto ultimately obtain l::'a and \::"nat\nat" where l: "l \ sphere 0 1" and "strict_mono \" and to_l: "(?\ \ \) \ l" by meson moreover have "continuous (at l) (\x. (\d \ x\ - k))" by (intro continuous_intros) ultimately have lim_dl: "((\x. (\d \ x\ - k)) \ (?\ \ \)) \ (\d \ l\ - k)" by (meson continuous_imp_tendsto) have "\\<^sub>F i in sequentially. 0 \ ((\x. \d \ x\ - k) \ ((\n. \ n /\<^sub>R norm (\ n)) \ \)) i" using \ kd by (auto simp: field_split_simps) then have "k \ \d \ l\" using tendsto_lowerbound [OF lim_dl, of 0] by auto moreover have "d \ l = 0" proof (rule d) show "f l = 0" proof (rule LIMSEQ_unique [of "f \ ?\ \ \"]) have "isCont f l" using \linear f\ linear_continuous_at linear_conv_bounded_linear by blast then show "(f \ (\n. \ n /\<^sub>R norm (\ n)) \ \) \ f l" unfolding comp_assoc using to_l continuous_imp_tendsto by blast have "\ \ 0" using norm_lt LIMSEQ_norm_0 by metis with \strict_mono \\ have "(\ \ \) \ 0" by (metis LIMSEQ_subseq_LIMSEQ) with lim0 \ have "((\x. f x /\<^sub>R norm x) \ (\ \ \)) \ 0" by (force simp: tendsto_at_iff_sequentially) then show "(f \ (\n. \ n /\<^sub>R norm (\ n)) \ \) \ 0" by (simp add: o_def scale) qed qed ultimately show False using \k > 0\ by auto qed ultimately have dim: "dim {x. f x = 0} = DIM('a)" by force then show ?thesis using dim_eq_full by (metis (mono_tags, lifting) eq_0_on_span eucl.span_Basis linear_axioms linear_eq_stdbasis mem_Collect_eq module_hom_zero span_base span_raw_def) qed lemma lemma_partial_derivatives: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "linear f" and lim: "((\x. f (x - a) /\<^sub>R norm (x - a)) \ 0) (at a within S)" and lb: "\v. v \ 0 \ (\k>0. \e>0. \x \ S - {a}. norm(a - x) < e \ k * norm(a - x) \ \v \ (x - a)\)" shows "f x = 0" proof - have "((\x. f x /\<^sub>R norm x) \ 0) (at 0 within (\x. x-a) ` S)" using lim by (simp add: Lim_within dist_norm) then show ?thesis proof (rule lemma_partial_derivatives0 [OF \linear f\]) fix v :: "'a" assume v: "v \ 0" show "\k>0. \e>0. \x. x \ (\x. x - a) ` S - {0} \ norm x < e \ k * norm x \ \v \ x\" using lb [OF v] by (force simp: norm_minus_commute) qed qed proposition borel_measurable_partial_derivatives: fixes f :: "real^'m::{finite,wellorder} \ real^'n" assumes S: "S \ sets lebesgue" and f: "\x. x \ S \ (f has_derivative f' x) (at x within S)" shows "(\x. (matrix(f' x)$m$n)) \ borel_measurable (lebesgue_on S)" proof - have contf: "continuous_on S f" using continuous_on_eq_continuous_within f has_derivative_continuous by blast have "{x \ S. (matrix (f' x)$m$n) \ b} \ sets lebesgue" for b proof (rule sets_negligible_symdiff) let ?T = "{x \ S. \e>0. \d>0. \A. A$m$n < b \ (\i j. A$i$j \ \) \ (\y \ S. norm(y - x) < d \ norm(f y - f x - A *v (y - x)) \ e * norm(y - x))}" let ?U = "S \ (\e \ {e \ \. e > 0}. \A \ {A. A$m$n < b \ (\i j. A$i$j \ \)}. \d \ {d \ \. 0 < d}. S \ (\y \ S. {x \ S. norm(y - x) < d \ norm(f y - f x - A *v (y - x)) \ e * norm(y - x)}))" have "?T = ?U" proof (intro set_eqI iffI) fix x assume xT: "x \ ?T" then show "x \ ?U" proof (clarsimp simp add:) fix q :: real assume "q \ \" "q > 0" then obtain d A where "d > 0" and A: "A $ m $ n < b" "\i j. A $ i $ j \ \" "\y. \y\S; norm (y - x) < d\ \ norm (f y - f x - A *v (y - x)) \ q * norm (y - x)" using xT by auto then obtain \ where "d > \" "\ > 0" "\ \ \" using Rats_dense_in_real by blast with A show "\A. A $ m $ n < b \ (\i j. A $ i $ j \ \) \ (\s. s \ \ \ 0 < s \ (\y\S. norm (y - x) < s \ norm (f y - f x - A *v (y - x)) \ q * norm (y - x)))" by force qed next fix x assume xU: "x \ ?U" then show "x \ ?T" proof clarsimp fix e :: "real" assume "e > 0" then obtain \ where \: "e > \" "\ > 0" "\ \ \" using Rats_dense_in_real by blast with xU obtain A r where "x \ S" and Ar: "A $ m $ n < b" "\i j. A $ i $ j \ \" "r \ \" "r > 0" and "\y\S. norm (y - x) < r \ norm (f y - f x - A *v (y - x)) \ \ * norm (y - x)" by (auto simp: split: if_split_asm) then have "\y\S. norm (y - x) < r \ norm (f y - f x - A *v (y - x)) \ e * norm (y - x)" by (meson \e > \\ less_eq_real_def mult_right_mono norm_ge_zero order_trans) then show "\d>0. \A. A $ m $ n < b \ (\i j. A $ i $ j \ \) \ (\y\S. norm (y - x) < d \ norm (f y - f x - A *v (y - x)) \ e * norm (y - x))" using \x \ S\ Ar by blast qed qed moreover have "?U \ sets lebesgue" proof - have coQ: "countable {e \ \. 0 < e}" using countable_Collect countable_rat by blast have ne: "{e \ \. (0::real) < e} \ {}" using zero_less_one Rats_1 by blast have coA: "countable {A. A $ m $ n < b \ (\i j. A $ i $ j \ \)}" proof (rule countable_subset) show "countable {A. \i j. A $ i $ j \ \}" using countable_vector [OF countable_vector, of "\i j. \"] by (simp add: countable_rat) qed blast have *: "\U \ {} \ closedin (top_of_set S) (S \ \ U)\ \ closedin (top_of_set S) (S \ \ U)" for U by fastforce have eq: "{x::(real,'m)vec. P x \ (Q x \ R x)} = {x. P x \ \ Q x} \ {x. P x \ R x}" for P Q R by auto have sets: "S \ (\y\S. {x \ S. norm (y - x) < d \ norm (f y - f x - A *v (y - x)) \ e * norm (y - x)}) \ sets lebesgue" for e A d proof - have clo: "closedin (top_of_set S) {x \ S. norm (y - x) < d \ norm (f y - f x - A *v (y - x)) \ e * norm (y - x)}" for y proof - have cont1: "continuous_on S (\x. norm (y - x))" and cont2: "continuous_on S (\x. e * norm (y - x) - norm (f y - f x - (A *v y - A *v x)))" by (force intro: contf continuous_intros)+ have clo1: "closedin (top_of_set S) {x \ S. d \ norm (y - x)}" using continuous_closedin_preimage [OF cont1, of "{d..}"] by (simp add: vimage_def Int_def) have clo2: "closedin (top_of_set S) {x \ S. norm (f y - f x - (A *v y - A *v x)) \ e * norm (y - x)}" using continuous_closedin_preimage [OF cont2, of "{0..}"] by (simp add: vimage_def Int_def) show ?thesis by (auto simp: eq not_less matrix_vector_mult_diff_distrib intro: clo1 clo2) qed show ?thesis by (rule lebesgue_closedin [of S]) (force intro: * S clo)+ qed show ?thesis by (intro sets sets.Int S sets.countable_UN'' sets.countable_INT'' coQ coA) auto qed ultimately show "?T \ sets lebesgue" by simp let ?M = "(?T - {x \ S. matrix (f' x) $ m $ n \ b} \ ({x \ S. matrix (f' x) $ m $ n \ b} - ?T))" let ?\ = "\x v. \\>0. \e>0. \y \ S-{x}. norm (x - y) < e \ \v \ (y - x)\ < \ * norm (x - y)" have nN: "negligible {x \ S. \v\0. ?\ x v}" unfolding negligible_eq_zero_density proof clarsimp fix x v and r e :: "real" assume "x \ S" "v \ 0" "r > 0" "e > 0" and Theta [rule_format]: "?\ x v" moreover have "(norm v * e / 2) / CARD('m) ^ CARD('m) > 0" by (simp add: \v \ 0\ \e > 0\) ultimately obtain d where "d > 0" and dless: "\y. \y \ S - {x}; norm (x - y) < d\ \ \v \ (y - x)\ < ((norm v * e / 2) / CARD('m) ^ CARD('m)) * norm (x - y)" by metis let ?W = "ball x (min d r) \ {y. \v \ (y - x)\ < (norm v * e/2 * min d r) / CARD('m) ^ CARD('m)}" have "open {x. \v \ (x - a)\ < b}" for a b by (intro open_Collect_less continuous_intros) show "\d>0. d \ r \ (\U. {x' \ S. \v\0. ?\ x' v} \ ball x d \ U \ U \ lmeasurable \ measure lebesgue U < e * content (ball x d))" proof (intro exI conjI) show "0 < min d r" "min d r \ r" using \r > 0\ \d > 0\ by auto show "{x' \ S. \v. v \ 0 \ (\\>0. \e>0. \z\S - {x'}. norm (x' - z) < e \ \v \ (z - x')\ < \ * norm (x' - z))} \ ball x (min d r) \ ?W" proof (clarsimp simp: dist_norm norm_minus_commute) fix y w assume "y \ S" "w \ 0" and less [rule_format]: "\\>0. \e>0. \z\S - {y}. norm (y - z) < e \ \w \ (z - y)\ < \ * norm (y - z)" and d: "norm (y - x) < d" and r: "norm (y - x) < r" show "\v \ (y - x)\ < norm v * e * min d r / (2 * real CARD('m) ^ CARD('m))" proof (cases "y = x") case True with \r > 0\ \d > 0\ \e > 0\ \v \ 0\ show ?thesis by simp next case False have "\v \ (y - x)\ < norm v * e / 2 / real (CARD('m) ^ CARD('m)) * norm (x - y)" apply (rule dless) using False \y \ S\ d by (auto simp: norm_minus_commute) also have "\ \ norm v * e * min d r / (2 * real CARD('m) ^ CARD('m))" using d r \e > 0\ by (simp add: field_simps norm_minus_commute mult_left_mono) finally show ?thesis . qed qed show "?W \ lmeasurable" by (simp add: fmeasurable_Int_fmeasurable borel_open) obtain k::'m where True by metis obtain T where T: "orthogonal_transformation T" and v: "v = T(norm v *\<^sub>R axis k (1::real))" using rotation_rightward_line by metis define b where "b \ norm v" have "b > 0" using \v \ 0\ by (auto simp: b_def) obtain eqb: "inv T v = b *\<^sub>R axis k (1::real)" and "inj T" "bij T" and invT: "orthogonal_transformation (inv T)" by (metis UNIV_I b_def T v bij_betw_inv_into_left orthogonal_transformation_inj orthogonal_transformation_bij orthogonal_transformation_inv) let ?v = "\ i. min d r / CARD('m)" let ?v' = "\ i. if i = k then (e/2 * min d r) / CARD('m) ^ CARD('m) else min d r" let ?x' = "inv T x" let ?W' = "(ball ?x' (min d r) \ {y. \(y - ?x')$k\ < e * min d r / (2 * CARD('m) ^ CARD('m))})" have abs: "x - e \ y \ y \ x + e \ abs(y - x) \ e" for x y e::real by auto have "?W = T ` ?W'" proof - have 1: "T ` (ball (inv T x) (min d r)) = ball x (min d r)" by (simp add: T image_orthogonal_transformation_ball orthogonal_transformation_surj surj_f_inv_f) have 2: "{y. \v \ (y - x)\ < b * e * min d r / (2 * real CARD('m) ^ CARD('m))} = T ` {y. \y $ k - ?x' $ k\ < e * min d r / (2 * real CARD('m) ^ CARD('m))}" proof - have *: "\T (b *\<^sub>R axis k 1) \ (y - x)\ = b * \inv T y $ k - ?x' $ k\" for y proof - have "\T (b *\<^sub>R axis k 1) \ (y - x)\ = \(b *\<^sub>R axis k 1) \ inv T (y - x)\" by (metis (no_types, hide_lams) b_def eqb invT orthogonal_transformation_def v) also have "\ = b * \(axis k 1) \ inv T (y - x)\" using \b > 0\ by (simp add: abs_mult) also have "\ = b * \inv T y $ k - ?x' $ k\" using orthogonal_transformation_linear [OF invT] by (simp add: inner_axis' linear_diff) finally show ?thesis by simp qed show ?thesis using v b_def [symmetric] using \b > 0\ by (simp add: * bij_image_Collect_eq [OF \bij T\] mult_less_cancel_left_pos times_divide_eq_right [symmetric] del: times_divide_eq_right) qed show ?thesis using \b > 0\ by (simp add: image_Int \inj T\ 1 2 b_def [symmetric]) qed moreover have "?W' \ lmeasurable" by (auto intro: fmeasurable_Int_fmeasurable) ultimately have "measure lebesgue ?W = measure lebesgue ?W'" by (metis measure_orthogonal_image T) also have "\ \ measure lebesgue (cbox (?x' - ?v') (?x' + ?v'))" proof (rule measure_mono_fmeasurable) show "?W' \ cbox (?x' - ?v') (?x' + ?v')" apply (clarsimp simp add: mem_box_cart abs dist_norm norm_minus_commute simp del: min_less_iff_conj min.bounded_iff) by (metis component_le_norm_cart less_eq_real_def le_less_trans vector_minus_component) qed auto also have "\ \ e/2 * measure lebesgue (cbox (?x' - ?v) (?x' + ?v))" proof - have "cbox (?x' - ?v) (?x' + ?v) \ {}" using \r > 0\ \d > 0\ by (auto simp: interval_eq_empty_cart divide_less_0_iff) with \r > 0\ \d > 0\ \e > 0\ show ?thesis apply (simp add: content_cbox_if_cart mem_box_cart) apply (auto simp: prod_nonneg) apply (simp add: abs if_distrib prod.delta_remove field_simps power_diff split: if_split_asm) done qed also have "\ \ e/2 * measure lebesgue (cball ?x' (min d r))" proof (rule mult_left_mono [OF measure_mono_fmeasurable]) have *: "norm (?x' - y) \ min d r" if y: "\i. \?x' $ i - y $ i\ \ min d r / real CARD('m)" for y proof - have "norm (?x' - y) \ (\i\UNIV. \(?x' - y) $ i\)" by (rule norm_le_l1_cart) also have "\ \ real CARD('m) * (min d r / real CARD('m))" by (rule sum_bounded_above) (use y in auto) finally show ?thesis by simp qed show "cbox (?x' - ?v) (?x' + ?v) \ cball ?x' (min d r)" apply (clarsimp simp only: mem_box_cart dist_norm mem_cball intro!: *) by (simp add: abs_diff_le_iff abs_minus_commute) qed (use \e > 0\ in auto) also have "\ < e * content (cball ?x' (min d r))" using \r > 0\ \d > 0\ \e > 0\ by (auto intro: content_cball_pos) also have "\ = e * content (ball x (min d r))" using \r > 0\ \d > 0\ content_ball_conv_unit_ball[of "min d r" "inv T x"] content_ball_conv_unit_ball[of "min d r" x] by (simp add: content_cball_conv_ball) finally show "measure lebesgue ?W < e * content (ball x (min d r))" . qed qed have *: "(\x. (x \ S) \ (x \ T \ x \ U)) \ (T - U) \ (U - T) \ S" for S T U :: "(real,'m) vec set" by blast have MN: "?M \ {x \ S. \v\0. ?\ x v}" proof (rule *) fix x assume x: "x \ {x \ S. \v\0. ?\ x v}" show "(x \ ?T) \ (x \ {x \ S. matrix (f' x) $ m $ n \ b})" proof (cases "x \ S") case True then have x: "\ ?\ x v" if "v \ 0" for v using x that by force show ?thesis proof (rule iffI; clarsimp) assume b: "\e>0. \d>0. \A. A $ m $ n < b \ (\i j. A $ i $ j \ \) \ (\y\S. norm (y - x) < d \ norm (f y - f x - A *v (y - x)) \ e * norm (y - x))" (is "\e>0. \d>0. \A. ?\ e d A") then have "\k. \d>0. \A. ?\ (1 / Suc k) d A" by (metis (no_types, hide_lams) less_Suc_eq_0_disj of_nat_0_less_iff zero_less_divide_1_iff) then obtain \ A where \: "\k. \ k > 0" and Ab: "\k. A k $ m $ n < b" and A: "\k y. \y \ S; norm (y - x) < \ k\ \ norm (f y - f x - A k *v (y - x)) \ 1/(Suc k) * norm (y - x)" by metis have "\i j. \a. (\n. A n $ i $ j) \ a" proof (intro allI) fix i j have vax: "(A n *v axis j 1) $ i = A n $ i $ j" for n by (metis cart_eq_inner_axis matrix_vector_mul_component) let ?CA = "{x. Cauchy (\n. (A n) *v x)}" have "subspace ?CA" unfolding subspace_def convergent_eq_Cauchy [symmetric] by (force simp: algebra_simps intro: tendsto_intros) then have CA_eq: "?CA = span ?CA" by (metis span_eq_iff) also have "\ = UNIV" proof - have "dim ?CA \ CARD('m)" using dim_subset_UNIV[of ?CA] by auto moreover have "False" if less: "dim ?CA < CARD('m)" proof - obtain d where "d \ 0" and d: "\y. y \ span ?CA \ orthogonal d y" using less by (force intro: orthogonal_to_subspace_exists [of ?CA]) with x [OF \d \ 0\] obtain \ where "\ > 0" and \: "\e. e > 0 \ \y \ S - {x}. norm (x - y) < e \ \ * norm (x - y) \ \d \ (y - x)\" by (fastforce simp: not_le Bex_def) obtain \ z where \Sx: "\i. \ i \ S - {x}" and \le: "\i. \ * norm(\ i - x) \ \d \ (\ i - x)\" and \x: "\ \ x" and z: "(\n. (\ n - x) /\<^sub>R norm (\ n - x)) \ z" proof - have "\\. (\i. (\ i \ S - {x} \ \ * norm(\ i - x) \ \d \ (\ i - x)\ \ norm(\ i - x) < 1/Suc i) \ norm(\(Suc i) - x) < norm(\ i - x))" proof (rule dependent_nat_choice) show "\y. y \ S - {x} \ \ * norm (y - x) \ \d \ (y - x)\ \ norm (y - x) < 1 / Suc 0" using \ [of 1] by (auto simp: dist_norm norm_minus_commute) next fix y i assume "y \ S - {x} \ \ * norm (y - x) \ \d \ (y - x)\ \ norm (y - x) < 1/Suc i" then have "min (norm(y - x)) (1/((Suc i) + 1)) > 0" by auto then obtain y' where "y' \ S - {x}" and y': "norm (x - y') < min (norm (y - x)) (1/((Suc i) + 1))" "\ * norm (x - y') \ \d \ (y' - x)\" using \ by metis with \ show "\y'. (y' \ S - {x} \ \ * norm (y' - x) \ \d \ (y' - x)\ \ norm (y' - x) < 1/(Suc (Suc i))) \ norm (y' - x) < norm (y - x)" by (auto simp: dist_norm norm_minus_commute) qed then obtain \ where \Sx: "\i. \ i \ S - {x}" and \le: "\i. \ * norm(\ i - x) \ \d \ (\ i - x)\" and \conv: "\i. norm(\ i - x) < 1/(Suc i)" by blast let ?f = "\i. (\ i - x) /\<^sub>R norm (\ i - x)" have "?f i \ sphere 0 1" for i using \Sx by auto then obtain l \ where "l \ sphere 0 1" "strict_mono \" and l: "(?f \ \) \ l" using compact_sphere [of "0::(real,'m) vec" 1] unfolding compact_def by meson show thesis proof show "(\ \ \) i \ S - {x}" "\ * norm ((\ \ \) i - x) \ \d \ ((\ \ \) i - x)\" for i using \Sx \le by auto have "\ \ x" proof (clarsimp simp add: LIMSEQ_def dist_norm) fix r :: "real" assume "r > 0" with real_arch_invD obtain no where "no \ 0" "real no > 1/r" by (metis divide_less_0_1_iff not_less_iff_gr_or_eq of_nat_0_eq_iff reals_Archimedean2) with \conv show "\no. \n\no. norm (\ n - x) < r" by (metis \r > 0\ add.commute divide_inverse inverse_inverse_eq inverse_less_imp_less less_trans mult.left_neutral nat_le_real_less of_nat_Suc) qed with \strict_mono \\ show "(\ \ \) \ x" by (metis LIMSEQ_subseq_LIMSEQ) show "(\n. ((\ \ \) n - x) /\<^sub>R norm ((\ \ \) n - x)) \ l" using l by (auto simp: o_def) qed qed have "isCont (\x. (\d \ x\ - \)) z" by (intro continuous_intros) from isCont_tendsto_compose [OF this z] have lim: "(\y. \d \ ((\ y - x) /\<^sub>R norm (\ y - x))\ - \) \ \d \ z\ - \" by auto moreover have "\\<^sub>F i in sequentially. 0 \ \d \ ((\ i - x) /\<^sub>R norm (\ i - x))\ - \" proof (rule eventuallyI) fix n show "0 \ \d \ ((\ n - x) /\<^sub>R norm (\ n - x))\ - \" using \le [of n] \Sx by (auto simp: abs_mult divide_simps) qed ultimately have "\ \ \d \ z\" using tendsto_lowerbound [where a=0] by fastforce have "Cauchy (\n. (A n) *v z)" proof (clarsimp simp add: Cauchy_def) fix \ :: "real" assume "0 < \" then obtain N::nat where "N > 0" and N: "\/2 > 1/N" by (metis half_gt_zero inverse_eq_divide neq0_conv real_arch_inverse) show "\M. \m\M. \n\M. dist (A m *v z) (A n *v z) < \" proof (intro exI allI impI) fix i j assume ij: "N \ i" "N \ j" let ?V = "\i k. A i *v ((\ k - x) /\<^sub>R norm (\ k - x))" have "\\<^sub>F k in sequentially. dist (\ k) x < min (\ i) (\ j)" using \x [unfolded tendsto_iff] by (meson min_less_iff_conj \) then have even: "\\<^sub>F k in sequentially. norm (?V i k - ?V j k) - 2 / N \ 0" proof (rule eventually_mono, clarsimp) fix p assume p: "dist (\ p) x < \ i" "dist (\ p) x < \ j" let ?C = "\k. f (\ p) - f x - A k *v (\ p - x)" have "norm ((A i - A j) *v (\ p - x)) = norm (?C j - ?C i)" by (simp add: algebra_simps) also have "\ \ norm (?C j) + norm (?C i)" using norm_triangle_ineq4 by blast also have "\ \ 1/(Suc j) * norm (\ p - x) + 1/(Suc i) * norm (\ p - x)" by (metis A Diff_iff \Sx dist_norm p add_mono) also have "\ \ 1/N * norm (\ p - x) + 1/N * norm (\ p - x)" apply (intro add_mono mult_right_mono) using ij \N > 0\ by (auto simp: field_simps) also have "\ = 2 / N * norm (\ p - x)" by simp finally have no_le: "norm ((A i - A j) *v (\ p - x)) \ 2 / N * norm (\ p - x)" . have "norm (?V i p - ?V j p) = norm ((A i - A j) *v ((\ p - x) /\<^sub>R norm (\ p - x)))" by (simp add: algebra_simps) also have "\ = norm ((A i - A j) *v (\ p - x)) / norm (\ p - x)" by (simp add: divide_inverse matrix_vector_mult_scaleR) also have "\ \ 2 / N" using no_le by (auto simp: field_split_simps) finally show "norm (?V i p - ?V j p) \ 2 / N" . qed have "isCont (\w. (norm(A i *v w - A j *v w) - 2 / N)) z" by (intro continuous_intros) from isCont_tendsto_compose [OF this z] have lim: "(\w. norm (A i *v ((\ w - x) /\<^sub>R norm (\ w - x)) - A j *v ((\ w - x) /\<^sub>R norm (\ w - x))) - 2 / N) \ norm (A i *v z - A j *v z) - 2 / N" by auto have "dist (A i *v z) (A j *v z) \ 2 / N" using tendsto_upperbound [OF lim even] by (auto simp: dist_norm) with N show "dist (A i *v z) (A j *v z) < \" by linarith qed qed then have "d \ z = 0" using CA_eq d orthogonal_def by auto then show False using \0 < \\ \\ \ \d \ z\\ by auto qed ultimately show ?thesis using dim_eq_full by fastforce qed finally have "?CA = UNIV" . then have "Cauchy (\n. (A n) *v axis j 1)" by auto then obtain L where "(\n. A n *v axis j 1) \ L" by (auto simp: Cauchy_convergent_iff convergent_def) then have "(\x. (A x *v axis j 1) $ i) \ L $ i" by (rule tendsto_vec_nth) then show "\a. (\n. A n $ i $ j) \ a" by (force simp: vax) qed then obtain B where B: "\i j. (\n. A n $ i $ j) \ B $ i $ j" by (auto simp: lambda_skolem) have lin_df: "linear (f' x)" and lim_df: "((\y. (1 / norm (y - x)) *\<^sub>R (f y - (f x + f' x (y - x)))) \ 0) (at x within S)" using \x \ S\ assms by (auto simp: has_derivative_within linear_linear) moreover interpret linear "f' x" by fact have "(matrix (f' x) - B) *v w = 0" for w proof (rule lemma_partial_derivatives [of "(*v) (matrix (f' x) - B)"]) show "linear ((*v) (matrix (f' x) - B))" by (rule matrix_vector_mul_linear) have "((\y. ((f x + f' x (y - x)) - f y) /\<^sub>R norm (y - x)) \ 0) (at x within S)" using tendsto_minus [OF lim_df] by (simp add: field_split_simps) then show "((\y. (matrix (f' x) - B) *v (y - x) /\<^sub>R norm (y - x)) \ 0) (at x within S)" proof (rule Lim_transform) have "((\y. ((f y + B *v x - (f x + B *v y)) /\<^sub>R norm (y - x))) \ 0) (at x within S)" proof (clarsimp simp add: Lim_within dist_norm) fix e :: "real" assume "e > 0" then obtain q::nat where "q \ 0" and qe2: "1/q < e/2" by (metis divide_pos_pos inverse_eq_divide real_arch_inverse zero_less_numeral) let ?g = "\p. sum (\i. sum (\j. abs((A p - B)$i$j)) UNIV) UNIV" have "(\k. onorm (\y. (A k - B) *v y)) \ 0" proof (rule Lim_null_comparison) show "\\<^sub>F k in sequentially. norm (onorm (\y. (A k - B) *v y)) \ ?g k" proof (rule eventually_sequentiallyI) fix k :: "nat" assume "0 \ k" have "0 \ onorm ((*v) (A k - B))" using matrix_vector_mul_bounded_linear by (rule onorm_pos_le) then show "norm (onorm ((*v) (A k - B))) \ (\i\UNIV. \j\UNIV. \(A k - B) $ i $ j\)" by (simp add: onorm_le_matrix_component_sum del: vector_minus_component) qed next show "?g \ 0" using B Lim_null tendsto_rabs_zero_iff by (fastforce intro!: tendsto_null_sum) qed with \e > 0\ obtain p where "\n. n \ p \ \onorm ((*v) (A n - B))\ < e/2" unfolding lim_sequentially by (metis diff_zero dist_real_def divide_pos_pos zero_less_numeral) then have pqe2: "\onorm ((*v) (A (p + q) - B))\ < e/2" (*17 [`abs (onorm (\y. A (p + q) ** y - B ** y)) < e / &2`]*) using le_add1 by blast show "\d>0. \y\S. y \ x \ norm (y - x) < d \ inverse (norm (y - x)) * norm (f y + B *v x - (f x + B *v y)) < e" proof (intro exI, safe) show "0 < \(p + q)" by (simp add: \) next fix y assume y: "y \ S" "norm (y - x) < \(p + q)" and "y \ x" have *: "\norm(b - c) < e - d; norm(y - x - b) \ d\ \ norm(y - x - c) < e" for b c d e x and y:: "real^'n" using norm_triangle_ineq2 [of "y - x - c" "y - x - b"] by simp have "norm (f y - f x - B *v (y - x)) < e * norm (y - x)" proof (rule *) show "norm (f y - f x - A (p + q) *v (y - x)) \ norm (y - x) / (Suc (p + q))" using A [OF y] by simp have "norm (A (p + q) *v (y - x) - B *v (y - x)) \ onorm(\x. (A(p + q) - B) *v x) * norm(y - x)" by (metis linear_linear matrix_vector_mul_linear matrix_vector_mult_diff_rdistrib onorm) also have "\ < (e/2) * norm (y - x)" using \y \ x\ pqe2 by auto also have "\ \ (e - 1 / (Suc (p + q))) * norm (y - x)" proof (rule mult_right_mono) have "1 / Suc (p + q) \ 1 / q" using \q \ 0\ by (auto simp: field_split_simps) also have "\ < e/2" using qe2 by auto finally show "e / 2 \ e - 1 / real (Suc (p + q))" by linarith qed auto finally show "norm (A (p + q) *v (y - x) - B *v (y - x)) < e * norm (y - x) - norm (y - x) / real (Suc (p + q))" by (simp add: algebra_simps) qed then show "inverse (norm (y - x)) * norm (f y + B *v x - (f x + B *v y)) < e" using \y \ x\ by (simp add: field_split_simps algebra_simps) qed qed then show "((\y. (matrix (f' x) - B) *v (y - x) /\<^sub>R norm (y - x) - (f x + f' x (y - x) - f y) /\<^sub>R norm (y - x)) \ 0) (at x within S)" by (simp add: algebra_simps diff lin_df scalar_mult_eq_scaleR) qed qed (use x in \simp; auto simp: not_less\) ultimately have "f' x = (*v) B" by (force simp: algebra_simps scalar_mult_eq_scaleR) show "matrix (f' x) $ m $ n \ b" proof (rule tendsto_upperbound [of "\i. (A i $ m $ n)" _ sequentially]) show "(\i. A i $ m $ n) \ matrix (f' x) $ m $ n" by (simp add: B \f' x = (*v) B\) show "\\<^sub>F i in sequentially. A i $ m $ n \ b" by (simp add: Ab less_eq_real_def) qed auto next fix e :: "real" assume "x \ S" and b: "matrix (f' x) $ m $ n \ b" and "e > 0" then obtain d where "d>0" and d: "\y. y\S \ 0 < dist y x \ dist y x < d \ norm (f y - f x - f' x (y - x)) / (norm (y - x)) < e/2" using f [OF \x \ S\] by (simp add: Deriv.has_derivative_at_within Lim_within) (auto simp add: field_simps dest: spec [of _ "e/2"]) let ?A = "matrix(f' x) - (\ i j. if i = m \ j = n then e / 4 else 0)" obtain B where BRats: "\i j. B$i$j \ \" and Bo_e6: "onorm((*v) (?A - B)) < e/6" using matrix_rational_approximation \e > 0\ by (metis zero_less_divide_iff zero_less_numeral) show "\d>0. \A. A $ m $ n < b \ (\i j. A $ i $ j \ \) \ (\y\S. norm (y - x) < d \ norm (f y - f x - A *v (y - x)) \ e * norm (y - x))" proof (intro exI conjI ballI allI impI) show "d>0" by (rule \d>0\) show "B $ m $ n < b" proof - have "\matrix ((*v) (?A - B)) $ m $ n\ \ onorm ((*v) (?A - B))" using component_le_onorm [OF matrix_vector_mul_linear, of _ m n] by metis then show ?thesis using b Bo_e6 by simp qed show "B $ i $ j \ \" for i j using BRats by auto show "norm (f y - f x - B *v (y - x)) \ e * norm (y - x)" if "y \ S" and y: "norm (y - x) < d" for y proof (cases "y = x") case True then show ?thesis by simp next case False have *: "norm(d' - d) \ e/2 \ norm(y - (x + d')) < e/2 \ norm(y - x - d) \ e" for d d' e and x y::"real^'n" using norm_triangle_le [of "d' - d" "y - (x + d')"] by simp show ?thesis proof (rule *) have split246: "\norm y \ e / 6; norm(x - y) \ e / 4\ \ norm x \ e/2" if "e > 0" for e and x y :: "real^'n" using norm_triangle_le [of y "x-y" "e/2"] \e > 0\ by simp have "linear (f' x)" using True f has_derivative_linear by blast then have "norm (f' x (y - x) - B *v (y - x)) = norm ((matrix (f' x) - B) *v (y - x))" by (simp add: matrix_vector_mult_diff_rdistrib) also have "\ \ (e * norm (y - x)) / 2" proof (rule split246) have "norm ((?A - B) *v (y - x)) / norm (y - x) \ onorm(\x. (?A - B) *v x)" by (rule le_onorm) auto also have "\ < e/6" by (rule Bo_e6) finally have "norm ((?A - B) *v (y - x)) / norm (y - x) < e / 6" . then show "norm ((?A - B) *v (y - x)) \ e * norm (y - x) / 6" by (simp add: field_split_simps False) have "norm ((matrix (f' x) - B) *v (y - x) - ((?A - B) *v (y - x))) = norm ((\ i j. if i = m \ j = n then e / 4 else 0) *v (y - x))" by (simp add: algebra_simps) also have "\ = norm((e/4) *\<^sub>R (y - x)$n *\<^sub>R axis m (1::real))" proof - have "(\j\UNIV. (if i = m \ j = n then e / 4 else 0) * (y $ j - x $ j)) * 4 = e * (y $ n - x $ n) * axis m 1 $ i" for i proof (cases "i=m") case True then show ?thesis by (auto simp: if_distrib [of "\z. z * _"] cong: if_cong) next case False then show ?thesis by (simp add: axis_def) qed then have "(\ i j. if i = m \ j = n then e / 4 else 0) *v (y - x) = (e/4) *\<^sub>R (y - x)$n *\<^sub>R axis m (1::real)" by (auto simp: vec_eq_iff matrix_vector_mult_def) then show ?thesis by metis qed also have "\ \ e * norm (y - x) / 4" using \e > 0\ apply (simp add: norm_mult abs_mult) by (metis component_le_norm_cart vector_minus_component) finally show "norm ((matrix (f' x) - B) *v (y - x) - ((?A - B) *v (y - x))) \ e * norm (y - x) / 4" . show "0 < e * norm (y - x)" by (simp add: False \e > 0\) qed finally show "norm (f' x (y - x) - B *v (y - x)) \ (e * norm (y - x)) / 2" . show "norm (f y - (f x + f' x (y - x))) < (e * norm (y - x)) / 2" using False d [OF \y \ S\] y by (simp add: dist_norm field_simps) qed qed qed qed qed auto qed show "negligible ?M" using negligible_subset [OF nN MN] . qed then show ?thesis by (simp add: borel_measurable_vimage_halfspace_component_le sets_restrict_space_iff assms) qed theorem borel_measurable_det_Jacobian: fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes S: "S \ sets lebesgue" and f: "\x. x \ S \ (f has_derivative f' x) (at x within S)" shows "(\x. det(matrix(f' x))) \ borel_measurable (lebesgue_on S)" unfolding det_def by (intro measurable) (auto intro: f borel_measurable_partial_derivatives [OF S]) text\The localisation wrt S uses the same argument for many similar results.\ (*See HOL Light's MEASURABLE_ON_LEBESGUE_MEASURABLE_PREIMAGE_BOREL, etc.*) theorem borel_measurable_lebesgue_on_preimage_borel: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "S \ sets lebesgue" shows "f \ borel_measurable (lebesgue_on S) \ (\T. T \ sets borel \ {x \ S. f x \ T} \ sets lebesgue)" proof - have "{x. (if x \ S then f x else 0) \ T} \ sets lebesgue \ {x \ S. f x \ T} \ sets lebesgue" if "T \ sets borel" for T proof (cases "0 \ T") case True then have "{x \ S. f x \ T} = {x. (if x \ S then f x else 0) \ T} \ S" "{x. (if x \ S then f x else 0) \ T} = {x \ S. f x \ T} \ -S" by auto then show ?thesis by (metis (no_types, lifting) Compl_in_sets_lebesgue assms sets.Int sets.Un) next case False then have "{x. (if x \ S then f x else 0) \ T} = {x \ S. f x \ T}" by auto then show ?thesis by auto qed then show ?thesis unfolding borel_measurable_lebesgue_preimage_borel borel_measurable_if [OF assms, symmetric] by blast qed lemma sets_lebesgue_almost_borel: assumes "S \ sets lebesgue" obtains B N where "B \ sets borel" "negligible N" "B \ N = S" proof - obtain T N N' where "S = T \ N" "N \ N'" "N' \ null_sets lborel" "T \ sets borel" using sets_completionE [OF assms] by auto then show thesis by (metis negligible_iff_null_sets negligible_subset null_sets_completionI that) qed lemma double_lebesgue_sets: assumes S: "S \ sets lebesgue" and T: "T \ sets lebesgue" and fim: "f ` S \ T" shows "(\U. U \ sets lebesgue \ U \ T \ {x \ S. f x \ U} \ sets lebesgue) \ f \ borel_measurable (lebesgue_on S) \ (\U. negligible U \ U \ T \ {x \ S. f x \ U} \ sets lebesgue)" (is "?lhs \ _ \ ?rhs") unfolding borel_measurable_lebesgue_on_preimage_borel [OF S] proof (intro iffI allI conjI impI, safe) fix V :: "'b set" assume *: "\U. U \ sets lebesgue \ U \ T \ {x \ S. f x \ U} \ sets lebesgue" and "V \ sets borel" then have V: "V \ sets lebesgue" by simp have "{x \ S. f x \ V} = {x \ S. f x \ T \ V}" using fim by blast also have "{x \ S. f x \ T \ V} \ sets lebesgue" using T V * le_inf_iff by blast finally show "{x \ S. f x \ V} \ sets lebesgue" . next fix U :: "'b set" assume "\U. U \ sets lebesgue \ U \ T \ {x \ S. f x \ U} \ sets lebesgue" "negligible U" "U \ T" then show "{x \ S. f x \ U} \ sets lebesgue" using negligible_imp_sets by blast next fix U :: "'b set" assume 1 [rule_format]: "(\T. T \ sets borel \ {x \ S. f x \ T} \ sets lebesgue)" and 2 [rule_format]: "\U. negligible U \ U \ T \ {x \ S. f x \ U} \ sets lebesgue" and "U \ sets lebesgue" "U \ T" then obtain C N where C: "C \ sets borel \ negligible N \ C \ N = U" using sets_lebesgue_almost_borel by metis then have "{x \ S. f x \ C} \ sets lebesgue" by (blast intro: 1) moreover have "{x \ S. f x \ N} \ sets lebesgue" using C \U \ T\ by (blast intro: 2) moreover have "{x \ S. f x \ C \ N} = {x \ S. f x \ C} \ {x \ S. f x \ N}" by auto ultimately show "{x \ S. f x \ U} \ sets lebesgue" using C by auto qed subsection\Simplest case of Sard's theorem (we don't need continuity of derivative)\ lemma Sard_lemma00: fixes P :: "'b::euclidean_space set" assumes "a \ 0" and a: "a *\<^sub>R i \ 0" and i: "i \ Basis" and P: "P \ {x. a *\<^sub>R i \ x = 0}" and "0 \ m" "0 \ e" obtains S where "S \ lmeasurable" and "{z. norm z \ m \ (\t \ P. norm(z - t) \ e)} \ S" and "measure lebesgue S \ (2 * e) * (2 * m) ^ (DIM('b) - 1)" proof - have "a > 0" using assms by simp let ?v = "(\j\Basis. (if j = i then e else m) *\<^sub>R j)" show thesis proof have "- e \ x \ i" "x \ i \ e" if "t \ P" "norm (x - t) \ e" for x t using \a > 0\ that Basis_le_norm [of i "x-t"] P i by (auto simp: inner_commute algebra_simps) moreover have "- m \ x \ j" "x \ j \ m" if "norm x \ m" "t \ P" "norm (x - t) \ e" "j \ Basis" and "j \ i" for x t j using that Basis_le_norm [of j x] by auto ultimately show "{z. norm z \ m \ (\t\P. norm (z - t) \ e)} \ cbox (-?v) ?v" by (auto simp: mem_box) have *: "\k\Basis. - ?v \ k \ ?v \ k" using \0 \ m\ \0 \ e\ by (auto simp: inner_Basis) have 2: "2 ^ DIM('b) = 2 * 2 ^ (DIM('b) - Suc 0)" by (metis DIM_positive Suc_pred power_Suc) show "measure lebesgue (cbox (-?v) ?v) \ 2 * e * (2 * m) ^ (DIM('b) - 1)" using \i \ Basis\ by (simp add: content_cbox [OF *] prod.distrib prod.If_cases Diff_eq [symmetric] 2) qed blast qed text\As above, but reorienting the vector (HOL Light's @text{GEOM\_BASIS\_MULTIPLE\_TAC})\ lemma Sard_lemma0: fixes P :: "(real^'n::{finite,wellorder}) set" assumes "a \ 0" and P: "P \ {x. a \ x = 0}" and "0 \ m" "0 \ e" obtains S where "S \ lmeasurable" and "{z. norm z \ m \ (\t \ P. norm(z - t) \ e)} \ S" and "measure lebesgue S \ (2 * e) * (2 * m) ^ (CARD('n) - 1)" proof - obtain T and k::'n where T: "orthogonal_transformation T" and a: "a = T (norm a *\<^sub>R axis k (1::real))" using rotation_rightward_line by metis have Tinv [simp]: "T (inv T x) = x" for x by (simp add: T orthogonal_transformation_surj surj_f_inv_f) obtain S where S: "S \ lmeasurable" and subS: "{z. norm z \ m \ (\t \ T-`P. norm(z - t) \ e)} \ S" and mS: "measure lebesgue S \ (2 * e) * (2 * m) ^ (CARD('n) - 1)" proof (rule Sard_lemma00 [of "norm a" "axis k (1::real)" "T-`P" m e]) have "norm a *\<^sub>R axis k 1 \ x = 0" if "T x \ P" for x proof - have "a \ T x = 0" using P that by blast then show ?thesis by (metis (no_types, lifting) T a orthogonal_orthogonal_transformation orthogonal_def) qed then show "T -` P \ {x. norm a *\<^sub>R axis k 1 \ x = 0}" by auto qed (use assms T in auto) show thesis proof show "T ` S \ lmeasurable" using S measurable_orthogonal_image T by blast have "{z. norm z \ m \ (\t\P. norm (z - t) \ e)} \ T ` {z. norm z \ m \ (\t\T -` P. norm (z - t) \ e)}" proof clarsimp fix x t assume "norm x \ m" "t \ P" "norm (x - t) \ e" then have "norm (inv T x) \ m" using orthogonal_transformation_inv [OF T] by (simp add: orthogonal_transformation_norm) moreover have "\t\T -` P. norm (inv T x - t) \ e" proof have "T (inv T x - inv T t) = x - t" using T linear_diff orthogonal_transformation_def by (metis (no_types, hide_lams) Tinv) then have "norm (inv T x - inv T t) = norm (x - t)" by (metis T orthogonal_transformation_norm) then show "norm (inv T x - inv T t) \ e" using \norm (x - t) \ e\ by linarith next show "inv T t \ T -` P" using \t \ P\ by force qed ultimately show "x \ T ` {z. norm z \ m \ (\t\T -` P. norm (z - t) \ e)}" by force qed then show "{z. norm z \ m \ (\t\P. norm (z - t) \ e)} \ T ` S" using image_mono [OF subS] by (rule order_trans) show "measure lebesgue (T ` S) \ 2 * e * (2 * m) ^ (CARD('n) - 1)" using mS T by (simp add: S measure_orthogonal_image) qed qed text\As above, but translating the sets (HOL Light's @text{GEN\_GEOM\_ORIGIN\_TAC})\ lemma Sard_lemma1: fixes P :: "(real^'n::{finite,wellorder}) set" assumes P: "dim P < CARD('n)" and "0 \ m" "0 \ e" obtains S where "S \ lmeasurable" and "{z. norm(z - w) \ m \ (\t \ P. norm(z - w - t) \ e)} \ S" and "measure lebesgue S \ (2 * e) * (2 * m) ^ (CARD('n) - 1)" proof - obtain a where "a \ 0" "P \ {x. a \ x = 0}" using lowdim_subset_hyperplane [of P] P span_base by auto then obtain S where S: "S \ lmeasurable" and subS: "{z. norm z \ m \ (\t \ P. norm(z - t) \ e)} \ S" and mS: "measure lebesgue S \ (2 * e) * (2 * m) ^ (CARD('n) - 1)" by (rule Sard_lemma0 [OF _ _ \0 \ m\ \0 \ e\]) show thesis proof show "(+)w ` S \ lmeasurable" by (metis measurable_translation S) show "{z. norm (z - w) \ m \ (\t\P. norm (z - w - t) \ e)} \ (+)w ` S" using subS by force show "measure lebesgue ((+)w ` S) \ 2 * e * (2 * m) ^ (CARD('n) - 1)" by (metis measure_translation mS) qed qed lemma Sard_lemma2: fixes f :: "real^'m::{finite,wellorder} \ real^'n::{finite,wellorder}" assumes mlen: "CARD('m) \ CARD('n)" (is "?m \ ?n") and "B > 0" "bounded S" and derS: "\x. x \ S \ (f has_derivative f' x) (at x within S)" and rank: "\x. x \ S \ rank(matrix(f' x)) < CARD('n)" and B: "\x. x \ S \ onorm(f' x) \ B" shows "negligible(f ` S)" proof - have lin_f': "\x. x \ S \ linear(f' x)" using derS has_derivative_linear by blast show ?thesis proof (clarsimp simp add: negligible_outer_le) fix e :: "real" assume "e > 0" obtain c where csub: "S \ cbox (- (vec c)) (vec c)" and "c > 0" proof - obtain b where b: "\x. x \ S \ norm x \ b" using \bounded S\ by (auto simp: bounded_iff) show thesis proof have "- \b\ - 1 \ x $ i \ x $ i \ \b\ + 1" if "x \ S" for x i using component_le_norm_cart [of x i] b [OF that] by auto then show "S \ cbox (- vec (\b\ + 1)) (vec (\b\ + 1))" by (auto simp: mem_box_cart) qed auto qed then have box_cc: "box (- (vec c)) (vec c) \ {}" and cbox_cc: "cbox (- (vec c)) (vec c) \ {}" by (auto simp: interval_eq_empty_cart) obtain d where "d > 0" "d \ B" and d: "(d * 2) * (4 * B) ^ (?n - 1) \ e / (2*c) ^ ?m / ?m ^ ?m" apply (rule that [of "min B (e / (2*c) ^ ?m / ?m ^ ?m / (4 * B) ^ (?n - 1) / 2)"]) using \B > 0\ \c > 0\ \e > 0\ by (simp_all add: divide_simps min_mult_distrib_right) have "\r. 0 < r \ r \ 1/2 \ (x \ S \ (\y. y \ S \ norm(y - x) < r \ norm(f y - f x - f' x (y - x)) \ d * norm(y - x)))" for x proof (cases "x \ S") case True then obtain r where "r > 0" and "\y. \y \ S; norm (y - x) < r\ \ norm (f y - f x - f' x (y - x)) \ d * norm (y - x)" using derS \d > 0\ by (force simp: has_derivative_within_alt) then show ?thesis by (rule_tac x="min r (1/2)" in exI) simp next case False then show ?thesis by (rule_tac x="1/2" in exI) simp qed then obtain r where r12: "\x. 0 < r x \ r x \ 1/2" and r: "\x y. \x \ S; y \ S; norm(y - x) < r x\ \ norm(f y - f x - f' x (y - x)) \ d * norm(y - x)" by metis then have ga: "gauge (\x. ball x (r x))" by (auto simp: gauge_def) obtain \ where \: "countable \" and sub_cc: "\\ \ cbox (- vec c) (vec c)" and cbox: "\K. K \ \ \ interior K \ {} \ (\u v. K = cbox u v)" and djointish: "pairwise (\A B. interior A \ interior B = {}) \" and covered: "\K. K \ \ \ \x \ S \ K. K \ ball x (r x)" and close: "\u v. cbox u v \ \ \ \n. \i::'m. v $ i - u $ i = 2*c / 2^n" and covers: "S \ \\" apply (rule covering_lemma [OF csub box_cc ga]) apply (auto simp: Basis_vec_def cart_eq_inner_axis [symmetric]) done let ?\ = "measure lebesgue" have "\T. T \ lmeasurable \ f ` (K \ S) \ T \ ?\ T \ e / (2*c) ^ ?m * ?\ K" if "K \ \" for K proof - obtain u v where uv: "K = cbox u v" using cbox \K \ \\ by blast then have uv_ne: "cbox u v \ {}" using cbox that by fastforce obtain x where x: "x \ S \ cbox u v" "cbox u v \ ball x (r x)" using \K \ \\ covered uv by blast then have "dim (range (f' x)) < ?n" using rank_dim_range [of "matrix (f' x)"] x rank[of x] by (auto simp: matrix_works scalar_mult_eq_scaleR lin_f') then obtain T where T: "T \ lmeasurable" and subT: "{z. norm(z - f x) \ (2 * B) * norm(v - u) \ (\t \ range (f' x). norm(z - f x - t) \ d * norm(v - u))} \ T" and measT: "?\ T \ (2 * (d * norm(v - u))) * (2 * ((2 * B) * norm(v - u))) ^ (?n - 1)" (is "_ \ ?DVU") apply (rule Sard_lemma1 [of "range (f' x)" "(2 * B) * norm(v - u)" "d * norm(v - u)" "f x"]) using \B > 0\ \d > 0\ by simp_all show ?thesis proof (intro exI conjI) have "f ` (K \ S) \ {z. norm(z - f x) \ (2 * B) * norm(v - u) \ (\t \ range (f' x). norm(z - f x - t) \ d * norm(v - u))}" unfolding uv proof (clarsimp simp: mult.assoc, intro conjI) fix y assume y: "y \ cbox u v" and "y \ S" then have "norm (y - x) < r x" by (metis dist_norm mem_ball norm_minus_commute subsetCE x(2)) then have le_dyx: "norm (f y - f x - f' x (y - x)) \ d * norm (y - x)" using r [of x y] x \y \ S\ by blast have yx_le: "norm (y - x) \ norm (v - u)" proof (rule norm_le_componentwise_cart) show "norm ((y - x) $ i) \ norm ((v - u) $ i)" for i using x y by (force simp: mem_box_cart dest!: spec [where x=i]) qed have *: "\norm(y - x - z) \ d; norm z \ B; d \ B\ \ norm(y - x) \ 2 * B" for x y z :: "real^'n::_" and d B using norm_triangle_ineq2 [of "y - x" z] by auto show "norm (f y - f x) \ 2 * (B * norm (v - u))" proof (rule * [OF le_dyx]) have "norm (f' x (y - x)) \ onorm (f' x) * norm (y - x)" using onorm [of "f' x" "y-x"] by (meson IntE lin_f' linear_linear x(1)) also have "\ \ B * norm (v - u)" proof (rule mult_mono) show "onorm (f' x) \ B" using B x by blast qed (use \B > 0\ yx_le in auto) finally show "norm (f' x (y - x)) \ B * norm (v - u)" . show "d * norm (y - x) \ B * norm (v - u)" using \B > 0\ by (auto intro: mult_mono [OF \d \ B\ yx_le]) qed show "\t. norm (f y - f x - f' x t) \ d * norm (v - u)" apply (rule_tac x="y-x" in exI) using \d > 0\ yx_le le_dyx mult_left_mono [where c=d] by (meson order_trans real_mult_le_cancel_iff2) qed with subT show "f ` (K \ S) \ T" by blast show "?\ T \ e / (2*c) ^ ?m * ?\ K" proof (rule order_trans [OF measT]) have "?DVU = (d * 2 * (4 * B) ^ (?n - 1)) * norm (v - u)^?n" using \c > 0\ apply (simp add: algebra_simps) by (metis Suc_pred power_Suc zero_less_card_finite) also have "\ \ (e / (2*c) ^ ?m / (?m ^ ?m)) * norm(v - u) ^ ?n" by (rule mult_right_mono [OF d]) auto also have "\ \ e / (2*c) ^ ?m * ?\ K" proof - have "u \ ball (x) (r x)" "v \ ball x (r x)" using box_ne_empty(1) contra_subsetD [OF x(2)] mem_box(2) uv_ne by fastforce+ moreover have "r x \ 1/2" using r12 by auto ultimately have "norm (v - u) \ 1" using norm_triangle_half_r [of x u 1 v] by (metis (no_types, hide_lams) dist_commute dist_norm less_eq_real_def less_le_trans mem_ball) then have "norm (v - u) ^ ?n \ norm (v - u) ^ ?m" by (simp add: power_decreasing [OF mlen]) also have "\ \ ?\ K * real (?m ^ ?m)" proof - obtain n where n: "\i. v$i - u$i = 2 * c / 2^n" using close [of u v] \K \ \\ uv by blast have "norm (v - u) ^ ?m \ (\i\UNIV. \(v - u) $ i\) ^ ?m" by (intro norm_le_l1_cart power_mono) auto also have "\ \ (\i\UNIV. v $ i - u $ i) * real CARD('m) ^ CARD('m)" by (simp add: n field_simps \c > 0\ less_eq_real_def) also have "\ = ?\ K * real (?m ^ ?m)" by (simp add: uv uv_ne content_cbox_cart) finally show ?thesis . qed finally have *: "1 / real (?m ^ ?m) * norm (v - u) ^ ?n \ ?\ K" by (simp add: field_split_simps) show ?thesis using mult_left_mono [OF *, of "e / (2*c) ^ ?m"] \c > 0\ \e > 0\ by auto qed finally show "?DVU \ e / (2*c) ^ ?m * ?\ K" . qed qed (use T in auto) qed then obtain g where meas_g: "\K. K \ \ \ g K \ lmeasurable" and sub_g: "\K. K \ \ \ f ` (K \ S) \ g K" and le_g: "\K. K \ \ \ ?\ (g K) \ e / (2*c)^?m * ?\ K" by metis have le_e: "?\ (\i\\. g i) \ e" if "\ \ \" "finite \" for \ proof - have "?\ (\i\\. g i) \ (\i\\. ?\ (g i))" using meas_g \\ \ \\ by (auto intro: measure_UNION_le [OF \finite \\]) also have "\ \ (\K\\. e / (2*c) ^ ?m * ?\ K)" using \\ \ \\ sum_mono [OF le_g] by (meson le_g subsetCE sum_mono) also have "\ = e / (2*c) ^ ?m * (\K\\. ?\ K)" by (simp add: sum_distrib_left) also have "\ \ e" proof - have "\ division_of \\" proof (rule division_ofI) show "K \ \\" "K \ {}" "\a b. K = cbox a b" if "K \ \" for K using \K \ \\ covered cbox \\ \ \\ by (auto simp: Union_upper) show "interior K \ interior L = {}" if "K \ \" and "L \ \" and "K \ L" for K L by (metis (mono_tags, lifting) \\ \ \\ pairwiseD djointish pairwise_subset that) qed (use that in auto) then have "sum ?\ \ \ ?\ (\\)" by (simp add: content_division) also have "\ \ ?\ (cbox (- vec c) (vec c) :: (real, 'm) vec set)" proof (rule measure_mono_fmeasurable) show "\\ \ cbox (- vec c) (vec c)" by (meson Sup_subset_mono sub_cc order_trans \\ \ \\) qed (use \\ division_of \\\ lmeasurable_division in auto) also have "\ = content (cbox (- vec c) (vec c) :: (real, 'm) vec set)" by simp also have "\ \ (2 ^ ?m * c ^ ?m)" using \c > 0\ by (simp add: content_cbox_if_cart) finally have "sum ?\ \ \ (2 ^ ?m * c ^ ?m)" . then show ?thesis using \e > 0\ \c > 0\ by (auto simp: field_split_simps) qed finally show ?thesis . qed show "\T. f ` S \ T \ T \ lmeasurable \ ?\ T \ e" proof (intro exI conjI) show "f ` S \ \ (g ` \)" using covers sub_g by force show "\ (g ` \) \ lmeasurable" by (rule fmeasurable_UN_bound [OF \countable \\ meas_g le_e]) show "?\ (\ (g ` \)) \ e" by (rule measure_UN_bound [OF \countable \\ meas_g le_e]) qed qed qed theorem baby_Sard: fixes f :: "real^'m::{finite,wellorder} \ real^'n::{finite,wellorder}" assumes mlen: "CARD('m) \ CARD('n)" and der: "\x. x \ S \ (f has_derivative f' x) (at x within S)" and rank: "\x. x \ S \ rank(matrix(f' x)) < CARD('n)" shows "negligible(f ` S)" proof - let ?U = "\n. {x \ S. norm(x) \ n \ onorm(f' x) \ real n}" have "\x. x \ S \ \n. norm x \ real n \ onorm (f' x) \ real n" by (meson linear order_trans real_arch_simple) then have eq: "S = (\n. ?U n)" by auto have "negligible (f ` ?U n)" for n proof (rule Sard_lemma2 [OF mlen]) show "0 < real n + 1" by auto show "bounded (?U n)" using bounded_iff by blast show "(f has_derivative f' x) (at x within ?U n)" if "x \ ?U n" for x using der that by (force intro: has_derivative_subset) qed (use rank in auto) then show ?thesis by (subst eq) (simp add: image_Union negligible_Union_nat) qed subsection\A one-way version of change-of-variables not assuming injectivity. \ lemma integral_on_image_ubound_weak: fixes f :: "real^'n::{finite,wellorder} \ real" assumes S: "S \ sets lebesgue" and f: "f \ borel_measurable (lebesgue_on (g ` S))" and nonneg_fg: "\x. x \ S \ 0 \ f(g x)" and der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and det_int_fg: "(\x. \det (matrix (g' x))\ * f(g x)) integrable_on S" and meas_gim: "\T. \T \ g ` S; T \ sets lebesgue\ \ {x \ S. g x \ T} \ sets lebesgue" shows "f integrable_on (g ` S) \ integral (g ` S) f \ integral S (\x. \det (matrix (g' x))\ * f(g x))" (is "_ \ _ \ ?b") proof - let ?D = "\x. \det (matrix (g' x))\" have cont_g: "continuous_on S g" using der_g has_derivative_continuous_on by blast have [simp]: "space (lebesgue_on S) = S" by (simp add: S) have gS_in_sets_leb: "g ` S \ sets lebesgue" apply (rule differentiable_image_in_sets_lebesgue) using der_g by (auto simp: S differentiable_def differentiable_on_def) obtain h where nonneg_h: "\n x. 0 \ h n x" and h_le_f: "\n x. x \ S \ h n (g x) \ f (g x)" and h_inc: "\n x. h n x \ h (Suc n) x" and h_meas: "\n. h n \ borel_measurable lebesgue" and fin_R: "\n. finite(range (h n))" and lim: "\x. x \ g ` S \ (\n. h n x) \ f x" proof - let ?f = "\x. if x \ g ` S then f x else 0" have "?f \ borel_measurable lebesgue \ (\x. 0 \ ?f x)" by (auto simp: gS_in_sets_leb f nonneg_fg measurable_restrict_space_iff [symmetric]) then show ?thesis apply (clarsimp simp add: borel_measurable_simple_function_limit_increasing) apply (rename_tac h) by (rule_tac h=h in that) (auto split: if_split_asm) qed have h_lmeas: "{t. h n (g t) = y} \ S \ sets lebesgue" for y n proof - have "space (lebesgue_on (UNIV::(real,'n) vec set)) = UNIV" by simp then have "((h n) -`{y} \ g ` S) \ sets (lebesgue_on (g ` S))" by (metis Int_commute borel_measurable_vimage h_meas image_eqI inf_top.right_neutral sets_restrict_space space_borel space_completion space_lborel) then have "({u. h n u = y} \ g ` S) \ sets lebesgue" using gS_in_sets_leb by (simp add: integral_indicator fmeasurableI2 sets_restrict_space_iff vimage_def) then have "{x \ S. g x \ ({u. h n u = y} \ g ` S)} \ sets lebesgue" using meas_gim[of "({u. h n u = y} \ g ` S)"] by force moreover have "{t. h n (g t) = y} \ S = {x \ S. g x \ ({u. h n u = y} \ g ` S)}" by blast ultimately show ?thesis by auto qed have hint: "h n integrable_on g ` S \ integral (g ` S) (h n) \ integral S (\x. ?D x * h n (g x))" (is "?INT \ ?lhs \ ?rhs") for n proof - let ?R = "range (h n)" have hn_eq: "h n = (\x. \y\?R. y * indicat_real {x. h n x = y} x)" by (simp add: indicator_def if_distrib fin_R cong: if_cong) have yind: "(\t. y * indicator{x. h n x = y} t) integrable_on (g ` S) \ (integral (g ` S) (\t. y * indicator {x. h n x = y} t)) \ integral S (\t. \det (matrix (g' t))\ * y * indicator {x. h n x = y} (g t))" if y: "y \ ?R" for y::real proof (cases "y=0") case True then show ?thesis using gS_in_sets_leb integrable_0 by force next case False with that have "y > 0" using less_eq_real_def nonneg_h by fastforce have "(\x. if x \ {t. h n (g t) = y} then ?D x else 0) integrable_on S" proof (rule measurable_bounded_by_integrable_imp_integrable) have "(\x. ?D x) \ borel_measurable (lebesgue_on ({t. h n (g t) = y} \ S))" apply (intro borel_measurable_abs borel_measurable_det_Jacobian [OF h_lmeas, where f=g]) - by (meson der_g IntD2 has_derivative_within_subset inf_le2) + by (meson der_g IntD2 has_derivative_subset inf_le2) then have "(\x. if x \ {t. h n (g t) = y} \ S then ?D x else 0) \ borel_measurable lebesgue" by (rule borel_measurable_if_I [OF _ h_lmeas]) then show "(\x. if x \ {t. h n (g t) = y} then ?D x else 0) \ borel_measurable (lebesgue_on S)" by (simp add: if_if_eq_conj Int_commute borel_measurable_if [OF S, symmetric]) show "(\x. ?D x *\<^sub>R f (g x) /\<^sub>R y) integrable_on S" by (rule integrable_cmul) (use det_int_fg in auto) show "norm (if x \ {t. h n (g t) = y} then ?D x else 0) \ ?D x *\<^sub>R f (g x) /\<^sub>R y" if "x \ S" for x using nonneg_h [of n x] \y > 0\ nonneg_fg [of x] h_le_f [of x n] that by (auto simp: divide_simps mult_left_mono) qed (use S in auto) then have int_det: "(\t. \det (matrix (g' t))\) integrable_on ({t. h n (g t) = y} \ S)" using integrable_restrict_Int by force have "(g ` ({t. h n (g t) = y} \ S)) \ lmeasurable" apply (rule measurable_differentiable_image [OF h_lmeas]) - apply (blast intro: has_derivative_within_subset [OF der_g]) + apply (blast intro: has_derivative_subset [OF der_g]) apply (rule int_det) done moreover have "g ` ({t. h n (g t) = y} \ S) = {x. h n x = y} \ g ` S" by blast moreover have "measure lebesgue (g ` ({t. h n (g t) = y} \ S)) \ integral ({t. h n (g t) = y} \ S) (\t. \det (matrix (g' t))\)" apply (rule measure_differentiable_image [OF h_lmeas _ int_det]) - apply (blast intro: has_derivative_within_subset [OF der_g]) + apply (blast intro: has_derivative_subset [OF der_g]) done ultimately show ?thesis using \y > 0\ integral_restrict_Int [of S "{t. h n (g t) = y}" "\t. \det (matrix (g' t))\ * y"] apply (simp add: integrable_on_indicator integral_indicator) apply (simp add: indicator_def if_distrib cong: if_cong) done qed have hn_int: "h n integrable_on g ` S" apply (subst hn_eq) using yind by (force intro: integrable_sum [OF fin_R]) then show ?thesis proof have "?lhs = integral (g ` S) (\x. \y\range (h n). y * indicat_real {x. h n x = y} x)" by (metis hn_eq) also have "\ = (\y\range (h n). integral (g ` S) (\x. y * indicat_real {x. h n x = y} x))" by (rule integral_sum [OF fin_R]) (use yind in blast) also have "\ \ (\y\range (h n). integral S (\u. \det (matrix (g' u))\ * y * indicat_real {x. h n x = y} (g u)))" using yind by (force intro: sum_mono) also have "\ = integral S (\u. \y\range (h n). \det (matrix (g' u))\ * y * indicat_real {x. h n x = y} (g u))" proof (rule integral_sum [OF fin_R, symmetric]) fix y assume y: "y \ ?R" with nonneg_h have "y \ 0" by auto show "(\u. \det (matrix (g' u))\ * y * indicat_real {x. h n x = y} (g u)) integrable_on S" proof (rule measurable_bounded_by_integrable_imp_integrable) have "(\x. indicat_real {x. h n x = y} (g x)) \ borel_measurable (lebesgue_on S)" using h_lmeas S by (auto simp: indicator_vimage [symmetric] borel_measurable_indicator_iff sets_restrict_space_iff) then show "(\u. \det (matrix (g' u))\ * y * indicat_real {x. h n x = y} (g u)) \ borel_measurable (lebesgue_on S)" by (intro borel_measurable_times borel_measurable_abs borel_measurable_const borel_measurable_det_Jacobian [OF S der_g]) next fix x assume "x \ S" have "y * indicat_real {x. h n x = y} (g x) \ f (g x)" by (metis (full_types) \x \ S\ h_le_f indicator_def mem_Collect_eq mult.right_neutral mult_zero_right nonneg_fg) with \y \ 0\ show "norm (?D x * y * indicat_real {x. h n x = y} (g x)) \ ?D x * f(g x)" by (simp add: abs_mult mult.assoc mult_left_mono) qed (use S det_int_fg in auto) qed also have "\ = integral S (\T. \det (matrix (g' T))\ * (\y\range (h n). y * indicat_real {x. h n x = y} (g T)))" by (simp add: sum_distrib_left mult.assoc) also have "\ = ?rhs" by (metis hn_eq) finally show "integral (g ` S) (h n) \ ?rhs" . qed qed have le: "integral S (\T. \det (matrix (g' T))\ * h n (g T)) \ ?b" for n proof (rule integral_le) show "(\T. \det (matrix (g' T))\ * h n (g T)) integrable_on S" proof (rule measurable_bounded_by_integrable_imp_integrable) have "(\T. \det (matrix (g' T))\ *\<^sub>R h n (g T)) \ borel_measurable (lebesgue_on S)" proof (intro borel_measurable_scaleR borel_measurable_abs borel_measurable_det_Jacobian \S \ sets lebesgue\) have eq: "{x \ S. f x \ a} = (\b \ (f ` S) \ atMost a. {x. f x = b} \ S)" for f and a::real by auto have "finite ((\x. h n (g x)) ` S \ {..a})" for a by (force intro: finite_subset [OF _ fin_R]) with h_lmeas [of n] show "(\x. h n (g x)) \ borel_measurable (lebesgue_on S)" apply (simp add: borel_measurable_vimage_halfspace_component_le \S \ sets lebesgue\ sets_restrict_space_iff eq) by (metis (mono_tags) SUP_inf sets.finite_UN) qed (use der_g in blast) then show "(\T. \det (matrix (g' T))\ * h n (g T)) \ borel_measurable (lebesgue_on S)" by simp show "norm (?D x * h n (g x)) \ ?D x *\<^sub>R f (g x)" if "x \ S" for x by (simp add: h_le_f mult_left_mono nonneg_h that) qed (use S det_int_fg in auto) show "?D x * h n (g x) \ ?D x * f (g x)" if "x \ S" for x by (simp add: \x \ S\ h_le_f mult_left_mono) show "(\x. ?D x * f (g x)) integrable_on S" using det_int_fg by blast qed have "f integrable_on g ` S \ (\k. integral (g ` S) (h k)) \ integral (g ` S) f" proof (rule monotone_convergence_increasing) have "\integral (g ` S) (h n)\ \ integral S (\x. ?D x * f (g x))" for n proof - have "\integral (g ` S) (h n)\ = integral (g ` S) (h n)" using hint by (simp add: integral_nonneg nonneg_h) also have "\ \ integral S (\x. ?D x * f (g x))" using hint le by (meson order_trans) finally show ?thesis . qed then show "bounded (range (\k. integral (g ` S) (h k)))" by (force simp: bounded_iff) qed (use h_inc lim hint in auto) moreover have "integral (g ` S) (h n) \ integral S (\x. ?D x * f (g x))" for n using hint by (blast intro: le order_trans) ultimately show ?thesis by (auto intro: Lim_bounded) qed lemma integral_on_image_ubound_nonneg: fixes f :: "real^'n::{finite,wellorder} \ real" assumes nonneg_fg: "\x. x \ S \ 0 \ f(g x)" and der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and intS: "(\x. \det (matrix (g' x))\ * f(g x)) integrable_on S" shows "f integrable_on (g ` S) \ integral (g ` S) f \ integral S (\x. \det (matrix (g' x))\ * f(g x))" (is "_ \ _ \ ?b") proof - let ?D = "\x. det (matrix (g' x))" define S' where "S' \ {x \ S. ?D x * f(g x) \ 0}" then have der_gS': "\x. x \ S' \ (g has_derivative g' x) (at x within S')" - by (metis (mono_tags, lifting) der_g has_derivative_within_subset mem_Collect_eq subset_iff) + by (metis (mono_tags, lifting) der_g has_derivative_subset mem_Collect_eq subset_iff) have "(\x. if x \ S then \?D x\ * f (g x) else 0) integrable_on UNIV" by (simp add: integrable_restrict_UNIV intS) then have Df_borel: "(\x. if x \ S then \?D x\ * f (g x) else 0) \ borel_measurable lebesgue" using integrable_imp_measurable lebesgue_on_UNIV_eq by force have S': "S' \ sets lebesgue" proof - from Df_borel borel_measurable_vimage_open [of _ UNIV] have "{x. (if x \ S then \?D x\ * f (g x) else 0) \ T} \ sets lebesgue" if "open T" for T using that unfolding lebesgue_on_UNIV_eq by (fastforce simp add: dest!: spec) then have "{x. (if x \ S then \?D x\ * f (g x) else 0) \ -{0}} \ sets lebesgue" using open_Compl by blast then show ?thesis by (simp add: S'_def conj_ac split: if_split_asm cong: conj_cong) qed then have gS': "g ` S' \ sets lebesgue" proof (rule differentiable_image_in_sets_lebesgue) show "g differentiable_on S'" using der_g unfolding S'_def differentiable_def differentiable_on_def - by (blast intro: has_derivative_within_subset) + by (blast intro: has_derivative_subset) qed auto have f: "f \ borel_measurable (lebesgue_on (g ` S'))" proof (clarsimp simp add: borel_measurable_vimage_open) fix T :: "real set" assume "open T" have "{x \ g ` S'. f x \ T} = g ` {x \ S'. f(g x) \ T}" by blast moreover have "g ` {x \ S'. f(g x) \ T} \ sets lebesgue" proof (rule differentiable_image_in_sets_lebesgue) let ?h = "\x. \?D x\ * f (g x) /\<^sub>R \?D x\" have "(\x. if x \ S' then \?D x\ * f (g x) else 0) = (\x. if x \ S then \?D x\ * f (g x) else 0)" by (auto simp: S'_def) also have "\ \ borel_measurable lebesgue" by (rule Df_borel) finally have *: "(\x. \?D x\ * f (g x)) \ borel_measurable (lebesgue_on S')" by (simp add: borel_measurable_if_D) have "?h \ borel_measurable (lebesgue_on S')" by (intro * S' der_gS' borel_measurable_det_Jacobian measurable) (blast intro: der_gS') moreover have "?h x = f(g x)" if "x \ S'" for x using that by (auto simp: S'_def) ultimately have "(\x. f(g x)) \ borel_measurable (lebesgue_on S')" by (metis (no_types, lifting) measurable_lebesgue_cong) then show "{x \ S'. f (g x) \ T} \ sets lebesgue" by (simp add: \S' \ sets lebesgue\ \open T\ borel_measurable_vimage_open sets_restrict_space_iff) show "g differentiable_on {x \ S'. f (g x) \ T}" using der_g unfolding S'_def differentiable_def differentiable_on_def - by (blast intro: has_derivative_within_subset) + by (blast intro: has_derivative_subset) qed auto ultimately have "{x \ g ` S'. f x \ T} \ sets lebesgue" by metis then show "{x \ g ` S'. f x \ T} \ sets (lebesgue_on (g ` S'))" by (simp add: \g ` S' \ sets lebesgue\ sets_restrict_space_iff) qed have intS': "(\x. \?D x\ * f (g x)) integrable_on S'" using intS by (rule integrable_spike_set) (auto simp: S'_def intro: empty_imp_negligible) have lebS': "{x \ S'. g x \ T} \ sets lebesgue" if "T \ g ` S'" "T \ sets lebesgue" for T proof - have "g \ borel_measurable (lebesgue_on S')" using der_gS' has_derivative_continuous_on S' by (blast intro: continuous_imp_measurable_on_sets_lebesgue) moreover have "{x \ S'. g x \ U} \ sets lebesgue" if "negligible U" "U \ g ` S'" for U proof (intro negligible_imp_sets negligible_differentiable_vimage that) fix x assume x: "x \ S'" then have "linear (g' x)" using der_gS' has_derivative_linear by blast with x show "inj (g' x)" by (auto simp: S'_def det_nz_iff_inj) qed (use der_gS' in auto) ultimately show ?thesis using double_lebesgue_sets [OF S' gS' order_refl] that by blast qed have int_gS': "f integrable_on g ` S' \ integral (g ` S') f \ integral S' (\x. \?D x\ * f(g x))" using integral_on_image_ubound_weak [OF S' f nonneg_fg der_gS' intS' lebS'] S'_def by blast have "negligible (g ` {x \ S. det(matrix(g' x)) = 0})" proof (rule baby_Sard, simp_all) fix x assume x: "x \ S \ det (matrix (g' x)) = 0" then show "(g has_derivative g' x) (at x within {x \ S. det (matrix (g' x)) = 0})" - by (metis (no_types, lifting) der_g has_derivative_within_subset mem_Collect_eq subsetI) + by (metis (no_types, lifting) der_g has_derivative_subset mem_Collect_eq subsetI) then show "rank (matrix (g' x)) < CARD('n)" using det_nz_iff_inj matrix_vector_mul_linear x by (fastforce simp add: less_rank_noninjective) qed then have negg: "negligible (g ` S - g ` {x \ S. ?D x \ 0})" by (rule negligible_subset) (auto simp: S'_def) have null: "g ` {x \ S. ?D x \ 0} - g ` S = {}" by (auto simp: S'_def) let ?F = "{x \ S. f (g x) \ 0}" have eq: "g ` S' = g ` ?F \ g ` {x \ S. ?D x \ 0}" by (auto simp: S'_def image_iff) show ?thesis proof have "((\x. if x \ g ` ?F then f x else 0) integrable_on g ` {x \ S. ?D x \ 0})" using int_gS' eq integrable_restrict_Int [where f=f] by simp then have "f integrable_on g ` {x \ S. ?D x \ 0}" by (auto simp: image_iff elim!: integrable_eq) then show "f integrable_on g ` S" apply (rule integrable_spike_set [OF _ empty_imp_negligible negligible_subset]) using negg null by auto have "integral (g ` S) f = integral (g ` {x \ S. ?D x \ 0}) f" using negg by (auto intro: negligible_subset integral_spike_set) also have "\ = integral (g ` {x \ S. ?D x \ 0}) (\x. if x \ g ` ?F then f x else 0)" by (auto simp: image_iff intro!: integral_cong) also have "\ = integral (g ` S') f" using eq integral_restrict_Int by simp also have "\ \ integral S' (\x. \?D x\ * f(g x))" by (metis int_gS') also have "\ \ ?b" by (rule integral_subset_le [OF _ intS' intS]) (use nonneg_fg S'_def in auto) finally show "integral (g ` S) f \ ?b" . qed qed lemma absolutely_integrable_on_image_real: fixes f :: "real^'n::{finite,wellorder} \ real" and g :: "real^'n::_ \ real^'n::_" assumes der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and intS: "(\x. \det (matrix (g' x))\ * f(g x)) absolutely_integrable_on S" shows "f absolutely_integrable_on (g ` S)" proof - let ?D = "\x. \det (matrix (g' x))\ * f (g x)" let ?N = "{x \ S. f (g x) < 0}" and ?P = "{x \ S. f (g x) > 0}" have eq: "{x. (if x \ S then ?D x else 0) > 0} = {x \ S. ?D x > 0}" "{x. (if x \ S then ?D x else 0) < 0} = {x \ S. ?D x < 0}" by auto have "?D integrable_on S" using intS absolutely_integrable_on_def by blast then have "(\x. if x \ S then ?D x else 0) integrable_on UNIV" by (simp add: integrable_restrict_UNIV) then have D_borel: "(\x. if x \ S then ?D x else 0) \ borel_measurable (lebesgue_on UNIV)" using integrable_imp_measurable lebesgue_on_UNIV_eq by blast then have Dlt: "{x \ S. ?D x < 0} \ sets lebesgue" unfolding borel_measurable_vimage_halfspace_component_lt by (drule_tac x=0 in spec) (auto simp: eq) from D_borel have Dgt: "{x \ S. ?D x > 0} \ sets lebesgue" unfolding borel_measurable_vimage_halfspace_component_gt by (drule_tac x=0 in spec) (auto simp: eq) have dfgbm: "?D \ borel_measurable (lebesgue_on S)" using intS absolutely_integrable_on_def integrable_imp_measurable by blast have der_gN: "(g has_derivative g' x) (at x within ?N)" if "x \ ?N" for x - using der_g has_derivative_within_subset that by force + using der_g has_derivative_subset that by force have "(\x. - f x) integrable_on g ` ?N \ integral (g ` ?N) (\x. - f x) \ integral ?N (\x. \det (matrix (g' x))\ * - f (g x))" proof (rule integral_on_image_ubound_nonneg [OF _ der_gN]) have 1: "?D integrable_on {x \ S. ?D x < 0}" using Dlt by (auto intro: set_lebesgue_integral_eq_integral [OF set_integrable_subset] intS) have "uminus \ (\x. \det (matrix (g' x))\ * - f (g x)) integrable_on ?N" by (simp add: o_def mult_less_0_iff empty_imp_negligible integrable_spike_set [OF 1]) then show "(\x. \det (matrix (g' x))\ * - f (g x)) integrable_on ?N" by (simp add: integrable_neg_iff o_def) qed auto then have "f integrable_on g ` ?N" by (simp add: integrable_neg_iff) moreover have "g ` ?N = {y \ g ` S. f y < 0}" by auto ultimately have "f integrable_on {y \ g ` S. f y < 0}" by simp then have N: "f absolutely_integrable_on {y \ g ` S. f y < 0}" by (rule absolutely_integrable_absolutely_integrable_ubound) auto have der_gP: "(g has_derivative g' x) (at x within ?P)" if "x \ ?P" for x - using der_g has_derivative_within_subset that by force + using der_g has_derivative_subset that by force have "f integrable_on g ` ?P \ integral (g ` ?P) f \ integral ?P ?D" proof (rule integral_on_image_ubound_nonneg [OF _ der_gP]) have "?D integrable_on {x \ S. 0 < ?D x}" using Dgt by (auto intro: set_lebesgue_integral_eq_integral [OF set_integrable_subset] intS) then show "?D integrable_on ?P" apply (rule integrable_spike_set) by (auto simp: zero_less_mult_iff empty_imp_negligible) qed auto then have "f integrable_on g ` ?P" by metis moreover have "g ` ?P = {y \ g ` S. f y > 0}" by auto ultimately have "f integrable_on {y \ g ` S. f y > 0}" by simp then have P: "f absolutely_integrable_on {y \ g ` S. f y > 0}" by (rule absolutely_integrable_absolutely_integrable_lbound) auto have "(\x. if x \ g ` S \ f x < 0 \ x \ g ` S \ 0 < f x then f x else 0) = (\x. if x \ g ` S then f x else 0)" by auto then show ?thesis using absolutely_integrable_Un [OF N P] absolutely_integrable_restrict_UNIV [symmetric, where f=f] by simp qed proposition absolutely_integrable_on_image: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and intS: "(\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) absolutely_integrable_on S" shows "f absolutely_integrable_on (g ` S)" apply (rule absolutely_integrable_componentwise [OF absolutely_integrable_on_image_real [OF der_g]]) using absolutely_integrable_component [OF intS] by auto proposition integral_on_image_ubound: fixes f :: "real^'n::{finite,wellorder} \ real" and g :: "real^'n::_ \ real^'n::_" assumes"\x. x \ S \ 0 \ f(g x)" and "\x. x \ S \ (g has_derivative g' x) (at x within S)" and "(\x. \det (matrix (g' x))\ * f(g x)) integrable_on S" shows "integral (g ` S) f \ integral S (\x. \det (matrix (g' x))\ * f(g x))" using integral_on_image_ubound_nonneg [OF assms] by simp subsection\Change-of-variables theorem\ text\The classic change-of-variables theorem. We have two versions with quite general hypotheses, the first that the transforming function has a continuous inverse, the second that the base set is Lebesgue measurable.\ lemma cov_invertible_nonneg_le: fixes f :: "real^'n::{finite,wellorder} \ real" and g :: "real^'n::_ \ real^'n::_" assumes der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and der_h: "\y. y \ T \ (h has_derivative h' y) (at y within T)" and f0: "\y. y \ T \ 0 \ f y" and hg: "\x. x \ S \ g x \ T \ h(g x) = x" and gh: "\y. y \ T \ h y \ S \ g(h y) = y" and id: "\y. y \ T \ h' y \ g'(h y) = id" shows "f integrable_on T \ (integral T f) \ b \ (\x. \det (matrix (g' x))\ * f(g x)) integrable_on S \ integral S (\x. \det (matrix (g' x))\ * f(g x)) \ b" (is "?lhs = ?rhs") proof - have Teq: "T = g`S" and Seq: "S = h`T" using hg gh image_iff by fastforce+ have gS: "g differentiable_on S" by (meson der_g differentiable_def differentiable_on_def) let ?D = "\x. \det (matrix (g' x))\ * f (g x)" show ?thesis proof assume ?lhs then have fT: "f integrable_on T" and intf: "integral T f \ b" by blast+ show ?rhs proof let ?fgh = "\x. \det (matrix (h' x))\ * (\det (matrix (g' (h x)))\ * f (g (h x)))" have ddf: "?fgh x = f x" if "x \ T" for x proof - have "matrix (h' x) ** matrix (g' (h x)) = mat 1" using that id[OF that] der_g[of "h x"] gh[OF that] left_inverse_linear has_derivative_linear by (subst matrix_compose[symmetric]) (force simp: matrix_id_mat_1 has_derivative_linear)+ then have "\det (matrix (h' x))\ * \det (matrix (g' (h x)))\ = 1" by (metis abs_1 abs_mult det_I det_mul) then show ?thesis by (simp add: gh that) qed have "?D integrable_on (h ` T)" proof (intro set_lebesgue_integral_eq_integral absolutely_integrable_on_image_real) show "(\x. ?fgh x) absolutely_integrable_on T" proof (subst absolutely_integrable_on_iff_nonneg) show "(\x. ?fgh x) integrable_on T" using ddf fT integrable_eq by force qed (simp add: zero_le_mult_iff f0 gh) qed (use der_h in auto) with Seq show "(\x. ?D x) integrable_on S" by simp have "integral S (\x. ?D x) \ integral T (\x. ?fgh x)" unfolding Seq proof (rule integral_on_image_ubound) show "(\x. ?fgh x) integrable_on T" using ddf fT integrable_eq by force qed (use f0 gh der_h in auto) also have "\ = integral T f" by (force simp: ddf intro: integral_cong) also have "\ \ b" by (rule intf) finally show "integral S (\x. ?D x) \ b" . qed next assume R: ?rhs then have "f integrable_on g ` S" using der_g f0 hg integral_on_image_ubound_nonneg by blast moreover have "integral (g ` S) f \ integral S (\x. ?D x)" by (rule integral_on_image_ubound [OF f0 der_g]) (use R Teq in auto) ultimately show ?lhs using R by (simp add: Teq) qed qed lemma cov_invertible_nonneg_eq: fixes f :: "real^'n::{finite,wellorder} \ real" and g :: "real^'n::_ \ real^'n::_" assumes "\x. x \ S \ (g has_derivative g' x) (at x within S)" and "\y. y \ T \ (h has_derivative h' y) (at y within T)" and "\y. y \ T \ 0 \ f y" and "\x. x \ S \ g x \ T \ h(g x) = x" and "\y. y \ T \ h y \ S \ g(h y) = y" and "\y. y \ T \ h' y \ g'(h y) = id" shows "((\x. \det (matrix (g' x))\ * f(g x)) has_integral b) S \ (f has_integral b) T" using cov_invertible_nonneg_le [OF assms] by (simp add: has_integral_iff) (meson eq_iff) lemma cov_invertible_real: fixes f :: "real^'n::{finite,wellorder} \ real" and g :: "real^'n::_ \ real^'n::_" assumes der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and der_h: "\y. y \ T \ (h has_derivative h' y) (at y within T)" and hg: "\x. x \ S \ g x \ T \ h(g x) = x" and gh: "\y. y \ T \ h y \ S \ g(h y) = y" and id: "\y. y \ T \ h' y \ g'(h y) = id" shows "(\x. \det (matrix (g' x))\ * f(g x)) absolutely_integrable_on S \ integral S (\x. \det (matrix (g' x))\ * f(g x)) = b \ f absolutely_integrable_on T \ integral T f = b" (is "?lhs = ?rhs") proof - have Teq: "T = g`S" and Seq: "S = h`T" using hg gh image_iff by fastforce+ let ?DP = "\x. \det (matrix (g' x))\ * f(g x)" and ?DN = "\x. \det (matrix (g' x))\ * -f(g x)" have "+": "(?DP has_integral b) {x \ S. f (g x) > 0} \ (f has_integral b) {y \ T. f y > 0}" for b proof (rule cov_invertible_nonneg_eq) have *: "(\x. f (g x)) -` Y \ {x \ S. f (g x) > 0} = ((\x. f (g x)) -` Y \ S) \ {x \ S. f (g x) > 0}" for Y by auto show "(g has_derivative g' x) (at x within {x \ S. f (g x) > 0})" if "x \ {x \ S. f (g x) > 0}" for x - using that der_g has_derivative_within_subset by fastforce + using that der_g has_derivative_subset by fastforce show "(h has_derivative h' y) (at y within {y \ T. f y > 0})" if "y \ {y \ T. f y > 0}" for y - using that der_h has_derivative_within_subset by fastforce + using that der_h has_derivative_subset by fastforce qed (use gh hg id in auto) have "-": "(?DN has_integral b) {x \ S. f (g x) < 0} \ ((\x. - f x) has_integral b) {y \ T. f y < 0}" for b proof (rule cov_invertible_nonneg_eq) have *: "(\x. - f (g x)) -` y \ {x \ S. f (g x) < 0} = ((\x. f (g x)) -` uminus ` y \ S) \ {x \ S. f (g x) < 0}" for y using image_iff by fastforce show "(g has_derivative g' x) (at x within {x \ S. f (g x) < 0})" if "x \ {x \ S. f (g x) < 0}" for x - using that der_g has_derivative_within_subset by fastforce + using that der_g has_derivative_subset by fastforce show "(h has_derivative h' y) (at y within {y \ T. f y < 0})" if "y \ {y \ T. f y < 0}" for y - using that der_h has_derivative_within_subset by fastforce + using that der_h has_derivative_subset by fastforce qed (use gh hg id in auto) show ?thesis proof assume LHS: ?lhs have eq: "{x. (if x \ S then ?DP x else 0) > 0} = {x \ S. ?DP x > 0}" "{x. (if x \ S then ?DP x else 0) < 0} = {x \ S. ?DP x < 0}" by auto have "?DP integrable_on S" using LHS absolutely_integrable_on_def by blast then have "(\x. if x \ S then ?DP x else 0) integrable_on UNIV" by (simp add: integrable_restrict_UNIV) then have D_borel: "(\x. if x \ S then ?DP x else 0) \ borel_measurable (lebesgue_on UNIV)" using integrable_imp_measurable lebesgue_on_UNIV_eq by blast then have SN: "{x \ S. ?DP x < 0} \ sets lebesgue" unfolding borel_measurable_vimage_halfspace_component_lt by (drule_tac x=0 in spec) (auto simp: eq) from D_borel have SP: "{x \ S. ?DP x > 0} \ sets lebesgue" unfolding borel_measurable_vimage_halfspace_component_gt by (drule_tac x=0 in spec) (auto simp: eq) have "?DP absolutely_integrable_on {x \ S. ?DP x > 0}" using LHS by (fast intro!: set_integrable_subset [OF _, of _ S] SP) then have aP: "?DP absolutely_integrable_on {x \ S. f (g x) > 0}" by (rule absolutely_integrable_spike_set) (auto simp: zero_less_mult_iff empty_imp_negligible) have "?DP absolutely_integrable_on {x \ S. ?DP x < 0}" using LHS by (fast intro!: set_integrable_subset [OF _, of _ S] SN) then have aN: "?DP absolutely_integrable_on {x \ S. f (g x) < 0}" by (rule absolutely_integrable_spike_set) (auto simp: mult_less_0_iff empty_imp_negligible) have fN: "f integrable_on {y \ T. f y < 0}" "integral {y \ T. f y < 0} f = integral {x \ S. f (g x) < 0} ?DP" using "-" [of "integral {x \ S. f(g x) < 0} ?DN"] aN by (auto simp: set_lebesgue_integral_eq_integral has_integral_iff integrable_neg_iff) have faN: "f absolutely_integrable_on {y \ T. f y < 0}" apply (rule absolutely_integrable_integrable_bound [where g = "\x. - f x"]) using fN by (auto simp: integrable_neg_iff) have fP: "f integrable_on {y \ T. f y > 0}" "integral {y \ T. f y > 0} f = integral {x \ S. f (g x) > 0} ?DP" using "+" [of "integral {x \ S. f(g x) > 0} ?DP"] aP by (auto simp: set_lebesgue_integral_eq_integral has_integral_iff integrable_neg_iff) have faP: "f absolutely_integrable_on {y \ T. f y > 0}" apply (rule absolutely_integrable_integrable_bound [where g = f]) using fP by auto have fa: "f absolutely_integrable_on ({y \ T. f y < 0} \ {y \ T. f y > 0})" by (rule absolutely_integrable_Un [OF faN faP]) show ?rhs proof have eq: "((if x \ T \ f x < 0 \ x \ T \ 0 < f x then 1 else 0) * f x) = (if x \ T then 1 else 0) * f x" for x by auto show "f absolutely_integrable_on T" using fa by (simp add: indicator_def set_integrable_def eq) have [simp]: "{y \ T. f y < 0} \ {y \ T. 0 < f y} = {}" for T and f :: "(real^'n::_) \ real" by auto have "integral T f = integral ({y \ T. f y < 0} \ {y \ T. f y > 0}) f" by (intro empty_imp_negligible integral_spike_set) (auto simp: eq) also have "\ = integral {y \ T. f y < 0} f + integral {y \ T. f y > 0} f" using fN fP by simp also have "\ = integral {x \ S. f (g x) < 0} ?DP + integral {x \ S. 0 < f (g x)} ?DP" by (simp add: fN fP) also have "\ = integral ({x \ S. f (g x) < 0} \ {x \ S. 0 < f (g x)}) ?DP" using aP aN by (simp add: set_lebesgue_integral_eq_integral) also have "\ = integral S ?DP" by (intro empty_imp_negligible integral_spike_set) auto also have "\ = b" using LHS by simp finally show "integral T f = b" . qed next assume RHS: ?rhs have eq: "{x. (if x \ T then f x else 0) > 0} = {x \ T. f x > 0}" "{x. (if x \ T then f x else 0) < 0} = {x \ T. f x < 0}" by auto have "f integrable_on T" using RHS absolutely_integrable_on_def by blast then have "(\x. if x \ T then f x else 0) integrable_on UNIV" by (simp add: integrable_restrict_UNIV) then have D_borel: "(\x. if x \ T then f x else 0) \ borel_measurable (lebesgue_on UNIV)" using integrable_imp_measurable lebesgue_on_UNIV_eq by blast then have TN: "{x \ T. f x < 0} \ sets lebesgue" unfolding borel_measurable_vimage_halfspace_component_lt by (drule_tac x=0 in spec) (auto simp: eq) from D_borel have TP: "{x \ T. f x > 0} \ sets lebesgue" unfolding borel_measurable_vimage_halfspace_component_gt by (drule_tac x=0 in spec) (auto simp: eq) have aint: "f absolutely_integrable_on {y. y \ T \ 0 < (f y)}" "f absolutely_integrable_on {y. y \ T \ (f y) < 0}" and intT: "integral T f = b" using set_integrable_subset [of _ T] TP TN RHS by blast+ show ?lhs proof have fN: "f integrable_on {v \ T. f v < 0}" using absolutely_integrable_on_def aint by blast then have DN: "(?DN has_integral integral {y \ T. f y < 0} (\x. - f x)) {x \ S. f (g x) < 0}" using "-" [of "integral {y \ T. f y < 0} (\x. - f x)"] by (simp add: has_integral_neg_iff integrable_integral) have aDN: "?DP absolutely_integrable_on {x \ S. f (g x) < 0}" apply (rule absolutely_integrable_integrable_bound [where g = ?DN]) using DN hg by (fastforce simp: abs_mult integrable_neg_iff)+ have fP: "f integrable_on {v \ T. f v > 0}" using absolutely_integrable_on_def aint by blast then have DP: "(?DP has_integral integral {y \ T. f y > 0} f) {x \ S. f (g x) > 0}" using "+" [of "integral {y \ T. f y > 0} f"] by (simp add: has_integral_neg_iff integrable_integral) have aDP: "?DP absolutely_integrable_on {x \ S. f (g x) > 0}" apply (rule absolutely_integrable_integrable_bound [where g = ?DP]) using DP hg by (fastforce simp: integrable_neg_iff)+ have eq: "(if x \ S then 1 else 0) * ?DP x = (if x \ S \ f (g x) < 0 \ x \ S \ f (g x) > 0 then 1 else 0) * ?DP x" for x by force have "?DP absolutely_integrable_on ({x \ S. f (g x) < 0} \ {x \ S. f (g x) > 0})" by (rule absolutely_integrable_Un [OF aDN aDP]) then show I: "?DP absolutely_integrable_on S" by (simp add: indicator_def eq set_integrable_def) have [simp]: "{y \ S. f y < 0} \ {y \ S. 0 < f y} = {}" for S and f :: "(real^'n::_) \ real" by auto have "integral S ?DP = integral ({x \ S. f (g x) < 0} \ {x \ S. f (g x) > 0}) ?DP" by (intro empty_imp_negligible integral_spike_set) auto also have "\ = integral {x \ S. f (g x) < 0} ?DP + integral {x \ S. 0 < f (g x)} ?DP" using aDN aDP by (simp add: set_lebesgue_integral_eq_integral) also have "\ = - integral {y \ T. f y < 0} (\x. - f x) + integral {y \ T. f y > 0} f" using DN DP by (auto simp: has_integral_iff) also have "\ = integral ({x \ T. f x < 0} \ {x \ T. 0 < f x}) f" by (simp add: fN fP) also have "\ = integral T f" by (intro empty_imp_negligible integral_spike_set) auto also have "\ = b" using intT by simp finally show "integral S ?DP = b" . qed qed qed lemma cv_inv_version3: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and der_h: "\y. y \ T \ (h has_derivative h' y) (at y within T)" and hg: "\x. x \ S \ g x \ T \ h(g x) = x" and gh: "\y. y \ T \ h y \ S \ g(h y) = y" and id: "\y. y \ T \ h' y \ g'(h y) = id" shows "(\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) absolutely_integrable_on S \ integral S (\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) = b \ f absolutely_integrable_on T \ integral T f = b" proof - let ?D = "\x. \det (matrix (g' x))\ *\<^sub>R f(g x)" have "((\x. \det (matrix (g' x))\ * f(g x) $ i) absolutely_integrable_on S \ integral S (\x. \det (matrix (g' x))\ * (f(g x) $ i)) = b $ i) \ ((\x. f x $ i) absolutely_integrable_on T \ integral T (\x. f x $ i) = b $ i)" for i by (rule cov_invertible_real [OF der_g der_h hg gh id]) then have "?D absolutely_integrable_on S \ (?D has_integral b) S \ f absolutely_integrable_on T \ (f has_integral b) T" unfolding absolutely_integrable_componentwise_iff [where f=f] has_integral_componentwise_iff [of f] absolutely_integrable_componentwise_iff [where f="?D"] has_integral_componentwise_iff [of ?D] by (auto simp: all_conj_distrib Basis_vec_def cart_eq_inner_axis [symmetric] has_integral_iff set_lebesgue_integral_eq_integral) then show ?thesis using absolutely_integrable_on_def by blast qed lemma cv_inv_version4: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S) \ invertible(matrix(g' x))" and hg: "\x. x \ S \ continuous_on (g ` S) h \ h(g x) = x" shows "(\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) absolutely_integrable_on S \ integral S (\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) = b \ f absolutely_integrable_on (g ` S) \ integral (g ` S) f = b" proof - have "\x. \h'. x \ S \ (g has_derivative g' x) (at x within S) \ linear h' \ g' x \ h' = id \ h' \ g' x = id" using der_g matrix_invertible has_derivative_linear by blast then obtain h' where h': "\x. x \ S \ (g has_derivative g' x) (at x within S) \ linear (h' x) \ g' x \ (h' x) = id \ (h' x) \ g' x = id" by metis show ?thesis proof (rule cv_inv_version3) show "\y. y \ g ` S \ (h has_derivative h' (h y)) (at y within g ` S)" using h' hg by (force simp: continuous_on_eq_continuous_within intro!: has_derivative_inverse_within) qed (use h' hg in auto) qed theorem has_absolute_integral_change_of_variables_invertible: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and hg: "\x. x \ S \ h(g x) = x" and conth: "continuous_on (g ` S) h" shows "(\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) absolutely_integrable_on S \ integral S (\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) = b \ f absolutely_integrable_on (g ` S) \ integral (g ` S) f = b" (is "?lhs = ?rhs") proof - let ?S = "{x \ S. invertible (matrix (g' x))}" and ?D = "\x. \det (matrix (g' x))\ *\<^sub>R f(g x)" have *: "?D absolutely_integrable_on ?S \ integral ?S ?D = b \ f absolutely_integrable_on (g ` ?S) \ integral (g ` ?S) f = b" proof (rule cv_inv_version4) show "(g has_derivative g' x) (at x within ?S) \ invertible (matrix (g' x))" if "x \ ?S" for x - using der_g that has_derivative_within_subset that by fastforce + using der_g that has_derivative_subset that by fastforce show "continuous_on (g ` ?S) h \ h (g x) = x" if "x \ ?S" for x using that continuous_on_subset [OF conth] by (simp add: hg image_mono) qed have "(g has_derivative g' x) (at x within {x \ S. rank (matrix (g' x)) < CARD('m)})" if "x \ S" for x - by (metis (no_types, lifting) der_g has_derivative_within_subset mem_Collect_eq subsetI that) + by (metis (no_types, lifting) der_g has_derivative_subset mem_Collect_eq subsetI that) then have "negligible (g ` {x \ S. \ invertible (matrix (g' x))})" by (auto simp: invertible_det_nz det_eq_0_rank intro: baby_Sard) then have neg: "negligible {x \ g ` S. x \ g ` ?S \ f x \ 0}" by (auto intro: negligible_subset) have [simp]: "{x \ g ` ?S. x \ g ` S \ f x \ 0} = {}" by auto have "?D absolutely_integrable_on ?S \ integral ?S ?D = b \ ?D absolutely_integrable_on S \ integral S ?D = b" apply (intro conj_cong absolutely_integrable_spike_set_eq) apply(auto simp: integral_spike_set invertible_det_nz empty_imp_negligible neg) done moreover have "f absolutely_integrable_on (g ` ?S) \ integral (g ` ?S) f = b \ f absolutely_integrable_on (g ` S) \ integral (g ` S) f = b" by (auto intro!: conj_cong absolutely_integrable_spike_set_eq integral_spike_set neg) ultimately show ?thesis using "*" by blast qed theorem has_absolute_integral_change_of_variables_compact: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes "compact S" and der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and inj: "inj_on g S" shows "((\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) absolutely_integrable_on S \ integral S (\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) = b \ f absolutely_integrable_on (g ` S) \ integral (g ` S) f = b)" proof - obtain h where hg: "\x. x \ S \ h(g x) = x" using inj by (metis the_inv_into_f_f) have conth: "continuous_on (g ` S) h" by (metis \compact S\ continuous_on_inv der_g has_derivative_continuous_on hg) show ?thesis by (rule has_absolute_integral_change_of_variables_invertible [OF der_g hg conth]) qed lemma has_absolute_integral_change_of_variables_compact_family: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes compact: "\n::nat. compact (F n)" and der_g: "\x. x \ (\n. F n) \ (g has_derivative g' x) (at x within (\n. F n))" and inj: "inj_on g (\n. F n)" shows "((\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) absolutely_integrable_on (\n. F n) \ integral (\n. F n) (\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) = b \ f absolutely_integrable_on (g ` (\n. F n)) \ integral (g ` (\n. F n)) f = b)" proof - let ?D = "\x. \det (matrix (g' x))\ *\<^sub>R f (g x)" let ?U = "\n. \m\n. F m" let ?lift = "vec::real\real^1" have F_leb: "F m \ sets lebesgue" for m by (simp add: compact borel_compact) have iff: "(\x. \det (matrix (g' x))\ *\<^sub>R f (g x)) absolutely_integrable_on (?U n) \ integral (?U n) (\x. \det (matrix (g' x))\ *\<^sub>R f (g x)) = b \ f absolutely_integrable_on (g ` (?U n)) \ integral (g ` (?U n)) f = b" for n b and f :: "real^'m::_ \ real^'k" proof (rule has_absolute_integral_change_of_variables_compact) show "compact (?U n)" by (simp add: compact compact_UN) show "(g has_derivative g' x) (at x within (?U n))" if "x \ ?U n" for x - using that by (blast intro!: has_derivative_within_subset [OF der_g]) + using that by (blast intro!: has_derivative_subset [OF der_g]) show "inj_on g (?U n)" using inj by (auto simp: inj_on_def) qed show ?thesis unfolding image_UN proof safe assume DS: "?D absolutely_integrable_on (\n. F n)" and b: "b = integral (\n. F n) ?D" have DU: "\n. ?D absolutely_integrable_on (?U n)" "(\n. integral (?U n) ?D) \ integral (\n. F n) ?D" using integral_countable_UN [OF DS F_leb] by auto with iff have fag: "f absolutely_integrable_on g ` (?U n)" and fg_int: "integral (\m\n. g ` F m) f = integral (?U n) ?D" for n by (auto simp: image_UN) let ?h = "\x. if x \ (\m. g ` F m) then norm(f x) else 0" have "(\x. if x \ (\m. g ` F m) then f x else 0) absolutely_integrable_on UNIV" proof (rule dominated_convergence_absolutely_integrable) show "(\x. if x \ (\m\k. g ` F m) then f x else 0) absolutely_integrable_on UNIV" for k unfolding absolutely_integrable_restrict_UNIV using fag by (simp add: image_UN) let ?nf = "\n x. if x \ (\m\n. g ` F m) then norm(f x) else 0" show "?h integrable_on UNIV" proof (rule monotone_convergence_increasing [THEN conjunct1]) show "?nf k integrable_on UNIV" for k using fag unfolding integrable_restrict_UNIV absolutely_integrable_on_def by (simp add: image_UN) { fix n have "(norm \ ?D) absolutely_integrable_on ?U n" by (intro absolutely_integrable_norm DU) then have "integral (g ` ?U n) (norm \ f) = integral (?U n) (norm \ ?D)" using iff [of n "vec \ norm \ f" "integral (?U n) (\x. \det (matrix (g' x))\ *\<^sub>R (?lift \ norm \ f) (g x))"] unfolding absolutely_integrable_on_1_iff integral_on_1_eq by (auto simp: o_def) } moreover have "bounded (range (\k. integral (?U k) (norm \ ?D)))" unfolding bounded_iff proof (rule exI, clarify) fix k show "norm (integral (?U k) (norm \ ?D)) \ integral (\n. F n) (norm \ ?D)" unfolding integral_restrict_UNIV [of _ "norm \ ?D", symmetric] proof (rule integral_norm_bound_integral) show "(\x. if x \ \ (F ` {..k}) then (norm \ ?D) x else 0) integrable_on UNIV" "(\x. if x \ (\n. F n) then (norm \ ?D) x else 0) integrable_on UNIV" using DU(1) DS unfolding absolutely_integrable_on_def o_def integrable_restrict_UNIV by auto qed auto qed ultimately show "bounded (range (\k. integral UNIV (?nf k)))" by (simp add: integral_restrict_UNIV image_UN [symmetric] o_def) next show "(\k. if x \ (\m\k. g ` F m) then norm (f x) else 0) \ (if x \ (\m. g ` F m) then norm (f x) else 0)" for x by (force intro: tendsto_eventually eventually_sequentiallyI) qed auto next show "(\k. if x \ (\m\k. g ` F m) then f x else 0) \ (if x \ (\m. g ` F m) then f x else 0)" for x proof clarsimp fix m y assume "y \ F m" show "(\k. if \x\{..k}. g y \ g ` F x then f (g y) else 0) \ f (g y)" using \y \ F m\ by (force intro: tendsto_eventually eventually_sequentiallyI [of m]) qed qed auto then show fai: "f absolutely_integrable_on (\m. g ` F m)" using absolutely_integrable_restrict_UNIV by blast show "integral ((\x. g ` F x)) f = integral (\n. F n) ?D" proof (rule LIMSEQ_unique) show "(\n. integral (?U n) ?D) \ integral (\x. g ` F x) f" unfolding fg_int [symmetric] proof (rule integral_countable_UN [OF fai]) show "g ` F m \ sets lebesgue" for m proof (rule differentiable_image_in_sets_lebesgue [OF F_leb]) show "g differentiable_on F m" by (meson der_g differentiableI UnionI differentiable_on_def differentiable_on_subset rangeI subsetI) qed auto qed next show "(\n. integral (?U n) ?D) \ integral (\n. F n) ?D" by (rule DU) qed next assume fs: "f absolutely_integrable_on (\x. g ` F x)" and b: "b = integral ((\x. g ` F x)) f" have gF_leb: "g ` F m \ sets lebesgue" for m proof (rule differentiable_image_in_sets_lebesgue [OF F_leb]) show "g differentiable_on F m" using der_g unfolding differentiable_def differentiable_on_def - by (meson Sup_upper UNIV_I UnionI has_derivative_within_subset image_eqI) + by (meson Sup_upper UNIV_I UnionI has_derivative_subset image_eqI) qed auto have fgU: "\n. f absolutely_integrable_on (\m\n. g ` F m)" "(\n. integral (\m\n. g ` F m) f) \ integral (\m. g ` F m) f" using integral_countable_UN [OF fs gF_leb] by auto with iff have DUn: "?D absolutely_integrable_on ?U n" and D_int: "integral (?U n) ?D = integral (\m\n. g ` F m) f" for n by (auto simp: image_UN) let ?h = "\x. if x \ (\n. F n) then norm(?D x) else 0" have "(\x. if x \ (\n. F n) then ?D x else 0) absolutely_integrable_on UNIV" proof (rule dominated_convergence_absolutely_integrable) show "(\x. if x \ ?U k then ?D x else 0) absolutely_integrable_on UNIV" for k unfolding absolutely_integrable_restrict_UNIV using DUn by simp let ?nD = "\n x. if x \ ?U n then norm(?D x) else 0" show "?h integrable_on UNIV" proof (rule monotone_convergence_increasing [THEN conjunct1]) show "?nD k integrable_on UNIV" for k using DUn unfolding integrable_restrict_UNIV absolutely_integrable_on_def by (simp add: image_UN) { fix n::nat have "(norm \ f) absolutely_integrable_on (\m\n. g ` F m)" apply (rule absolutely_integrable_norm) using fgU by blast then have "integral (?U n) (norm \ ?D) = integral (g ` ?U n) (norm \ f)" using iff [of n "?lift \ norm \ f" "integral (g ` ?U n) (?lift \ norm \ f)"] unfolding absolutely_integrable_on_1_iff integral_on_1_eq image_UN by (auto simp: o_def) } moreover have "bounded (range (\k. integral (g ` ?U k) (norm \ f)))" unfolding bounded_iff proof (rule exI, clarify) fix k show "norm (integral (g ` ?U k) (norm \ f)) \ integral (g ` (\n. F n)) (norm \ f)" unfolding integral_restrict_UNIV [of _ "norm \ f", symmetric] proof (rule integral_norm_bound_integral) show "(\x. if x \ g ` ?U k then (norm \ f) x else 0) integrable_on UNIV" "(\x. if x \ g ` (\n. F n) then (norm \ f) x else 0) integrable_on UNIV" using fgU fs unfolding absolutely_integrable_on_def o_def integrable_restrict_UNIV by (auto simp: image_UN) qed auto qed ultimately show "bounded (range (\k. integral UNIV (?nD k)))" unfolding integral_restrict_UNIV image_UN [symmetric] o_def by simp next show "(\k. if x \ ?U k then norm (?D x) else 0) \ (if x \ (\n. F n) then norm (?D x) else 0)" for x by (force intro: tendsto_eventually eventually_sequentiallyI) qed auto next show "(\k. if x \ ?U k then ?D x else 0) \ (if x \ (\n. F n) then ?D x else 0)" for x proof clarsimp fix n assume "x \ F n" show "(\m. if \j\{..m}. x \ F j then ?D x else 0) \ ?D x" using \x \ F n\ by (auto intro!: tendsto_eventually eventually_sequentiallyI [of n]) qed qed auto then show Dai: "?D absolutely_integrable_on (\n. F n)" unfolding absolutely_integrable_restrict_UNIV by simp show "integral (\n. F n) ?D = integral ((\x. g ` F x)) f" proof (rule LIMSEQ_unique) show "(\n. integral (\m\n. g ` F m) f) \ integral (\x. g ` F x) f" by (rule fgU) show "(\n. integral (\m\n. g ` F m) f) \ integral (\n. F n) ?D" unfolding D_int [symmetric] by (rule integral_countable_UN [OF Dai F_leb]) qed qed qed theorem has_absolute_integral_change_of_variables: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes S: "S \ sets lebesgue" and der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and inj: "inj_on g S" shows "(\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) absolutely_integrable_on S \ integral S (\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) = b \ f absolutely_integrable_on (g ` S) \ integral (g ` S) f = b" proof - obtain C N where "fsigma C" and N: "N \ null_sets lebesgue" and CNS: "C \ N = S" and "disjnt C N" using lebesgue_set_almost_fsigma [OF S] . then obtain F :: "nat \ (real^'m::_) set" where F: "range F \ Collect compact" and Ceq: "C = Union(range F)" using fsigma_Union_compact by metis have "negligible N" using N by (simp add: negligible_iff_null_sets) let ?D = "\x. \det (matrix (g' x))\ *\<^sub>R f (g x)" have "?D absolutely_integrable_on C \ integral C ?D = b \ f absolutely_integrable_on (g ` C) \ integral (g ` C) f = b" unfolding Ceq proof (rule has_absolute_integral_change_of_variables_compact_family) fix n x assume "x \ \(F ` UNIV)" then show "(g has_derivative g' x) (at x within \(F ` UNIV))" - using Ceq \C \ N = S\ der_g has_derivative_within_subset by blast + using Ceq \C \ N = S\ der_g has_derivative_subset by blast next have "\(F ` UNIV) \ S" using Ceq \C \ N = S\ by blast then show "inj_on g (\(F ` UNIV))" using inj by (meson inj_on_subset) qed (use F in auto) moreover have "?D absolutely_integrable_on C \ integral C ?D = b \ ?D absolutely_integrable_on S \ integral S ?D = b" proof (rule conj_cong) have neg: "negligible {x \ C - S. ?D x \ 0}" "negligible {x \ S - C. ?D x \ 0}" using CNS by (blast intro: negligible_subset [OF \negligible N\])+ then show "(?D absolutely_integrable_on C) = (?D absolutely_integrable_on S)" by (rule absolutely_integrable_spike_set_eq) show "(integral C ?D = b) \ (integral S ?D = b)" using integral_spike_set [OF neg] by simp qed moreover have "f absolutely_integrable_on (g ` C) \ integral (g ` C) f = b \ f absolutely_integrable_on (g ` S) \ integral (g ` S) f = b" proof (rule conj_cong) have "g differentiable_on N" by (metis CNS der_g differentiable_def differentiable_on_def differentiable_on_subset sup.cobounded2) with \negligible N\ have neg_gN: "negligible (g ` N)" by (blast intro: negligible_differentiable_image_negligible) have neg: "negligible {x \ g ` C - g ` S. f x \ 0}" "negligible {x \ g ` S - g ` C. f x \ 0}" using CNS by (blast intro: negligible_subset [OF neg_gN])+ then show "(f absolutely_integrable_on g ` C) = (f absolutely_integrable_on g ` S)" by (rule absolutely_integrable_spike_set_eq) show "(integral (g ` C) f = b) \ (integral (g ` S) f = b)" using integral_spike_set [OF neg] by simp qed ultimately show ?thesis by simp qed corollary absolutely_integrable_change_of_variables: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes "S \ sets lebesgue" and "\x. x \ S \ (g has_derivative g' x) (at x within S)" and "inj_on g S" shows "f absolutely_integrable_on (g ` S) \ (\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) absolutely_integrable_on S" using assms has_absolute_integral_change_of_variables by blast corollary integral_change_of_variables: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes S: "S \ sets lebesgue" and der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" and inj: "inj_on g S" and disj: "(f absolutely_integrable_on (g ` S) \ (\x. \det (matrix (g' x))\ *\<^sub>R f(g x)) absolutely_integrable_on S)" shows "integral (g ` S) f = integral S (\x. \det (matrix (g' x))\ *\<^sub>R f(g x))" using has_absolute_integral_change_of_variables [OF S der_g inj] disj by blast lemma has_absolute_integral_change_of_variables_1: fixes f :: "real \ real^'n::{finite,wellorder}" and g :: "real \ real" assumes S: "S \ sets lebesgue" and der_g: "\x. x \ S \ (g has_vector_derivative g' x) (at x within S)" and inj: "inj_on g S" shows "(\x. \g' x\ *\<^sub>R f(g x)) absolutely_integrable_on S \ integral S (\x. \g' x\ *\<^sub>R f(g x)) = b \ f absolutely_integrable_on (g ` S) \ integral (g ` S) f = b" proof - let ?lift = "vec :: real \ real^1" let ?drop = "(\x::real^1. x $ 1)" have S': "?lift ` S \ sets lebesgue" by (auto intro: differentiable_image_in_sets_lebesgue [OF S] differentiable_vec) have "((\x. vec (g (x $ 1))) has_derivative (*\<^sub>R) (g' z)) (at (vec z) within ?lift ` S)" if "z \ S" for z using der_g [OF that] by (simp add: has_vector_derivative_def has_derivative_vector_1) then have der': "\x. x \ ?lift ` S \ (?lift \ g \ ?drop has_derivative (*\<^sub>R) (g' (?drop x))) (at x within ?lift ` S)" by (auto simp: o_def) have inj': "inj_on (vec \ g \ ?drop) (vec ` S)" using inj by (simp add: inj_on_def) let ?fg = "\x. \g' x\ *\<^sub>R f(g x)" have "((\x. ?fg x $ i) absolutely_integrable_on S \ ((\x. ?fg x $ i) has_integral b $ i) S \ (\x. f x $ i) absolutely_integrable_on g ` S \ ((\x. f x $ i) has_integral b $ i) (g ` S))" for i using has_absolute_integral_change_of_variables [OF S' der' inj', of "\x. ?lift(f (?drop x) $ i)" "?lift (b$i)"] unfolding integrable_on_1_iff integral_on_1_eq absolutely_integrable_on_1_iff absolutely_integrable_drop absolutely_integrable_on_def by (auto simp: image_comp o_def integral_vec1_eq has_integral_iff) then have "?fg absolutely_integrable_on S \ (?fg has_integral b) S \ f absolutely_integrable_on (g ` S) \ (f has_integral b) (g ` S)" unfolding has_integral_componentwise_iff [where y=b] absolutely_integrable_componentwise_iff [where f=f] absolutely_integrable_componentwise_iff [where f = ?fg] by (force simp: Basis_vec_def cart_eq_inner_axis) then show ?thesis using absolutely_integrable_on_def by blast qed corollary absolutely_integrable_change_of_variables_1: fixes f :: "real \ real^'n::{finite,wellorder}" and g :: "real \ real" assumes S: "S \ sets lebesgue" and der_g: "\x. x \ S \ (g has_vector_derivative g' x) (at x within S)" and inj: "inj_on g S" shows "(f absolutely_integrable_on g ` S \ (\x. \g' x\ *\<^sub>R f(g x)) absolutely_integrable_on S)" using has_absolute_integral_change_of_variables_1 [OF assms] by auto subsection\Change of variables for integrals: special case of linear function\ lemma has_absolute_integral_change_of_variables_linear: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes "linear g" shows "(\x. \det (matrix g)\ *\<^sub>R f(g x)) absolutely_integrable_on S \ integral S (\x. \det (matrix g)\ *\<^sub>R f(g x)) = b \ f absolutely_integrable_on (g ` S) \ integral (g ` S) f = b" proof (cases "det(matrix g) = 0") case True then have "negligible(g ` S)" using assms det_nz_iff_inj negligible_linear_singular_image by blast with True show ?thesis by (auto simp: absolutely_integrable_on_def integrable_negligible integral_negligible) next case False then obtain h where h: "\x. x \ S \ h (g x) = x" "linear h" using assms det_nz_iff_inj linear_injective_isomorphism by metis show ?thesis proof (rule has_absolute_integral_change_of_variables_invertible) show "(g has_derivative g) (at x within S)" for x by (simp add: assms linear_imp_has_derivative) show "continuous_on (g ` S) h" using continuous_on_eq_continuous_within has_derivative_continuous linear_imp_has_derivative h by blast qed (use h in auto) qed lemma absolutely_integrable_change_of_variables_linear: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes "linear g" shows "(\x. \det (matrix g)\ *\<^sub>R f(g x)) absolutely_integrable_on S \ f absolutely_integrable_on (g ` S)" using assms has_absolute_integral_change_of_variables_linear by blast lemma absolutely_integrable_on_linear_image: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes "linear g" shows "f absolutely_integrable_on (g ` S) \ (f \ g) absolutely_integrable_on S \ det(matrix g) = 0" unfolding assms absolutely_integrable_change_of_variables_linear [OF assms, symmetric] absolutely_integrable_on_scaleR_iff by (auto simp: set_integrable_def) lemma integral_change_of_variables_linear: fixes f :: "real^'m::{finite,wellorder} \ real^'n" and g :: "real^'m::_ \ real^'m::_" assumes "linear g" and "f absolutely_integrable_on (g ` S) \ (f \ g) absolutely_integrable_on S" shows "integral (g ` S) f = \det (matrix g)\ *\<^sub>R integral S (f \ g)" proof - have "((\x. \det (matrix g)\ *\<^sub>R f (g x)) absolutely_integrable_on S) \ (f absolutely_integrable_on g ` S)" using absolutely_integrable_on_linear_image assms by blast moreover have ?thesis if "((\x. \det (matrix g)\ *\<^sub>R f (g x)) absolutely_integrable_on S)" "(f absolutely_integrable_on g ` S)" using has_absolute_integral_change_of_variables_linear [OF \linear g\] that by (auto simp: o_def) ultimately show ?thesis using absolutely_integrable_change_of_variables_linear [OF \linear g\] by blast qed subsection\Change of variable for measure\ lemma has_measure_differentiable_image: fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes "S \ sets lebesgue" and "\x. x \ S \ (f has_derivative f' x) (at x within S)" and "inj_on f S" shows "f ` S \ lmeasurable \ measure lebesgue (f ` S) = m \ ((\x. \det (matrix (f' x))\) has_integral m) S" using has_absolute_integral_change_of_variables [OF assms, of "\x. (1::real^1)" "vec m"] unfolding absolutely_integrable_on_1_iff integral_on_1_eq integrable_on_1_iff absolutely_integrable_on_def by (auto simp: has_integral_iff lmeasurable_iff_integrable_on lmeasure_integral) lemma measurable_differentiable_image_eq: fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes "S \ sets lebesgue" and "\x. x \ S \ (f has_derivative f' x) (at x within S)" and "inj_on f S" shows "f ` S \ lmeasurable \ (\x. \det (matrix (f' x))\) integrable_on S" using has_measure_differentiable_image [OF assms] by blast lemma measurable_differentiable_image_alt: fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes "S \ sets lebesgue" and "\x. x \ S \ (f has_derivative f' x) (at x within S)" and "inj_on f S" shows "f ` S \ lmeasurable \ (\x. \det (matrix (f' x))\) absolutely_integrable_on S" using measurable_differentiable_image_eq [OF assms] by (simp only: absolutely_integrable_on_iff_nonneg) lemma measure_differentiable_image_eq: fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes S: "S \ sets lebesgue" and der_f: "\x. x \ S \ (f has_derivative f' x) (at x within S)" and inj: "inj_on f S" and intS: "(\x. \det (matrix (f' x))\) integrable_on S" shows "measure lebesgue (f ` S) = integral S (\x. \det (matrix (f' x))\)" using measurable_differentiable_image_eq [OF S der_f inj] assms has_measure_differentiable_image by blast end diff --git a/src/HOL/Analysis/Derivative.thy b/src/HOL/Analysis/Derivative.thy --- a/src/HOL/Analysis/Derivative.thy +++ b/src/HOL/Analysis/Derivative.thy @@ -1,3475 +1,3475 @@ (* Title: HOL/Analysis/Derivative.thy Author: John Harrison Author: Robert Himmelmann, TU Muenchen (translation from HOL Light); tidied by LCP *) section \Derivative\ theory Derivative imports Bounded_Linear_Function Line_Segment Convex_Euclidean_Space begin declare bounded_linear_inner_left [intro] declare has_derivative_bounded_linear[dest] subsection \Derivatives\ lemma has_derivative_add_const: "(f has_derivative f') net \ ((\x. f x + c) has_derivative f') net" by (intro derivative_eq_intros) auto subsection\<^marker>\tag unimportant\ \Derivative with composed bilinear function\ text \More explicit epsilon-delta forms.\ proposition has_derivative_within': "(f has_derivative f')(at x within s) \ bounded_linear f' \ (\e>0. \d>0. \x'\s. 0 < norm (x' - x) \ norm (x' - x) < d \ norm (f x' - f x - f'(x' - x)) / norm (x' - x) < e)" unfolding has_derivative_within Lim_within dist_norm by (simp add: diff_diff_eq) lemma has_derivative_at': "(f has_derivative f') (at x) \ bounded_linear f' \ (\e>0. \d>0. \x'. 0 < norm (x' - x) \ norm (x' - x) < d \ norm (f x' - f x - f'(x' - x)) / norm (x' - x) < e)" using has_derivative_within' [of f f' x UNIV] by simp lemma has_derivative_componentwise_within: "(f has_derivative f') (at a within S) \ (\i \ Basis. ((\x. f x \ i) has_derivative (\x. f' x \ i)) (at a within S))" apply (simp add: has_derivative_within) apply (subst tendsto_componentwise_iff) apply (simp add: bounded_linear_componentwise_iff [symmetric] ball_conj_distrib) apply (simp add: algebra_simps) done lemma has_derivative_at_withinI: "(f has_derivative f') (at x) \ (f has_derivative f') (at x within s)" unfolding has_derivative_within' has_derivative_at' by blast lemma has_derivative_right: fixes f :: "real \ real" and y :: "real" shows "(f has_derivative ((*) y)) (at x within ({x <..} \ I)) \ ((\t. (f x - f t) / (x - t)) \ y) (at x within ({x <..} \ I))" proof - have "((\t. (f t - (f x + y * (t - x))) / \t - x\) \ 0) (at x within ({x<..} \ I)) \ ((\t. (f t - f x) / (t - x) - y) \ 0) (at x within ({x<..} \ I))" by (intro Lim_cong_within) (auto simp add: diff_divide_distrib add_divide_distrib) also have "\ \ ((\t. (f t - f x) / (t - x)) \ y) (at x within ({x<..} \ I))" by (simp add: Lim_null[symmetric]) also have "\ \ ((\t. (f x - f t) / (x - t)) \ y) (at x within ({x<..} \ I))" by (intro Lim_cong_within) (simp_all add: field_simps) finally show ?thesis by (simp add: bounded_linear_mult_right has_derivative_within) qed subsubsection \Caratheodory characterization\ lemma DERIV_caratheodory_within: "(f has_field_derivative l) (at x within S) \ (\g. (\z. f z - f x = g z * (z - x)) \ continuous (at x within S) g \ g x = l)" (is "?lhs = ?rhs") proof assume ?lhs show ?rhs proof (intro exI conjI) let ?g = "(%z. if z = x then l else (f z - f x) / (z-x))" show "\z. f z - f x = ?g z * (z-x)" by simp show "continuous (at x within S) ?g" using \?lhs\ by (auto simp add: continuous_within has_field_derivative_iff cong: Lim_cong_within) show "?g x = l" by simp qed next assume ?rhs then obtain g where "(\z. f z - f x = g z * (z-x))" and "continuous (at x within S) g" and "g x = l" by blast thus ?lhs by (auto simp add: continuous_within has_field_derivative_iff cong: Lim_cong_within) qed subsection \Differentiability\ definition\<^marker>\tag important\ differentiable_on :: "('a::real_normed_vector \ 'b::real_normed_vector) \ 'a set \ bool" (infix "differentiable'_on" 50) where "f differentiable_on s \ (\x\s. f differentiable (at x within s))" lemma differentiableI: "(f has_derivative f') net \ f differentiable net" unfolding differentiable_def by auto lemma differentiable_onD: "\f differentiable_on S; x \ S\ \ f differentiable (at x within S)" using differentiable_on_def by blast lemma differentiable_at_withinI: "f differentiable (at x) \ f differentiable (at x within s)" unfolding differentiable_def using has_derivative_at_withinI by blast lemma differentiable_at_imp_differentiable_on: "(\x. x \ s \ f differentiable at x) \ f differentiable_on s" by (metis differentiable_at_withinI differentiable_on_def) corollary\<^marker>\tag unimportant\ differentiable_iff_scaleR: fixes f :: "real \ 'a::real_normed_vector" shows "f differentiable F \ (\d. (f has_derivative (\x. x *\<^sub>R d)) F)" by (auto simp: differentiable_def dest: has_derivative_linear linear_imp_scaleR) lemma differentiable_on_eq_differentiable_at: "open s \ f differentiable_on s \ (\x\s. f differentiable at x)" unfolding differentiable_on_def by (metis at_within_interior interior_open) lemma differentiable_transform_within: assumes "f differentiable (at x within s)" and "0 < d" and "x \ s" and "\x'. \x'\s; dist x' x < d\ \ f x' = g x'" shows "g differentiable (at x within s)" using assms has_derivative_transform_within unfolding differentiable_def by blast lemma differentiable_on_ident [simp, derivative_intros]: "(\x. x) differentiable_on S" by (simp add: differentiable_at_imp_differentiable_on) lemma differentiable_on_id [simp, derivative_intros]: "id differentiable_on S" by (simp add: id_def) lemma differentiable_on_const [simp, derivative_intros]: "(\z. c) differentiable_on S" by (simp add: differentiable_on_def) lemma differentiable_on_mult [simp, derivative_intros]: fixes f :: "'M::real_normed_vector \ 'a::real_normed_algebra" shows "\f differentiable_on S; g differentiable_on S\ \ (\z. f z * g z) differentiable_on S" unfolding differentiable_on_def differentiable_def using differentiable_def differentiable_mult by blast lemma differentiable_on_compose: "\g differentiable_on S; f differentiable_on (g ` S)\ \ (\x. f (g x)) differentiable_on S" by (simp add: differentiable_in_compose differentiable_on_def) lemma bounded_linear_imp_differentiable_on: "bounded_linear f \ f differentiable_on S" by (simp add: differentiable_on_def bounded_linear_imp_differentiable) lemma linear_imp_differentiable_on: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" shows "linear f \ f differentiable_on S" by (simp add: differentiable_on_def linear_imp_differentiable) lemma differentiable_on_minus [simp, derivative_intros]: "f differentiable_on S \ (\z. -(f z)) differentiable_on S" by (simp add: differentiable_on_def) lemma differentiable_on_add [simp, derivative_intros]: "\f differentiable_on S; g differentiable_on S\ \ (\z. f z + g z) differentiable_on S" by (simp add: differentiable_on_def) lemma differentiable_on_diff [simp, derivative_intros]: "\f differentiable_on S; g differentiable_on S\ \ (\z. f z - g z) differentiable_on S" by (simp add: differentiable_on_def) lemma differentiable_on_inverse [simp, derivative_intros]: fixes f :: "'a :: real_normed_vector \ 'b :: real_normed_field" shows "f differentiable_on S \ (\x. x \ S \ f x \ 0) \ (\x. inverse (f x)) differentiable_on S" by (simp add: differentiable_on_def) lemma differentiable_on_scaleR [derivative_intros, simp]: "\f differentiable_on S; g differentiable_on S\ \ (\x. f x *\<^sub>R g x) differentiable_on S" unfolding differentiable_on_def by (blast intro: differentiable_scaleR) lemma has_derivative_sqnorm_at [derivative_intros, simp]: "((\x. (norm x)\<^sup>2) has_derivative (\x. 2 *\<^sub>R (a \ x))) (at a)" using bounded_bilinear.FDERIV [of "(\)" id id a _ id id] by (auto simp: inner_commute dot_square_norm bounded_bilinear_inner) lemma differentiable_sqnorm_at [derivative_intros, simp]: fixes a :: "'a :: {real_normed_vector,real_inner}" shows "(\x. (norm x)\<^sup>2) differentiable (at a)" by (force simp add: differentiable_def intro: has_derivative_sqnorm_at) lemma differentiable_on_sqnorm [derivative_intros, simp]: fixes S :: "'a :: {real_normed_vector,real_inner} set" shows "(\x. (norm x)\<^sup>2) differentiable_on S" by (simp add: differentiable_at_imp_differentiable_on) lemma differentiable_norm_at [derivative_intros, simp]: fixes a :: "'a :: {real_normed_vector,real_inner}" shows "a \ 0 \ norm differentiable (at a)" using differentiableI has_derivative_norm by blast lemma differentiable_on_norm [derivative_intros, simp]: fixes S :: "'a :: {real_normed_vector,real_inner} set" shows "0 \ S \ norm differentiable_on S" by (metis differentiable_at_imp_differentiable_on differentiable_norm_at) subsection \Frechet derivative and Jacobian matrix\ definition "frechet_derivative f net = (SOME f'. (f has_derivative f') net)" proposition frechet_derivative_works: "f differentiable net \ (f has_derivative (frechet_derivative f net)) net" unfolding frechet_derivative_def differentiable_def unfolding some_eq_ex[of "\ f' . (f has_derivative f') net"] .. lemma linear_frechet_derivative: "f differentiable net \ linear (frechet_derivative f net)" unfolding frechet_derivative_works has_derivative_def by (auto intro: bounded_linear.linear) lemma frechet_derivative_const [simp]: "frechet_derivative (\x. c) (at a) = (\x. 0)" using differentiable_const frechet_derivative_works has_derivative_const has_derivative_unique by blast lemma frechet_derivative_id [simp]: "frechet_derivative id (at a) = id" using differentiable_def frechet_derivative_works has_derivative_id has_derivative_unique by blast lemma frechet_derivative_ident [simp]: "frechet_derivative (\x. x) (at a) = (\x. x)" by (metis eq_id_iff frechet_derivative_id) subsection \Differentiability implies continuity\ proposition differentiable_imp_continuous_within: "f differentiable (at x within s) \ continuous (at x within s) f" by (auto simp: differentiable_def intro: has_derivative_continuous) lemma differentiable_imp_continuous_on: "f differentiable_on s \ continuous_on s f" unfolding differentiable_on_def continuous_on_eq_continuous_within using differentiable_imp_continuous_within by blast lemma differentiable_on_subset: "f differentiable_on t \ s \ t \ f differentiable_on s" unfolding differentiable_on_def using differentiable_within_subset by blast lemma differentiable_on_empty: "f differentiable_on {}" unfolding differentiable_on_def by auto lemma has_derivative_continuous_on: "(\x. x \ s \ (f has_derivative f' x) (at x within s)) \ continuous_on s f" by (auto intro!: differentiable_imp_continuous_on differentiableI simp: differentiable_on_def) text \Results about neighborhoods filter.\ lemma eventually_nhds_metric_le: "eventually P (nhds a) = (\d>0. \x. dist x a \ d \ P x)" unfolding eventually_nhds_metric by (safe, rule_tac x="d / 2" in exI, auto) lemma le_nhds: "F \ nhds a \ (\S. open S \ a \ S \ eventually (\x. x \ S) F)" unfolding le_filter_def eventually_nhds by (fast elim: eventually_mono) lemma le_nhds_metric: "F \ nhds a \ (\e>0. eventually (\x. dist x a < e) F)" unfolding le_filter_def eventually_nhds_metric by (fast elim: eventually_mono) lemma le_nhds_metric_le: "F \ nhds a \ (\e>0. eventually (\x. dist x a \ e) F)" unfolding le_filter_def eventually_nhds_metric_le by (fast elim: eventually_mono) text \Several results are easier using a "multiplied-out" variant. (I got this idea from Dieudonne's proof of the chain rule).\ lemma has_derivative_within_alt: "(f has_derivative f') (at x within s) \ bounded_linear f' \ (\e>0. \d>0. \y\s. norm(y - x) < d \ norm (f y - f x - f' (y - x)) \ e * norm (y - x))" unfolding has_derivative_within filterlim_def le_nhds_metric_le eventually_filtermap eventually_at dist_norm diff_diff_eq by (force simp add: linear_0 bounded_linear.linear pos_divide_le_eq) lemma has_derivative_within_alt2: "(f has_derivative f') (at x within s) \ bounded_linear f' \ (\e>0. eventually (\y. norm (f y - f x - f' (y - x)) \ e * norm (y - x)) (at x within s))" unfolding has_derivative_within filterlim_def le_nhds_metric_le eventually_filtermap eventually_at dist_norm diff_diff_eq by (force simp add: linear_0 bounded_linear.linear pos_divide_le_eq) lemma has_derivative_at_alt: "(f has_derivative f') (at x) \ bounded_linear f' \ (\e>0. \d>0. \y. norm(y - x) < d \ norm (f y - f x - f'(y - x)) \ e * norm (y - x))" using has_derivative_within_alt[where s=UNIV] by simp subsection \The chain rule\ proposition diff_chain_within[derivative_intros]: assumes "(f has_derivative f') (at x within s)" and "(g has_derivative g') (at (f x) within (f ` s))" shows "((g \ f) has_derivative (g' \ f'))(at x within s)" using has_derivative_in_compose[OF assms] by (simp add: comp_def) lemma diff_chain_at[derivative_intros]: "(f has_derivative f') (at x) \ (g has_derivative g') (at (f x)) \ ((g \ f) has_derivative (g' \ f')) (at x)" using has_derivative_compose[of f f' x UNIV g g'] by (simp add: comp_def) lemma has_vector_derivative_within_open: "a \ S \ open S \ (f has_vector_derivative f') (at a within S) \ (f has_vector_derivative f') (at a)" by (simp only: at_within_interior interior_open) lemma field_vector_diff_chain_within: assumes Df: "(f has_vector_derivative f') (at x within S)" and Dg: "(g has_field_derivative g') (at (f x) within f ` S)" shows "((g \ f) has_vector_derivative (f' * g')) (at x within S)" using diff_chain_within[OF Df[unfolded has_vector_derivative_def] Dg [unfolded has_field_derivative_def]] by (auto simp: o_def mult.commute has_vector_derivative_def) lemma vector_derivative_diff_chain_within: assumes Df: "(f has_vector_derivative f') (at x within S)" and Dg: "(g has_derivative g') (at (f x) within f`S)" shows "((g \ f) has_vector_derivative (g' f')) (at x within S)" using diff_chain_within[OF Df[unfolded has_vector_derivative_def] Dg] linear.scaleR[OF has_derivative_linear[OF Dg]] unfolding has_vector_derivative_def o_def by (auto simp: o_def mult.commute has_vector_derivative_def) subsection\<^marker>\tag unimportant\ \Composition rules stated just for differentiability\ lemma differentiable_chain_at: "f differentiable (at x) \ g differentiable (at (f x)) \ (g \ f) differentiable (at x)" unfolding differentiable_def by (meson diff_chain_at) lemma differentiable_chain_within: "f differentiable (at x within S) \ g differentiable (at(f x) within (f ` S)) \ (g \ f) differentiable (at x within S)" unfolding differentiable_def by (meson diff_chain_within) subsection \Uniqueness of derivative\ text\<^marker>\tag important\ \ The general result is a bit messy because we need approachability of the limit point from any direction. But OK for nontrivial intervals etc. \ proposition frechet_derivative_unique_within: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes 1: "(f has_derivative f') (at x within S)" and 2: "(f has_derivative f'') (at x within S)" and S: "\i e. \i\Basis; e>0\ \ \d. 0 < \d\ \ \d\ < e \ (x + d *\<^sub>R i) \ S" shows "f' = f''" proof - note as = assms(1,2)[unfolded has_derivative_def] then interpret f': bounded_linear f' by auto from as interpret f'': bounded_linear f'' by auto have "x islimpt S" unfolding islimpt_approachable proof (intro allI impI) fix e :: real assume "e > 0" obtain d where "0 < \d\" and "\d\ < e" and "x + d *\<^sub>R (SOME i. i \ Basis) \ S" using assms(3) SOME_Basis \e>0\ by blast then show "\x'\S. x' \ x \ dist x' x < e" by (rule_tac x="x + d *\<^sub>R (SOME i. i \ Basis)" in bexI) (auto simp: dist_norm SOME_Basis nonzero_Basis) qed then have *: "netlimit (at x within S) = x" by (simp add: Lim_ident_at trivial_limit_within) show ?thesis proof (rule linear_eq_stdbasis) show "linear f'" "linear f''" unfolding linear_conv_bounded_linear using as by auto next fix i :: 'a assume i: "i \ Basis" define e where "e = norm (f' i - f'' i)" show "f' i = f'' i" proof (rule ccontr) assume "f' i \ f'' i" then have "e > 0" unfolding e_def by auto obtain d where d: "0 < d" "(\y. y\S \ 0 < dist y x \ dist y x < d \ dist ((f y - f x - f' (y - x)) /\<^sub>R norm (y - x) - (f y - f x - f'' (y - x)) /\<^sub>R norm (y - x)) (0 - 0) < e)" using tendsto_diff [OF as(1,2)[THEN conjunct2]] unfolding * Lim_within using \e>0\ by blast obtain c where c: "0 < \c\" "\c\ < d \ x + c *\<^sub>R i \ S" using assms(3) i d(1) by blast have *: "norm (- ((1 / \c\) *\<^sub>R f' (c *\<^sub>R i)) + (1 / \c\) *\<^sub>R f'' (c *\<^sub>R i)) = norm ((1 / \c\) *\<^sub>R (- (f' (c *\<^sub>R i)) + f'' (c *\<^sub>R i)))" unfolding scaleR_right_distrib by auto also have "\ = norm ((1 / \c\) *\<^sub>R (c *\<^sub>R (- (f' i) + f'' i)))" unfolding f'.scaleR f''.scaleR unfolding scaleR_right_distrib scaleR_minus_right by auto also have "\ = e" unfolding e_def using c(1) using norm_minus_cancel[of "f' i - f'' i"] by auto finally show False using c using d(2)[of "x + c *\<^sub>R i"] unfolding dist_norm unfolding f'.scaleR f''.scaleR f'.add f''.add f'.diff f''.diff scaleR_scaleR scaleR_right_diff_distrib scaleR_right_distrib using i by (auto simp: inverse_eq_divide) qed qed qed proposition frechet_derivative_unique_within_closed_interval: fixes f::"'a::euclidean_space \ 'b::real_normed_vector" assumes ab: "\i. i\Basis \ a\i < b\i" and x: "x \ cbox a b" and "(f has_derivative f' ) (at x within cbox a b)" and "(f has_derivative f'') (at x within cbox a b)" shows "f' = f''" proof (rule frechet_derivative_unique_within) fix e :: real fix i :: 'a assume "e > 0" and i: "i \ Basis" then show "\d. 0 < \d\ \ \d\ < e \ x + d *\<^sub>R i \ cbox a b" proof (cases "x\i = a\i") case True with ab[of i] \e>0\ x i show ?thesis by (rule_tac x="(min (b\i - a\i) e) / 2" in exI) (auto simp add: mem_box field_simps inner_simps inner_Basis) next case False moreover have "a \ i < x \ i" using False i mem_box(2) x by force moreover { have "a \ i * 2 + min (x \ i - a \ i) e \ a\i *2 + x\i - a\i" by auto also have "\ = a\i + x\i" by auto also have "\ \ 2 * (x\i)" using \a \ i < x \ i\ by auto finally have "a \ i * 2 + min (x \ i - a \ i) e \ x \ i * 2" by auto } moreover have "min (x \ i - a \ i) e \ 0" by (simp add: \0 < e\ \a \ i < x \ i\ less_eq_real_def) then have "x \ i * 2 \ b \ i * 2 + min (x \ i - a \ i) e" using i mem_box(2) x by force ultimately show ?thesis using ab[of i] \e>0\ x i by (rule_tac x="- (min (x\i - a\i) e) / 2" in exI) (auto simp add: mem_box field_simps inner_simps inner_Basis) qed qed (use assms in auto) lemma frechet_derivative_unique_within_open_interval: fixes f::"'a::euclidean_space \ 'b::real_normed_vector" assumes x: "x \ box a b" and f: "(f has_derivative f' ) (at x within box a b)" "(f has_derivative f'') (at x within box a b)" shows "f' = f''" proof - have "at x within box a b = at x" by (metis x at_within_interior interior_open open_box) with f show "f' = f''" by (simp add: has_derivative_unique) qed lemma frechet_derivative_at: "(f has_derivative f') (at x) \ f' = frechet_derivative f (at x)" using differentiable_def frechet_derivative_works has_derivative_unique by blast lemma frechet_derivative_compose: "frechet_derivative (f o g) (at x) = frechet_derivative (f) (at (g x)) o frechet_derivative g (at x)" if "g differentiable at x" "f differentiable at (g x)" by (metis diff_chain_at frechet_derivative_at frechet_derivative_works that) lemma frechet_derivative_within_cbox: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes "\i. i\Basis \ a\i < b\i" and "x \ cbox a b" and "(f has_derivative f') (at x within cbox a b)" shows "frechet_derivative f (at x within cbox a b) = f'" using assms by (metis Derivative.differentiableI frechet_derivative_unique_within_closed_interval frechet_derivative_works) lemma frechet_derivative_transform_within_open: "frechet_derivative f (at x) = frechet_derivative g (at x)" if "f differentiable at x" "open X" "x \ X" "\x. x \ X \ f x = g x" by (meson frechet_derivative_at frechet_derivative_works has_derivative_transform_within_open that) subsection \Derivatives of local minima and maxima are zero\ lemma has_derivative_local_min: fixes f :: "'a::real_normed_vector \ real" assumes deriv: "(f has_derivative f') (at x)" assumes min: "eventually (\y. f x \ f y) (at x)" shows "f' = (\h. 0)" proof fix h :: 'a interpret f': bounded_linear f' using deriv by (rule has_derivative_bounded_linear) show "f' h = 0" proof (cases "h = 0") case False from min obtain d where d1: "0 < d" and d2: "\y\ball x d. f x \ f y" unfolding eventually_at by (force simp: dist_commute) have "FDERIV (\r. x + r *\<^sub>R h) 0 :> (\r. r *\<^sub>R h)" by (intro derivative_eq_intros) auto then have "FDERIV (\r. f (x + r *\<^sub>R h)) 0 :> (\k. f' (k *\<^sub>R h))" by (rule has_derivative_compose, simp add: deriv) then have "DERIV (\r. f (x + r *\<^sub>R h)) 0 :> f' h" unfolding has_field_derivative_def by (simp add: f'.scaleR mult_commute_abs) moreover have "0 < d / norm h" using d1 and \h \ 0\ by simp moreover have "\y. \0 - y\ < d / norm h \ f (x + 0 *\<^sub>R h) \ f (x + y *\<^sub>R h)" using \h \ 0\ by (auto simp add: d2 dist_norm pos_less_divide_eq) ultimately show "f' h = 0" by (rule DERIV_local_min) qed simp qed lemma has_derivative_local_max: fixes f :: "'a::real_normed_vector \ real" assumes "(f has_derivative f') (at x)" assumes "eventually (\y. f y \ f x) (at x)" shows "f' = (\h. 0)" using has_derivative_local_min [of "\x. - f x" "\h. - f' h" "x"] using assms unfolding fun_eq_iff by simp lemma differential_zero_maxmin: fixes f::"'a::real_normed_vector \ real" assumes "x \ S" and "open S" and deriv: "(f has_derivative f') (at x)" and mono: "(\y\S. f y \ f x) \ (\y\S. f x \ f y)" shows "f' = (\v. 0)" using mono proof assume "\y\S. f y \ f x" with \x \ S\ and \open S\ have "eventually (\y. f y \ f x) (at x)" unfolding eventually_at_topological by auto with deriv show ?thesis by (rule has_derivative_local_max) next assume "\y\S. f x \ f y" with \x \ S\ and \open S\ have "eventually (\y. f x \ f y) (at x)" unfolding eventually_at_topological by auto with deriv show ?thesis by (rule has_derivative_local_min) qed lemma differential_zero_maxmin_component: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes k: "k \ Basis" and ball: "0 < e" "(\y \ ball x e. (f y)\k \ (f x)\k) \ (\y\ball x e. (f x)\k \ (f y)\k)" and diff: "f differentiable (at x)" shows "(\j\Basis. (frechet_derivative f (at x) j \ k) *\<^sub>R j) = (0::'a)" (is "?D k = 0") proof - let ?f' = "frechet_derivative f (at x)" have "x \ ball x e" using \0 < e\ by simp moreover have "open (ball x e)" by simp moreover have "((\x. f x \ k) has_derivative (\h. ?f' h \ k)) (at x)" using bounded_linear_inner_left diff[unfolded frechet_derivative_works] by (rule bounded_linear.has_derivative) ultimately have "(\h. frechet_derivative f (at x) h \ k) = (\v. 0)" using ball(2) by (rule differential_zero_maxmin) then show ?thesis unfolding fun_eq_iff by simp qed subsection \One-dimensional mean value theorem\ lemma mvt_simple: fixes f :: "real \ real" assumes "a < b" and derf: "\x. \a \ x; x \ b\ \ (f has_derivative f' x) (at x within {a..b})" shows "\x\{a<.. real" assumes "a \ b" and derf: "\x. \a \ x; x \ b\ \ (f has_derivative f' x) (at x within {a..b})" shows "\x\{a..b}. f b - f a = f' x (b - a)" proof (cases "a = b") interpret bounded_linear "f' b" using assms(2) assms(1) by auto case True then show ?thesis by force next case False then show ?thesis using mvt_simple[OF _ derf] by (metis \a \ b\ atLeastAtMost_iff dual_order.order_iff_strict greaterThanLessThan_iff) qed text \A nice generalization (see Havin's proof of 5.19 from Rudin's book).\ lemma mvt_general: fixes f :: "real \ 'a::real_inner" assumes "a < b" and contf: "continuous_on {a..b} f" and derf: "\x. \a < x; x < b\ \ (f has_derivative f' x) (at x)" shows "\x\{a<.. norm (f' x (b - a))" proof - have "\x\{a<.. f b - (f b - f a) \ f a = (f b - f a) \ f' x (b - a)" apply (rule mvt [OF \a < b\, where f = "\x. (f b - f a) \ f x"]) apply (intro continuous_intros contf) using derf apply (auto intro: has_derivative_inner_right) done then obtain x where x: "x \ {a<.. f b - (f b - f a) \ f a = (f b - f a) \ f' x (b - a)" .. show ?thesis proof (cases "f a = f b") case False have "norm (f b - f a) * norm (f b - f a) = (norm (f b - f a))\<^sup>2" by (simp add: power2_eq_square) also have "\ = (f b - f a) \ (f b - f a)" unfolding power2_norm_eq_inner .. also have "\ = (f b - f a) \ f' x (b - a)" using x(2) by (simp only: inner_diff_right) also have "\ \ norm (f b - f a) * norm (f' x (b - a))" by (rule norm_cauchy_schwarz) finally show ?thesis using False x(1) by (auto simp add: mult_left_cancel) next case True then show ?thesis using \a < b\ by (rule_tac x="(a + b) /2" in bexI) auto qed qed subsection \More general bound theorems\ proposition differentiable_bound_general: fixes f :: "real \ 'a::real_normed_vector" assumes "a < b" and f_cont: "continuous_on {a..b} f" and phi_cont: "continuous_on {a..b} \" and f': "\x. a < x \ x < b \ (f has_vector_derivative f' x) (at x)" and phi': "\x. a < x \ x < b \ (\ has_vector_derivative \' x) (at x)" and bnd: "\x. a < x \ x < b \ norm (f' x) \ \' x" shows "norm (f b - f a) \ \ b - \ a" proof - { fix x assume x: "a < x" "x < b" have "0 \ norm (f' x)" by simp also have "\ \ \' x" using x by (auto intro!: bnd) finally have "0 \ \' x" . } note phi'_nonneg = this note f_tendsto = assms(2)[simplified continuous_on_def, rule_format] note phi_tendsto = assms(3)[simplified continuous_on_def, rule_format] { fix e::real assume "e > 0" define e2 where "e2 = e / 2" with \e > 0\ have "e2 > 0" by simp let ?le = "\x1. norm (f x1 - f a) \ \ x1 - \ a + e * (x1 - a) + e" define A where "A = {x2. a \ x2 \ x2 \ b \ (\x1\{a ..< x2}. ?le x1)}" have A_subset: "A \ {a..b}" by (auto simp: A_def) { fix x2 assume a: "a \ x2" "x2 \ b" and le: "\x1\{a..e > 0\ proof cases assume "x2 \ a" with a have "a < x2" by simp have "at x2 within {a <.. bot" using \a < x2\ by (auto simp: trivial_limit_within islimpt_in_closure) moreover have "((\x1. (\ x1 - \ a) + e * (x1 - a) + e) \ (\ x2 - \ a) + e * (x2 - a) + e) (at x2 within {a <..x1. norm (f x1 - f a)) \ norm (f x2 - f a)) (at x2 within {a <..x. x > a) (at x2 within {a <.. A" using assms by (auto simp: A_def) hence [simp]: "A \ {}" by auto have A_ivl: "\x1 x2. x2 \ A \ x1 \ {a ..x2} \ x1 \ A" by (simp add: A_def) have [simp]: "bdd_above A" by (auto simp: A_def) define y where "y = Sup A" have "y \ b" unfolding y_def by (simp add: cSup_le_iff) (simp add: A_def) have leI: "\x x1. a \ x1 \ x \ A \ x1 < x \ ?le x1" by (auto simp: A_def intro!: le_cont) have y_all_le: "\x1\{a.. y" by (metis \a \ A\ \bdd_above A\ cSup_upper y_def) have "y \ A" using y_all_le \a \ y\ \y \ b\ by (auto simp: A_def) hence "A = {a .. y}" using A_subset by (auto simp: subset_iff y_def cSup_upper intro: A_ivl) from le_cont[OF \a \ y\ \y \ b\ y_all_le] have le_y: "?le y" . have "y = b" proof (cases "a = y") case True with \a < b\ have "y < b" by simp with \a = y\ f_cont phi_cont \e2 > 0\ have 1: "\\<^sub>F x in at y within {y..b}. dist (f x) (f y) < e2" and 2: "\\<^sub>F x in at y within {y..b}. dist (\ x) (\ y) < e2" by (auto simp: continuous_on_def tendsto_iff) have 3: "eventually (\x. y < x) (at y within {y..b})" by (auto simp: eventually_at_filter) have 4: "eventually (\x::real. x < b) (at y within {y..b})" using _ \y < b\ by (rule order_tendstoD) (auto intro!: tendsto_eq_intros) from 1 2 3 4 have eventually_le: "eventually (\x. ?le x) (at y within {y .. b})" proof eventually_elim case (elim x1) have "norm (f x1 - f a) = norm (f x1 - f y)" by (simp add: \a = y\) also have "norm (f x1 - f y) \ e2" using elim \a = y\ by (auto simp : dist_norm intro!: less_imp_le) also have "\ \ e2 + (\ x1 - \ a + e2 + e * (x1 - a))" using \0 < e\ elim by (intro add_increasing2[OF add_nonneg_nonneg order.refl]) (auto simp: \a = y\ dist_norm intro!: mult_nonneg_nonneg) also have "\ = \ x1 - \ a + e * (x1 - a) + e" by (simp add: e2_def) finally show "?le x1" . qed from this[unfolded eventually_at_topological] \?le y\ obtain S where S: "open S" "y \ S" "\x. x\S \ x \ {y..b} \ ?le x" by metis from \open S\ obtain d where d: "\x. dist x y < d \ x \ S" "d > 0" by (force simp: dist_commute open_dist ball_def dest!: bspec[OF _ \y \ S\]) define d' where "d' = min b (y + (d/2))" have "d' \ A" unfolding A_def proof safe show "a \ d'" using \a = y\ \0 < d\ \y < b\ by (simp add: d'_def) show "d' \ b" by (simp add: d'_def) fix x1 assume "x1 \ {a.. S" "x1 \ {y..b}" by (auto simp: \a = y\ d'_def dist_real_def intro!: d ) thus "?le x1" by (rule S) qed hence "d' \ y" unfolding y_def by (rule cSup_upper) simp then show "y = b" using \d > 0\ \y < b\ by (simp add: d'_def) next case False with \a \ y\ have "a < y" by simp show "y = b" proof (rule ccontr) assume "y \ b" hence "y < b" using \y \ b\ by simp let ?F = "at y within {y.. has_vector_derivative \' y) ?F" using \a < y\ \y < b\ by (auto simp add: at_within_open[of _ "{a<..\<^sub>F x1 in ?F. norm (f x1 - f y - (x1 - y) *\<^sub>R f' y) \ e2 * \x1 - y\" "\\<^sub>F x1 in ?F. norm (\ x1 - \ y - (x1 - y) *\<^sub>R \' y) \ e2 * \x1 - y\" using \e2 > 0\ by (auto simp: has_derivative_within_alt2 has_vector_derivative_def) moreover have "\\<^sub>F x1 in ?F. y \ x1" "\\<^sub>F x1 in ?F. x1 < b" by (auto simp: eventually_at_filter) ultimately have "\\<^sub>F x1 in ?F. norm (f x1 - f y) \ (\ x1 - \ y) + e * \x1 - y\" (is "\\<^sub>F x1 in ?F. ?le' x1") proof eventually_elim case (elim x1) from norm_triangle_ineq2[THEN order_trans, OF elim(1)] have "norm (f x1 - f y) \ norm (f' y) * \x1 - y\ + e2 * \x1 - y\" by (simp add: ac_simps) also have "norm (f' y) \ \' y" using bnd \a < y\ \y < b\ by simp also have "\' y * \x1 - y\ \ \ x1 - \ y + e2 * \x1 - y\" using elim by (simp add: ac_simps) finally have "norm (f x1 - f y) \ \ x1 - \ y + e2 * \x1 - y\ + e2 * \x1 - y\" by (auto simp: mult_right_mono) thus ?case by (simp add: e2_def) qed moreover have "?le' y" by simp ultimately obtain S where S: "open S" "y \ S" "\x. x\S \ x \ {y.. ?le' x" unfolding eventually_at_topological by metis from \open S\ obtain d where d: "\x. dist x y < d \ x \ S" "d > 0" by (force simp: dist_commute open_dist ball_def dest!: bspec[OF _ \y \ S\]) define d' where "d' = min ((y + b)/2) (y + (d/2))" have "d' \ A" unfolding A_def proof safe show "a \ d'" using \a < y\ \0 < d\ \y < b\ by (simp add: d'_def) show "d' \ b" using \y < b\ by (simp add: d'_def min_def) fix x1 assume x1: "x1 \ {a..y \ A\ local.leI x1 by auto next case False hence x1': "x1 \ S" "x1 \ {y.. norm (f x1 - f y) + norm (f y - f a)" by (rule order_trans[OF _ norm_triangle_ineq]) simp also note S(3)[OF x1'] also note le_y finally show "?le x1" using False by (auto simp: algebra_simps) qed qed hence "d' \ y" unfolding y_def by (rule cSup_upper) simp thus False using \d > 0\ \y < b\ by (simp add: d'_def min_def split: if_split_asm) qed qed with le_y have "norm (f b - f a) \ \ b - \ a + e * (b - a + 1)" by (simp add: algebra_simps) } note * = this show ?thesis proof (rule field_le_epsilon) fix e::real assume "e > 0" then show "norm (f b - f a) \ \ b - \ a + e" using *[of "e / (b - a + 1)"] \a < b\ by simp qed qed lemma differentiable_bound: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "convex S" and derf: "\x. x\S \ (f has_derivative f' x) (at x within S)" and B: "\x. x \ S \ onorm (f' x) \ B" and x: "x \ S" and y: "y \ S" shows "norm (f x - f y) \ B * norm (x - y)" proof - let ?p = "\u. x + u *\<^sub>R (y - x)" let ?\ = "\h. h * B * norm (x - y)" have *: "x + u *\<^sub>R (y - x) \ S" if "u \ {0..1}" for u proof - have "u *\<^sub>R y = u *\<^sub>R (y - x) + u *\<^sub>R x" by (simp add: scale_right_diff_distrib) then show "x + u *\<^sub>R (y - x) \ S" using that \convex S\ x y by (simp add: convex_alt) (metis pth_b(2) pth_c(1) scaleR_collapse) qed have "\z. z \ (\u. x + u *\<^sub>R (y - x)) ` {0..1} \ (f has_derivative f' z) (at z within (\u. x + u *\<^sub>R (y - x)) ` {0..1})" - by (auto intro: * has_derivative_within_subset [OF derf]) + by (auto intro: * has_derivative_subset [OF derf]) then have "continuous_on (?p ` {0..1}) f" unfolding continuous_on_eq_continuous_within by (meson has_derivative_continuous) with * have 1: "continuous_on {0 .. 1} (f \ ?p)" by (intro continuous_intros)+ { fix u::real assume u: "u \{0 <..< 1}" let ?u = "?p u" interpret linear "(f' ?u)" using u by (auto intro!: has_derivative_linear derf *) have "(f \ ?p has_derivative (f' ?u) \ (\u. 0 + u *\<^sub>R (y - x))) (at u within box 0 1)" - by (intro derivative_intros has_derivative_within_subset [OF derf]) (use u * in auto) + by (intro derivative_intros has_derivative_subset [OF derf]) (use u * in auto) hence "((f \ ?p) has_vector_derivative f' ?u (y - x)) (at u)" by (simp add: at_within_open[OF u open_greaterThanLessThan] scaleR has_vector_derivative_def o_def) } note 2 = this have 3: "continuous_on {0..1} ?\" by (rule continuous_intros)+ have 4: "(?\ has_vector_derivative B * norm (x - y)) (at u)" for u by (auto simp: has_vector_derivative_def intro!: derivative_eq_intros) { fix u::real assume u: "u \{0 <..< 1}" let ?u = "?p u" interpret bounded_linear "(f' ?u)" using u by (auto intro!: has_derivative_bounded_linear derf *) have "norm (f' ?u (y - x)) \ onorm (f' ?u) * norm (y - x)" by (rule onorm) (rule bounded_linear) also have "onorm (f' ?u) \ B" using u by (auto intro!: assms(3)[rule_format] *) finally have "norm ((f' ?u) (y - x)) \ B * norm (x - y)" by (simp add: mult_right_mono norm_minus_commute) } note 5 = this have "norm (f x - f y) = norm ((f \ (\u. x + u *\<^sub>R (y - x))) 1 - (f \ (\u. x + u *\<^sub>R (y - x))) 0)" by (auto simp add: norm_minus_commute) also from differentiable_bound_general[OF zero_less_one 1, OF 3 2 4 5] have "norm ((f \ ?p) 1 - (f \ ?p) 0) \ B * norm (x - y)" by simp finally show ?thesis . qed lemma field_differentiable_bound: fixes S :: "'a::real_normed_field set" assumes cvs: "convex S" and df: "\z. z \ S \ (f has_field_derivative f' z) (at z within S)" and dn: "\z. z \ S \ norm (f' z) \ B" and "x \ S" "y \ S" shows "norm(f x - f y) \ B * norm(x - y)" apply (rule differentiable_bound [OF cvs]) apply (erule df [unfolded has_field_derivative_def]) apply (rule onorm_le, simp_all add: norm_mult mult_right_mono assms) done lemma differentiable_bound_segment: fixes f::"'a::real_normed_vector \ 'b::real_normed_vector" assumes "\t. t \ {0..1} \ x0 + t *\<^sub>R a \ G" assumes f': "\x. x \ G \ (f has_derivative f' x) (at x within G)" assumes B: "\x. x \ {0..1} \ onorm (f' (x0 + x *\<^sub>R a)) \ B" shows "norm (f (x0 + a) - f x0) \ norm a * B" proof - let ?G = "(\x. x0 + x *\<^sub>R a) ` {0..1}" have "?G = (+) x0 ` (\x. x *\<^sub>R a) ` {0..1}" by auto also have "convex \" by (intro convex_translation convex_scaled convex_real_interval) finally have "convex ?G" . moreover have "?G \ G" "x0 \ ?G" "x0 + a \ ?G" using assms by (auto intro: image_eqI[where x=1]) ultimately show ?thesis using has_derivative_subset[OF f' \?G \ G\] B differentiable_bound[of "(\x. x0 + x *\<^sub>R a) ` {0..1}" f f' B "x0 + a" x0] by (force simp: ac_simps) qed lemma differentiable_bound_linearization: fixes f::"'a::real_normed_vector \ 'b::real_normed_vector" assumes S: "\t. t \ {0..1} \ a + t *\<^sub>R (b - a) \ S" assumes f'[derivative_intros]: "\x. x \ S \ (f has_derivative f' x) (at x within S)" assumes B: "\x. x \ S \ onorm (f' x - f' x0) \ B" assumes "x0 \ S" shows "norm (f b - f a - f' x0 (b - a)) \ norm (b - a) * B" proof - define g where [abs_def]: "g x = f x - f' x0 x" for x have g: "\x. x \ S \ (g has_derivative (\i. f' x i - f' x0 i)) (at x within S)" unfolding g_def using assms by (auto intro!: derivative_eq_intros bounded_linear.has_derivative[OF has_derivative_bounded_linear, OF f']) from B have "\x\{0..1}. onorm (\i. f' (a + x *\<^sub>R (b - a)) i - f' x0 i) \ B" using assms by (auto simp: fun_diff_def) with differentiable_bound_segment[OF S g] \x0 \ S\ show ?thesis by (simp add: g_def field_simps linear_diff[OF has_derivative_linear[OF f']]) qed lemma vector_differentiable_bound_linearization: fixes f::"real \ 'b::real_normed_vector" assumes f': "\x. x \ S \ (f has_vector_derivative f' x) (at x within S)" assumes "closed_segment a b \ S" assumes B: "\x. x \ S \ norm (f' x - f' x0) \ B" assumes "x0 \ S" shows "norm (f b - f a - (b - a) *\<^sub>R f' x0) \ norm (b - a) * B" using assms by (intro differentiable_bound_linearization[of a b S f "\x h. h *\<^sub>R f' x" x0 B]) (force simp: closed_segment_real_eq has_vector_derivative_def scaleR_diff_right[symmetric] mult.commute[of B] intro!: onorm_le mult_left_mono)+ text \In particular.\ lemma has_derivative_zero_constant: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "convex s" and "\x. x \ s \ (f has_derivative (\h. 0)) (at x within s)" shows "\c. \x\s. f x = c" proof - { fix x y assume "x \ s" "y \ s" then have "norm (f x - f y) \ 0 * norm (x - y)" using assms by (intro differentiable_bound[of s]) (auto simp: onorm_zero) then have "f x = f y" by simp } then show ?thesis by metis qed lemma has_field_derivative_zero_constant: assumes "convex s" "\x. x \ s \ (f has_field_derivative 0) (at x within s)" shows "\c. \x\s. f (x) = (c :: 'a :: real_normed_field)" proof (rule has_derivative_zero_constant) have A: "(*) 0 = (\_. 0 :: 'a)" by (intro ext) simp fix x assume "x \ s" thus "(f has_derivative (\h. 0)) (at x within s)" using assms(2)[of x] by (simp add: has_field_derivative_def A) qed fact lemma has_vector_derivative_zero_constant: assumes "convex s" assumes "\x. x \ s \ (f has_vector_derivative 0) (at x within s)" obtains c where "\x. x \ s \ f x = c" using has_derivative_zero_constant[of s f] assms by (auto simp: has_vector_derivative_def) lemma has_derivative_zero_unique: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "convex s" and "\x. x \ s \ (f has_derivative (\h. 0)) (at x within s)" and "x \ s" "y \ s" shows "f x = f y" using has_derivative_zero_constant[OF assms(1,2)] assms(3-) by force lemma has_derivative_zero_unique_connected: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "open s" "connected s" assumes f: "\x. x \ s \ (f has_derivative (\x. 0)) (at x)" assumes "x \ s" "y \ s" shows "f x = f y" proof (rule connected_local_const[where f=f, OF \connected s\ \x\s\ \y\s\]) show "\a\s. eventually (\b. f a = f b) (at a within s)" proof fix a assume "a \ s" with \open s\ obtain e where "0 < e" "ball a e \ s" by (rule openE) then have "\c. \x\ball a e. f x = c" by (intro has_derivative_zero_constant) (auto simp: at_within_open[OF _ open_ball] f) with \0 have "\x\ball a e. f a = f x" by auto then show "eventually (\b. f a = f b) (at a within s)" using \0 unfolding eventually_at_topological by (intro exI[of _ "ball a e"]) auto qed qed subsection \Differentiability of inverse function (most basic form)\ lemma has_derivative_inverse_basic: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes derf: "(f has_derivative f') (at (g y))" and ling': "bounded_linear g'" and "g' \ f' = id" and contg: "continuous (at y) g" and "open T" and "y \ T" and fg: "\z. z \ T \ f (g z) = z" shows "(g has_derivative g') (at y)" proof - interpret f': bounded_linear f' using assms unfolding has_derivative_def by auto interpret g': bounded_linear g' using assms by auto obtain C where C: "0 < C" "\x. norm (g' x) \ norm x * C" using bounded_linear.pos_bounded[OF assms(2)] by blast have lem1: "\e>0. \d>0. \z. norm (z - y) < d \ norm (g z - g y - g'(z - y)) \ e * norm (g z - g y)" proof (intro allI impI) fix e :: real assume "e > 0" with C(1) have *: "e / C > 0" by auto obtain d0 where "0 < d0" and d0: "\u. norm (u - g y) < d0 \ norm (f u - f (g y) - f' (u - g y)) \ e / C * norm (u - g y)" using derf * unfolding has_derivative_at_alt by blast obtain d1 where "0 < d1" and d1: "\x. \0 < dist x y; dist x y < d1\ \ dist (g x) (g y) < d0" using contg \0 < d0\ unfolding continuous_at Lim_at by blast obtain d2 where "0 < d2" and d2: "\u. dist u y < d2 \ u \ T" using \open T\ \y \ T\ unfolding open_dist by blast obtain d where d: "0 < d" "d < d1" "d < d2" using field_lbound_gt_zero[OF \0 < d1\ \0 < d2\] by blast show "\d>0. \z. norm (z - y) < d \ norm (g z - g y - g' (z - y)) \ e * norm (g z - g y)" proof (intro exI allI impI conjI) fix z assume as: "norm (z - y) < d" then have "z \ T" using d2 d unfolding dist_norm by auto have "norm (g z - g y - g' (z - y)) \ norm (g' (f (g z) - y - f' (g z - g y)))" unfolding g'.diff f'.diff unfolding assms(3)[unfolded o_def id_def, THEN fun_cong] fg[OF \z\T\] by (simp add: norm_minus_commute) also have "\ \ norm (f (g z) - y - f' (g z - g y)) * C" by (rule C(2)) also have "\ \ (e / C) * norm (g z - g y) * C" proof - have "norm (g z - g y) < d0" by (metis as cancel_comm_monoid_add_class.diff_cancel d(2) \0 < d0\ d1 diff_gt_0_iff_gt diff_strict_mono dist_norm dist_self zero_less_dist_iff) then show ?thesis by (metis C(1) \y \ T\ d0 fg real_mult_le_cancel_iff1) qed also have "\ \ e * norm (g z - g y)" using C by (auto simp add: field_simps) finally show "norm (g z - g y - g' (z - y)) \ e * norm (g z - g y)" by simp qed (use d in auto) qed have *: "(0::real) < 1 / 2" by auto obtain d where "0 < d" and d: "\z. norm (z - y) < d \ norm (g z - g y - g' (z - y)) \ 1/2 * norm (g z - g y)" using lem1 * by blast define B where "B = C * 2" have "B > 0" unfolding B_def using C by auto have lem2: "norm (g z - g y) \ B * norm (z - y)" if z: "norm(z - y) < d" for z proof - have "norm (g z - g y) \ norm(g' (z - y)) + norm ((g z - g y) - g'(z - y))" by (rule norm_triangle_sub) also have "\ \ norm (g' (z - y)) + 1 / 2 * norm (g z - g y)" by (rule add_left_mono) (use d z in auto) also have "\ \ norm (z - y) * C + 1 / 2 * norm (g z - g y)" by (rule add_right_mono) (use C in auto) finally show "norm (g z - g y) \ B * norm (z - y)" unfolding B_def by (auto simp add: field_simps) qed show ?thesis unfolding has_derivative_at_alt proof (intro conjI assms allI impI) fix e :: real assume "e > 0" then have *: "e / B > 0" by (metis \B > 0\ divide_pos_pos) obtain d' where "0 < d'" and d': "\z. norm (z - y) < d' \ norm (g z - g y - g' (z - y)) \ e / B * norm (g z - g y)" using lem1 * by blast obtain k where k: "0 < k" "k < d" "k < d'" using field_lbound_gt_zero[OF \0 < d\ \0 < d'\] by blast show "\d>0. \ya. norm (ya - y) < d \ norm (g ya - g y - g' (ya - y)) \ e * norm (ya - y)" proof (intro exI allI impI conjI) fix z assume as: "norm (z - y) < k" then have "norm (g z - g y - g' (z - y)) \ e / B * norm(g z - g y)" using d' k by auto also have "\ \ e * norm (z - y)" unfolding times_divide_eq_left pos_divide_le_eq[OF \B>0\] using lem2[of z] k as \e > 0\ by (auto simp add: field_simps) finally show "norm (g z - g y - g' (z - y)) \ e * norm (z - y)" by simp qed (use k in auto) qed qed text\<^marker>\tag unimportant\\Inverse function theorem for complex derivatives\ lemma has_field_derivative_inverse_basic: shows "DERIV f (g y) :> f' \ f' \ 0 \ continuous (at y) g \ open t \ y \ t \ (\z. z \ t \ f (g z) = z) \ DERIV g y :> inverse (f')" unfolding has_field_derivative_def apply (rule has_derivative_inverse_basic) apply (auto simp: bounded_linear_mult_right) done text \Simply rewrite that based on the domain point x.\ lemma has_derivative_inverse_basic_x: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "(f has_derivative f') (at x)" and "bounded_linear g'" and "g' \ f' = id" and "continuous (at (f x)) g" and "g (f x) = x" and "open T" and "f x \ T" and "\y. y \ T \ f (g y) = y" shows "(g has_derivative g') (at (f x))" by (rule has_derivative_inverse_basic) (use assms in auto) text \This is the version in Dieudonne', assuming continuity of f and g.\ lemma has_derivative_inverse_dieudonne: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "open S" and "open (f ` S)" and "continuous_on S f" and "continuous_on (f ` S) g" and "\x. x \ S \ g (f x) = x" and "x \ S" and "(f has_derivative f') (at x)" and "bounded_linear g'" and "g' \ f' = id" shows "(g has_derivative g') (at (f x))" apply (rule has_derivative_inverse_basic_x[OF assms(7-9) _ _ assms(2)]) using assms(3-6) unfolding continuous_on_eq_continuous_at[OF assms(1)] continuous_on_eq_continuous_at[OF assms(2)] apply auto done text \Here's the simplest way of not assuming much about g.\ proposition has_derivative_inverse: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "compact S" and "x \ S" and fx: "f x \ interior (f ` S)" and "continuous_on S f" and gf: "\y. y \ S \ g (f y) = y" and "(f has_derivative f') (at x)" and "bounded_linear g'" and "g' \ f' = id" shows "(g has_derivative g') (at (f x))" proof - have *: "\y. y \ interior (f ` S) \ f (g y) = y" by (metis gf image_iff interior_subset subsetCE) show ?thesis apply (rule has_derivative_inverse_basic_x[OF assms(6-8), where T = "interior (f ` S)"]) apply (rule continuous_on_interior[OF _ fx]) apply (rule continuous_on_inv) apply (simp_all add: assms *) done qed text \Invertible derivative continuous at a point implies local injectivity. It's only for this we need continuity of the derivative, except of course if we want the fact that the inverse derivative is also continuous. So if we know for some other reason that the inverse function exists, it's OK.\ proposition has_derivative_locally_injective: fixes f :: "'n::euclidean_space \ 'm::euclidean_space" assumes "a \ S" and "open S" and bling: "bounded_linear g'" and "g' \ f' a = id" and derf: "\x. x \ S \ (f has_derivative f' x) (at x)" and "\e. e > 0 \ \d>0. \x. dist a x < d \ onorm (\v. f' x v - f' a v) < e" obtains r where "r > 0" "ball a r \ S" "inj_on f (ball a r)" proof - interpret bounded_linear g' using assms by auto note f'g' = assms(4)[unfolded id_def o_def,THEN cong] have "g' (f' a (\Basis)) = (\Basis)" "(\Basis) \ (0::'n)" using f'g' by auto then have *: "0 < onorm g'" unfolding onorm_pos_lt[OF assms(3)] by fastforce define k where "k = 1 / onorm g' / 2" have *: "k > 0" unfolding k_def using * by auto obtain d1 where d1: "0 < d1" "\x. dist a x < d1 \ onorm (\v. f' x v - f' a v) < k" using assms(6) * by blast from \open S\ obtain d2 where "d2 > 0" "ball a d2 \ S" using \a\S\ .. obtain d2 where d2: "0 < d2" "ball a d2 \ S" using \0 < d2\ \ball a d2 \ S\ by blast obtain d where d: "0 < d" "d < d1" "d < d2" using field_lbound_gt_zero[OF d1(1) d2(1)] by blast show ?thesis proof show "0 < d" by (fact d) show "ball a d \ S" using \d < d2\ \ball a d2 \ S\ by auto show "inj_on f (ball a d)" unfolding inj_on_def proof (intro strip) fix x y assume as: "x \ ball a d" "y \ ball a d" "f x = f y" define ph where [abs_def]: "ph w = w - g' (f w - f x)" for w have ph':"ph = g' \ (\w. f' a w - (f w - f x))" unfolding ph_def o_def by (simp add: diff f'g') have "norm (ph x - ph y) \ (1 / 2) * norm (x - y)" proof (rule differentiable_bound[OF convex_ball _ _ as(1-2)]) fix u assume u: "u \ ball a d" then have "u \ S" using d d2 by auto have *: "(\v. v - g' (f' u v)) = g' \ (\w. f' a w - f' u w)" unfolding o_def and diff using f'g' by auto have blin: "bounded_linear (f' a)" using \a \ S\ derf by blast show "(ph has_derivative (\v. v - g' (f' u v))) (at u within ball a d)" unfolding ph' * comp_def by (rule \u \ S\ derivative_eq_intros has_derivative_at_withinI [OF derf] bounded_linear.has_derivative [OF blin] bounded_linear.has_derivative [OF bling] |simp)+ have **: "bounded_linear (\x. f' u x - f' a x)" "bounded_linear (\x. f' a x - f' u x)" using \u \ S\ blin bounded_linear_sub derf by auto then have "onorm (\v. v - g' (f' u v)) \ onorm g' * onorm (\w. f' a w - f' u w)" by (simp add: "*" bounded_linear_axioms onorm_compose) also have "\ \ onorm g' * k" apply (rule mult_left_mono) using d1(2)[of u] using onorm_neg[where f="\x. f' u x - f' a x"] d u onorm_pos_le[OF bling] apply (auto simp: algebra_simps) done also have "\ \ 1 / 2" unfolding k_def by auto finally show "onorm (\v. v - g' (f' u v)) \ 1 / 2" . qed moreover have "norm (ph y - ph x) = norm (y - x)" by (simp add: as(3) ph_def) ultimately show "x = y" unfolding norm_minus_commute by auto qed qed qed subsection \Uniformly convergent sequence of derivatives\ lemma has_derivative_sequence_lipschitz_lemma: fixes f :: "nat \ 'a::real_normed_vector \ 'b::real_normed_vector" assumes "convex S" and derf: "\n x. x \ S \ ((f n) has_derivative (f' n x)) (at x within S)" and nle: "\n x h. \n\N; x \ S\ \ norm (f' n x h - g' x h) \ e * norm h" and "0 \ e" shows "\m\N. \n\N. \x\S. \y\S. norm ((f m x - f n x) - (f m y - f n y)) \ 2 * e * norm (x - y)" proof clarify fix m n x y assume as: "N \ m" "N \ n" "x \ S" "y \ S" show "norm ((f m x - f n x) - (f m y - f n y)) \ 2 * e * norm (x - y)" proof (rule differentiable_bound[where f'="\x h. f' m x h - f' n x h", OF \convex S\ _ _ as(3-4)]) fix x assume "x \ S" show "((\a. f m a - f n a) has_derivative (\h. f' m x h - f' n x h)) (at x within S)" by (rule derivative_intros derf \x\S\)+ show "onorm (\h. f' m x h - f' n x h) \ 2 * e" proof (rule onorm_bound) fix h have "norm (f' m x h - f' n x h) \ norm (f' m x h - g' x h) + norm (f' n x h - g' x h)" using norm_triangle_ineq[of "f' m x h - g' x h" "- f' n x h + g' x h"] by (auto simp add: algebra_simps norm_minus_commute) also have "\ \ e * norm h + e * norm h" using nle[OF \N \ m\ \x \ S\, of h] nle[OF \N \ n\ \x \ S\, of h] by (auto simp add: field_simps) finally show "norm (f' m x h - f' n x h) \ 2 * e * norm h" by auto qed (simp add: \0 \ e\) qed qed lemma has_derivative_sequence_Lipschitz: fixes f :: "nat \ 'a::real_normed_vector \ 'b::real_normed_vector" assumes "convex S" and "\n x. x \ S \ ((f n) has_derivative (f' n x)) (at x within S)" and nle: "\e. e > 0 \ \\<^sub>F n in sequentially. \x\S. \h. norm (f' n x h - g' x h) \ e * norm h" and "e > 0" shows "\N. \m\N. \n\N. \x\S. \y\S. norm ((f m x - f n x) - (f m y - f n y)) \ e * norm (x - y)" proof - have *: "2 * (e/2) = e" using \e > 0\ by auto obtain N where "\n\N. \x\S. \h. norm (f' n x h - g' x h) \ (e/2) * norm h" using nle \e > 0\ unfolding eventually_sequentially by (metis less_divide_eq_numeral1(1) mult_zero_left) then show "\N. \m\N. \n\N. \x\S. \y\S. norm (f m x - f n x - (f m y - f n y)) \ e * norm (x - y)" apply (rule_tac x=N in exI) apply (rule has_derivative_sequence_lipschitz_lemma[where e="e/2", unfolded *]) using assms \e > 0\ apply auto done qed proposition has_derivative_sequence: fixes f :: "nat \ 'a::real_normed_vector \ 'b::banach" assumes "convex S" and derf: "\n x. x \ S \ ((f n) has_derivative (f' n x)) (at x within S)" and nle: "\e. e > 0 \ \\<^sub>F n in sequentially. \x\S. \h. norm (f' n x h - g' x h) \ e * norm h" and "x0 \ S" and lim: "((\n. f n x0) \ l) sequentially" shows "\g. \x\S. (\n. f n x) \ g x \ (g has_derivative g'(x)) (at x within S)" proof - have lem1: "\e. e > 0 \ \N. \m\N. \n\N. \x\S. \y\S. norm ((f m x - f n x) - (f m y - f n y)) \ e * norm (x - y)" using assms(1,2,3) by (rule has_derivative_sequence_Lipschitz) have "\g. \x\S. ((\n. f n x) \ g x) sequentially" proof (intro ballI bchoice) fix x assume "x \ S" show "\y. (\n. f n x) \ y" unfolding convergent_eq_Cauchy proof (cases "x = x0") case True then show "Cauchy (\n. f n x)" using LIMSEQ_imp_Cauchy[OF lim] by auto next case False show "Cauchy (\n. f n x)" unfolding Cauchy_def proof (intro allI impI) fix e :: real assume "e > 0" hence *: "e / 2 > 0" "e / 2 / norm (x - x0) > 0" using False by auto obtain M where M: "\m\M. \n\M. dist (f m x0) (f n x0) < e / 2" using LIMSEQ_imp_Cauchy[OF lim] * unfolding Cauchy_def by blast obtain N where N: "\m\N. \n\N. \u\S. \y\S. norm (f m u - f n u - (f m y - f n y)) \ e / 2 / norm (x - x0) * norm (u - y)" using lem1 *(2) by blast show "\M. \m\M. \n\M. dist (f m x) (f n x) < e" proof (intro exI allI impI) fix m n assume as: "max M N \m" "max M N\n" have "dist (f m x) (f n x) \ norm (f m x0 - f n x0) + norm (f m x - f n x - (f m x0 - f n x0))" unfolding dist_norm by (rule norm_triangle_sub) also have "\ \ norm (f m x0 - f n x0) + e / 2" using N \x\S\ \x0\S\ as False by fastforce also have "\ < e / 2 + e / 2" by (rule add_strict_right_mono) (use as M in \auto simp: dist_norm\) finally show "dist (f m x) (f n x) < e" by auto qed qed qed qed then obtain g where g: "\x\S. (\n. f n x) \ g x" .. have lem2: "\N. \n\N. \x\S. \y\S. norm ((f n x - f n y) - (g x - g y)) \ e * norm (x - y)" if "e > 0" for e proof - obtain N where N: "\m\N. \n\N. \x\S. \y\S. norm (f m x - f n x - (f m y - f n y)) \ e * norm (x - y)" using lem1 \e > 0\ by blast show "\N. \n\N. \x\S. \y\S. norm (f n x - f n y - (g x - g y)) \ e * norm (x - y)" proof (intro exI ballI allI impI) fix n x y assume as: "N \ n" "x \ S" "y \ S" have "((\m. norm (f n x - f n y - (f m x - f m y))) \ norm (f n x - f n y - (g x - g y))) sequentially" by (intro tendsto_intros g[rule_format] as) moreover have "eventually (\m. norm (f n x - f n y - (f m x - f m y)) \ e * norm (x - y)) sequentially" unfolding eventually_sequentially proof (intro exI allI impI) fix m assume "N \ m" then show "norm (f n x - f n y - (f m x - f m y)) \ e * norm (x - y)" using N as by (auto simp add: algebra_simps) qed ultimately show "norm (f n x - f n y - (g x - g y)) \ e * norm (x - y)" by (simp add: tendsto_upperbound) qed qed have "\x\S. ((\n. f n x) \ g x) sequentially \ (g has_derivative g' x) (at x within S)" unfolding has_derivative_within_alt2 proof (intro ballI conjI allI impI) fix x assume "x \ S" then show "(\n. f n x) \ g x" by (simp add: g) have tog': "(\n. f' n x u) \ g' x u" for u unfolding filterlim_def le_nhds_metric_le eventually_filtermap dist_norm proof (intro allI impI) fix e :: real assume "e > 0" show "eventually (\n. norm (f' n x u - g' x u) \ e) sequentially" proof (cases "u = 0") case True have "eventually (\n. norm (f' n x u - g' x u) \ e * norm u) sequentially" using nle \0 < e\ \x \ S\ by (fast elim: eventually_mono) then show ?thesis using \u = 0\ \0 < e\ by (auto elim: eventually_mono) next case False with \0 < e\ have "0 < e / norm u" by simp then have "eventually (\n. norm (f' n x u - g' x u) \ e / norm u * norm u) sequentially" using nle \x \ S\ by (fast elim: eventually_mono) then show ?thesis using \u \ 0\ by simp qed qed show "bounded_linear (g' x)" proof fix x' y z :: 'a fix c :: real note lin = assms(2)[rule_format,OF \x\S\,THEN has_derivative_bounded_linear] show "g' x (c *\<^sub>R x') = c *\<^sub>R g' x x'" apply (rule tendsto_unique[OF trivial_limit_sequentially tog']) unfolding lin[THEN bounded_linear.linear, THEN linear_cmul] apply (intro tendsto_intros tog') done show "g' x (y + z) = g' x y + g' x z" apply (rule tendsto_unique[OF trivial_limit_sequentially tog']) unfolding lin[THEN bounded_linear.linear, THEN linear_add] apply (rule tendsto_add) apply (rule tog')+ done obtain N where N: "\h. norm (f' N x h - g' x h) \ 1 * norm h" using nle \x \ S\ unfolding eventually_sequentially by (fast intro: zero_less_one) have "bounded_linear (f' N x)" using derf \x \ S\ by fast from bounded_linear.bounded [OF this] obtain K where K: "\h. norm (f' N x h) \ norm h * K" .. { fix h have "norm (g' x h) = norm (f' N x h - (f' N x h - g' x h))" by simp also have "\ \ norm (f' N x h) + norm (f' N x h - g' x h)" by (rule norm_triangle_ineq4) also have "\ \ norm h * K + 1 * norm h" using N K by (fast intro: add_mono) finally have "norm (g' x h) \ norm h * (K + 1)" by (simp add: ring_distribs) } then show "\K. \h. norm (g' x h) \ norm h * K" by fast qed show "eventually (\y. norm (g y - g x - g' x (y - x)) \ e * norm (y - x)) (at x within S)" if "e > 0" for e proof - have *: "e / 3 > 0" using that by auto obtain N1 where N1: "\n\N1. \x\S. \h. norm (f' n x h - g' x h) \ e / 3 * norm h" using nle * unfolding eventually_sequentially by blast obtain N2 where N2[rule_format]: "\n\N2. \x\S. \y\S. norm (f n x - f n y - (g x - g y)) \ e / 3 * norm (x - y)" using lem2 * by blast let ?N = "max N1 N2" have "eventually (\y. norm (f ?N y - f ?N x - f' ?N x (y - x)) \ e / 3 * norm (y - x)) (at x within S)" using derf[unfolded has_derivative_within_alt2] and \x \ S\ and * by fast moreover have "eventually (\y. y \ S) (at x within S)" unfolding eventually_at by (fast intro: zero_less_one) ultimately show "\\<^sub>F y in at x within S. norm (g y - g x - g' x (y - x)) \ e * norm (y - x)" proof (rule eventually_elim2) fix y assume "y \ S" assume "norm (f ?N y - f ?N x - f' ?N x (y - x)) \ e / 3 * norm (y - x)" moreover have "norm (g y - g x - (f ?N y - f ?N x)) \ e / 3 * norm (y - x)" using N2[OF _ \y \ S\ \x \ S\] by (simp add: norm_minus_commute) ultimately have "norm (g y - g x - f' ?N x (y - x)) \ 2 * e / 3 * norm (y - x)" using norm_triangle_le[of "g y - g x - (f ?N y - f ?N x)" "f ?N y - f ?N x - f' ?N x (y - x)" "2 * e / 3 * norm (y - x)"] by (auto simp add: algebra_simps) moreover have " norm (f' ?N x (y - x) - g' x (y - x)) \ e / 3 * norm (y - x)" using N1 \x \ S\ by auto ultimately show "norm (g y - g x - g' x (y - x)) \ e * norm (y - x)" using norm_triangle_le[of "g y - g x - f' (max N1 N2) x (y - x)" "f' (max N1 N2) x (y - x) - g' x (y - x)"] by (auto simp add: algebra_simps) qed qed qed then show ?thesis by fast qed text \Can choose to line up antiderivatives if we want.\ lemma has_antiderivative_sequence: fixes f :: "nat \ 'a::real_normed_vector \ 'b::banach" assumes "convex S" and der: "\n x. x \ S \ ((f n) has_derivative (f' n x)) (at x within S)" and no: "\e. e > 0 \ \\<^sub>F n in sequentially. \x\S. \h. norm (f' n x h - g' x h) \ e * norm h" shows "\g. \x\S. (g has_derivative g' x) (at x within S)" proof (cases "S = {}") case False then obtain a where "a \ S" by auto have *: "\P Q. \g. \x\S. P g x \ Q g x \ \g. \x\S. Q g x" by auto show ?thesis apply (rule *) apply (rule has_derivative_sequence [OF \convex S\ _ no, of "\n x. f n x + (f 0 a - f n a)"]) apply (metis assms(2) has_derivative_add_const) using \a \ S\ apply auto done qed auto lemma has_antiderivative_limit: fixes g' :: "'a::real_normed_vector \ 'a \ 'b::banach" assumes "convex S" and "\e. e>0 \ \f f'. \x\S. (f has_derivative (f' x)) (at x within S) \ (\h. norm (f' x h - g' x h) \ e * norm h)" shows "\g. \x\S. (g has_derivative g' x) (at x within S)" proof - have *: "\n. \f f'. \x\S. (f has_derivative (f' x)) (at x within S) \ (\h. norm(f' x h - g' x h) \ inverse (real (Suc n)) * norm h)" by (simp add: assms(2)) obtain f where *: "\x. \f'. \xa\S. (f x has_derivative f' xa) (at xa within S) \ (\h. norm (f' xa h - g' xa h) \ inverse (real (Suc x)) * norm h)" using * by metis obtain f' where f': "\x. \z\S. (f x has_derivative f' x z) (at z within S) \ (\h. norm (f' x z h - g' z h) \ inverse (real (Suc x)) * norm h)" using * by metis show ?thesis proof (rule has_antiderivative_sequence[OF \convex S\, of f f']) fix e :: real assume "e > 0" obtain N where N: "inverse (real (Suc N)) < e" using reals_Archimedean[OF \e>0\] .. show "\\<^sub>F n in sequentially. \x\S. \h. norm (f' n x h - g' x h) \ e * norm h" unfolding eventually_sequentially proof (intro exI allI ballI impI) fix n x h assume n: "N \ n" and x: "x \ S" have *: "inverse (real (Suc n)) \ e" apply (rule order_trans[OF _ N[THEN less_imp_le]]) using n apply (auto simp add: field_simps) done show "norm (f' n x h - g' x h) \ e * norm h" by (meson "*" mult_right_mono norm_ge_zero order.trans x f') qed qed (use f' in auto) qed subsection \Differentiation of a series\ proposition has_derivative_series: fixes f :: "nat \ 'a::real_normed_vector \ 'b::banach" assumes "convex S" and "\n x. x \ S \ ((f n) has_derivative (f' n x)) (at x within S)" and "\e. e>0 \ \\<^sub>F n in sequentially. \x\S. \h. norm (sum (\i. f' i x h) {.. e * norm h" and "x \ S" and "(\n. f n x) sums l" shows "\g. \x\S. (\n. f n x) sums (g x) \ (g has_derivative g' x) (at x within S)" unfolding sums_def apply (rule has_derivative_sequence[OF assms(1) _ assms(3)]) apply (metis assms(2) has_derivative_sum) using assms(4-5) unfolding sums_def apply auto done lemma has_field_derivative_series: fixes f :: "nat \ ('a :: {real_normed_field,banach}) \ 'a" assumes "convex S" assumes "\n x. x \ S \ (f n has_field_derivative f' n x) (at x within S)" assumes "uniform_limit S (\n x. \i S" "summable (\n. f n x0)" shows "\g. \x\S. (\n. f n x) sums g x \ (g has_field_derivative g' x) (at x within S)" unfolding has_field_derivative_def proof (rule has_derivative_series) show "\\<^sub>F n in sequentially. \x\S. \h. norm ((\i e * norm h" if "e > 0" for e unfolding eventually_sequentially proof - from that assms(3) obtain N where N: "\n x. n \ N \ x \ S \ norm ((\i N" "x \ S" have "norm ((\iii e" by simp hence "norm ((\i e * norm h" by (intro mult_right_mono) simp_all finally have "norm ((\i e * norm h" . } thus "\N. \n\N. \x\S. \h. norm ((\i e * norm h" by blast qed qed (use assms in \auto simp: has_field_derivative_def\) lemma has_field_derivative_series': fixes f :: "nat \ ('a :: {real_normed_field,banach}) \ 'a" assumes "convex S" assumes "\n x. x \ S \ (f n has_field_derivative f' n x) (at x within S)" assumes "uniformly_convergent_on S (\n x. \i S" "summable (\n. f n x0)" "x \ interior S" shows "summable (\n. f n x)" "((\x. \n. f n x) has_field_derivative (\n. f' n x)) (at x)" proof - from \x \ interior S\ have "x \ S" using interior_subset by blast define g' where [abs_def]: "g' x = (\i. f' i x)" for x from assms(3) have "uniform_limit S (\n x. \ix. x \ S \ (\n. f n x) sums g x" "\x. x \ S \ (g has_field_derivative g' x) (at x within S)" by blast from g(1)[OF \x \ S\] show "summable (\n. f n x)" by (simp add: sums_iff) from g(2)[OF \x \ S\] \x \ interior S\ have "(g has_field_derivative g' x) (at x)" by (simp add: at_within_interior[of x S]) also have "(g has_field_derivative g' x) (at x) \ ((\x. \n. f n x) has_field_derivative g' x) (at x)" using eventually_nhds_in_nhd[OF \x \ interior S\] interior_subset[of S] g(1) by (intro DERIV_cong_ev) (auto elim!: eventually_mono simp: sums_iff) finally show "((\x. \n. f n x) has_field_derivative g' x) (at x)" . qed lemma differentiable_series: fixes f :: "nat \ ('a :: {real_normed_field,banach}) \ 'a" assumes "convex S" "open S" assumes "\n x. x \ S \ (f n has_field_derivative f' n x) (at x)" assumes "uniformly_convergent_on S (\n x. \i S" "summable (\n. f n x0)" and x: "x \ S" shows "summable (\n. f n x)" and "(\x. \n. f n x) differentiable (at x)" proof - from assms(4) obtain g' where A: "uniform_limit S (\n x. \iopen S\ have S: "at x within S = at x" by (rule at_within_open) have "\g. \x\S. (\n. f n x) sums g x \ (g has_field_derivative g' x) (at x within S)" by (intro has_field_derivative_series[of S f f' g' x0] assms A has_field_derivative_at_within) then obtain g where g: "\x. x \ S \ (\n. f n x) sums g x" "\x. x \ S \ (g has_field_derivative g' x) (at x within S)" by blast from g[OF x] show "summable (\n. f n x)" by (auto simp: summable_def) from g(2)[OF x] have g': "(g has_derivative (*) (g' x)) (at x)" by (simp add: has_field_derivative_def S) have "((\x. \n. f n x) has_derivative (*) (g' x)) (at x)" by (rule has_derivative_transform_within_open[OF g' \open S\ x]) (insert g, auto simp: sums_iff) thus "(\x. \n. f n x) differentiable (at x)" unfolding differentiable_def by (auto simp: summable_def differentiable_def has_field_derivative_def) qed lemma differentiable_series': fixes f :: "nat \ ('a :: {real_normed_field,banach}) \ 'a" assumes "convex S" "open S" assumes "\n x. x \ S \ (f n has_field_derivative f' n x) (at x)" assumes "uniformly_convergent_on S (\n x. \i S" "summable (\n. f n x0)" shows "(\x. \n. f n x) differentiable (at x0)" using differentiable_series[OF assms, of x0] \x0 \ S\ by blast+ subsection \Derivative as a vector\ text \Considering derivative \<^typ>\real \ 'b::real_normed_vector\ as a vector.\ definition "vector_derivative f net = (SOME f'. (f has_vector_derivative f') net)" lemma vector_derivative_unique_within: assumes not_bot: "at x within S \ bot" and f': "(f has_vector_derivative f') (at x within S)" and f'': "(f has_vector_derivative f'') (at x within S)" shows "f' = f''" proof - have "(\x. x *\<^sub>R f') = (\x. x *\<^sub>R f'')" proof (rule frechet_derivative_unique_within, simp_all) show "\d. d \ 0 \ \d\ < e \ x + d \ S" if "0 < e" for e proof - from that obtain x' where "x' \ S" "x' \ x" "\x' - x\ < e" using islimpt_approachable_real[of x S] not_bot by (auto simp add: trivial_limit_within) then show ?thesis using eq_iff_diff_eq_0 by fastforce qed qed (use f' f'' in \auto simp: has_vector_derivative_def\) then show ?thesis unfolding fun_eq_iff by (metis scaleR_one) qed lemma vector_derivative_unique_at: "(f has_vector_derivative f') (at x) \ (f has_vector_derivative f'') (at x) \ f' = f''" by (rule vector_derivative_unique_within) auto lemma differentiableI_vector: "(f has_vector_derivative y) F \ f differentiable F" by (auto simp: differentiable_def has_vector_derivative_def) proposition vector_derivative_works: "f differentiable net \ (f has_vector_derivative (vector_derivative f net)) net" (is "?l = ?r") proof assume ?l obtain f' where f': "(f has_derivative f') net" using \?l\ unfolding differentiable_def .. then interpret bounded_linear f' by auto show ?r unfolding vector_derivative_def has_vector_derivative_def by (rule someI[of _ "f' 1"]) (simp add: scaleR[symmetric] f') qed (auto simp: vector_derivative_def has_vector_derivative_def differentiable_def) lemma vector_derivative_within: assumes not_bot: "at x within S \ bot" and y: "(f has_vector_derivative y) (at x within S)" shows "vector_derivative f (at x within S) = y" using y by (intro vector_derivative_unique_within[OF not_bot vector_derivative_works[THEN iffD1] y]) (auto simp: differentiable_def has_vector_derivative_def) lemma frechet_derivative_eq_vector_derivative: assumes "f differentiable (at x)" shows "(frechet_derivative f (at x)) = (\r. r *\<^sub>R vector_derivative f (at x))" using assms by (auto simp: differentiable_iff_scaleR vector_derivative_def has_vector_derivative_def intro: someI frechet_derivative_at [symmetric]) lemma has_real_derivative: fixes f :: "real \ real" assumes "(f has_derivative f') F" obtains c where "(f has_real_derivative c) F" proof - obtain c where "f' = (\x. x * c)" by (metis assms has_derivative_bounded_linear real_bounded_linear) then show ?thesis by (metis assms that has_field_derivative_def mult_commute_abs) qed lemma has_real_derivative_iff: fixes f :: "real \ real" shows "(\c. (f has_real_derivative c) F) = (\D. (f has_derivative D) F)" by (metis has_field_derivative_def has_real_derivative) lemma has_vector_derivative_cong_ev: assumes *: "eventually (\x. x \ S \ f x = g x) (nhds x)" "f x = g x" shows "(f has_vector_derivative f') (at x within S) = (g has_vector_derivative f') (at x within S)" unfolding has_vector_derivative_def has_derivative_def using * apply (cases "at x within S \ bot") apply (intro refl conj_cong filterlim_cong) apply (auto simp: Lim_ident_at eventually_at_filter elim: eventually_mono) done lemma islimpt_closure_open: fixes s :: "'a::perfect_space set" assumes "open s" and t: "t = closure s" "x \ t" shows "x islimpt t" proof cases assume "x \ s" { fix T assume "x \ T" "open T" then have "open (s \ T)" using \open s\ by auto then have "s \ T \ {x}" using not_open_singleton[of x] by auto with \x \ T\ \x \ s\ have "\y\t. y \ T \ y \ x" using closure_subset[of s] by (auto simp: t) } then show ?thesis by (auto intro!: islimptI) next assume "x \ s" with t show ?thesis unfolding t closure_def by (auto intro: islimpt_subset) qed lemma vector_derivative_unique_within_closed_interval: assumes ab: "a < b" "x \ cbox a b" assumes D: "(f has_vector_derivative f') (at x within cbox a b)" "(f has_vector_derivative f'') (at x within cbox a b)" shows "f' = f''" using ab by (intro vector_derivative_unique_within[OF _ D]) (auto simp: trivial_limit_within intro!: islimpt_closure_open[where s="{a <..< b}"]) lemma vector_derivative_at: "(f has_vector_derivative f') (at x) \ vector_derivative f (at x) = f'" by (intro vector_derivative_within at_neq_bot) lemma has_vector_derivative_id_at [simp]: "vector_derivative (\x. x) (at a) = 1" by (simp add: vector_derivative_at) lemma vector_derivative_minus_at [simp]: "f differentiable at a \ vector_derivative (\x. - f x) (at a) = - vector_derivative f (at a)" by (simp add: vector_derivative_at has_vector_derivative_minus vector_derivative_works [symmetric]) lemma vector_derivative_add_at [simp]: "\f differentiable at a; g differentiable at a\ \ vector_derivative (\x. f x + g x) (at a) = vector_derivative f (at a) + vector_derivative g (at a)" by (simp add: vector_derivative_at has_vector_derivative_add vector_derivative_works [symmetric]) lemma vector_derivative_diff_at [simp]: "\f differentiable at a; g differentiable at a\ \ vector_derivative (\x. f x - g x) (at a) = vector_derivative f (at a) - vector_derivative g (at a)" by (simp add: vector_derivative_at has_vector_derivative_diff vector_derivative_works [symmetric]) lemma vector_derivative_mult_at [simp]: fixes f g :: "real \ 'a :: real_normed_algebra" shows "\f differentiable at a; g differentiable at a\ \ vector_derivative (\x. f x * g x) (at a) = f a * vector_derivative g (at a) + vector_derivative f (at a) * g a" by (simp add: vector_derivative_at has_vector_derivative_mult vector_derivative_works [symmetric]) lemma vector_derivative_scaleR_at [simp]: "\f differentiable at a; g differentiable at a\ \ vector_derivative (\x. f x *\<^sub>R g x) (at a) = f a *\<^sub>R vector_derivative g (at a) + vector_derivative f (at a) *\<^sub>R g a" apply (rule vector_derivative_at) apply (rule has_vector_derivative_scaleR) apply (auto simp: vector_derivative_works has_vector_derivative_def has_field_derivative_def mult_commute_abs) done lemma vector_derivative_within_cbox: assumes ab: "a < b" "x \ cbox a b" assumes f: "(f has_vector_derivative f') (at x within cbox a b)" shows "vector_derivative f (at x within cbox a b) = f'" by (intro vector_derivative_unique_within_closed_interval[OF ab _ f] vector_derivative_works[THEN iffD1] differentiableI_vector) fact lemma vector_derivative_within_closed_interval: fixes f::"real \ 'a::euclidean_space" assumes "a < b" and "x \ {a..b}" assumes "(f has_vector_derivative f') (at x within {a..b})" shows "vector_derivative f (at x within {a..b}) = f'" using assms vector_derivative_within_cbox by fastforce lemma has_vector_derivative_within_subset: "(f has_vector_derivative f') (at x within S) \ T \ S \ (f has_vector_derivative f') (at x within T)" - by (auto simp: has_vector_derivative_def intro: has_derivative_within_subset) + by (auto simp: has_vector_derivative_def intro: has_derivative_subset) lemma has_vector_derivative_at_within: "(f has_vector_derivative f') (at x) \ (f has_vector_derivative f') (at x within S)" unfolding has_vector_derivative_def by (rule has_derivative_at_withinI) lemma has_vector_derivative_weaken: fixes x D and f g S T assumes f: "(f has_vector_derivative D) (at x within T)" and "x \ S" "S \ T" and "\x. x \ S \ f x = g x" shows "(g has_vector_derivative D) (at x within S)" proof - have "(f has_vector_derivative D) (at x within S) \ (g has_vector_derivative D) (at x within S)" unfolding has_vector_derivative_def has_derivative_iff_norm using assms by (intro conj_cong Lim_cong_within refl) auto then show ?thesis using has_vector_derivative_within_subset[OF f \S \ T\] by simp qed lemma has_vector_derivative_transform_within: assumes "(f has_vector_derivative f') (at x within S)" and "0 < d" and "x \ S" and "\x'. \x'\S; dist x' x < d\ \ f x' = g x'" shows "(g has_vector_derivative f') (at x within S)" using assms unfolding has_vector_derivative_def by (rule has_derivative_transform_within) lemma has_vector_derivative_transform_within_open: assumes "(f has_vector_derivative f') (at x)" and "open S" and "x \ S" and "\y. y\S \ f y = g y" shows "(g has_vector_derivative f') (at x)" using assms unfolding has_vector_derivative_def by (rule has_derivative_transform_within_open) lemma has_vector_derivative_transform: assumes "x \ S" "\x. x \ S \ g x = f x" assumes f': "(f has_vector_derivative f') (at x within S)" shows "(g has_vector_derivative f') (at x within S)" using assms unfolding has_vector_derivative_def by (rule has_derivative_transform) lemma vector_diff_chain_at: assumes "(f has_vector_derivative f') (at x)" and "(g has_vector_derivative g') (at (f x))" shows "((g \ f) has_vector_derivative (f' *\<^sub>R g')) (at x)" using assms has_vector_derivative_at_within has_vector_derivative_def vector_derivative_diff_chain_within by blast lemma vector_diff_chain_within: assumes "(f has_vector_derivative f') (at x within s)" and "(g has_vector_derivative g') (at (f x) within f ` s)" shows "((g \ f) has_vector_derivative (f' *\<^sub>R g')) (at x within s)" using assms has_vector_derivative_def vector_derivative_diff_chain_within by blast lemma vector_derivative_const_at [simp]: "vector_derivative (\x. c) (at a) = 0" by (simp add: vector_derivative_at) lemma vector_derivative_at_within_ivl: "(f has_vector_derivative f') (at x) \ a \ x \ x \ b \ a vector_derivative f (at x within {a..b}) = f'" using has_vector_derivative_at_within vector_derivative_within_cbox by fastforce lemma vector_derivative_chain_at: assumes "f differentiable at x" "(g differentiable at (f x))" shows "vector_derivative (g \ f) (at x) = vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x))" by (metis vector_diff_chain_at vector_derivative_at vector_derivative_works assms) lemma field_vector_diff_chain_at: (*thanks to Wenda Li*) assumes Df: "(f has_vector_derivative f') (at x)" and Dg: "(g has_field_derivative g') (at (f x))" shows "((g \ f) has_vector_derivative (f' * g')) (at x)" using diff_chain_at[OF Df[unfolded has_vector_derivative_def] Dg [unfolded has_field_derivative_def]] by (auto simp: o_def mult.commute has_vector_derivative_def) lemma vector_derivative_chain_within: assumes "at x within S \ bot" "f differentiable (at x within S)" "(g has_derivative g') (at (f x) within f ` S)" shows "vector_derivative (g \ f) (at x within S) = g' (vector_derivative f (at x within S)) " apply (rule vector_derivative_within [OF \at x within S \ bot\]) apply (rule vector_derivative_diff_chain_within) using assms(2-3) vector_derivative_works by auto subsection \Field differentiability\ definition\<^marker>\tag important\ field_differentiable :: "['a \ 'a::real_normed_field, 'a filter] \ bool" (infixr "(field'_differentiable)" 50) where "f field_differentiable F \ \f'. (f has_field_derivative f') F" lemma field_differentiable_imp_differentiable: "f field_differentiable F \ f differentiable F" unfolding field_differentiable_def differentiable_def using has_field_derivative_imp_has_derivative by auto lemma field_differentiable_imp_continuous_at: "f field_differentiable (at x within S) \ continuous (at x within S) f" by (metis DERIV_continuous field_differentiable_def) lemma field_differentiable_within_subset: "\f field_differentiable (at x within S); T \ S\ \ f field_differentiable (at x within T)" by (metis DERIV_subset field_differentiable_def) lemma field_differentiable_at_within: "\f field_differentiable (at x)\ \ f field_differentiable (at x within S)" unfolding field_differentiable_def by (metis DERIV_subset top_greatest) lemma field_differentiable_linear [simp,derivative_intros]: "((*) c) field_differentiable F" unfolding field_differentiable_def has_field_derivative_def mult_commute_abs by (force intro: has_derivative_mult_right) lemma field_differentiable_const [simp,derivative_intros]: "(\z. c) field_differentiable F" unfolding field_differentiable_def has_field_derivative_def using DERIV_const has_field_derivative_imp_has_derivative by blast lemma field_differentiable_ident [simp,derivative_intros]: "(\z. z) field_differentiable F" unfolding field_differentiable_def has_field_derivative_def using DERIV_ident has_field_derivative_def by blast lemma field_differentiable_id [simp,derivative_intros]: "id field_differentiable F" unfolding id_def by (rule field_differentiable_ident) lemma field_differentiable_minus [derivative_intros]: "f field_differentiable F \ (\z. - (f z)) field_differentiable F" unfolding field_differentiable_def by (metis field_differentiable_minus) lemma field_differentiable_add [derivative_intros]: assumes "f field_differentiable F" "g field_differentiable F" shows "(\z. f z + g z) field_differentiable F" using assms unfolding field_differentiable_def by (metis field_differentiable_add) lemma field_differentiable_add_const [simp,derivative_intros]: "(+) c field_differentiable F" by (simp add: field_differentiable_add) lemma field_differentiable_sum [derivative_intros]: "(\i. i \ I \ (f i) field_differentiable F) \ (\z. \i\I. f i z) field_differentiable F" by (induct I rule: infinite_finite_induct) (auto intro: field_differentiable_add field_differentiable_const) lemma field_differentiable_diff [derivative_intros]: assumes "f field_differentiable F" "g field_differentiable F" shows "(\z. f z - g z) field_differentiable F" using assms unfolding field_differentiable_def by (metis field_differentiable_diff) lemma field_differentiable_inverse [derivative_intros]: assumes "f field_differentiable (at a within S)" "f a \ 0" shows "(\z. inverse (f z)) field_differentiable (at a within S)" using assms unfolding field_differentiable_def by (metis DERIV_inverse_fun) lemma field_differentiable_mult [derivative_intros]: assumes "f field_differentiable (at a within S)" "g field_differentiable (at a within S)" shows "(\z. f z * g z) field_differentiable (at a within S)" using assms unfolding field_differentiable_def by (metis DERIV_mult [of f _ a S g]) lemma field_differentiable_divide [derivative_intros]: assumes "f field_differentiable (at a within S)" "g field_differentiable (at a within S)" "g a \ 0" shows "(\z. f z / g z) field_differentiable (at a within S)" using assms unfolding field_differentiable_def by (metis DERIV_divide [of f _ a S g]) lemma field_differentiable_power [derivative_intros]: assumes "f field_differentiable (at a within S)" shows "(\z. f z ^ n) field_differentiable (at a within S)" using assms unfolding field_differentiable_def by (metis DERIV_power) lemma field_differentiable_transform_within: "0 < d \ x \ S \ (\x'. x' \ S \ dist x' x < d \ f x' = g x') \ f field_differentiable (at x within S) \ g field_differentiable (at x within S)" unfolding field_differentiable_def has_field_derivative_def by (blast intro: has_derivative_transform_within) lemma field_differentiable_compose_within: assumes "f field_differentiable (at a within S)" "g field_differentiable (at (f a) within f`S)" shows "(g o f) field_differentiable (at a within S)" using assms unfolding field_differentiable_def by (metis DERIV_image_chain) lemma field_differentiable_compose: "f field_differentiable at z \ g field_differentiable at (f z) \ (g o f) field_differentiable at z" by (metis field_differentiable_at_within field_differentiable_compose_within) lemma field_differentiable_within_open: "\a \ S; open S\ \ f field_differentiable at a within S \ f field_differentiable at a" unfolding field_differentiable_def by (metis at_within_open) lemma exp_scaleR_has_vector_derivative_right: "((\t. exp (t *\<^sub>R A)) has_vector_derivative exp (t *\<^sub>R A) * A) (at t within T)" unfolding has_vector_derivative_def proof (rule has_derivativeI) let ?F = "at t within (T \ {t - 1 <..< t + 1})" have *: "at t within T = ?F" by (rule at_within_nhd[where S="{t - 1 <..< t + 1}"]) auto let ?e = "\i x. (inverse (1 + real i) * inverse (fact i) * (x - t) ^ i) *\<^sub>R (A * A ^ i)" have "\\<^sub>F n in sequentially. \x\T \ {t - 1<.. norm (A ^ (n + 1) /\<^sub>R fact (n + 1))" apply (auto simp: algebra_split_simps intro!: eventuallyI) apply (rule mult_left_mono) apply (auto simp add: field_simps power_abs intro!: divide_right_mono power_le_one) done then have "uniform_limit (T \ {t - 1<..n x. \ix. \i. ?e i x) sequentially" by (rule Weierstrass_m_test_ev) (intro summable_ignore_initial_segment summable_norm_exp) moreover have "\\<^sub>F x in sequentially. x > 0" by (metis eventually_gt_at_top) then have "\\<^sub>F n in sequentially. ((\x. \i A) ?F" by eventually_elim (auto intro!: tendsto_eq_intros simp: power_0_left if_distrib if_distribR cong: if_cong) ultimately have [tendsto_intros]: "((\x. \i. ?e i x) \ A) ?F" by (auto intro!: swap_uniform_limit[where f="\n x. \i < n. ?e i x" and F = sequentially]) have [tendsto_intros]: "((\x. if x = t then 0 else 1) \ 1) ?F" by (rule tendsto_eventually) (simp add: eventually_at_filter) have "((\y. ((y - t) / abs (y - t)) *\<^sub>R ((\n. ?e n y) - A)) \ 0) (at t within T)" unfolding * by (rule tendsto_norm_zero_cancel) (auto intro!: tendsto_eq_intros) moreover have "\\<^sub>F x in at t within T. x \ t" by (simp add: eventually_at_filter) then have "\\<^sub>F x in at t within T. ((x - t) / \x - t\) *\<^sub>R ((\n. ?e n x) - A) = (exp ((x - t) *\<^sub>R A) - 1 - (x - t) *\<^sub>R A) /\<^sub>R norm (x - t)" proof eventually_elim case (elim x) have "(exp ((x - t) *\<^sub>R A) - 1 - (x - t) *\<^sub>R A) /\<^sub>R norm (x - t) = ((\n. (x - t) *\<^sub>R ?e n x) - (x - t) *\<^sub>R A) /\<^sub>R norm (x - t)" unfolding exp_first_term by (simp add: ac_simps) also have "summable (\n. ?e n x)" proof - from elim have "?e n x = (((x - t) *\<^sub>R A) ^ (n + 1)) /\<^sub>R fact (n + 1) /\<^sub>R (x - t)" for n by simp then show ?thesis by (auto simp only: intro!: summable_scaleR_right summable_ignore_initial_segment summable_exp_generic) qed then have "(\n. (x - t) *\<^sub>R ?e n x) = (x - t) *\<^sub>R (\n. ?e n x)" by (rule suminf_scaleR_right[symmetric]) also have "(\ - (x - t) *\<^sub>R A) /\<^sub>R norm (x - t) = (x - t) *\<^sub>R ((\n. ?e n x) - A) /\<^sub>R norm (x - t)" by (simp add: algebra_simps) finally show ?case by simp (simp add: field_simps) qed ultimately have "((\y. (exp ((y - t) *\<^sub>R A) - 1 - (y - t) *\<^sub>R A) /\<^sub>R norm (y - t)) \ 0) (at t within T)" by (rule Lim_transform_eventually) from tendsto_mult_right_zero[OF this, where c="exp (t *\<^sub>R A)"] show "((\y. (exp (y *\<^sub>R A) - exp (t *\<^sub>R A) - (y - t) *\<^sub>R (exp (t *\<^sub>R A) * A)) /\<^sub>R norm (y - t)) \ 0) (at t within T)" by (rule Lim_transform_eventually) (auto simp: field_split_simps exp_add_commuting[symmetric]) qed (rule bounded_linear_scaleR_left) lemma exp_times_scaleR_commute: "exp (t *\<^sub>R A) * A = A * exp (t *\<^sub>R A)" using exp_times_arg_commute[symmetric, of "t *\<^sub>R A"] by (auto simp: algebra_simps) lemma exp_scaleR_has_vector_derivative_left: "((\t. exp (t *\<^sub>R A)) has_vector_derivative A * exp (t *\<^sub>R A)) (at t)" using exp_scaleR_has_vector_derivative_right[of A t] by (simp add: exp_times_scaleR_commute) lemma field_differentiable_series: fixes f :: "nat \ 'a::{real_normed_field,banach} \ 'a" assumes "convex S" "open S" assumes "\n x. x \ S \ (f n has_field_derivative f' n x) (at x)" assumes "uniformly_convergent_on S (\n x. \i S" "summable (\n. f n x0)" and x: "x \ S" shows "(\x. \n. f n x) field_differentiable (at x)" proof - from assms(4) obtain g' where A: "uniform_limit S (\n x. \iopen S\ have S: "at x within S = at x" by (rule at_within_open) have "\g. \x\S. (\n. f n x) sums g x \ (g has_field_derivative g' x) (at x within S)" by (intro has_field_derivative_series[of S f f' g' x0] assms A has_field_derivative_at_within) then obtain g where g: "\x. x \ S \ (\n. f n x) sums g x" "\x. x \ S \ (g has_field_derivative g' x) (at x within S)" by blast from g(2)[OF x] have g': "(g has_derivative (*) (g' x)) (at x)" by (simp add: has_field_derivative_def S) have "((\x. \n. f n x) has_derivative (*) (g' x)) (at x)" by (rule has_derivative_transform_within_open[OF g' \open S\ x]) (insert g, auto simp: sums_iff) thus "(\x. \n. f n x) field_differentiable (at x)" unfolding differentiable_def by (auto simp: summable_def field_differentiable_def has_field_derivative_def) qed subsubsection\<^marker>\tag unimportant\\Caratheodory characterization\ lemma field_differentiable_caratheodory_at: "f field_differentiable (at z) \ (\g. (\w. f(w) - f(z) = g(w) * (w - z)) \ continuous (at z) g)" using CARAT_DERIV [of f] by (simp add: field_differentiable_def has_field_derivative_def) lemma field_differentiable_caratheodory_within: "f field_differentiable (at z within s) \ (\g. (\w. f(w) - f(z) = g(w) * (w - z)) \ continuous (at z within s) g)" using DERIV_caratheodory_within [of f] by (simp add: field_differentiable_def has_field_derivative_def) subsection \Field derivative\ definition\<^marker>\tag important\ deriv :: "('a \ 'a::real_normed_field) \ 'a \ 'a" where "deriv f x \ SOME D. DERIV f x :> D" lemma DERIV_imp_deriv: "DERIV f x :> f' \ deriv f x = f'" unfolding deriv_def by (metis some_equality DERIV_unique) lemma DERIV_deriv_iff_has_field_derivative: "DERIV f x :> deriv f x \ (\f'. (f has_field_derivative f') (at x))" by (auto simp: has_field_derivative_def DERIV_imp_deriv) lemma DERIV_deriv_iff_real_differentiable: fixes x :: real shows "DERIV f x :> deriv f x \ f differentiable at x" unfolding differentiable_def by (metis DERIV_imp_deriv has_real_derivative_iff) lemma deriv_cong_ev: assumes "eventually (\x. f x = g x) (nhds x)" "x = y" shows "deriv f x = deriv g y" proof - have "(\D. (f has_field_derivative D) (at x)) = (\D. (g has_field_derivative D) (at y))" by (intro ext DERIV_cong_ev refl assms) thus ?thesis by (simp add: deriv_def assms) qed lemma higher_deriv_cong_ev: assumes "eventually (\x. f x = g x) (nhds x)" "x = y" shows "(deriv ^^ n) f x = (deriv ^^ n) g y" proof - from assms(1) have "eventually (\x. (deriv ^^ n) f x = (deriv ^^ n) g x) (nhds x)" proof (induction n arbitrary: f g) case (Suc n) from Suc.prems have "eventually (\y. eventually (\z. f z = g z) (nhds y)) (nhds x)" by (simp add: eventually_eventually) hence "eventually (\x. deriv f x = deriv g x) (nhds x)" by eventually_elim (rule deriv_cong_ev, simp_all) thus ?case by (auto intro!: deriv_cong_ev Suc simp: funpow_Suc_right simp del: funpow.simps) qed auto from eventually_nhds_x_imp_x[OF this] assms(2) show ?thesis by simp qed lemma real_derivative_chain: fixes x :: real shows "f differentiable at x \ g differentiable at (f x) \ deriv (g o f) x = deriv g (f x) * deriv f x" by (metis DERIV_deriv_iff_real_differentiable DERIV_chain DERIV_imp_deriv) lemma field_derivative_eq_vector_derivative: "(deriv f x) = vector_derivative f (at x)" by (simp add: mult.commute deriv_def vector_derivative_def has_vector_derivative_def has_field_derivative_def) proposition field_differentiable_derivI: "f field_differentiable (at x) \ (f has_field_derivative deriv f x) (at x)" by (simp add: field_differentiable_def DERIV_deriv_iff_has_field_derivative) lemma vector_derivative_chain_at_general: assumes "f differentiable at x" "g field_differentiable at (f x)" shows "vector_derivative (g \ f) (at x) = vector_derivative f (at x) * deriv g (f x)" apply (rule vector_derivative_at [OF field_vector_diff_chain_at]) using assms vector_derivative_works by (auto simp: field_differentiable_derivI) lemma DERIV_deriv_iff_field_differentiable: "DERIV f x :> deriv f x \ f field_differentiable at x" unfolding field_differentiable_def by (metis DERIV_imp_deriv) lemma deriv_chain: "f field_differentiable at x \ g field_differentiable at (f x) \ deriv (g o f) x = deriv g (f x) * deriv f x" by (metis DERIV_deriv_iff_field_differentiable DERIV_chain DERIV_imp_deriv) lemma deriv_linear [simp]: "deriv (\w. c * w) = (\z. c)" by (metis DERIV_imp_deriv DERIV_cmult_Id) lemma deriv_uminus [simp]: "deriv (\w. -w) = (\z. -1)" using deriv_linear[of "-1"] by (simp del: deriv_linear) lemma deriv_ident [simp]: "deriv (\w. w) = (\z. 1)" by (metis DERIV_imp_deriv DERIV_ident) lemma deriv_id [simp]: "deriv id = (\z. 1)" by (simp add: id_def) lemma deriv_const [simp]: "deriv (\w. c) = (\z. 0)" by (metis DERIV_imp_deriv DERIV_const) lemma deriv_add [simp]: "\f field_differentiable at z; g field_differentiable at z\ \ deriv (\w. f w + g w) z = deriv f z + deriv g z" unfolding DERIV_deriv_iff_field_differentiable[symmetric] by (auto intro!: DERIV_imp_deriv derivative_intros) lemma deriv_diff [simp]: "\f field_differentiable at z; g field_differentiable at z\ \ deriv (\w. f w - g w) z = deriv f z - deriv g z" unfolding DERIV_deriv_iff_field_differentiable[symmetric] by (auto intro!: DERIV_imp_deriv derivative_intros) lemma deriv_mult [simp]: "\f field_differentiable at z; g field_differentiable at z\ \ deriv (\w. f w * g w) z = f z * deriv g z + deriv f z * g z" unfolding DERIV_deriv_iff_field_differentiable[symmetric] by (auto intro!: DERIV_imp_deriv derivative_eq_intros) lemma deriv_cmult: "f field_differentiable at z \ deriv (\w. c * f w) z = c * deriv f z" by simp lemma deriv_cmult_right: "f field_differentiable at z \ deriv (\w. f w * c) z = deriv f z * c" by simp lemma deriv_inverse [simp]: "\f field_differentiable at z; f z \ 0\ \ deriv (\w. inverse (f w)) z = - deriv f z / f z ^ 2" unfolding DERIV_deriv_iff_field_differentiable[symmetric] by (safe intro!: DERIV_imp_deriv derivative_eq_intros) (auto simp: field_split_simps power2_eq_square) lemma deriv_divide [simp]: "\f field_differentiable at z; g field_differentiable at z; g z \ 0\ \ deriv (\w. f w / g w) z = (deriv f z * g z - f z * deriv g z) / g z ^ 2" by (simp add: field_class.field_divide_inverse field_differentiable_inverse) (simp add: field_split_simps power2_eq_square) lemma deriv_cdivide_right: "f field_differentiable at z \ deriv (\w. f w / c) z = deriv f z / c" by (simp add: field_class.field_divide_inverse) lemma deriv_compose_linear: "f field_differentiable at (c * z) \ deriv (\w. f (c * w)) z = c * deriv f (c * z)" apply (rule DERIV_imp_deriv) unfolding DERIV_deriv_iff_field_differentiable [symmetric] by (metis (full_types) DERIV_chain2 DERIV_cmult_Id mult.commute) lemma nonzero_deriv_nonconstant: assumes df: "DERIV f \ :> df" and S: "open S" "\ \ S" and "df \ 0" shows "\ f constant_on S" unfolding constant_on_def by (metis \df \ 0\ has_field_derivative_transform_within_open [OF df S] DERIV_const DERIV_unique) subsection \Relation between convexity and derivative\ (* TODO: Generalise to real vector spaces? *) proposition convex_on_imp_above_tangent: assumes convex: "convex_on A f" and connected: "connected A" assumes c: "c \ interior A" and x : "x \ A" assumes deriv: "(f has_field_derivative f') (at c within A)" shows "f x - f c \ f' * (x - c)" proof (cases x c rule: linorder_cases) assume xc: "x > c" let ?A' = "interior A \ {c<..}" from c have "c \ interior A \ closure {c<..}" by auto also have "\ \ closure (interior A \ {c<..})" by (intro open_Int_closure_subset) auto finally have "at c within ?A' \ bot" by (subst at_within_eq_bot_iff) auto moreover from deriv have "((\y. (f y - f c) / (y - c)) \ f') (at c within ?A')" unfolding has_field_derivative_iff using interior_subset[of A] by (blast intro: tendsto_mono at_le) moreover from eventually_at_right_real[OF xc] have "eventually (\y. (f y - f c) / (y - c) \ (f x - f c) / (x - c)) (at_right c)" proof eventually_elim fix y assume y: "y \ {c<.. (f x - f c) / (x - c) * (y - c) + f c" using interior_subset[of A] by (intro convex_onD_Icc' convex_on_subset[OF convex] connected_contains_Icc) auto hence "f y - f c \ (f x - f c) / (x - c) * (y - c)" by simp thus "(f y - f c) / (y - c) \ (f x - f c) / (x - c)" using y xc by (simp add: field_split_simps) qed hence "eventually (\y. (f y - f c) / (y - c) \ (f x - f c) / (x - c)) (at c within ?A')" by (blast intro: filter_leD at_le) ultimately have "f' \ (f x - f c) / (x - c)" by (simp add: tendsto_upperbound) thus ?thesis using xc by (simp add: field_simps) next assume xc: "x < c" let ?A' = "interior A \ {.. interior A \ closure {.. \ closure (interior A \ {.. bot" by (subst at_within_eq_bot_iff) auto moreover from deriv have "((\y. (f y - f c) / (y - c)) \ f') (at c within ?A')" unfolding has_field_derivative_iff using interior_subset[of A] by (blast intro: tendsto_mono at_le) moreover from eventually_at_left_real[OF xc] have "eventually (\y. (f y - f c) / (y - c) \ (f x - f c) / (x - c)) (at_left c)" proof eventually_elim fix y assume y: "y \ {x<.. (f x - f c) / (c - x) * (c - y) + f c" using interior_subset[of A] by (intro convex_onD_Icc'' convex_on_subset[OF convex] connected_contains_Icc) auto hence "f y - f c \ (f x - f c) * ((c - y) / (c - x))" by simp also have "(c - y) / (c - x) = (y - c) / (x - c)" using y xc by (simp add: field_simps) finally show "(f y - f c) / (y - c) \ (f x - f c) / (x - c)" using y xc by (simp add: field_split_simps) qed hence "eventually (\y. (f y - f c) / (y - c) \ (f x - f c) / (x - c)) (at c within ?A')" by (blast intro: filter_leD at_le) ultimately have "f' \ (f x - f c) / (x - c)" by (simp add: tendsto_lowerbound) thus ?thesis using xc by (simp add: field_simps) qed simp_all subsection \Partial derivatives\ lemma eventually_at_Pair_within_TimesI1: fixes x::"'a::metric_space" assumes "\\<^sub>F x' in at x within X. P x'" assumes "P x" shows "\\<^sub>F (x', y') in at (x, y) within X \ Y. P x'" proof - from assms[unfolded eventually_at_topological] obtain S where S: "open S" "x \ S" "\x'. x' \ X \ x' \ S \ P x'" by metis show "\\<^sub>F (x', y') in at (x, y) within X \ Y. P x'" unfolding eventually_at_topological by (auto intro!: exI[where x="S \ UNIV"] S open_Times) qed lemma eventually_at_Pair_within_TimesI2: fixes x::"'a::metric_space" assumes "\\<^sub>F y' in at y within Y. P y'" "P y" shows "\\<^sub>F (x', y') in at (x, y) within X \ Y. P y'" proof - from assms[unfolded eventually_at_topological] obtain S where S: "open S" "y \ S" "\y'. y' \ Y \ y' \ S \ P y'" by metis show "\\<^sub>F (x', y') in at (x, y) within X \ Y. P y'" unfolding eventually_at_topological by (auto intro!: exI[where x="UNIV \ S"] S open_Times) qed proposition has_derivative_partialsI: fixes f::"'a::real_normed_vector \ 'b::real_normed_vector \ 'c::real_normed_vector" assumes fx: "((\x. f x y) has_derivative fx) (at x within X)" assumes fy: "\x y. x \ X \ y \ Y \ ((\y. f x y) has_derivative blinfun_apply (fy x y)) (at y within Y)" assumes fy_cont[unfolded continuous_within]: "continuous (at (x, y) within X \ Y) (\(x, y). fy x y)" assumes "y \ Y" "convex Y" shows "((\(x, y). f x y) has_derivative (\(tx, ty). fx tx + fy x y ty)) (at (x, y) within X \ Y)" proof (safe intro!: has_derivativeI tendstoI, goal_cases) case (2 e') interpret fx: bounded_linear "fx" using fx by (rule has_derivative_bounded_linear) define e where "e = e' / 9" have "e > 0" using \e' > 0\ by (simp add: e_def) from fy_cont[THEN tendstoD, OF \e > 0\] have "\\<^sub>F (x', y') in at (x, y) within X \ Y. dist (fy x' y') (fy x y) < e" by (auto simp: split_beta') from this[unfolded eventually_at] obtain d' where "d' > 0" "\x' y'. x' \ X \ y' \ Y \ (x', y') \ (x, y) \ dist (x', y') (x, y) < d' \ dist (fy x' y') (fy x y) < e" by auto then have d': "x' \ X \ y' \ Y \ dist (x', y') (x, y) < d' \ dist (fy x' y') (fy x y) < e" for x' y' using \0 < e\ by (cases "(x', y') = (x, y)") auto define d where "d = d' / sqrt 2" have "d > 0" using \0 < d'\ by (simp add: d_def) have d: "x' \ X \ y' \ Y \ dist x' x < d \ dist y' y < d \ dist (fy x' y') (fy x y) < e" for x' y' by (auto simp: dist_prod_def d_def intro!: d' real_sqrt_sum_squares_less) let ?S = "ball y d \ Y" have "convex ?S" by (auto intro!: convex_Int \convex Y\) { fix x'::'a and y'::'b assume x': "x' \ X" and y': "y' \ Y" assume dx': "dist x' x < d" and dy': "dist y' y < d" have "norm (fy x' y' - fy x' y) \ dist (fy x' y') (fy x y) + dist (fy x' y) (fy x y)" by norm also have "dist (fy x' y') (fy x y) < e" by (rule d; fact) also have "dist (fy x' y) (fy x y) < e" by (auto intro!: d simp: dist_prod_def x' \d > 0\ \y \ Y\ dx') finally have "norm (fy x' y' - fy x' y) < e + e" by arith then have "onorm (blinfun_apply (fy x' y') - blinfun_apply (fy x' y)) < e + e" by (auto simp: norm_blinfun.rep_eq blinfun.diff_left[abs_def] fun_diff_def) } note onorm = this have ev_mem: "\\<^sub>F (x', y') in at (x, y) within X \ Y. (x', y') \ X \ Y" using \y \ Y\ by (auto simp: eventually_at intro!: zero_less_one) moreover have ev_dist: "\\<^sub>F xy in at (x, y) within X \ Y. dist xy (x, y) < d" if "d > 0" for d using eventually_at_ball[OF that] by (rule eventually_elim2) (auto simp: dist_commute intro!: eventually_True) note ev_dist[OF \0 < d\] ultimately have "\\<^sub>F (x', y') in at (x, y) within X \ Y. norm (f x' y' - f x' y - (fy x' y) (y' - y)) \ norm (y' - y) * (e + e)" proof (eventually_elim, safe) fix x' y' assume "x' \ X" and y': "y' \ Y" assume dist: "dist (x', y') (x, y) < d" then have dx: "dist x' x < d" and dy: "dist y' y < d" unfolding dist_prod_def fst_conv snd_conv atomize_conj by (metis le_less_trans real_sqrt_sum_squares_ge1 real_sqrt_sum_squares_ge2) { fix t::real assume "t \ {0 .. 1}" then have "y + t *\<^sub>R (y' - y) \ closed_segment y y'" by (auto simp: closed_segment_def algebra_simps intro!: exI[where x=t]) also have "\ \ ball y d \ Y" using \y \ Y\ \0 < d\ dy y' by (intro \convex ?S\[unfolded convex_contains_segment, rule_format, of y y']) (auto simp: dist_commute) finally have "y + t *\<^sub>R (y' - y) \ ?S" . } note seg = this have "\x. x \ ball y d \ Y \ onorm (blinfun_apply (fy x' x) - blinfun_apply (fy x' y)) \ e + e" by (safe intro!: onorm less_imp_le \x' \ X\ dx) (auto simp: dist_commute \0 < d\ \y \ Y\) - with seg has_derivative_within_subset[OF assms(2)[OF \x' \ X\]] + with seg has_derivative_subset[OF assms(2)[OF \x' \ X\]] show "norm (f x' y' - f x' y - (fy x' y) (y' - y)) \ norm (y' - y) * (e + e)" by (rule differentiable_bound_linearization[where S="?S"]) (auto intro!: \0 < d\ \y \ Y\) qed moreover let ?le = "\x'. norm (f x' y - f x y - (fx) (x' - x)) \ norm (x' - x) * e" from fx[unfolded has_derivative_within, THEN conjunct2, THEN tendstoD, OF \0 < e\] have "\\<^sub>F x' in at x within X. ?le x'" by eventually_elim (simp, simp add: dist_norm field_split_simps split: if_split_asm) then have "\\<^sub>F (x', y') in at (x, y) within X \ Y. ?le x'" by (rule eventually_at_Pair_within_TimesI1) (simp add: blinfun.bilinear_simps) moreover have "\\<^sub>F (x', y') in at (x, y) within X \ Y. norm ((x', y') - (x, y)) \ 0" unfolding norm_eq_zero right_minus_eq by (auto simp: eventually_at intro!: zero_less_one) moreover from fy_cont[THEN tendstoD, OF \0 < e\] have "\\<^sub>F x' in at x within X. norm (fy x' y - fy x y) < e" unfolding eventually_at using \y \ Y\ by (auto simp: dist_prod_def dist_norm) then have "\\<^sub>F (x', y') in at (x, y) within X \ Y. norm (fy x' y - fy x y) < e" by (rule eventually_at_Pair_within_TimesI1) (simp add: blinfun.bilinear_simps \0 < e\) ultimately have "\\<^sub>F (x', y') in at (x, y) within X \ Y. norm ((f x' y' - f x y - (fx (x' - x) + fy x y (y' - y))) /\<^sub>R norm ((x', y') - (x, y))) < e'" apply eventually_elim proof safe fix x' y' have "norm (f x' y' - f x y - (fx (x' - x) + fy x y (y' - y))) \ norm (f x' y' - f x' y - fy x' y (y' - y)) + norm (fy x y (y' - y) - fy x' y (y' - y)) + norm (f x' y - f x y - fx (x' - x))" by norm also assume nz: "norm ((x', y') - (x, y)) \ 0" and nfy: "norm (fy x' y - fy x y) < e" assume "norm (f x' y' - f x' y - blinfun_apply (fy x' y) (y' - y)) \ norm (y' - y) * (e + e)" also assume "norm (f x' y - f x y - (fx) (x' - x)) \ norm (x' - x) * e" also have "norm ((fy x y) (y' - y) - (fy x' y) (y' - y)) \ norm ((fy x y) - (fy x' y)) * norm (y' - y)" by (auto simp: blinfun.bilinear_simps[symmetric] intro!: norm_blinfun) also have "\ \ (e + e) * norm (y' - y)" using \e > 0\ nfy by (auto simp: norm_minus_commute intro!: mult_right_mono) also have "norm (x' - x) * e \ norm (x' - x) * (e + e)" using \0 < e\ by simp also have "norm (y' - y) * (e + e) + (e + e) * norm (y' - y) + norm (x' - x) * (e + e) \ (norm (y' - y) + norm (x' - x)) * (4 * e)" using \e > 0\ by (simp add: algebra_simps) also have "\ \ 2 * norm ((x', y') - (x, y)) * (4 * e)" using \0 < e\ real_sqrt_sum_squares_ge1[of "norm (x' - x)" "norm (y' - y)"] real_sqrt_sum_squares_ge2[of "norm (y' - y)" "norm (x' - x)"] by (auto intro!: mult_right_mono simp: norm_prod_def simp del: real_sqrt_sum_squares_ge1 real_sqrt_sum_squares_ge2) also have "\ \ norm ((x', y') - (x, y)) * (8 * e)" by simp also have "\ < norm ((x', y') - (x, y)) * e'" using \0 < e'\ nz by (auto simp: e_def) finally show "norm ((f x' y' - f x y - (fx (x' - x) + fy x y (y' - y))) /\<^sub>R norm ((x', y') - (x, y))) < e'" by (simp add: dist_norm) (auto simp add: field_split_simps) qed then show ?case by eventually_elim (auto simp: dist_norm field_simps) next from has_derivative_bounded_linear[OF fx] obtain fxb where "fx = blinfun_apply fxb" by (metis bounded_linear_Blinfun_apply) then show "bounded_linear (\(tx, ty). fx tx + blinfun_apply (fy x y) ty)" by (auto intro!: bounded_linear_intros simp: split_beta') qed subsection\<^marker>\tag unimportant\ \Differentiable case distinction\ lemma has_derivative_within_If_eq: "((\x. if P x then f x else g x) has_derivative f') (at x within S) = (bounded_linear f' \ ((\y.(if P y then (f y - ((if P x then f x else g x) + f' (y - x)))/\<^sub>R norm (y - x) else (g y - ((if P x then f x else g x) + f' (y - x)))/\<^sub>R norm (y - x))) \ 0) (at x within S))" (is "_ = (_ \ (?if \ 0) _)") proof - have "(\y. (1 / norm (y - x)) *\<^sub>R ((if P y then f y else g y) - ((if P x then f x else g x) + f' (y - x)))) = ?if" by (auto simp: inverse_eq_divide) thus ?thesis by (auto simp: has_derivative_within) qed lemma has_derivative_If_within_closures: assumes f': "x \ S \ (closure S \ closure T) \ (f has_derivative f' x) (at x within S \ (closure S \ closure T))" assumes g': "x \ T \ (closure S \ closure T) \ (g has_derivative g' x) (at x within T \ (closure S \ closure T))" assumes connect: "x \ closure S \ x \ closure T \ f x = g x" assumes connect': "x \ closure S \ x \ closure T \ f' x = g' x" assumes x_in: "x \ S \ T" shows "((\x. if x \ S then f x else g x) has_derivative (if x \ S then f' x else g' x)) (at x within (S \ T))" proof - from f' x_in interpret f': bounded_linear "if x \ S then f' x else (\x. 0)" by (auto simp add: has_derivative_within) from g' interpret g': bounded_linear "if x \ T then g' x else (\x. 0)" by (auto simp add: has_derivative_within) have bl: "bounded_linear (if x \ S then f' x else g' x)" using f'.scaleR f'.bounded f'.add g'.scaleR g'.bounded g'.add x_in by (unfold_locales; force) show ?thesis using f' g' closure_subset[of T] closure_subset[of S] unfolding has_derivative_within_If_eq by (intro conjI bl tendsto_If_within_closures x_in) (auto simp: has_derivative_within inverse_eq_divide connect connect' subsetD) qed lemma has_vector_derivative_If_within_closures: assumes x_in: "x \ S \ T" assumes "u = S \ T" assumes f': "x \ S \ (closure S \ closure T) \ (f has_vector_derivative f' x) (at x within S \ (closure S \ closure T))" assumes g': "x \ T \ (closure S \ closure T) \ (g has_vector_derivative g' x) (at x within T \ (closure S \ closure T))" assumes connect: "x \ closure S \ x \ closure T \ f x = g x" assumes connect': "x \ closure S \ x \ closure T \ f' x = g' x" shows "((\x. if x \ S then f x else g x) has_vector_derivative (if x \ S then f' x else g' x)) (at x within u)" unfolding has_vector_derivative_def assms using x_in apply (intro has_derivative_If_within_closures[where ?f' = "\x a. a *\<^sub>R f' x" and ?g' = "\x a. a *\<^sub>R g' x", THEN has_derivative_eq_rhs]) subgoal by (rule f'[unfolded has_vector_derivative_def]; assumption) subgoal by (rule g'[unfolded has_vector_derivative_def]; assumption) by (auto simp: assms) subsection\<^marker>\tag important\\The Inverse Function Theorem\ lemma linear_injective_contraction: assumes "linear f" "c < 1" and le: "\x. norm (f x - x) \ c * norm x" shows "inj f" unfolding linear_injective_0[OF \linear f\] proof safe fix x assume "f x = 0" with le [of x] have "norm x \ c * norm x" by simp then show "x = 0" using \c < 1\ by (simp add: mult_le_cancel_right1) qed text\From an online proof by J. Michael Boardman, Department of Mathematics, Johns Hopkins University\ lemma inverse_function_theorem_scaled: fixes f::"'a::euclidean_space \ 'a" and f'::"'a \ ('a \\<^sub>L 'a)" assumes "open U" and derf: "\x. x \ U \ (f has_derivative blinfun_apply (f' x)) (at x)" and contf: "continuous_on U f'" and "0 \ U" and [simp]: "f 0 = 0" and id: "f' 0 = id_blinfun" obtains U' V g g' where "open U'" "U' \ U" "0 \ U'" "open V" "0 \ V" "homeomorphism U' V f g" "\y. y \ V \ (g has_derivative (g' y)) (at y)" "\y. y \ V \ g' y = inv (blinfun_apply (f'(g y)))" "\y. y \ V \ bij (blinfun_apply (f'(g y)))" proof - obtain d1 where "cball 0 d1 \ U" "d1 > 0" using \open U\ \0 \ U\ open_contains_cball by blast obtain d2 where d2: "\x. \x \ U; dist x 0 \ d2\ \ dist (f' x) (f' 0) < 1/2" "0 < d2" using continuous_onE [OF contf, of 0 "1/2"] by (metis \0 \ U\ half_gt_zero_iff zero_less_one) obtain \ where le: "\x. norm x \ \ \ dist (f' x) id_blinfun \ 1/2" and "0 < \" and subU: "cball 0 \ \ U" proof show "min d1 d2 > 0" by (simp add: \0 < d1\ \0 < d2\) show "cball 0 (min d1 d2) \ U" using \cball 0 d1 \ U\ by auto show "dist (f' x) id_blinfun \ 1/2" if "norm x \ min d1 d2" for x using \cball 0 d1 \ U\ d2 that id by fastforce qed let ?D = "cball 0 \" define V:: "'a set" where "V \ ball 0 (\/2)" have 4: "norm (f (x + h) - f x - h) \ 1/2 * norm h" if "x \ ?D" "x+h \ ?D" for x h proof - let ?w = "\x. f x - x" have B: "\x. x \ ?D \ onorm (blinfun_apply (f' x - id_blinfun)) \ 1/2" by (metis dist_norm le mem_cball_0 norm_blinfun.rep_eq) have "\x. x \ ?D \ (?w has_derivative (blinfun_apply (f' x - id_blinfun))) (at x)" by (rule derivative_eq_intros derf subsetD [OF subU] | force simp: blinfun.diff_left)+ then have Dw: "\x. x \ ?D \ (?w has_derivative (blinfun_apply (f' x - id_blinfun))) (at x within ?D)" using has_derivative_at_withinI by blast have "norm (?w (x+h) - ?w x) \ (1/2) * norm h" using differentiable_bound [OF convex_cball Dw B] that by fastforce then show ?thesis by (auto simp: algebra_simps) qed have for_g: "\!x. norm x < \ \ f x = y" if y: "norm y < \/2" for y proof - let ?u = "\x. x + (y - f x)" have *: "norm (?u x) < \" if "x \ ?D" for x proof - have fxx: "norm (f x - x) \ \/2" using 4 [of 0 x] \0 < \\ \f 0 = 0\ that by auto have "norm (?u x) \ norm y + norm (f x - x)" by (metis add.commute add_diff_eq norm_minus_commute norm_triangle_ineq) also have "\ < \/2 + \/2" using fxx y by auto finally show ?thesis by simp qed have "\!x \ ?D. ?u x = x" proof (rule banach_fix) show "cball 0 \ \ {}" using \0 < \\ by auto show "(\x. x + (y - f x)) ` cball 0 \ \ cball 0 \" using * by force have "dist (x + (y - f x)) (xh + (y - f xh)) * 2 \ dist x xh" if "norm x \ \" and "norm xh \ \" for x xh using that 4 [of x "xh-x"] by (auto simp: dist_norm norm_minus_commute algebra_simps) then show "\x\cball 0 \. \ya\cball 0 \. dist (x + (y - f x)) (ya + (y - f ya)) \ (1/2) * dist x ya" by auto qed (auto simp: complete_eq_closed) then show ?thesis by (metis "*" add_cancel_right_right eq_iff_diff_eq_0 le_less mem_cball_0) qed define g where "g \ \y. THE x. norm x < \ \ f x = y" have g: "norm (g y) < \ \ f (g y) = y" if "norm y < \/2" for y unfolding g_def using that theI' [OF for_g] by meson then have fg[simp]: "f (g y) = y" if "y \ V" for y using that by (auto simp: V_def) have 5: "norm (g y' - g y) \ 2 * norm (y' - y)" if "y \ V" "y' \ V" for y y' proof - have no: "norm (g y) \ \" "norm (g y') \ \" and [simp]: "f (g y) = y" using that g unfolding V_def by force+ have "norm (g y' - g y) \ norm (g y' - g y - (y' - y)) + norm (y' - y)" by (simp add: add.commute norm_triangle_sub) also have "\ \ (1/2) * norm (g y' - g y) + norm (y' - y)" using 4 [of "g y" "g y' - g y"] that no by (simp add: g norm_minus_commute V_def) finally show ?thesis by auto qed have contg: "continuous_on V g" proof fix y::'a and e::real assume "0 < e" and y: "y \ V" show "\d>0. \x'\V. dist x' y < d \ dist (g x') (g y) \ e" proof (intro exI conjI ballI impI) show "0 < e/2" by (simp add: \0 < e\) qed (use 5 y in \force simp: dist_norm\) qed show thesis proof define U' where "U' \ (f -` V) \ ball 0 \" have contf: "continuous_on U f" using derf has_derivative_at_withinI by (fast intro: has_derivative_continuous_on) then have "continuous_on (ball 0 \) f" by (meson ball_subset_cball continuous_on_subset subU) then show "open U'" by (simp add: U'_def V_def Int_commute continuous_open_preimage) show "0 \ U'" "U' \ U" "open V" "0 \ V" using \0 < \\ subU by (auto simp: U'_def V_def) show hom: "homeomorphism U' V f g" proof show "continuous_on U' f" using \U' \ U\ contf continuous_on_subset by blast show "continuous_on V g" using contg by blast show "f ` U' \ V" using U'_def by blast show "g ` V \ U'" by (simp add: U'_def V_def g image_subset_iff) show "g (f x) = x" if "x \ U'" for x by (metis that fg Int_iff U'_def V_def for_g g mem_ball_0 vimage_eq) show "f (g y) = y" if "y \ V" for y using that by (simp add: g V_def) qed show bij: "bij (blinfun_apply (f'(g y)))" if "y \ V" for y proof - have inj: "inj (blinfun_apply (f' (g y)))" proof (rule linear_injective_contraction) show "linear (blinfun_apply (f' (g y)))" using blinfun.bounded_linear_right bounded_linear_def by blast next fix x have "norm (blinfun_apply (f' (g y)) x - x) = norm (blinfun_apply (f' (g y) - id_blinfun) x)" by (simp add: blinfun.diff_left) also have "\ \ norm (f' (g y) - id_blinfun) * norm x" by (rule norm_blinfun) also have "\ \ (1/2) * norm x" proof (rule mult_right_mono) show "norm (f' (g y) - id_blinfun) \ 1/2" using that g [of y] le by (auto simp: V_def dist_norm) qed auto finally show "norm (blinfun_apply (f' (g y)) x - x) \ (1/2) * norm x" . qed auto moreover have "surj (blinfun_apply (f' (g y)))" using blinfun.bounded_linear_right bounded_linear_def by (blast intro!: linear_inj_imp_surj [OF _ inj]) ultimately show ?thesis using bijI by blast qed define g' where "g' \ \y. inv (blinfun_apply (f'(g y)))" show "(g has_derivative g' y) (at y)" if "y \ V" for y proof - have gy: "g y \ U" using g subU that unfolding V_def by fastforce obtain e where e: "\h. f (g y + h) = y + blinfun_apply (f' (g y)) h + e h" and e0: "(\h. norm (e h) / norm h) \0\ 0" using iffD1 [OF has_derivative_iff_Ex derf [OF gy]] \y \ V\ by auto have [simp]: "e 0 = 0" using e [of 0] that by simp let ?INV = "inv (blinfun_apply (f' (g y)))" have inj: "inj (blinfun_apply (f' (g y)))" using bij bij_betw_def that by blast have "(g has_derivative g' y) (at y within V)" unfolding has_derivative_at_within_iff_Ex [OF \y \ V\ \open V\] proof show blinv: "bounded_linear (g' y)" unfolding g'_def using derf gy inj inj_linear_imp_inv_bounded_linear by blast define eg where "eg \ \k. - ?INV (e (g (y+k) - g y))" have "g (y+k) = g y + g' y k + eg k" if "y + k \ V" for k proof - have "?INV k = ?INV (blinfun_apply (f' (g y)) (g (y+k) - g y) + e (g (y+k) - g y))" using e [of "g(y+k) - g y"] that by simp then have "g (y+k) = g y + ?INV k - ?INV (e (g (y+k) - g y))" using inj blinv by (simp add: linear_simps g'_def) then show ?thesis by (auto simp: eg_def g'_def) qed moreover have "(\k. norm (eg k) / norm k) \0\ 0" proof (rule Lim_null_comparison) let ?g = "\k. 2 * onorm ?INV * norm (e (g (y+k) - g y)) / norm (g (y+k) - g y)" show "\\<^sub>F k in at 0. norm (norm (eg k) / norm k) \ ?g k" unfolding eventually_at_topological proof (intro exI conjI ballI impI) show "open ((+)(-y) ` V)" using \open V\ open_translation by blast show "0 \ (+)(-y) ` V" by (simp add: that) show "norm (norm (eg k) / norm k) \ 2 * onorm (inv (blinfun_apply (f' (g y)))) * norm (e (g (y+k) - g y)) / norm (g (y+k) - g y)" if "k \ (+)(-y) ` V" "k \ 0" for k proof - have "y+k \ V" using that by auto have "norm (norm (eg k) / norm k) \ onorm ?INV * norm (e (g (y+k) - g y)) / norm k" using blinv g'_def onorm by (force simp: eg_def divide_simps) also have "\ = (norm (g (y+k) - g y) / norm k) * (onorm ?INV * (norm (e (g (y+k) - g y)) / norm (g (y+k) - g y)))" by (simp add: divide_simps) also have "\ \ 2 * (onorm ?INV * (norm (e (g (y+k) - g y)) / norm (g (y+k) - g y)))" apply (rule mult_right_mono) using 5 [of y "y+k"] \y \ V\ \y + k \ V\ onorm_pos_le [OF blinv] apply (auto simp: divide_simps zero_le_mult_iff zero_le_divide_iff g'_def) done finally show "norm (norm (eg k) / norm k) \ 2 * onorm ?INV * norm (e (g (y+k) - g y)) / norm (g (y+k) - g y)" by simp qed qed have 1: "(\h. norm (e h) / norm h) \0\ (norm (e 0) / norm 0)" using e0 by auto have 2: "(\k. g (y+k) - g y) \0\ 0" using contg \open V\ \y \ V\ LIM_offset_zero_iff LIM_zero_iff at_within_open continuous_on_def by fastforce from tendsto_compose [OF 1 2, simplified] have "(\k. norm (e (g (y+k) - g y)) / norm (g (y+k) - g y)) \0\ 0" . from tendsto_mult_left [OF this] show "?g \0\ 0" by auto qed ultimately show "\e. (\k. y + k \ V \ g (y+k) = g y + g' y k + e k) \ (\k. norm (e k) / norm k) \0\ 0" by blast qed then show ?thesis by (metis \open V\ at_within_open that) qed show "g' y = inv (blinfun_apply (f' (g y)))" if "y \ V" for y by (simp add: g'_def) qed qed text\We need all this to justify the scaling and translations.\ theorem inverse_function_theorem: fixes f::"'a::euclidean_space \ 'a" and f'::"'a \ ('a \\<^sub>L 'a)" assumes "open U" and derf: "\x. x \ U \ (f has_derivative (blinfun_apply (f' x))) (at x)" and contf: "continuous_on U f'" and "x0 \ U" and invf: "invf o\<^sub>L f' x0 = id_blinfun" obtains U' V g g' where "open U'" "U' \ U" "x0 \ U'" "open V" "f x0 \ V" "homeomorphism U' V f g" "\y. y \ V \ (g has_derivative (g' y)) (at y)" "\y. y \ V \ g' y = inv (blinfun_apply (f'(g y)))" "\y. y \ V \ bij (blinfun_apply (f'(g y)))" proof - have apply1 [simp]: "\i. blinfun_apply invf (blinfun_apply (f' x0) i) = i" by (metis blinfun_apply_blinfun_compose blinfun_apply_id_blinfun invf) have apply2 [simp]: "\i. blinfun_apply (f' x0) (blinfun_apply invf i) = i" by (metis apply1 bij_inv_eq_iff blinfun_bij1 invf) have [simp]: "(range (blinfun_apply invf)) = UNIV" using apply1 surjI by blast let ?f = "invf \ (\x. (f \ (+)x0)x - f x0)" let ?f' = "\x. invf o\<^sub>L (f' (x + x0))" obtain U' V g g' where "open U'" and U': "U' \ (+)(-x0) ` U" "0 \ U'" and "open V" "0 \ V" and hom: "homeomorphism U' V ?f g" and derg: "\y. y \ V \ (g has_derivative (g' y)) (at y)" and g': "\y. y \ V \ g' y = inv (?f'(g y))" and bij: "\y. y \ V \ bij (?f'(g y))" proof (rule inverse_function_theorem_scaled [of "(+)(-x0) ` U" ?f "?f'"]) show ope: "open ((+) (- x0) ` U)" using \open U\ open_translation by blast show "(?f has_derivative blinfun_apply (?f' x)) (at x)" if "x \ (+) (- x0) ` U" for x using that apply clarify apply (rule derf derivative_eq_intros | simp add: blinfun_compose.rep_eq)+ done have YY: "(\x. f' (x + x0)) \u-x0\ f' u" if "f' \u\ f' u" "u \ U" for u using that LIM_offset [where k = x0] by (auto simp: algebra_simps) then have "continuous_on ((+) (- x0) ` U) (\x. f' (x + x0))" using contf \open U\ Lim_at_imp_Lim_at_within by (fastforce simp: continuous_on_def at_within_open_NO_MATCH ope) then show "continuous_on ((+) (- x0) ` U) ?f'" by (intro continuous_intros) simp qed (auto simp: invf \x0 \ U\) show thesis proof let ?U' = "(+)x0 ` U'" let ?V = "((+)(f x0) \ f' x0) ` V" let ?g = "(+)x0 \ g \ invf \ (+)(- f x0)" let ?g' = "\y. inv (blinfun_apply (f' (?g y)))" show oU': "open ?U'" by (simp add: \open U'\ open_translation) show subU: "?U' \ U" using ComplI \U' \ (+) (- x0) ` U\ by auto show "x0 \ ?U'" by (simp add: \0 \ U'\) show "open ?V" using blinfun_bij2 [OF invf] by (metis \open V\ bij_is_surj blinfun.bounded_linear_right bounded_linear_def image_comp open_surjective_linear_image open_translation) show "f x0 \ ?V" using \0 \ V\ image_iff by fastforce show "homeomorphism ?U' ?V f ?g" proof show "continuous_on ?U' f" by (meson subU continuous_on_eq_continuous_at derf has_derivative_continuous oU' subsetD) have "?f ` U' \ V" using hom homeomorphism_image1 by blast then show "f ` ?U' \ ?V" unfolding image_subset_iff by (clarsimp simp: image_def) (metis apply2 add.commute diff_add_cancel) show "?g ` ?V \ ?U'" using hom invf by (auto simp: image_def homeomorphism_def) show "?g (f x) = x" if "x \ ?U'" for x using that hom homeomorphism_apply1 by fastforce have "continuous_on V g" using hom homeomorphism_def by blast then show "continuous_on ?V ?g" by (intro continuous_intros) (auto elim!: continuous_on_subset) have fg: "?f (g x) = x" if "x \ V" for x using hom homeomorphism_apply2 that by blast show "f (?g y) = y" if "y \ ?V" for y using that fg by (simp add: image_iff) (metis apply2 add.commute diff_add_cancel) qed show "(?g has_derivative ?g' y) (at y)" "bij (blinfun_apply (f' (?g y)))" if "y \ ?V" for y proof - have 1: "bij (blinfun_apply invf)" using blinfun_bij1 invf by blast then have 2: "bij (blinfun_apply (f' (x0 + g x)))" if "x \ V" for x by (metis add.commute bij bij_betw_comp_iff2 blinfun_compose.rep_eq that top_greatest) then show "bij (blinfun_apply (f' (?g y)))" using that by auto have "g' x \ blinfun_apply invf = inv (blinfun_apply (f' (x0 + g x)))" if "x \ V" for x using that by (simp add: g' o_inv_distrib blinfun_compose.rep_eq 1 2 add.commute bij_is_inj flip: o_assoc) then show "(?g has_derivative ?g' y) (at y)" using that invf by clarsimp (rule derg derivative_eq_intros | simp flip: id_def)+ qed qed auto qed subsection\<^marker>\tag unimportant\ \Piecewise differentiable functions\ definition piecewise_differentiable_on (infixr "piecewise'_differentiable'_on" 50) where "f piecewise_differentiable_on i \ continuous_on i f \ (\S. finite S \ (\x \ i - S. f differentiable (at x within i)))" lemma piecewise_differentiable_on_imp_continuous_on: "f piecewise_differentiable_on S \ continuous_on S f" by (simp add: piecewise_differentiable_on_def) lemma piecewise_differentiable_on_subset: "f piecewise_differentiable_on S \ T \ S \ f piecewise_differentiable_on T" using continuous_on_subset unfolding piecewise_differentiable_on_def apply safe apply (blast elim: continuous_on_subset) by (meson Diff_iff differentiable_within_subset subsetCE) lemma differentiable_on_imp_piecewise_differentiable: fixes a:: "'a::{linorder_topology,real_normed_vector}" shows "f differentiable_on {a..b} \ f piecewise_differentiable_on {a..b}" apply (simp add: piecewise_differentiable_on_def differentiable_imp_continuous_on) apply (rule_tac x="{a,b}" in exI, simp add: differentiable_on_def) done lemma differentiable_imp_piecewise_differentiable: "(\x. x \ S \ f differentiable (at x within S)) \ f piecewise_differentiable_on S" by (auto simp: piecewise_differentiable_on_def differentiable_imp_continuous_on differentiable_on_def intro: differentiable_within_subset) lemma piecewise_differentiable_const [iff]: "(\x. z) piecewise_differentiable_on S" by (simp add: differentiable_imp_piecewise_differentiable) lemma piecewise_differentiable_compose: "\f piecewise_differentiable_on S; g piecewise_differentiable_on (f ` S); \x. finite (S \ f-`{x})\ \ (g \ f) piecewise_differentiable_on S" apply (simp add: piecewise_differentiable_on_def, safe) apply (blast intro: continuous_on_compose2) apply (rename_tac A B) apply (rule_tac x="A \ (\x\B. S \ f-`{x})" in exI) apply (blast intro!: differentiable_chain_within) done lemma piecewise_differentiable_affine: fixes m::real assumes "f piecewise_differentiable_on ((\x. m *\<^sub>R x + c) ` S)" shows "(f \ (\x. m *\<^sub>R x + c)) piecewise_differentiable_on S" proof (cases "m = 0") case True then show ?thesis unfolding o_def by (force intro: differentiable_imp_piecewise_differentiable differentiable_const) next case False show ?thesis apply (rule piecewise_differentiable_compose [OF differentiable_imp_piecewise_differentiable]) apply (rule assms derivative_intros | simp add: False vimage_def real_vector_affinity_eq)+ done qed lemma piecewise_differentiable_cases: fixes c::real assumes "f piecewise_differentiable_on {a..c}" "g piecewise_differentiable_on {c..b}" "a \ c" "c \ b" "f c = g c" shows "(\x. if x \ c then f x else g x) piecewise_differentiable_on {a..b}" proof - obtain S T where st: "finite S" "finite T" and fd: "\x. x \ {a..c} - S \ f differentiable at x within {a..c}" and gd: "\x. x \ {c..b} - T \ g differentiable at x within {c..b}" using assms by (auto simp: piecewise_differentiable_on_def) have finabc: "finite ({a,b,c} \ (S \ T))" by (metis \finite S\ \finite T\ finite_Un finite_insert finite.emptyI) have "continuous_on {a..c} f" "continuous_on {c..b} g" using assms piecewise_differentiable_on_def by auto then have "continuous_on {a..b} (\x. if x \ c then f x else g x)" using continuous_on_cases [OF closed_real_atLeastAtMost [of a c], OF closed_real_atLeastAtMost [of c b], of f g "\x. x\c"] assms by (force simp: ivl_disj_un_two_touch) moreover { fix x assume x: "x \ {a..b} - ({a,b,c} \ (S \ T))" have "(\x. if x \ c then f x else g x) differentiable at x within {a..b}" (is "?diff_fg") proof (cases x c rule: le_cases) case le show ?diff_fg proof (rule differentiable_transform_within [where d = "dist x c"]) have "f differentiable at x" using x le fd [of x] at_within_interior [of x "{a..c}"] by simp then show "f differentiable at x within {a..b}" by (simp add: differentiable_at_withinI) qed (use x le st dist_real_def in auto) next case ge show ?diff_fg proof (rule differentiable_transform_within [where d = "dist x c"]) have "g differentiable at x" using x ge gd [of x] at_within_interior [of x "{c..b}"] by simp then show "g differentiable at x within {a..b}" by (simp add: differentiable_at_withinI) qed (use x ge st dist_real_def in auto) qed } then have "\S. finite S \ (\x\{a..b} - S. (\x. if x \ c then f x else g x) differentiable at x within {a..b})" by (meson finabc) ultimately show ?thesis by (simp add: piecewise_differentiable_on_def) qed lemma piecewise_differentiable_neg: "f piecewise_differentiable_on S \ (\x. -(f x)) piecewise_differentiable_on S" by (auto simp: piecewise_differentiable_on_def continuous_on_minus) lemma piecewise_differentiable_add: assumes "f piecewise_differentiable_on i" "g piecewise_differentiable_on i" shows "(\x. f x + g x) piecewise_differentiable_on i" proof - obtain S T where st: "finite S" "finite T" "\x\i - S. f differentiable at x within i" "\x\i - T. g differentiable at x within i" using assms by (auto simp: piecewise_differentiable_on_def) then have "finite (S \ T) \ (\x\i - (S \ T). (\x. f x + g x) differentiable at x within i)" by auto moreover have "continuous_on i f" "continuous_on i g" using assms piecewise_differentiable_on_def by auto ultimately show ?thesis by (auto simp: piecewise_differentiable_on_def continuous_on_add) qed lemma piecewise_differentiable_diff: "\f piecewise_differentiable_on S; g piecewise_differentiable_on S\ \ (\x. f x - g x) piecewise_differentiable_on S" unfolding diff_conv_add_uminus by (metis piecewise_differentiable_add piecewise_differentiable_neg) subsection\The concept of continuously differentiable\ text \ John Harrison writes as follows: ``The usual assumption in complex analysis texts is that a path \\\ should be piecewise continuously differentiable, which ensures that the path integral exists at least for any continuous f, since all piecewise continuous functions are integrable. However, our notion of validity is weaker, just piecewise differentiability\ldots{} [namely] continuity plus differentiability except on a finite set\ldots{} [Our] underlying theory of integration is the Kurzweil-Henstock theory. In contrast to the Riemann or Lebesgue theory (but in common with a simple notion based on antiderivatives), this can integrate all derivatives.'' "Formalizing basic complex analysis." From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric 10.23 (2007): 151-165. And indeed he does not assume that his derivatives are continuous, but the penalty is unreasonably difficult proofs concerning winding numbers. We need a self-contained and straightforward theorem asserting that all derivatives can be integrated before we can adopt Harrison's choice.\ definition\<^marker>\tag important\ C1_differentiable_on :: "(real \ 'a::real_normed_vector) \ real set \ bool" (infix "C1'_differentiable'_on" 50) where "f C1_differentiable_on S \ (\D. (\x \ S. (f has_vector_derivative (D x)) (at x)) \ continuous_on S D)" lemma C1_differentiable_on_eq: "f C1_differentiable_on S \ (\x \ S. f differentiable at x) \ continuous_on S (\x. vector_derivative f (at x))" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs unfolding C1_differentiable_on_def by (metis (no_types, lifting) continuous_on_eq differentiableI_vector vector_derivative_at) next assume ?rhs then show ?lhs using C1_differentiable_on_def vector_derivative_works by fastforce qed lemma C1_differentiable_on_subset: "f C1_differentiable_on T \ S \ T \ f C1_differentiable_on S" unfolding C1_differentiable_on_def continuous_on_eq_continuous_within by (blast intro: continuous_within_subset) lemma C1_differentiable_compose: assumes fg: "f C1_differentiable_on S" "g C1_differentiable_on (f ` S)" and fin: "\x. finite (S \ f-`{x})" shows "(g \ f) C1_differentiable_on S" proof - have "\x. x \ S \ g \ f differentiable at x" by (meson C1_differentiable_on_eq assms differentiable_chain_at imageI) moreover have "continuous_on S (\x. vector_derivative (g \ f) (at x))" proof (rule continuous_on_eq [of _ "\x. vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x))"]) show "continuous_on S (\x. vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x)))" using fg apply (clarsimp simp add: C1_differentiable_on_eq) apply (rule Limits.continuous_on_scaleR, assumption) by (metis (mono_tags, lifting) continuous_at_imp_continuous_on continuous_on_compose continuous_on_cong differentiable_imp_continuous_within o_def) show "\x. x \ S \ vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x)) = vector_derivative (g \ f) (at x)" by (metis (mono_tags, hide_lams) C1_differentiable_on_eq fg imageI vector_derivative_chain_at) qed ultimately show ?thesis by (simp add: C1_differentiable_on_eq) qed lemma C1_diff_imp_diff: "f C1_differentiable_on S \ f differentiable_on S" by (simp add: C1_differentiable_on_eq differentiable_at_imp_differentiable_on) lemma C1_differentiable_on_ident [simp, derivative_intros]: "(\x. x) C1_differentiable_on S" by (auto simp: C1_differentiable_on_eq) lemma C1_differentiable_on_const [simp, derivative_intros]: "(\z. a) C1_differentiable_on S" by (auto simp: C1_differentiable_on_eq) lemma C1_differentiable_on_add [simp, derivative_intros]: "f C1_differentiable_on S \ g C1_differentiable_on S \ (\x. f x + g x) C1_differentiable_on S" unfolding C1_differentiable_on_eq by (auto intro: continuous_intros) lemma C1_differentiable_on_minus [simp, derivative_intros]: "f C1_differentiable_on S \ (\x. - f x) C1_differentiable_on S" unfolding C1_differentiable_on_eq by (auto intro: continuous_intros) lemma C1_differentiable_on_diff [simp, derivative_intros]: "f C1_differentiable_on S \ g C1_differentiable_on S \ (\x. f x - g x) C1_differentiable_on S" unfolding C1_differentiable_on_eq by (auto intro: continuous_intros) lemma C1_differentiable_on_mult [simp, derivative_intros]: fixes f g :: "real \ 'a :: real_normed_algebra" shows "f C1_differentiable_on S \ g C1_differentiable_on S \ (\x. f x * g x) C1_differentiable_on S" unfolding C1_differentiable_on_eq by (auto simp: continuous_on_add continuous_on_mult continuous_at_imp_continuous_on differentiable_imp_continuous_within) lemma C1_differentiable_on_scaleR [simp, derivative_intros]: "f C1_differentiable_on S \ g C1_differentiable_on S \ (\x. f x *\<^sub>R g x) C1_differentiable_on S" unfolding C1_differentiable_on_eq by (rule continuous_intros | simp add: continuous_at_imp_continuous_on differentiable_imp_continuous_within)+ definition\<^marker>\tag important\ piecewise_C1_differentiable_on (infixr "piecewise'_C1'_differentiable'_on" 50) where "f piecewise_C1_differentiable_on i \ continuous_on i f \ (\S. finite S \ (f C1_differentiable_on (i - S)))" lemma C1_differentiable_imp_piecewise: "f C1_differentiable_on S \ f piecewise_C1_differentiable_on S" by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq continuous_at_imp_continuous_on differentiable_imp_continuous_within) lemma piecewise_C1_imp_differentiable: "f piecewise_C1_differentiable_on i \ f piecewise_differentiable_on i" by (auto simp: piecewise_C1_differentiable_on_def piecewise_differentiable_on_def C1_differentiable_on_def differentiable_def has_vector_derivative_def intro: has_derivative_at_withinI) lemma piecewise_C1_differentiable_compose: assumes fg: "f piecewise_C1_differentiable_on S" "g piecewise_C1_differentiable_on (f ` S)" and fin: "\x. finite (S \ f-`{x})" shows "(g \ f) piecewise_C1_differentiable_on S" proof - have "continuous_on S (\x. g (f x))" by (metis continuous_on_compose2 fg order_refl piecewise_C1_differentiable_on_def) moreover have "\T. finite T \ g \ f C1_differentiable_on S - T" proof - obtain F where "finite F" and F: "f C1_differentiable_on S - F" and f: "f piecewise_C1_differentiable_on S" using fg by (auto simp: piecewise_C1_differentiable_on_def) obtain G where "finite G" and G: "g C1_differentiable_on f ` S - G" and g: "g piecewise_C1_differentiable_on f ` S" using fg by (auto simp: piecewise_C1_differentiable_on_def) show ?thesis proof (intro exI conjI) show "finite (F \ (\x\G. S \ f-`{x}))" using fin by (auto simp only: Int_Union \finite F\ \finite G\ finite_UN finite_imageI) show "g \ f C1_differentiable_on S - (F \ (\x\G. S \ f -` {x}))" apply (rule C1_differentiable_compose) apply (blast intro: C1_differentiable_on_subset [OF F]) apply (blast intro: C1_differentiable_on_subset [OF G]) by (simp add: C1_differentiable_on_subset G Diff_Int_distrib2 fin) qed qed ultimately show ?thesis by (simp add: piecewise_C1_differentiable_on_def) qed lemma piecewise_C1_differentiable_on_subset: "f piecewise_C1_differentiable_on S \ T \ S \ f piecewise_C1_differentiable_on T" by (auto simp: piecewise_C1_differentiable_on_def elim!: continuous_on_subset C1_differentiable_on_subset) lemma C1_differentiable_imp_continuous_on: "f C1_differentiable_on S \ continuous_on S f" unfolding C1_differentiable_on_eq continuous_on_eq_continuous_within using differentiable_at_withinI differentiable_imp_continuous_within by blast lemma C1_differentiable_on_empty [iff]: "f C1_differentiable_on {}" unfolding C1_differentiable_on_def by auto lemma piecewise_C1_differentiable_affine: fixes m::real assumes "f piecewise_C1_differentiable_on ((\x. m * x + c) ` S)" shows "(f \ (\x. m *\<^sub>R x + c)) piecewise_C1_differentiable_on S" proof (cases "m = 0") case True then show ?thesis unfolding o_def by (auto simp: piecewise_C1_differentiable_on_def) next case False have *: "\x. finite (S \ {y. m * y + c = x})" using False not_finite_existsD by fastforce show ?thesis apply (rule piecewise_C1_differentiable_compose [OF C1_differentiable_imp_piecewise]) apply (rule * assms derivative_intros | simp add: False vimage_def)+ done qed lemma piecewise_C1_differentiable_cases: fixes c::real assumes "f piecewise_C1_differentiable_on {a..c}" "g piecewise_C1_differentiable_on {c..b}" "a \ c" "c \ b" "f c = g c" shows "(\x. if x \ c then f x else g x) piecewise_C1_differentiable_on {a..b}" proof - obtain S T where st: "f C1_differentiable_on ({a..c} - S)" "g C1_differentiable_on ({c..b} - T)" "finite S" "finite T" using assms by (force simp: piecewise_C1_differentiable_on_def) then have f_diff: "f differentiable_on {a..x. if x \ c then f x else g x)" using continuous_on_cases [OF closed_real_atLeastAtMost [of a c], OF closed_real_atLeastAtMost [of c b], of f g "\x. x\c"] assms by (force simp: ivl_disj_un_two_touch) { fix x assume x: "x \ {a..b} - insert c (S \ T)" have "(\x. if x \ c then f x else g x) differentiable at x" (is "?diff_fg") proof (cases x c rule: le_cases) case le show ?diff_fg apply (rule differentiable_transform_within [where f=f and d = "dist x c"]) using x dist_real_def le st by (auto simp: C1_differentiable_on_eq) next case ge show ?diff_fg apply (rule differentiable_transform_within [where f=g and d = "dist x c"]) using dist_nz x dist_real_def ge st x by (auto simp: C1_differentiable_on_eq) qed } then have "(\x \ {a..b} - insert c (S \ T). (\x. if x \ c then f x else g x) differentiable at x)" by auto moreover { assume fcon: "continuous_on ({a<..x. vector_derivative f (at x))" and gcon: "continuous_on ({c<..x. vector_derivative g (at x))" have "open ({a<..x. vector_derivative (\x. if x \ c then f x else g x) (at x))" proof - have "((\x. if x \ c then f x else g x) has_vector_derivative vector_derivative f (at x)) (at x)" if "a < x" "x < c" "x \ S" for x proof - have f: "f differentiable at x" by (meson C1_differentiable_on_eq Diff_iff atLeastAtMost_iff less_eq_real_def st(1) that) show ?thesis using that apply (rule_tac f=f and d="dist x c" in has_vector_derivative_transform_within) apply (auto simp: dist_norm vector_derivative_works [symmetric] f) done qed then show ?thesis by (metis (no_types, lifting) continuous_on_eq [OF fcon] DiffE greaterThanLessThan_iff vector_derivative_at) qed moreover have "continuous_on ({c<..x. vector_derivative (\x. if x \ c then f x else g x) (at x))" proof - have "((\x. if x \ c then f x else g x) has_vector_derivative vector_derivative g (at x)) (at x)" if "c < x" "x < b" "x \ T" for x proof - have g: "g differentiable at x" by (metis C1_differentiable_on_eq DiffD1 DiffI atLeastAtMost_diff_ends greaterThanLessThan_iff st(2) that) show ?thesis using that apply (rule_tac f=g and d="dist x c" in has_vector_derivative_transform_within) apply (auto simp: dist_norm vector_derivative_works [symmetric] g) done qed then show ?thesis by (metis (no_types, lifting) continuous_on_eq [OF gcon] DiffE greaterThanLessThan_iff vector_derivative_at) qed ultimately have "continuous_on ({a<.. T)) (\x. vector_derivative (\x. if x \ c then f x else g x) (at x))" by (rule continuous_on_subset [OF continuous_on_open_Un], auto) } note * = this have "continuous_on ({a<.. T)) (\x. vector_derivative (\x. if x \ c then f x else g x) (at x))" using st by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset intro: *) ultimately have "\S. finite S \ ((\x. if x \ c then f x else g x) C1_differentiable_on {a..b} - S)" apply (rule_tac x="{a,b,c} \ S \ T" in exI) using st by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset) with cab show ?thesis by (simp add: piecewise_C1_differentiable_on_def) qed lemma piecewise_C1_differentiable_neg: "f piecewise_C1_differentiable_on S \ (\x. -(f x)) piecewise_C1_differentiable_on S" unfolding piecewise_C1_differentiable_on_def by (auto intro!: continuous_on_minus C1_differentiable_on_minus) lemma piecewise_C1_differentiable_add: assumes "f piecewise_C1_differentiable_on i" "g piecewise_C1_differentiable_on i" shows "(\x. f x + g x) piecewise_C1_differentiable_on i" proof - obtain S t where st: "finite S" "finite t" "f C1_differentiable_on (i-S)" "g C1_differentiable_on (i-t)" using assms by (auto simp: piecewise_C1_differentiable_on_def) then have "finite (S \ t) \ (\x. f x + g x) C1_differentiable_on i - (S \ t)" by (auto intro: C1_differentiable_on_add elim!: C1_differentiable_on_subset) moreover have "continuous_on i f" "continuous_on i g" using assms piecewise_C1_differentiable_on_def by auto ultimately show ?thesis by (auto simp: piecewise_C1_differentiable_on_def continuous_on_add) qed lemma piecewise_C1_differentiable_diff: "\f piecewise_C1_differentiable_on S; g piecewise_C1_differentiable_on S\ \ (\x. f x - g x) piecewise_C1_differentiable_on S" unfolding diff_conv_add_uminus by (metis piecewise_C1_differentiable_add piecewise_C1_differentiable_neg) end diff --git a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy --- a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy +++ b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy @@ -1,7664 +1,7591 @@ (* Author: John Harrison Author: Robert Himmelmann, TU Muenchen (Translation from HOL light) Huge cleanup by LCP *) section \Henstock-Kurzweil Gauge Integration in Many Dimensions\ theory Henstock_Kurzweil_Integration imports Lebesgue_Measure Tagged_Division begin lemma norm_diff2: "\y = y1 + y2; x = x1 + x2; e = e1 + e2; norm(y1 - x1) \ e1; norm(y2 - x2) \ e2\ \ norm(y-x) \ e" using norm_triangle_mono [of "y1 - x1" "e1" "y2 - x2" "e2"] by (simp add: add_diff_add) lemma setcomp_dot1: "{z. P (z \ (i,0))} = {(x,y). P(x \ i)}" by auto lemma setcomp_dot2: "{z. P (z \ (0,i))} = {(x,y). P(y \ i)}" by auto lemma Sigma_Int_Paircomp1: "(Sigma A B) \ {(x, y). P x} = Sigma (A \ {x. P x}) B" by blast lemma Sigma_Int_Paircomp2: "(Sigma A B) \ {(x, y). P y} = Sigma A (\z. B z \ {y. P y})" by blast (* END MOVE *) subsection \Content (length, area, volume...) of an interval\ abbreviation content :: "'a::euclidean_space set \ real" where "content s \ measure lborel s" lemma content_cbox_cases: "content (cbox a b) = (if \i\Basis. a\i \ b\i then prod (\i. b\i - a\i) Basis else 0)" by (simp add: measure_lborel_cbox_eq inner_diff) lemma content_cbox: "\i\Basis. a\i \ b\i \ content (cbox a b) = (\i\Basis. b\i - a\i)" unfolding content_cbox_cases by simp lemma content_cbox': "cbox a b \ {} \ content (cbox a b) = (\i\Basis. b\i - a\i)" by (simp add: box_ne_empty inner_diff) lemma content_cbox_if: "content (cbox a b) = (if cbox a b = {} then 0 else \i\Basis. b\i - a\i)" by (simp add: content_cbox') lemma content_cbox_cart: "cbox a b \ {} \ content(cbox a b) = prod (\i. b$i - a$i) UNIV" by (simp add: content_cbox_if Basis_vec_def cart_eq_inner_axis axis_eq_axis prod.UNION_disjoint) lemma content_cbox_if_cart: "content(cbox a b) = (if cbox a b = {} then 0 else prod (\i. b$i - a$i) UNIV)" by (simp add: content_cbox_cart) lemma content_division_of: assumes "K \ \" "\ division_of S" shows "content K = (\i \ Basis. interval_upperbound K \ i - interval_lowerbound K \ i)" proof - obtain a b where "K = cbox a b" using cbox_division_memE assms by metis then show ?thesis using assms by (force simp: division_of_def content_cbox') qed lemma content_real: "a \ b \ content {a..b} = b - a" by simp lemma abs_eq_content: "\y - x\ = (if x\y then content {x..y} else content {y..x})" by (auto simp: content_real) lemma content_singleton: "content {a} = 0" by simp lemma content_unit[iff]: "content (cbox 0 (One::'a::euclidean_space)) = 1" by simp lemma content_pos_le [iff]: "0 \ content X" by simp corollary\<^marker>\tag unimportant\ content_nonneg [simp]: "\ content (cbox a b) < 0" using not_le by blast lemma content_pos_lt: "\i\Basis. a\i < b\i \ 0 < content (cbox a b)" by (auto simp: less_imp_le inner_diff box_eq_empty intro!: prod_pos) lemma content_eq_0: "content (cbox a b) = 0 \ (\i\Basis. b\i \ a\i)" by (auto simp: content_cbox_cases not_le intro: less_imp_le antisym eq_refl) lemma content_eq_0_interior: "content (cbox a b) = 0 \ interior(cbox a b) = {}" unfolding content_eq_0 interior_cbox box_eq_empty by auto lemma content_pos_lt_eq: "0 < content (cbox a (b::'a::euclidean_space)) \ (\i\Basis. a\i < b\i)" by (auto simp add: content_cbox_cases less_le prod_nonneg) lemma content_empty [simp]: "content {} = 0" by simp lemma content_real_if [simp]: "content {a..b} = (if a \ b then b - a else 0)" by (simp add: content_real) lemma content_subset: "cbox a b \ cbox c d \ content (cbox a b) \ content (cbox c d)" unfolding measure_def by (intro enn2real_mono emeasure_mono) (auto simp: emeasure_lborel_cbox_eq) lemma content_lt_nz: "0 < content (cbox a b) \ content (cbox a b) \ 0" unfolding content_pos_lt_eq content_eq_0 unfolding not_ex not_le by fastforce lemma content_Pair: "content (cbox (a,c) (b,d)) = content (cbox a b) * content (cbox c d)" unfolding measure_lborel_cbox_eq Basis_prod_def apply (subst prod.union_disjoint) apply (auto simp: bex_Un ball_Un) apply (subst (1 2) prod.reindex_nontrivial) apply auto done lemma content_cbox_pair_eq0_D: "content (cbox (a,c) (b,d)) = 0 \ content (cbox a b) = 0 \ content (cbox c d) = 0" by (simp add: content_Pair) lemma content_cbox_plus: fixes x :: "'a::euclidean_space" shows "content(cbox x (x + h *\<^sub>R One)) = (if h \ 0 then h ^ DIM('a) else 0)" by (simp add: algebra_simps content_cbox_if box_eq_empty) lemma content_0_subset: "content(cbox a b) = 0 \ s \ cbox a b \ content s = 0" using emeasure_mono[of s "cbox a b" lborel] by (auto simp: measure_def enn2real_eq_0_iff emeasure_lborel_cbox_eq) lemma content_ball_pos: assumes "r > 0" shows "content (ball c r) > 0" proof - from rational_boxes[OF assms, of c] obtain a b where ab: "c \ box a b" "box a b \ ball c r" by auto from ab have "0 < content (box a b)" by (subst measure_lborel_box_eq) (auto intro!: prod_pos simp: algebra_simps box_def) have "emeasure lborel (box a b) \ emeasure lborel (ball c r)" using ab by (intro emeasure_mono) auto also have "emeasure lborel (box a b) = ennreal (content (box a b))" using emeasure_lborel_box_finite[of a b] by (intro emeasure_eq_ennreal_measure) auto also have "emeasure lborel (ball c r) = ennreal (content (ball c r))" using emeasure_lborel_ball_finite[of c r] by (intro emeasure_eq_ennreal_measure) auto finally show ?thesis using \content (box a b) > 0\ by simp qed lemma content_cball_pos: assumes "r > 0" shows "content (cball c r) > 0" proof - from rational_boxes[OF assms, of c] obtain a b where ab: "c \ box a b" "box a b \ ball c r" by auto from ab have "0 < content (box a b)" by (subst measure_lborel_box_eq) (auto intro!: prod_pos simp: algebra_simps box_def) have "emeasure lborel (box a b) \ emeasure lborel (ball c r)" using ab by (intro emeasure_mono) auto also have "\ \ emeasure lborel (cball c r)" by (intro emeasure_mono) auto also have "emeasure lborel (box a b) = ennreal (content (box a b))" using emeasure_lborel_box_finite[of a b] by (intro emeasure_eq_ennreal_measure) auto also have "emeasure lborel (cball c r) = ennreal (content (cball c r))" using emeasure_lborel_cball_finite[of c r] by (intro emeasure_eq_ennreal_measure) auto finally show ?thesis using \content (box a b) > 0\ by simp qed lemma content_split: fixes a :: "'a::euclidean_space" assumes "k \ Basis" shows "content (cbox a b) = content(cbox a b \ {x. x\k \ c}) + content(cbox a b \ {x. x\k \ c})" \ \Prove using measure theory\ proof (cases "\i\Basis. a \ i \ b \ i") case True have 1: "\X Y Z. (\i\Basis. Z i (if i = k then X else Y i)) = Z k X * (\i\Basis-{k}. Z i (Y i))" by (simp add: if_distrib prod.delta_remove assms) note simps = interval_split[OF assms] content_cbox_cases have 2: "(\i\Basis. b\i - a\i) = (\i\Basis-{k}. b\i - a\i) * (b\k - a\k)" by (metis (no_types, lifting) assms finite_Basis mult.commute prod.remove) have "\x. min (b \ k) c = max (a \ k) c \ x * (b\k - a\k) = x * (max (a \ k) c - a \ k) + x * (b \ k - max (a \ k) c)" by (auto simp add: field_simps) moreover have **: "(\i\Basis. ((\i\Basis. (if i = k then min (b \ k) c else b \ i) *\<^sub>R i) \ i - a \ i)) = (\i\Basis. (if i = k then min (b \ k) c else b \ i) - a \ i)" "(\i\Basis. b \ i - ((\i\Basis. (if i = k then max (a \ k) c else a \ i) *\<^sub>R i) \ i)) = (\i\Basis. b \ i - (if i = k then max (a \ k) c else a \ i))" by (auto intro!: prod.cong) have "\ a \ k \ c \ \ c \ b \ k \ False" unfolding not_le using True assms by auto ultimately show ?thesis using assms unfolding simps ** 1[of "\i x. b\i - x"] 1[of "\i x. x - a\i"] 2 by auto next case False then have "cbox a b = {}" unfolding box_eq_empty by (auto simp: not_le) then show ?thesis by (auto simp: not_le) qed lemma division_of_content_0: assumes "content (cbox a b) = 0" "d division_of (cbox a b)" "K \ d" shows "content K = 0" unfolding forall_in_division[OF assms(2)] by (meson assms content_0_subset division_of_def) lemma sum_content_null: assumes "content (cbox a b) = 0" and "p tagged_division_of (cbox a b)" shows "(\(x,K)\p. content K *\<^sub>R f x) = (0::'a::real_normed_vector)" proof (rule sum.neutral, rule) fix y assume y: "y \ p" obtain x K where xk: "y = (x, K)" using surj_pair[of y] by blast then obtain c d where k: "K = cbox c d" "K \ cbox a b" by (metis assms(2) tagged_division_ofD(3) tagged_division_ofD(4) y) have "(\(x',K'). content K' *\<^sub>R f x') y = content K *\<^sub>R f x" unfolding xk by auto also have "\ = 0" using assms(1) content_0_subset k(2) by auto finally show "(\(x, k). content k *\<^sub>R f x) y = 0" . qed global_interpretation sum_content: operative plus 0 content rewrites "comm_monoid_set.F plus 0 = sum" proof - interpret operative plus 0 content by standard (auto simp add: content_split [symmetric] content_eq_0_interior) show "operative plus 0 content" by standard show "comm_monoid_set.F plus 0 = sum" by (simp add: sum_def) qed lemma additive_content_division: "d division_of (cbox a b) \ sum content d = content (cbox a b)" by (fact sum_content.division) lemma additive_content_tagged_division: "d tagged_division_of (cbox a b) \ sum (\(x,l). content l) d = content (cbox a b)" by (fact sum_content.tagged_division) lemma subadditive_content_division: assumes "\ division_of S" "S \ cbox a b" shows "sum content \ \ content(cbox a b)" proof - have "\ division_of \\" "\\ \ cbox a b" using assms by auto then obtain \' where "\ \ \'" "\' division_of cbox a b" using partial_division_extend_interval by metis then have "sum content \ \ sum content \'" using sum_mono2 by blast also have "... \ content(cbox a b)" by (simp add: \\' division_of cbox a b\ additive_content_division less_eq_real_def) finally show ?thesis . qed lemma content_real_eq_0: "content {a..b::real} = 0 \ a \ b" by (metis atLeastatMost_empty_iff2 content_empty content_real diff_self eq_iff le_cases le_iff_diff_le_0) lemma property_empty_interval: "\a b. content (cbox a b) = 0 \ P (cbox a b) \ P {}" using content_empty unfolding empty_as_interval by auto lemma interval_bounds_nz_content [simp]: assumes "content (cbox a b) \ 0" shows "interval_upperbound (cbox a b) = b" and "interval_lowerbound (cbox a b) = a" by (metis assms content_empty interval_bounds')+ subsection \Gauge integral\ text \Case distinction to define it first on compact intervals first, then use a limit. This is only much later unified. In Fremlin: Measure Theory, Volume 4I this is generalized using residual sets.\ definition has_integral :: "('n::euclidean_space \ 'b::real_normed_vector) \ 'b \ 'n set \ bool" (infixr "has'_integral" 46) where "(f has_integral I) s \ (if \a b. s = cbox a b then ((\p. \(x,k)\p. content k *\<^sub>R f x) \ I) (division_filter s) else (\e>0. \B>0. \a b. ball 0 B \ cbox a b \ (\z. ((\p. \(x,k)\p. content k *\<^sub>R (if x \ s then f x else 0)) \ z) (division_filter (cbox a b)) \ norm (z - I) < e)))" lemma has_integral_cbox: "(f has_integral I) (cbox a b) \ ((\p. \(x,k)\p. content k *\<^sub>R f x) \ I) (division_filter (cbox a b))" by (auto simp add: has_integral_def) lemma has_integral: "(f has_integral y) (cbox a b) \ (\e>0. \\. gauge \ \ (\\. \ tagged_division_of (cbox a b) \ \ fine \ \ norm (sum (\(x,k). content(k) *\<^sub>R f x) \ - y) < e))" by (auto simp: dist_norm eventually_division_filter has_integral_def tendsto_iff) lemma has_integral_real: "(f has_integral y) {a..b::real} \ (\e>0. \\. gauge \ \ (\\. \ tagged_division_of {a..b} \ \ fine \ \ norm (sum (\(x,k). content(k) *\<^sub>R f x) \ - y) < e))" unfolding box_real[symmetric] by (rule has_integral) lemma has_integralD[dest]: assumes "(f has_integral y) (cbox a b)" and "e > 0" obtains \ where "gauge \" and "\\. \ tagged_division_of (cbox a b) \ \ fine \ \ norm ((\(x,k)\\. content k *\<^sub>R f x) - y) < e" using assms unfolding has_integral by auto lemma has_integral_alt: "(f has_integral y) i \ (if \a b. i = cbox a b then (f has_integral y) i else (\e>0. \B>0. \a b. ball 0 B \ cbox a b \ (\z. ((\x. if x \ i then f x else 0) has_integral z) (cbox a b) \ norm (z - y) < e)))" by (subst has_integral_def) (auto simp add: has_integral_cbox) lemma has_integral_altD: assumes "(f has_integral y) i" and "\ (\a b. i = cbox a b)" and "e>0" obtains B where "B > 0" and "\a b. ball 0 B \ cbox a b \ (\z. ((\x. if x \ i then f(x) else 0) has_integral z) (cbox a b) \ norm(z - y) < e)" using assms has_integral_alt[of f y i] by auto definition integrable_on (infixr "integrable'_on" 46) where "f integrable_on i \ (\y. (f has_integral y) i)" definition "integral i f = (SOME y. (f has_integral y) i \ \ f integrable_on i \ y=0)" lemma integrable_integral[intro]: "f integrable_on i \ (f has_integral (integral i f)) i" unfolding integrable_on_def integral_def by (metis (mono_tags, lifting) someI_ex) lemma not_integrable_integral: "\ f integrable_on i \ integral i f = 0" unfolding integrable_on_def integral_def by blast lemma has_integral_integrable[dest]: "(f has_integral i) s \ f integrable_on s" unfolding integrable_on_def by auto lemma has_integral_integral: "f integrable_on s \ (f has_integral (integral s f)) s" by auto subsection \Basic theorems about integrals\ lemma has_integral_eq_rhs: "(f has_integral j) S \ i = j \ (f has_integral i) S" by (rule forw_subst) lemma has_integral_unique_cbox: fixes f :: "'n::euclidean_space \ 'a::real_normed_vector" shows "(f has_integral k1) (cbox a b) \ (f has_integral k2) (cbox a b) \ k1 = k2" by (auto simp: has_integral_cbox intro: tendsto_unique[OF division_filter_not_empty]) lemma has_integral_unique: fixes f :: "'n::euclidean_space \ 'a::real_normed_vector" assumes "(f has_integral k1) i" "(f has_integral k2) i" shows "k1 = k2" proof (rule ccontr) let ?e = "norm (k1 - k2)/2" let ?F = "(\x. if x \ i then f x else 0)" assume "k1 \ k2" then have e: "?e > 0" by auto have nonbox: "\ (\a b. i = cbox a b)" using \k1 \ k2\ assms has_integral_unique_cbox by blast obtain B1 where B1: "0 < B1" "\a b. ball 0 B1 \ cbox a b \ \z. (?F has_integral z) (cbox a b) \ norm (z - k1) < norm (k1 - k2)/2" by (rule has_integral_altD[OF assms(1) nonbox,OF e]) blast obtain B2 where B2: "0 < B2" "\a b. ball 0 B2 \ cbox a b \ \z. (?F has_integral z) (cbox a b) \ norm (z - k2) < norm (k1 - k2)/2" by (rule has_integral_altD[OF assms(2) nonbox,OF e]) blast obtain a b :: 'n where ab: "ball 0 B1 \ cbox a b" "ball 0 B2 \ cbox a b" by (metis Un_subset_iff bounded_Un bounded_ball bounded_subset_cbox_symmetric) obtain w where w: "(?F has_integral w) (cbox a b)" "norm (w - k1) < norm (k1 - k2)/2" using B1(2)[OF ab(1)] by blast obtain z where z: "(?F has_integral z) (cbox a b)" "norm (z - k2) < norm (k1 - k2)/2" using B2(2)[OF ab(2)] by blast have "z = w" using has_integral_unique_cbox[OF w(1) z(1)] by auto then have "norm (k1 - k2) \ norm (z - k2) + norm (w - k1)" using norm_triangle_ineq4 [of "k1 - w" "k2 - z"] by (auto simp add: norm_minus_commute) also have "\ < norm (k1 - k2)/2 + norm (k1 - k2)/2" by (metis add_strict_mono z(2) w(2)) finally show False by auto qed lemma integral_unique [intro]: "(f has_integral y) k \ integral k f = y" unfolding integral_def by (rule some_equality) (auto intro: has_integral_unique) lemma has_integral_iff: "(f has_integral i) S \ (f integrable_on S \ integral S f = i)" by blast lemma eq_integralD: "integral k f = y \ (f has_integral y) k \ \ f integrable_on k \ y=0" unfolding integral_def integrable_on_def apply (erule subst) apply (rule someI_ex) by blast lemma has_integral_const [intro]: fixes a b :: "'a::euclidean_space" shows "((\x. c) has_integral (content (cbox a b) *\<^sub>R c)) (cbox a b)" using eventually_division_filter_tagged_division[of "cbox a b"] additive_content_tagged_division[of _ a b] by (auto simp: has_integral_cbox split_beta' scaleR_sum_left[symmetric] elim!: eventually_mono intro!: tendsto_cong[THEN iffD1, OF _ tendsto_const]) lemma has_integral_const_real [intro]: fixes a b :: real shows "((\x. c) has_integral (content {a..b} *\<^sub>R c)) {a..b}" by (metis box_real(2) has_integral_const) lemma has_integral_integrable_integral: "(f has_integral i) s \ f integrable_on s \ integral s f = i" by blast lemma integral_const [simp]: fixes a b :: "'a::euclidean_space" shows "integral (cbox a b) (\x. c) = content (cbox a b) *\<^sub>R c" by (rule integral_unique) (rule has_integral_const) lemma integral_const_real [simp]: fixes a b :: real shows "integral {a..b} (\x. c) = content {a..b} *\<^sub>R c" by (metis box_real(2) integral_const) lemma has_integral_is_0_cbox: fixes f :: "'n::euclidean_space \ 'a::real_normed_vector" assumes "\x. x \ cbox a b \ f x = 0" shows "(f has_integral 0) (cbox a b)" unfolding has_integral_cbox using eventually_division_filter_tagged_division[of "cbox a b"] assms by (subst tendsto_cong[where g="\_. 0"]) (auto elim!: eventually_mono intro!: sum.neutral simp: tag_in_interval) lemma has_integral_is_0: fixes f :: "'n::euclidean_space \ 'a::real_normed_vector" assumes "\x. x \ S \ f x = 0" shows "(f has_integral 0) S" proof (cases "(\a b. S = cbox a b)") case True with assms has_integral_is_0_cbox show ?thesis by blast next case False have *: "(\x. if x \ S then f x else 0) = (\x. 0)" by (auto simp add: assms) show ?thesis using has_integral_is_0_cbox False by (subst has_integral_alt) (force simp add: *) qed lemma has_integral_0[simp]: "((\x::'n::euclidean_space. 0) has_integral 0) S" by (rule has_integral_is_0) auto lemma has_integral_0_eq[simp]: "((\x. 0) has_integral i) S \ i = 0" using has_integral_unique[OF has_integral_0] by auto lemma has_integral_linear_cbox: fixes f :: "'n::euclidean_space \ 'a::real_normed_vector" assumes f: "(f has_integral y) (cbox a b)" and h: "bounded_linear h" shows "((h \ f) has_integral (h y)) (cbox a b)" proof - interpret bounded_linear h using h . show ?thesis unfolding has_integral_cbox using tendsto [OF f [unfolded has_integral_cbox]] by (simp add: sum scaleR split_beta') qed lemma has_integral_linear: fixes f :: "'n::euclidean_space \ 'a::real_normed_vector" assumes f: "(f has_integral y) S" and h: "bounded_linear h" shows "((h \ f) has_integral (h y)) S" proof (cases "(\a b. S = cbox a b)") case True with f h has_integral_linear_cbox show ?thesis by blast next case False interpret bounded_linear h using h . from pos_bounded obtain B where B: "0 < B" "\x. norm (h x) \ norm x * B" by blast let ?S = "\f x. if x \ S then f x else 0" show ?thesis proof (subst has_integral_alt, clarsimp simp: False) fix e :: real assume e: "e > 0" have *: "0 < e/B" using e B(1) by simp obtain M where M: "M > 0" "\a b. ball 0 M \ cbox a b \ \z. (?S f has_integral z) (cbox a b) \ norm (z - y) < e/B" using has_integral_altD[OF f False *] by blast show "\B>0. \a b. ball 0 B \ cbox a b \ (\z. (?S(h \ f) has_integral z) (cbox a b) \ norm (z - h y) < e)" proof (rule exI, intro allI conjI impI) show "M > 0" using M by metis next fix a b::'n assume sb: "ball 0 M \ cbox a b" obtain z where z: "(?S f has_integral z) (cbox a b)" "norm (z - y) < e/B" using M(2)[OF sb] by blast have *: "?S(h \ f) = h \ ?S f" using zero by auto show "\z. (?S(h \ f) has_integral z) (cbox a b) \ norm (z - h y) < e" - apply (rule_tac x="h z" in exI) - apply (simp add: * has_integral_linear_cbox[OF z(1) h]) - apply (metis B diff le_less_trans pos_less_divide_eq z(2)) - done + proof (intro exI conjI) + show "(?S(h \ f) has_integral h z) (cbox a b)" + by (simp add: * has_integral_linear_cbox[OF z(1) h]) + show "norm (h z - h y) < e" + by (metis B diff le_less_trans pos_less_divide_eq z(2)) + qed qed qed qed lemma has_integral_scaleR_left: "(f has_integral y) S \ ((\x. f x *\<^sub>R c) has_integral (y *\<^sub>R c)) S" using has_integral_linear[OF _ bounded_linear_scaleR_left] by (simp add: comp_def) lemma integrable_on_scaleR_left: assumes "f integrable_on A" shows "(\x. f x *\<^sub>R y) integrable_on A" using assms has_integral_scaleR_left unfolding integrable_on_def by blast lemma has_integral_mult_left: fixes c :: "_ :: real_normed_algebra" shows "(f has_integral y) S \ ((\x. f x * c) has_integral (y * c)) S" using has_integral_linear[OF _ bounded_linear_mult_left] by (simp add: comp_def) lemma has_integral_divide: fixes c :: "_ :: real_normed_div_algebra" shows "(f has_integral y) S \ ((\x. f x / c) has_integral (y / c)) S" unfolding divide_inverse by (simp add: has_integral_mult_left) text\The case analysis eliminates the condition \<^term>\f integrable_on S\ at the cost of the type class constraint \division_ring\\ corollary integral_mult_left [simp]: fixes c:: "'a::{real_normed_algebra,division_ring}" shows "integral S (\x. f x * c) = integral S f * c" proof (cases "f integrable_on S \ c = 0") case True then show ?thesis by (force intro: has_integral_mult_left) next case False then have "\ (\x. f x * c) integrable_on S" using has_integral_mult_left [of "(\x. f x * c)" _ S "inverse c"] by (auto simp add: mult.assoc) with False show ?thesis by (simp add: not_integrable_integral) qed corollary integral_mult_right [simp]: fixes c:: "'a::{real_normed_field}" shows "integral S (\x. c * f x) = c * integral S f" by (simp add: mult.commute [of c]) corollary integral_divide [simp]: fixes z :: "'a::real_normed_field" shows "integral S (\x. f x / z) = integral S (\x. f x) / z" using integral_mult_left [of S f "inverse z"] by (simp add: divide_inverse_commute) lemma has_integral_mult_right: fixes c :: "'a :: real_normed_algebra" shows "(f has_integral y) i \ ((\x. c * f x) has_integral (c * y)) i" using has_integral_linear[OF _ bounded_linear_mult_right] by (simp add: comp_def) lemma has_integral_cmul: "(f has_integral k) S \ ((\x. c *\<^sub>R f x) has_integral (c *\<^sub>R k)) S" unfolding o_def[symmetric] by (metis has_integral_linear bounded_linear_scaleR_right) lemma has_integral_cmult_real: fixes c :: real assumes "c \ 0 \ (f has_integral x) A" shows "((\x. c * f x) has_integral c * x) A" proof (cases "c = 0") case True then show ?thesis by simp next case False from has_integral_cmul[OF assms[OF this], of c] show ?thesis unfolding real_scaleR_def . qed lemma has_integral_neg: "(f has_integral k) S \ ((\x. -(f x)) has_integral -k) S" by (drule_tac c="-1" in has_integral_cmul) auto lemma has_integral_neg_iff: "((\x. - f x) has_integral k) S \ (f has_integral - k) S" using has_integral_neg[of f "- k"] has_integral_neg[of "\x. - f x" k] by auto lemma has_integral_add_cbox: fixes f :: "'n::euclidean_space \ 'a::real_normed_vector" assumes "(f has_integral k) (cbox a b)" "(g has_integral l) (cbox a b)" shows "((\x. f x + g x) has_integral (k + l)) (cbox a b)" using assms unfolding has_integral_cbox by (simp add: split_beta' scaleR_add_right sum.distrib[abs_def] tendsto_add) lemma has_integral_add: fixes f :: "'n::euclidean_space \ 'a::real_normed_vector" assumes f: "(f has_integral k) S" and g: "(g has_integral l) S" shows "((\x. f x + g x) has_integral (k + l)) S" proof (cases "\a b. S = cbox a b") case True with has_integral_add_cbox assms show ?thesis by blast next let ?S = "\f x. if x \ S then f x else 0" case False then show ?thesis proof (subst has_integral_alt, clarsimp, goal_cases) case (1 e) then have e2: "e/2 > 0" by auto obtain Bf where "0 < Bf" and Bf: "\a b. ball 0 Bf \ cbox a b \ \z. (?S f has_integral z) (cbox a b) \ norm (z - k) < e/2" using has_integral_altD[OF f False e2] by blast obtain Bg where "0 < Bg" and Bg: "\a b. ball 0 Bg \ (cbox a b) \ \z. (?S g has_integral z) (cbox a b) \ norm (z - l) < e/2" using has_integral_altD[OF g False e2] by blast show ?case proof (rule_tac x="max Bf Bg" in exI, clarsimp simp add: max.strict_coboundedI1 \0 < Bf\) fix a b assume "ball 0 (max Bf Bg) \ cbox a (b::'n)" then have fs: "ball 0 Bf \ cbox a (b::'n)" and gs: "ball 0 Bg \ cbox a (b::'n)" by auto obtain w where w: "(?S f has_integral w) (cbox a b)" "norm (w - k) < e/2" using Bf[OF fs] by blast obtain z where z: "(?S g has_integral z) (cbox a b)" "norm (z - l) < e/2" using Bg[OF gs] by blast have *: "\x. (if x \ S then f x + g x else 0) = (?S f x) + (?S g x)" by auto show "\z. (?S(\x. f x + g x) has_integral z) (cbox a b) \ norm (z - (k + l)) < e" - apply (rule_tac x="w + z" in exI) - apply (simp add: has_integral_add_cbox[OF w(1) z(1), unfolded *[symmetric]]) - using norm_triangle_ineq[of "w - k" "z - l"] w(2) z(2) - apply (auto simp add: field_simps) - done + proof (intro exI conjI) + show "(?S(\x. f x + g x) has_integral (w + z)) (cbox a b)" + by (simp add: has_integral_add_cbox[OF w(1) z(1), unfolded *[symmetric]]) + show "norm (w + z - (k + l)) < e" + by (metis dist_norm dist_triangle_add_half w(2) z(2)) + qed qed qed qed lemma has_integral_diff: "(f has_integral k) S \ (g has_integral l) S \ ((\x. f x - g x) has_integral (k - l)) S" using has_integral_add[OF _ has_integral_neg, of f k S g l] by (auto simp: algebra_simps) lemma integral_0 [simp]: "integral S (\x::'n::euclidean_space. 0::'m::real_normed_vector) = 0" by (rule integral_unique has_integral_0)+ lemma integral_add: "f integrable_on S \ g integrable_on S \ integral S (\x. f x + g x) = integral S f + integral S g" by (rule integral_unique) (metis integrable_integral has_integral_add) lemma integral_cmul [simp]: "integral S (\x. c *\<^sub>R f x) = c *\<^sub>R integral S f" proof (cases "f integrable_on S \ c = 0") case True with has_integral_cmul integrable_integral show ?thesis by fastforce next case False then have "\ (\x. c *\<^sub>R f x) integrable_on S" using has_integral_cmul [of "(\x. c *\<^sub>R f x)" _ S "inverse c"] by auto with False show ?thesis by (simp add: not_integrable_integral) qed lemma integral_mult: fixes K::real shows "f integrable_on X \ K * integral X f = integral X (\x. K * f x)" unfolding real_scaleR_def[symmetric] integral_cmul .. lemma integral_neg [simp]: "integral S (\x. - f x) = - integral S f" proof (cases "f integrable_on S") case True then show ?thesis by (simp add: has_integral_neg integrable_integral integral_unique) next case False then have "\ (\x. - f x) integrable_on S" using has_integral_neg [of "(\x. - f x)" _ S ] by auto with False show ?thesis by (simp add: not_integrable_integral) qed lemma integral_diff: "f integrable_on S \ g integrable_on S \ integral S (\x. f x - g x) = integral S f - integral S g" by (rule integral_unique) (metis integrable_integral has_integral_diff) lemma integrable_0: "(\x. 0) integrable_on S" unfolding integrable_on_def using has_integral_0 by auto lemma integrable_add: "f integrable_on S \ g integrable_on S \ (\x. f x + g x) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_add) lemma integrable_cmul: "f integrable_on S \ (\x. c *\<^sub>R f(x)) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_cmul) lemma integrable_on_scaleR_iff [simp]: fixes c :: real assumes "c \ 0" shows "(\x. c *\<^sub>R f x) integrable_on S \ f integrable_on S" using integrable_cmul[of "\x. c *\<^sub>R f x" S "1 / c"] integrable_cmul[of f S c] \c \ 0\ by auto lemma integrable_on_cmult_iff [simp]: fixes c :: real assumes "c \ 0" shows "(\x. c * f x) integrable_on S \ f integrable_on S" using integrable_on_scaleR_iff [of c f] assms by simp lemma integrable_on_cmult_left: assumes "f integrable_on S" shows "(\x. of_real c * f x) integrable_on S" using integrable_cmul[of f S "of_real c"] assms by (simp add: scaleR_conv_of_real) lemma integrable_neg: "f integrable_on S \ (\x. -f(x)) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_neg) lemma integrable_neg_iff: "(\x. -f(x)) integrable_on S \ f integrable_on S" using integrable_neg by fastforce lemma integrable_diff: "f integrable_on S \ g integrable_on S \ (\x. f x - g x) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_diff) lemma integrable_linear: "f integrable_on S \ bounded_linear h \ (h \ f) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_linear) lemma integral_linear: "f integrable_on S \ bounded_linear h \ integral S (h \ f) = h (integral S f)" - apply (rule has_integral_unique [where i=S and f = "h \ f"]) - apply (simp_all add: integrable_integral integrable_linear has_integral_linear ) - done + by (meson has_integral_iff has_integral_linear) lemma integrable_on_cnj_iff: "(\x. cnj (f x)) integrable_on A \ f integrable_on A" using integrable_linear[OF _ bounded_linear_cnj, of f A] integrable_linear[OF _ bounded_linear_cnj, of "cnj \ f" A] by (auto simp: o_def) lemma integral_cnj: "cnj (integral A f) = integral A (\x. cnj (f x))" by (cases "f integrable_on A") (simp_all add: integral_linear[OF _ bounded_linear_cnj, symmetric] o_def integrable_on_cnj_iff not_integrable_integral) lemma integral_component_eq[simp]: fixes f :: "'n::euclidean_space \ 'm::euclidean_space" assumes "f integrable_on S" shows "integral S (\x. f x \ k) = integral S f \ k" unfolding integral_linear[OF assms(1) bounded_linear_inner_left,unfolded o_def] .. lemma has_integral_sum: assumes "finite T" and "\a. a \ T \ ((f a) has_integral (i a)) S" shows "((\x. sum (\a. f a x) T) has_integral (sum i T)) S" using assms(1) subset_refl[of T] proof (induct rule: finite_subset_induct) case empty then show ?case by auto next case (insert x F) with assms show ?case by (simp add: has_integral_add) qed lemma integral_sum: "\finite I; \a. a \ I \ f a integrable_on S\ \ integral S (\x. \a\I. f a x) = (\a\I. integral S (f a))" by (simp add: has_integral_sum integrable_integral integral_unique) lemma integrable_sum: "\finite I; \a. a \ I \ f a integrable_on S\ \ (\x. \a\I. f a x) integrable_on S" unfolding integrable_on_def using has_integral_sum[of I] by metis lemma has_integral_eq: assumes "\x. x \ s \ f x = g x" and "(f has_integral k) s" shows "(g has_integral k) s" using has_integral_diff[OF assms(2), of "\x. f x - g x" 0] using has_integral_is_0[of s "\x. f x - g x"] using assms(1) by auto lemma integrable_eq: "\f integrable_on s; \x. x \ s \ f x = g x\ \ g integrable_on s" unfolding integrable_on_def using has_integral_eq[of s f g] has_integral_eq by blast lemma has_integral_cong: assumes "\x. x \ s \ f x = g x" shows "(f has_integral i) s = (g has_integral i) s" using has_integral_eq[of s f g] has_integral_eq[of s g f] assms by auto lemma integral_cong: assumes "\x. x \ s \ f x = g x" shows "integral s f = integral s g" unfolding integral_def by (metis (full_types, hide_lams) assms has_integral_cong integrable_eq) lemma integrable_on_cmult_left_iff [simp]: assumes "c \ 0" shows "(\x. of_real c * f x) integrable_on s \ f integrable_on s" (is "?lhs = ?rhs") proof assume ?lhs then have "(\x. of_real (1 / c) * (of_real c * f x)) integrable_on s" using integrable_cmul[of "\x. of_real c * f x" s "1 / of_real c"] by (simp add: scaleR_conv_of_real) then have "(\x. (of_real (1 / c) * of_real c * f x)) integrable_on s" by (simp add: algebra_simps) with \c \ 0\ show ?rhs by (metis (no_types, lifting) integrable_eq mult.left_neutral nonzero_divide_eq_eq of_real_1 of_real_mult) qed (blast intro: integrable_on_cmult_left) lemma integrable_on_cmult_right: fixes f :: "_ \ 'b :: {comm_ring,real_algebra_1,real_normed_vector}" assumes "f integrable_on s" shows "(\x. f x * of_real c) integrable_on s" using integrable_on_cmult_left [OF assms] by (simp add: mult.commute) lemma integrable_on_cmult_right_iff [simp]: fixes f :: "_ \ 'b :: {comm_ring,real_algebra_1,real_normed_vector}" assumes "c \ 0" shows "(\x. f x * of_real c) integrable_on s \ f integrable_on s" using integrable_on_cmult_left_iff [OF assms] by (simp add: mult.commute) lemma integrable_on_cdivide: fixes f :: "_ \ 'b :: real_normed_field" assumes "f integrable_on s" shows "(\x. f x / of_real c) integrable_on s" by (simp add: integrable_on_cmult_right divide_inverse assms flip: of_real_inverse) lemma integrable_on_cdivide_iff [simp]: fixes f :: "_ \ 'b :: real_normed_field" assumes "c \ 0" shows "(\x. f x / of_real c) integrable_on s \ f integrable_on s" by (simp add: divide_inverse assms flip: of_real_inverse) lemma has_integral_null [intro]: "content(cbox a b) = 0 \ (f has_integral 0) (cbox a b)" unfolding has_integral_cbox using eventually_division_filter_tagged_division[of "cbox a b"] by (subst tendsto_cong[where g="\_. 0"]) (auto elim: eventually_mono intro: sum_content_null) lemma has_integral_null_real [intro]: "content {a..b::real} = 0 \ (f has_integral 0) {a..b}" by (metis box_real(2) has_integral_null) lemma has_integral_null_eq[simp]: "content (cbox a b) = 0 \ (f has_integral i) (cbox a b) \ i = 0" by (auto simp add: has_integral_null dest!: integral_unique) lemma integral_null [simp]: "content (cbox a b) = 0 \ integral (cbox a b) f = 0" by (metis has_integral_null integral_unique) lemma integrable_on_null [intro]: "content (cbox a b) = 0 \ f integrable_on (cbox a b)" by (simp add: has_integral_integrable) lemma has_integral_empty[intro]: "(f has_integral 0) {}" by (meson ex_in_conv has_integral_is_0) lemma has_integral_empty_eq[simp]: "(f has_integral i) {} \ i = 0" by (auto simp add: has_integral_empty has_integral_unique) lemma integrable_on_empty[intro]: "f integrable_on {}" unfolding integrable_on_def by auto lemma integral_empty[simp]: "integral {} f = 0" by (rule integral_unique) (rule has_integral_empty) lemma has_integral_refl[intro]: fixes a :: "'a::euclidean_space" shows "(f has_integral 0) (cbox a a)" and "(f has_integral 0) {a}" proof - show "(f has_integral 0) (cbox a a)" by (rule has_integral_null) simp then show "(f has_integral 0) {a}" by simp qed lemma integrable_on_refl[intro]: "f integrable_on cbox a a" unfolding integrable_on_def by auto lemma integral_refl [simp]: "integral (cbox a a) f = 0" by (rule integral_unique) auto lemma integral_singleton [simp]: "integral {a} f = 0" by auto lemma integral_blinfun_apply: assumes "f integrable_on s" shows "integral s (\x. blinfun_apply h (f x)) = blinfun_apply h (integral s f)" by (subst integral_linear[symmetric, OF assms blinfun.bounded_linear_right]) (simp add: o_def) lemma blinfun_apply_integral: assumes "f integrable_on s" shows "blinfun_apply (integral s f) x = integral s (\y. blinfun_apply (f y) x)" by (metis (no_types, lifting) assms blinfun.prod_left.rep_eq integral_blinfun_apply integral_cong) lemma has_integral_componentwise_iff: fixes f :: "'a :: euclidean_space \ 'b :: euclidean_space" shows "(f has_integral y) A \ (\b\Basis. ((\x. f x \ b) has_integral (y \ b)) A)" proof safe fix b :: 'b assume "(f has_integral y) A" from has_integral_linear[OF this(1) bounded_linear_inner_left, of b] show "((\x. f x \ b) has_integral (y \ b)) A" by (simp add: o_def) next assume "(\b\Basis. ((\x. f x \ b) has_integral (y \ b)) A)" hence "\b\Basis. (((\x. x *\<^sub>R b) \ (\x. f x \ b)) has_integral ((y \ b) *\<^sub>R b)) A" by (intro ballI has_integral_linear) (simp_all add: bounded_linear_scaleR_left) hence "((\x. \b\Basis. (f x \ b) *\<^sub>R b) has_integral (\b\Basis. (y \ b) *\<^sub>R b)) A" by (intro has_integral_sum) (simp_all add: o_def) thus "(f has_integral y) A" by (simp add: euclidean_representation) qed lemma has_integral_componentwise: fixes f :: "'a :: euclidean_space \ 'b :: euclidean_space" shows "(\b. b \ Basis \ ((\x. f x \ b) has_integral (y \ b)) A) \ (f has_integral y) A" by (subst has_integral_componentwise_iff) blast lemma integrable_componentwise_iff: fixes f :: "'a :: euclidean_space \ 'b :: euclidean_space" shows "f integrable_on A \ (\b\Basis. (\x. f x \ b) integrable_on A)" proof assume "f integrable_on A" then obtain y where "(f has_integral y) A" by (auto simp: integrable_on_def) hence "(\b\Basis. ((\x. f x \ b) has_integral (y \ b)) A)" by (subst (asm) has_integral_componentwise_iff) thus "(\b\Basis. (\x. f x \ b) integrable_on A)" by (auto simp: integrable_on_def) next assume "(\b\Basis. (\x. f x \ b) integrable_on A)" then obtain y where "\b\Basis. ((\x. f x \ b) has_integral y b) A" unfolding integrable_on_def by (subst (asm) bchoice_iff) blast hence "\b\Basis. (((\x. x *\<^sub>R b) \ (\x. f x \ b)) has_integral (y b *\<^sub>R b)) A" by (intro ballI has_integral_linear) (simp_all add: bounded_linear_scaleR_left) hence "((\x. \b\Basis. (f x \ b) *\<^sub>R b) has_integral (\b\Basis. y b *\<^sub>R b)) A" by (intro has_integral_sum) (simp_all add: o_def) thus "f integrable_on A" by (auto simp: integrable_on_def o_def euclidean_representation) qed lemma integrable_componentwise: fixes f :: "'a :: euclidean_space \ 'b :: euclidean_space" shows "(\b. b \ Basis \ (\x. f x \ b) integrable_on A) \ f integrable_on A" by (subst integrable_componentwise_iff) blast lemma integral_componentwise: fixes f :: "'a :: euclidean_space \ 'b :: euclidean_space" assumes "f integrable_on A" shows "integral A f = (\b\Basis. integral A (\x. (f x \ b) *\<^sub>R b))" proof - from assms have integrable: "\b\Basis. (\x. x *\<^sub>R b) \ (\x. (f x \ b)) integrable_on A" by (subst (asm) integrable_componentwise_iff, intro integrable_linear ballI) (simp_all add: bounded_linear_scaleR_left) have "integral A f = integral A (\x. \b\Basis. (f x \ b) *\<^sub>R b)" by (simp add: euclidean_representation) also from integrable have "\ = (\a\Basis. integral A (\x. (f x \ a) *\<^sub>R a))" by (subst integral_sum) (simp_all add: o_def) finally show ?thesis . qed lemma integrable_component: "f integrable_on A \ (\x. f x \ (y :: 'b :: euclidean_space)) integrable_on A" by (drule integrable_linear[OF _ bounded_linear_inner_left[of y]]) (simp add: o_def) subsection \Cauchy-type criterion for integrability\ proposition integrable_Cauchy: fixes f :: "'n::euclidean_space \ 'a::{real_normed_vector,complete_space}" shows "f integrable_on cbox a b \ (\e>0. \\. gauge \ \ (\\1 \2. \1 tagged_division_of (cbox a b) \ \ fine \1 \ \2 tagged_division_of (cbox a b) \ \ fine \2 \ norm ((\(x,K)\\1. content K *\<^sub>R f x) - (\(x,K)\\2. content K *\<^sub>R f x)) < e))" (is "?l = (\e>0. \\. ?P e \)") proof (intro iffI allI impI) assume ?l then obtain y where y: "\e. e > 0 \ \\. gauge \ \ (\\. \ tagged_division_of cbox a b \ \ fine \ \ norm ((\(x,K) \ \. content K *\<^sub>R f x) - y) < e)" by (auto simp: integrable_on_def has_integral) show "\\. ?P e \" if "e > 0" for e proof - have "e/2 > 0" using that by auto with y obtain \ where "gauge \" and \: "\\. \ tagged_division_of cbox a b \ \ fine \ \ norm ((\(x,K)\\. content K *\<^sub>R f x) - y) < e/2" by meson show ?thesis apply (rule_tac x=\ in exI, clarsimp simp: \gauge \\) by (blast intro!: \ dist_triangle_half_l[where y=y,unfolded dist_norm]) qed next assume "\e>0. \\. ?P e \" then have "\n::nat. \\. ?P (1 / (n + 1)) \" by auto then obtain \ :: "nat \ 'n \ 'n set" where \: "\m. gauge (\ m)" "\m \1 \2. \\1 tagged_division_of cbox a b; \ m fine \1; \2 tagged_division_of cbox a b; \ m fine \2\ \ norm ((\(x,K) \ \1. content K *\<^sub>R f x) - (\(x,K) \ \2. content K *\<^sub>R f x)) < 1 / (m + 1)" by metis - have "\n. gauge (\x. \{\ i x |i. i \ {0..n}})" - apply (rule gauge_Inter) - using \ by auto + have "gauge (\x. \{\ i x |i. i \ {0..n}})" for n + using \ by (intro gauge_Inter) auto then have "\n. \p. p tagged_division_of (cbox a b) \ (\x. \{\ i x |i. i \ {0..n}}) fine p" by (meson fine_division_exists) then obtain p where p: "\z. p z tagged_division_of cbox a b" "\z. (\x. \{\ i x |i. i \ {0..z}}) fine p z" by meson have dp: "\i n. i\n \ \ i fine p n" using p unfolding fine_Inter using atLeastAtMost_iff by blast have "Cauchy (\n. sum (\(x,K). content K *\<^sub>R (f x)) (p n))" proof (rule CauchyI) fix e::real assume "0 < e" then obtain N where "N \ 0" and N: "inverse (real N) < e" using real_arch_inverse[of e] by blast show "\M. \m\M. \n\M. norm ((\(x,K) \ p m. content K *\<^sub>R f x) - (\(x,K) \ p n. content K *\<^sub>R f x)) < e" proof (intro exI allI impI) fix m n assume mn: "N \ m" "N \ n" have "norm ((\(x,K) \ p m. content K *\<^sub>R f x) - (\(x,K) \ p n. content K *\<^sub>R f x)) < 1 / (real N + 1)" by (simp add: p(1) dp mn \) also have "... < e" using N \N \ 0\ \0 < e\ by (auto simp: field_simps) finally show "norm ((\(x,K) \ p m. content K *\<^sub>R f x) - (\(x,K) \ p n. content K *\<^sub>R f x)) < e" . qed qed then obtain y where y: "\no. \n\no. norm ((\(x,K) \ p n. content K *\<^sub>R f x) - y) < r" if "r > 0" for r by (auto simp: convergent_eq_Cauchy[symmetric] dest: LIMSEQ_D) show ?l unfolding integrable_on_def has_integral proof (rule_tac x=y in exI, clarify) fix e :: real assume "e>0" then have e2: "e/2 > 0" by auto then obtain N1::nat where N1: "N1 \ 0" "inverse (real N1) < e/2" using real_arch_inverse by blast obtain N2::nat where N2: "\n. n \ N2 \ norm ((\(x,K) \ p n. content K *\<^sub>R f x) - y) < e/2" using y[OF e2] by metis show "\\. gauge \ \ (\\. \ tagged_division_of (cbox a b) \ \ fine \ \ norm ((\(x,K) \ \. content K *\<^sub>R f x) - y) < e)" proof (intro exI conjI allI impI) show "gauge (\ (N1+N2))" using \ by auto show "norm ((\(x,K) \ q. content K *\<^sub>R f x) - y) < e" if "q tagged_division_of cbox a b \ \ (N1+N2) fine q" for q proof (rule norm_triangle_half_r) have "norm ((\(x,K) \ p (N1+N2). content K *\<^sub>R f x) - (\(x,K) \ q. content K *\<^sub>R f x)) < 1 / (real (N1+N2) + 1)" by (rule \; simp add: dp p that) also have "... < e/2" using N1 \0 < e\ by (auto simp: field_simps intro: less_le_trans) finally show "norm ((\(x,K) \ p (N1+N2). content K *\<^sub>R f x) - (\(x,K) \ q. content K *\<^sub>R f x)) < e/2" . show "norm ((\(x,K) \ p (N1+N2). content K *\<^sub>R f x) - y) < e/2" using N2 le_add_same_cancel2 by blast qed qed qed qed subsection \Additivity of integral on abutting intervals\ lemma tagged_division_split_left_inj_content: assumes \: "\ tagged_division_of S" and "(x1, K1) \ \" "(x2, K2) \ \" "K1 \ K2" "K1 \ {x. x\k \ c} = K2 \ {x. x\k \ c}" "k \ Basis" shows "content (K1 \ {x. x\k \ c}) = 0" proof - from tagged_division_ofD(4)[OF \ \(x1, K1) \ \\] obtain a b where K1: "K1 = cbox a b" by auto then have "interior (K1 \ {x. x \ k \ c}) = {}" by (metis tagged_division_split_left_inj assms) then show ?thesis unfolding K1 interval_split[OF \k \ Basis\] by (auto simp: content_eq_0_interior) qed lemma tagged_division_split_right_inj_content: assumes \: "\ tagged_division_of S" and "(x1, K1) \ \" "(x2, K2) \ \" "K1 \ K2" "K1 \ {x. x\k \ c} = K2 \ {x. x\k \ c}" "k \ Basis" shows "content (K1 \ {x. x\k \ c}) = 0" proof - from tagged_division_ofD(4)[OF \ \(x1, K1) \ \\] obtain a b where K1: "K1 = cbox a b" by auto then have "interior (K1 \ {x. c \ x \ k}) = {}" by (metis tagged_division_split_right_inj assms) then show ?thesis unfolding K1 interval_split[OF \k \ Basis\] by (auto simp: content_eq_0_interior) qed proposition has_integral_split: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes fi: "(f has_integral i) (cbox a b \ {x. x\k \ c})" and fj: "(f has_integral j) (cbox a b \ {x. x\k \ c})" and k: "k \ Basis" shows "(f has_integral (i + j)) (cbox a b)" unfolding has_integral proof clarify fix e::real assume "0 < e" then have e: "e/2 > 0" by auto obtain \1 where \1: "gauge \1" and \1norm: "\\. \\ tagged_division_of cbox a b \ {x. x \ k \ c}; \1 fine \\ \ norm ((\(x,K) \ \. content K *\<^sub>R f x) - i) < e/2" apply (rule has_integralD[OF fi[unfolded interval_split[OF k]] e]) apply (simp add: interval_split[symmetric] k) done obtain \2 where \2: "gauge \2" and \2norm: "\\. \\ tagged_division_of cbox a b \ {x. c \ x \ k}; \2 fine \\ \ norm ((\(x, k) \ \. content k *\<^sub>R f x) - j) < e/2" apply (rule has_integralD[OF fj[unfolded interval_split[OF k]] e]) apply (simp add: interval_split[symmetric] k) done let ?\ = "\x. if x\k = c then (\1 x \ \2 x) else ball x \x\k - c\ \ \1 x \ \2 x" have "gauge ?\" using \1 \2 unfolding gauge_def by auto then show "\\. gauge \ \ (\\. \ tagged_division_of cbox a b \ \ fine \ \ norm ((\(x, k)\\. content k *\<^sub>R f x) - (i + j)) < e)" proof (rule_tac x="?\" in exI, safe) fix p assume p: "p tagged_division_of (cbox a b)" and "?\ fine p" have ab_eqp: "cbox a b = \{K. \x. (x, K) \ p}" using p by blast have xk_le_c: "x\k \ c" if as: "(x,K) \ p" and K: "K \ {x. x\k \ c} \ {}" for x K proof (rule ccontr) assume **: "\ x \ k \ c" then have "K \ ball x \x \ k - c\" using \?\ fine p\ as by (fastforce simp: not_le algebra_simps) with K obtain y where y: "y \ ball x \x \ k - c\" "y\k \ c" by blast then have "\x \ k - y \ k\ < \x \ k - c\" using Basis_le_norm[OF k, of "x - y"] by (auto simp add: dist_norm inner_diff_left intro: le_less_trans) with y show False using ** by (auto simp add: field_simps) qed have xk_ge_c: "x\k \ c" if as: "(x,K) \ p" and K: "K \ {x. x\k \ c} \ {}" for x K proof (rule ccontr) assume **: "\ x \ k \ c" then have "K \ ball x \x \ k - c\" using \?\ fine p\ as by (fastforce simp: not_le algebra_simps) with K obtain y where y: "y \ ball x \x \ k - c\" "y\k \ c" by blast then have "\x \ k - y \ k\ < \x \ k - c\" using Basis_le_norm[OF k, of "x - y"] by (auto simp add: dist_norm inner_diff_left intro: le_less_trans) with y show False using ** by (auto simp add: field_simps) qed have fin_finite: "finite {(x,f K) | x K. (x,K) \ s \ P x K}" if "finite s" for s and f :: "'a set \ 'a set" and P :: "'a \ 'a set \ bool" proof - from that have "finite ((\(x,K). (x, f K)) ` s)" by auto then show ?thesis by (rule rev_finite_subset) auto qed { fix \ :: "'a set \ 'a set" fix i :: "'a \ 'a set" assume "i \ (\(x, k). (x, \ k)) ` p - {(x, \ k) |x k. (x, k) \ p \ \ k \ {}}" then obtain x K where xk: "i = (x, \ K)" "(x,K) \ p" "(x, \ K) \ {(x, \ K) |x K. (x,K) \ p \ \ K \ {}}" by auto have "content (\ K) = 0" using xk using content_empty by auto then have "(\(x,K). content K *\<^sub>R f x) i = 0" unfolding xk split_conv by auto } note [simp] = this have "finite p" using p by blast let ?M1 = "{(x, K \ {x. x\k \ c}) |x K. (x,K) \ p \ K \ {x. x\k \ c} \ {}}" have \1_fine: "\1 fine ?M1" using \?\ fine p\ by (fastforce simp: fine_def split: if_split_asm) have "norm ((\(x, k)\?M1. content k *\<^sub>R f x) - i) < e/2" proof (rule \1norm [OF tagged_division_ofI \1_fine]) show "finite ?M1" by (rule fin_finite) (use p in blast) show "\{k. \x. (x, k) \ ?M1} = cbox a b \ {x. x\k \ c}" by (auto simp: ab_eqp) fix x L assume xL: "(x, L) \ ?M1" then obtain x' L' where xL': "x = x'" "L = L' \ {x. x \ k \ c}" "(x', L') \ p" "L' \ {x. x \ k \ c} \ {}" by blast then obtain a' b' where ab': "L' = cbox a' b'" using p by blast show "x \ L" "L \ cbox a b \ {x. x \ k \ c}" using p xk_le_c xL' by auto show "\a b. L = cbox a b" using p xL' ab' by (auto simp add: interval_split[OF k,where c=c]) fix y R assume yR: "(y, R) \ ?M1" then obtain y' R' where yR': "y = y'" "R = R' \ {x. x \ k \ c}" "(y', R') \ p" "R' \ {x. x \ k \ c} \ {}" by blast assume as: "(x, L) \ (y, R)" show "interior L \ interior R = {}" proof (cases "L' = R' \ x' = y'") case False have "interior R' = {}" by (metis (no_types) False Pair_inject inf.idem tagged_division_ofD(5) [OF p] xL'(3) yR'(3)) then show ?thesis using yR' by simp next case True then have "L' \ R'" using as unfolding xL' yR' by auto have "interior L' \ interior R' = {}" by (metis (no_types) Pair_inject \L' \ R'\ p tagged_division_ofD(5) xL'(3) yR'(3)) then show ?thesis using xL'(2) yR'(2) by auto qed qed moreover let ?M2 = "{(x,K \ {x. x\k \ c}) |x K. (x,K) \ p \ K \ {x. x\k \ c} \ {}}" have \2_fine: "\2 fine ?M2" using \?\ fine p\ by (fastforce simp: fine_def split: if_split_asm) have "norm ((\(x, k)\?M2. content k *\<^sub>R f x) - j) < e/2" proof (rule \2norm [OF tagged_division_ofI \2_fine]) show "finite ?M2" by (rule fin_finite) (use p in blast) show "\{k. \x. (x, k) \ ?M2} = cbox a b \ {x. x\k \ c}" by (auto simp: ab_eqp) fix x L assume xL: "(x, L) \ ?M2" then obtain x' L' where xL': "x = x'" "L = L' \ {x. x \ k \ c}" "(x', L') \ p" "L' \ {x. x \ k \ c} \ {}" by blast then obtain a' b' where ab': "L' = cbox a' b'" using p by blast show "x \ L" "L \ cbox a b \ {x. x \ k \ c}" using p xk_ge_c xL' by auto show "\a b. L = cbox a b" using p xL' ab' by (auto simp add: interval_split[OF k,where c=c]) fix y R assume yR: "(y, R) \ ?M2" then obtain y' R' where yR': "y = y'" "R = R' \ {x. x \ k \ c}" "(y', R') \ p" "R' \ {x. x \ k \ c} \ {}" by blast assume as: "(x, L) \ (y, R)" show "interior L \ interior R = {}" proof (cases "L' = R' \ x' = y'") case False have "interior R' = {}" by (metis (no_types) False Pair_inject inf.idem tagged_division_ofD(5) [OF p] xL'(3) yR'(3)) then show ?thesis using yR' by simp next case True then have "L' \ R'" using as unfolding xL' yR' by auto have "interior L' \ interior R' = {}" by (metis (no_types) Pair_inject \L' \ R'\ p tagged_division_ofD(5) xL'(3) yR'(3)) then show ?thesis using xL'(2) yR'(2) by auto qed qed ultimately have "norm (((\(x,K) \ ?M1. content K *\<^sub>R f x) - i) + ((\(x,K) \ ?M2. content K *\<^sub>R f x) - j)) < e/2 + e/2" using norm_add_less by blast moreover have "((\(x,K) \ ?M1. content K *\<^sub>R f x) - i) + ((\(x,K) \ ?M2. content K *\<^sub>R f x) - j) = (\(x, ka)\p. content ka *\<^sub>R f x) - (i + j)" proof - have eq0: "\x y. x = (0::real) \ x *\<^sub>R (y::'b) = 0" by auto have cont_eq: "\g. (\(x,l). content l *\<^sub>R f x) \ (\(x,l). (x,g l)) = (\(x,l). content (g l) *\<^sub>R f x)" by auto have *: "\\ :: 'a set \ 'a set. (\(x,K)\{(x, \ K) |x K. (x,K) \ p \ \ K \ {}}. content K *\<^sub>R f x) = (\(x,K)\(\(x,K). (x, \ K)) ` p. content K *\<^sub>R f x)" by (rule sum.mono_neutral_left) (auto simp: \finite p\) have "((\(x, k)\?M1. content k *\<^sub>R f x) - i) + ((\(x, k)\?M2. content k *\<^sub>R f x) - j) = (\(x, k)\?M1. content k *\<^sub>R f x) + (\(x, k)\?M2. content k *\<^sub>R f x) - (i + j)" by auto moreover have "\ = (\(x,K) \ p. content (K \ {x. x \ k \ c}) *\<^sub>R f x) + (\(x,K) \ p. content (K \ {x. c \ x \ k}) *\<^sub>R f x) - (i + j)" unfolding * apply (subst (1 2) sum.reindex_nontrivial) apply (auto intro!: k p eq0 tagged_division_split_left_inj_content tagged_division_split_right_inj_content simp: cont_eq \finite p\) done moreover have "\x. x \ p \ (\(a,B). content (B \ {a. a \ k \ c}) *\<^sub>R f a) x + (\(a,B). content (B \ {a. c \ a \ k}) *\<^sub>R f a) x = (\(a,B). content B *\<^sub>R f a) x" proof clarify fix a B assume "(a, B) \ p" with p obtain u v where uv: "B = cbox u v" by blast then show "content (B \ {x. x \ k \ c}) *\<^sub>R f a + content (B \ {x. c \ x \ k}) *\<^sub>R f a = content B *\<^sub>R f a" by (auto simp: scaleR_left_distrib uv content_split[OF k,of u v c]) qed ultimately show ?thesis by (auto simp: sum.distrib[symmetric]) qed ultimately show "norm ((\(x, k)\p. content k *\<^sub>R f x) - (i + j)) < e" by auto qed qed subsection \A sort of converse, integrability on subintervals\ lemma has_integral_separate_sides: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes f: "(f has_integral i) (cbox a b)" and "e > 0" and k: "k \ Basis" obtains d where "gauge d" "\p1 p2. p1 tagged_division_of (cbox a b \ {x. x\k \ c}) \ d fine p1 \ p2 tagged_division_of (cbox a b \ {x. x\k \ c}) \ d fine p2 \ norm ((sum (\(x,k). content k *\<^sub>R f x) p1 + sum (\(x,k). content k *\<^sub>R f x) p2) - i) < e" proof - obtain \ where d: "gauge \" "\p. \p tagged_division_of cbox a b; \ fine p\ \ norm ((\(x, k)\p. content k *\<^sub>R f x) - i) < e" using has_integralD[OF f \e > 0\] by metis { fix p1 p2 assume tdiv1: "p1 tagged_division_of (cbox a b) \ {x. x \ k \ c}" and "\ fine p1" note p1=tagged_division_ofD[OF this(1)] assume tdiv2: "p2 tagged_division_of (cbox a b) \ {x. c \ x \ k}" and "\ fine p2" note p2=tagged_division_ofD[OF this(1)] note tagged_division_Un_interval[OF tdiv1 tdiv2] note p12 = tagged_division_ofD[OF this] this { fix a b assume ab: "(a, b) \ p1 \ p2" have "(a, b) \ p1" using ab by auto obtain u v where uv: "b = cbox u v" using \(a, b) \ p1\ p1(4) by moura have "b \ {x. x\k = c}" using ab p1(3)[of a b] p2(3)[of a b] by fastforce moreover have "interior {x::'a. x \ k = c} = {}" proof (rule ccontr) assume "\ ?thesis" then obtain x where x: "x \ interior {x::'a. x\k = c}" by auto then obtain \ where "0 < \" and \: "ball x \ \ {x. x \ k = c}" using mem_interior by metis have x: "x\k = c" using x interior_subset by fastforce have *: "\i. i \ Basis \ \(x - (x + (\/2) *\<^sub>R k)) \ i\ = (if i = k then \/2 else 0)" using \0 < \\ k by (auto simp: inner_simps inner_not_same_Basis) have "(\i\Basis. \(x - (x + (\/2 ) *\<^sub>R k)) \ i\) = (\i\Basis. (if i = k then \/2 else 0))" using "*" by (blast intro: sum.cong) also have "\ < \" by (subst sum.delta) (use \0 < \\ in auto) finally have "x + (\/2) *\<^sub>R k \ ball x \" unfolding mem_ball dist_norm by(rule le_less_trans[OF norm_le_l1]) then have "x + (\/2) *\<^sub>R k \ {x. x\k = c}" using \ by auto then show False using \0 < \\ x k by (auto simp: inner_simps) qed ultimately have "content b = 0" unfolding uv content_eq_0_interior using interior_mono by blast then have "content b *\<^sub>R f a = 0" by auto } then have "norm ((\(x, k)\p1. content k *\<^sub>R f x) + (\(x, k)\p2. content k *\<^sub>R f x) - i) = norm ((\(x, k)\p1 \ p2. content k *\<^sub>R f x) - i)" by (subst sum.union_inter_neutral) (auto simp: p1 p2) also have "\ < e" using d(2) p12 by (simp add: fine_Un k \\ fine p1\ \\ fine p2\) finally have "norm ((\(x, k)\p1. content k *\<^sub>R f x) + (\(x, k)\p2. content k *\<^sub>R f x) - i) < e" . } then show ?thesis using d(1) that by auto qed lemma integrable_split [intro]: fixes f :: "'a::euclidean_space \ 'b::{real_normed_vector,complete_space}" assumes f: "f integrable_on cbox a b" and k: "k \ Basis" shows "f integrable_on (cbox a b \ {x. x\k \ c})" (is ?thesis1) and "f integrable_on (cbox a b \ {x. x\k \ c})" (is ?thesis2) proof - obtain y where y: "(f has_integral y) (cbox a b)" using f by blast define a' where "a' = (\i\Basis. (if i = k then max (a\k) c else a\i)*\<^sub>R i)" define b' where "b' = (\i\Basis. (if i = k then min (b\k) c else b\i)*\<^sub>R i)" have "\d. gauge d \ (\p1 p2. p1 tagged_division_of cbox a b \ {x. x \ k \ c} \ d fine p1 \ p2 tagged_division_of cbox a b \ {x. x \ k \ c} \ d fine p2 \ norm ((\(x,K) \ p1. content K *\<^sub>R f x) - (\(x,K) \ p2. content K *\<^sub>R f x)) < e)" if "e > 0" for e proof - have "e/2 > 0" using that by auto with has_integral_separate_sides[OF y this k, of c] obtain d where "gauge d" and d: "\p1 p2. \p1 tagged_division_of cbox a b \ {x. x \ k \ c}; d fine p1; p2 tagged_division_of cbox a b \ {x. c \ x \ k}; d fine p2\ \ norm ((\(x,K)\p1. content K *\<^sub>R f x) + (\(x,K)\p2. content K *\<^sub>R f x) - y) < e/2" by metis show ?thesis proof (rule_tac x=d in exI, clarsimp simp add: \gauge d\) fix p1 p2 assume as: "p1 tagged_division_of (cbox a b) \ {x. x \ k \ c}" "d fine p1" "p2 tagged_division_of (cbox a b) \ {x. x \ k \ c}" "d fine p2" show "norm ((\(x, k)\p1. content k *\<^sub>R f x) - (\(x, k)\p2. content k *\<^sub>R f x)) < e" proof (rule fine_division_exists[OF \gauge d\, of a' b]) fix p assume "p tagged_division_of cbox a' b" "d fine p" then show ?thesis using as norm_triangle_half_l[OF d[of p1 p] d[of p2 p]] unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric] by (auto simp add: algebra_simps) qed qed qed with f show ?thesis1 by (simp add: interval_split[OF k] integrable_Cauchy) have "\d. gauge d \ (\p1 p2. p1 tagged_division_of cbox a b \ {x. x \ k \ c} \ d fine p1 \ p2 tagged_division_of cbox a b \ {x. x \ k \ c} \ d fine p2 \ norm ((\(x,K) \ p1. content K *\<^sub>R f x) - (\(x,K) \ p2. content K *\<^sub>R f x)) < e)" if "e > 0" for e proof - have "e/2 > 0" using that by auto with has_integral_separate_sides[OF y this k, of c] obtain d where "gauge d" and d: "\p1 p2. \p1 tagged_division_of cbox a b \ {x. x \ k \ c}; d fine p1; p2 tagged_division_of cbox a b \ {x. c \ x \ k}; d fine p2\ \ norm ((\(x,K)\p1. content K *\<^sub>R f x) + (\(x,K)\p2. content K *\<^sub>R f x) - y) < e/2" by metis show ?thesis proof (rule_tac x=d in exI, clarsimp simp add: \gauge d\) fix p1 p2 assume as: "p1 tagged_division_of (cbox a b) \ {x. x \ k \ c}" "d fine p1" "p2 tagged_division_of (cbox a b) \ {x. x \ k \ c}" "d fine p2" show "norm ((\(x, k)\p1. content k *\<^sub>R f x) - (\(x, k)\p2. content k *\<^sub>R f x)) < e" proof (rule fine_division_exists[OF \gauge d\, of a b']) fix p assume "p tagged_division_of cbox a b'" "d fine p" then show ?thesis using as norm_triangle_half_l[OF d[of p p1] d[of p p2]] unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric] by (auto simp add: algebra_simps) qed qed qed with f show ?thesis2 by (simp add: interval_split[OF k] integrable_Cauchy) qed lemma operative_integralI: fixes f :: "'a::euclidean_space \ 'b::banach" shows "operative (lift_option (+)) (Some 0) (\i. if f integrable_on i then Some (integral i f) else None)" proof - interpret comm_monoid "lift_option plus" "Some (0::'b)" by (rule comm_monoid_lift_option) (rule add.comm_monoid_axioms) show ?thesis proof fix a b c fix k :: 'a assume k: "k \ Basis" show "(if f integrable_on cbox a b then Some (integral (cbox a b) f) else None) = lift_option (+) (if f integrable_on cbox a b \ {x. x \ k \ c} then Some (integral (cbox a b \ {x. x \ k \ c}) f) else None) (if f integrable_on cbox a b \ {x. c \ x \ k} then Some (integral (cbox a b \ {x. c \ x \ k}) f) else None)" proof (cases "f integrable_on cbox a b") case True with k show ?thesis - apply (simp add: integrable_split) - apply (rule integral_unique [OF has_integral_split[OF _ _ k]]) - apply (auto intro: integrable_integral) - done + by (auto simp: integrable_split intro: integral_unique [OF has_integral_split[OF _ _ k]]) next case False have "\ (f integrable_on cbox a b \ {x. x \ k \ c}) \ \ ( f integrable_on cbox a b \ {x. c \ x \ k})" proof (rule ccontr) assume "\ ?thesis" then have "f integrable_on cbox a b" unfolding integrable_on_def apply (rule_tac x="integral (cbox a b \ {x. x \ k \ c}) f + integral (cbox a b \ {x. x \ k \ c}) f" in exI) - apply (rule has_integral_split[OF _ _ k]) - apply (auto intro: integrable_integral) + apply (auto intro: has_integral_split[OF _ _ k]) done then show False using False by auto qed then show ?thesis using False by auto qed next fix a b :: 'a assume "box a b = {}" then show "(if f integrable_on cbox a b then Some (integral (cbox a b) f) else None) = Some 0" using has_integral_null_eq by (auto simp: integrable_on_null content_eq_0_interior) qed qed subsection \Bounds on the norm of Riemann sums and the integral itself\ lemma dsum_bound: - assumes "p division_of (cbox a b)" + assumes p: "p division_of (cbox a b)" and "norm c \ e" shows "norm (sum (\l. content l *\<^sub>R c) p) \ e * content(cbox a b)" proof - have sumeq: "(\i\p. \content i\) = sum content p" - apply (rule sum.cong) - using assms - apply simp - apply (metis abs_of_nonneg content_pos_le) - done + by simp have e: "0 \ e" using assms(2) norm_ge_zero order_trans by blast have "norm (sum (\l. content l *\<^sub>R c) p) \ (\i\p. norm (content i *\<^sub>R c))" using norm_sum by blast also have "... \ e * (\i\p. \content i\)" by (simp add: sum_distrib_left[symmetric] mult.commute assms(2) mult_right_mono sum_nonneg) also have "... \ e * content (cbox a b)" - apply (rule mult_left_mono [OF _ e]) - apply (simp add: sumeq) - using additive_content_division assms(1) eq_iff apply blast - done + by (metis additive_content_division p eq_iff sumeq) finally show ?thesis . qed lemma rsum_bound: assumes p: "p tagged_division_of (cbox a b)" and "\x\cbox a b. norm (f x) \ e" shows "norm (sum (\(x,k). content k *\<^sub>R f x) p) \ e * content (cbox a b)" proof (cases "cbox a b = {}") case True show ?thesis using p unfolding True tagged_division_of_trivial by auto next case False then have e: "e \ 0" by (meson ex_in_conv assms(2) norm_ge_zero order_trans) have sum_le: "sum (content \ snd) p \ content (cbox a b)" unfolding additive_content_tagged_division[OF p, symmetric] split_def by (auto intro: eq_refl) have con: "\xk. xk \ p \ 0 \ content (snd xk)" using tagged_division_ofD(4) [OF p] content_pos_le by force - have norm: "\xk. xk \ p \ norm (f (fst xk)) \ e" - unfolding fst_conv using tagged_division_ofD(2,3)[OF p] assms - by (metis prod.collapse subset_eq) have "norm (sum (\(x,k). content k *\<^sub>R f x) p) \ (\i\p. norm (case i of (x, k) \ content k *\<^sub>R f x))" by (rule norm_sum) also have "... \ e * content (cbox a b)" - unfolding split_def norm_scaleR - apply (rule order_trans[OF sum_mono]) - apply (rule mult_left_mono[OF _ abs_ge_zero, of _ e]) - apply (metis norm) - unfolding sum_distrib_right[symmetric] - using con sum_le - apply (auto simp: mult.commute intro: mult_left_mono [OF _ e]) - done + proof - + have "\xk. xk \ p \ norm (f (fst xk)) \ e" + using assms(2) p tag_in_interval by force + moreover have "(\i\p. \content (snd i)\ * e) \ e * content (cbox a b)" + unfolding sum_distrib_right[symmetric] + using con sum_le by (auto simp: mult.commute intro: mult_left_mono [OF _ e]) + ultimately show ?thesis + unfolding split_def norm_scaleR + by (metis (no_types, lifting) mult_left_mono[OF _ abs_ge_zero] order_trans[OF sum_mono]) + qed finally show ?thesis . qed lemma rsum_diff_bound: assumes "p tagged_division_of (cbox a b)" and "\x\cbox a b. norm (f x - g x) \ e" shows "norm (sum (\(x,k). content k *\<^sub>R f x) p - sum (\(x,k). content k *\<^sub>R g x) p) \ e * content (cbox a b)" - apply (rule order_trans[OF _ rsum_bound[OF assms]]) - apply (simp add: split_def scaleR_diff_right sum_subtractf eq_refl) - done + using order_trans[OF _ rsum_bound[OF assms]] + by (simp add: split_def scaleR_diff_right sum_subtractf eq_refl) lemma has_integral_bound: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes "0 \ B" and f: "(f has_integral i) (cbox a b)" and "\x. x\cbox a b \ norm (f x) \ B" shows "norm i \ B * content (cbox a b)" proof (rule ccontr) assume "\ ?thesis" then have "norm i - B * content (cbox a b) > 0" by auto with f[unfolded has_integral] obtain \ where "gauge \" and \: "\p. \p tagged_division_of cbox a b; \ fine p\ \ norm ((\(x, K)\p. content K *\<^sub>R f x) - i) < norm i - B * content (cbox a b)" by metis then obtain p where p: "p tagged_division_of cbox a b" and "\ fine p" using fine_division_exists by blast have "\s B. norm s \ B \ \ norm (s - i) < norm i - B" unfolding not_less by (metis diff_left_mono dist_commute dist_norm norm_triangle_ineq2 order_trans) then show False using \ [OF p \\ fine p\] rsum_bound[OF p] assms by metis qed corollary integrable_bound: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes "0 \ B" and "f integrable_on (cbox a b)" and "\x. x\cbox a b \ norm (f x) \ B" shows "norm (integral (cbox a b) f) \ B * content (cbox a b)" by (metis integrable_integral has_integral_bound assms) subsection \Similar theorems about relationship among components\ lemma rsum_component_le: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes p: "p tagged_division_of (cbox a b)" and "\x. x \ cbox a b \ (f x)\i \ (g x)\i" shows "(\(x, K)\p. content K *\<^sub>R f x) \ i \ (\(x, K)\p. content K *\<^sub>R g x) \ i" unfolding inner_sum_left proof (rule sum_mono, clarify) fix x K assume ab: "(x, K) \ p" with p obtain u v where K: "K = cbox u v" by blast then show "(content K *\<^sub>R f x) \ i \ (content K *\<^sub>R g x) \ i" by (metis ab assms inner_scaleR_left measure_nonneg mult_left_mono tag_in_interval) qed lemma has_integral_component_le: fixes f g :: "'a::euclidean_space \ 'b::euclidean_space" assumes k: "k \ Basis" assumes "(f has_integral i) S" "(g has_integral j) S" and f_le_g: "\x. x \ S \ (f x)\k \ (g x)\k" shows "i\k \ j\k" proof - have ik_le_jk: "i\k \ j\k" if f_i: "(f has_integral i) (cbox a b)" and g_j: "(g has_integral j) (cbox a b)" and le: "\x\cbox a b. (f x)\k \ (g x)\k" for a b i and j :: 'b and f g :: "'a \ 'b" proof (rule ccontr) assume "\ ?thesis" then have *: "0 < (i\k - j\k) / 3" by auto obtain \1 where "gauge \1" and \1: "\p. \p tagged_division_of cbox a b; \1 fine p\ \ norm ((\(x, k)\p. content k *\<^sub>R f x) - i) < (i \ k - j \ k) / 3" using f_i[unfolded has_integral,rule_format,OF *] by fastforce obtain \2 where "gauge \2" and \2: "\p. \p tagged_division_of cbox a b; \2 fine p\ \ norm ((\(x, k)\p. content k *\<^sub>R g x) - j) < (i \ k - j \ k) / 3" using g_j[unfolded has_integral,rule_format,OF *] by fastforce obtain p where p: "p tagged_division_of cbox a b" and "\1 fine p" "\2 fine p" using fine_division_exists[OF gauge_Int[OF \gauge \1\ \gauge \2\], of a b] unfolding fine_Int by metis then have "\((\(x, k)\p. content k *\<^sub>R f x) - i) \ k\ < (i \ k - j \ k) / 3" "\((\(x, k)\p. content k *\<^sub>R g x) - j) \ k\ < (i \ k - j \ k) / 3" using le_less_trans[OF Basis_le_norm[OF k]] k \1 \2 by metis+ then show False unfolding inner_simps using rsum_component_le[OF p] le by (fastforce simp add: abs_real_def split: if_split_asm) qed show ?thesis proof (cases "\a b. S = cbox a b") case True with ik_le_jk assms show ?thesis by auto next case False show ?thesis proof (rule ccontr) assume "\ i\k \ j\k" then have ij: "(i\k - j\k) / 3 > 0" by auto obtain B1 where "0 < B1" and B1: "\a b. ball 0 B1 \ cbox a b \ \z. ((\x. if x \ S then f x else 0) has_integral z) (cbox a b) \ norm (z - i) < (i \ k - j \ k) / 3" using has_integral_altD[OF _ False ij] assms by blast obtain B2 where "0 < B2" and B2: "\a b. ball 0 B2 \ cbox a b \ \z. ((\x. if x \ S then g x else 0) has_integral z) (cbox a b) \ norm (z - j) < (i \ k - j \ k) / 3" using has_integral_altD[OF _ False ij] assms by blast have "bounded (ball 0 B1 \ ball (0::'a) B2)" unfolding bounded_Un by(rule conjI bounded_ball)+ from bounded_subset_cbox_symmetric[OF this] obtain a b::'a where ab: "ball 0 B1 \ cbox a b" "ball 0 B2 \ cbox a b" by (meson Un_subset_iff) then obtain w1 w2 where int_w1: "((\x. if x \ S then f x else 0) has_integral w1) (cbox a b)" and norm_w1: "norm (w1 - i) < (i \ k - j \ k) / 3" and int_w2: "((\x. if x \ S then g x else 0) has_integral w2) (cbox a b)" and norm_w2: "norm (w2 - j) < (i \ k - j \ k) / 3" using B1 B2 by blast have *: "\w1 w2 j i::real .\w1 - i\ < (i - j) / 3 \ \w2 - j\ < (i - j) / 3 \ w1 \ w2 \ False" by (simp add: abs_real_def split: if_split_asm) have "\(w1 - i) \ k\ < (i \ k - j \ k) / 3" "\(w2 - j) \ k\ < (i \ k - j \ k) / 3" using Basis_le_norm k le_less_trans norm_w1 norm_w2 by blast+ moreover have "w1\k \ w2\k" using ik_le_jk int_w1 int_w2 f_le_g by auto ultimately show False unfolding inner_simps by(rule *) qed qed qed lemma integral_component_le: fixes g f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "k \ Basis" and "f integrable_on S" "g integrable_on S" and "\x. x \ S \ (f x)\k \ (g x)\k" shows "(integral S f)\k \ (integral S g)\k" - apply (rule has_integral_component_le) - using integrable_integral assms - apply auto - done + using has_integral_component_le assms by blast lemma has_integral_component_nonneg: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "k \ Basis" and "(f has_integral i) S" and "\x. x \ S \ 0 \ (f x)\k" shows "0 \ i\k" using has_integral_component_le[OF assms(1) has_integral_0 assms(2)] using assms(3-) by auto lemma integral_component_nonneg: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "k \ Basis" and "\x. x \ S \ 0 \ (f x)\k" shows "0 \ (integral S f)\k" proof (cases "f integrable_on S") case True show ?thesis - apply (rule has_integral_component_nonneg) - using assms True - apply auto - done + using True assms has_integral_component_nonneg by blast next case False then show ?thesis by (simp add: not_integrable_integral) qed lemma has_integral_component_neg: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "k \ Basis" and "(f has_integral i) S" and "\x. x \ S \ (f x)\k \ 0" shows "i\k \ 0" using has_integral_component_le[OF assms(1,2) has_integral_0] assms(2-) by auto lemma has_integral_component_lbound: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "(f has_integral i) (cbox a b)" and "\x\cbox a b. B \ f(x)\k" and "k \ Basis" shows "B * content (cbox a b) \ i\k" using has_integral_component_le[OF assms(3) has_integral_const assms(1),of "(\i\Basis. B *\<^sub>R i)::'b"] assms(2-) by (auto simp add: field_simps) lemma has_integral_component_ubound: fixes f::"'a::euclidean_space => 'b::euclidean_space" assumes "(f has_integral i) (cbox a b)" and "\x\cbox a b. f x\k \ B" and "k \ Basis" shows "i\k \ B * content (cbox a b)" using has_integral_component_le[OF assms(3,1) has_integral_const, of "\i\Basis. B *\<^sub>R i"] assms(2-) by (auto simp add: field_simps) lemma integral_component_lbound: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "f integrable_on cbox a b" and "\x\cbox a b. B \ f(x)\k" and "k \ Basis" shows "B * content (cbox a b) \ (integral(cbox a b) f)\k" - apply (rule has_integral_component_lbound) - using assms - unfolding has_integral_integral - apply auto - done + using assms has_integral_component_lbound by blast lemma integral_component_lbound_real: assumes "f integrable_on {a ::real..b}" and "\x\{a..b}. B \ f(x)\k" and "k \ Basis" shows "B * content {a..b} \ (integral {a..b} f)\k" using assms by (metis box_real(2) integral_component_lbound) lemma integral_component_ubound: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "f integrable_on cbox a b" and "\x\cbox a b. f x\k \ B" and "k \ Basis" shows "(integral (cbox a b) f)\k \ B * content (cbox a b)" - apply (rule has_integral_component_ubound) - using assms - unfolding has_integral_integral - apply auto - done + using assms has_integral_component_ubound by blast lemma integral_component_ubound_real: fixes f :: "real \ 'a::euclidean_space" assumes "f integrable_on {a..b}" and "\x\{a..b}. f x\k \ B" and "k \ Basis" shows "(integral {a..b} f)\k \ B * content {a..b}" using assms by (metis box_real(2) integral_component_ubound) subsection \Uniform limit of integrable functions is integrable\ lemma real_arch_invD: "0 < (e::real) \ (\n::nat. n \ 0 \ 0 < inverse (real n) \ inverse (real n) < e)" by (subst(asm) real_arch_inverse) lemma integrable_uniform_limit: fixes f :: "'a::euclidean_space \ 'b::banach" assumes "\e. e > 0 \ \g. (\x\cbox a b. norm (f x - g x) \ e) \ g integrable_on cbox a b" shows "f integrable_on cbox a b" proof (cases "content (cbox a b) > 0") case False then show ?thesis using has_integral_null by (simp add: content_lt_nz integrable_on_def) next case True have "1 / (real n + 1) > 0" for n by auto then have "\g. (\x\cbox a b. norm (f x - g x) \ 1 / (real n + 1)) \ g integrable_on cbox a b" for n using assms by blast then obtain g where g_near_f: "\n x. x \ cbox a b \ norm (f x - g n x) \ 1 / (real n + 1)" and int_g: "\n. g n integrable_on cbox a b" by metis then obtain h where h: "\n. (g n has_integral h n) (cbox a b)" unfolding integrable_on_def by metis have "Cauchy h" unfolding Cauchy_def proof clarify fix e :: real assume "e>0" then have "e/4 / content (cbox a b) > 0" using True by (auto simp: field_simps) then obtain M where "M \ 0" and M: "1 / (real M) < e/4 / content (cbox a b)" by (metis inverse_eq_divide real_arch_inverse) show "\M. \m\M. \n\M. dist (h m) (h n) < e" proof (rule exI [where x=M], clarify) fix m n assume m: "M \ m" and n: "M \ n" have "e/4>0" using \e>0\ by auto then obtain gm gn where "gauge gm" "gauge gn" and gm: "\\. \ tagged_division_of cbox a b \ gm fine \ \ norm ((\(x,K) \ \. content K *\<^sub>R g m x) - h m) < e/4" and gn: "\\. \ tagged_division_of cbox a b \ gn fine \ \ norm ((\(x,K) \ \. content K *\<^sub>R g n x) - h n) < e/4" using h[unfolded has_integral] by meson then obtain \ where \: "\ tagged_division_of cbox a b" "(\x. gm x \ gn x) fine \" by (metis (full_types) fine_division_exists gauge_Int) have triangle3: "norm (i1 - i2) < e" if no: "norm(s2 - s1) \ e/2" "norm (s1 - i1) < e/4" "norm (s2 - i2) < e/4" for s1 s2 i1 and i2::'b proof - have "norm (i1 - i2) \ norm (i1 - s1) + norm (s1 - s2) + norm (s2 - i2)" using norm_triangle_ineq[of "i1 - s1" "s1 - i2"] using norm_triangle_ineq[of "s1 - s2" "s2 - i2"] by (auto simp: algebra_simps) also have "\ < e" using no by (auto simp: algebra_simps norm_minus_commute) finally show ?thesis . qed have finep: "gm fine \" "gn fine \" using fine_Int \ by auto have norm_le: "norm (g n x - g m x) \ 2 / real M" if x: "x \ cbox a b" for x proof - have "norm (f x - g n x) + norm (f x - g m x) \ 1 / (real n + 1) + 1 / (real m + 1)" using g_near_f[OF x, of n] g_near_f[OF x, of m] by simp also have "\ \ 1 / (real M) + 1 / (real M)" - apply (rule add_mono) - using \M \ 0\ m n by (auto simp: field_split_simps) + using \M \ 0\ m n by (intro add_mono; force simp: field_split_simps) also have "\ = 2 / real M" by auto finally show "norm (g n x - g m x) \ 2 / real M" using norm_triangle_le[of "g n x - f x" "f x - g m x" "2 / real M"] by (auto simp: algebra_simps simp add: norm_minus_commute) qed have "norm ((\(x,K) \ \. content K *\<^sub>R g n x) - (\(x,K) \ \. content K *\<^sub>R g m x)) \ 2 / real M * content (cbox a b)" by (blast intro: norm_le rsum_diff_bound[OF \(1), where e="2 / real M"]) also have "... \ e/2" using M True by (auto simp: field_simps) finally have le_e2: "norm ((\(x,K) \ \. content K *\<^sub>R g n x) - (\(x,K) \ \. content K *\<^sub>R g m x)) \ e/2" . then show "dist (h m) (h n) < e" unfolding dist_norm using gm gn \ finep by (auto intro!: triangle3) qed qed then obtain s where s: "h \ s" using convergent_eq_Cauchy[symmetric] by blast show ?thesis unfolding integrable_on_def has_integral proof (rule_tac x=s in exI, clarify) fix e::real assume e: "0 < e" then have "e/3 > 0" by auto then obtain N1 where N1: "\n\N1. norm (h n - s) < e/3" using LIMSEQ_D [OF s] by metis from e True have "e/3 / content (cbox a b) > 0" by (auto simp: field_simps) then obtain N2 :: nat where "N2 \ 0" and N2: "1 / (real N2) < e/3 / content (cbox a b)" by (metis inverse_eq_divide real_arch_inverse) obtain g' where "gauge g'" and g': "\\. \ tagged_division_of cbox a b \ g' fine \ \ norm ((\(x,K) \ \. content K *\<^sub>R g (N1 + N2) x) - h (N1 + N2)) < e/3" by (metis h has_integral \e/3 > 0\) have *: "norm (sf - s) < e" if no: "norm (sf - sg) \ e/3" "norm(h - s) < e/3" "norm (sg - h) < e/3" for sf sg h proof - have "norm (sf - s) \ norm (sf - sg) + norm (sg - h) + norm (h - s)" using norm_triangle_ineq[of "sf - sg" "sg - s"] using norm_triangle_ineq[of "sg - h" " h - s"] by (auto simp: algebra_simps) also have "\ < e" using no by (auto simp: algebra_simps norm_minus_commute) finally show ?thesis . qed { fix \ assume ptag: "\ tagged_division_of (cbox a b)" and "g' fine \" then have norm_less: "norm ((\(x,K) \ \. content K *\<^sub>R g (N1 + N2) x) - h (N1 + N2)) < e/3" using g' by blast have "content (cbox a b) < e/3 * (of_nat N2)" using \N2 \ 0\ N2 using True by (auto simp: field_split_simps) moreover have "e/3 * of_nat N2 \ e/3 * (of_nat (N1 + N2) + 1)" using \e>0\ by auto ultimately have "content (cbox a b) < e/3 * (of_nat (N1 + N2) + 1)" by linarith then have le_e3: "1 / (real (N1 + N2) + 1) * content (cbox a b) \ e/3" unfolding inverse_eq_divide by (auto simp: field_simps) have ne3: "norm (h (N1 + N2) - s) < e/3" using N1 by auto have "norm ((\(x,K) \ \. content K *\<^sub>R f x) - (\(x,K) \ \. content K *\<^sub>R g (N1 + N2) x)) \ 1 / (real (N1 + N2) + 1) * content (cbox a b)" by (blast intro: g_near_f rsum_diff_bound[OF ptag]) then have "norm ((\(x,K) \ \. content K *\<^sub>R f x) - s) < e" by (rule *[OF order_trans [OF _ le_e3] ne3 norm_less]) } then show "\d. gauge d \ (\\. \ tagged_division_of cbox a b \ d fine \ \ norm ((\(x,K) \ \. content K *\<^sub>R f x) - s) < e)" by (blast intro: g' \gauge g'\) qed qed lemmas integrable_uniform_limit_real = integrable_uniform_limit [where 'a=real, simplified] subsection \Negligible sets\ definition "negligible (s:: 'a::euclidean_space set) \ (\a b. ((indicator s :: 'a\real) has_integral 0) (cbox a b))" subsubsection \Negligibility of hyperplane\ lemma content_doublesplit: fixes a :: "'a::euclidean_space" assumes "0 < e" and k: "k \ Basis" obtains d where "0 < d" and "content (cbox a b \ {x. \x\k - c\ \ d}) < e" proof cases assume *: "a \ k \ c \ c \ b \ k \ (\j\Basis. a \ j \ b \ j)" define a' where "a' d = (\j\Basis. (if j = k then max (a\j) (c - d) else a\j) *\<^sub>R j)" for d define b' where "b' d = (\j\Basis. (if j = k then min (b\j) (c + d) else b\j) *\<^sub>R j)" for d have "((\d. \j\Basis. (b' d - a' d) \ j) \ (\j\Basis. (b' 0 - a' 0) \ j)) (at_right 0)" by (auto simp: b'_def a'_def intro!: tendsto_min tendsto_max tendsto_eq_intros) also have "(\j\Basis. (b' 0 - a' 0) \ j) = 0" using k * by (intro prod_zero bexI[OF _ k]) (auto simp: b'_def a'_def inner_diff inner_sum_left inner_not_same_Basis intro!: sum.cong) also have "((\d. \j\Basis. (b' d - a' d) \ j) \ 0) (at_right 0) = ((\d. content (cbox a b \ {x. \x\k - c\ \ d})) \ 0) (at_right 0)" proof (intro tendsto_cong eventually_at_rightI) fix d :: real assume d: "d \ {0<..<1}" have "cbox a b \ {x. \x\k - c\ \ d} = cbox (a' d) (b' d)" for d using * d k by (auto simp add: cbox_def set_eq_iff Int_def ball_conj_distrib abs_diff_le_iff a'_def b'_def) moreover have "j \ Basis \ a' d \ j \ b' d \ j" for j using * d k by (auto simp: a'_def b'_def) ultimately show "(\j\Basis. (b' d - a' d) \ j) = content (cbox a b \ {x. \x\k - c\ \ d})" by simp qed simp finally have "((\d. content (cbox a b \ {x. \x \ k - c\ \ d})) \ 0) (at_right 0)" . from order_tendstoD(2)[OF this \0] obtain d' where "0 < d'" and d': "\y. y > 0 \ y < d' \ content (cbox a b \ {x. \x \ k - c\ \ y}) < e" by (subst (asm) eventually_at_right[of _ 1]) auto show ?thesis by (rule that[of "d'/2"], insert \0 d'[of "d'/2"], auto) next assume *: "\ (a \ k \ c \ c \ b \ k \ (\j\Basis. a \ j \ b \ j))" then have "(\j\Basis. b \ j < a \ j) \ (c < a \ k \ b \ k < c)" by (auto simp: not_le) show thesis proof cases assume "\j\Basis. b \ j < a \ j" then have [simp]: "cbox a b = {}" using box_ne_empty(1)[of a b] by auto show ?thesis by (rule that[of 1]) (simp_all add: \0) next assume "\ (\j\Basis. b \ j < a \ j)" with * have "c < a \ k \ b \ k < c" by auto then show thesis proof assume c: "c < a \ k" moreover have "x \ cbox a b \ c \ x \ k" for x using k c by (auto simp: cbox_def) ultimately have "cbox a b \ {x. \x \ k - c\ \ (a \ k - c)/2} = {}" using k by (auto simp: cbox_def) with \0 c that[of "(a \ k - c)/2"] show ?thesis by auto next assume c: "b \ k < c" moreover have "x \ cbox a b \ x \ k \ c" for x using k c by (auto simp: cbox_def) ultimately have "cbox a b \ {x. \x \ k - c\ \ (c - b \ k)/2} = {}" using k by (auto simp: cbox_def) with \0 c that[of "(c - b \ k)/2"] show ?thesis by auto qed qed qed proposition negligible_standard_hyperplane[intro]: fixes k :: "'a::euclidean_space" assumes k: "k \ Basis" shows "negligible {x. x\k = c}" unfolding negligible_def has_integral proof clarsimp fix a b and e::real assume "e > 0" with k obtain d where "0 < d" and d: "content (cbox a b \ {x. \x \ k - c\ \ d}) < e" by (metis content_doublesplit) let ?i = "indicator {x::'a. x\k = c} :: 'a\real" show "\\. gauge \ \ (\\. \ tagged_division_of cbox a b \ \ fine \ \ \\(x,K) \ \. content K * ?i x\ < e)" proof (intro exI, safe) show "gauge (\x. ball x d)" using \0 < d\ by blast next fix \ assume p: "\ tagged_division_of (cbox a b)" "(\x. ball x d) fine \" have "content L = content (L \ {x. \x \ k - c\ \ d})" if "(x, L) \ \" "?i x \ 0" for x L proof - have xk: "x\k = c" using that by (simp add: indicator_def split: if_split_asm) have "L \ {x. \x \ k - c\ \ d}" proof fix y assume y: "y \ L" have "L \ ball x d" using p(2) that(1) by auto then have "norm (x - y) < d" by (simp add: dist_norm subset_iff y) then have "\(x - y) \ k\ < d" using k norm_bound_Basis_lt by blast then show "y \ {x. \x \ k - c\ \ d}" unfolding inner_simps xk by auto qed then show "content L = content (L \ {x. \x \ k - c\ \ d})" by (metis inf.orderE) qed then have *: "(\(x,K)\\. content K * ?i x) = (\(x,K)\\. content (K \ {x. \x\k - c\ \ d}) *\<^sub>R ?i x)" by (force simp add: split_paired_all intro!: sum.cong [OF refl]) note p'= tagged_division_ofD[OF p(1)] and p''=division_of_tagged_division[OF p(1)] have "(\(x,K)\\. content (K \ {x. \x \ k - c\ \ d}) * indicator {x. x \ k = c} x) < e" proof - have "(\(x,K)\\. content (K \ {x. \x \ k - c\ \ d}) * ?i x) \ (\(x,K)\\. content (K \ {x. \x \ k - c\ \ d}))" by (force simp add: indicator_def intro!: sum_mono) also have "\ < e" proof (subst sum.over_tagged_division_lemma[OF p(1)]) fix u v::'a assume "box u v = {}" then have *: "content (cbox u v) = 0" unfolding content_eq_0_interior by simp have "cbox u v \ {x. \x \ k - c\ \ d} \ cbox u v" by auto then have "content (cbox u v \ {x. \x \ k - c\ \ d}) \ content (cbox u v)" unfolding interval_doublesplit[OF k] by (rule content_subset) then show "content (cbox u v \ {x. \x \ k - c\ \ d}) = 0" unfolding * interval_doublesplit[OF k] by (blast intro: antisym) next have "(\l\snd ` \. content (l \ {x. \x \ k - c\ \ d})) = sum content ((\l. l \ {x. \x \ k - c\ \ d})`{l\snd ` \. l \ {x. \x \ k - c\ \ d} \ {}})" proof (subst (2) sum.reindex_nontrivial) fix x y assume "x \ {l \ snd ` \. l \ {x. \x \ k - c\ \ d} \ {}}" "y \ {l \ snd ` \. l \ {x. \x \ k - c\ \ d} \ {}}" "x \ y" and eq: "x \ {x. \x \ k - c\ \ d} = y \ {x. \x \ k - c\ \ d}" then obtain x' y' where "(x', x) \ \" "x \ {x. \x \ k - c\ \ d} \ {}" "(y', y) \ \" "y \ {x. \x \ k - c\ \ d} \ {}" by (auto) from p'(5)[OF \(x', x) \ \\ \(y', y) \ \\] \x \ y\ have "interior (x \ y) = {}" by auto moreover have "interior ((x \ {x. \x \ k - c\ \ d}) \ (y \ {x. \x \ k - c\ \ d})) \ interior (x \ y)" by (auto intro: interior_mono) ultimately have "interior (x \ {x. \x \ k - c\ \ d}) = {}" by (auto simp: eq) then show "content (x \ {x. \x \ k - c\ \ d}) = 0" using p'(4)[OF \(x', x) \ \\] by (auto simp: interval_doublesplit[OF k] content_eq_0_interior simp del: interior_Int) qed (insert p'(1), auto intro!: sum.mono_neutral_right) also have "\ \ norm (\l\(\l. l \ {x. \x \ k - c\ \ d})`{l\snd ` \. l \ {x. \x \ k - c\ \ d} \ {}}. content l *\<^sub>R 1::real)" by simp also have "\ \ 1 * content (cbox a b \ {x. \x \ k - c\ \ d})" using division_doublesplit[OF p'' k, unfolded interval_doublesplit[OF k]] unfolding interval_doublesplit[OF k] by (intro dsum_bound) auto also have "\ < e" using d by simp finally show "(\K\snd ` \. content (K \ {x. \x \ k - c\ \ d})) < e" . qed finally show "(\(x, K)\\. content (K \ {x. \x \ k - c\ \ d}) * ?i x) < e" . qed then show "\\(x, K)\\. content K * ?i x\ < e" - unfolding * - apply (subst abs_of_nonneg) - using measure_nonneg - by (force simp add: indicator_def intro: sum_nonneg)+ + unfolding * by (simp add: sum_nonneg split: prod.split) qed qed corollary negligible_standard_hyperplane_cart: fixes k :: "'a::finite" shows "negligible {x. x$k = (0::real)}" by (simp add: cart_eq_inner_axis negligible_standard_hyperplane) subsubsection \Hence the main theorem about negligible sets\ lemma has_integral_negligible_cbox: fixes f :: "'b::euclidean_space \ 'a::real_normed_vector" assumes negs: "negligible S" and 0: "\x. x \ S \ f x = 0" shows "(f has_integral 0) (cbox a b)" unfolding has_integral proof clarify fix e::real assume "e > 0" then have nn_gt0: "e/2 / ((real n+1) * (2 ^ n)) > 0" for n by simp then have "\\. gauge \ \ - (\\. \ tagged_division_of cbox a b \ \ fine \ \ - \\(x,K) \ \. content K *\<^sub>R indicator S x\ - < e/2 / ((real n + 1) * 2 ^ n))" for n + (\\. \ tagged_division_of cbox a b \ \ fine \ \ + \\(x,K) \ \. content K *\<^sub>R indicator S x\ + < e/2 / ((real n + 1) * 2 ^ n))" for n using negs [unfolded negligible_def has_integral] by auto then obtain \ where gd: "\n. gauge (\ n)" and \: "\n \. \\ tagged_division_of cbox a b; \ n fine \\ \ \\(x,K) \ \. content K *\<^sub>R indicator S x\ < e/2 / ((real n + 1) * 2 ^ n)" by metis show "\\. gauge \ \ (\\. \ tagged_division_of cbox a b \ \ fine \ \ norm ((\(x,K) \ \. content K *\<^sub>R f x) - 0) < e)" proof (intro exI, safe) show "gauge (\x. \ (nat \norm (f x)\) x)" using gd by (auto simp: gauge_def) show "norm ((\(x,K) \ \. content K *\<^sub>R f x) - 0) < e" if "\ tagged_division_of (cbox a b)" "(\x. \ (nat \norm (f x)\) x) fine \" for \ proof (cases "\ = {}") case True with \0 < e\ show ?thesis by simp next case False obtain N where "Max ((\(x, K). norm (f x)) ` \) \ real N" using real_arch_simple by blast then have N: "\x. x \ (\(x, K). norm (f x)) ` \ \ x \ real N" by (meson Max_ge that(1) dual_order.trans finite_imageI tagged_division_of_finite) have "\i. \q. q tagged_division_of (cbox a b) \ (\ i) fine q \ (\(x,K) \ \. K \ (\ i) x \ (x, K) \ q)" by (auto intro: tagged_division_finer[OF that(1) gd]) from choice[OF this] obtain q where q: "\n. q n tagged_division_of cbox a b" "\n. \ n fine q n" "\n x K. \(x, K) \ \; K \ \ n x\ \ (x, K) \ q n" by fastforce have "finite \" using that(1) by blast then have sum_le_inc: "\finite T; \x y. (x,y) \ T \ (0::real) \ g(x,y); \y. y\\ \ \x. (x,y) \ T \ f(y) \ g(x,y)\ \ sum f \ \ sum g T" for f g T by (rule sum_le_included[of \ T g snd f]; force) have "norm (\(x,K) \ \. content K *\<^sub>R f x) \ (\(x,K) \ \. norm (content K *\<^sub>R f x))" unfolding split_def by (rule norm_sum) also have "... \ (\(i, j) \ Sigma {..N + 1} q. (real i + 1) * (case j of (x, K) \ content K *\<^sub>R indicator S x))" proof (rule sum_le_inc, safe) show "finite (Sigma {..N+1} q)" by (meson finite_SigmaI finite_atMost tagged_division_of_finite q(1)) next fix x K assume xk: "(x, K) \ \" define n where "n = nat \norm (f x)\" have *: "norm (f x) \ (\(x, K). norm (f x)) ` \" using xk by auto have nfx: "real n \ norm (f x)" "norm (f x) \ real n + 1" unfolding n_def by auto then have "n \ {0..N + 1}" using N[OF *] by auto moreover have "K \ \ (nat \norm (f x)\) x" using that(2) xk by auto moreover then have "(x, K) \ q (nat \norm (f x)\)" by (simp add: q(3) xk) moreover then have "(x, K) \ q n" using n_def by blast moreover have "norm (content K *\<^sub>R f x) \ (real n + 1) * (content K * indicator S x)" proof (cases "x \ S") case False then show ?thesis by (simp add: 0) next case True have *: "content K \ 0" using tagged_division_ofD(4)[OF that(1) xk] by auto moreover have "content K * norm (f x) \ content K * (real n + 1)" by (simp add: mult_left_mono nfx(2)) ultimately show ?thesis using nfx True by (auto simp: field_simps) qed ultimately show "\y. (y, x, K) \ (Sigma {..N + 1} q) \ norm (content K *\<^sub>R f x) \ (real y + 1) * (content K *\<^sub>R indicator S x)" by force qed auto also have "... = (\i\N + 1. \j\q i. (real i + 1) * (case j of (x, K) \ content K *\<^sub>R indicator S x))" - apply (rule sum_Sigma_product [symmetric]) - using q(1) apply auto - done + using q(1) by (intro sum_Sigma_product [symmetric]) auto also have "... \ (\i\N + 1. (real i + 1) * \\(x,K) \ q i. content K *\<^sub>R indicator S x\)" by (rule sum_mono) (simp add: sum_distrib_left [symmetric]) also have "... \ (\i\N + 1. e/2/2 ^ i)" proof (rule sum_mono) show "(real i + 1) * \\(x,K) \ q i. content K *\<^sub>R indicator S x\ \ e/2/2 ^ i" if "i \ {..N + 1}" for i using \[of "q i" i] q by (simp add: divide_simps mult.left_commute) qed also have "... = e/2 * (\i\N + 1. (1/2) ^ i)" unfolding sum_distrib_left by (metis divide_inverse inverse_eq_divide power_one_over) also have "\ < e/2 * 2" proof (rule mult_strict_left_mono) have "sum (power (1/2)) {..N + 1} = sum (power (1/2::real)) {..0 < e\ in auto) finally show ?thesis by auto qed qed qed proposition has_integral_negligible: fixes f :: "'b::euclidean_space \ 'a::real_normed_vector" assumes negs: "negligible S" and "\x. x \ (T - S) \ f x = 0" shows "(f has_integral 0) T" proof (cases "\a b. T = cbox a b") case True then have "((\x. if x \ T then f x else 0) has_integral 0) T" using assms by (auto intro!: has_integral_negligible_cbox) then show ?thesis by (rule has_integral_eq [rotated]) auto next case False let ?f = "(\x. if x \ T then f x else 0)" have "((\x. if x \ T then f x else 0) has_integral 0) T" apply (auto simp: False has_integral_alt [of ?f]) apply (rule_tac x=1 in exI, auto) apply (rule_tac x=0 in exI, simp add: has_integral_negligible_cbox [OF negs] assms) done then show ?thesis by (rule_tac f="?f" in has_integral_eq) auto qed lemma assumes "negligible S" shows integrable_negligible: "f integrable_on S" and integral_negligible: "integral S f = 0" using has_integral_negligible [OF assms] by (auto simp: has_integral_iff) lemma has_integral_spike: fixes f :: "'b::euclidean_space \ 'a::real_normed_vector" assumes "negligible S" and gf: "\x. x \ T - S \ g x = f x" and fint: "(f has_integral y) T" shows "(g has_integral y) T" proof - have *: "(g has_integral y) (cbox a b)" if "(f has_integral y) (cbox a b)" "\x \ cbox a b - S. g x = f x" for a b f and g:: "'b \ 'a" and y proof - have "((\x. f x + (g x - f x)) has_integral (y + 0)) (cbox a b)" using that by (intro has_integral_add has_integral_negligible) (auto intro!: \negligible S\) then show ?thesis by auto qed + have \
: "\a b z. \\x. x \ T \ x \ S \ g x = f x; + ((\x. if x \ T then f x else 0) has_integral z) (cbox a b)\ + \ ((\x. if x \ T then g x else 0) has_integral z) (cbox a b)" + by (auto dest!: *[where f="\x. if x\T then f x else 0" and g="\x. if x \ T then g x else 0"]) show ?thesis using fint gf apply (subst has_integral_alt) apply (subst (asm) has_integral_alt) - apply (simp split: if_split_asm) + apply (auto split: if_split_asm) apply (blast dest: *) - apply (erule_tac V = "\a b. T \ cbox a b" in thin_rl) - apply (elim all_forward imp_forward ex_forward all_forward conj_forward asm_rl) - apply (auto dest!: *[where f="\x. if x\T then f x else 0" and g="\x. if x \ T then g x else 0"]) - done + using \
by meson qed lemma has_integral_spike_eq: assumes "negligible S" and gf: "\x. x \ T - S \ g x = f x" shows "(f has_integral y) T \ (g has_integral y) T" using has_integral_spike [OF \negligible S\] gf by metis lemma integrable_spike: assumes "f integrable_on T" "negligible S" "\x. x \ T - S \ g x = f x" shows "g integrable_on T" using assms unfolding integrable_on_def by (blast intro: has_integral_spike) lemma integral_spike: assumes "negligible S" and "\x. x \ T - S \ g x = f x" shows "integral T f = integral T g" using has_integral_spike_eq[OF assms] by (auto simp: integral_def integrable_on_def) subsection \Some other trivialities about negligible sets\ lemma negligible_subset: assumes "negligible s" "t \ s" shows "negligible t" unfolding negligible_def by (metis (no_types) Diff_iff assms contra_subsetD has_integral_negligible indicator_simps(2)) lemma negligible_diff[intro?]: assumes "negligible s" shows "negligible (s - t)" using assms by (meson Diff_subset negligible_subset) lemma negligible_Int: assumes "negligible s \ negligible t" shows "negligible (s \ t)" using assms negligible_subset by force lemma negligible_Un: assumes "negligible S" and T: "negligible T" shows "negligible (S \ T)" proof - have "(indicat_real (S \ T) has_integral 0) (cbox a b)" if S0: "(indicat_real S has_integral 0) (cbox a b)" and "(indicat_real T has_integral 0) (cbox a b)" for a b proof (subst has_integral_spike_eq[OF T]) show "indicat_real S x = indicat_real (S \ T) x" if "x \ cbox a b - T" for x by (metis Diff_iff Un_iff indicator_def that) show "(indicat_real S has_integral 0) (cbox a b)" by (simp add: S0) qed with assms show ?thesis unfolding negligible_def by blast qed lemma negligible_Un_eq[simp]: "negligible (s \ t) \ negligible s \ negligible t" using negligible_Un negligible_subset by blast lemma negligible_sing[intro]: "negligible {a::'a::euclidean_space}" using negligible_standard_hyperplane[OF SOME_Basis, of "a \ (SOME i. i \ Basis)"] negligible_subset by blast lemma negligible_insert[simp]: "negligible (insert a s) \ negligible s" - apply (subst insert_is_Un) - unfolding negligible_Un_eq - apply auto - done + by (metis insert_is_Un negligible_Un_eq negligible_sing) lemma negligible_empty[iff]: "negligible {}" using negligible_insert by blast text\Useful in this form for backchaining\ lemma empty_imp_negligible: "S = {} \ negligible S" by simp lemma negligible_finite[intro]: assumes "finite s" shows "negligible s" using assms by (induct s) auto lemma negligible_Union[intro]: assumes "finite \" and "\t. t \ \ \ negligible t" shows "negligible(\\)" using assms by induct auto lemma negligible: "negligible S \ (\T. (indicat_real S has_integral 0) T)" proof (intro iffI allI) fix T assume "negligible S" then show "(indicator S has_integral 0) T" by (meson Diff_iff has_integral_negligible indicator_simps(2)) qed (simp add: negligible_def) subsection \Finite case of the spike theorem is quite commonly needed\ lemma has_integral_spike_finite: assumes "finite S" and "\x. x \ T - S \ g x = f x" and "(f has_integral y) T" shows "(g has_integral y) T" using assms has_integral_spike negligible_finite by blast lemma has_integral_spike_finite_eq: assumes "finite S" and "\x. x \ T - S \ g x = f x" shows "((f has_integral y) T \ (g has_integral y) T)" by (metis assms has_integral_spike_finite) lemma integrable_spike_finite: assumes "finite S" and "\x. x \ T - S \ g x = f x" and "f integrable_on T" shows "g integrable_on T" using assms has_integral_spike_finite by blast lemma has_integral_bound_spike_finite: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes "0 \ B" "finite S" and f: "(f has_integral i) (cbox a b)" and leB: "\x. x \ cbox a b - S \ norm (f x) \ B" shows "norm i \ B * content (cbox a b)" proof - define g where "g \ (\x. if x \ S then 0 else f x)" then have "\x. x \ cbox a b - S \ norm (g x) \ B" using leB by simp moreover have "(g has_integral i) (cbox a b)" using has_integral_spike_finite [OF \finite S\ _ f] by (simp add: g_def) ultimately show ?thesis by (simp add: \0 \ B\ g_def has_integral_bound) qed corollary has_integral_bound_real: fixes f :: "real \ 'b::real_normed_vector" assumes "0 \ B" "finite S" and "(f has_integral i) {a..b}" and "\x. x \ {a..b} - S \ norm (f x) \ B" shows "norm i \ B * content {a..b}" by (metis assms box_real(2) has_integral_bound_spike_finite) subsection \In particular, the boundary of an interval is negligible\ lemma negligible_frontier_interval: "negligible(cbox (a::'a::euclidean_space) b - box a b)" proof - let ?A = "\((\k. {x. x\k = a\k} \ {x::'a. x\k = b\k}) ` Basis)" have "negligible ?A" by (force simp add: negligible_Union[OF finite_imageI]) moreover have "cbox a b - box a b \ ?A" by (force simp add: mem_box) ultimately show ?thesis by (rule negligible_subset) qed lemma has_integral_spike_interior: assumes f: "(f has_integral y) (cbox a b)" and gf: "\x. x \ box a b \ g x = f x" shows "(g has_integral y) (cbox a b)" - apply (rule has_integral_spike[OF negligible_frontier_interval _ f]) - using gf by auto - + by (meson Diff_iff gf has_integral_spike[OF negligible_frontier_interval _ f]) + lemma has_integral_spike_interior_eq: assumes "\x. x \ box a b \ g x = f x" shows "(f has_integral y) (cbox a b) \ (g has_integral y) (cbox a b)" by (metis assms has_integral_spike_interior) lemma integrable_spike_interior: assumes "\x. x \ box a b \ g x = f x" and "f integrable_on cbox a b" shows "g integrable_on cbox a b" using assms has_integral_spike_interior_eq by blast subsection \Integrability of continuous functions\ lemma operative_approximableI: fixes f :: "'b::euclidean_space \ 'a::banach" assumes "0 \ e" shows "operative conj True (\i. \g. (\x\i. norm (f x - g (x::'b)) \ e) \ g integrable_on i)" proof - interpret comm_monoid conj True by standard auto show ?thesis proof (standard, safe) fix a b :: 'b show "\g. (\x\cbox a b. norm (f x - g x) \ e) \ g integrable_on cbox a b" if "box a b = {}" for a b - apply (rule_tac x=f in exI) - using assms that by (auto simp: content_eq_0_interior) + using assms that + by (metis content_eq_0_interior integrable_on_null interior_cbox norm_zero right_minus_eq) { fix c g and k :: 'b assume fg: "\x\cbox a b. norm (f x - g x) \ e" and g: "g integrable_on cbox a b" assume k: "k \ Basis" show "\g. (\x\cbox a b \ {x. x \ k \ c}. norm (f x - g x) \ e) \ g integrable_on cbox a b \ {x. x \ k \ c}" "\g. (\x\cbox a b \ {x. c \ x \ k}. norm (f x - g x) \ e) \ g integrable_on cbox a b \ {x. c \ x \ k}" - apply (rule_tac[!] x=g in exI) - using fg integrable_split[OF g k] by auto + using fg g k by auto } show "\g. (\x\cbox a b. norm (f x - g x) \ e) \ g integrable_on cbox a b" if fg1: "\x\cbox a b \ {x. x \ k \ c}. norm (f x - g1 x) \ e" and g1: "g1 integrable_on cbox a b \ {x. x \ k \ c}" and fg2: "\x\cbox a b \ {x. c \ x \ k}. norm (f x - g2 x) \ e" and g2: "g2 integrable_on cbox a b \ {x. c \ x \ k}" and k: "k \ Basis" for c k g1 g2 proof - let ?g = "\x. if x\k = c then f x else if x\k \ c then g1 x else g2 x" show "\g. (\x\cbox a b. norm (f x - g x) \ e) \ g integrable_on cbox a b" proof (intro exI conjI ballI) show "norm (f x - ?g x) \ e" if "x \ cbox a b" for x by (auto simp: that assms fg1 fg2) show "?g integrable_on cbox a b" proof - have "?g integrable_on cbox a b \ {x. x \ k \ c}" "?g integrable_on cbox a b \ {x. x \ k \ c}" by(rule integrable_spike[OF _ negligible_standard_hyperplane[of k c]], use k g1 g2 in auto)+ with has_integral_split[OF _ _ k] show ?thesis unfolding integrable_on_def by blast qed qed qed qed qed lemma comm_monoid_set_F_and: "comm_monoid_set.F (\) True f s \ (finite s \ (\x\s. f x))" proof - interpret bool: comm_monoid_set \(\)\ True .. show ?thesis by (induction s rule: infinite_finite_induct) auto qed lemma approximable_on_division: fixes f :: "'b::euclidean_space \ 'a::banach" assumes "0 \ e" and d: "d division_of (cbox a b)" and f: "\i\d. \g. (\x\i. norm (f x - g x) \ e) \ g integrable_on i" obtains g where "\x\cbox a b. norm (f x - g x) \ e" "g integrable_on cbox a b" proof - interpret operative conj True "\i. \g. (\x\i. norm (f x - g (x::'b)) \ e) \ g integrable_on i" using \0 \ e\ by (rule operative_approximableI) from f local.division [OF d] that show thesis by auto qed lemma integrable_continuous: fixes f :: "'b::euclidean_space \ 'a::banach" assumes "continuous_on (cbox a b) f" shows "f integrable_on cbox a b" proof (rule integrable_uniform_limit) fix e :: real assume e: "e > 0" then obtain d where "0 < d" and d: "\x x'. \x \ cbox a b; x' \ cbox a b; dist x' x < d\ \ dist (f x') (f x) < e" using compact_uniformly_continuous[OF assms compact_cbox] unfolding uniformly_continuous_on_def by metis obtain p where ptag: "p tagged_division_of cbox a b" and finep: "(\x. ball x d) fine p" using fine_division_exists[OF gauge_ball[OF \0 < d\], of a b] . have *: "\i\snd ` p. \g. (\x\i. norm (f x - g x) \ e) \ g integrable_on i" proof (safe, unfold snd_conv) fix x l assume as: "(x, l) \ p" obtain a b where l: "l = cbox a b" using as ptag by blast then have x: "x \ cbox a b" using as ptag by auto show "\g. (\x\l. norm (f x - g x) \ e) \ g integrable_on l" - apply (rule_tac x="\y. f x" in exI) - proof safe + proof (intro exI conjI strip) show "(\y. f x) integrable_on l" unfolding integrable_on_def l by blast next fix y assume y: "y \ l" then have "y \ ball x d" using as finep by fastforce then show "norm (f y - f x) \ e" using d x y as l by (metis dist_commute dist_norm less_imp_le mem_ball ptag subsetCE tagged_division_ofD(3)) qed qed from e have "e \ 0" by auto from approximable_on_division[OF this division_of_tagged_division[OF ptag] *] show "\g. (\x\cbox a b. norm (f x - g x) \ e) \ g integrable_on cbox a b" by metis qed lemma integrable_continuous_interval: fixes f :: "'b::ordered_euclidean_space \ 'a::banach" assumes "continuous_on {a..b} f" shows "f integrable_on {a..b}" by (metis assms integrable_continuous interval_cbox) lemmas integrable_continuous_real = integrable_continuous_interval[where 'b=real] lemma integrable_continuous_closed_segment: fixes f :: "real \ 'a::banach" assumes "continuous_on (closed_segment a b) f" shows "f integrable_on (closed_segment a b)" using assms by (auto intro!: integrable_continuous_interval simp: closed_segment_eq_real_ivl) subsection \Specialization of additivity to one dimension\ subsection \A useful lemma allowing us to factor out the content size\ lemma has_integral_factor_content: "(f has_integral i) (cbox a b) \ (\e>0. \d. gauge d \ (\p. p tagged_division_of (cbox a b) \ d fine p \ norm (sum (\(x,k). content k *\<^sub>R f x) p - i) \ e * content (cbox a b)))" proof (cases "content (cbox a b) = 0") case True have "\e p. p tagged_division_of cbox a b \ norm ((\(x, k)\p. content k *\<^sub>R f x)) \ e * content (cbox a b)" unfolding sum_content_null[OF True] True by force moreover have "i = 0" if "\e. e > 0 \ \d. gauge d \ (\p. p tagged_division_of cbox a b \ d fine p \ norm ((\(x, k)\p. content k *\<^sub>R f x) - i) \ e * content (cbox a b))" using that [of 1] by (force simp add: True sum_content_null[OF True] intro: fine_division_exists[of _ a b]) ultimately show ?thesis unfolding has_integral_null_eq[OF True] by (force simp add: ) next case False then have F: "0 < content (cbox a b)" using zero_less_measure_iff by blast let ?P = "\e opp. \d. gauge d \ (\p. p tagged_division_of (cbox a b) \ d fine p \ opp (norm ((\(x, k)\p. content k *\<^sub>R f x) - i)) e)" show ?thesis - apply (subst has_integral) - proof safe + proof (subst has_integral, safe) fix e :: real assume e: "e > 0" - { assume "\e>0. ?P e (<)" - then show "?P (e * content (cbox a b)) (\)" - apply (rule allE [where x="e * content (cbox a b)"]) - apply (elim impE ex_forward conj_forward) - using F e apply (auto simp add: algebra_simps) - done } - { assume "\e>0. ?P (e * content (cbox a b)) (\)" - then show "?P e (<)" - apply (rule allE [where x="e/2 / content (cbox a b)"]) - apply (elim impE ex_forward conj_forward) - using F e apply (auto simp add: algebra_simps) - done } + show "?P (e * content (cbox a b)) (\)" if \
[rule_format]: "\\>0. ?P \ (<)" + using \
[of "e * content (cbox a b)"] + by (meson F e less_imp_le mult_pos_pos) + show "?P e (<)" if \
[rule_format]: "\\>0. ?P (\ * content (cbox a b)) (\)" + using \
[of "e/2 / content (cbox a b)"] + using F e by (force simp add: algebra_simps) qed qed lemma has_integral_factor_content_real: "(f has_integral i) {a..b::real} \ (\e>0. \d. gauge d \ (\p. p tagged_division_of {a..b} \ d fine p \ norm (sum (\(x,k). content k *\<^sub>R f x) p - i) \ e * content {a..b} ))" unfolding box_real[symmetric] by (rule has_integral_factor_content) subsection \Fundamental theorem of calculus\ lemma interval_bounds_real: fixes q b :: real assumes "a \ b" shows "Sup {a..b} = b" and "Inf {a..b} = a" using assms by auto theorem fundamental_theorem_of_calculus: fixes f :: "real \ 'a::banach" assumes "a \ b" and vecd: "\x. x \ {a..b} \ (f has_vector_derivative f' x) (at x within {a..b})" shows "(f' has_integral (f b - f a)) {a..b}" unfolding has_integral_factor_content box_real[symmetric] proof safe fix e :: real assume "e > 0" then have "\x. \d>0. x \ {a..b} \ (\y\{a..b}. norm (y-x) < d \ norm (f y - f x - (y-x) *\<^sub>R f' x) \ e * norm (y-x))" using vecd[unfolded has_vector_derivative_def has_derivative_within_alt] by blast then obtain d where d: "\x. 0 < d x" "\x y. \x \ {a..b}; y \ {a..b}; norm (y-x) < d x\ \ norm (f y - f x - (y-x) *\<^sub>R f' x) \ e * norm (y-x)" by metis show "\d. gauge d \ (\p. p tagged_division_of (cbox a b) \ d fine p \ norm ((\(x, k)\p. content k *\<^sub>R f' x) - (f b - f a)) \ e * content (cbox a b))" proof (rule exI, safe) show "gauge (\x. ball x (d x))" using d(1) gauge_ball_dependent by blast next fix p assume ptag: "p tagged_division_of cbox a b" and finep: "(\x. ball x (d x)) fine p" have ba: "b - a = (\(x,K)\p. Sup K - Inf K)" "f b - f a = (\(x,K)\p. f(Sup K) - f(Inf K))" using additive_tagged_division_1[where f= "\x. x"] additive_tagged_division_1[where f= f] \a \ b\ ptag by auto have "norm (\(x, K) \ p. (content K *\<^sub>R f' x) - (f (Sup K) - f (Inf K))) \ (\n\p. e * (case n of (x, k) \ Sup k - Inf k))" proof (rule sum_norm_le,safe) fix x K assume "(x, K) \ p" then have "x \ K" and kab: "K \ cbox a b" using ptag by blast+ then obtain u v where k: "K = cbox u v" and "x \ K" and kab: "K \ cbox a b" using ptag \(x, K) \ p\ by auto have "u \ v" using \x \ K\ unfolding k by auto have ball: "\y\K. y \ ball x (d x)" using finep \(x, K) \ p\ by blast have "u \ K" "v \ K" by (simp_all add: \u \ v\ k) have "norm ((v - u) *\<^sub>R f' x - (f v - f u)) = norm (f u - f x - (u - x) *\<^sub>R f' x - (f v - f x - (v - x) *\<^sub>R f' x))" by (auto simp add: algebra_simps) also have "... \ norm (f u - f x - (u - x) *\<^sub>R f' x) + norm (f v - f x - (v - x) *\<^sub>R f' x)" by (rule norm_triangle_ineq4) finally have "norm ((v - u) *\<^sub>R f' x - (f v - f u)) \ norm (f u - f x - (u - x) *\<^sub>R f' x) + norm (f v - f x - (v - x) *\<^sub>R f' x)" . also have "\ \ e * norm (u - x) + e * norm (v - x)" proof (rule add_mono) show "norm (f u - f x - (u - x) *\<^sub>R f' x) \ e * norm (u - x)" - apply (rule d(2)[of x u]) - using \x \ K\ kab \u \ K\ ball dist_real_def by (auto simp add:dist_real_def) + proof (rule d) + show "norm (u - x) < d x" + using \u \ K\ ball by (auto simp add: dist_real_def) + qed (use \x \ K\ \u \ K\ kab in auto) show "norm (f v - f x - (v - x) *\<^sub>R f' x) \ e * norm (v - x)" - apply (rule d(2)[of x v]) - using \x \ K\ kab \v \ K\ ball dist_real_def by (auto simp add:dist_real_def) + proof (rule d) + show "norm (v - x) < d x" + using \v \ K\ ball by (auto simp add: dist_real_def) + qed (use \x \ K\ \v \ K\ kab in auto) qed also have "\ \ e * (Sup K - Inf K)" using \x \ K\ by (auto simp: k interval_bounds_real[OF \u \ v\] field_simps) finally show "norm (content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \ e * (Sup K - Inf K)" using \u \ v\ by (simp add: k) qed with \a \ b\ show "norm ((\(x, K)\p. content K *\<^sub>R f' x) - (f b - f a)) \ e * content (cbox a b)" by (auto simp: ba split_def sum_subtractf [symmetric] sum_distrib_left) qed qed lemma ident_has_integral: fixes a::real assumes "a \ b" shows "((\x. x) has_integral (b\<^sup>2 - a\<^sup>2)/2) {a..b}" proof - have "((\x. x) has_integral inverse 2 * b\<^sup>2 - inverse 2 * a\<^sup>2) {a..b}" - apply (rule fundamental_theorem_of_calculus [OF assms]) unfolding power2_eq_square - by (rule derivative_eq_intros | simp)+ + by (rule fundamental_theorem_of_calculus [OF assms] derivative_eq_intros | simp)+ then show ?thesis by (simp add: field_simps) qed lemma integral_ident [simp]: fixes a::real assumes "a \ b" shows "integral {a..b} (\x. x) = (if a \ b then (b\<^sup>2 - a\<^sup>2)/2 else 0)" by (metis assms ident_has_integral integral_unique) lemma ident_integrable_on: fixes a::real shows "(\x. x) integrable_on {a..b}" by (metis atLeastatMost_empty_iff integrable_on_def has_integral_empty ident_has_integral) lemma integral_sin [simp]: fixes a::real assumes "a \ b" shows "integral {a..b} sin = cos a - cos b" proof - have "(sin has_integral (- cos b - - cos a)) {a..b}" proof (rule fundamental_theorem_of_calculus) show "((\a. - cos a) has_vector_derivative sin x) (at x within {a..b})" for x unfolding has_field_derivative_iff_has_vector_derivative [symmetric] by (rule derivative_eq_intros | force)+ qed (use assms in auto) then show ?thesis by (simp add: integral_unique) qed lemma integral_cos [simp]: fixes a::real assumes "a \ b" shows "integral {a..b} cos = sin b - sin a" proof - have "(cos has_integral (sin b - sin a)) {a..b}" proof (rule fundamental_theorem_of_calculus) show "(sin has_vector_derivative cos x) (at x within {a..b})" for x unfolding has_field_derivative_iff_has_vector_derivative [symmetric] by (rule derivative_eq_intros | force)+ qed (use assms in auto) then show ?thesis by (simp add: integral_unique) qed lemma has_integral_sin_nx: "((\x. sin(real_of_int n * x)) has_integral 0) {-pi..pi}" proof (cases "n = 0") case False have "((\x. sin (n * x)) has_integral (- cos (n * pi)/n - - cos (n * - pi)/n)) {-pi..pi}" proof (rule fundamental_theorem_of_calculus) show "((\x. - cos (n * x) / n) has_vector_derivative sin (n * a)) (at a within {-pi..pi})" if "a \ {-pi..pi}" for a :: real using that False - apply (simp only: has_vector_derivative_def) - apply (rule derivative_eq_intros | force)+ - done + unfolding has_vector_derivative_def + by (intro derivative_eq_intros | force)+ qed auto then show ?thesis by simp qed auto lemma integral_sin_nx: "integral {-pi..pi} (\x. sin(x * real_of_int n)) = 0" using has_integral_sin_nx [of n] by (force simp: mult.commute) lemma has_integral_cos_nx: "((\x. cos(real_of_int n * x)) has_integral (if n = 0 then 2 * pi else 0)) {-pi..pi}" proof (cases "n = 0") case True then show ?thesis using has_integral_const_real [of "1::real" "-pi" pi] by auto next case False have "((\x. cos (n * x)) has_integral (sin (n * pi)/n - sin (n * - pi)/n)) {-pi..pi}" proof (rule fundamental_theorem_of_calculus) show "((\x. sin (n * x) / n) has_vector_derivative cos (n * x)) (at x within {-pi..pi})" if "x \ {-pi..pi}" for x :: real using that False - apply (simp only: has_vector_derivative_def) - apply (rule derivative_eq_intros | force)+ - done + unfolding has_vector_derivative_def + by (intro derivative_eq_intros | force)+ qed auto with False show ?thesis by (simp add: mult.commute) qed lemma integral_cos_nx: "integral {-pi..pi} (\x. cos(x * real_of_int n)) = (if n = 0 then 2 * pi else 0)" using has_integral_cos_nx [of n] by (force simp: mult.commute) subsection \Taylor series expansion\ lemma mvt_integral: fixes f::"'a::real_normed_vector\'b::banach" assumes f'[derivative_intros]: "\x. x \ S \ (f has_derivative f' x) (at x within S)" assumes line_in: "\t. t \ {0..1} \ x + t *\<^sub>R y \ S" shows "f (x + y) - f x = integral {0..1} (\t. f' (x + t *\<^sub>R y) y)" (is ?th1) proof - from assms have subset: "(\xa. x + xa *\<^sub>R y) ` {0..1} \ S" by auto note [derivative_intros] = has_derivative_subset[OF _ subset] has_derivative_in_compose[where f="(\xa. x + xa *\<^sub>R y)" and g = f] note [continuous_intros] = continuous_on_compose2[where f="(\xa. x + xa *\<^sub>R y)"] continuous_on_subset[OF _ subset] have "\t. t \ {0..1} \ ((\t. f (x + t *\<^sub>R y)) has_vector_derivative f' (x + t *\<^sub>R y) y) (at t within {0..1})" using assms by (auto simp: has_vector_derivative_def linear_cmul[OF has_derivative_linear[OF f'], symmetric] intro!: derivative_eq_intros) from fundamental_theorem_of_calculus[rule_format, OF _ this] show ?th1 by (auto intro!: integral_unique[symmetric]) qed lemma (in bounded_bilinear) sum_prod_derivatives_has_vector_derivative: assumes "p>0" and f0: "Df 0 = f" and Df: "\m t. m < p \ a \ t \ t \ b \ (Df m has_vector_derivative Df (Suc m) t) (at t within {a..b})" and g0: "Dg 0 = g" and Dg: "\m t. m < p \ a \ t \ t \ b \ (Dg m has_vector_derivative Dg (Suc m) t) (at t within {a..b})" and ivl: "a \ t" "t \ b" shows "((\t. \iR prod (Df i t) (Dg (p - Suc i) t)) has_vector_derivative prod (f t) (Dg p t) - (-1)^p *\<^sub>R prod (Df p t) (g t)) (at t within {a..b})" using assms proof cases assume p: "p \ 1" define p' where "p' = p - 2" from assms p have p': "{..i. i \ p' \ Suc (Suc p' - i) = (Suc (Suc p') - i)" by auto let ?f = "\i. (-1) ^ i *\<^sub>R (prod (Df i t) (Dg ((p - i)) t))" have "(\iR (prod (Df i t) (Dg (Suc (p - Suc i)) t) + prod (Df (Suc i) t) (Dg (p - Suc i) t))) = (\i\(Suc p'). ?f i - ?f (Suc i))" by (auto simp: algebra_simps p'(2) numeral_2_eq_2 * lessThan_Suc_atMost) also note sum_telescope finally have "(\iR (prod (Df i t) (Dg (Suc (p - Suc i)) t) + prod (Df (Suc i) t) (Dg (p - Suc i) t))) = prod (f t) (Dg p t) - (- 1) ^ p *\<^sub>R prod (Df p t) (g t)" unfolding p'[symmetric] by (simp add: assms) thus ?thesis using assms by (auto intro!: derivative_eq_intros has_vector_derivative) qed (auto intro!: derivative_eq_intros has_vector_derivative) lemma fixes f::"real\'a::banach" assumes "p>0" and f0: "Df 0 = f" and Df: "\m t. m < p \ a \ t \ t \ b \ (Df m has_vector_derivative Df (Suc m) t) (at t within {a..b})" and ivl: "a \ b" defines "i \ \x. ((b - x) ^ (p - 1) / fact (p - 1)) *\<^sub>R Df p x" shows Taylor_has_integral: "(i has_integral f b - (\iR Df i a)) {a..b}" and Taylor_integral: "f b = (\iR Df i a) + integral {a..b} i" and Taylor_integrable: "i integrable_on {a..b}" proof goal_cases case 1 interpret bounded_bilinear "scaleR::real\'a\'a" by (rule bounded_bilinear_scaleR) define g where "g s = (b - s)^(p - 1)/fact (p - 1)" for s define Dg where [abs_def]: "Dg n s = (if n < p then (-1)^n * (b - s)^(p - 1 - n) / fact (p - 1 - n) else 0)" for n s have g0: "Dg 0 = g" using \p > 0\ by (auto simp add: Dg_def field_split_simps g_def split: if_split_asm) { fix m assume "p > Suc m" hence "p - Suc m = Suc (p - Suc (Suc m))" by auto hence "real (p - Suc m) * fact (p - Suc (Suc m)) = fact (p - Suc m)" by auto } note fact_eq = this have Dg: "\m t. m < p \ a \ t \ t \ b \ (Dg m has_vector_derivative Dg (Suc m) t) (at t within {a..b})" unfolding Dg_def by (auto intro!: derivative_eq_intros simp: has_vector_derivative_def fact_eq field_split_simps) let ?sum = "\t. \iR Dg i t *\<^sub>R Df (p - Suc i) t" from sum_prod_derivatives_has_vector_derivative[of _ Dg _ _ _ Df, OF \p > 0\ g0 Dg f0 Df] have deriv: "\t. a \ t \ t \ b \ (?sum has_vector_derivative g t *\<^sub>R Df p t - (- 1) ^ p *\<^sub>R Dg p t *\<^sub>R f t) (at t within {a..b})" by auto from fundamental_theorem_of_calculus[rule_format, OF \a \ b\ deriv] have "(i has_integral ?sum b - ?sum a) {a..b}" using atLeastatMost_empty'[simp del] by (simp add: i_def g_def Dg_def) also have one: "(- 1) ^ p' * (- 1) ^ p' = (1::real)" and "{.. {i. p = Suc i} = {p - 1}" for p' using \p > 0\ by (auto simp: power_mult_distrib[symmetric]) then have "?sum b = f b" using Suc_pred'[OF \p > 0\] by (simp add: diff_eq_eq Dg_def power_0_left le_Suc_eq if_distrib if_distribR sum.If_cases f0) also have "{..x. p - x - 1) ` {.. (\x. p - x - 1) ` {..iR Df i a)" by (rule sum.reindex_cong) (auto simp add: inj_on_def Dg_def one) finally show c: ?case . case 2 show ?case using c integral_unique by (metis (lifting) add.commute diff_eq_eq integral_unique) case 3 show ?case using c by force qed subsection \Only need trivial subintervals if the interval itself is trivial\ proposition division_of_nontrivial: fixes \ :: "'a::euclidean_space set set" assumes sdiv: "\ division_of (cbox a b)" and cont0: "content (cbox a b) \ 0" shows "{k. k \ \ \ content k \ 0} division_of (cbox a b)" using sdiv proof (induction "card \" arbitrary: \ rule: less_induct) case less note \ = division_ofD[OF less.prems] { presume *: "{k \ \. content k \ 0} \ \ \ ?case" then show ?case using less.prems by fastforce } assume noteq: "{k \ \. content k \ 0} \ \" then obtain K c d where "K \ \" and contk: "content K = 0" and keq: "K = cbox c d" using \(4) by blast then have "card \ > 0" unfolding card_gt_0_iff using less by auto then have card: "card (\ - {K}) < card \" using less \K \ \\ by (simp add: \(1)) have closed: "closed (\(\ - {K}))" using less.prems by auto have "x islimpt \(\ - {K})" if "x \ K" for x unfolding islimpt_approachable proof (intro allI impI) fix e::real assume "e > 0" obtain i where i: "c\i = d\i" "i\Basis" using contk \(3) [OF \K \ \\] unfolding box_ne_empty keq by (meson content_eq_0 dual_order.antisym) then have xi: "x\i = d\i" using \x \ K\ unfolding keq mem_box by (metis antisym) define y where "y = (\j\Basis. (if j = i then if c\i \ (a\i + b\i)/2 then c\i + min e (b\i - c\i)/2 else c\i - min e (c\i - a\i)/2 else x\j) *\<^sub>R j)" show "\x'\\(\ - {K}). x' \ x \ dist x' x < e" proof (intro bexI conjI) have "d \ cbox c d" using \(3)[OF \K \ \\] by (simp add: box_ne_empty(1) keq mem_box(2)) then have "d \ cbox a b" using \(2)[OF \K \ \\] by (auto simp: keq) then have di: "a \ i \ d \ i \ d \ i \ b \ i" using \i \ Basis\ mem_box(2) by blast then have xyi: "y\i \ x\i" unfolding y_def i xi using \e > 0\ cont0 \i \ Basis\ by (auto simp: content_eq_0 elim!: ballE[of _ _ i]) then show "y \ x" unfolding euclidean_eq_iff[where 'a='a] using i by auto have "norm (y-x) \ (\b\Basis. \(y - x) \ b\)" by (rule norm_le_l1) also have "... = \(y - x) \ i\ + (\b \ Basis - {i}. \(y - x) \ b\)" by (meson finite_Basis i(2) sum.remove) also have "... < e + sum (\i. 0) Basis" proof (rule add_less_le_mono) show "\(y-x) \ i\ < e" using di \e > 0\ y_def i xi by (auto simp: inner_simps) show "(\i\Basis - {i}. \(y-x) \ i\) \ (\i\Basis. 0)" unfolding y_def by (auto simp: inner_simps) qed finally have "norm (y-x) < e + sum (\i. 0) Basis" . then show "dist y x < e" unfolding dist_norm by auto have "y \ K" unfolding keq mem_box using i(1) i(2) xi xyi by fastforce moreover have "y \ \\" using subsetD[OF \(2)[OF \K \ \\] \x \ K\] \e > 0\ di i by (auto simp: \ mem_box y_def field_simps elim!: ballE[of _ _ i]) ultimately show "y \ \(\ - {K})" by auto qed qed then have "K \ \(\ - {K})" using closed closed_limpt by blast then have "\(\ - {K}) = cbox a b" unfolding \(6)[symmetric] by auto then have "\ - {K} division_of cbox a b" by (metis Diff_subset less.prems division_of_subset \(6)) then have "{ka \ \ - {K}. content ka \ 0} division_of (cbox a b)" using card less.hyps by blast moreover have "{ka \ \ - {K}. content ka \ 0} = {K \ \. content K \ 0}" using contk by auto ultimately show ?case by auto qed subsection \Integrability on subintervals\ lemma operative_integrableI: fixes f :: "'b::euclidean_space \ 'a::banach" assumes "0 \ e" shows "operative conj True (\i. f integrable_on i)" proof - interpret comm_monoid conj True - by standard auto - have 1: "\a b. box a b = {} \ f integrable_on cbox a b" - by (simp add: content_eq_0_interior integrable_on_null) - have 2: "\a b c k. - \k \ Basis; - f integrable_on cbox a b \ {x. x \ k \ c}; - f integrable_on cbox a b \ {x. c \ x \ k}\ - \ f integrable_on cbox a b" - unfolding integrable_on_def by (auto intro!: has_integral_split) + proof qed show ?thesis - apply standard - using 1 2 by blast+ + proof + show "\a b. box a b = {} \ (f integrable_on cbox a b) = True" + by (simp add: content_eq_0_interior integrable_on_null) + show "\a b c k. + k \ Basis \ + (f integrable_on cbox a b) \ + (f integrable_on cbox a b \ {x. x \ k \ c} \ f integrable_on cbox a b \ {x. c \ x \ k})" + unfolding integrable_on_def by (auto intro!: has_integral_split) + qed qed lemma integrable_subinterval: fixes f :: "'b::euclidean_space \ 'a::banach" assumes f: "f integrable_on cbox a b" and cd: "cbox c d \ cbox a b" shows "f integrable_on cbox c d" proof - interpret operative conj True "\i. f integrable_on i" using order_refl by (rule operative_integrableI) show ?thesis proof (cases "cbox c d = {}") case True then show ?thesis using division [symmetric] f by (auto simp: comm_monoid_set_F_and) next case False then show ?thesis by (metis cd comm_monoid_set_F_and division division_of_finite f partial_division_extend_1) qed qed lemma integrable_subinterval_real: fixes f :: "real \ 'a::banach" assumes "f integrable_on {a..b}" and "{c..d} \ {a..b}" shows "f integrable_on {c..d}" by (metis assms box_real(2) integrable_subinterval) subsection \Combining adjacent intervals in 1 dimension\ lemma has_integral_combine: fixes a b c :: real and j :: "'a::banach" assumes "a \ c" and "c \ b" and ac: "(f has_integral i) {a..c}" and cb: "(f has_integral j) {c..b}" shows "(f has_integral (i + j)) {a..b}" proof - interpret operative_real "lift_option plus" "Some 0" "\i. if f integrable_on i then Some (integral i f) else None" using operative_integralI by (rule operative_realI) from \a \ c\ \c \ b\ ac cb coalesce_less_eq have *: "lift_option (+) (if f integrable_on {a..c} then Some (integral {a..c} f) else None) (if f integrable_on {c..b} then Some (integral {c..b} f) else None) = (if f integrable_on {a..b} then Some (integral {a..b} f) else None)" by (auto simp: split: if_split_asm) then have "f integrable_on cbox a b" using ac cb by (auto split: if_split_asm) with * show ?thesis using ac cb by (auto simp add: integrable_on_def integral_unique split: if_split_asm) qed lemma integral_combine: fixes f :: "real \ 'a::banach" assumes "a \ c" and "c \ b" and ab: "f integrable_on {a..b}" shows "integral {a..c} f + integral {c..b} f = integral {a..b} f" proof - have "(f has_integral integral {a..c} f) {a..c}" using ab \c \ b\ integrable_subinterval_real by fastforce moreover have "(f has_integral integral {c..b} f) {c..b}" using ab \a \ c\ integrable_subinterval_real by fastforce ultimately have "(f has_integral integral {a..c} f + integral {c..b} f) {a..b}" using \a \ c\ \c \ b\ has_integral_combine by blast then show ?thesis by (simp add: has_integral_integrable_integral) qed lemma integrable_combine: fixes f :: "real \ 'a::banach" assumes "a \ c" and "c \ b" and "f integrable_on {a..c}" and "f integrable_on {c..b}" shows "f integrable_on {a..b}" using assms unfolding integrable_on_def by (auto intro!: has_integral_combine) lemma integral_minus_sets: fixes f::"real \ 'a::banach" shows "c \ a \ c \ b \ f integrable_on {c .. max a b} \ integral {c .. a} f - integral {c .. b} f = (if a \ b then - integral {a .. b} f else integral {b .. a} f)" using integral_combine[of c a b f] integral_combine[of c b a f] by (auto simp: algebra_simps max_def) lemma integral_minus_sets': fixes f::"real \ 'a::banach" shows "c \ a \ c \ b \ f integrable_on {min a b .. c} \ integral {a .. c} f - integral {b .. c} f = (if a \ b then integral {a .. b} f else - integral {b .. a} f)" using integral_combine[of b a c f] integral_combine[of a b c f] by (auto simp: algebra_simps min_def) subsection \Reduce integrability to "local" integrability\ lemma integrable_on_little_subintervals: fixes f :: "'b::euclidean_space \ 'a::banach" assumes "\x\cbox a b. \d>0. \u v. x \ cbox u v \ cbox u v \ ball x d \ cbox u v \ cbox a b \ f integrable_on cbox u v" shows "f integrable_on cbox a b" proof - interpret operative conj True "\i. f integrable_on i" using order_refl by (rule operative_integrableI) have "\x. \d>0. x\cbox a b \ (\u v. x \ cbox u v \ cbox u v \ ball x d \ cbox u v \ cbox a b \ f integrable_on cbox u v)" using assms by (metis zero_less_one) then obtain d where d: "\x. 0 < d x" "\x u v. \x \ cbox a b; x \ cbox u v; cbox u v \ ball x (d x); cbox u v \ cbox a b\ \ f integrable_on cbox u v" by metis obtain p where p: "p tagged_division_of cbox a b" "(\x. ball x (d x)) fine p" using fine_division_exists[OF gauge_ball_dependent,of d a b] d(1) by blast then have sndp: "snd ` p division_of cbox a b" by (metis division_of_tagged_division) have "f integrable_on k" if "(x, k) \ p" for x k using tagged_division_ofD(2-4)[OF p(1) that] fineD[OF p(2) that] d[of x] by auto then show ?thesis unfolding division [symmetric, OF sndp] comm_monoid_set_F_and by auto qed subsection \Second FTC or existence of antiderivative\ lemma integrable_const[intro]: "(\x. c) integrable_on cbox a b" unfolding integrable_on_def by blast lemma integral_has_vector_derivative_continuous_at: fixes f :: "real \ 'a::banach" assumes f: "f integrable_on {a..b}" and x: "x \ {a..b} - S" and "finite S" and fx: "continuous (at x within ({a..b} - S)) f" shows "((\u. integral {a..u} f) has_vector_derivative f x) (at x within ({a..b} - S))" proof - let ?I = "\a b. integral {a..b} f" { fix e::real assume "e > 0" obtain d where "d>0" and d: "\x'. \x' \ {a..b} - S; \x' - x\ < d\ \ norm(f x' - f x) \ e" using \e>0\ fx by (auto simp: continuous_within_eps_delta dist_norm less_imp_le) - have "norm (integral {a..y} f - integral {a..x} f - (y-x) *\<^sub>R f x) \ e * \y - x\" + have "norm (integral {a..y} f - integral {a..x} f - (y-x) *\<^sub>R f x) \ e * \y - x\" (is "?lhs \ ?rhs") if y: "y \ {a..b} - S" and yx: "\y - x\ < d" for y proof (cases "y < x") case False have "f integrable_on {a..y}" using f y by (simp add: integrable_subinterval_real) then have Idiff: "?I a y - ?I a x = ?I x y" using False x by (simp add: algebra_simps integral_combine) have fux_int: "((\u. f u - f x) has_integral integral {x..y} f - (y-x) *\<^sub>R f x) {x..y}" - apply (rule has_integral_diff) - using x y apply (auto intro: integrable_integral [OF integrable_subinterval_real [OF f]]) - using has_integral_const_real [of "f x" x y] False - apply simp - done - have "\xa. y - x < d \ (\x'. a \ x' \ x' \ b \ x' \ S \ \x' - x\ < d \ norm (f x' - f x) \ e) \ 0 < e \ xa \ S \ a \ x \ x \ S \ y \ b \ y \ S \ x \ xa \ xa \ y \ norm (f xa - f x) \ e" - using assms by auto - show ?thesis - using False - apply (simp add: abs_eq_content del: content_real_if measure_lborel_Icc) - apply (rule has_integral_bound_real[where f="(\u. f u - f x)"]) - using yx False d x y \e>0\ assms by (auto simp: Idiff fux_int) + proof (rule has_integral_diff) + show "(f has_integral integral {x..y} f) {x..y}" + using x y by (auto intro: integrable_integral [OF integrable_subinterval_real [OF f]]) + show "((\u. f x) has_integral (y - x) *\<^sub>R f x) {x..y}" + using has_integral_const_real [of "f x" x y] False by simp + qed + have "?lhs \ e * content {x..y}" + using yx False d x y \e>0\ assms + by (intro has_integral_bound_real[where f="(\u. f u - f x)"]) (auto simp: Idiff fux_int) + also have "... \ ?rhs" + using False by auto + finally show ?thesis . next case True have "f integrable_on {a..x}" using f x by (simp add: integrable_subinterval_real) then have Idiff: "?I a x - ?I a y = ?I y x" using True x y by (simp add: algebra_simps integral_combine) have fux_int: "((\u. f u - f x) has_integral integral {y..x} f - (x - y) *\<^sub>R f x) {y..x}" - apply (rule has_integral_diff) - using x y apply (auto intro: integrable_integral [OF integrable_subinterval_real [OF f]]) - using has_integral_const_real [of "f x" y x] True - apply simp - done - have "norm (integral {a..x} f - integral {a..y} f - (x - y) *\<^sub>R f x) \ e * \y - x\" - using True - apply (simp add: abs_eq_content del: content_real_if measure_lborel_Icc) - apply (rule has_integral_bound_real[where f="(\u. f u - f x)"]) - using yx True d x y \e>0\ assms by (auto simp: Idiff fux_int) + proof (rule has_integral_diff) + show "(f has_integral integral {y..x} f) {y..x}" + using x y by (auto intro: integrable_integral [OF integrable_subinterval_real [OF f]]) + show "((\u. f x) has_integral (x - y) *\<^sub>R f x) {y..x}" + using has_integral_const_real [of "f x" y x] True by simp + qed + have "norm (integral {a..x} f - integral {a..y} f - (x - y) *\<^sub>R f x) \ e * content {y..x}" + using yx True d x y \e>0\ assms + by (intro has_integral_bound_real[where f="(\u. f u - f x)"]) (auto simp: Idiff fux_int) + also have "... \ e * \y - x\" + using True by auto + finally have "norm (integral {a..x} f - integral {a..y} f - (x - y) *\<^sub>R f x) \ e * \y - x\" . then show ?thesis by (simp add: algebra_simps norm_minus_commute) qed then have "\d>0. \y\{a..b} - S. \y - x\ < d \ norm (integral {a..y} f - integral {a..x} f - (y-x) *\<^sub>R f x) \ e * \y - x\" using \d>0\ by blast } then show ?thesis by (simp add: has_vector_derivative_def has_derivative_within_alt bounded_linear_scaleR_left) qed lemma integral_has_vector_derivative: fixes f :: "real \ 'a::banach" assumes "continuous_on {a..b} f" and "x \ {a..b}" shows "((\u. integral {a..u} f) has_vector_derivative f(x)) (at x within {a..b})" using assms integral_has_vector_derivative_continuous_at [OF integrable_continuous_real] by (fastforce simp: continuous_on_eq_continuous_within) lemma integral_has_real_derivative: assumes "continuous_on {a..b} g" assumes "t \ {a..b}" shows "((\x. integral {a..x} g) has_real_derivative g t) (at t within {a..b})" using integral_has_vector_derivative[of a b g t] assms by (auto simp: has_field_derivative_iff_has_vector_derivative) lemma antiderivative_continuous: fixes q b :: real assumes "continuous_on {a..b} f" obtains g where "\x. x \ {a..b} \ (g has_vector_derivative (f x::_::banach)) (at x within {a..b})" using integral_has_vector_derivative[OF assms] by auto subsection \Combined fundamental theorem of calculus\ lemma antiderivative_integral_continuous: fixes f :: "real \ 'a::banach" assumes "continuous_on {a..b} f" obtains g where "\u\{a..b}. \v \ {a..b}. u \ v \ (f has_integral (g v - g u)) {u..v}" proof - obtain g where g: "\x. x \ {a..b} \ (g has_vector_derivative f x) (at x within {a..b})" using antiderivative_continuous[OF assms] by metis have "(f has_integral g v - g u) {u..v}" if "u \ {a..b}" "v \ {a..b}" "u \ v" for u v proof - have "\x. x \ cbox u v \ (g has_vector_derivative f x) (at x within cbox u v)" by (metis atLeastAtMost_iff atLeastatMost_subset_iff box_real(2) g has_vector_derivative_within_subset subsetCE that(1,2)) then show ?thesis by (metis box_real(2) that(3) fundamental_theorem_of_calculus) qed then show ?thesis using that by blast qed subsection \General "twiddling" for interval-to-interval function image\ lemma has_integral_twiddle: assumes "0 < r" and hg: "\x. h(g x) = x" and gh: "\x. g(h x) = x" and contg: "\x. continuous (at x) g" and g: "\u v. \w z. g ` cbox u v = cbox w z" and h: "\u v. \w z. h ` cbox u v = cbox w z" and r: "\u v. content(g ` cbox u v) = r * content (cbox u v)" and intfi: "(f has_integral i) (cbox a b)" shows "((\x. f(g x)) has_integral (1 / r) *\<^sub>R i) (h ` cbox a b)" proof (cases "cbox a b = {}") case True then show ?thesis using intfi by auto next case False obtain w z where wz: "h ` cbox a b = cbox w z" using h by blast have inj: "inj g" "inj h" using hg gh injI by metis+ from h obtain ha hb where h_eq: "h ` cbox a b = cbox ha hb" by blast have "\d. gauge d \ (\p. p tagged_division_of h ` cbox a b \ d fine p \ norm ((\(x, k)\p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e)" if "e > 0" for e proof - have "e * r > 0" using that \0 < r\ by simp with intfi[unfolded has_integral] obtain d where "gauge d" and d: "\p. p tagged_division_of cbox a b \ d fine p \ norm ((\(x, k)\p. content k *\<^sub>R f x) - i) < e * r" by metis define d' where "d' x = g -` d (g x)" for x show ?thesis proof (rule_tac x=d' in exI, safe) show "gauge d'" using \gauge d\ continuous_open_vimage[OF _ contg] by (auto simp: gauge_def d'_def) next fix p assume ptag: "p tagged_division_of h ` cbox a b" and finep: "d' fine p" note p = tagged_division_ofD[OF ptag] have gab: "g y \ cbox a b" if "y \ K" "(x, K) \ p" for x y K by (metis hg inj(2) inj_image_mem_iff p(3) subsetCE that that) have gimp: "(\(x,K). (g x, g ` K)) ` p tagged_division_of (cbox a b) \ d fine (\(x, k). (g x, g ` k)) ` p" unfolding tagged_division_of proof safe show "finite ((\(x, k). (g x, g ` k)) ` p)" using ptag by auto show "d fine (\(x, k). (g x, g ` k)) ` p" using finep unfolding fine_def d'_def by auto next fix x k assume xk: "(x, k) \ p" show "g x \ g ` k" using p(2)[OF xk] by auto show "\u v. g ` k = cbox u v" using p(4)[OF xk] using assms(5-6) by auto fix x' K' u assume xk': "(x', K') \ p" and u: "u \ interior (g ` k)" "u \ interior (g ` K')" have "interior k \ interior K' \ {}" proof assume "interior k \ interior K' = {}" moreover have "u \ g ` (interior k \ interior K')" using interior_image_subset[OF \inj g\ contg] u unfolding image_Int[OF inj(1)] by blast ultimately show False by blast qed then have same: "(x, k) = (x', K')" using ptag xk' xk by blast then show "g x = g x'" by auto show "g u \ g ` K'"if "u \ k" for u using that same by auto show "g u \ g ` k"if "u \ K'" for u using that same by auto next fix x assume "x \ cbox a b" then have "h x \ \{k. \x. (x, k) \ p}" using p(6) by auto then obtain X y where "h x \ X" "(y, X) \ p" by blast then show "x \ \{k. \x. (x, k) \ (\(x, k). (g x, g ` k)) ` p}" - apply clarsimp - by (metis (no_types, lifting) assms(3) image_eqI pair_imageI) + by clarsimp (metis (no_types, lifting) gh image_eqI pair_imageI) qed (use gab in auto) have *: "inj_on (\(x, k). (g x, g ` k)) p" using inj(1) unfolding inj_on_def by fastforce - have "(\(x, k)\(\(x, k). (g x, g ` k)) ` p. content k *\<^sub>R f x) - i = r *\<^sub>R (\(x, k)\p. content k *\<^sub>R f (g x)) - i" (is "?l = _") - using r - apply (simp only: algebra_simps add_left_cancel scaleR_right.sum) - apply (subst sum.reindex_bij_betw[symmetric, where h="\(x, k). (g x, g ` k)" and S=p]) - apply (auto intro!: * sum.cong simp: bij_betw_def dest!: p(4)) - done - also have "\ = r *\<^sub>R ((\(x, k)\p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i)" (is "_ = ?r") + have "(\(x,K)\(\(y,L). (g y, g ` L)) ` p. content K *\<^sub>R f x) + = (\u\p. case case u of (x,K) \ (g x, g ` K) of (y,L) \ content L *\<^sub>R f y)" + by (metis (mono_tags, lifting) "*" sum.reindex_cong) + also have "... = (\(x,K)\p. r *\<^sub>R content K *\<^sub>R f (g x))" + using r by (auto intro!: * sum.cong simp: bij_betw_def dest!: p(4)) + finally + have "(\(x, K)\(\(x,K). (g x, g ` K)) ` p. content K *\<^sub>R f x) - i = r *\<^sub>R (\(x,K)\p. content K *\<^sub>R f (g x)) - i" + by (simp add: scaleR_right.sum split_def) + also have "\ = r *\<^sub>R ((\(x,K)\p. content K *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i)" using \0 < r\ by (auto simp: scaleR_diff_right) - finally have eq: "?l = ?r" . - show "norm ((\(x,K)\p. content K *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e" - using d[OF gimp] \0 < r\ by (auto simp add: eq) + finally show "norm ((\(x,K)\p. content K *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e" + using d[OF gimp] \0 < r\ by auto qed qed then show ?thesis by (auto simp: h_eq has_integral) qed subsection \Special case of a basic affine transformation\ lemma AE_lborel_inner_neq: assumes k: "k \ Basis" shows "AE x in lborel. x \ k \ c" proof - interpret finite_product_sigma_finite "\_. lborel" Basis proof qed simp - - have "emeasure lborel {x\space lborel. x \ k = c} = emeasure (\\<^sub>M j::'a\Basis. lborel) (\\<^sub>E j\Basis. if j = k then {c} else UNIV)" + have "emeasure lborel {x\space lborel. x \ k = c} + = emeasure (\\<^sub>M j::'a\Basis. lborel) (\\<^sub>E j\Basis. if j = k then {c} else UNIV)" using k by (auto simp add: lborel_eq[where 'a='a] emeasure_distr intro!: arg_cong2[where f=emeasure]) (auto simp: space_PiM PiE_iff extensional_def split: if_split_asm) also have "\ = (\j\Basis. emeasure lborel (if j = k then {c} else UNIV))" by (intro measure_times) auto also have "\ = 0" by (intro prod_zero bexI[OF _ k]) auto finally show ?thesis by (subst AE_iff_measurable[OF _ refl]) auto qed lemma content_image_stretch_interval: fixes m :: "'a::euclidean_space \ real" defines "s f x \ (\k::'a\Basis. (f k * (x\k)) *\<^sub>R k)" shows "content (s m ` cbox a b) = \\k\Basis. m k\ * content (cbox a b)" proof cases have s[measurable]: "s f \ borel \\<^sub>M borel" for f by (auto simp: s_def[abs_def]) assume m: "\k\Basis. m k \ 0" then have s_comp_s: "s (\k. 1 / m k) \ s m = id" "s m \ s (\k. 1 / m k) = id" by (auto simp: s_def[abs_def] fun_eq_iff euclidean_representation) then have "inv (s (\k. 1 / m k)) = s m" "bij (s (\k. 1 / m k))" by (auto intro: inv_unique_comp o_bij) then have eq: "s m ` cbox a b = s (\k. 1 / m k) -` cbox a b" using bij_vimage_eq_inv_image[OF \bij (s (\k. 1 / m k))\, of "cbox a b"] by auto show ?thesis using m unfolding eq measure_def by (subst lborel_affine_euclidean[where c=m and t=0]) (simp_all add: emeasure_density measurable_sets_borel[OF s] abs_prod nn_integral_cmult s_def[symmetric] emeasure_distr vimage_comp s_comp_s enn2real_mult prod_nonneg) next assume "\ (\k\Basis. m k \ 0)" then obtain k where k: "k \ Basis" "m k = 0" by auto then have [simp]: "(\k\Basis. m k) = 0" by (intro prod_zero) auto have "emeasure lborel {x\space lborel. x \ s m ` cbox a b} = 0" proof (rule emeasure_eq_0_AE) show "AE x in lborel. x \ s m ` cbox a b" using AE_lborel_inner_neq[OF \k\Basis\] proof eventually_elim show "x \ k \ 0 \ x \ s m ` cbox a b " for x using k by (auto simp: s_def[abs_def] cbox_def) qed qed then show ?thesis by (simp add: measure_def) qed lemma interval_image_affinity_interval: "\u v. (\x. m *\<^sub>R (x::'a::euclidean_space) + c) ` cbox a b = cbox u v" unfolding image_affinity_cbox by auto lemma content_image_affinity_cbox: "content((\x::'a::euclidean_space. m *\<^sub>R x + c) ` cbox a b) = \m\ ^ DIM('a) * content (cbox a b)" (is "?l = ?r") proof (cases "cbox a b = {}") case True then show ?thesis by simp next case False show ?thesis proof (cases "m \ 0") case True with \cbox a b \ {}\ have "cbox (m *\<^sub>R a + c) (m *\<^sub>R b + c) \ {}" - unfolding box_ne_empty - apply (intro ballI) - apply (erule_tac x=i in ballE) - apply (auto simp: inner_simps mult_left_mono) - done + by (simp add: box_ne_empty inner_left_distrib mult_left_mono) moreover from True have *: "\i. (m *\<^sub>R b + c) \ i - (m *\<^sub>R a + c) \ i = m *\<^sub>R (b-a) \ i" by (simp add: inner_simps field_simps) ultimately show ?thesis by (simp add: image_affinity_cbox True content_cbox' prod.distrib inner_diff_left) next case False with \cbox a b \ {}\ have "cbox (m *\<^sub>R b + c) (m *\<^sub>R a + c) \ {}" - unfolding box_ne_empty - apply (intro ballI) - apply (erule_tac x=i in ballE) - apply (auto simp: inner_simps mult_left_mono) - done + by (simp add: box_ne_empty inner_left_distrib mult_left_mono) moreover from False have *: "\i. (m *\<^sub>R a + c) \ i - (m *\<^sub>R b + c) \ i = (-m) *\<^sub>R (b-a) \ i" by (simp add: inner_simps field_simps) ultimately show ?thesis using False by (simp add: image_affinity_cbox content_cbox' prod.distrib[symmetric] inner_diff_left flip: prod_constant) qed qed lemma has_integral_affinity: fixes a :: "'a::euclidean_space" assumes "(f has_integral i) (cbox a b)" and "m \ 0" - shows "((\x. f(m *\<^sub>R x + c)) has_integral ((1 / (\m\ ^ DIM('a))) *\<^sub>R i)) ((\x. (1 / m) *\<^sub>R x + -((1 / m) *\<^sub>R c)) ` cbox a b)" - apply (rule has_integral_twiddle) - using assms - apply (safe intro!: interval_image_affinity_interval content_image_affinity_cbox) - apply (rule zero_less_power) - unfolding scaleR_right_distrib - apply auto - done + shows "((\x. f(m *\<^sub>R x + c)) has_integral (1 / (\m\ ^ DIM('a))) *\<^sub>R i) ((\x. (1 / m) *\<^sub>R x + -((1 / m) *\<^sub>R c)) ` cbox a b)" +proof (rule has_integral_twiddle) + show "\w z. (\x. (1 / m) *\<^sub>R x + - ((1 / m) *\<^sub>R c)) ` cbox u v = cbox w z" + "\w z. (\x. m *\<^sub>R x + c) ` cbox u v = cbox w z" for u v + using interval_image_affinity_interval by blast+ + show "content ((\x. m *\<^sub>R x + c) ` cbox u v) = \m\ ^ DIM('a) * content (cbox u v)" for u v + using content_image_affinity_cbox by blast +qed (use assms zero_less_power in \auto simp: field_simps\) lemma integrable_affinity: assumes "f integrable_on cbox a b" and "m \ 0" shows "(\x. f(m *\<^sub>R x + c)) integrable_on ((\x. (1 / m) *\<^sub>R x + -((1/m) *\<^sub>R c)) ` cbox a b)" - using assms - unfolding integrable_on_def - apply safe - apply (drule has_integral_affinity) - apply auto - done + using has_integral_affinity assms + unfolding integrable_on_def by blast lemmas has_integral_affinity01 = has_integral_affinity [of _ _ 0 "1::real", simplified] lemma integrable_on_affinity: assumes "m \ 0" "f integrable_on (cbox a b)" shows "(\x. f (m *\<^sub>R x + c)) integrable_on ((\x. (1 / m) *\<^sub>R x - ((1 / m) *\<^sub>R c)) ` cbox a b)" proof - from assms obtain I where "(f has_integral I) (cbox a b)" by (auto simp: integrable_on_def) from has_integral_affinity[OF this assms(1), of c] show ?thesis by (auto simp: integrable_on_def) qed lemma has_integral_cmul_iff: assumes "c \ 0" shows "((\x. c *\<^sub>R f x) has_integral (c *\<^sub>R I)) A \ (f has_integral I) A" using assms has_integral_cmul[of f I A c] has_integral_cmul[of "\x. c *\<^sub>R f x" "c *\<^sub>R I" A "inverse c"] by (auto simp: field_simps) lemma has_integral_affinity': fixes a :: "'a::euclidean_space" assumes "(f has_integral i) (cbox a b)" and "m > 0" shows "((\x. f(m *\<^sub>R x + c)) has_integral (i /\<^sub>R m ^ DIM('a))) (cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m))" proof (cases "cbox a b = {}") case True hence "(cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m)) = {}" using \m > 0\ unfolding box_eq_empty by (auto simp: algebra_simps) with True and assms show ?thesis by simp next case False have "((\x. f (m *\<^sub>R x + c)) has_integral (1 / \m\ ^ DIM('a)) *\<^sub>R i) ((\x. (1 / m) *\<^sub>R x + - ((1 / m) *\<^sub>R c)) ` cbox a b)" using assms by (intro has_integral_affinity) auto also have "((\x. (1 / m) *\<^sub>R x + - ((1 / m) *\<^sub>R c)) ` cbox a b) = ((\x. - ((1 / m) *\<^sub>R c) + x) ` (\x. (1 / m) *\<^sub>R x) ` cbox a b)" by (simp add: image_image algebra_simps) also have "(\x. (1 / m) *\<^sub>R x) ` cbox a b = cbox ((1 / m) *\<^sub>R a) ((1 / m) *\<^sub>R b)" using \m > 0\ False by (subst image_smult_cbox) simp_all also have "(\x. - ((1 / m) *\<^sub>R c) + x) ` \ = cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m)" by (subst cbox_translation [symmetric]) (simp add: field_simps vector_add_divide_simps) finally show ?thesis using \m > 0\ by (simp add: field_simps) qed lemma has_integral_affinity_iff: fixes f :: "'a :: euclidean_space \ 'b :: real_normed_vector" assumes "m > 0" shows "((\x. f (m *\<^sub>R x + c)) has_integral (I /\<^sub>R m ^ DIM('a))) (cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m)) \ (f has_integral I) (cbox a b)" (is "?lhs = ?rhs") proof assume ?lhs from has_integral_affinity'[OF this, of "1 / m" "-c /\<^sub>R m"] and \m > 0\ show ?rhs by (simp add: vector_add_divide_simps) (simp add: field_simps) next assume ?rhs from has_integral_affinity'[OF this, of m c] and \m > 0\ show ?lhs by simp qed subsection \Special case of stretching coordinate axes separately\ lemma has_integral_stretch: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes "(f has_integral i) (cbox a b)" and "\k\Basis. m k \ 0" shows "((\x. f (\k\Basis. (m k * (x\k))*\<^sub>R k)) has_integral ((1/ \prod m Basis\) *\<^sub>R i)) ((\x. (\k\Basis. (1 / m k * (x\k))*\<^sub>R k)) ` cbox a b)" apply (rule has_integral_twiddle[where f=f]) unfolding zero_less_abs_iff content_image_stretch_interval unfolding image_stretch_interval empty_as_interval euclidean_eq_iff[where 'a='a] using assms by auto lemma has_integral_stretch_real: fixes f :: "real \ 'b::real_normed_vector" assumes "(f has_integral i) {a..b}" and "m \ 0" shows "((\x. f (m * x)) has_integral (1 / \m\) *\<^sub>R i) ((\x. x / m) ` {a..b})" using has_integral_stretch [of f i a b "\b. m"] assms by simp lemma integrable_stretch: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes "f integrable_on cbox a b" and "\k\Basis. m k \ 0" shows "(\x::'a. f (\k\Basis. (m k * (x\k))*\<^sub>R k)) integrable_on ((\x. \k\Basis. (1 / m k * (x\k))*\<^sub>R k) ` cbox a b)" using assms unfolding integrable_on_def by (force dest: has_integral_stretch) lemma vec_lambda_eq_sum: - shows "(\ k. f k (x $ k)) = (\k\Basis. (f (axis_index k) (x \ k)) *\<^sub>R k)" - apply (simp add: Basis_vec_def cart_eq_inner_axis UNION_singleton_eq_range sum.reindex axis_eq_axis inj_on_def) - apply (simp add: vec_eq_iff axis_def if_distrib cong: if_cong) - done + "(\ k. f k (x $ k)) = (\k\Basis. (f (axis_index k) (x \ k)) *\<^sub>R k)" (is "?lhs = ?rhs") +proof - + have "?lhs = (\ k. f k (x \ axis k 1))" + by (simp add: cart_eq_inner_axis) + also have "... = (\u\UNIV. f u (x \ axis u 1) *\<^sub>R axis u 1)" + by (simp add: vec_eq_iff axis_def if_distrib cong: if_cong) + also have "... = ?rhs" + by (simp add: Basis_vec_def UNION_singleton_eq_range sum.reindex axis_eq_axis inj_on_def) + finally show ?thesis . +qed lemma has_integral_stretch_cart: fixes m :: "'n::finite \ real" assumes f: "(f has_integral i) (cbox a b)" and m: "\k. m k \ 0" shows "((\x. f(\ k. m k * x$k)) has_integral i /\<^sub>R \prod m UNIV\) ((\x. \ k. x$k / m k) ` (cbox a b))" proof - have *: "\k:: real^'n \ Basis. m (axis_index k) \ 0" using axis_index by (simp add: m) have eqp: "(\k:: real^'n \ Basis. m (axis_index k)) = prod m UNIV" by (simp add: Basis_vec_def UNION_singleton_eq_range prod.reindex axis_eq_axis inj_on_def) show ?thesis using has_integral_stretch [OF f *] vec_lambda_eq_sum [where f="\i x. m i * x"] vec_lambda_eq_sum [where f="\i x. x / m i"] by (simp add: field_simps eqp) qed lemma image_stretch_interval_cart: fixes m :: "'n::finite \ real" shows "(\x. \ k. m k * x$k) ` cbox a b = (if cbox a b = {} then {} else cbox (\ k. min (m k * a$k) (m k * b$k)) (\ k. max (m k * a$k) (m k * b$k)))" proof - have *: "(\k\Basis. min (m (axis_index k) * (a \ k)) (m (axis_index k) * (b \ k)) *\<^sub>R k) = (\ k. min (m k * a $ k) (m k * b $ k))" "(\k\Basis. max (m (axis_index k) * (a \ k)) (m (axis_index k) * (b \ k)) *\<^sub>R k) = (\ k. max (m k * a $ k) (m k * b $ k))" apply (simp_all add: Basis_vec_def cart_eq_inner_axis UNION_singleton_eq_range sum.reindex axis_eq_axis inj_on_def) apply (simp_all add: vec_eq_iff axis_def if_distrib cong: if_cong) done show ?thesis by (simp add: vec_lambda_eq_sum [where f="\i x. m i * x"] image_stretch_interval eq_cbox *) qed subsection \even more special cases\ lemma uminus_interval_vector[simp]: fixes a b :: "'a::euclidean_space" shows "uminus ` cbox a b = cbox (-b) (-a)" - apply safe - apply (simp add: mem_box(2)) - apply (rule_tac x="-x" in image_eqI) - apply (auto simp add: mem_box) - done +proof - + have "x \ uminus ` cbox a b" if "x \ cbox (- b) (- a)" for x + proof - + have "-x \ cbox a b" + using that by (auto simp: mem_box) + then show ?thesis + by force + qed + then show ?thesis + by (auto simp: mem_box) +qed lemma has_integral_reflect_lemma[intro]: assumes "(f has_integral i) (cbox a b)" shows "((\x. f(-x)) has_integral i) (cbox (-b) (-a))" using has_integral_affinity[OF assms, of "-1" 0] by auto lemma has_integral_reflect_lemma_real[intro]: assumes "(f has_integral i) {a..b::real}" shows "((\x. f(-x)) has_integral i) {-b .. -a}" using assms unfolding box_real[symmetric] by (rule has_integral_reflect_lemma) lemma has_integral_reflect[simp]: "((\x. f (-x)) has_integral i) (cbox (-b) (-a)) \ (f has_integral i) (cbox a b)" by (auto dest: has_integral_reflect_lemma) lemma has_integral_reflect_real[simp]: fixes a b::real shows "((\x. f (-x)) has_integral i) {-b..-a} \ (f has_integral i) {a..b}" by (metis has_integral_reflect interval_cbox) lemma integrable_reflect[simp]: "(\x. f(-x)) integrable_on cbox (-b) (-a) \ f integrable_on cbox a b" unfolding integrable_on_def by auto lemma integrable_reflect_real[simp]: "(\x. f(-x)) integrable_on {-b .. -a} \ f integrable_on {a..b::real}" unfolding box_real[symmetric] by (rule integrable_reflect) lemma integral_reflect[simp]: "integral (cbox (-b) (-a)) (\x. f (-x)) = integral (cbox a b) f" unfolding integral_def by auto lemma integral_reflect_real[simp]: "integral {-b .. -a} (\x. f (-x)) = integral {a..b::real} f" unfolding box_real[symmetric] by (rule integral_reflect) subsection \Stronger form of FCT; quite a tedious proof\ lemma split_minus[simp]: "(\(x, k). f x k) x - (\(x, k). g x k) x = (\(x, k). f x k - g x k) x" by (simp add: split_def) theorem fundamental_theorem_of_calculus_interior: fixes f :: "real \ 'a::real_normed_vector" assumes "a \ b" and contf: "continuous_on {a..b} f" and derf: "\x. x \ {a <..< b} \ (f has_vector_derivative f' x) (at x)" shows "(f' has_integral (f b - f a)) {a..b}" proof (cases "a = b") case True then have *: "cbox a b = {b}" "f b - f a = 0" by (auto simp add: order_antisym) with True show ?thesis by auto next case False with \a \ b\ have ab: "a < b" by arith show ?thesis unfolding has_integral_factor_content_real proof (intro allI impI) fix e :: real assume e: "e > 0" then have eba8: "(e * (b-a)) / 8 > 0" using ab by (auto simp add: field_simps) - note derf_exp = derf[unfolded has_vector_derivative_def has_derivative_at_alt] + note derf_exp = derf[unfolded has_vector_derivative_def has_derivative_at_alt, THEN conjunct2, rule_format] + thm derf_exp have bounded: "\x. x \ {a<.. bounded_linear (\u. u *\<^sub>R f' x)" - using derf_exp by simp + by (simp add: bounded_linear_scaleR_left) have "\x \ box a b. \d>0. \y. norm (y-x) < d \ norm (f y - f x - (y-x) *\<^sub>R f' x) \ e/2 * norm (y-x)" - (is "\x \ box a b. ?Q x") + (is "\x \ box a b. ?Q x") \\The explicit quantifier is required by the following step\ proof - fix x assume x: "x \ box a b" - show "?Q x" - apply (rule allE [where x="e/2", OF derf_exp [THEN conjunct2, of x]]) - using x e by auto + fix x assume "x \ box a b" + with e show "?Q x" + using derf_exp [of x "e/2"] by auto qed - from this [unfolded bgauge_existence_lemma] - obtain d where d: "\x. 0 < d x" - "\x y. \x \ box a b; norm (y-x) < d x\ - \ norm (f y - f x - (y-x) *\<^sub>R f' x) \ e/2 * norm (y-x)" - by metis + then obtain d where d: "\x. 0 < d x" + "\x y. \x \ box a b; norm (y-x) < d x\ \ norm (f y - f x - (y-x) *\<^sub>R f' x) \ e/2 * norm (y-x)" + unfolding bgauge_existence_lemma by metis have "bounded (f ` cbox a b)" using compact_cbox assms by (auto simp: compact_imp_bounded compact_continuous_image) then obtain B where "0 < B" and B: "\x. x \ f ` cbox a b \ norm x \ B" unfolding bounded_pos by metis obtain da where "0 < da" and da: "\c. \a \ c; {a..c} \ {a..b}; {a..c} \ ball a da\ \ norm (content {a..c} *\<^sub>R f' a - (f c - f a)) \ (e * (b-a)) / 4" proof - have "continuous (at a within {a..b}) f" using contf continuous_on_eq_continuous_within by force with eba8 obtain k where "0 < k" and k: "\x. \x \ {a..b}; 0 < norm (x-a); norm (x-a) < k\ \ norm (f x - f a) < e * (b-a) / 8" unfolding continuous_within Lim_within dist_norm by metis obtain l where l: "0 < l" "norm (l *\<^sub>R f' a) \ e * (b-a) / 8" proof (cases "f' a = 0") case True with ab e that show ?thesis by auto next case False - then show ?thesis - apply (rule_tac l="(e * (b-a)) / 8 / norm (f' a)" in that) - using ab e apply (auto simp add: field_simps) - done + show ?thesis + proof + show "norm ((e * (b - a) / 8 / norm (f' a)) *\<^sub>R f' a) \ e * (b - a) / 8" + "0 < e * (b - a) / 8 / norm (f' a)" + using False ab e by (auto simp add: field_simps) + qed qed have "norm (content {a..c} *\<^sub>R f' a - (f c - f a)) \ e * (b-a) / 4" if "a \ c" "{a..c} \ {a..b}" and bmin: "{a..c} \ ball a (min k l)" for c proof - have minkl: "\a - x\ < min k l" if "x \ {a..c}" for x using bmin dist_real_def that by auto then have lel: "\c - a\ \ \l\" using that by force have "norm ((c - a) *\<^sub>R f' a - (f c - f a)) \ norm ((c - a) *\<^sub>R f' a) + norm (f c - f a)" by (rule norm_triangle_ineq4) also have "\ \ e * (b-a) / 8 + e * (b-a) / 8" proof (rule add_mono) have "norm ((c - a) *\<^sub>R f' a) \ norm (l *\<^sub>R f' a)" by (auto intro: mult_right_mono [OF lel]) also have "... \ e * (b-a) / 8" by (rule l) finally show "norm ((c - a) *\<^sub>R f' a) \ e * (b-a) / 8" . next have "norm (f c - f a) < e * (b-a) / 8" proof (cases "a = c") case True then show ?thesis using eba8 by auto next case False show ?thesis by (rule k) (use minkl \a \ c\ that False in auto) qed then show "norm (f c - f a) \ e * (b-a) / 8" by simp qed finally show "norm (content {a..c} *\<^sub>R f' a - (f c - f a)) \ e * (b-a) / 4" unfolding content_real[OF \a \ c\] by auto qed then show ?thesis by (rule_tac da="min k l" in that) (auto simp: l \0 < k\) qed obtain db where "0 < db" and db: "\c. \c \ b; {c..b} \ {a..b}; {c..b} \ ball b db\ \ norm (content {c..b} *\<^sub>R f' b - (f b - f c)) \ (e * (b-a)) / 4" proof - have "continuous (at b within {a..b}) f" using contf continuous_on_eq_continuous_within by force with eba8 obtain k where "0 < k" and k: "\x. \x \ {a..b}; 0 < norm(x-b); norm(x-b) < k\ \ norm (f b - f x) < e * (b-a) / 8" unfolding continuous_within Lim_within dist_norm norm_minus_commute by metis obtain l where l: "0 < l" "norm (l *\<^sub>R f' b) \ (e * (b-a)) / 8" proof (cases "f' b = 0") case True thus ?thesis using ab e that by auto next - case False then show ?thesis - apply (rule_tac l="(e * (b-a)) / 8 / norm (f' b)" in that) - using ab e by (auto simp add: field_simps) + case False show ?thesis + proof + show "norm ((e * (b - a) / 8 / norm (f' b)) *\<^sub>R f' b) \ e * (b - a) / 8" + "0 < e * (b - a) / 8 / norm (f' b)" + using False ab e by (auto simp add: field_simps) + qed qed have "norm (content {c..b} *\<^sub>R f' b - (f b - f c)) \ e * (b-a) / 4" if "c \ b" "{c..b} \ {a..b}" and bmin: "{c..b} \ ball b (min k l)" for c proof - have minkl: "\b - x\ < min k l" if "x \ {c..b}" for x using bmin dist_real_def that by auto then have lel: "\b - c\ \ \l\" using that by force have "norm ((b - c) *\<^sub>R f' b - (f b - f c)) \ norm ((b - c) *\<^sub>R f' b) + norm (f b - f c)" by (rule norm_triangle_ineq4) also have "\ \ e * (b-a) / 8 + e * (b-a) / 8" proof (rule add_mono) have "norm ((b - c) *\<^sub>R f' b) \ norm (l *\<^sub>R f' b)" by (auto intro: mult_right_mono [OF lel]) also have "... \ e * (b-a) / 8" by (rule l) finally show "norm ((b - c) *\<^sub>R f' b) \ e * (b-a) / 8" . next have "norm (f b - f c) < e * (b-a) / 8" proof (cases "b = c") case True with eba8 show ?thesis by auto next case False show ?thesis by (rule k) (use minkl \c \ b\ that False in auto) qed then show "norm (f b - f c) \ e * (b-a) / 8" by simp qed finally show "norm (content {c..b} *\<^sub>R f' b - (f b - f c)) \ e * (b-a) / 4" unfolding content_real[OF \c \ b\] by auto qed then show ?thesis by (rule_tac db="min k l" in that) (auto simp: l \0 < k\) qed let ?d = "(\x. ball x (if x=a then da else if x=b then db else d x))" show "\d. gauge d \ (\p. p tagged_division_of {a..b} \ d fine p \ norm ((\(x,K)\p. content K *\<^sub>R f' x) - (f b - f a)) \ e * content {a..b})" proof (rule exI, safe) show "gauge ?d" using ab \db > 0\ \da > 0\ d(1) by (auto intro: gauge_ball_dependent) next fix p assume ptag: "p tagged_division_of {a..b}" and fine: "?d fine p" let ?A = "{t. fst t \ {a, b}}" note p = tagged_division_ofD[OF ptag] have pA: "p = (p \ ?A) \ (p - ?A)" "finite (p \ ?A)" "finite (p - ?A)" "(p \ ?A) \ (p - ?A) = {}" using ptag fine by auto have le_xz: "\w x y z::real. y \ z/2 \ w - x \ z/2 \ w + y \ x + z" by arith have non: False if xk: "(x,K) \ p" and "x \ a" "x \ b" and less: "e * (Sup K - Inf K)/2 < norm (content K *\<^sub>R f' x - (f (Sup K) - f (Inf K)))" for x K proof - obtain u v where k: "K = cbox u v" using p(4) xk by blast then have "u \ v" and uv: "{u, v} \ cbox u v" using p(2)[OF xk] by auto then have result: "e * (v - u)/2 < norm ((v - u) *\<^sub>R f' x - (f v - f u))" using less[unfolded k box_real interval_bounds_real content_real] by auto then have "x \ box a b" using p(2) p(3) \x \ a\ \x \ b\ xk by fastforce with d have *: "\y. norm (y-x) < d x \ norm (f y - f x - (y-x) *\<^sub>R f' x) \ e/2 * norm (y-x)" by metis have xd: "norm (u - x) < d x" "norm (v - x) < d x" using fineD[OF fine xk] \x \ a\ \x \ b\ uv by (auto simp add: k subset_eq dist_commute dist_real_def) have "norm ((v - u) *\<^sub>R f' x - (f v - f u)) = norm ((f u - f x - (u - x) *\<^sub>R f' x) - (f v - f x - (v - x) *\<^sub>R f' x))" by (rule arg_cong[where f=norm]) (auto simp: scaleR_left.diff) also have "\ \ e/2 * norm (u - x) + e/2 * norm (v - x)" by (metis norm_triangle_le_diff add_mono * xd) also have "\ \ e/2 * norm (v - u)" using p(2)[OF xk] by (auto simp add: field_simps k) also have "\ < norm ((v - u) *\<^sub>R f' x - (f v - f u))" using result by (simp add: \u \ v\) finally have "e * (v - u)/2 < e * (v - u)/2" using uv by auto then show False by auto qed have "norm (\(x, K)\p - ?A. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \ (\(x, K)\p - ?A. norm (content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))))" by (auto intro: sum_norm_le) also have "... \ (\n\p - ?A. e * (case n of (x, k) \ Sup k - Inf k)/2)" using non by (fastforce intro: sum_mono) finally have I: "norm (\(x, k)\p - ?A. content k *\<^sub>R f' x - (f (Sup k) - f (Inf k))) \ (\n\p - ?A. e * (case n of (x, k) \ Sup k - Inf k))/2" by (simp add: sum_divide_distrib) have II: "norm (\(x, k)\p \ ?A. content k *\<^sub>R f' x - (f (Sup k) - f (Inf k))) - (\n\p \ ?A. e * (case n of (x, k) \ Sup k - Inf k)) \ (\n\p - ?A. e * (case n of (x, k) \ Sup k - Inf k))/2" proof - have ge0: "0 \ e * (Sup k - Inf k)" if xkp: "(x, k) \ p \ ?A" for x k proof - obtain u v where uv: "k = cbox u v" by (meson Int_iff xkp p(4)) with p(2) that uv have "cbox u v \ {}" by blast then show "0 \ e * ((Sup k) - (Inf k))" unfolding uv using e by (auto simp add: field_simps) qed let ?B = "\x. {t \ p. fst t = x \ content (snd t) \ 0}" let ?C = "{t \ p. fst t \ {a, b} \ content (snd t) \ 0}" have "norm (\(x, k)\p \ {t. fst t \ {a, b}}. content k *\<^sub>R f' x - (f (Sup k) - f (Inf k))) \ e * (b-a)/2" proof - have *: "\S f e. sum f S = sum f (p \ ?C) \ norm (sum f (p \ ?C)) \ e \ norm (sum f S) \ e" by auto have 1: "content K *\<^sub>R (f' x) - (f ((Sup K)) - f ((Inf K))) = 0" if "(x,K) \ p \ {t. fst t \ {a, b}} - p \ ?C" for x K proof - have xk: "(x,K) \ p" and k0: "content K = 0" using that by auto then obtain u v where uv: "K = cbox u v" using p(4) by blast then have "u = v" using xk k0 p(2) by force then show "content K *\<^sub>R (f' x) - (f ((Sup K)) - f ((Inf K))) = 0" using xk unfolding uv by auto qed have 2: "norm(\(x,K)\p \ ?C. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \ e * (b-a)/2" proof - have norm_le: "norm (sum f S) \ e" if "\x y. \x \ S; y \ S\ \ x = y" "\x. x \ S \ norm (f x) \ e" "e > 0" for S f and e :: real proof (cases "S = {}") case True with that show ?thesis by auto next case False then obtain x where "x \ S" by auto then have "S = {x}" using that(1) by auto then show ?thesis using \x \ S\ that(2) by auto qed have *: "p \ ?C = ?B a \ ?B b" by blast then have "norm (\(x,K)\p \ ?C. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) = norm (\(x,K) \ ?B a \ ?B b. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K)))" by simp also have "... = norm ((\(x,K) \ ?B a. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) + (\(x,K) \ ?B b. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))))" - apply (subst sum.union_disjoint) - using p(1) ab e by auto + using p(1) ab e by (subst sum.union_disjoint) auto also have "... \ e * (b - a) / 4 + e * (b - a) / 4" proof (rule norm_triangle_le [OF add_mono]) have pa: "\v. k = cbox a v \ a \ v" if "(a, k) \ p" for k using p(2) p(3) p(4) that by fastforce show "norm (\(x,K) \ ?B a. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \ e * (b - a) / 4" proof (intro norm_le; clarsimp) fix K K' assume K: "(a, K) \ p" "(a, K') \ p" and ne0: "content K \ 0" "content K' \ 0" with pa obtain v v' where v: "K = cbox a v" "a \ v" and v': "K' = cbox a v'" "a \ v'" by blast let ?v = "min v v'" have "box a ?v \ K \ K'" unfolding v v' by (auto simp add: mem_box) then have "interior (box a (min v v')) \ interior K \ interior K'" using interior_Int interior_mono by blast moreover have "(a + ?v)/2 \ box a ?v" using ne0 unfolding v v' content_eq_0 not_le by (auto simp add: mem_box) ultimately have "(a + ?v)/2 \ interior K \ interior K'" unfolding interior_open[OF open_box] by auto then show "K = K'" using p(5)[OF K] by auto next fix K assume K: "(a, K) \ p" and ne0: "content K \ 0" show "norm (content c *\<^sub>R f' a - (f (Sup c) - f (Inf c))) * 4 \ e * (b-a)" if "(a, c) \ p" and ne0: "content c \ 0" for c proof - obtain v where v: "c = cbox a v" and "a \ v" using pa[OF \(a, c) \ p\] by metis then have "a \ {a..v}" "v \ b" using p(3)[OF \(a, c) \ p\] by auto moreover have "{a..v} \ ball a da" using fineD[OF \?d fine p\ \(a, c) \ p\] by (simp add: v split: if_split_asm) ultimately show ?thesis unfolding v interval_bounds_real[OF \a \ v\] box_real using da \a \ v\ by auto qed qed (use ab e in auto) next have pb: "\v. k = cbox v b \ b \ v" if "(b, k) \ p" for k using p(2) p(3) p(4) that by fastforce show "norm (\(x,K) \ ?B b. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \ e * (b - a) / 4" proof (intro norm_le; clarsimp) fix K K' assume K: "(b, K) \ p" "(b, K') \ p" and ne0: "content K \ 0" "content K' \ 0" with pb obtain v v' where v: "K = cbox v b" "v \ b" and v': "K' = cbox v' b" "v' \ b" by blast let ?v = "max v v'" have "box ?v b \ K \ K'" unfolding v v' by (auto simp: mem_box) then have "interior (box (max v v') b) \ interior K \ interior K'" using interior_Int interior_mono by blast moreover have " ((b + ?v)/2) \ box ?v b" using ne0 unfolding v v' content_eq_0 not_le by (auto simp: mem_box) ultimately have "((b + ?v)/2) \ interior K \ interior K'" unfolding interior_open[OF open_box] by auto then show "K = K'" using p(5)[OF K] by auto next fix K assume K: "(b, K) \ p" and ne0: "content K \ 0" show "norm (content c *\<^sub>R f' b - (f (Sup c) - f (Inf c))) * 4 \ e * (b-a)" if "(b, c) \ p" and ne0: "content c \ 0" for c proof - obtain v where v: "c = cbox v b" and "v \ b" using \(b, c) \ p\ pb by blast then have "v \ a""b \ {v.. b}" using p(3)[OF \(b, c) \ p\] by auto moreover have "{v..b} \ ball b db" using fineD[OF \?d fine p\ \(b, c) \ p\] box_real(2) v False by force ultimately show ?thesis using db v by auto qed qed (use ab e in auto) qed also have "... = e * (b-a)/2" by simp finally show "norm (\(x,k)\p \ ?C. content k *\<^sub>R f' x - (f (Sup k) - f (Inf k))) \ e * (b-a)/2" . qed show "norm (\(x, k)\p \ ?A. content k *\<^sub>R f' x - (f ((Sup k)) - f ((Inf k)))) \ e * (b-a)/2" apply (rule * [OF sum.mono_neutral_right[OF pA(2)]]) using 1 2 by (auto simp: split_paired_all) qed also have "... = (\n\p. e * (case n of (x, k) \ Sup k - Inf k))/2" unfolding sum_distrib_left[symmetric] - apply (subst additive_tagged_division_1[OF \a \ b\ ptag]) - by auto + by (subst additive_tagged_division_1[OF \a \ b\ ptag]) auto finally have norm_le: "norm (\(x,K)\p \ {t. fst t \ {a, b}}. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \ (\n\p. e * (case n of (x, K) \ Sup K - Inf K))/2" . have le2: "\x s1 s2::real. 0 \ s1 \ x \ (s1 + s2)/2 \ x - s1 \ s2/2" by auto show ?thesis apply (rule le2 [OF sum_nonneg]) using ge0 apply force - unfolding sum.union_disjoint[OF pA(2-), symmetric] pA(1)[symmetric] - by (metis norm_le) + by (metis (no_types, lifting) Diff_Diff_Int Diff_subset norm_le p(1) sum.subset_diff) qed note * = additive_tagged_division_1[OF assms(1) ptag, symmetric] have "norm (\(x,K)\p \ ?A \ (p - ?A). content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \ e * (\(x,K)\p \ ?A \ (p - ?A). Sup K - Inf K)" unfolding sum_distrib_left unfolding sum.union_disjoint[OF pA(2-)] using le_xz norm_triangle_le I II by blast then show "norm ((\(x,K)\p. content K *\<^sub>R f' x) - (f b - f a)) \ e * content {a..b}" by (simp only: content_real[OF \a \ b\] *[of "\x. x"] *[of f] sum_subtractf[symmetric] split_minus pA(1) [symmetric]) qed qed qed subsection \Stronger form with finite number of exceptional points\ lemma fundamental_theorem_of_calculus_interior_strong: fixes f :: "real \ 'a::banach" assumes "finite S" and "a \ b" "\x. x \ {a <..< b} - S \ (f has_vector_derivative f'(x)) (at x)" and "continuous_on {a .. b} f" shows "(f' has_integral (f b - f a)) {a .. b}" using assms proof (induction arbitrary: a b) case empty then show ?case using fundamental_theorem_of_calculus_interior by force next case (insert x S) show ?case proof (cases "x \ {a<..continuous_on {a..b} f\ \a < x\ \x < b\ continuous_on_subset by (force simp: intro!: insert)+ then have "(f' has_integral f x - f a + (f b - f x)) {a..b}" using \a < x\ \x < b\ has_integral_combine less_imp_le by blast then show ?thesis by simp qed qed corollary fundamental_theorem_of_calculus_strong: fixes f :: "real \ 'a::banach" assumes "finite S" and "a \ b" and vec: "\x. x \ {a..b} - S \ (f has_vector_derivative f'(x)) (at x)" and "continuous_on {a..b} f" shows "(f' has_integral (f b - f a)) {a..b}" by (rule fundamental_theorem_of_calculus_interior_strong [OF \finite S\]) (force simp: assms)+ proposition indefinite_integral_continuous_left: fixes f:: "real \ 'a::banach" assumes intf: "f integrable_on {a..b}" and "a < c" "c \ b" "e > 0" obtains d where "d > 0" and "\t. c - d < t \ t \ c \ norm (integral {a..c} f - integral {a..t} f) < e" proof - obtain w where "w > 0" and w: "\t. \c - w < t; t < c\ \ norm (f c) * norm(c - t) < e/3" proof (cases "f c = 0") case False hence e3: "0 < e/3 / norm (f c)" using \e>0\ by simp moreover have "norm (f c) * norm (c - t) < e/3" if "t < c" and "c - e/3 / norm (f c) < t" for t proof - have "norm (c - t) < e/3 / norm (f c)" using that by auto then show "norm (f c) * norm (c - t) < e/3" by (metis e3 mult.commute norm_not_less_zero pos_less_divide_eq zero_less_divide_iff) qed ultimately show ?thesis using that by auto next case True then show ?thesis using \e > 0\ that by auto qed let ?SUM = "\p. (\(x,K) \ p. content K *\<^sub>R f x)" have e3: "e/3 > 0" using \e > 0\ by auto have "f integrable_on {a..c}" - apply (rule integrable_subinterval_real[OF intf]) - using \a < c\ \c \ b\ by auto + using \a < c\ \c \ b\ by (auto intro: integrable_subinterval_real[OF intf]) then obtain d1 where "gauge d1" and d1: "\p. \p tagged_division_of {a..c}; d1 fine p\ \ norm (?SUM p - integral {a..c} f) < e/3" using integrable_integral has_integral_real e3 by metis define d where [abs_def]: "d x = ball x w \ d1 x" for x have "gauge d" unfolding d_def using \w > 0\ \gauge d1\ by auto then obtain k where "0 < k" and k: "ball c k \ d c" by (meson gauge_def open_contains_ball) let ?d = "min k (c - a)/2" show thesis proof (intro that[of ?d] allI impI, safe) show "?d > 0" using \0 < k\ \a < c\ by auto next fix t assume t: "c - ?d < t" "t \ c" show "norm (integral ({a..c}) f - integral ({a..t}) f) < e" proof (cases "t < c") case False with \t \ c\ show ?thesis by (simp add: \e > 0\) next case True have "f integrable_on {a..t}" - apply (rule integrable_subinterval_real[OF intf]) - using \t < c\ \c \ b\ by auto + using \t < c\ \c \ b\ by (auto intro: integrable_subinterval_real[OF intf]) then obtain d2 where d2: "gauge d2" "\p. p tagged_division_of {a..t} \ d2 fine p \ norm (?SUM p - integral {a..t} f) < e/3" using integrable_integral has_integral_real e3 by metis define d3 where "d3 x = (if x \ t then d1 x \ d2 x else d1 x)" for x have "gauge d3" using \gauge d1\ \gauge d2\ unfolding d3_def gauge_def by auto then obtain p where ptag: "p tagged_division_of {a..t}" and pfine: "d3 fine p" by (metis box_real(2) fine_division_exists) note p' = tagged_division_ofD[OF ptag] have pt: "(x,K)\p \ x \ t" for x K by (meson atLeastAtMost_iff p'(2) p'(3) subsetCE) with pfine have "d2 fine p" unfolding fine_def d3_def by fastforce then have d2_fin: "norm (?SUM p - integral {a..t} f) < e/3" using d2(2) ptag by auto have eqs: "{a..c} \ {x. x \ t} = {a..t}" "{a..c} \ {x. x \ t} = {t..c}" using t by (auto simp add: field_simps) have "p \ {(c, {t..c})} tagged_division_of {a..c}" - apply (rule tagged_division_Un_interval_real[of _ _ _ 1 "t"]) - using \t \ c\ by (auto simp: eqs ptag tagged_division_of_self_real) + proof (intro tagged_division_Un_interval_real) + show "{(c, {t..c})} tagged_division_of {a..c} \ {x. t \ x \ 1}" + using \t \ c\ by (auto simp: eqs tagged_division_of_self_real) + qed (auto simp: eqs ptag) moreover have "d1 fine p \ {(c, {t..c})}" unfolding fine_def proof safe fix x K y assume "(x,K) \ p" and "y \ K" then show "y \ d1 x" by (metis Int_iff d3_def subsetD fineD pfine) next fix x assume "x \ {t..c}" then have "dist c x < k" using t(1) by (auto simp add: field_simps dist_real_def) with k show "x \ d1 c" unfolding d_def by auto qed ultimately have d1_fin: "norm (?SUM(p \ {(c, {t..c})}) - integral {a..c} f) < e/3" using d1 by metis have SUMEQ: "?SUM(p \ {(c, {t..c})}) = (c - t) *\<^sub>R f c + ?SUM p" proof - have "?SUM(p \ {(c, {t..c})}) = (content{t..c} *\<^sub>R f c) + ?SUM p" proof (subst sum.union_disjoint) show "p \ {(c, {t..c})} = {}" using \t < c\ pt by force qed (use p'(1) in auto) also have "... = (c - t) *\<^sub>R f c + ?SUM p" using \t \ c\ by auto finally show ?thesis . qed have "c - k < t" using \k>0\ t(1) by (auto simp add: field_simps) moreover have "k \ w" proof (rule ccontr) assume "\ k \ w" then have "c + (k + w) / 2 \ d c" by (auto simp add: field_simps not_le not_less dist_real_def d_def) then have "c + (k + w) / 2 \ ball c k" using k by blast then show False using \0 < w\ \\ k \ w\ dist_real_def by auto qed ultimately have cwt: "c - w < t" by (auto simp add: field_simps) have eq: "integral {a..c} f - integral {a..t} f = -(((c - t) *\<^sub>R f c + ?SUM p) - integral {a..c} f) + (?SUM p - integral {a..t} f) + (c - t) *\<^sub>R f c" by auto have "norm (integral {a..c} f - integral {a..t} f) < e/3 + e/3 + e/3" unfolding eq proof (intro norm_triangle_lt add_strict_mono) show "norm (- ((c - t) *\<^sub>R f c + ?SUM p - integral {a..c} f)) < e/3" by (metis SUMEQ d1_fin norm_minus_cancel) show "norm (?SUM p - integral {a..t} f) < e/3" using d2_fin by blast show "norm ((c - t) *\<^sub>R f c) < e/3" using w cwt \t < c\ by simp (simp add: field_simps) qed then show ?thesis by simp qed qed qed lemma indefinite_integral_continuous_right: fixes f :: "real \ 'a::banach" assumes "f integrable_on {a..b}" and "a \ c" and "c < b" and "e > 0" obtains d where "0 < d" and "\t. c \ t \ t < c + d \ norm (integral {a..c} f - integral {a..t} f) < e" proof - have intm: "(\x. f (- x)) integrable_on {-b .. -a}" "- b < - c" "- c \ - a" using assms by auto from indefinite_integral_continuous_left[OF intm \e>0\] obtain d where "0 < d" and d: "\t. \- c - d < t; t \ -c\ \ norm (integral {- b..- c} (\x. f (-x)) - integral {- b..t} (\x. f (-x))) < e" by metis let ?d = "min d (b - c)" show ?thesis proof (intro that[of "?d"] allI impI) show "0 < ?d" using \0 < d\ \c < b\ by auto fix t :: real assume t: "c \ t \ t < c + ?d" have *: "integral {a..c} f = integral {a..b} f - integral {c..b} f" "integral {a..t} f = integral {a..b} f - integral {t..b} f" - apply (simp_all only: algebra_simps) - using assms t by (auto simp: integral_combine) + using assms t by (auto simp: algebra_simps integral_combine) have "(- c) - d < (- t)" "- t \ - c" using t by auto from d[OF this] show "norm (integral {a..c} f - integral {a..t} f) < e" by (auto simp add: algebra_simps norm_minus_commute *) qed qed lemma indefinite_integral_continuous_1: fixes f :: "real \ 'a::banach" assumes "f integrable_on {a..b}" shows "continuous_on {a..b} (\x. integral {a..x} f)" proof - have "\d>0. \x'\{a..b}. dist x' x < d \ dist (integral {a..x'} f) (integral {a..x} f) < e" if x: "x \ {a..b}" and "e > 0" for x e :: real proof (cases "a = b") case True with that show ?thesis by force next case False with x have "a < b" by force with x consider "x = a" | "x = b" | "a < x" "x < b" by force then show ?thesis proof cases - case 1 show ?thesis - apply (rule indefinite_integral_continuous_right [OF assms _ \a < b\ \e > 0\], force) - using \x = a\ apply (force simp: dist_norm algebra_simps) - done + case 1 then show ?thesis + by (force simp: dist_norm algebra_simps intro: indefinite_integral_continuous_right [OF assms _ \a < b\ \e > 0\]) next - case 2 show ?thesis - apply (rule indefinite_integral_continuous_left [OF assms \a < b\ _ \e > 0\], force) - using \x = b\ apply (force simp: dist_norm norm_minus_commute algebra_simps) - done + case 2 then show ?thesis + by (force simp: dist_norm norm_minus_commute algebra_simps intro: indefinite_integral_continuous_left [OF assms \a < b\ _ \e > 0\]) next case 3 obtain d1 where "0 < d1" and d1: "\t. \x - d1 < t; t \ x\ \ norm (integral {a..x} f - integral {a..t} f) < e" using 3 by (auto intro: indefinite_integral_continuous_left [OF assms \a < x\ _ \e > 0\]) obtain d2 where "0 < d2" and d2: "\t. \x \ t; t < x + d2\ \ norm (integral {a..x} f - integral {a..t} f) < e" using 3 by (auto intro: indefinite_integral_continuous_right [OF assms _ \x < b\ \e > 0\]) show ?thesis proof (intro exI ballI conjI impI) show "0 < min d1 d2" using \0 < d1\ \0 < d2\ by simp show "dist (integral {a..y} f) (integral {a..x} f) < e" if "y \ {a..b}" "dist y x < min d1 d2" for y proof (cases "y < x") case True with that d1 show ?thesis by (auto simp: dist_commute dist_norm) next case False with that d2 show ?thesis by (auto simp: dist_commute dist_norm) qed qed qed qed then show ?thesis by (auto simp: continuous_on_iff) qed lemma indefinite_integral_continuous_1': fixes f::"real \ 'a::banach" assumes "f integrable_on {a..b}" shows "continuous_on {a..b} (\x. integral {x..b} f)" proof - have "integral {a..b} f - integral {a..x} f = integral {x..b} f" if "x \ {a..b}" for x using integral_combine[OF _ _ assms, of x] that by (auto simp: algebra_simps) with _ show ?thesis by (rule continuous_on_eq) (auto intro!: continuous_intros indefinite_integral_continuous_1 assms) qed theorem integral_has_vector_derivative': fixes f :: "real \ 'b::banach" assumes "continuous_on {a..b} f" and "x \ {a..b}" shows "((\u. integral {u..b} f) has_vector_derivative - f x) (at x within {a..b})" proof - have *: "integral {x..b} f = integral {a .. b} f - integral {a .. x} f" if "a \ x" "x \ b" for x using integral_combine[of a x b for x, OF that integrable_continuous_real[OF assms(1)]] by (simp add: algebra_simps) show ?thesis using \x \ _\ * by (rule has_vector_derivative_transform) (auto intro!: derivative_eq_intros assms integral_has_vector_derivative) qed lemma integral_has_real_derivative': assumes "continuous_on {a..b} g" assumes "t \ {a..b}" shows "((\x. integral {x..b} g) has_real_derivative -g t) (at t within {a..b})" using integral_has_vector_derivative'[OF assms] by (auto simp: has_field_derivative_iff_has_vector_derivative) subsection \This doesn't directly involve integration, but that gives an easy proof\ lemma has_derivative_zero_unique_strong_interval: fixes f :: "real \ 'a::banach" assumes "finite k" and contf: "continuous_on {a..b} f" and "f a = y" and fder: "\x. x \ {a..b} - k \ (f has_derivative (\h. 0)) (at x within {a..b})" and x: "x \ {a..b}" shows "f x = y" proof - have "a \ b" "a \ x" using assms by auto have "((\x. 0::'a) has_integral f x - f a) {a..x}" proof (rule fundamental_theorem_of_calculus_interior_strong[OF \finite k\ \a \ x\]; clarify?) have "{a..x} \ {a..b}" using x by auto then show "continuous_on {a..x} f" by (rule continuous_on_subset[OF contf]) show "(f has_vector_derivative 0) (at z)" if z: "z \ {a<.. k" for z unfolding has_vector_derivative_def proof (simp add: at_within_open[OF z, symmetric]) show "(f has_derivative (\x. 0)) (at z within {a<..Generalize a bit to any convex set\ lemma has_derivative_zero_unique_strong_convex: fixes f :: "'a::euclidean_space \ 'b::banach" assumes "convex S" "finite K" and contf: "continuous_on S f" and "c \ S" "f c = y" and derf: "\x. x \ S - K \ (f has_derivative (\h. 0)) (at x within S)" and "x \ S" shows "f x = y" proof (cases "x = c") case True with \f c = y\ show ?thesis by blast next case False let ?\ = "\u. (1 - u) *\<^sub>R c + u *\<^sub>R x" have contf': "continuous_on {0 ..1} (f \ ?\)" proof (rule continuous_intros continuous_on_subset[OF contf])+ show "(\u. (1 - u) *\<^sub>R c + u *\<^sub>R x) ` {0..1} \ S" using \convex S\ \x \ S\ \c \ S\ by (auto simp add: convex_alt algebra_simps) qed have "t = u" if "?\ t = ?\ u" for t u proof - from that have "(t - u) *\<^sub>R x = (t - u) *\<^sub>R c" by (auto simp add: algebra_simps) then show ?thesis using \x \ c\ by auto qed then have eq: "(SOME t. ?\ t = ?\ u) = u" for u by blast then have "(?\ -` K) \ (\z. SOME t. ?\ t = z) ` K" by (clarsimp simp: image_iff) (metis (no_types) eq) then have fin: "finite (?\ -` K)" by (rule finite_surj[OF \finite K\]) have derf': "((\u. f (?\ u)) has_derivative (\h. 0)) (at t within {0..1})" if "t \ {0..1} - {t. ?\ t \ K}" for t proof - have df: "(f has_derivative (\h. 0)) (at (?\ t) within ?\ ` {0..1})" - apply (rule has_derivative_within_subset [OF derf]) - using \convex S\ \x \ S\ \c \ S\ that by (auto simp add: convex_alt algebra_simps) + using \convex S\ \x \ S\ \c \ S\ that + by (auto simp add: convex_alt algebra_simps intro: has_derivative_subset [OF derf]) have "(f \ ?\ has_derivative (\x. 0) \ (\z. (0 - z *\<^sub>R c) + z *\<^sub>R x)) (at t within {0..1})" by (rule derivative_eq_intros df | simp)+ then show ?thesis unfolding o_def . qed have "(f \ ?\) 1 = y" apply (rule has_derivative_zero_unique_strong_interval[OF fin contf']) unfolding o_def using \f c = y\ derf' by auto then show ?thesis by auto qed text \Also to any open connected set with finite set of exceptions. Could generalize to locally convex set with limpt-free set of exceptions.\ lemma has_derivative_zero_unique_strong_connected: fixes f :: "'a::euclidean_space \ 'b::banach" assumes "connected S" and "open S" and "finite K" and contf: "continuous_on S f" and "c \ S" and "f c = y" and derf: "\x. x \ S - K \ (f has_derivative (\h. 0)) (at x within S)" and "x \ S" shows "f x = y" proof - have "\e>0. ball x e \ (S \ f -` {f x})" if "x \ S" for x proof - obtain e where "0 < e" and e: "ball x e \ S" using \x \ S\ \open S\ open_contains_ball by blast have "ball x e \ {u \ S. f u \ {f x}}" proof safe fix y assume y: "y \ ball x e" then show "y \ S" using e by auto show "f y = f x" proof (rule has_derivative_zero_unique_strong_convex[OF convex_ball \finite K\]) show "continuous_on (ball x e) f" using contf continuous_on_subset e by blast show "(f has_derivative (\h. 0)) (at u within ball x e)" if "u \ ball x e - K" for u - by (metis Diff_iff contra_subsetD derf e has_derivative_within_subset that) + by (metis Diff_iff contra_subsetD derf e has_derivative_subset that) qed (use y e \0 < e\ in auto) qed then show "\e>0. ball x e \ (S \ f -` {f x})" using \0 < e\ by blast qed then have "openin (top_of_set S) (S \ f -` {y})" by (auto intro!: open_openin_trans[OF \open S\] simp: open_contains_ball) moreover have "closedin (top_of_set S) (S \ f -` {y})" by (force intro!: continuous_closedin_preimage [OF contf]) ultimately have "(S \ f -` {y}) = {} \ (S \ f -` {y}) = S" using \connected S\ by (simp add: connected_clopen) then show ?thesis using \x \ S\ \f c = y\ \c \ S\ by auto qed lemma has_derivative_zero_connected_constant: fixes f :: "'a::euclidean_space \ 'b::banach" assumes "connected S" and "open S" and "finite k" and "continuous_on S f" and "\x\(S - k). (f has_derivative (\h. 0)) (at x within S)" obtains c where "\x. x \ S \ f(x) = c" proof (cases "S = {}") case True then show ?thesis by (metis empty_iff that) next case False then obtain c where "c \ S" by (metis equals0I) then show ?thesis by (metis has_derivative_zero_unique_strong_connected assms that) qed lemma DERIV_zero_connected_constant: fixes f :: "'a::{real_normed_field,euclidean_space} \ 'a" assumes "connected S" and "open S" and "finite K" and "continuous_on S f" and "\x\(S - K). DERIV f x :> 0" obtains c where "\x. x \ S \ f(x) = c" using has_derivative_zero_connected_constant [OF assms(1-4)] assms by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def) subsection \Integrating characteristic function of an interval\ lemma has_integral_restrict_open_subinterval: fixes f :: "'a::euclidean_space \ 'b::banach" assumes intf: "(f has_integral i) (cbox c d)" and cb: "cbox c d \ cbox a b" shows "((\x. if x \ box c d then f x else 0) has_integral i) (cbox a b)" proof (cases "cbox c d = {}") case True then have "box c d = {}" by (metis bot.extremum_uniqueI box_subset_cbox) then show ?thesis using True intf by auto next case False then obtain p where pdiv: "p division_of cbox a b" and inp: "cbox c d \ p" using cb partial_division_extend_1 by blast define g where [abs_def]: "g x = (if x \box c d then f x else 0)" for x interpret operative "lift_option plus" "Some (0 :: 'b)" "\i. if g integrable_on i then Some (integral i g) else None" by (fact operative_integralI) note operat = division [OF pdiv, symmetric] show ?thesis proof (cases "(g has_integral i) (cbox a b)") case True then show ?thesis by (simp add: g_def) next case False have iterate:"F (\i. if g integrable_on i then Some (integral i g) else None) (p - {cbox c d}) = Some 0" proof (intro neutral ballI) fix x assume x: "x \ p - {cbox c d}" then have "x \ p" by auto then obtain u v where uv: "x = cbox u v" using pdiv by blast have "interior x \ interior (cbox c d) = {}" using pdiv inp x by blast then have "(g has_integral 0) x" unfolding uv using has_integral_spike_interior[where f="\x. 0"] by (metis (no_types, lifting) disjoint_iff_not_equal g_def has_integral_0_eq interior_cbox) then show "(if g integrable_on x then Some (integral x g) else None) = Some 0" by auto qed interpret comm_monoid_set "lift_option plus" "Some (0 :: 'b)" by (intro comm_monoid_set.intro comm_monoid_lift_option add.comm_monoid_axioms) have intg: "g integrable_on cbox c d" using integrable_spike_interior[where f=f] by (meson g_def has_integral_integrable intf) moreover have "integral (cbox c d) g = i" proof (rule has_integral_unique[OF has_integral_spike_interior intf]) show "\x. x \ box c d \ f x = g x" by (auto simp: g_def) show "(g has_integral integral (cbox c d) g) (cbox c d)" by (rule integrable_integral[OF intg]) qed ultimately have "F (\A. if g integrable_on A then Some (integral A g) else None) p = Some i" by (metis (full_types, lifting) division_of_finite inp iterate pdiv remove right_neutral) then have "(g has_integral i) (cbox a b)" by (metis integrable_on_def integral_unique operat option.inject option.simps(3)) with False show ?thesis by blast qed qed lemma has_integral_restrict_closed_subinterval: fixes f :: "'a::euclidean_space \ 'b::banach" assumes "(f has_integral i) (cbox c d)" and "cbox c d \ cbox a b" shows "((\x. if x \ cbox c d then f x else 0) has_integral i) (cbox a b)" proof - note has_integral_restrict_open_subinterval[OF assms] note * = has_integral_spike[OF negligible_frontier_interval _ this] show ?thesis by (rule *[of c d]) (use box_subset_cbox[of c d] in auto) qed lemma has_integral_restrict_closed_subintervals_eq: fixes f :: "'a::euclidean_space \ 'b::banach" assumes "cbox c d \ cbox a b" shows "((\x. if x \ cbox c d then f x else 0) has_integral i) (cbox a b) \ (f has_integral i) (cbox c d)" (is "?l = ?r") proof (cases "cbox c d = {}") case False let ?g = "\x. if x \ cbox c d then f x else 0" show ?thesis proof assume ?l then have "?g integrable_on cbox c d" using assms has_integral_integrable integrable_subinterval by blast then have "f integrable_on cbox c d" by (rule integrable_eq) auto moreover then have "i = integral (cbox c d) f" by (meson \((\x. if x \ cbox c d then f x else 0) has_integral i) (cbox a b)\ assms has_integral_restrict_closed_subinterval has_integral_unique integrable_integral) ultimately show ?r by auto next assume ?r then show ?l by (rule has_integral_restrict_closed_subinterval[OF _ assms]) qed qed auto text \Hence we can apply the limit process uniformly to all integrals.\ lemma has_integral': fixes f :: "'n::euclidean_space \ 'a::banach" shows "(f has_integral i) S \ (\e>0. \B>0. \a b. ball 0 B \ cbox a b \ (\z. ((\x. if x \ S then f(x) else 0) has_integral z) (cbox a b) \ norm(z - i) < e))" (is "?l \ (\e>0. ?r e)") proof (cases "\a b. S = cbox a b") case False then show ?thesis by (simp add: has_integral_alt) next case True then obtain a b where S: "S = cbox a b" by blast obtain B where " 0 < B" and B: "\x. x \ cbox a b \ norm x \ B" using bounded_cbox[unfolded bounded_pos] by blast show ?thesis proof safe fix e :: real assume ?l and "e > 0" have "((\x. if x \ S then f x else 0) has_integral i) (cbox c d)" if "ball 0 (B+1) \ cbox c d" for c d unfolding S using B that by (force intro: \?l\[unfolded S] has_integral_restrict_closed_subinterval) then show "?r e" - apply (rule_tac x="B+1" in exI) - using \B>0\ \e>0\ by force + by (meson \0 < B\ \0 < e\ add_pos_pos le_less_trans zero_less_one norm_pths(2)) next assume as: "\e>0. ?r e" then obtain C where C: "\a b. ball 0 C \ cbox a b \ \z. ((\x. if x \ S then f x else 0) has_integral z) (cbox a b)" by (meson zero_less_one) define c :: 'n where "c = (\i\Basis. (- max B C) *\<^sub>R i)" define d :: 'n where "d = (\i\Basis. max B C *\<^sub>R i)" have "c \ i \ x \ i \ x \ i \ d \ i" if "norm x \ B" "i \ Basis" for x i using that and Basis_le_norm[OF \i\Basis\, of x] by (auto simp add: field_simps sum_negf c_def d_def) then have c_d: "cbox a b \ cbox c d" by (meson B mem_box(2) subsetI) have "c \ i \ x \ i \ x \ i \ d \ i" if x: "norm (0 - x) < C" and i: "i \ Basis" for x i using Basis_le_norm[OF i, of x] x i by (auto simp: sum_negf c_def d_def) then have "ball 0 C \ cbox c d" by (auto simp: mem_box dist_norm) with C obtain y where y: "(f has_integral y) (cbox a b)" using c_d has_integral_restrict_closed_subintervals_eq S by blast have "y = i" proof (rule ccontr) assume "y \ i" then have "0 < norm (y - i)" by auto from as[rule_format,OF this] obtain C where C: "\a b. ball 0 C \ cbox a b \ \z. ((\x. if x \ S then f x else 0) has_integral z) (cbox a b) \ norm (z-i) < norm (y-i)" by auto define c :: 'n where "c = (\i\Basis. (- max B C) *\<^sub>R i)" define d :: 'n where "d = (\i\Basis. max B C *\<^sub>R i)" have "c \ i \ x \ i \ x \ i \ d \ i" if "norm x \ B" and "i \ Basis" for x i using that Basis_le_norm[of i x] by (auto simp add: field_simps sum_negf c_def d_def) then have c_d: "cbox a b \ cbox c d" by (simp add: B mem_box(2) subset_eq) have "c \ i \ x \ i \ x \ i \ d \ i" if "norm (0 - x) < C" and "i \ Basis" for x i using Basis_le_norm[of i x] that by (auto simp: sum_negf c_def d_def) then have "ball 0 C \ cbox c d" by (auto simp: mem_box dist_norm) with C obtain z where z: "(f has_integral z) (cbox a b)" "norm (z-i) < norm (y-i)" using has_integral_restrict_closed_subintervals_eq[OF c_d] S by blast moreover then have "z = y" by (blast intro: has_integral_unique[OF _ y]) ultimately show False by auto qed then show ?l using y by (auto simp: S) qed qed lemma has_integral_le: fixes f :: "'n::euclidean_space \ real" assumes fg: "(f has_integral i) S" "(g has_integral j) S" and le: "\x. x \ S \ f x \ g x" shows "i \ j" using has_integral_component_le[OF _ fg, of 1] le by auto lemma integral_le: fixes f :: "'n::euclidean_space \ real" assumes "f integrable_on S" and "g integrable_on S" and "\x. x \ S \ f x \ g x" shows "integral S f \ integral S g" by (rule has_integral_le[OF assms(1,2)[unfolded has_integral_integral] assms(3)]) lemma has_integral_nonneg: fixes f :: "'n::euclidean_space \ real" assumes "(f has_integral i) S" and "\x. x \ S \ 0 \ f x" shows "0 \ i" using has_integral_component_nonneg[of 1 f i S] unfolding o_def using assms by auto lemma integral_nonneg: fixes f :: "'n::euclidean_space \ real" assumes f: "f integrable_on S" and 0: "\x. x \ S \ 0 \ f x" shows "0 \ integral S f" by (rule has_integral_nonneg[OF f[unfolded has_integral_integral] 0]) text \Hence a general restriction property.\ lemma has_integral_restrict [simp]: fixes f :: "'a :: euclidean_space \ 'b :: banach" assumes "S \ T" shows "((\x. if x \ S then f x else 0) has_integral i) T \ (f has_integral i) S" proof - have *: "\x. (if x \ T then if x \ S then f x else 0 else 0) = (if x\S then f x else 0)" using assms by auto show ?thesis apply (subst(2) has_integral') apply (subst has_integral') apply (simp add: *) done qed corollary has_integral_restrict_UNIV: fixes f :: "'n::euclidean_space \ 'a::banach" shows "((\x. if x \ s then f x else 0) has_integral i) UNIV \ (f has_integral i) s" by auto lemma has_integral_restrict_Int: fixes f :: "'a :: euclidean_space \ 'b :: banach" shows "((\x. if x \ S then f x else 0) has_integral i) T \ (f has_integral i) (S \ T)" proof - have "((\x. if x \ T then if x \ S then f x else 0 else 0) has_integral i) UNIV = ((\x. if x \ S \ T then f x else 0) has_integral i) UNIV" by (rule has_integral_cong) auto then show ?thesis using has_integral_restrict_UNIV by fastforce qed lemma integral_restrict_Int: fixes f :: "'a :: euclidean_space \ 'b :: banach" shows "integral T (\x. if x \ S then f x else 0) = integral (S \ T) f" by (metis (no_types, lifting) has_integral_cong has_integral_restrict_Int integrable_integral integral_unique not_integrable_integral) lemma integrable_restrict_Int: fixes f :: "'a :: euclidean_space \ 'b :: banach" shows "(\x. if x \ S then f x else 0) integrable_on T \ f integrable_on (S \ T)" using has_integral_restrict_Int by fastforce lemma has_integral_on_superset: fixes f :: "'n::euclidean_space \ 'a::banach" assumes f: "(f has_integral i) S" and "\x. x \ S \ f x = 0" and "S \ T" shows "(f has_integral i) T" proof - have "(\x. if x \ S then f x else 0) = (\x. if x \ T then f x else 0)" using assms by fastforce with f show ?thesis by (simp only: has_integral_restrict_UNIV [symmetric, of f]) qed lemma integrable_on_superset: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "f integrable_on S" and "\x. x \ S \ f x = 0" and "S \ t" shows "f integrable_on t" using assms unfolding integrable_on_def by (auto intro:has_integral_on_superset) lemma integral_restrict_UNIV: fixes f :: "'n::euclidean_space \ 'a::banach" shows "integral UNIV (\x. if x \ S then f x else 0) = integral S f" by (simp add: integral_restrict_Int) lemma integrable_restrict_UNIV: fixes f :: "'n::euclidean_space \ 'a::banach" shows "(\x. if x \ s then f x else 0) integrable_on UNIV \ f integrable_on s" unfolding integrable_on_def by auto lemma has_integral_subset_component_le: fixes f :: "'n::euclidean_space \ 'm::euclidean_space" assumes k: "k \ Basis" and as: "S \ T" "(f has_integral i) S" "(f has_integral j) T" "\x. x\T \ 0 \ f(x)\k" shows "i\k \ j\k" proof - - have "((\x. if x \ S then f x else 0) has_integral i) UNIV" - "((\x. if x \ T then f x else 0) has_integral j) UNIV" + have \
: "((\x. if x \ S then f x else 0) has_integral i) UNIV" + "((\x. if x \ T then f x else 0) has_integral j) UNIV" by (simp_all add: assms) - then show ?thesis - apply (rule has_integral_component_le[OF k]) - using as by auto + show ?thesis + using as by (force intro!: has_integral_component_le[OF k \
]) qed subsection\Integrals on set differences\ lemma has_integral_setdiff: fixes f :: "'a::euclidean_space \ 'b::banach" assumes S: "(f has_integral i) S" and T: "(f has_integral j) T" and neg: "negligible (T - S)" shows "(f has_integral (i - j)) (S - T)" proof - show ?thesis unfolding has_integral_restrict_UNIV [symmetric, of f] proof (rule has_integral_spike [OF neg]) have eq: "(\x. (if x \ S then f x else 0) - (if x \ T then f x else 0)) = (\x. if x \ T - S then - f x else if x \ S - T then f x else 0)" by (force simp add: ) have "((\x. if x \ S then f x else 0) has_integral i) UNIV" "((\x. if x \ T then f x else 0) has_integral j) UNIV" using S T has_integral_restrict_UNIV by auto from has_integral_diff [OF this] show "((\x. if x \ T - S then - f x else if x \ S - T then f x else 0) has_integral i-j) UNIV" by (simp add: eq) qed force qed lemma integral_setdiff: fixes f :: "'a::euclidean_space \ 'b::banach" assumes "f integrable_on S" "f integrable_on T" "negligible(T - S)" shows "integral (S - T) f = integral S f - integral T f" by (rule integral_unique) (simp add: assms has_integral_setdiff integrable_integral) lemma integrable_setdiff: fixes f :: "'a::euclidean_space \ 'b::banach" assumes "(f has_integral i) S" "(f has_integral j) T" "negligible (T - S)" shows "f integrable_on (S - T)" using has_integral_setdiff [OF assms] by (simp add: has_integral_iff) lemma negligible_setdiff [simp]: "T \ S \ negligible (T - S)" by (metis Diff_eq_empty_iff negligible_empty) lemma negligible_on_intervals: "negligible s \ (\a b. negligible(s \ cbox a b))" (is "?l \ ?r") proof - assume ?r + assume R: ?r show ?l unfolding negligible_def proof safe fix a b - show "(indicator s has_integral 0) (cbox a b)" - apply (rule has_integral_negligible[OF \?r\[rule_format,of a b]]) - unfolding indicator_def - apply auto - done + have "negligible (s \ cbox a b)" + by (simp add: R) + then show "(indicator s has_integral 0) (cbox a b)" + by (meson Diff_iff Int_iff has_integral_negligible indicator_simps(2)) qed qed (simp add: negligible_Int) lemma negligible_translation: assumes "negligible S" shows "negligible ((+) c ` S)" proof - have inj: "inj ((+) c)" by simp show ?thesis using assms proof (clarsimp simp: negligible_def) fix a b assume "\x y. (indicator S has_integral 0) (cbox x y)" then have *: "(indicator S has_integral 0) (cbox (a-c) (b-c))" by (meson Diff_iff assms has_integral_negligible indicator_simps(2)) have eq: "indicator ((+) c ` S) = (\x. indicator S (x - c))" by (force simp add: indicator_def) show "(indicator ((+) c ` S) has_integral 0) (cbox a b)" using has_integral_affinity [OF *, of 1 "-c"] cbox_translation [of "c" "-c+a" "-c+b"] by (simp add: eq) (simp add: ac_simps) qed qed lemma negligible_translation_rev: assumes "negligible ((+) c ` S)" shows "negligible S" by (metis negligible_translation [OF assms, of "-c"] translation_galois) lemma has_integral_spike_set_eq: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "negligible {x \ S - T. f x \ 0}" "negligible {x \ T - S. f x \ 0}" shows "(f has_integral y) S \ (f has_integral y) T" proof - have "((\x. if x \ S then f x else 0) has_integral y) UNIV = ((\x. if x \ T then f x else 0) has_integral y) UNIV" proof (rule has_integral_spike_eq) show "negligible ({x \ S - T. f x \ 0} \ {x \ T - S. f x \ 0})" by (rule negligible_Un [OF assms]) qed auto then show ?thesis by (simp add: has_integral_restrict_UNIV) qed corollary integral_spike_set: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "negligible {x \ S - T. f x \ 0}" "negligible {x \ T - S. f x \ 0}" shows "integral S f = integral T f" using has_integral_spike_set_eq [OF assms] by (metis eq_integralD integral_unique) lemma integrable_spike_set: fixes f :: "'n::euclidean_space \ 'a::banach" assumes f: "f integrable_on S" and neg: "negligible {x \ S - T. f x \ 0}" "negligible {x \ T - S. f x \ 0}" shows "f integrable_on T" using has_integral_spike_set_eq [OF neg] f by blast lemma integrable_spike_set_eq: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "negligible ((S - T) \ (T - S))" shows "f integrable_on S \ f integrable_on T" by (blast intro: integrable_spike_set assms negligible_subset) lemma integrable_on_insert_iff: "f integrable_on (insert x X) \ f integrable_on X" for f::"_ \ 'a::banach" by (rule integrable_spike_set_eq) (auto simp: insert_Diff_if) lemma has_integral_interior: fixes f :: "'a :: euclidean_space \ 'b :: banach" shows "negligible(frontier S) \ (f has_integral y) (interior S) \ (f has_integral y) S" by (rule has_integral_spike_set_eq [OF empty_imp_negligible negligible_subset]) (use interior_subset in \auto simp: frontier_def closure_def\) lemma has_integral_closure: fixes f :: "'a :: euclidean_space \ 'b :: banach" shows "negligible(frontier S) \ (f has_integral y) (closure S) \ (f has_integral y) S" by (rule has_integral_spike_set_eq [OF negligible_subset empty_imp_negligible]) (auto simp: closure_Un_frontier ) lemma has_integral_open_interval: fixes f :: "'a :: euclidean_space \ 'b :: banach" shows "(f has_integral y) (box a b) \ (f has_integral y) (cbox a b)" unfolding interior_cbox [symmetric] by (metis frontier_cbox has_integral_interior negligible_frontier_interval) lemma integrable_on_open_interval: fixes f :: "'a :: euclidean_space \ 'b :: banach" shows "f integrable_on box a b \ f integrable_on cbox a b" by (simp add: has_integral_open_interval integrable_on_def) lemma integral_open_interval: fixes f :: "'a :: euclidean_space \ 'b :: banach" shows "integral(box a b) f = integral(cbox a b) f" by (metis has_integral_integrable_integral has_integral_open_interval not_integrable_integral) subsection \More lemmas that are useful later\ lemma has_integral_subset_le: fixes f :: "'n::euclidean_space \ real" assumes "s \ t" and "(f has_integral i) s" and "(f has_integral j) t" and "\x\t. 0 \ f x" shows "i \ j" using has_integral_subset_component_le[OF _ assms(1), of 1 f i j] using assms by auto lemma integral_subset_component_le: fixes f :: "'n::euclidean_space \ 'm::euclidean_space" assumes "k \ Basis" and "s \ t" and "f integrable_on s" and "f integrable_on t" and "\x \ t. 0 \ f x \ k" shows "(integral s f)\k \ (integral t f)\k" - apply (rule has_integral_subset_component_le) - using assms - apply auto - done + by (meson assms has_integral_subset_component_le integrable_integral) lemma integral_subset_le: fixes f :: "'n::euclidean_space \ real" assumes "s \ t" and "f integrable_on s" and "f integrable_on t" and "\x \ t. 0 \ f x" shows "integral s f \ integral t f" - apply (rule has_integral_subset_le) - using assms - apply auto - done + using assms has_integral_subset_le by blast lemma has_integral_alt': fixes f :: "'n::euclidean_space \ 'a::banach" shows "(f has_integral i) s \ (\a b. (\x. if x \ s then f x else 0) integrable_on cbox a b) \ (\e>0. \B>0. \a b. ball 0 B \ cbox a b \ norm (integral (cbox a b) (\x. if x \ s then f x else 0) - i) < e)" (is "?l = ?r") proof assume rhs: ?r show ?l proof (subst has_integral', intro allI impI) fix e::real assume "e > 0" from rhs[THEN conjunct2,rule_format,OF this] show "\B>0. \a b. ball 0 B \ cbox a b \ (\z. ((\x. if x \ s then f x else 0) has_integral z) (cbox a b) \ norm (z - i) < e)" - apply (rule ex_forward) - using rhs by blast + by (simp add: has_integral_iff rhs) qed next let ?\ = "\e a b. \z. ((\x. if x \ s then f x else 0) has_integral z) (cbox a b) \ norm (z - i) < e" assume ?l then have lhs: "\B>0. \a b. ball 0 B \ cbox a b \ ?\ e a b" if "e > 0" for e using that has_integral'[of f] by auto let ?f = "\x. if x \ s then f x else 0" show ?r proof (intro conjI allI impI) fix a b :: 'n from lhs[OF zero_less_one] obtain B where "0 < B" and B: "\a b. ball 0 B \ cbox a b \ ?\ 1 a b" by blast let ?a = "\i\Basis. min (a\i) (-B) *\<^sub>R i::'n" let ?b = "\i\Basis. max (b\i) B *\<^sub>R i::'n" show "?f integrable_on cbox a b" proof (rule integrable_subinterval[of _ ?a ?b]) have "?a \ i \ x \ i \ x \ i \ ?b \ i" if "norm (0 - x) < B" "i \ Basis" for x i using Basis_le_norm[of i x] that by (auto simp add:field_simps) then have "ball 0 B \ cbox ?a ?b" by (auto simp: mem_box dist_norm) then show "?f integrable_on cbox ?a ?b" unfolding integrable_on_def using B by blast show "cbox a b \ cbox ?a ?b" by (force simp: mem_box) qed fix e :: real assume "e > 0" with lhs show "\B>0. \a b. ball 0 B \ cbox a b \ norm (integral (cbox a b) (\x. if x \ s then f x else 0) - i) < e" by (metis (no_types, lifting) has_integral_integrable_integral) qed qed subsection \Continuity of the integral (for a 1-dimensional interval)\ lemma integrable_alt: fixes f :: "'n::euclidean_space \ 'a::banach" shows "f integrable_on s \ (\a b. (\x. if x \ s then f x else 0) integrable_on cbox a b) \ (\e>0. \B>0. \a b c d. ball 0 B \ cbox a b \ ball 0 B \ cbox c d \ norm (integral (cbox a b) (\x. if x \ s then f x else 0) - integral (cbox c d) (\x. if x \ s then f x else 0)) < e)" (is "?l = ?r") proof let ?F = "\x. if x \ s then f x else 0" assume ?l then obtain y where intF: "\a b. ?F integrable_on cbox a b" and y: "\e. 0 < e \ \B>0. \a b. ball 0 B \ cbox a b \ norm (integral (cbox a b) ?F - y) < e" unfolding integrable_on_def has_integral_alt'[of f] by auto show ?r proof (intro conjI allI impI intF) fix e::real assume "e > 0" then have "e/2 > 0" by auto obtain B where "0 < B" and B: "\a b. ball 0 B \ cbox a b \ norm (integral (cbox a b) ?F - y) < e/2" using \0 < e/2\ y by blast show "\B>0. \a b c d. ball 0 B \ cbox a b \ ball 0 B \ cbox c d \ norm (integral (cbox a b) ?F - integral (cbox c d) ?F) < e" proof (intro conjI exI impI allI, rule \0 < B\) fix a b c d::'n assume sub: "ball 0 B \ cbox a b \ ball 0 B \ cbox c d" show "norm (integral (cbox a b) ?F - integral (cbox c d) ?F) < e" using sub by (auto intro: norm_triangle_half_l dest: B) qed qed next let ?F = "\x. if x \ s then f x else 0" assume rhs: ?r let ?cube = "\n. cbox (\i\Basis. - real n *\<^sub>R i::'n) (\i\Basis. real n *\<^sub>R i)" have "Cauchy (\n. integral (?cube n) ?F)" unfolding Cauchy_def proof (intro allI impI) fix e::real assume "e > 0" with rhs obtain B where "0 < B" and B: "\a b c d. ball 0 B \ cbox a b \ ball 0 B \ cbox c d \ norm (integral (cbox a b) ?F - integral (cbox c d) ?F) < e" by blast obtain N where N: "B \ real N" using real_arch_simple by blast have "ball 0 B \ ?cube n" if n: "n \ N" for n proof - have "sum ((*\<^sub>R) (- real n)) Basis \ i \ x \ i \ x \ i \ sum ((*\<^sub>R) (real n)) Basis \ i" if "norm x < B" "i \ Basis" for x i::'n using Basis_le_norm[of i x] n N that by (auto simp add: field_simps sum_negf) then show ?thesis by (auto simp: mem_box dist_norm) qed then show "\M. \m\M. \n\M. dist (integral (?cube m) ?F) (integral (?cube n) ?F) < e" by (fastforce simp add: dist_norm intro!: B) qed then obtain i where i: "(\n. integral (?cube n) ?F) \ i" using convergent_eq_Cauchy by blast have "\B>0. \a b. ball 0 B \ cbox a b \ norm (integral (cbox a b) ?F - i) < e" if "e > 0" for e proof - have *: "e/2 > 0" using that by auto then obtain N where N: "\n. N \ n \ norm (i - integral (?cube n) ?F) < e/2" using i[THEN LIMSEQ_D, simplified norm_minus_commute] by meson obtain B where "0 < B" and B: "\a b c d. \ball 0 B \ cbox a b; ball 0 B \ cbox c d\ \ norm (integral (cbox a b) ?F - integral (cbox c d) ?F) < e/2" using rhs * by meson let ?B = "max (real N) B" show ?thesis proof (intro exI conjI allI impI) show "0 < ?B" using \B > 0\ by auto fix a b :: 'n assume "ball 0 ?B \ cbox a b" moreover obtain n where n: "max (real N) B \ real n" using real_arch_simple by blast moreover have "ball 0 B \ ?cube n" proof fix x :: 'n assume x: "x \ ball 0 B" have "\norm (0 - x) < B; i \ Basis\ \ sum ((*\<^sub>R) (-n)) Basis \ i\ x \ i \ x \ i \ sum ((*\<^sub>R) n) Basis \ i" for i using Basis_le_norm[of i x] n by (auto simp add: field_simps sum_negf) then show "x \ ?cube n" using x by (auto simp: mem_box dist_norm) qed ultimately show "norm (integral (cbox a b) ?F - i) < e" using norm_triangle_half_l [OF B N] by force qed qed then show ?l unfolding integrable_on_def has_integral_alt'[of f] using rhs by blast qed lemma integrable_altD: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "f integrable_on s" shows "\a b. (\x. if x \ s then f x else 0) integrable_on cbox a b" and "\e. e > 0 \ \B>0. \a b c d. ball 0 B \ cbox a b \ ball 0 B \ cbox c d \ norm (integral (cbox a b) (\x. if x \ s then f x else 0) - integral (cbox c d) (\x. if x \ s then f x else 0)) < e" using assms[unfolded integrable_alt[of f]] by auto lemma integrable_alt_subset: fixes f :: "'a::euclidean_space \ 'b::banach" shows "f integrable_on S \ (\a b. (\x. if x \ S then f x else 0) integrable_on cbox a b) \ (\e>0. \B>0. \a b c d. ball 0 B \ cbox a b \ cbox a b \ cbox c d \ norm(integral (cbox a b) (\x. if x \ S then f x else 0) - integral (cbox c d) (\x. if x \ S then f x else 0)) < e)" (is "_ = ?rhs") proof - let ?g = "\x. if x \ S then f x else 0" have "f integrable_on S \ (\a b. ?g integrable_on cbox a b) \ (\e>0. \B>0. \a b c d. ball 0 B \ cbox a b \ ball 0 B \ cbox c d \ norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e)" by (rule integrable_alt) also have "\ = ?rhs" proof - { fix e :: "real" assume e: "\e. e>0 \ \B>0. \a b c d. ball 0 B \ cbox a b \ cbox a b \ cbox c d \ norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e" and "e > 0" obtain B where "B > 0" and B: "\a b c d. \ball 0 B \ cbox a b; cbox a b \ cbox c d\ \ norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e/2" using \e > 0\ e [of "e/2"] by force have "\B>0. \a b c d. ball 0 B \ cbox a b \ ball 0 B \ cbox c d \ norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e" proof (intro exI allI conjI impI) fix a b c d :: "'a" let ?\ = "\i\Basis. max (a \ i) (c \ i) *\<^sub>R i" let ?\ = "\i\Basis. min (b \ i) (d \ i) *\<^sub>R i" show "norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e" if ball: "ball 0 B \ cbox a b \ ball 0 B \ cbox c d" proof - have B': "norm (integral (cbox a b \ cbox c d) ?g - integral (cbox x y) ?g) < e/2" if "cbox a b \ cbox c d \ cbox x y" for x y using B [of ?\ ?\ x y] ball that by (simp add: Int_interval [symmetric]) show ?thesis using B' [of a b] B' [of c d] norm_triangle_half_r by blast qed qed (use \B > 0\ in auto)} then show ?thesis by force qed finally show ?thesis . qed lemma integrable_on_subcbox: fixes f :: "'n::euclidean_space \ 'a::banach" assumes intf: "f integrable_on S" and sub: "cbox a b \ S" shows "f integrable_on cbox a b" proof - have "(\x. if x \ S then f x else 0) integrable_on cbox a b" by (simp add: intf integrable_altD(1)) then show ?thesis by (metis (mono_tags) sub integrable_restrict_Int le_inf_iff order_refl subset_antisym) qed subsection \A straddling criterion for integrability\ lemma integrable_straddle_interval: fixes f :: "'n::euclidean_space \ real" assumes "\e. e>0 \ \g h i j. (g has_integral i) (cbox a b) \ (h has_integral j) (cbox a b) \ \i - j\ < e \ (\x\cbox a b. (g x) \ f x \ f x \ h x)" shows "f integrable_on cbox a b" proof - have "\d. gauge d \ (\p1 p2. p1 tagged_division_of cbox a b \ d fine p1 \ p2 tagged_division_of cbox a b \ d fine p2 \ \(\(x,K)\p1. content K *\<^sub>R f x) - (\(x,K)\p2. content K *\<^sub>R f x)\ < e)" if "e > 0" for e proof - have e: "e/3 > 0" using that by auto then obtain g h i j where ij: "\i - j\ < e/3" and "(g has_integral i) (cbox a b)" and "(h has_integral j) (cbox a b)" and fgh: "\x. x \ cbox a b \ g x \ f x \ f x \ h x" using assms real_norm_def by metis then obtain d1 d2 where "gauge d1" "gauge d2" and d1: "\p. \p tagged_division_of cbox a b; d1 fine p\ \ \(\(x,K)\p. content K *\<^sub>R g x) - i\ < e/3" and d2: "\p. \p tagged_division_of cbox a b; d2 fine p\ \ \(\(x,K) \ p. content K *\<^sub>R h x) - j\ < e/3" by (metis e has_integral real_norm_def) have "\(\(x,K) \ p1. content K *\<^sub>R f x) - (\(x,K) \ p2. content K *\<^sub>R f x)\ < e" if p1: "p1 tagged_division_of cbox a b" and 11: "d1 fine p1" and 21: "d2 fine p1" and p2: "p2 tagged_division_of cbox a b" and 12: "d1 fine p2" and 22: "d2 fine p2" for p1 p2 proof - have *: "\g1 g2 h1 h2 f1 f2. \\g2 - i\ < e/3; \g1 - i\ < e/3; \h2 - j\ < e/3; \h1 - j\ < e/3; g1 - h2 \ f1 - f2; f1 - f2 \ h1 - g2\ \ \f1 - f2\ < e" using \e > 0\ ij by arith have 0: "(\(x, k)\p1. content k *\<^sub>R f x) - (\(x, k)\p1. content k *\<^sub>R g x) \ 0" "0 \ (\(x, k)\p2. content k *\<^sub>R h x) - (\(x, k)\p2. content k *\<^sub>R f x)" "(\(x, k)\p2. content k *\<^sub>R f x) - (\(x, k)\p2. content k *\<^sub>R g x) \ 0" "0 \ (\(x, k)\p1. content k *\<^sub>R h x) - (\(x, k)\p1. content k *\<^sub>R f x)" unfolding sum_subtractf[symmetric] apply (auto intro!: sum_nonneg) apply (meson fgh measure_nonneg mult_left_mono tag_in_interval that sum_nonneg)+ done show ?thesis proof (rule *) show "\(\(x,K) \ p2. content K *\<^sub>R g x) - i\ < e/3" by (rule d1[OF p2 12]) show "\(\(x,K) \ p1. content K *\<^sub>R g x) - i\ < e/3" by (rule d1[OF p1 11]) show "\(\(x,K) \ p2. content K *\<^sub>R h x) - j\ < e/3" by (rule d2[OF p2 22]) show "\(\(x,K) \ p1. content K *\<^sub>R h x) - j\ < e/3" by (rule d2[OF p1 21]) qed (use 0 in auto) qed then show ?thesis by (rule_tac x="\x. d1 x \ d2 x" in exI) (auto simp: fine_Int intro: \gauge d1\ \gauge d2\ d1 d2) qed then show ?thesis by (simp add: integrable_Cauchy) qed lemma integrable_straddle: fixes f :: "'n::euclidean_space \ real" assumes "\e. e>0 \ \g h i j. (g has_integral i) s \ (h has_integral j) s \ \i - j\ < e \ (\x\s. g x \ f x \ f x \ h x)" shows "f integrable_on s" proof - let ?fs = "(\x. if x \ s then f x else 0)" have "?fs integrable_on cbox a b" for a b proof (rule integrable_straddle_interval) fix e::real assume "e > 0" then have *: "e/4 > 0" by auto with assms obtain g h i j where g: "(g has_integral i) s" and h: "(h has_integral j) s" and ij: "\i - j\ < e/4" and fgh: "\x. x \ s \ g x \ f x \ f x \ h x" by metis let ?gs = "(\x. if x \ s then g x else 0)" let ?hs = "(\x. if x \ s then h x else 0)" obtain Bg where Bg: "\a b. ball 0 Bg \ cbox a b \ \integral (cbox a b) ?gs - i\ < e/4" and int_g: "\a b. ?gs integrable_on cbox a b" using g * unfolding has_integral_alt' real_norm_def by meson obtain Bh where Bh: "\a b. ball 0 Bh \ cbox a b \ \integral (cbox a b) ?hs - j\ < e/4" and int_h: "\a b. ?hs integrable_on cbox a b" using h * unfolding has_integral_alt' real_norm_def by meson define c where "c = (\i\Basis. min (a\i) (- (max Bg Bh)) *\<^sub>R i)" define d where "d = (\i\Basis. max (b\i) (max Bg Bh) *\<^sub>R i)" have "\norm (0 - x) < Bg; i \ Basis\ \ c \ i \ x \ i \ x \ i \ d \ i" for x i using Basis_le_norm[of i x] unfolding c_def d_def by auto then have ballBg: "ball 0 Bg \ cbox c d" by (auto simp: mem_box dist_norm) have "\norm (0 - x) < Bh; i \ Basis\ \ c \ i \ x \ i \ x \ i \ d \ i" for x i using Basis_le_norm[of i x] unfolding c_def d_def by auto then have ballBh: "ball 0 Bh \ cbox c d" by (auto simp: mem_box dist_norm) have ab_cd: "cbox a b \ cbox c d" by (auto simp: c_def d_def subset_box_imp) have **: "\ch cg ag ah::real. \\ah - ag\ \ \ch - cg\; \cg - i\ < e/4; \ch - j\ < e/4\ \ \ag - ah\ < e" using ij by arith show "\g h i j. (g has_integral i) (cbox a b) \ (h has_integral j) (cbox a b) \ \i - j\ < e \ (\x\cbox a b. g x \ (if x \ s then f x else 0) \ (if x \ s then f x else 0) \ h x)" proof (intro exI ballI conjI) have eq: "\x f g. (if x \ s then f x else 0) - (if x \ s then g x else 0) = (if x \ s then f x - g x else (0::real))" by auto have int_hg: "(\x. if x \ s then h x - g x else 0) integrable_on cbox a b" "(\x. if x \ s then h x - g x else 0) integrable_on cbox c d" by (metis (no_types) integrable_diff g h has_integral_integrable integrable_altD(1))+ show "(?gs has_integral integral (cbox a b) ?gs) (cbox a b)" "(?hs has_integral integral (cbox a b) ?hs) (cbox a b)" by (intro integrable_integral int_g int_h)+ then have "integral (cbox a b) ?gs \ integral (cbox a b) ?hs" - apply (rule has_integral_le) - using fgh by force + using fgh by (force intro: has_integral_le) then have "0 \ integral (cbox a b) ?hs - integral (cbox a b) ?gs" by simp then have "\integral (cbox a b) ?hs - integral (cbox a b) ?gs\ \ \integral (cbox c d) ?hs - integral (cbox c d) ?gs\" apply (simp add: integral_diff [symmetric] int_g int_h) apply (subst abs_of_nonneg[OF integral_nonneg[OF integrable_diff, OF int_h int_g]]) using fgh apply (force simp: eq intro!: integral_subset_le [OF ab_cd int_hg])+ done then show "\integral (cbox a b) ?gs - integral (cbox a b) ?hs\ < e" - apply (rule **) - apply (rule Bg ballBg Bh ballBh)+ - done + using ** Bg ballBg Bh ballBh by blast show "\x. x \ cbox a b \ ?gs x \ ?fs x" "\x. x \ cbox a b \ ?fs x \ ?hs x" using fgh by auto qed qed then have int_f: "?fs integrable_on cbox a b" for a b by simp have "\B>0. \a b c d. ball 0 B \ cbox a b \ ball 0 B \ cbox c d \ abs (integral (cbox a b) ?fs - integral (cbox c d) ?fs) < e" if "0 < e" for e proof - have *: "e/3 > 0" using that by auto with assms obtain g h i j where g: "(g has_integral i) s" and h: "(h has_integral j) s" and ij: "\i - j\ < e/3" and fgh: "\x. x \ s \ g x \ f x \ f x \ h x" by metis let ?gs = "(\x. if x \ s then g x else 0)" let ?hs = "(\x. if x \ s then h x else 0)" obtain Bg where "Bg > 0" and Bg: "\a b. ball 0 Bg \ cbox a b \ \integral (cbox a b) ?gs - i\ < e/3" and int_g: "\a b. ?gs integrable_on cbox a b" using g * unfolding has_integral_alt' real_norm_def by meson obtain Bh where "Bh > 0" and Bh: "\a b. ball 0 Bh \ cbox a b \ \integral (cbox a b) ?hs - j\ < e/3" and int_h: "\a b. ?hs integrable_on cbox a b" using h * unfolding has_integral_alt' real_norm_def by meson { fix a b c d :: 'n assume as: "ball 0 (max Bg Bh) \ cbox a b" "ball 0 (max Bg Bh) \ cbox c d" have **: "ball 0 Bg \ ball (0::'n) (max Bg Bh)" "ball 0 Bh \ ball (0::'n) (max Bg Bh)" by auto have *: "\ga gc ha hc fa fc. \\ga - i\ < e/3; \gc - i\ < e/3; \ha - j\ < e/3; \hc - j\ < e/3; ga \ fa; fa \ ha; gc \ fc; fc \ hc\ \ \fa - fc\ < e" using ij by arith have "abs (integral (cbox a b) (\x. if x \ s then f x else 0) - integral (cbox c d) (\x. if x \ s then f x else 0)) < e" proof (rule *) show "\integral (cbox a b) ?gs - i\ < e/3" using "**" Bg as by blast show "\integral (cbox c d) ?gs - i\ < e/3" using "**" Bg as by blast show "\integral (cbox a b) ?hs - j\ < e/3" using "**" Bh as by blast show "\integral (cbox c d) ?hs - j\ < e/3" using "**" Bh as by blast qed (use int_f int_g int_h fgh in \simp_all add: integral_le\) } then show ?thesis apply (rule_tac x="max Bg Bh" in exI) using \Bg > 0\ by auto qed then show ?thesis unfolding integrable_alt[of f] real_norm_def by (blast intro: int_f) qed subsection \Adding integrals over several sets\ lemma has_integral_Un: fixes f :: "'n::euclidean_space \ 'a::banach" assumes f: "(f has_integral i) S" "(f has_integral j) T" and neg: "negligible (S \ T)" shows "(f has_integral (i + j)) (S \ T)" unfolding has_integral_restrict_UNIV[symmetric, of f] proof (rule has_integral_spike[OF neg]) let ?f = "\x. (if x \ S then f x else 0) + (if x \ T then f x else 0)" show "(?f has_integral i + j) UNIV" by (simp add: f has_integral_add) qed auto lemma integral_Un [simp]: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "f integrable_on S" "f integrable_on T" "negligible (S \ T)" shows "integral (S \ T) f = integral S f + integral T f" by (simp add: has_integral_Un assms integrable_integral integral_unique) lemma integrable_Un: fixes f :: "'a::euclidean_space \ 'b :: banach" assumes "negligible (A \ B)" "f integrable_on A" "f integrable_on B" shows "f integrable_on (A \ B)" proof - from assms obtain y z where "(f has_integral y) A" "(f has_integral z) B" by (auto simp: integrable_on_def) from has_integral_Un[OF this assms(1)] show ?thesis by (auto simp: integrable_on_def) qed lemma integrable_Un': fixes f :: "'a::euclidean_space \ 'b :: banach" assumes "f integrable_on A" "f integrable_on B" "negligible (A \ B)" "C = A \ B" shows "f integrable_on C" using integrable_Un[of A B f] assms by simp lemma has_integral_Union: fixes f :: "'n::euclidean_space \ 'a::banach" assumes \: "finite \" and int: "\S. S \ \ \ (f has_integral (i S)) S" and neg: "pairwise (\S S'. negligible (S \ S')) \" shows "(f has_integral (sum i \)) (\\)" proof - let ?\ = "((\(a,b). a \ b) ` {(a,b). a \ \ \ b \ {y. y \ \ \ a \ y}})" have "((\x. if x \ \\ then f x else 0) has_integral sum i \) UNIV" proof (rule has_integral_spike) show "negligible (\?\)" proof (rule negligible_Union) have "finite (\ \ \)" by (simp add: \) moreover have "{(a, b). a \ \ \ b \ {y \ \. a \ y}} \ \ \ \" by auto ultimately show "finite ?\" by (blast intro: finite_subset[of _ "\ \ \"]) show "\t. t \ ?\ \ negligible t" using neg unfolding pairwise_def by auto qed next show "(if x \ \\ then f x else 0) = (\A\\. if x \ A then f x else 0)" if "x \ UNIV - (\?\)" for x proof clarsimp fix S assume "S \ \" "x \ S" moreover then have "\b\\. x \ b \ b = S" using that by blast ultimately show "f x = (\A\\. if x \ A then f x else 0)" by (simp add: sum.delta[OF \]) qed next show "((\x. \A\\. if x \ A then f x else 0) has_integral (\A\\. i A)) UNIV" - apply (rule has_integral_sum [OF \]) - using int by (simp add: has_integral_restrict_UNIV) + using int by (simp add: has_integral_restrict_UNIV has_integral_sum [OF \]) qed then show ?thesis using has_integral_restrict_UNIV by blast qed text \In particular adding integrals over a division, maybe not of an interval.\ lemma has_integral_combine_division: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "\ division_of S" and "\k. k \ \ \ (f has_integral (i k)) k" shows "(f has_integral (sum i \)) S" proof - note \ = division_ofD[OF assms(1)] have neg: "negligible (S \ s')" if "S \ \" "s' \ \" "S \ s'" for S s' proof - obtain a c b \ where obt: "S = cbox a b" "s' = cbox c \" by (meson \S \ \\ \s' \ \\ \(4)) from \(5)[OF that] show ?thesis unfolding obt interior_cbox by (metis (no_types, lifting) Diff_empty Int_interval box_Int_box negligible_frontier_interval) qed show ?thesis unfolding \(6)[symmetric] by (auto intro: \ neg assms has_integral_Union pairwiseI) qed lemma integral_combine_division_bottomup: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "\ division_of S" "\k. k \ \ \ f integrable_on k" shows "integral S f = sum (\i. integral i f) \" - apply (rule integral_unique) - by (meson assms has_integral_combine_division has_integral_integrable_integral) + by (meson assms integral_unique has_integral_combine_division has_integral_integrable_integral) lemma has_integral_combine_division_topdown: fixes f :: "'n::euclidean_space \ 'a::banach" assumes f: "f integrable_on S" and \: "\ division_of K" and "K \ S" shows "(f has_integral (sum (\i. integral i f) \)) K" proof - have "f integrable_on L" if "L \ \" for L proof - have "L \ S" using \K \ S\ \ that by blast then show "f integrable_on L" using that by (metis (no_types) f \ division_ofD(4) integrable_on_subcbox) qed then show ?thesis by (meson \ has_integral_combine_division has_integral_integrable_integral) qed lemma integral_combine_division_topdown: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "f integrable_on S" and "\ division_of S" shows "integral S f = sum (\i. integral i f) \" - apply (rule integral_unique) - apply (rule has_integral_combine_division_topdown) - using assms - apply auto - done + using assms has_integral_combine_division_topdown by blast lemma integrable_combine_division: fixes f :: "'n::euclidean_space \ 'a::banach" assumes \: "\ division_of S" and f: "\i. i \ \ \ f integrable_on i" shows "f integrable_on S" using f unfolding integrable_on_def by (metis has_integral_combine_division[OF \]) lemma integrable_on_subdivision: fixes f :: "'n::euclidean_space \ 'a::banach" assumes \: "\ division_of i" and f: "f integrable_on S" and "i \ S" shows "f integrable_on i" proof - have "f integrable_on i" if "i \ \" for i proof - have "i \ S" using assms that by auto then show "f integrable_on i" using that by (metis (no_types) \ f division_ofD(4) integrable_on_subcbox) qed then show ?thesis using \ integrable_combine_division by blast qed subsection \Also tagged divisions\ lemma has_integral_combine_tagged_division: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "p tagged_division_of S" - and "\(x,k) \ p. (f has_integral (i k)) k" + and "\x k. (x,k) \ p \ (f has_integral (i k)) k" shows "(f has_integral (\(x,k)\p. i k)) S" proof - have *: "(f has_integral (\k\snd`p. integral k f)) S" - using assms(2) - apply (intro has_integral_combine_division) - apply (auto simp: has_integral_integral[symmetric] intro: division_of_tagged_division[OF assms(1)]) - apply auto - done + proof - + have "snd ` p division_of S" + by (simp add: assms(1) division_of_tagged_division) + with assms show ?thesis + by (metis (mono_tags, lifting) has_integral_combine_division has_integral_integrable_integral imageE prod.collapse) + qed also have "(\k\snd`p. integral k f) = (\(x, k)\p. integral k f)" by (intro sum.over_tagged_division_lemma[OF assms(1), symmetric] integral_null) (simp add: content_eq_0_interior) finally show ?thesis using assms by (auto simp add: has_integral_iff intro!: sum.cong) qed lemma integral_combine_tagged_division_bottomup: fixes f :: "'n::euclidean_space \ 'a::banach" - assumes "p tagged_division_of (cbox a b)" - and "\(x,k)\p. f integrable_on k" + assumes p: "p tagged_division_of (cbox a b)" + and f: "\x k. (x,k)\p \ f integrable_on k" shows "integral (cbox a b) f = sum (\(x,k). integral k f) p" - apply (rule integral_unique) - apply (rule has_integral_combine_tagged_division[OF assms(1)]) - using assms(2) - apply auto - done + by (simp add: has_integral_combine_tagged_division[OF p] integral_unique f integrable_integral) lemma has_integral_combine_tagged_division_topdown: fixes f :: "'n::euclidean_space \ 'a::banach" assumes f: "f integrable_on cbox a b" and p: "p tagged_division_of (cbox a b)" shows "(f has_integral (sum (\(x,K). integral K f) p)) (cbox a b)" proof - have "(f has_integral integral K f) K" if "(x,K) \ p" for x K by (metis assms integrable_integral integrable_on_subcbox tagged_division_ofD(3,4) that) then show ?thesis - by (metis assms case_prodI2 has_integral_integrable_integral integral_combine_tagged_division_bottomup) + by (simp add: has_integral_combine_tagged_division p) qed lemma integral_combine_tagged_division_topdown: fixes f :: "'n::euclidean_space \ 'a::banach" assumes "f integrable_on cbox a b" and "p tagged_division_of (cbox a b)" shows "integral (cbox a b) f = sum (\(x,k). integral k f) p" - apply (rule integral_unique [OF has_integral_combine_tagged_division_topdown]) - using assms apply auto - done + using assms by (auto intro: integral_unique [OF has_integral_combine_tagged_division_topdown]) subsection \Henstock's lemma\ lemma Henstock_lemma_part1: fixes f :: "'n::euclidean_space \ 'a::banach" assumes intf: "f integrable_on cbox a b" and "e > 0" and "gauge d" and less_e: "\p. \p tagged_division_of (cbox a b); d fine p\ \ norm (sum (\(x,K). content K *\<^sub>R f x) p - integral(cbox a b) f) < e" and p: "p tagged_partial_division_of (cbox a b)" "d fine p" shows "norm (sum (\(x,K). content K *\<^sub>R f x - integral K f) p) \ e" (is "?lhs \ e") proof (rule field_le_epsilon) fix k :: real assume "k > 0" let ?SUM = "\p. (\(x,K) \ p. content K *\<^sub>R f x)" note p' = tagged_partial_division_ofD[OF p(1)] have "\(snd ` p) \ cbox a b" using p'(3) by fastforce then obtain q where q: "snd ` p \ q" and qdiv: "q division_of cbox a b" by (meson p(1) partial_division_extend_interval partial_division_of_tagged_division) note q' = division_ofD[OF qdiv] define r where "r = q - snd ` p" have "snd ` p \ r = {}" unfolding r_def by auto have "finite r" using q' unfolding r_def by auto have "\p. p tagged_division_of i \ d fine p \ norm (?SUM p - integral i f) < k / (real (card r) + 1)" if "i\r" for i proof - have gt0: "k / (real (card r) + 1) > 0" using \k > 0\ by simp have i: "i \ q" using that unfolding r_def by auto then obtain u v where uv: "i = cbox u v" using q'(4) by blast then have "cbox u v \ cbox a b" using i q'(2) by auto then have "f integrable_on cbox u v" by (rule integrable_subinterval[OF intf]) with integrable_integral[OF this, unfolded has_integral[of f]] obtain dd where "gauge dd" and dd: "\\. \\ tagged_division_of cbox u v; dd fine \\ \ norm (?SUM \ - integral (cbox u v) f) < k / (real (card r) + 1)" using gt0 by auto with gauge_Int[OF \gauge d\ \gauge dd\] obtain qq where qq: "qq tagged_division_of cbox u v" "(\x. d x \ dd x) fine qq" using fine_division_exists by blast with dd[of qq] show ?thesis by (auto simp: fine_Int uv) qed then obtain qq where qq: "\i. i \ r \ qq i tagged_division_of i \ d fine qq i \ norm (?SUM (qq i) - integral i f) < k / (real (card r) + 1)" by metis let ?p = "p \ \(qq ` r)" have "norm (?SUM ?p - integral (cbox a b) f) < e" proof (rule less_e) show "d fine ?p" by (metis (mono_tags, hide_lams) qq fine_Un fine_Union imageE p(2)) note ptag = tagged_partial_division_of_Union_self[OF p(1)] have "p \ \(qq ` r) tagged_division_of \(snd ` p) \ \r" proof (rule tagged_division_Un[OF ptag tagged_division_Union [OF \finite r\]]) show "\i. i \ r \ qq i tagged_division_of i" using qq by auto show "\i1 i2. \i1 \ r; i2 \ r; i1 \ i2\ \ interior i1 \ interior i2 = {}" by (simp add: q'(5) r_def) show "interior (\(snd ` p)) \ interior (\r) = {}" proof (rule Int_interior_Union_intervals [OF \finite r\]) show "open (interior (\(snd ` p)))" by blast show "\T. T \ r \ \a b. T = cbox a b" by (simp add: q'(4) r_def) - have "finite (snd ` p)" - by (simp add: p'(1)) + have "interior T \ interior (\(snd ` p)) = {}" if "T \ r" for T + proof (rule Int_interior_Union_intervals) + show "\U. U \ snd ` p \ \a b. U = cbox a b" + using q q'(4) by blast + show "\U. U \ snd ` p \ interior T \ interior U = {}" + by (metis DiffE q q'(5) r_def subsetD that) + qed (use p' in auto) then show "\T. T \ r \ interior (\(snd ` p)) \ interior T = {}" - apply (subst Int_commute) - apply (rule Int_interior_Union_intervals) - using r_def q'(5) q(1) apply auto - by (simp add: p'(4)) + by (metis Int_commute) qed qed moreover have "\(snd ` p) \ \r = cbox a b" and "{qq i |i. i \ r} = qq ` r" using qdiv q unfolding Union_Un_distrib[symmetric] r_def by auto ultimately show "?p tagged_division_of (cbox a b)" by fastforce qed then have "norm (?SUM p + (?SUM (\(qq ` r))) - integral (cbox a b) f) < e" proof (subst sum.union_inter_neutral[symmetric, OF \finite p\], safe) show "content L *\<^sub>R f x = 0" if "(x, L) \ p" "(x, L) \ qq K" "K \ r" for x K L proof - obtain u v where uv: "L = cbox u v" using \(x,L) \ p\ p'(4) by blast have "L \ K" using qq[OF that(3)] tagged_division_ofD(3) \(x,L) \ qq K\ by metis have "L \ snd ` p" using \(x,L) \ p\ image_iff by fastforce then have "L \ q" "K \ q" "L \ K" using that(1,3) q(1) unfolding r_def by auto with q'(5) have "interior L = {}" using interior_mono[OF \L \ K\] by blast then show "content L *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[symmetric] by auto qed show "finite (\(qq ` r))" by (meson finite_UN qq \finite r\ tagged_division_of_finite) qed moreover have "content M *\<^sub>R f x = 0" if x: "(x,M) \ qq K" "(x,M) \ qq L" and KL: "qq K \ qq L" and r: "K \ r" "L \ r" for x M K L proof - note kl = tagged_division_ofD(3,4)[OF qq[THEN conjunct1]] obtain u v where uv: "M = cbox u v" using \(x, M) \ qq L\ \L \ r\ kl(2) by blast have empty: "interior (K \ L) = {}" by (metis DiffD1 interior_Int q'(5) r_def KL r) have "interior M = {}" by (metis (no_types, lifting) Int_assoc empty inf.absorb_iff2 interior_Int kl(1) subset_empty x r) then show "content M *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[symmetric] by auto qed ultimately have "norm (?SUM p + sum ?SUM (qq ` r) - integral (cbox a b) f) < e" apply (subst (asm) sum.Union_comp) using qq by (force simp: split_paired_all)+ moreover have "content M *\<^sub>R f x = 0" if "K \ r" "L \ r" "K \ L" "qq K = qq L" "(x, M) \ qq K" for K L x M using tagged_division_ofD(6) qq that by (metis (no_types, lifting)) ultimately have less_e: "norm (?SUM p + sum (?SUM \ qq) r - integral (cbox a b) f) < e" - apply (subst (asm) sum.reindex_nontrivial [OF \finite r\]) - apply (auto simp: split_paired_all sum.neutral) - done + proof (subst (asm) sum.reindex_nontrivial [OF \finite r\]) + qed (auto simp: split_paired_all sum.neutral) have norm_le: "norm (cp - ip) \ e + k" if "norm ((cp + cr) - i) < e" "norm (cr - ir) < k" "ip + ir = i" for ir ip i cr cp::'a proof - from that show ?thesis using norm_triangle_le[of "cp + cr - i" "- (cr - ir)"] unfolding that(3)[symmetric] norm_minus_cancel by (auto simp add: algebra_simps) qed have "?lhs = norm (?SUM p - (\(x, k)\p. integral k f))" unfolding split_def sum_subtractf .. also have "\ \ e + k" proof (rule norm_le[OF less_e]) have lessk: "k * real (card r) / (1 + real (card r)) < k" using \k>0\ by (auto simp add: field_simps) have "norm (sum (?SUM \ qq) r - (\k\r. integral k f)) \ (\x\r. k / (real (card r) + 1))" unfolding sum_subtractf[symmetric] by (force dest: qq intro!: sum_norm_le) also have "... < k" by (simp add: lessk add.commute mult.commute) finally show "norm (sum (?SUM \ qq) r - (\k\r. integral k f)) < k" . next from q(1) have [simp]: "snd ` p \ q = q" by auto have "integral l f = 0" if inp: "(x, l) \ p" "(y, m) \ p" and ne: "(x, l) \ (y, m)" and "l = m" for x l y m proof - obtain u v where uv: "l = cbox u v" using inp p'(4) by blast have "content (cbox u v) = 0" unfolding content_eq_0_interior using that p(1) uv by auto then show ?thesis using uv by blast qed - then have "(\(x, k)\p. integral k f) = (\k\snd ` p. integral k f)" + then have "(\(x, K)\p. integral K f) = (\K\snd ` p. integral K f)" apply (subst sum.reindex_nontrivial [OF \finite p\]) unfolding split_paired_all split_def by auto then show "(\(x, k)\p. integral k f) + (\k\r. integral k f) = integral (cbox a b) f" unfolding integral_combine_division_topdown[OF intf qdiv] r_def using q'(1) p'(1) sum.union_disjoint [of "snd ` p" "q - snd ` p", symmetric] by simp qed finally show "?lhs \ e + k" . qed lemma Henstock_lemma_part2: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes fed: "f integrable_on cbox a b" "e > 0" "gauge d" and less_e: "\\. \\ tagged_division_of (cbox a b); d fine \\ \ norm (sum (\(x,k). content k *\<^sub>R f x) \ - integral (cbox a b) f) < e" and tag: "p tagged_partial_division_of (cbox a b)" and "d fine p" shows "sum (\(x,k). norm (content k *\<^sub>R f x - integral k f)) p \ 2 * real (DIM('n)) * e" proof - have "finite p" using tag by blast then show ?thesis unfolding split_def proof (rule sum_norm_allsubsets_bound) fix Q assume Q: "Q \ p" then have fine: "d fine Q" by (simp add: \d fine p\ fine_subset) show "norm (\x\Q. content (snd x) *\<^sub>R f (fst x) - integral (snd x) f) \ e" apply (rule Henstock_lemma_part1[OF fed less_e, unfolded split_def]) - using Q tag tagged_partial_division_subset apply (force simp add: fine)+ - done + using Q tag tagged_partial_division_subset by (force simp add: fine)+ qed qed lemma Henstock_lemma: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes intf: "f integrable_on cbox a b" and "e > 0" obtains \ where "gauge \" and "\p. \p tagged_partial_division_of (cbox a b); \ fine p\ \ sum (\(x,k). norm(content k *\<^sub>R f x - integral k f)) p < e" proof - have *: "e/(2 * (real DIM('n) + 1)) > 0" using \e > 0\ by simp with integrable_integral[OF intf, unfolded has_integral] obtain \ where "gauge \" and \: "\\. \\ tagged_division_of cbox a b; \ fine \\ \ norm ((\(x,K)\\. content K *\<^sub>R f x) - integral (cbox a b) f) < e/(2 * (real DIM('n) + 1))" by metis show thesis proof (rule that [OF \gauge \\]) fix p assume p: "p tagged_partial_division_of cbox a b" "\ fine p" have "(\(x,K)\p. norm (content K *\<^sub>R f x - integral K f)) \ 2 * real DIM('n) * (e/(2 * (real DIM('n) + 1)))" using Henstock_lemma_part2[OF intf * \gauge \\ \ p] by metis also have "... < e" using \e > 0\ by (auto simp add: field_simps) finally show "(\(x,K)\p. norm (content K *\<^sub>R f x - integral K f)) < e" . qed qed subsection \Monotone convergence (bounded interval first)\ lemma bounded_increasing_convergent: fixes f :: "nat \ real" shows "\bounded (range f); \n. f n \ f (Suc n)\ \ \l. f \ l" using Bseq_mono_convergent[of f] incseq_Suc_iff[of f] by (auto simp: image_def Bseq_eq_bounded convergent_def incseq_def) lemma monotone_convergence_interval: fixes f :: "nat \ 'n::euclidean_space \ real" assumes intf: "\k. (f k) integrable_on cbox a b" and le: "\k x. x \ cbox a b \ (f k x) \ f (Suc k) x" and fg: "\x. x \ cbox a b \ ((\k. f k x) \ g x) sequentially" and bou: "bounded (range (\k. integral (cbox a b) (f k)))" shows "g integrable_on cbox a b \ ((\k. integral (cbox a b) (f k)) \ integral (cbox a b) g) sequentially" proof (cases "content (cbox a b) = 0") case True then show ?thesis by auto next case False have fg1: "(f k x) \ (g x)" if x: "x \ cbox a b" for x k proof - have "\\<^sub>F j in sequentially. f k x \ f j x" - apply (rule eventually_sequentiallyI [of k]) - using le x apply (force intro: transitive_stepwise_le) - done + proof (rule eventually_sequentiallyI [of k]) + show "\j. k \ j \ f k x \ f j x" + using le x by (force intro: transitive_stepwise_le) + qed then show "f k x \ g x" using tendsto_lowerbound [OF fg] x trivial_limit_sequentially by blast qed have int_inc: "\n. integral (cbox a b) (f n) \ integral (cbox a b) (f (Suc n))" by (metis integral_le intf le) then obtain i where i: "(\k. integral (cbox a b) (f k)) \ i" using bounded_increasing_convergent bou by blast have "\k. \\<^sub>F x in sequentially. integral (cbox a b) (f k) \ integral (cbox a b) (f x)" unfolding eventually_sequentially by (force intro: transitive_stepwise_le int_inc) then have i': "\k. (integral(cbox a b) (f k)) \ i" using tendsto_le [OF trivial_limit_sequentially i] by blast have "(g has_integral i) (cbox a b)" unfolding has_integral real_norm_def proof clarify fix e::real assume e: "e > 0" have "\k. (\\. gauge \ \ (\\. \ tagged_division_of (cbox a b) \ \ fine \ \ abs ((\(x,K)\\. content K *\<^sub>R f k x) - integral (cbox a b) (f k)) < e/2 ^ (k + 2)))" using intf e by (auto simp: has_integral_integral has_integral) then obtain c where c: "\x. gauge (c x)" "\x \. \\ tagged_division_of cbox a b; c x fine \\ \ abs ((\(u,K)\\. content K *\<^sub>R f x u) - integral (cbox a b) (f x)) < e/2 ^ (x + 2)" by metis have "\r. \k\r. 0 \ i - (integral (cbox a b) (f k)) \ i - (integral (cbox a b) (f k)) < e/4" proof - have "e/4 > 0" using e by auto show ?thesis using LIMSEQ_D [OF i \e/4 > 0\] i' by auto qed then obtain r where r: "\k. r \ k \ 0 \ i - integral (cbox a b) (f k)" "\k. r \ k \ i - integral (cbox a b) (f k) < e/4" by metis have "\n\r. \k\n. 0 \ (g x) - (f k x) \ (g x) - (f k x) < e/(4 * content(cbox a b))" if "x \ cbox a b" for x proof - have "e/(4 * content (cbox a b)) > 0" by (simp add: False content_lt_nz e) with fg that LIMSEQ_D obtain N where "\n\N. norm (f n x - g x) < e/(4 * content (cbox a b))" by metis - then show "\n\r. - \k\n. - 0 \ g x - f k x \ - g x - f k x - < e/(4 * content (cbox a b))" + then show "\n\r. \k\n. 0 \ g x - f k x \ g x - f k x < e/(4 * content (cbox a b))" apply (rule_tac x="N + r" in exI) - using fg1[OF that] apply (auto simp add: field_simps) - done + using fg1[OF that] by (auto simp add: field_simps) qed then obtain m where r_le_m: "\x. x \ cbox a b \ r \ m x" and m: "\x k. \x \ cbox a b; m x \ k\ \ 0 \ g x - f k x \ g x - f k x < e/(4 * content (cbox a b))" by metis define d where "d x = c (m x) x" for x show "\\. gauge \ \ (\\. \ tagged_division_of cbox a b \ \ fine \ \ abs ((\(x,K)\\. content K *\<^sub>R g x) - i) < e)" proof (rule exI, safe) show "gauge d" using c(1) unfolding gauge_def d_def by auto next fix \ assume ptag: "\ tagged_division_of (cbox a b)" and "d fine \" note p'=tagged_division_ofD[OF ptag] obtain s where s: "\x. x \ \ \ m (fst x) \ s" by (metis finite_imageI finite_nat_set_iff_bounded_le p'(1) rev_image_eqI) have *: "\a - d\ < e" if "\a - b\ \ e/4" "\b - c\ < e/2" "\c - d\ < e/4" for a b c d using that norm_triangle_lt[of "a - b" "b - c" "3* e/4"] norm_triangle_lt[of "a - b + (b - c)" "c - d" e] by (auto simp add: algebra_simps) show "\(\(x, k)\\. content k *\<^sub>R g x) - i\ < e" proof (rule *) have "\(\(x,K)\\. content K *\<^sub>R g x) - (\(x,K)\\. content K *\<^sub>R f (m x) x)\ \ (\i\\. \(case i of (x, K) \ content K *\<^sub>R g x) - (case i of (x, K) \ content K *\<^sub>R f (m x) x)\)" by (metis (mono_tags) sum_subtractf sum_abs) also have "... \ (\(x, k)\\. content k * (e/(4 * content (cbox a b))))" proof (rule sum_mono, simp add: split_paired_all) fix x K assume xk: "(x,K) \ \" with ptag have x: "x \ cbox a b" by blast then have "abs (content K * (g x - f (m x) x)) \ content K * (e/(4 * content (cbox a b)))" by (metis m[OF x] mult_nonneg_nonneg abs_of_nonneg less_eq_real_def measure_nonneg mult_left_mono order_refl) then show "\content K * g x - content K * f (m x) x\ \ content K * e/(4 * content (cbox a b))" by (simp add: algebra_simps) qed also have "... = (e/(4 * content (cbox a b))) * (\(x, k)\\. content k)" by (simp add: sum_distrib_left sum_divide_distrib split_def mult.commute) also have "... \ e/4" by (metis False additive_content_tagged_division [OF ptag] nonzero_mult_divide_mult_cancel_right order_refl times_divide_eq_left) finally show "\(\(x,K)\\. content K *\<^sub>R g x) - (\(x,K)\\. content K *\<^sub>R f (m x) x)\ \ e/4" . next have "norm ((\(x,K)\\. content K *\<^sub>R f (m x) x) - (\(x,K)\\. integral K (f (m x)))) \ norm (\j = 0..s. \(x,K)\{xk \ \. m (fst xk) = j}. content K *\<^sub>R f (m x) x - integral K (f (m x)))" apply (subst sum.group) using s by (auto simp: sum_subtractf split_def p'(1)) also have "\ < e/2" proof - have "norm (\j = 0..s. \(x, k)\{xk \ \. m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x))) \ (\i = 0..s. e/2 ^ (i + 2))" proof (rule sum_norm_le) fix t assume "t \ {0..s}" have "norm (\(x,k)\{xk \ \. m (fst xk) = t}. content k *\<^sub>R f (m x) x - integral k (f (m x))) = norm (\(x,k)\{xk \ \. m (fst xk) = t}. content k *\<^sub>R f t x - integral k (f t))" by (force intro!: sum.cong arg_cong[where f=norm]) also have "... \ e/2 ^ (t + 2)" proof (rule Henstock_lemma_part1 [OF intf]) show "{xk \ \. m (fst xk) = t} tagged_partial_division_of cbox a b" - apply (rule tagged_partial_division_subset[of \]) - using ptag by (auto simp: tagged_division_of_def) + proof (rule tagged_partial_division_subset[of \]) + show "\ tagged_partial_division_of cbox a b" + using ptag tagged_division_of_def by blast + qed auto show "c t fine {xk \ \. m (fst xk) = t}" using \d fine \\ by (auto simp: fine_def d_def) qed (use c e in auto) finally show "norm (\(x,K)\{xk \ \. m (fst xk) = t}. content K *\<^sub>R f (m x) x - integral K (f (m x))) \ e/2 ^ (t + 2)" . qed also have "... = (e/2/2) * (\i = 0..s. (1/2) ^ i)" by (simp add: sum_distrib_left field_simps) also have "\ < e/2" by (simp add: sum_gp mult_strict_left_mono[OF _ e]) finally show "norm (\j = 0..s. \(x, k)\{xk \ \. m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x))) < e/2" . qed finally show "\(\(x,K)\\. content K *\<^sub>R f (m x) x) - (\(x,K)\\. integral K (f (m x)))\ < e/2" by simp next have comb: "integral (cbox a b) (f y) = (\(x, k)\\. integral k (f y))" for y using integral_combine_tagged_division_topdown[OF intf ptag] by metis have f_le: "\y m n. \y \ cbox a b; n\m\ \ f m y \ f n y" using le by (auto intro: transitive_stepwise_le) have "(\(x, k)\\. integral k (f r)) \ (\(x, K)\\. integral K (f (m x)))" proof (rule sum_mono, simp add: split_paired_all) fix x K assume xK: "(x, K) \ \" show "integral K (f r) \ integral K (f (m x))" proof (rule integral_le) show "f r integrable_on K" by (metis integrable_on_subcbox intf p'(3) p'(4) xK) show "f (m x) integrable_on K" by (metis elementary_interval integrable_on_subdivision intf p'(3) p'(4) xK) show "f r y \ f (m x) y" if "y \ K" for y using that r_le_m[of x] p'(2-3)[OF xK] f_le by auto qed qed moreover have "(\(x, K)\\. integral K (f (m x))) \ (\(x, k)\\. integral k (f s))" proof (rule sum_mono, simp add: split_paired_all) fix x K assume xK: "(x, K) \ \" show "integral K (f (m x)) \ integral K (f s)" proof (rule integral_le) show "f (m x) integrable_on K" by (metis elementary_interval integrable_on_subdivision intf p'(3) p'(4) xK) show "f s integrable_on K" by (metis integrable_on_subcbox intf p'(3) p'(4) xK) show "f (m x) y \ f s y" if "y \ K" for y using that s xK f_le p'(3) by fastforce qed qed moreover have "0 \ i - integral (cbox a b) (f r)" "i - integral (cbox a b) (f r) < e/4" using r by auto ultimately show "\(\(x,K)\\. integral K (f (m x))) - i\ < e/4" using comb i'[of s] by auto qed qed qed with i integral_unique show ?thesis by blast qed lemma monotone_convergence_increasing: fixes f :: "nat \ 'n::euclidean_space \ real" assumes int_f: "\k. (f k) integrable_on S" and "\k x. x \ S \ (f k x) \ (f (Suc k) x)" and fg: "\x. x \ S \ ((\k. f k x) \ g x) sequentially" and bou: "bounded (range (\k. integral S (f k)))" shows "g integrable_on S \ ((\k. integral S (f k)) \ integral S g) sequentially" proof - have lem: "g integrable_on S \ ((\k. integral S (f k)) \ integral S g) sequentially" if f0: "\k x. x \ S \ 0 \ f k x" and int_f: "\k. (f k) integrable_on S" and le: "\k x. x \ S \ f k x \ f (Suc k) x" and lim: "\x. x \ S \ ((\k. f k x) \ g x) sequentially" and bou: "bounded (range(\k. integral S (f k)))" for f :: "nat \ 'n::euclidean_space \ real" and g S proof - have fg: "(f k x) \ (g x)" if "x \ S" for x k - apply (rule tendsto_lowerbound [OF lim [OF that]]) - apply (rule eventually_sequentiallyI [of k]) - using le by (force intro: transitive_stepwise_le that)+ + proof - + have "\xa. k \ xa \ f k x \ f xa x" + using le by (force intro: transitive_stepwise_le that) + then show ?thesis + using tendsto_lowerbound [OF lim [OF that]] eventually_sequentiallyI by force + qed obtain i where i: "(\k. integral S (f k)) \ i" using bounded_increasing_convergent [OF bou] le int_f integral_le by blast have i': "(integral S (f k)) \ i" for k proof - have "\k. \x. x \ S \ \n\k. f k x \ f n x" using le by (force intro: transitive_stepwise_le) then show ?thesis using tendsto_lowerbound [OF i eventually_sequentiallyI trivial_limit_sequentially] by (meson int_f integral_le) qed - let ?f = "(\k x. if x \ S then f k x else 0)" let ?g = "(\x. if x \ S then g x else 0)" have int: "?f k integrable_on cbox a b" for a b k by (simp add: int_f integrable_altD(1)) have int': "\k a b. f k integrable_on cbox a b \ S" using int by (simp add: Int_commute integrable_restrict_Int) have g: "?g integrable_on cbox a b \ (\k. integral (cbox a b) (?f k)) \ integral (cbox a b) ?g" for a b proof (rule monotone_convergence_interval) have "norm (integral (cbox a b) (?f k)) \ norm (integral S (f k))" for k proof - have "0 \ integral (cbox a b) (?f k)" by (metis (no_types) integral_nonneg Int_iff f0 inf_commute integral_restrict_Int int') moreover have "0 \ integral S (f k)" by (simp add: integral_nonneg f0 int_f) moreover have "integral (S \ cbox a b) (f k) \ integral S (f k)" by (metis f0 inf_commute int' int_f integral_subset_le le_inf_iff order_refl) ultimately show ?thesis by (simp add: integral_restrict_Int) qed moreover obtain B where "\x. x \ range (\k. integral S (f k)) \ norm x \ B" using bou unfolding bounded_iff by blast ultimately show "bounded (range (\k. integral (cbox a b) (?f k)))" unfolding bounded_iff by (blast intro: order_trans) qed (use int le lim in auto) moreover have "\B>0. \a b. ball 0 B \ cbox a b \ norm (integral (cbox a b) ?g - i) < e" if "0 < e" for e proof - have "e/4>0" using that by auto with LIMSEQ_D [OF i] obtain N where N: "\n. n \ N \ norm (integral S (f n) - i) < e/4" by metis with int_f[of N, unfolded has_integral_integral has_integral_alt'[of "f N"]] obtain B where "0 < B" and B: "\a b. ball 0 B \ cbox a b \ norm (integral (cbox a b) (?f N) - integral S (f N)) < e/4" by (meson \0 < e/4\) have "norm (integral (cbox a b) ?g - i) < e" if ab: "ball 0 B \ cbox a b" for a b proof - obtain M where M: "\n. n \ M \ abs (integral (cbox a b) (?f n) - integral (cbox a b) ?g) < e/2" using \e > 0\ g by (fastforce simp add: dest!: LIMSEQ_D [where r = "e/2"]) have *: "\\ \ g. \\\ - i\ < e/2; \\ - g\ < e/2; \ \ \; \ \ i\ \ \g - i\ < e" unfolding real_inner_1_right by arith show "norm (integral (cbox a b) ?g - i) < e" unfolding real_norm_def proof (rule *) show "\integral (cbox a b) (?f N) - i\ < e/2" proof (rule abs_triangle_half_l) show "\integral (cbox a b) (?f N) - integral S (f N)\ < e/2/2" using B[OF ab] by simp show "abs (i - integral S (f N)) < e/2/2" using N by (simp add: abs_minus_commute) qed show "\integral (cbox a b) (?f (M + N)) - integral (cbox a b) ?g\ < e/2" by (metis le_add1 M[of "M + N"]) show "integral (cbox a b) (?f N) \ integral (cbox a b) (?f (M + N))" proof (intro ballI integral_le[OF int int]) fix x assume "x \ cbox a b" have "(f m x) \ (f n x)" if "x \ S" "n \ m" for m n - apply (rule transitive_stepwise_le [OF \n \ m\ order_refl]) - using dual_order.trans apply blast - by (simp add: le \x \ S\) + proof (rule transitive_stepwise_le [OF \n \ m\ order_refl]) + show "\u y z. \f u x \ f y x; f y x \ f z x\ \ f u x \ f z x" + using dual_order.trans by blast + qed (simp add: le \x \ S\) then show "(?f N)x \ (?f (M+N))x" by auto qed have "integral (cbox a b \ S) (f (M + N)) \ integral S (f (M + N))" by (metis Int_lower1 f0 inf_commute int' int_f integral_subset_le) then have "integral (cbox a b) (?f (M + N)) \ integral S (f (M + N))" by (metis (no_types) inf_commute integral_restrict_Int) also have "... \ i" using i'[of "M + N"] by auto finally show "integral (cbox a b) (?f (M + N)) \ i" . qed qed then show ?thesis using \0 < B\ by blast qed ultimately have "(g has_integral i) S" unfolding has_integral_alt' by auto then show ?thesis using has_integral_integrable_integral i integral_unique by metis qed have sub: "\k. integral S (\x. f k x - f 0 x) = integral S (f k) - integral S (f 0)" by (simp add: integral_diff int_f) have *: "\x m n. x \ S \ n\m \ f m x \ f n x" using assms(2) by (force intro: transitive_stepwise_le) have gf: "(\x. g x - f 0 x) integrable_on S \ ((\k. integral S (\x. f (Suc k) x - f 0 x)) \ integral S (\x. g x - f 0 x)) sequentially" proof (rule lem) show "\k. (\x. f (Suc k) x - f 0 x) integrable_on S" by (simp add: integrable_diff int_f) show "(\k. f (Suc k) x - f 0 x) \ g x - f 0 x" if "x \ S" for x proof - have "(\n. f (Suc n) x) \ g x" using LIMSEQ_ignore_initial_segment[OF fg[OF \x \ S\], of 1] by simp then show ?thesis by (simp add: tendsto_diff) qed show "bounded (range (\k. integral S (\x. f (Suc k) x - f 0 x)))" proof - obtain B where B: "\k. norm (integral S (f k)) \ B" using bou by (auto simp: bounded_iff) then have "norm (integral S (\x. f (Suc k) x - f 0 x)) \ B + norm (integral S (f 0))" for k unfolding sub by (meson add_le_cancel_right norm_triangle_le_diff) then show ?thesis unfolding bounded_iff by blast qed qed (use * in auto) then have "(\x. integral S (\xa. f (Suc x) xa - f 0 xa) + integral S (f 0)) \ integral S (\x. g x - f 0 x) + integral S (f 0)" by (auto simp add: tendsto_add) moreover have "(\x. g x - f 0 x + f 0 x) integrable_on S" using gf integrable_add int_f [of 0] by metis ultimately show ?thesis by (simp add: integral_diff int_f LIMSEQ_imp_Suc sub) qed lemma has_integral_monotone_convergence_increasing: fixes f :: "nat \ 'a::euclidean_space \ real" assumes f: "\k. (f k has_integral x k) s" assumes "\k x. x \ s \ f k x \ f (Suc k) x" assumes "\x. x \ s \ (\k. f k x) \ g x" assumes "x \ x'" shows "(g has_integral x') s" proof - have x_eq: "x = (\i. integral s (f i))" by (simp add: integral_unique[OF f]) then have x: "range(\k. integral s (f k)) = range x" by auto have *: "g integrable_on s \ (\k. integral s (f k)) \ integral s g" proof (intro monotone_convergence_increasing allI ballI assms) show "bounded (range(\k. integral s (f k)))" using x convergent_imp_bounded assms by metis qed (use f in auto) then have "integral s g = x'" by (intro LIMSEQ_unique[OF _ \x \ x'\]) (simp add: x_eq) with * show ?thesis by (simp add: has_integral_integral) qed lemma monotone_convergence_decreasing: fixes f :: "nat \ 'n::euclidean_space \ real" assumes intf: "\k. (f k) integrable_on S" and le: "\k x. x \ S \ f (Suc k) x \ f k x" and fg: "\x. x \ S \ ((\k. f k x) \ g x) sequentially" and bou: "bounded (range(\k. integral S (f k)))" shows "g integrable_on S \ (\k. integral S (f k)) \ integral S g" proof - have *: "range(\k. integral S (\x. - f k x)) = (*\<^sub>R) (- 1) ` (range(\k. integral S (f k)))" by force have "(\x. - g x) integrable_on S \ (\k. integral S (\x. - f k x)) \ integral S (\x. - g x)" proof (rule monotone_convergence_increasing) show "\k. (\x. - f k x) integrable_on S" by (blast intro: integrable_neg intf) show "\k x. x \ S \ - f k x \ - f (Suc k) x" by (simp add: le) show "\x. x \ S \ (\k. - f k x) \ - g x" by (simp add: fg tendsto_minus) show "bounded (range(\k. integral S (\x. - f k x)))" using "*" bou bounded_scaling by auto qed then show ?thesis by (force dest: integrable_neg tendsto_minus) qed lemma integral_norm_bound_integral: fixes f :: "'n::euclidean_space \ 'a::banach" assumes int_f: "f integrable_on S" and int_g: "g integrable_on S" and le_g: "\x. x \ S \ norm (f x) \ g x" shows "norm (integral S f) \ integral S g" proof - have norm: "norm \ \ y + e" if "norm \ \ x" and "\x - y\ < e/2" and "norm (\ - \) < e/2" for e x y and \ \ :: 'a proof - have "norm (\ - \) < e/2" by (metis norm_minus_commute that(3)) moreover have "x \ y + e/2" using that(2) by linarith ultimately show ?thesis using that(1) le_less_trans[OF norm_triangle_sub[of \ \]] by (auto simp: less_imp_le) qed have lem: "norm (integral(cbox a b) f) \ integral (cbox a b) g" if f: "f integrable_on cbox a b" and g: "g integrable_on cbox a b" and nle: "\x. x \ cbox a b \ norm (f x) \ g x" for f :: "'n \ 'a" and g a b proof (rule field_le_epsilon) fix e :: real assume "e > 0" then have e: "e/2 > 0" by auto with integrable_integral[OF f,unfolded has_integral[of f]] obtain \ where \: "gauge \" "\\. \ tagged_division_of cbox a b \ \ fine \ \ norm ((\(x, k)\\. content k *\<^sub>R f x) - integral (cbox a b) f) < e/2" by meson moreover from integrable_integral[OF g,unfolded has_integral[of g]] e obtain \ where \: "gauge \" "\\. \ tagged_division_of cbox a b \ \ fine \ \ norm ((\(x, k)\\. content k *\<^sub>R g x) - integral (cbox a b) g) < e/2" by meson ultimately have "gauge (\x. \ x \ \ x)" using gauge_Int by blast with fine_division_exists obtain \ where p: "\ tagged_division_of cbox a b" "(\x. \ x \ \ x) fine \" by metis have "\ fine \" "\ fine \" using fine_Int p(2) by blast+ show "norm (integral (cbox a b) f) \ integral (cbox a b) g + e" proof (rule norm) have "norm (content K *\<^sub>R f x) \ content K *\<^sub>R g x" if "(x, K) \ \" for x K proof- have K: "x \ K" "K \ cbox a b" using \(x, K) \ \\ p(1) by blast+ obtain u v where "K = cbox u v" using \(x, K) \ \\ p(1) by blast moreover have "content K * norm (f x) \ content K * g x" by (metis K subsetD dual_order.antisym measure_nonneg mult_zero_left nle not_le real_mult_le_cancel_iff2) then show ?thesis by simp qed then show "norm (\(x, k)\\. content k *\<^sub>R f x) \ (\(x, k)\\. content k *\<^sub>R g x)" by (simp add: sum_norm_le split_def) show "norm ((\(x, k)\\. content k *\<^sub>R f x) - integral (cbox a b) f) < e/2" using \\ fine \\ \ p(1) by simp show "\(\(x, k)\\. content k *\<^sub>R g x) - integral (cbox a b) g\ < e/2" using \\ fine \\ \ p(1) by simp qed qed show ?thesis proof (rule field_le_epsilon) fix e :: real assume "e > 0" then have e: "e/2 > 0" by auto let ?f = "(\x. if x \ S then f x else 0)" let ?g = "(\x. if x \ S then g x else 0)" have f: "?f integrable_on cbox a b" and g: "?g integrable_on cbox a b" for a b using int_f int_g integrable_altD by auto obtain Bf where "0 < Bf" and Bf: "\a b. ball 0 Bf \ cbox a b \ \z. (?f has_integral z) (cbox a b) \ norm (z - integral S f) < e/2" using integrable_integral [OF int_f,unfolded has_integral'[of f]] e that by blast obtain Bg where "0 < Bg" and Bg: "\a b. ball 0 Bg \ cbox a b \ \z. (?g has_integral z) (cbox a b) \ norm (z - integral S g) < e/2" using integrable_integral [OF int_g,unfolded has_integral'[of g]] e that by blast obtain a b::'n where ab: "ball 0 Bf \ ball 0 Bg \ cbox a b" using ball_max_Un by (metis bounded_ball bounded_subset_cbox_symmetric) have "ball 0 Bf \ cbox a b" using ab by auto with Bf obtain z where int_fz: "(?f has_integral z) (cbox a b)" and z: "norm (z - integral S f) < e/2" by meson have "ball 0 Bg \ cbox a b" using ab by auto with Bg obtain w where int_gw: "(?g has_integral w) (cbox a b)" and w: "norm (w - integral S g) < e/2" by meson show "norm (integral S f) \ integral S g + e" proof (rule norm) show "norm (integral (cbox a b) ?f) \ integral (cbox a b) ?g" by (simp add: le_g lem[OF f g, of a b]) show "\integral (cbox a b) ?g - integral S g\ < e/2" using int_gw integral_unique w by auto show "norm (integral (cbox a b) ?f - integral S f) < e/2" using int_fz integral_unique z by blast qed qed qed lemma continuous_on_imp_absolutely_integrable_on: fixes f::"real \ 'a::banach" shows "continuous_on {a..b} f \ norm (integral {a..b} f) \ integral {a..b} (\x. norm (f x))" by (intro integral_norm_bound_integral integrable_continuous_real continuous_on_norm) auto lemma integral_bound: fixes f::"real \ 'a::banach" assumes "a \ b" assumes "continuous_on {a .. b} f" assumes "\t. t \ {a .. b} \ norm (f t) \ B" shows "norm (integral {a .. b} f) \ B * (b - a)" proof - note continuous_on_imp_absolutely_integrable_on[OF assms(2)] also have "integral {a..b} (\x. norm (f x)) \ integral {a..b} (\_. B)" by (rule integral_le) (auto intro!: integrable_continuous_real continuous_intros assms) also have "\ = B * (b - a)" using assms by simp finally show ?thesis . qed lemma integral_norm_bound_integral_component: fixes f :: "'n::euclidean_space \ 'a::banach" fixes g :: "'n \ 'b::euclidean_space" assumes f: "f integrable_on S" and g: "g integrable_on S" and fg: "\x. x \ S \ norm(f x) \ (g x)\k" shows "norm (integral S f) \ (integral S g)\k" proof - have "norm (integral S f) \ integral S ((\x. x \ k) \ g)" - apply (rule integral_norm_bound_integral[OF f integrable_linear[OF g]]) - apply (simp add: bounded_linear_inner_left) - apply (metis fg o_def) - done + using integral_norm_bound_integral[OF f integrable_linear[OF g]] + by (simp add: bounded_linear_inner_left fg) then show ?thesis unfolding o_def integral_component_eq[OF g] . qed lemma has_integral_norm_bound_integral_component: fixes f :: "'n::euclidean_space \ 'a::banach" fixes g :: "'n \ 'b::euclidean_space" assumes f: "(f has_integral i) S" and g: "(g has_integral j) S" and "\x. x \ S \ norm (f x) \ (g x)\k" shows "norm i \ j\k" using integral_norm_bound_integral_component[of f S g k] unfolding integral_unique[OF f] integral_unique[OF g] using assms by auto lemma uniformly_convergent_improper_integral: fixes f :: "'b \ real \ 'a :: {banach}" assumes deriv: "\x. x \ a \ (G has_field_derivative g x) (at x within {a..})" assumes integrable: "\a' b x. x \ A \ a' \ a \ b \ a' \ f x integrable_on {a'..b}" assumes G: "convergent G" assumes le: "\y x. y \ A \ x \ a \ norm (f y x) \ g x" shows "uniformly_convergent_on A (\b x. integral {a..b} (f x))" proof (intro Cauchy_uniformly_convergent uniformly_Cauchy_onI', goal_cases) case (1 \) from G have "Cauchy G" by (auto intro!: convergent_Cauchy) with 1 obtain M where M: "dist (G (real m)) (G (real n)) < \" if "m \ M" "n \ M" for m n by (force simp: Cauchy_def) define M' where "M' = max (nat \a\) M" show ?case proof (rule exI[of _ M'], safe, goal_cases) case (1 x m n) have M': "M' \ a" "M' \ M" unfolding M'_def by linarith+ have int_g: "(g has_integral (G (real n) - G (real m))) {real m..real n}" using 1 M' by (intro fundamental_theorem_of_calculus) (auto simp: has_field_derivative_iff_has_vector_derivative [symmetric] intro!: DERIV_subset[OF deriv]) have int_f: "f x integrable_on {a'..real n}" if "a' \ a" for a' using that 1 by (cases "a' \ real n") (auto intro: integrable) have "dist (integral {a..real m} (f x)) (integral {a..real n} (f x)) = norm (integral {a..real n} (f x) - integral {a..real m} (f x))" by (simp add: dist_norm norm_minus_commute) also have "integral {a..real m} (f x) + integral {real m..real n} (f x) = integral {a..real n} (f x)" using M' and 1 by (intro integral_combine int_f) auto hence "integral {a..real n} (f x) - integral {a..real m} (f x) = integral {real m..real n} (f x)" by (simp add: algebra_simps) also have "norm \ \ integral {real m..real n} g" using le 1 M' int_f int_g by (intro integral_norm_bound_integral) auto also from int_g have "integral {real m..real n} g = G (real n) - G (real m)" by (simp add: has_integral_iff) also have "\ \ dist (G m) (G n)" by (simp add: dist_norm) also from 1 and M' have "\ < \" by (intro M) auto finally show ?case . qed qed lemma uniformly_convergent_improper_integral': fixes f :: "'b \ real \ 'a :: {banach, real_normed_algebra}" assumes deriv: "\x. x \ a \ (G has_field_derivative g x) (at x within {a..})" assumes integrable: "\a' b x. x \ A \ a' \ a \ b \ a' \ f x integrable_on {a'..b}" assumes G: "convergent G" assumes le: "eventually (\x. \y\A. norm (f y x) \ g x) at_top" shows "uniformly_convergent_on A (\b x. integral {a..b} (f x))" proof - from le obtain a'' where le: "\y x. y \ A \ x \ a'' \ norm (f y x) \ g x" by (auto simp: eventually_at_top_linorder) define a' where "a' = max a a''" have "uniformly_convergent_on A (\b x. integral {a'..real b} (f x))" proof (rule uniformly_convergent_improper_integral) fix t assume t: "t \ a'" hence "(G has_field_derivative g t) (at t within {a..})" by (intro deriv) (auto simp: a'_def) moreover have "{a'..} \ {a..}" unfolding a'_def by auto ultimately show "(G has_field_derivative g t) (at t within {a'..})" by (rule DERIV_subset) qed (insert le, auto simp: a'_def intro: integrable G) hence "uniformly_convergent_on A (\b x. integral {a..a'} (f x) + integral {a'..real b} (f x))" (is ?P) by (intro uniformly_convergent_add) auto also have "eventually (\x. \y\A. integral {a..a'} (f y) + integral {a'..x} (f y) = integral {a..x} (f y)) sequentially" by (intro eventually_mono [OF eventually_ge_at_top[of "nat \a'\"]] ballI integral_combine) (auto simp: a'_def intro: integrable) hence "?P \ ?thesis" by (intro uniformly_convergent_cong) simp_all finally show ?thesis . qed subsection \differentiation under the integral sign\ lemma integral_continuous_on_param: fixes f::"'a::topological_space \ 'b::euclidean_space \ 'c::banach" assumes cont_fx: "continuous_on (U \ cbox a b) (\(x, t). f x t)" shows "continuous_on U (\x. integral (cbox a b) (f x))" proof cases assume "content (cbox a b) \ 0" then have ne: "cbox a b \ {}" by auto note [continuous_intros] = continuous_on_compose2[OF cont_fx, where f="\y. Pair x y" for x, unfolded split_beta fst_conv snd_conv] show ?thesis unfolding continuous_on_def proof (safe intro!: tendstoI) fix e'::real and x assume "e' > 0" define e where "e = e' / (content (cbox a b) + 1)" have "e > 0" using \e' > 0\ by (auto simp: e_def intro!: divide_pos_pos add_nonneg_pos) assume "x \ U" from continuous_on_prod_compactE[OF cont_fx compact_cbox \x \ U\ \0 < e\] obtain X0 where X0: "x \ X0" "open X0" and fx_bound: "\y t. y \ X0 \ U \ t \ cbox a b \ norm (f y t - f x t) \ e" unfolding split_beta fst_conv snd_conv dist_norm by metis have "\\<^sub>F y in at x within U. y \ X0 \ U" using X0(1) X0(2) eventually_at_topological by auto then show "\\<^sub>F y in at x within U. dist (integral (cbox a b) (f y)) (integral (cbox a b) (f x)) < e'" proof eventually_elim case (elim y) have "dist (integral (cbox a b) (f y)) (integral (cbox a b) (f x)) = norm (integral (cbox a b) (\t. f y t - f x t))" using elim \x \ U\ unfolding dist_norm by (subst integral_diff) (auto intro!: integrable_continuous continuous_intros) also have "\ \ e * content (cbox a b)" using elim \x \ U\ by (intro integrable_bound) (auto intro!: fx_bound \x \ U \ less_imp_le[OF \0 < e\] integrable_continuous continuous_intros) also have "\ < e'" using \0 < e'\ \e > 0\ by (auto simp: e_def field_split_simps) finally show "dist (integral (cbox a b) (f y)) (integral (cbox a b) (f x)) < e'" . qed qed qed (auto intro!: continuous_on_const) lemma leibniz_rule: fixes f::"'a::banach \ 'b::euclidean_space \ 'c::banach" assumes fx: "\x t. x \ U \ t \ cbox a b \ ((\x. f x t) has_derivative blinfun_apply (fx x t)) (at x within U)" assumes integrable_f2: "\x. x \ U \ f x integrable_on cbox a b" assumes cont_fx: "continuous_on (U \ (cbox a b)) (\(x, t). fx x t)" assumes [intro]: "x0 \ U" assumes "convex U" shows "((\x. integral (cbox a b) (f x)) has_derivative integral (cbox a b) (fx x0)) (at x0 within U)" (is "(?F has_derivative ?dF) _") proof cases assume "content (cbox a b) \ 0" then have ne: "cbox a b \ {}" by auto note [continuous_intros] = continuous_on_compose2[OF cont_fx, where f="\y. Pair x y" for x, unfolded split_beta fst_conv snd_conv] show ?thesis proof (intro has_derivativeI bounded_linear_scaleR_left tendstoI, fold norm_conv_dist) have cont_f1: "\t. t \ cbox a b \ continuous_on U (\x. f x t)" by (auto simp: continuous_on_eq_continuous_within intro!: has_derivative_continuous fx) note [continuous_intros] = continuous_on_compose2[OF cont_f1] fix e'::real assume "e' > 0" define e where "e = e' / (content (cbox a b) + 1)" have "e > 0" using \e' > 0\ by (auto simp: e_def intro!: divide_pos_pos add_nonneg_pos) from continuous_on_prod_compactE[OF cont_fx compact_cbox \x0 \ U\ \e > 0\] obtain X0 where X0: "x0 \ X0" "open X0" and fx_bound: "\x t. x \ X0 \ U \ t \ cbox a b \ norm (fx x t - fx x0 t) \ e" unfolding split_beta fst_conv snd_conv by (metis dist_norm) note eventually_closed_segment[OF \open X0\ \x0 \ X0\, of U] moreover have "\\<^sub>F x in at x0 within U. x \ X0" using \open X0\ \x0 \ X0\ eventually_at_topological by blast moreover have "\\<^sub>F x in at x0 within U. x \ x0" by (auto simp: eventually_at_filter) moreover have "\\<^sub>F x in at x0 within U. x \ U" by (auto simp: eventually_at_filter) ultimately show "\\<^sub>F x in at x0 within U. norm ((?F x - ?F x0 - ?dF (x - x0)) /\<^sub>R norm (x - x0)) < e'" proof eventually_elim case (elim x) from elim have "0 < norm (x - x0)" by simp have "closed_segment x0 x \ U" by (rule \convex U\[unfolded convex_contains_segment, rule_format, OF \x0 \ U\ \x \ U\]) from elim have [intro]: "x \ U" by auto have "?F x - ?F x0 - ?dF (x - x0) = integral (cbox a b) (\y. f x y - f x0 y - fx x0 y (x - x0))" (is "_ = ?id") using \x \ x0\ by (subst blinfun_apply_integral integral_diff, auto intro!: integrable_diff integrable_f2 continuous_intros intro: integrable_continuous)+ also { fix t assume t: "t \ (cbox a b)" have seg: "\t. t \ {0..1} \ x0 + t *\<^sub>R (x - x0) \ X0 \ U" using \closed_segment x0 x \ U\ \closed_segment x0 x \ X0\ by (force simp: closed_segment_def algebra_simps) from t have deriv: "((\x. f x t) has_derivative (fx y t)) (at y within X0 \ U)" if "y \ X0 \ U" for y unfolding has_vector_derivative_def[symmetric] using that \x \ X0\ - by (intro has_derivative_within_subset[OF fx]) auto + by (intro has_derivative_subset[OF fx]) auto have "\x. x \ X0 \ U \ onorm (blinfun_apply (fx x t) - (fx x0 t)) \ e" using fx_bound t by (auto simp add: norm_blinfun_def fun_diff_def blinfun.bilinear_simps[symmetric]) from differentiable_bound_linearization[OF seg deriv this] X0 have "norm (f x t - f x0 t - fx x0 t (x - x0)) \ e * norm (x - x0)" by (auto simp add: ac_simps) } then have "norm ?id \ integral (cbox a b) (\_. e * norm (x - x0))" by (intro integral_norm_bound_integral) (auto intro!: continuous_intros integrable_diff integrable_f2 intro: integrable_continuous) also have "\ = content (cbox a b) * e * norm (x - x0)" by simp also have "\ < e' * norm (x - x0)" - using \e' > 0\ - apply (intro mult_strict_right_mono[OF _ \0 < norm (x - x0)\]) - apply (simp add: divide_simps e_def not_less) - done + proof (intro mult_strict_right_mono[OF _ \0 < norm (x - x0)\]) + show "content (cbox a b) * e < e'" + using \e' > 0\ by (simp add: divide_simps e_def not_less) + qed finally have "norm (?F x - ?F x0 - ?dF (x - x0)) < e' * norm (x - x0)" . then show ?case by (auto simp: divide_simps) qed qed (rule blinfun.bounded_linear_right) qed (auto intro!: derivative_eq_intros simp: blinfun.bilinear_simps) lemma has_vector_derivative_eq_has_derivative_blinfun: "(f has_vector_derivative f') (at x within U) \ (f has_derivative blinfun_scaleR_left f') (at x within U)" by (simp add: has_vector_derivative_def) lemma leibniz_rule_vector_derivative: fixes f::"real \ 'b::euclidean_space \ 'c::banach" assumes fx: "\x t. x \ U \ t \ cbox a b \ ((\x. f x t) has_vector_derivative (fx x t)) (at x within U)" assumes integrable_f2: "\x. x \ U \ (f x) integrable_on cbox a b" assumes cont_fx: "continuous_on (U \ cbox a b) (\(x, t). fx x t)" assumes U: "x0 \ U" "convex U" shows "((\x. integral (cbox a b) (f x)) has_vector_derivative integral (cbox a b) (fx x0)) (at x0 within U)" proof - note [continuous_intros] = continuous_on_compose2[OF cont_fx, where f="\y. Pair x y" for x, unfolded split_beta fst_conv snd_conv] - have *: "blinfun_scaleR_left (integral (cbox a b) (fx x0)) = - integral (cbox a b) (\t. blinfun_scaleR_left (fx x0 t))" + show ?thesis + unfolding has_vector_derivative_eq_has_derivative_blinfun + proof (rule has_derivative_eq_rhs [OF leibniz_rule[OF _ integrable_f2 _ U]]) + show "continuous_on (U \ cbox a b) (\(x, t). blinfun_scaleR_left (fx x t))" + using cont_fx by (auto simp: split_beta intro!: continuous_intros) + show "blinfun_apply (integral (cbox a b) (\t. blinfun_scaleR_left (fx x0 t))) = + blinfun_apply (blinfun_scaleR_left (integral (cbox a b) (fx x0)))" by (subst integral_linear[symmetric]) (auto simp: has_vector_derivative_def o_def intro!: integrable_continuous U continuous_intros bounded_linear_intros) - show ?thesis - unfolding has_vector_derivative_eq_has_derivative_blinfun - apply (rule has_derivative_eq_rhs) - apply (rule leibniz_rule[OF _ integrable_f2 _ U, where fx="\x t. blinfun_scaleR_left (fx x t)"]) - using fx cont_fx - apply (auto simp: has_vector_derivative_def * split_beta intro!: continuous_intros) - done + qed (use fx in \auto simp: has_vector_derivative_def\) qed lemma has_field_derivative_eq_has_derivative_blinfun: "(f has_field_derivative f') (at x within U) \ (f has_derivative blinfun_mult_right f') (at x within U)" by (simp add: has_field_derivative_def) lemma leibniz_rule_field_derivative: fixes f::"'a::{real_normed_field, banach} \ 'b::euclidean_space \ 'a" assumes fx: "\x t. x \ U \ t \ cbox a b \ ((\x. f x t) has_field_derivative fx x t) (at x within U)" assumes integrable_f2: "\x. x \ U \ (f x) integrable_on cbox a b" assumes cont_fx: "continuous_on (U \ (cbox a b)) (\(x, t). fx x t)" assumes U: "x0 \ U" "convex U" shows "((\x. integral (cbox a b) (f x)) has_field_derivative integral (cbox a b) (fx x0)) (at x0 within U)" proof - note [continuous_intros] = continuous_on_compose2[OF cont_fx, where f="\y. Pair x y" for x, unfolded split_beta fst_conv snd_conv] have *: "blinfun_mult_right (integral (cbox a b) (fx x0)) = integral (cbox a b) (\t. blinfun_mult_right (fx x0 t))" by (subst integral_linear[symmetric]) (auto simp: has_vector_derivative_def o_def intro!: integrable_continuous U continuous_intros bounded_linear_intros) show ?thesis unfolding has_field_derivative_eq_has_derivative_blinfun - apply (rule has_derivative_eq_rhs) - apply (rule leibniz_rule[OF _ integrable_f2 _ U, where fx="\x t. blinfun_mult_right (fx x t)"]) - using fx cont_fx - apply (auto simp: has_field_derivative_def * split_beta intro!: continuous_intros) - done + proof (rule has_derivative_eq_rhs [OF leibniz_rule[OF _ integrable_f2 _ U, where fx="\x t. blinfun_mult_right (fx x t)"]]) + show "continuous_on (U \ cbox a b) (\(x, t). blinfun_mult_right (fx x t))" + using cont_fx by (auto simp: split_beta intro!: continuous_intros) + show "blinfun_apply (integral (cbox a b) (\t. blinfun_mult_right (fx x0 t))) = + blinfun_apply (blinfun_mult_right (integral (cbox a b) (fx x0)))" + by (subst integral_linear[symmetric]) + (auto simp: has_vector_derivative_def o_def + intro!: integrable_continuous U continuous_intros bounded_linear_intros) + qed (use fx in \auto simp: has_field_derivative_def\) qed lemma leibniz_rule_field_differentiable: fixes f::"'a::{real_normed_field, banach} \ 'b::euclidean_space \ 'a" assumes "\x t. x \ U \ t \ cbox a b \ ((\x. f x t) has_field_derivative fx x t) (at x within U)" assumes "\x. x \ U \ (f x) integrable_on cbox a b" assumes "continuous_on (U \ (cbox a b)) (\(x, t). fx x t)" assumes "x0 \ U" "convex U" shows "(\x. integral (cbox a b) (f x)) field_differentiable at x0 within U" using leibniz_rule_field_derivative[OF assms] by (auto simp: field_differentiable_def) subsection \Exchange uniform limit and integral\ lemma uniform_limit_integral_cbox: fixes f::"'a \ 'b::euclidean_space \ 'c::banach" assumes u: "uniform_limit (cbox a b) f g F" assumes c: "\n. continuous_on (cbox a b) (f n)" assumes [simp]: "F \ bot" obtains I J where "\n. (f n has_integral I n) (cbox a b)" "(g has_integral J) (cbox a b)" "(I \ J) F" proof - have fi[simp]: "f n integrable_on (cbox a b)" for n by (auto intro!: integrable_continuous assms) then obtain I where I: "\n. (f n has_integral I n) (cbox a b)" by atomize_elim (auto simp: integrable_on_def intro!: choice) moreover have gi[simp]: "g integrable_on (cbox a b)" by (auto intro!: integrable_continuous uniform_limit_theorem[OF _ u] eventuallyI c) then obtain J where J: "(g has_integral J) (cbox a b)" by blast moreover have "(I \ J) F" proof cases assume "content (cbox a b) = 0" hence "I = (\_. 0)" "J = 0" by (auto intro!: has_integral_unique I J) thus ?thesis by simp next assume content_nonzero: "content (cbox a b) \ 0" show ?thesis proof (rule tendstoI) fix e::real assume "e > 0" define e' where "e' = e/2" with \e > 0\ have "e' > 0" by simp then have "\\<^sub>F n in F. \x\cbox a b. norm (f n x - g x) < e' / content (cbox a b)" using u content_nonzero by (auto simp: uniform_limit_iff dist_norm zero_less_measure_iff) then show "\\<^sub>F n in F. dist (I n) J < e" proof eventually_elim case (elim n) have "I n = integral (cbox a b) (f n)" "J = integral (cbox a b) g" using I[of n] J by (simp_all add: integral_unique) then have "dist (I n) J = norm (integral (cbox a b) (\x. f n x - g x))" by (simp add: integral_diff dist_norm) also have "\ \ integral (cbox a b) (\x. (e' / content (cbox a b)))" using elim by (intro integral_norm_bound_integral) (auto intro!: integrable_diff) also have "\ < e" using \0 < e\ by (simp add: e'_def) finally show ?case . qed qed qed ultimately show ?thesis .. qed lemma uniform_limit_integral: fixes f::"'a \ 'b::ordered_euclidean_space \ 'c::banach" assumes u: "uniform_limit {a..b} f g F" assumes c: "\n. continuous_on {a..b} (f n)" assumes [simp]: "F \ bot" obtains I J where "\n. (f n has_integral I n) {a..b}" "(g has_integral J) {a..b}" "(I \ J) F" by (metis interval_cbox assms uniform_limit_integral_cbox) subsection \Integration by parts\ lemma integration_by_parts_interior_strong: fixes prod :: "_ \ _ \ 'b :: banach" assumes bilinear: "bounded_bilinear (prod)" assumes s: "finite s" and le: "a \ b" assumes cont [continuous_intros]: "continuous_on {a..b} f" "continuous_on {a..b} g" assumes deriv: "\x. x\{a<.. (f has_vector_derivative f' x) (at x)" "\x. x\{a<.. (g has_vector_derivative g' x) (at x)" assumes int: "((\x. prod (f x) (g' x)) has_integral (prod (f b) (g b) - prod (f a) (g a) - y)) {a..b}" shows "((\x. prod (f' x) (g x)) has_integral y) {a..b}" proof - interpret bounded_bilinear prod by fact have "((\x. prod (f x) (g' x) + prod (f' x) (g x)) has_integral (prod (f b) (g b) - prod (f a) (g a))) {a..b}" using deriv by (intro fundamental_theorem_of_calculus_interior_strong[OF s le]) (auto intro!: continuous_intros continuous_on has_vector_derivative) from has_integral_diff[OF this int] show ?thesis by (simp add: algebra_simps) qed lemma integration_by_parts_interior: fixes prod :: "_ \ _ \ 'b :: banach" assumes "bounded_bilinear (prod)" "a \ b" "continuous_on {a..b} f" "continuous_on {a..b} g" assumes "\x. x\{a<.. (f has_vector_derivative f' x) (at x)" "\x. x\{a<.. (g has_vector_derivative g' x) (at x)" assumes "((\x. prod (f x) (g' x)) has_integral (prod (f b) (g b) - prod (f a) (g a) - y)) {a..b}" shows "((\x. prod (f' x) (g x)) has_integral y) {a..b}" by (rule integration_by_parts_interior_strong[of _ "{}" _ _ f g f' g']) (insert assms, simp_all) lemma integration_by_parts: fixes prod :: "_ \ _ \ 'b :: banach" assumes "bounded_bilinear (prod)" "a \ b" "continuous_on {a..b} f" "continuous_on {a..b} g" assumes "\x. x\{a..b} \ (f has_vector_derivative f' x) (at x)" "\x. x\{a..b} \ (g has_vector_derivative g' x) (at x)" assumes "((\x. prod (f x) (g' x)) has_integral (prod (f b) (g b) - prod (f a) (g a) - y)) {a..b}" shows "((\x. prod (f' x) (g x)) has_integral y) {a..b}" by (rule integration_by_parts_interior[of _ _ _ f g f' g']) (insert assms, simp_all) lemma integrable_by_parts_interior_strong: fixes prod :: "_ \ _ \ 'b :: banach" assumes bilinear: "bounded_bilinear (prod)" assumes s: "finite s" and le: "a \ b" assumes cont [continuous_intros]: "continuous_on {a..b} f" "continuous_on {a..b} g" assumes deriv: "\x. x\{a<.. (f has_vector_derivative f' x) (at x)" "\x. x\{a<.. (g has_vector_derivative g' x) (at x)" assumes int: "(\x. prod (f x) (g' x)) integrable_on {a..b}" shows "(\x. prod (f' x) (g x)) integrable_on {a..b}" proof - from int obtain I where "((\x. prod (f x) (g' x)) has_integral I) {a..b}" unfolding integrable_on_def by blast hence "((\x. prod (f x) (g' x)) has_integral (prod (f b) (g b) - prod (f a) (g a) - (prod (f b) (g b) - prod (f a) (g a) - I))) {a..b}" by simp from integration_by_parts_interior_strong[OF assms(1-7) this] show ?thesis unfolding integrable_on_def by blast qed lemma integrable_by_parts_interior: fixes prod :: "_ \ _ \ 'b :: banach" assumes "bounded_bilinear (prod)" "a \ b" "continuous_on {a..b} f" "continuous_on {a..b} g" assumes "\x. x\{a<.. (f has_vector_derivative f' x) (at x)" "\x. x\{a<.. (g has_vector_derivative g' x) (at x)" assumes "(\x. prod (f x) (g' x)) integrable_on {a..b}" shows "(\x. prod (f' x) (g x)) integrable_on {a..b}" by (rule integrable_by_parts_interior_strong[of _ "{}" _ _ f g f' g']) (insert assms, simp_all) lemma integrable_by_parts: fixes prod :: "_ \ _ \ 'b :: banach" assumes "bounded_bilinear (prod)" "a \ b" "continuous_on {a..b} f" "continuous_on {a..b} g" assumes "\x. x\{a..b} \ (f has_vector_derivative f' x) (at x)" "\x. x\{a..b} \ (g has_vector_derivative g' x) (at x)" assumes "(\x. prod (f x) (g' x)) integrable_on {a..b}" shows "(\x. prod (f' x) (g x)) integrable_on {a..b}" by (rule integrable_by_parts_interior_strong[of _ "{}" _ _ f g f' g']) (insert assms, simp_all) subsection \Integration by substitution\ lemma has_integral_substitution_general: fixes f :: "real \ 'a::euclidean_space" and g :: "real \ real" assumes s: "finite s" and le: "a \ b" and subset: "g ` {a..b} \ {c..d}" and f [continuous_intros]: "continuous_on {c..d} f" and g [continuous_intros]: "continuous_on {a..b} g" and deriv [derivative_intros]: "\x. x \ {a..b} - s \ (g has_field_derivative g' x) (at x within {a..b})" shows "((\x. g' x *\<^sub>R f (g x)) has_integral (integral {g a..g b} f - integral {g b..g a} f)) {a..b}" proof - let ?F = "\x. integral {c..g x} f" have cont_int: "continuous_on {a..b} ?F" by (rule continuous_on_compose2[OF _ g subset] indefinite_integral_continuous_1 f integrable_continuous_real)+ have deriv: "(((\x. integral {c..x} f) \ g) has_vector_derivative g' x *\<^sub>R f (g x)) (at x within {a..b})" if "x \ {a..b} - s" for x proof (rule has_vector_derivative_eq_rhs [OF vector_diff_chain_within refl]) show "(g has_vector_derivative g' x) (at x within {a..b})" using deriv has_field_derivative_iff_has_vector_derivative that by blast show "((\x. integral {c..x} f) has_vector_derivative f (g x)) (at (g x) within g ` {a..b})" using that le subset by (blast intro: has_vector_derivative_within_subset integral_has_vector_derivative f) qed have deriv: "(?F has_vector_derivative g' x *\<^sub>R f (g x)) (at x)" if "x \ {a..b} - (s \ {a,b})" for x using deriv[of x] that by (simp add: at_within_Icc_at o_def) have "((\x. g' x *\<^sub>R f (g x)) has_integral (?F b - ?F a)) {a..b}" using le cont_int s deriv cont_int by (intro fundamental_theorem_of_calculus_interior_strong[of "s \ {a,b}"]) simp_all also from subset have "g x \ {c..d}" if "x \ {a..b}" for x using that by blast from this[of a] this[of b] le have cd: "c \ g a" "g b \ d" "c \ g b" "g a \ d" by auto have "integral {c..g b} f - integral {c..g a} f = integral {g a..g b} f - integral {g b..g a} f" proof cases assume "g a \ g b" note le = le this from cd have "integral {c..g a} f + integral {g a..g b} f = integral {c..g b} f" by (intro integral_combine integrable_continuous_real continuous_on_subset[OF f] le) simp_all with le show ?thesis by (cases "g a = g b") (simp_all add: algebra_simps) next assume less: "\g a \ g b" then have "g a \ g b" by simp note le = le this from cd have "integral {c..g b} f + integral {g b..g a} f = integral {c..g a} f" by (intro integral_combine integrable_continuous_real continuous_on_subset[OF f] le) simp_all with less show ?thesis by (simp_all add: algebra_simps) qed finally show ?thesis . qed lemma has_integral_substitution_strong: fixes f :: "real \ 'a::euclidean_space" and g :: "real \ real" assumes s: "finite s" and le: "a \ b" "g a \ g b" and subset: "g ` {a..b} \ {c..d}" and f [continuous_intros]: "continuous_on {c..d} f" and g [continuous_intros]: "continuous_on {a..b} g" and deriv [derivative_intros]: "\x. x \ {a..b} - s \ (g has_field_derivative g' x) (at x within {a..b})" shows "((\x. g' x *\<^sub>R f (g x)) has_integral (integral {g a..g b} f)) {a..b}" using has_integral_substitution_general[OF s le(1) subset f g deriv] le(2) by (cases "g a = g b") auto lemma has_integral_substitution: fixes f :: "real \ 'a::euclidean_space" and g :: "real \ real" assumes "a \ b" "g a \ g b" "g ` {a..b} \ {c..d}" and "continuous_on {c..d} f" and "\x. x \ {a..b} \ (g has_field_derivative g' x) (at x within {a..b})" shows "((\x. g' x *\<^sub>R f (g x)) has_integral (integral {g a..g b} f)) {a..b}" by (intro has_integral_substitution_strong[of "{}" a b g c d] assms) (auto intro: DERIV_continuous_on assms) lemma integral_shift: fixes f :: "real \ 'a::euclidean_space" assumes cont: "continuous_on {a + c..b + c} f" shows "integral {a..b} (f \ (\x. x + c)) = integral {a + c..b + c} f" proof (cases "a \ b") case True have "((\x. 1 *\<^sub>R f (x + c)) has_integral integral {a+c..b+c} f) {a..b}" using True cont by (intro has_integral_substitution[where c = "a + c" and d = "b + c"]) (auto intro!: derivative_eq_intros) thus ?thesis by (simp add: has_integral_iff o_def) qed auto subsection \Compute a double integral using iterated integrals and switching the order of integration\ lemma continuous_on_imp_integrable_on_Pair1: fixes f :: "_ \ 'b::banach" assumes con: "continuous_on (cbox (a,c) (b,d)) f" and x: "x \ cbox a b" shows "(\y. f (x, y)) integrable_on (cbox c d)" proof - have "f \ (\y. (x, y)) integrable_on (cbox c d)" - apply (rule integrable_continuous) - apply (rule continuous_on_compose [OF _ continuous_on_subset [OF con]]) - using x - apply (auto intro: continuous_on_Pair continuous_on_const continuous_on_id continuous_on_subset con) - done + proof (intro integrable_continuous continuous_on_compose [OF _ continuous_on_subset [OF con]]) + show "continuous_on (cbox c d) (Pair x)" + by (simp add: continuous_on_Pair) + show "Pair x ` cbox c d \ cbox (a,c) (b,d)" + using x by blast + qed then show ?thesis by (simp add: o_def) qed lemma integral_integrable_2dim: fixes f :: "('a::euclidean_space * 'b::euclidean_space) \ 'c::banach" assumes "continuous_on (cbox (a,c) (b,d)) f" shows "(\x. integral (cbox c d) (\y. f (x,y))) integrable_on cbox a b" proof (cases "content(cbox c d) = 0") case True then show ?thesis by (simp add: True integrable_const) next case False have uc: "uniformly_continuous_on (cbox (a,c) (b,d)) f" by (simp add: assms compact_cbox compact_uniformly_continuous) { fix x::'a and e::real assume x: "x \ cbox a b" and e: "0 < e" then have e2_gt: "0 < e/2 / content (cbox c d)" and e2_less: "e/2 / content (cbox c d) * content (cbox c d) < e" by (auto simp: False content_lt_nz e) then obtain dd where dd: "\x x'. \x\cbox (a, c) (b, d); x'\cbox (a, c) (b, d); norm (x' - x) < dd\ \ norm (f x' - f x) \ e/(2 * content (cbox c d))" "dd>0" using uc [unfolded uniformly_continuous_on_def, THEN spec, of "e/(2 * content (cbox c d))"] by (auto simp: dist_norm intro: less_imp_le) have "\delta>0. \x'\cbox a b. norm (x' - x) < delta \ norm (integral (cbox c d) (\u. f (x', u) - f (x, u))) < e" - apply (rule_tac x=dd in exI) using dd e2_gt assms x + apply (rule_tac x=dd in exI) apply clarify - apply (rule le_less_trans [OF _ e2_less]) - apply (rule integrable_bound) + apply (rule le_less_trans [OF integrable_bound e2_less]) apply (auto intro: integrable_diff continuous_on_imp_integrable_on_Pair1) done } note * = this show ?thesis - apply (rule integrable_continuous) - apply (simp add: * continuous_on_iff dist_norm integral_diff [symmetric] continuous_on_imp_integrable_on_Pair1 [OF assms]) - done + proof (rule integrable_continuous) + show "continuous_on (cbox a b) (\x. integral (cbox c d) (\y. f (x, y)))" + by (simp add: * continuous_on_iff dist_norm integral_diff [symmetric] continuous_on_imp_integrable_on_Pair1 [OF assms]) + qed qed lemma integral_split: fixes f :: "'a::euclidean_space \ 'b::{real_normed_vector,complete_space}" assumes f: "f integrable_on (cbox a b)" and k: "k \ Basis" shows "integral (cbox a b) f = integral (cbox a b \ {x. x\k \ c}) f + integral (cbox a b \ {x. x\k \ c}) f" - apply (rule integral_unique [OF has_integral_split [where c=c]]) using k f - apply (auto simp: has_integral_integral [symmetric]) - done + by (auto simp: has_integral_integral intro: integral_unique [OF has_integral_split]) lemma integral_swap_operativeI: fixes f :: "('a::euclidean_space * 'b::euclidean_space) \ 'c::banach" assumes f: "continuous_on s f" and e: "0 < e" shows "operative conj True (\k. \a b c d. cbox (a,c) (b,d) \ k \ cbox (a,c) (b,d) \ s \ norm(integral (cbox (a,c) (b,d)) f - integral (cbox a b) (\x. integral (cbox c d) (\y. f((x,y))))) \ e * content (cbox (a,c) (b,d)))" proof (standard, auto) fix a::'a and c::'b and b::'a and d::'b and u::'a and v::'a and w::'b and z::'b assume *: "box (a, c) (b, d) = {}" and cb1: "cbox (u, w) (v, z) \ cbox (a, c) (b, d)" and cb2: "cbox (u, w) (v, z) \ s" then have c0: "content (cbox (a, c) (b, d)) = 0" using * unfolding content_eq_0_interior by simp have c0': "content (cbox (u, w) (v, z)) = 0" by (fact content_0_subset [OF c0 cb1]) show "norm (integral (cbox (u,w) (v,z)) f - integral (cbox u v) (\x. integral (cbox w z) (\y. f (x, y)))) \ e * content (cbox (u,w) (v,z))" using content_cbox_pair_eq0_D [OF c0'] by (force simp add: c0') next fix a::'a and c::'b and b::'a and d::'b and M::real and i::'a and j::'b and u::'a and v::'a and w::'b and z::'b assume ij: "(i,j) \ Basis" and n1: "\a' b' c' d'. cbox (a',c') (b',d') \ cbox (a,c) (b,d) \ cbox (a',c') (b',d') \ {x. x \ (i,j) \ M} \ cbox (a',c') (b',d') \ s \ norm (integral (cbox (a',c') (b',d')) f - integral (cbox a' b') (\x. integral (cbox c' d') (\y. f (x,y)))) \ e * content (cbox (a',c') (b',d'))" and n2: "\a' b' c' d'. cbox (a',c') (b',d') \ cbox (a,c) (b,d) \ cbox (a',c') (b',d') \ {x. M \ x \ (i,j)} \ cbox (a',c') (b',d') \ s \ norm (integral (cbox (a',c') (b',d')) f - integral (cbox a' b') (\x. integral (cbox c' d') (\y. f (x,y)))) \ e * content (cbox (a',c') (b',d'))" and subs: "cbox (u,w) (v,z) \ cbox (a,c) (b,d)" "cbox (u,w) (v,z) \ s" have fcont: "continuous_on (cbox (u, w) (v, z)) f" using assms(1) continuous_on_subset subs(2) by blast then have fint: "f integrable_on cbox (u, w) (v, z)" by (metis integrable_continuous) consider "i \ Basis" "j=0" | "j \ Basis" "i=0" using ij by (auto simp: Euclidean_Space.Basis_prod_def) then show "norm (integral (cbox (u,w) (v,z)) f - integral (cbox u v) (\x. integral (cbox w z) (\y. f (x,y)))) \ e * content (cbox (u,w) (v,z))" (is ?normle) proof cases case 1 then have e: "e * content (cbox (u, w) (v, z)) = e * (content (cbox u v \ {x. x \ i \ M}) * content (cbox w z)) + e * (content (cbox u v \ {x. M \ x \ i}) * content (cbox w z))" by (simp add: content_split [where c=M] content_Pair algebra_simps) have *: "integral (cbox u v) (\x. integral (cbox w z) (\y. f (x, y))) = integral (cbox u v \ {x. x \ i \ M}) (\x. integral (cbox w z) (\y. f (x, y))) + integral (cbox u v \ {x. M \ x \ i}) (\x. integral (cbox w z) (\y. f (x, y)))" using 1 f subs integral_integrable_2dim continuous_on_subset by (blast intro: integral_split) show ?normle apply (rule norm_diff2 [OF integral_split [where c=M, OF fint ij] * e]) using 1 subs apply (simp_all add: cbox_Pair_eq setcomp_dot1 [of "\u. M\u"] setcomp_dot1 [of "\u. u\M"] Sigma_Int_Paircomp1) - apply (simp_all add: interval_split ij) - apply (simp_all add: cbox_Pair_eq [symmetric] content_Pair [symmetric]) - apply (force simp add: interval_split [symmetric] intro!: n1 [rule_format]) - apply (force simp add: interval_split [symmetric] intro!: n2 [rule_format]) + apply (simp_all add: interval_split ij flip: cbox_Pair_eq content_Pair) + apply (force simp flip: interval_split intro!: n1 [rule_format]) + apply (force simp flip: interval_split intro!: n2 [rule_format]) done next case 2 then have e: "e * content (cbox (u, w) (v, z)) = e * (content (cbox u v) * content (cbox w z \ {x. x \ j \ M})) + e * (content (cbox u v) * content (cbox w z \ {x. M \ x \ j}))" by (simp add: content_split [where c=M] content_Pair algebra_simps) have "(\x. integral (cbox w z \ {x. x \ j \ M}) (\y. f (x, y))) integrable_on cbox u v" - "(\x. integral (cbox w z \ {x. M \ x \ j}) (\y. f (x, y))) integrable_on cbox u v" + "(\x. integral (cbox w z \ {x. M \ x \ j}) (\y. f (x, y))) integrable_on cbox u v" using 2 subs apply (simp_all add: interval_split) - apply (rule_tac [!] integral_integrable_2dim [OF continuous_on_subset [OF f]]) - apply (auto simp: cbox_Pair_eq interval_split [symmetric]) + apply (rule integral_integrable_2dim [OF continuous_on_subset [OF f]]; auto simp: cbox_Pair_eq interval_split [symmetric])+ done with 2 have *: "integral (cbox u v) (\x. integral (cbox w z) (\y. f (x, y))) = integral (cbox u v) (\x. integral (cbox w z \ {x. x \ j \ M}) (\y. f (x, y))) + integral (cbox u v) (\x. integral (cbox w z \ {x. M \ x \ j}) (\y. f (x, y)))" by (simp add: integral_add [symmetric] integral_split [symmetric] continuous_on_imp_integrable_on_Pair1 [OF fcont] cong: integral_cong) show ?normle apply (rule norm_diff2 [OF integral_split [where c=M, OF fint ij] * e]) using 2 subs apply (simp_all add: cbox_Pair_eq setcomp_dot2 [of "\u. M\u"] setcomp_dot2 [of "\u. u\M"] Sigma_Int_Paircomp2) - apply (simp_all add: interval_split ij) - apply (simp_all add: cbox_Pair_eq [symmetric] content_Pair [symmetric]) - apply (force simp add: interval_split [symmetric] intro!: n1 [rule_format]) - apply (force simp add: interval_split [symmetric] intro!: n2 [rule_format]) + apply (simp_all add: interval_split ij flip: cbox_Pair_eq content_Pair) + apply (force simp flip: interval_split intro!: n1 [rule_format]) + apply (force simp flip: interval_split intro!: n2 [rule_format]) done qed qed lemma integral_Pair_const: "integral (cbox (a,c) (b,d)) (\x. k) = integral (cbox a b) (\x. integral (cbox c d) (\y. k))" by (simp add: content_Pair) lemma integral_prod_continuous: fixes f :: "('a::euclidean_space * 'b::euclidean_space) \ 'c::banach" assumes "continuous_on (cbox (a, c) (b, d)) f" (is "continuous_on ?CBOX f") shows "integral (cbox (a, c) (b, d)) f = integral (cbox a b) (\x. integral (cbox c d) (\y. f (x, y)))" proof (cases "content ?CBOX = 0") case True then show ?thesis by (auto simp: content_Pair) next case False then have cbp: "content ?CBOX > 0" using content_lt_nz by blast have "norm (integral ?CBOX f - integral (cbox a b) (\x. integral (cbox c d) (\y. f (x,y)))) = 0" proof (rule dense_eq0_I, simp) fix e :: real assume "0 < e" with \content ?CBOX > 0\ have "0 < e/content ?CBOX" by simp have f_int_acbd: "f integrable_on ?CBOX" by (rule integrable_continuous [OF assms]) { fix p assume p: "p division_of ?CBOX" then have "finite p" by blast define e' where "e' = e/content ?CBOX" with \0 < e\ \0 < e/content ?CBOX\ have "0 < e'" by simp interpret operative conj True "\k. \a' b' c' d'. cbox (a', c') (b', d') \ k \ cbox (a', c') (b', d') \ ?CBOX \ norm (integral (cbox (a', c') (b', d')) f - integral (cbox a' b') (\x. integral (cbox c' d') (\y. f ((x, y))))) \ e' * content (cbox (a', c') (b', d'))" using assms \0 < e'\ by (rule integral_swap_operativeI) have "norm (integral ?CBOX f - integral (cbox a b) (\x. integral (cbox c d) (\y. f (x, y)))) \ e' * content ?CBOX" if "\t u v w z. t \ p \ cbox (u, w) (v, z) \ t \ cbox (u, w) (v, z) \ ?CBOX \ norm (integral (cbox (u, w) (v, z)) f - integral (cbox u v) (\x. integral (cbox w z) (\y. f (x, y)))) \ e' * content (cbox (u, w) (v, z))" using that division [of p "(a, c)" "(b, d)"] p \finite p\ by (auto simp add: comm_monoid_set_F_and) with False have "norm (integral ?CBOX f - integral (cbox a b) (\x. integral (cbox c d) (\y. f (x, y)))) \ e" if "\t u v w z. t \ p \ cbox (u, w) (v, z) \ t \ cbox (u, w) (v, z) \ ?CBOX \ norm (integral (cbox (u, w) (v, z)) f - integral (cbox u v) (\x. integral (cbox w z) (\y. f (x, y)))) \ e * content (cbox (u, w) (v, z)) / content ?CBOX" using that by (simp add: e'_def) } note op_acbd = this { fix k::real and \ and u::'a and v w and z::'b and t1 t2 l assume k: "0 < k" and nf: "\x y u v. \x \ cbox a b; y \ cbox c d; u \ cbox a b; v\cbox c d; norm (u-x, v-y) < k\ \ norm (f(u,v) - f(x,y)) < e/(2 * (content ?CBOX))" and p_acbd: "\ tagged_division_of cbox (a,c) (b,d)" and fine: "(\x. ball x k) fine \" "((t1,t2), l) \ \" and uwvz_sub: "cbox (u,w) (v,z) \ l" "cbox (u,w) (v,z) \ cbox (a,c) (b,d)" have t: "t1 \ cbox a b" "t2 \ cbox c d" by (meson fine p_acbd cbox_Pair_iff tag_in_interval)+ have ls: "l \ ball (t1,t2) k" using fine by (simp add: fine_def Ball_def) { fix x1 x2 assume xuvwz: "x1 \ cbox u v" "x2 \ cbox w z" then have x: "x1 \ cbox a b" "x2 \ cbox c d" using uwvz_sub by auto have "norm (x1 - t1, x2 - t2) = norm (t1 - x1, t2 - x2)" by (simp add: norm_Pair norm_minus_commute) also have "norm (t1 - x1, t2 - x2) < k" using xuvwz ls uwvz_sub unfolding ball_def by (force simp add: cbox_Pair_eq dist_norm ) finally have "norm (f (x1,x2) - f (t1,t2)) \ e/content ?CBOX/2" using nf [OF t x] by simp } note nf' = this have f_int_uwvz: "f integrable_on cbox (u,w) (v,z)" using f_int_acbd uwvz_sub integrable_on_subcbox by blast have f_int_uv: "\x. x \ cbox u v \ (\y. f (x,y)) integrable_on cbox w z" using assms continuous_on_subset uwvz_sub by (blast intro: continuous_on_imp_integrable_on_Pair1) have 1: "norm (integral (cbox (u,w) (v,z)) f - integral (cbox (u,w) (v,z)) (\x. f (t1,t2))) - \ e * content (cbox (u,w) (v,z)) / content ?CBOX/2" + \ e * content (cbox (u,w) (v,z)) / content ?CBOX/2" + using cbp \0 < e/content ?CBOX\ nf' apply (simp only: integral_diff [symmetric] f_int_uwvz integrable_const) - apply (rule order_trans [OF integrable_bound [of "e/content ?CBOX/2"]]) - using cbp \0 < e/content ?CBOX\ nf' - apply (auto simp: integrable_diff f_int_uwvz integrable_const) + apply (auto simp: integrable_diff f_int_uwvz integrable_const intro: order_trans [OF integrable_bound [of "e/content ?CBOX/2"]]) done have int_integrable: "(\x. integral (cbox w z) (\y. f (x, y))) integrable_on cbox u v" using assms integral_integrable_2dim continuous_on_subset uwvz_sub(2) by blast have normint_wz: "\x. x \ cbox u v \ norm (integral (cbox w z) (\y. f (x, y)) - integral (cbox w z) (\y. f (t1, t2))) \ e * content (cbox w z) / content (cbox (a, c) (b, d))/2" + using cbp \0 < e/content ?CBOX\ nf' apply (simp only: integral_diff [symmetric] f_int_uv integrable_const) - apply (rule order_trans [OF integrable_bound [of "e/content ?CBOX/2"]]) - using cbp \0 < e/content ?CBOX\ nf' - apply (auto simp: integrable_diff f_int_uv integrable_const) + apply (auto simp: integrable_diff f_int_uv integrable_const intro: order_trans [OF integrable_bound [of "e/content ?CBOX/2"]]) done have "norm (integral (cbox u v) (\x. integral (cbox w z) (\y. f (x,y)) - integral (cbox w z) (\y. f (t1,t2)))) \ e * content (cbox w z) / content ?CBOX/2 * content (cbox u v)" - apply (rule integrable_bound [OF _ _ normint_wz]) using cbp \0 < e/content ?CBOX\ + apply (intro integrable_bound [OF _ _ normint_wz]) apply (auto simp: field_split_simps integrable_diff int_integrable integrable_const) done also have "... \ e * content (cbox (u,w) (v,z)) / content ?CBOX/2" by (simp add: content_Pair field_split_simps) finally have 2: "norm (integral (cbox u v) (\x. integral (cbox w z) (\y. f (x,y))) - integral (cbox u v) (\x. integral (cbox w z) (\y. f (t1,t2)))) \ e * content (cbox (u,w) (v,z)) / content ?CBOX/2" by (simp only: integral_diff [symmetric] int_integrable integrable_const) have norm_xx: "\x' = y'; norm(x - x') \ e/2; norm(y - y') \ e/2\ \ norm(x - y) \ e" for x::'c and y x' y' e using norm_triangle_mono [of "x-y'" "e/2" "y'-y" "e/2"] field_sum_of_halves by (simp add: norm_minus_commute) have "norm (integral (cbox (u,w) (v,z)) f - integral (cbox u v) (\x. integral (cbox w z) (\y. f (x,y)))) \ e * content (cbox (u,w) (v,z)) / content ?CBOX" by (rule norm_xx [OF integral_Pair_const 1 2]) } note * = this have "norm (integral ?CBOX f - integral (cbox a b) (\x. integral (cbox c d) (\y. f (x,y)))) \ e" if "\x\?CBOX. \x'\?CBOX. norm (x' - x) < k \ norm (f x' - f x) < e /(2 * content (?CBOX))" "0 < k" for k proof - obtain p where ptag: "p tagged_division_of cbox (a, c) (b, d)" and fine: "(\x. ball x k) fine p" using fine_division_exists \0 < k\ by blast show ?thesis - apply (rule op_acbd [OF division_of_tagged_division [OF ptag]]) - using that fine ptag \0 < k\ by (auto simp: *) + using that fine ptag \0 < k\ + by (auto simp: * intro: op_acbd [OF division_of_tagged_division [OF ptag]]) qed then show "norm (integral ?CBOX f - integral (cbox a b) (\x. integral (cbox c d) (\y. f (x,y)))) \ e" using compact_uniformly_continuous [OF assms compact_cbox] apply (simp add: uniformly_continuous_on_def dist_norm) apply (drule_tac x="e/2 / content?CBOX" in spec) using cbp \0 < e\ by (auto simp: zero_less_mult_iff) qed then show ?thesis by simp qed lemma integral_swap_2dim: fixes f :: "['a::euclidean_space, 'b::euclidean_space] \ 'c::banach" assumes "continuous_on (cbox (a,c) (b,d)) (\(x,y). f x y)" shows "integral (cbox (a, c) (b, d)) (\(x, y). f x y) = integral (cbox (c, a) (d, b)) (\(x, y). f y x)" proof - have "((\(x, y). f x y) has_integral integral (cbox (c, a) (d, b)) (\(x, y). f y x)) (prod.swap ` (cbox (c, a) (d, b)))" - apply (rule has_integral_twiddle [of 1 prod.swap prod.swap "\(x,y). f y x" "integral (cbox (c, a) (d, b)) (\(x, y). f y x)", simplified]) - apply (force simp: isCont_swap content_Pair has_integral_integral [symmetric] integrable_continuous swap_continuous assms)+ - done + proof (rule has_integral_twiddle [of 1 prod.swap prod.swap "\(x,y). f y x" "integral (cbox (c, a) (d, b)) (\(x, y). f y x)", simplified]) + show "\u v. content (prod.swap ` cbox u v) = content (cbox u v)" + by (metis content_Pair mult.commute old.prod.exhaust swap_cbox_Pair) + show "((\(x, y). f y x) has_integral integral (cbox (c, a) (d, b)) (\(x, y). f y x)) (cbox (c, a) (d, b))" + by (simp add: assms integrable_continuous integrable_integral swap_continuous) + qed (use isCont_swap in \fastforce+\) then show ?thesis by force qed theorem integral_swap_continuous: fixes f :: "['a::euclidean_space, 'b::euclidean_space] \ 'c::banach" assumes "continuous_on (cbox (a,c) (b,d)) (\(x,y). f x y)" shows "integral (cbox a b) (\x. integral (cbox c d) (f x)) = integral (cbox c d) (\y. integral (cbox a b) (\x. f x y))" proof - have "integral (cbox a b) (\x. integral (cbox c d) (f x)) = integral (cbox (a, c) (b, d)) (\(x, y). f x y)" using integral_prod_continuous [OF assms] by auto also have "... = integral (cbox (c, a) (d, b)) (\(x, y). f y x)" by (rule integral_swap_2dim [OF assms]) also have "... = integral (cbox c d) (\y. integral (cbox a b) (\x. f x y))" using integral_prod_continuous [OF swap_continuous] assms by auto finally show ?thesis . qed subsection \Definite integrals for exponential and power function\ lemma has_integral_exp_minus_to_infinity: assumes a: "a > 0" shows "((\x::real. exp (-a*x)) has_integral exp (-a*c)/a) {c..}" proof - define f where "f = (\k x. if x \ {c..real k} then exp (-a*x) else 0)" { fix k :: nat assume k: "of_nat k \ c" from k a have "((\x. exp (-a*x)) has_integral (-exp (-a*real k)/a - (-exp (-a*c)/a))) {c..real k}" by (intro fundamental_theorem_of_calculus) (auto intro!: derivative_eq_intros simp: has_field_derivative_iff_has_vector_derivative [symmetric]) hence "(f k has_integral (exp (-a*c)/a - exp (-a*real k)/a)) {c..}" unfolding f_def by (subst has_integral_restrict) simp_all } note has_integral_f = this have [simp]: "f k = (\_. 0)" if "of_nat k < c" for k using that by (auto simp: fun_eq_iff f_def) have integral_f: "integral {c..} (f k) = (if real k \ c then exp (-a*c)/a - exp (-a*real k)/a else 0)" for k using integral_unique[OF has_integral_f[of k]] by simp have A: "(\x. exp (-a*x)) integrable_on {c..} \ (\k. integral {c..} (f k)) \ integral {c..} (\x. exp (-a*x))" proof (intro monotone_convergence_increasing allI ballI) fix k ::nat have "(\x. exp (-a*x)) integrable_on {c..of_real k}" (is ?P) unfolding f_def by (auto intro!: continuous_intros integrable_continuous_real) hence "(f k) integrable_on {c..of_real k}" by (rule integrable_eq) (simp add: f_def) then show "f k integrable_on {c..}" by (rule integrable_on_superset) (auto simp: f_def) next fix x assume x: "x \ {c..}" have "sequentially \ principal {nat \x\..}" unfolding at_top_def by (simp add: Inf_lower) also have "{nat \x\..} \ {k. x \ real k}" by auto also have "inf (principal \) (principal {k. \x \ real k}) = principal ({k. x \ real k} \ {k. \x \ real k})" by simp also have "{k. x \ real k} \ {k. \x \ real k} = {}" by blast finally have "inf sequentially (principal {k. \x \ real k}) = bot" by (simp add: inf.coboundedI1 bot_unique) with x show "(\k. f k x) \ exp (-a*x)" unfolding f_def by (intro filterlim_If) auto next have "\integral {c..} (f k)\ \ exp (-a*c)/a" for k proof (cases "c > of_nat k") case False hence "abs (integral {c..} (f k)) = abs (exp (- (a * c)) / a - exp (- (a * real k)) / a)" by (simp add: integral_f) also have "abs (exp (- (a * c)) / a - exp (- (a * real k)) / a) = exp (- (a * c)) / a - exp (- (a * real k)) / a" using False a by (intro abs_of_nonneg) (simp_all add: field_simps) also have "\ \ exp (- a * c) / a" using a by simp finally show ?thesis . qed (insert a, simp_all add: integral_f) thus "bounded (range(\k. integral {c..} (f k)))" by (intro boundedI[of _ "exp (-a*c)/a"]) auto qed (auto simp: f_def) have "(\k. exp (-a*c)/a - exp (-a * of_nat k)/a) \ exp (-a*c)/a - 0/a" by (intro tendsto_intros filterlim_compose[OF exp_at_bot] filterlim_tendsto_neg_mult_at_bot[OF tendsto_const] filterlim_real_sequentially)+ (insert a, simp_all) moreover from eventually_gt_at_top[of "nat \c\"] have "eventually (\k. of_nat k > c) sequentially" by eventually_elim linarith hence "eventually (\k. exp (-a*c)/a - exp (-a * of_nat k)/a = integral {c..} (f k)) sequentially" by eventually_elim (simp add: integral_f) ultimately have "(\k. integral {c..} (f k)) \ exp (-a*c)/a - 0/a" by (rule Lim_transform_eventually) from LIMSEQ_unique[OF conjunct2[OF A] this] have "integral {c..} (\x. exp (-a*x)) = exp (-a*c)/a" by simp with conjunct1[OF A] show ?thesis by (simp add: has_integral_integral) qed lemma integrable_on_exp_minus_to_infinity: "a > 0 \ (\x. exp (-a*x) :: real) integrable_on {c..}" using has_integral_exp_minus_to_infinity[of a c] unfolding integrable_on_def by blast lemma has_integral_powr_from_0: assumes a: "a > (-1::real)" and c: "c \ 0" shows "((\x. x powr a) has_integral (c powr (a+1) / (a+1))) {0..c}" proof (cases "c = 0") case False define f where "f = (\k x. if x \ {inverse (of_nat (Suc k))..c} then x powr a else 0)" define F where "F = (\k. if inverse (of_nat (Suc k)) \ c then c powr (a+1)/(a+1) - inverse (real (Suc k)) powr (a+1)/(a+1) else 0)" { fix k :: nat have "(f k has_integral F k) {0..c}" proof (cases "inverse (of_nat (Suc k)) \ c") case True { fix x assume x: "x \ inverse (1 + real k)" have "0 < inverse (1 + real k)" by simp also note x finally have "x > 0" . } note x = this hence "((\x. x powr a) has_integral c powr (a + 1) / (a + 1) - inverse (real (Suc k)) powr (a + 1) / (a + 1)) {inverse (real (Suc k))..c}" using True a by (intro fundamental_theorem_of_calculus) (auto intro!: derivative_eq_intros continuous_on_powr' continuous_on_const simp: has_field_derivative_iff_has_vector_derivative [symmetric]) with True show ?thesis unfolding f_def F_def by (subst has_integral_restrict) simp_all next case False thus ?thesis unfolding f_def F_def by (subst has_integral_restrict) auto qed } note has_integral_f = this have integral_f: "integral {0..c} (f k) = F k" for k using has_integral_f[of k] by (rule integral_unique) have A: "(\x. x powr a) integrable_on {0..c} \ (\k. integral {0..c} (f k)) \ integral {0..c} (\x. x powr a)" proof (intro monotone_convergence_increasing ballI allI) fix k from has_integral_f[of k] show "f k integrable_on {0..c}" by (auto simp: integrable_on_def) next fix k :: nat and x :: real { assume x: "inverse (real (Suc k)) \ x" have "inverse (real (Suc (Suc k))) \ inverse (real (Suc k))" by (simp add: field_simps) also note x finally have "inverse (real (Suc (Suc k))) \ x" . } thus "f k x \ f (Suc k) x" by (auto simp: f_def simp del: of_nat_Suc) next fix x assume x: "x \ {0..c}" show "(\k. f k x) \ x powr a" proof (cases "x = 0") case False with x have "x > 0" by simp from order_tendstoD(2)[OF LIMSEQ_inverse_real_of_nat this] have "eventually (\k. x powr a = f k x) sequentially" by eventually_elim (insert x, simp add: f_def) moreover have "(\_. x powr a) \ x powr a" by simp ultimately show ?thesis by (blast intro: Lim_transform_eventually) qed (simp_all add: f_def) next { fix k from a have "F k \ c powr (a + 1) / (a + 1)" by (auto simp add: F_def divide_simps) also from a have "F k \ 0" by (auto simp: F_def divide_simps simp del: of_nat_Suc intro!: powr_mono2) hence "F k = abs (F k)" by simp finally have "abs (F k) \ c powr (a + 1) / (a + 1)" . } thus "bounded (range(\k. integral {0..c} (f k)))" by (intro boundedI[of _ "c powr (a+1) / (a+1)"]) (auto simp: integral_f) qed from False c have "c > 0" by simp from order_tendstoD(2)[OF LIMSEQ_inverse_real_of_nat this] have "eventually (\k. c powr (a + 1) / (a + 1) - inverse (real (Suc k)) powr (a+1) / (a+1) = integral {0..c} (f k)) sequentially" by eventually_elim (simp add: integral_f F_def) moreover have "(\k. c powr (a + 1) / (a + 1) - inverse (real (Suc k)) powr (a + 1) / (a + 1)) \ c powr (a + 1) / (a + 1) - 0 powr (a + 1) / (a + 1)" using a by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) auto hence "(\k. c powr (a + 1) / (a + 1) - inverse (real (Suc k)) powr (a + 1) / (a + 1)) \ c powr (a + 1) / (a + 1)" by simp ultimately have "(\k. integral {0..c} (f k)) \ c powr (a+1) / (a+1)" by (blast intro: Lim_transform_eventually) with A have "integral {0..c} (\x. x powr a) = c powr (a+1) / (a+1)" by (blast intro: LIMSEQ_unique) with A show ?thesis by (simp add: has_integral_integral) qed (simp_all add: has_integral_refl) lemma integrable_on_powr_from_0: assumes a: "a > (-1::real)" and c: "c \ 0" shows "(\x. x powr a) integrable_on {0..c}" using has_integral_powr_from_0[OF assms] unfolding integrable_on_def by blast lemma has_integral_powr_to_inf: fixes a e :: real assumes "e < -1" "a > 0" shows "((\x. x powr e) has_integral -(a powr (e + 1)) / (e + 1)) {a..}" proof - define f :: "nat \ real \ real" where "f = (\n x. if x \ {a..n} then x powr e else 0)" define F where "F = (\x. x powr (e + 1) / (e + 1))" have has_integral_f: "(f n has_integral (F n - F a)) {a..}" if n: "n \ a" for n :: nat proof - from n assms have "((\x. x powr e) has_integral (F n - F a)) {a..n}" by (intro fundamental_theorem_of_calculus) (auto intro!: derivative_eq_intros simp: has_field_derivative_iff_has_vector_derivative [symmetric] F_def) hence "(f n has_integral (F n - F a)) {a..n}" by (rule has_integral_eq [rotated]) (simp add: f_def) thus "(f n has_integral (F n - F a)) {a..}" by (rule has_integral_on_superset) (auto simp: f_def) qed have integral_f: "integral {a..} (f n) = (if n \ a then F n - F a else 0)" for n :: nat proof (cases "n \ a") case True with has_integral_f[OF this] show ?thesis by (simp add: integral_unique) next case False have "(f n has_integral 0) {a}" by (rule has_integral_refl) hence "(f n has_integral 0) {a..}" by (rule has_integral_on_superset) (insert False, simp_all add: f_def) with False show ?thesis by (simp add: integral_unique) qed have *: "(\x. x powr e) integrable_on {a..} \ (\n. integral {a..} (f n)) \ integral {a..} (\x. x powr e)" proof (intro monotone_convergence_increasing allI ballI) fix n :: nat from assms have "(\x. x powr e) integrable_on {a..n}" by (auto intro!: integrable_continuous_real continuous_intros) hence "f n integrable_on {a..n}" by (rule integrable_eq) (auto simp: f_def) thus "f n integrable_on {a..}" by (rule integrable_on_superset) (auto simp: f_def) next fix n :: nat and x :: real show "f n x \ f (Suc n) x" by (auto simp: f_def) next fix x :: real assume x: "x \ {a..}" from filterlim_real_sequentially have "eventually (\n. real n \ x) at_top" by (simp add: filterlim_at_top) with x have "eventually (\n. f n x = x powr e) at_top" by (auto elim!: eventually_mono simp: f_def) thus "(\n. f n x) \ x powr e" by (simp add: tendsto_eventually) next have "norm (integral {a..} (f n)) \ -F a" for n :: nat proof (cases "n \ a") case True with assms have "a powr (e + 1) \ n powr (e + 1)" by (intro powr_mono2') simp_all with assms show ?thesis by (auto simp: divide_simps F_def integral_f) qed (insert assms, simp add: integral_f F_def field_split_simps) thus "bounded (range(\k. integral {a..} (f k)))" unfolding bounded_iff by (intro exI[of _ "-F a"]) auto qed from filterlim_real_sequentially have "eventually (\n. real n \ a) at_top" by (simp add: filterlim_at_top) hence "eventually (\n. F n - F a = integral {a..} (f n)) at_top" by eventually_elim (simp add: integral_f) moreover have "(\n. F n - F a) \ 0 / (e + 1) - F a" unfolding F_def by (insert assms, (rule tendsto_intros filterlim_compose[OF tendsto_neg_powr] filterlim_ident filterlim_real_sequentially | simp)+) hence "(\n. F n - F a) \ -F a" by simp ultimately have "(\n. integral {a..} (f n)) \ -F a" by (blast intro: Lim_transform_eventually) from conjunct2[OF *] and this have "integral {a..} (\x. x powr e) = -F a" by (rule LIMSEQ_unique) with conjunct1[OF *] show ?thesis by (simp add: has_integral_integral F_def) qed lemma has_integral_inverse_power_to_inf: fixes a :: real and n :: nat assumes "n > 1" "a > 0" shows "((\x. 1 / x ^ n) has_integral 1 / (real (n - 1) * a ^ (n - 1))) {a..}" proof - from assms have "real_of_int (-int n) < -1" by simp note has_integral_powr_to_inf[OF this \a > 0\] also have "- (a powr (real_of_int (- int n) + 1)) / (real_of_int (- int n) + 1) = 1 / (real (n - 1) * a powr (real (n - 1)))" using assms by (simp add: field_split_simps powr_add [symmetric] of_nat_diff) also from assms have "a powr (real (n - 1)) = a ^ (n - 1)" by (intro powr_realpow) finally show ?thesis by (rule has_integral_eq [rotated]) (insert assms, simp_all add: powr_minus powr_realpow field_split_simps) qed subsubsection \Adaption to ordered Euclidean spaces and the Cartesian Euclidean space\ lemma integral_component_eq_cart[simp]: fixes f :: "'n::euclidean_space \ real^'m" assumes "f integrable_on s" shows "integral s (\x. f x $ k) = integral s f $ k" using integral_linear[OF assms(1) bounded_linear_vec_nth,unfolded o_def] . lemma content_closed_interval: fixes a :: "'a::ordered_euclidean_space" assumes "a \ b" shows "content {a..b} = (\i\Basis. b\i - a\i)" using content_cbox[of a b] assms by (simp add: cbox_interval eucl_le[where 'a='a]) lemma integrable_const_ivl[intro]: fixes a::"'a::ordered_euclidean_space" shows "(\x. c) integrable_on {a..b}" unfolding cbox_interval[symmetric] by (rule integrable_const) lemma integrable_on_subinterval: fixes f :: "'n::ordered_euclidean_space \ 'a::banach" assumes "f integrable_on S" "{a..b} \ S" shows "f integrable_on {a..b}" using integrable_on_subcbox[of f S a b] assms by (simp add: cbox_interval) end diff --git a/src/HOL/Deriv.thy b/src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy +++ b/src/HOL/Deriv.thy @@ -1,2370 +1,2368 @@ (* Title: HOL/Deriv.thy Author: Jacques D. Fleuriot, University of Cambridge, 1998 Author: Brian Huffman Author: Lawrence C Paulson, 2004 Author: Benjamin Porter, 2005 *) section \Differentiation\ theory Deriv imports Limits begin subsection \Frechet derivative\ definition has_derivative :: "('a::real_normed_vector \ 'b::real_normed_vector) \ ('a \ 'b) \ 'a filter \ bool" (infix "(has'_derivative)" 50) where "(f has_derivative f') F \ bounded_linear f' \ ((\y. ((f y - f (Lim F (\x. x))) - f' (y - Lim F (\x. x))) /\<^sub>R norm (y - Lim F (\x. x))) \ 0) F" text \ Usually the filter \<^term>\F\ is \<^term>\at x within s\. \<^term>\(f has_derivative D) (at x within s)\ means: \<^term>\D\ is the derivative of function \<^term>\f\ at point \<^term>\x\ within the set \<^term>\s\. Where \<^term>\s\ is used to express left or right sided derivatives. In most cases \<^term>\s\ is either a variable or \<^term>\UNIV\. \ text \These are the only cases we'll care about, probably.\ lemma has_derivative_within: "(f has_derivative f') (at x within s) \ bounded_linear f' \ ((\y. (1 / norm(y - x)) *\<^sub>R (f y - (f x + f' (y - x)))) \ 0) (at x within s)" unfolding has_derivative_def tendsto_iff by (subst eventually_Lim_ident_at) (auto simp add: field_simps) lemma has_derivative_eq_rhs: "(f has_derivative f') F \ f' = g' \ (f has_derivative g') F" by simp definition has_field_derivative :: "('a::real_normed_field \ 'a) \ 'a \ 'a filter \ bool" (infix "(has'_field'_derivative)" 50) where "(f has_field_derivative D) F \ (f has_derivative (*) D) F" lemma DERIV_cong: "(f has_field_derivative X) F \ X = Y \ (f has_field_derivative Y) F" by simp definition has_vector_derivative :: "(real \ 'b::real_normed_vector) \ 'b \ real filter \ bool" (infix "has'_vector'_derivative" 50) where "(f has_vector_derivative f') net \ (f has_derivative (\x. x *\<^sub>R f')) net" lemma has_vector_derivative_eq_rhs: "(f has_vector_derivative X) F \ X = Y \ (f has_vector_derivative Y) F" by simp named_theorems derivative_intros "structural introduction rules for derivatives" setup \ let val eq_thms = @{thms has_derivative_eq_rhs DERIV_cong has_vector_derivative_eq_rhs} fun eq_rule thm = get_first (try (fn eq_thm => eq_thm OF [thm])) eq_thms in Global_Theory.add_thms_dynamic (\<^binding>\derivative_eq_intros\, fn context => Named_Theorems.get (Context.proof_of context) \<^named_theorems>\derivative_intros\ |> map_filter eq_rule) end \ text \ The following syntax is only used as a legacy syntax. \ abbreviation (input) FDERIV :: "('a::real_normed_vector \ 'b::real_normed_vector) \ 'a \ ('a \ 'b) \ bool" ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where "FDERIV f x :> f' \ (f has_derivative f') (at x)" lemma has_derivative_bounded_linear: "(f has_derivative f') F \ bounded_linear f'" by (simp add: has_derivative_def) lemma has_derivative_linear: "(f has_derivative f') F \ linear f'" using bounded_linear.linear[OF has_derivative_bounded_linear] . lemma has_derivative_ident[derivative_intros, simp]: "((\x. x) has_derivative (\x. x)) F" by (simp add: has_derivative_def) lemma has_derivative_id [derivative_intros, simp]: "(id has_derivative id) (at a)" by (metis eq_id_iff has_derivative_ident) lemma has_derivative_const[derivative_intros, simp]: "((\x. c) has_derivative (\x. 0)) F" by (simp add: has_derivative_def) lemma (in bounded_linear) bounded_linear: "bounded_linear f" .. lemma (in bounded_linear) has_derivative: "(g has_derivative g') F \ ((\x. f (g x)) has_derivative (\x. f (g' x))) F" unfolding has_derivative_def by (auto simp add: bounded_linear_compose [OF bounded_linear] scaleR diff dest: tendsto) lemmas has_derivative_scaleR_right [derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_scaleR_right] lemmas has_derivative_scaleR_left [derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_scaleR_left] lemmas has_derivative_mult_right [derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_mult_right] lemmas has_derivative_mult_left [derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_mult_left] lemmas has_derivative_of_real[derivative_intros, simp] = bounded_linear.has_derivative[OF bounded_linear_of_real] lemma has_derivative_add[simp, derivative_intros]: assumes f: "(f has_derivative f') F" and g: "(g has_derivative g') F" shows "((\x. f x + g x) has_derivative (\x. f' x + g' x)) F" unfolding has_derivative_def proof safe let ?x = "Lim F (\x. x)" let ?D = "\f f' y. ((f y - f ?x) - f' (y - ?x)) /\<^sub>R norm (y - ?x)" have "((\x. ?D f f' x + ?D g g' x) \ (0 + 0)) F" using f g by (intro tendsto_add) (auto simp: has_derivative_def) then show "(?D (\x. f x + g x) (\x. f' x + g' x) \ 0) F" by (simp add: field_simps scaleR_add_right scaleR_diff_right) qed (blast intro: bounded_linear_add f g has_derivative_bounded_linear) lemma has_derivative_sum[simp, derivative_intros]: "(\i. i \ I \ (f i has_derivative f' i) F) \ ((\x. \i\I. f i x) has_derivative (\x. \i\I. f' i x)) F" by (induct I rule: infinite_finite_induct) simp_all lemma has_derivative_minus[simp, derivative_intros]: "(f has_derivative f') F \ ((\x. - f x) has_derivative (\x. - f' x)) F" using has_derivative_scaleR_right[of f f' F "-1"] by simp lemma has_derivative_diff[simp, derivative_intros]: "(f has_derivative f') F \ (g has_derivative g') F \ ((\x. f x - g x) has_derivative (\x. f' x - g' x)) F" by (simp only: diff_conv_add_uminus has_derivative_add has_derivative_minus) lemma has_derivative_at_within: "(f has_derivative f') (at x within s) \ (bounded_linear f' \ ((\y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \ 0) (at x within s))" proof (cases "at x within s = bot") case True then show ?thesis by (metis (no_types, lifting) has_derivative_within tendsto_bot) next case False then show ?thesis by (simp add: Lim_ident_at has_derivative_def) qed lemma has_derivative_iff_norm: "(f has_derivative f') (at x within s) \ bounded_linear f' \ ((\y. norm ((f y - f x) - f' (y - x)) / norm (y - x)) \ 0) (at x within s)" using tendsto_norm_zero_iff[of _ "at x within s", where 'b="'b", symmetric] by (simp add: has_derivative_at_within divide_inverse ac_simps) lemma has_derivative_at: "(f has_derivative D) (at x) \ (bounded_linear D \ (\h. norm (f (x + h) - f x - D h) / norm h) \0\ 0)" by (simp add: has_derivative_iff_norm LIM_offset_zero_iff) lemma field_has_derivative_at: fixes x :: "'a::real_normed_field" shows "(f has_derivative (*) D) (at x) \ (\h. (f (x + h) - f x) / h) \0\ D" (is "?lhs = ?rhs") proof - have "?lhs = (\h. norm (f (x + h) - f x - D * h) / norm h) \0 \ 0" by (simp add: bounded_linear_mult_right has_derivative_at) also have "... = (\y. norm ((f (x + y) - f x - D * y) / y)) \0\ 0" by (simp cong: LIM_cong flip: nonzero_norm_divide) also have "... = (\y. norm ((f (x + y) - f x) / y - D / y * y)) \0\ 0" by (simp only: diff_divide_distrib times_divide_eq_left [symmetric]) also have "... = ?rhs" by (simp add: tendsto_norm_zero_iff LIM_zero_iff cong: LIM_cong) finally show ?thesis . qed lemma has_derivative_iff_Ex: "(f has_derivative f') (at x) \ bounded_linear f' \ (\e. (\h. f (x+h) = f x + f' h + e h) \ ((\h. norm (e h) / norm h) \ 0) (at 0))" unfolding has_derivative_at by force lemma has_derivative_at_within_iff_Ex: assumes "x \ S" "open S" shows "(f has_derivative f') (at x within S) \ bounded_linear f' \ (\e. (\h. x+h \ S \ f (x+h) = f x + f' h + e h) \ ((\h. norm (e h) / norm h) \ 0) (at 0))" (is "?lhs = ?rhs") proof safe show "bounded_linear f'" if "(f has_derivative f') (at x within S)" using has_derivative_bounded_linear that by blast show "\e. (\h. x + h \ S \ f (x + h) = f x + f' h + e h) \ (\h. norm (e h) / norm h) \0\ 0" if "(f has_derivative f') (at x within S)" by (metis (full_types) assms that has_derivative_iff_Ex at_within_open) show "(f has_derivative f') (at x within S)" if "bounded_linear f'" and eq [rule_format]: "\h. x + h \ S \ f (x + h) = f x + f' h + e h" and 0: "(\h. norm (e (h::'a)::'b) / norm h) \0\ 0" for e proof - have 1: "f y - f x = f' (y-x) + e (y-x)" if "y \ S" for y using eq [of "y-x"] that by simp have 2: "((\y. norm (e (y-x)) / norm (y - x)) \ 0) (at x within S)" by (simp add: "0" assms tendsto_offset_zero_iff) have "((\y. norm (f y - f x - f' (y - x)) / norm (y - x)) \ 0) (at x within S)" by (simp add: Lim_cong_within 1 2) then show ?thesis by (simp add: has_derivative_iff_norm \bounded_linear f'\) qed qed lemma has_derivativeI: "bounded_linear f' \ ((\y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \ 0) (at x within s) \ (f has_derivative f') (at x within s)" by (simp add: has_derivative_at_within) lemma has_derivativeI_sandwich: assumes e: "0 < e" and bounded: "bounded_linear f'" and sandwich: "(\y. y \ s \ y \ x \ dist y x < e \ norm ((f y - f x) - f' (y - x)) / norm (y - x) \ H y)" and "(H \ 0) (at x within s)" shows "(f has_derivative f') (at x within s)" unfolding has_derivative_iff_norm proof safe show "((\y. norm (f y - f x - f' (y - x)) / norm (y - x)) \ 0) (at x within s)" proof (rule tendsto_sandwich[where f="\x. 0"]) show "(H \ 0) (at x within s)" by fact show "eventually (\n. norm (f n - f x - f' (n - x)) / norm (n - x) \ H n) (at x within s)" unfolding eventually_at using e sandwich by auto qed (auto simp: le_divide_eq) qed fact lemma has_derivative_subset: "(f has_derivative f') (at x within s) \ t \ s \ (f has_derivative f') (at x within t)" by (auto simp add: has_derivative_iff_norm intro: tendsto_within_subset) -lemmas has_derivative_within_subset = has_derivative_subset - lemma has_derivative_within_singleton_iff: "(f has_derivative g) (at x within {x}) \ bounded_linear g" by (auto intro!: has_derivativeI_sandwich[where e=1] has_derivative_bounded_linear) subsubsection \Limit transformation for derivatives\ lemma has_derivative_transform_within: assumes "(f has_derivative f') (at x within s)" and "0 < d" and "x \ s" and "\x'. \x' \ s; dist x' x < d\ \ f x' = g x'" shows "(g has_derivative f') (at x within s)" using assms unfolding has_derivative_within by (force simp add: intro: Lim_transform_within) lemma has_derivative_transform_within_open: assumes "(f has_derivative f') (at x within t)" and "open s" and "x \ s" and "\x. x\s \ f x = g x" shows "(g has_derivative f') (at x within t)" using assms unfolding has_derivative_within by (force simp add: intro: Lim_transform_within_open) lemma has_derivative_transform: assumes "x \ s" "\x. x \ s \ g x = f x" assumes "(f has_derivative f') (at x within s)" shows "(g has_derivative f') (at x within s)" using assms by (intro has_derivative_transform_within[OF _ zero_less_one, where g=g]) auto lemma has_derivative_transform_eventually: assumes "(f has_derivative f') (at x within s)" "(\\<^sub>F x' in at x within s. f x' = g x')" assumes "f x = g x" "x \ s" shows "(g has_derivative f') (at x within s)" using assms proof - from assms(2,3) obtain d where "d > 0" "\x'. x' \ s \ dist x' x < d \ f x' = g x'" by (force simp: eventually_at) from has_derivative_transform_within[OF assms(1) this(1) assms(4) this(2)] show ?thesis . qed lemma has_field_derivative_transform_within: assumes "(f has_field_derivative f') (at a within S)" and "0 < d" and "a \ S" and "\x. \x \ S; dist x a < d\ \ f x = g x" shows "(g has_field_derivative f') (at a within S)" using assms unfolding has_field_derivative_def by (metis has_derivative_transform_within) lemma has_field_derivative_transform_within_open: assumes "(f has_field_derivative f') (at a)" and "open S" "a \ S" and "\x. x \ S \ f x = g x" shows "(g has_field_derivative f') (at a)" using assms unfolding has_field_derivative_def by (metis has_derivative_transform_within_open) subsection \Continuity\ lemma has_derivative_continuous: assumes f: "(f has_derivative f') (at x within s)" shows "continuous (at x within s) f" proof - from f interpret F: bounded_linear f' by (rule has_derivative_bounded_linear) note F.tendsto[tendsto_intros] let ?L = "\f. (f \ 0) (at x within s)" have "?L (\y. norm ((f y - f x) - f' (y - x)) / norm (y - x))" using f unfolding has_derivative_iff_norm by blast then have "?L (\y. norm ((f y - f x) - f' (y - x)) / norm (y - x) * norm (y - x))" (is ?m) by (rule tendsto_mult_zero) (auto intro!: tendsto_eq_intros) also have "?m \ ?L (\y. norm ((f y - f x) - f' (y - x)))" by (intro filterlim_cong) (simp_all add: eventually_at_filter) finally have "?L (\y. (f y - f x) - f' (y - x))" by (rule tendsto_norm_zero_cancel) then have "?L (\y. ((f y - f x) - f' (y - x)) + f' (y - x))" by (rule tendsto_eq_intros) (auto intro!: tendsto_eq_intros simp: F.zero) then have "?L (\y. f y - f x)" by simp from tendsto_add[OF this tendsto_const, of "f x"] show ?thesis by (simp add: continuous_within) qed subsection \Composition\ lemma tendsto_at_iff_tendsto_nhds_within: "f x = y \ (f \ y) (at x within s) \ (f \ y) (inf (nhds x) (principal s))" unfolding tendsto_def eventually_inf_principal eventually_at_filter by (intro ext all_cong imp_cong) (auto elim!: eventually_mono) lemma has_derivative_in_compose: assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at (f x) within (f`s))" shows "((\x. g (f x)) has_derivative (\x. g' (f' x))) (at x within s)" proof - from f interpret F: bounded_linear f' by (rule has_derivative_bounded_linear) from g interpret G: bounded_linear g' by (rule has_derivative_bounded_linear) from F.bounded obtain kF where kF: "\x. norm (f' x) \ norm x * kF" by fast from G.bounded obtain kG where kG: "\x. norm (g' x) \ norm x * kG" by fast note G.tendsto[tendsto_intros] let ?L = "\f. (f \ 0) (at x within s)" let ?D = "\f f' x y. (f y - f x) - f' (y - x)" let ?N = "\f f' x y. norm (?D f f' x y) / norm (y - x)" let ?gf = "\x. g (f x)" and ?gf' = "\x. g' (f' x)" define Nf where "Nf = ?N f f' x" define Ng where [abs_def]: "Ng y = ?N g g' (f x) (f y)" for y show ?thesis proof (rule has_derivativeI_sandwich[of 1]) show "bounded_linear (\x. g' (f' x))" using f g by (blast intro: bounded_linear_compose has_derivative_bounded_linear) next fix y :: 'a assume neq: "y \ x" have "?N ?gf ?gf' x y = norm (g' (?D f f' x y) + ?D g g' (f x) (f y)) / norm (y - x)" by (simp add: G.diff G.add field_simps) also have "\ \ norm (g' (?D f f' x y)) / norm (y - x) + Ng y * (norm (f y - f x) / norm (y - x))" by (simp add: add_divide_distrib[symmetric] divide_right_mono norm_triangle_ineq G.zero Ng_def) also have "\ \ Nf y * kG + Ng y * (Nf y + kF)" proof (intro add_mono mult_left_mono) have "norm (f y - f x) = norm (?D f f' x y + f' (y - x))" by simp also have "\ \ norm (?D f f' x y) + norm (f' (y - x))" by (rule norm_triangle_ineq) also have "\ \ norm (?D f f' x y) + norm (y - x) * kF" using kF by (intro add_mono) simp finally show "norm (f y - f x) / norm (y - x) \ Nf y + kF" by (simp add: neq Nf_def field_simps) qed (use kG in \simp_all add: Ng_def Nf_def neq zero_le_divide_iff field_simps\) finally show "?N ?gf ?gf' x y \ Nf y * kG + Ng y * (Nf y + kF)" . next have [tendsto_intros]: "?L Nf" using f unfolding has_derivative_iff_norm Nf_def .. from f have "(f \ f x) (at x within s)" by (blast intro: has_derivative_continuous continuous_within[THEN iffD1]) then have f': "LIM x at x within s. f x :> inf (nhds (f x)) (principal (f`s))" unfolding filterlim_def by (simp add: eventually_filtermap eventually_at_filter le_principal) have "((?N g g' (f x)) \ 0) (at (f x) within f`s)" using g unfolding has_derivative_iff_norm .. then have g': "((?N g g' (f x)) \ 0) (inf (nhds (f x)) (principal (f`s)))" by (rule tendsto_at_iff_tendsto_nhds_within[THEN iffD1, rotated]) simp have [tendsto_intros]: "?L Ng" unfolding Ng_def by (rule filterlim_compose[OF g' f']) show "((\y. Nf y * kG + Ng y * (Nf y + kF)) \ 0) (at x within s)" by (intro tendsto_eq_intros) auto qed simp qed lemma has_derivative_compose: "(f has_derivative f') (at x within s) \ (g has_derivative g') (at (f x)) \ ((\x. g (f x)) has_derivative (\x. g' (f' x))) (at x within s)" by (blast intro: has_derivative_in_compose has_derivative_subset) lemma has_derivative_in_compose2: assumes "\x. x \ t \ (g has_derivative g' x) (at x within t)" assumes "f ` s \ t" "x \ s" assumes "(f has_derivative f') (at x within s)" shows "((\x. g (f x)) has_derivative (\y. g' (f x) (f' y))) (at x within s)" using assms - by (auto intro: has_derivative_within_subset intro!: has_derivative_in_compose[of f f' x s g]) + by (auto intro: has_derivative_subset intro!: has_derivative_in_compose[of f f' x s g]) lemma (in bounded_bilinear) FDERIV: assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)" shows "((\x. f x ** g x) has_derivative (\h. f x ** g' h + f' h ** g x)) (at x within s)" proof - from bounded_linear.bounded [OF has_derivative_bounded_linear [OF f]] obtain KF where norm_F: "\x. norm (f' x) \ norm x * KF" by fast from pos_bounded obtain K where K: "0 < K" and norm_prod: "\a b. norm (a ** b) \ norm a * norm b * K" by fast let ?D = "\f f' y. f y - f x - f' (y - x)" let ?N = "\f f' y. norm (?D f f' y) / norm (y - x)" define Ng where "Ng = ?N g g'" define Nf where "Nf = ?N f f'" let ?fun1 = "\y. norm (f y ** g y - f x ** g x - (f x ** g' (y - x) + f' (y - x) ** g x)) / norm (y - x)" let ?fun2 = "\y. norm (f x) * Ng y * K + Nf y * norm (g y) * K + KF * norm (g y - g x) * K" let ?F = "at x within s" show ?thesis proof (rule has_derivativeI_sandwich[of 1]) show "bounded_linear (\h. f x ** g' h + f' h ** g x)" by (intro bounded_linear_add bounded_linear_compose [OF bounded_linear_right] bounded_linear_compose [OF bounded_linear_left] has_derivative_bounded_linear [OF g] has_derivative_bounded_linear [OF f]) next from g have "(g \ g x) ?F" by (intro continuous_within[THEN iffD1] has_derivative_continuous) moreover from f g have "(Nf \ 0) ?F" "(Ng \ 0) ?F" by (simp_all add: has_derivative_iff_norm Ng_def Nf_def) ultimately have "(?fun2 \ norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K) ?F" by (intro tendsto_intros) (simp_all add: LIM_zero_iff) then show "(?fun2 \ 0) ?F" by simp next fix y :: 'd assume "y \ x" have "?fun1 y = norm (f x ** ?D g g' y + ?D f f' y ** g y + f' (y - x) ** (g y - g x)) / norm (y - x)" by (simp add: diff_left diff_right add_left add_right field_simps) also have "\ \ (norm (f x) * norm (?D g g' y) * K + norm (?D f f' y) * norm (g y) * K + norm (y - x) * KF * norm (g y - g x) * K) / norm (y - x)" by (intro divide_right_mono mult_mono' order_trans [OF norm_triangle_ineq add_mono] order_trans [OF norm_prod mult_right_mono] mult_nonneg_nonneg order_refl norm_ge_zero norm_F K [THEN order_less_imp_le]) also have "\ = ?fun2 y" by (simp add: add_divide_distrib Ng_def Nf_def) finally show "?fun1 y \ ?fun2 y" . qed simp qed lemmas has_derivative_mult[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_mult] lemmas has_derivative_scaleR[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_scaleR] lemma has_derivative_prod[simp, derivative_intros]: fixes f :: "'i \ 'a::real_normed_vector \ 'b::real_normed_field" shows "(\i. i \ I \ (f i has_derivative f' i) (at x within S)) \ ((\x. \i\I. f i x) has_derivative (\y. \i\I. f' i y * (\j\I - {i}. f j x))) (at x within S)" proof (induct I rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case (insert i I) let ?P = "\y. f i x * (\i\I. f' i y * (\j\I - {i}. f j x)) + (f' i y) * (\i\I. f i x)" have "((\x. f i x * (\i\I. f i x)) has_derivative ?P) (at x within S)" using insert by (intro has_derivative_mult) auto also have "?P = (\y. \i'\insert i I. f' i' y * (\j\insert i I - {i'}. f j x))" using insert(1,2) by (auto simp add: sum_distrib_left insert_Diff_if intro!: ext sum.cong) finally show ?case using insert by simp qed lemma has_derivative_power[simp, derivative_intros]: fixes f :: "'a :: real_normed_vector \ 'b :: real_normed_field" assumes f: "(f has_derivative f') (at x within S)" shows "((\x. f x^n) has_derivative (\y. of_nat n * f' y * f x^(n - 1))) (at x within S)" using has_derivative_prod[OF f, of "{..< n}"] by (simp add: prod_constant ac_simps) lemma has_derivative_inverse': fixes x :: "'a::real_normed_div_algebra" assumes x: "x \ 0" shows "(inverse has_derivative (\h. - (inverse x * h * inverse x))) (at x within S)" (is "(_ has_derivative ?f) _") proof (rule has_derivativeI_sandwich) show "bounded_linear (\h. - (inverse x * h * inverse x))" by (simp add: bounded_linear_minus bounded_linear_mult_const bounded_linear_mult_right) show "0 < norm x" using x by simp have "(inverse \ inverse x) (at x within S)" using tendsto_inverse tendsto_ident_at x by auto then show "((\y. norm (inverse y - inverse x) * norm (inverse x)) \ 0) (at x within S)" by (simp add: LIM_zero_iff tendsto_mult_left_zero tendsto_norm_zero) next fix y :: 'a assume h: "y \ x" "dist y x < norm x" then have "y \ 0" by auto have "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x) = norm (- (inverse y * (y - x) * inverse x - inverse x * (y - x) * inverse x)) / norm (y - x)" by (simp add: \y \ 0\ inverse_diff_inverse x) also have "... = norm ((inverse y - inverse x) * (y - x) * inverse x) / norm (y - x)" by (simp add: left_diff_distrib norm_minus_commute) also have "\ \ norm (inverse y - inverse x) * norm (y - x) * norm (inverse x) / norm (y - x)" by (simp add: norm_mult) also have "\ = norm (inverse y - inverse x) * norm (inverse x)" by simp finally show "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x) \ norm (inverse y - inverse x) * norm (inverse x)" . qed lemma has_derivative_inverse[simp, derivative_intros]: fixes f :: "_ \ 'a::real_normed_div_algebra" assumes x: "f x \ 0" and f: "(f has_derivative f') (at x within S)" shows "((\x. inverse (f x)) has_derivative (\h. - (inverse (f x) * f' h * inverse (f x)))) (at x within S)" using has_derivative_compose[OF f has_derivative_inverse', OF x] . lemma has_derivative_divide[simp, derivative_intros]: fixes f :: "_ \ 'a::real_normed_div_algebra" assumes f: "(f has_derivative f') (at x within S)" and g: "(g has_derivative g') (at x within S)" assumes x: "g x \ 0" shows "((\x. f x / g x) has_derivative (\h. - f x * (inverse (g x) * g' h * inverse (g x)) + f' h / g x)) (at x within S)" using has_derivative_mult[OF f has_derivative_inverse[OF x g]] by (simp add: field_simps) lemma has_derivative_power_int': fixes x :: "'a::real_normed_field" assumes x: "x \ 0" shows "((\x. power_int x n) has_derivative (\y. y * (of_int n * power_int x (n - 1)))) (at x within S)" proof (cases n rule: int_cases4) case (nonneg n) thus ?thesis using x by (cases "n = 0") (auto intro!: derivative_eq_intros simp: field_simps power_int_diff fun_eq_iff simp flip: power_Suc) next case (neg n) thus ?thesis using x by (auto intro!: derivative_eq_intros simp: field_simps power_int_diff power_int_minus simp flip: power_Suc power_Suc2 power_add) qed lemma has_derivative_power_int[simp, derivative_intros]: fixes f :: "_ \ 'a::real_normed_field" assumes x: "f x \ 0" and f: "(f has_derivative f') (at x within S)" shows "((\x. power_int (f x) n) has_derivative (\h. f' h * (of_int n * power_int (f x) (n - 1)))) (at x within S)" using has_derivative_compose[OF f has_derivative_power_int', OF x] . text \Conventional form requires mult-AC laws. Types real and complex only.\ lemma has_derivative_divide'[derivative_intros]: fixes f :: "_ \ 'a::real_normed_field" assumes f: "(f has_derivative f') (at x within S)" and g: "(g has_derivative g') (at x within S)" and x: "g x \ 0" shows "((\x. f x / g x) has_derivative (\h. (f' h * g x - f x * g' h) / (g x * g x))) (at x within S)" proof - have "f' h / g x - f x * (inverse (g x) * g' h * inverse (g x)) = (f' h * g x - f x * g' h) / (g x * g x)" for h by (simp add: field_simps x) then show ?thesis using has_derivative_divide [OF f g] x by simp qed subsection \Uniqueness\ text \ This can not generally shown for \<^const>\has_derivative\, as we need to approach the point from all directions. There is a proof in \Analysis\ for \euclidean_space\. \ lemma has_derivative_at2: "(f has_derivative f') (at x) \ bounded_linear f' \ ((\y. (1 / (norm(y - x))) *\<^sub>R (f y - (f x + f' (y - x)))) \ 0) (at x)" using has_derivative_within [of f f' x UNIV] by simp lemma has_derivative_zero_unique: assumes "((\x. 0) has_derivative F) (at x)" shows "F = (\h. 0)" proof - interpret F: bounded_linear F using assms by (rule has_derivative_bounded_linear) let ?r = "\h. norm (F h) / norm h" have *: "?r \0\ 0" using assms unfolding has_derivative_at by simp show "F = (\h. 0)" proof show "F h = 0" for h proof (rule ccontr) assume **: "\ ?thesis" then have h: "h \ 0" by (auto simp add: F.zero) with ** have "0 < ?r h" by simp from LIM_D [OF * this] obtain S where S: "0 < S" and r: "\x. x \ 0 \ norm x < S \ ?r x < ?r h" by auto from dense [OF S] obtain t where t: "0 < t \ t < S" .. let ?x = "scaleR (t / norm h) h" have "?x \ 0" and "norm ?x < S" using t h by simp_all then have "?r ?x < ?r h" by (rule r) then show False using t h by (simp add: F.scaleR) qed qed qed lemma has_derivative_unique: assumes "(f has_derivative F) (at x)" and "(f has_derivative F') (at x)" shows "F = F'" proof - have "((\x. 0) has_derivative (\h. F h - F' h)) (at x)" using has_derivative_diff [OF assms] by simp then have "(\h. F h - F' h) = (\h. 0)" by (rule has_derivative_zero_unique) then show "F = F'" unfolding fun_eq_iff right_minus_eq . qed lemma has_derivative_Uniq: "\\<^sub>\\<^sub>1F. (f has_derivative F) (at x)" by (simp add: Uniq_def has_derivative_unique) subsection \Differentiability predicate\ definition differentiable :: "('a::real_normed_vector \ 'b::real_normed_vector) \ 'a filter \ bool" (infix "differentiable" 50) where "f differentiable F \ (\D. (f has_derivative D) F)" lemma differentiable_subset: "f differentiable (at x within s) \ t \ s \ f differentiable (at x within t)" unfolding differentiable_def by (blast intro: has_derivative_subset) lemmas differentiable_within_subset = differentiable_subset lemma differentiable_ident [simp, derivative_intros]: "(\x. x) differentiable F" unfolding differentiable_def by (blast intro: has_derivative_ident) lemma differentiable_const [simp, derivative_intros]: "(\z. a) differentiable F" unfolding differentiable_def by (blast intro: has_derivative_const) lemma differentiable_in_compose: "f differentiable (at (g x) within (g`s)) \ g differentiable (at x within s) \ (\x. f (g x)) differentiable (at x within s)" unfolding differentiable_def by (blast intro: has_derivative_in_compose) lemma differentiable_compose: "f differentiable (at (g x)) \ g differentiable (at x within s) \ (\x. f (g x)) differentiable (at x within s)" by (blast intro: differentiable_in_compose differentiable_subset) lemma differentiable_add [simp, derivative_intros]: "f differentiable F \ g differentiable F \ (\x. f x + g x) differentiable F" unfolding differentiable_def by (blast intro: has_derivative_add) lemma differentiable_sum[simp, derivative_intros]: assumes "finite s" "\a\s. (f a) differentiable net" shows "(\x. sum (\a. f a x) s) differentiable net" proof - from bchoice[OF assms(2)[unfolded differentiable_def]] show ?thesis by (auto intro!: has_derivative_sum simp: differentiable_def) qed lemma differentiable_minus [simp, derivative_intros]: "f differentiable F \ (\x. - f x) differentiable F" unfolding differentiable_def by (blast intro: has_derivative_minus) lemma differentiable_diff [simp, derivative_intros]: "f differentiable F \ g differentiable F \ (\x. f x - g x) differentiable F" unfolding differentiable_def by (blast intro: has_derivative_diff) lemma differentiable_mult [simp, derivative_intros]: fixes f g :: "'a::real_normed_vector \ 'b::real_normed_algebra" shows "f differentiable (at x within s) \ g differentiable (at x within s) \ (\x. f x * g x) differentiable (at x within s)" unfolding differentiable_def by (blast intro: has_derivative_mult) lemma differentiable_inverse [simp, derivative_intros]: fixes f :: "'a::real_normed_vector \ 'b::real_normed_field" shows "f differentiable (at x within s) \ f x \ 0 \ (\x. inverse (f x)) differentiable (at x within s)" unfolding differentiable_def by (blast intro: has_derivative_inverse) lemma differentiable_divide [simp, derivative_intros]: fixes f g :: "'a::real_normed_vector \ 'b::real_normed_field" shows "f differentiable (at x within s) \ g differentiable (at x within s) \ g x \ 0 \ (\x. f x / g x) differentiable (at x within s)" unfolding divide_inverse by simp lemma differentiable_power [simp, derivative_intros]: fixes f g :: "'a::real_normed_vector \ 'b::real_normed_field" shows "f differentiable (at x within s) \ (\x. f x ^ n) differentiable (at x within s)" unfolding differentiable_def by (blast intro: has_derivative_power) lemma differentiable_power_int [simp, derivative_intros]: fixes f :: "'a::real_normed_vector \ 'b::real_normed_field" shows "f differentiable (at x within s) \ f x \ 0 \ (\x. power_int (f x) n) differentiable (at x within s)" unfolding differentiable_def by (blast intro: has_derivative_power_int) lemma differentiable_scaleR [simp, derivative_intros]: "f differentiable (at x within s) \ g differentiable (at x within s) \ (\x. f x *\<^sub>R g x) differentiable (at x within s)" unfolding differentiable_def by (blast intro: has_derivative_scaleR) lemma has_derivative_imp_has_field_derivative: "(f has_derivative D) F \ (\x. x * D' = D x) \ (f has_field_derivative D') F" unfolding has_field_derivative_def by (rule has_derivative_eq_rhs[of f D]) (simp_all add: fun_eq_iff mult.commute) lemma has_field_derivative_imp_has_derivative: "(f has_field_derivative D) F \ (f has_derivative (*) D) F" by (simp add: has_field_derivative_def) lemma DERIV_subset: "(f has_field_derivative f') (at x within s) \ t \ s \ (f has_field_derivative f') (at x within t)" - by (simp add: has_field_derivative_def has_derivative_within_subset) + by (simp add: has_field_derivative_def has_derivative_subset) lemma has_field_derivative_at_within: "(f has_field_derivative f') (at x) \ (f has_field_derivative f') (at x within s)" using DERIV_subset by blast abbreviation (input) DERIV :: "('a::real_normed_field \ 'a) \ 'a \ 'a \ bool" ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where "DERIV f x :> D \ (f has_field_derivative D) (at x)" abbreviation has_real_derivative :: "(real \ real) \ real \ real filter \ bool" (infix "(has'_real'_derivative)" 50) where "(f has_real_derivative D) F \ (f has_field_derivative D) F" lemma real_differentiable_def: "f differentiable at x within s \ (\D. (f has_real_derivative D) (at x within s))" proof safe assume "f differentiable at x within s" then obtain f' where *: "(f has_derivative f') (at x within s)" unfolding differentiable_def by auto then obtain c where "f' = ((*) c)" by (metis real_bounded_linear has_derivative_bounded_linear mult.commute fun_eq_iff) with * show "\D. (f has_real_derivative D) (at x within s)" unfolding has_field_derivative_def by auto qed (auto simp: differentiable_def has_field_derivative_def) lemma real_differentiableE [elim?]: assumes f: "f differentiable (at x within s)" obtains df where "(f has_real_derivative df) (at x within s)" using assms by (auto simp: real_differentiable_def) lemma has_field_derivative_iff: "(f has_field_derivative D) (at x within S) \ ((\y. (f y - f x) / (y - x)) \ D) (at x within S)" proof - have "((\y. norm (f y - f x - D * (y - x)) / norm (y - x)) \ 0) (at x within S) = ((\y. (f y - f x) / (y - x) - D) \ 0) (at x within S)" apply (subst tendsto_norm_zero_iff[symmetric], rule filterlim_cong) apply (simp_all add: eventually_at_filter field_simps nonzero_norm_divide) done then show ?thesis by (simp add: has_field_derivative_def has_derivative_iff_norm bounded_linear_mult_right LIM_zero_iff) qed lemma DERIV_def: "DERIV f x :> D \ (\h. (f (x + h) - f x) / h) \0\ D" unfolding field_has_derivative_at has_field_derivative_def has_field_derivative_iff .. lemma mult_commute_abs: "(\x. x * c) = (*) c" for c :: "'a::ab_semigroup_mult" by (simp add: fun_eq_iff mult.commute) lemma DERIV_compose_FDERIV: fixes f::"real\real" assumes "DERIV f (g x) :> f'" assumes "(g has_derivative g') (at x within s)" shows "((\x. f (g x)) has_derivative (\x. g' x * f')) (at x within s)" using assms has_derivative_compose[of g g' x s f "(*) f'"] by (auto simp: has_field_derivative_def ac_simps) subsection \Vector derivative\ lemma has_field_derivative_iff_has_vector_derivative: "(f has_field_derivative y) F \ (f has_vector_derivative y) F" unfolding has_vector_derivative_def has_field_derivative_def real_scaleR_def mult_commute_abs .. lemma has_field_derivative_subset: "(f has_field_derivative y) (at x within s) \ t \ s \ (f has_field_derivative y) (at x within t)" unfolding has_field_derivative_def by (rule has_derivative_subset) lemma has_vector_derivative_const[simp, derivative_intros]: "((\x. c) has_vector_derivative 0) net" by (auto simp: has_vector_derivative_def) lemma has_vector_derivative_id[simp, derivative_intros]: "((\x. x) has_vector_derivative 1) net" by (auto simp: has_vector_derivative_def) lemma has_vector_derivative_minus[derivative_intros]: "(f has_vector_derivative f') net \ ((\x. - f x) has_vector_derivative (- f')) net" by (auto simp: has_vector_derivative_def) lemma has_vector_derivative_add[derivative_intros]: "(f has_vector_derivative f') net \ (g has_vector_derivative g') net \ ((\x. f x + g x) has_vector_derivative (f' + g')) net" by (auto simp: has_vector_derivative_def scaleR_right_distrib) lemma has_vector_derivative_sum[derivative_intros]: "(\i. i \ I \ (f i has_vector_derivative f' i) net) \ ((\x. \i\I. f i x) has_vector_derivative (\i\I. f' i)) net" by (auto simp: has_vector_derivative_def fun_eq_iff scaleR_sum_right intro!: derivative_eq_intros) lemma has_vector_derivative_diff[derivative_intros]: "(f has_vector_derivative f') net \ (g has_vector_derivative g') net \ ((\x. f x - g x) has_vector_derivative (f' - g')) net" by (auto simp: has_vector_derivative_def scaleR_diff_right) lemma has_vector_derivative_add_const: "((\t. g t + z) has_vector_derivative f') net = ((\t. g t) has_vector_derivative f') net" apply (intro iffI) apply (force dest: has_vector_derivative_diff [where g = "\t. z", OF _ has_vector_derivative_const]) apply (force dest: has_vector_derivative_add [OF _ has_vector_derivative_const]) done lemma has_vector_derivative_diff_const: "((\t. g t - z) has_vector_derivative f') net = ((\t. g t) has_vector_derivative f') net" using has_vector_derivative_add_const [where z = "-z"] by simp lemma (in bounded_linear) has_vector_derivative: assumes "(g has_vector_derivative g') F" shows "((\x. f (g x)) has_vector_derivative f g') F" using has_derivative[OF assms[unfolded has_vector_derivative_def]] by (simp add: has_vector_derivative_def scaleR) lemma (in bounded_bilinear) has_vector_derivative: assumes "(f has_vector_derivative f') (at x within s)" and "(g has_vector_derivative g') (at x within s)" shows "((\x. f x ** g x) has_vector_derivative (f x ** g' + f' ** g x)) (at x within s)" using FDERIV[OF assms(1-2)[unfolded has_vector_derivative_def]] by (simp add: has_vector_derivative_def scaleR_right scaleR_left scaleR_right_distrib) lemma has_vector_derivative_scaleR[derivative_intros]: "(f has_field_derivative f') (at x within s) \ (g has_vector_derivative g') (at x within s) \ ((\x. f x *\<^sub>R g x) has_vector_derivative (f x *\<^sub>R g' + f' *\<^sub>R g x)) (at x within s)" unfolding has_field_derivative_iff_has_vector_derivative by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_scaleR]) lemma has_vector_derivative_mult[derivative_intros]: "(f has_vector_derivative f') (at x within s) \ (g has_vector_derivative g') (at x within s) \ ((\x. f x * g x) has_vector_derivative (f x * g' + f' * g x)) (at x within s)" for f g :: "real \ 'a::real_normed_algebra" by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_mult]) lemma has_vector_derivative_of_real[derivative_intros]: "(f has_field_derivative D) F \ ((\x. of_real (f x)) has_vector_derivative (of_real D)) F" by (rule bounded_linear.has_vector_derivative[OF bounded_linear_of_real]) (simp add: has_field_derivative_iff_has_vector_derivative) lemma has_vector_derivative_real_field: "(f has_field_derivative f') (at (of_real a)) \ ((\x. f (of_real x)) has_vector_derivative f') (at a within s)" using has_derivative_compose[of of_real of_real a _ f "(*) f'"] by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def) lemma has_vector_derivative_continuous: "(f has_vector_derivative D) (at x within s) \ continuous (at x within s) f" by (auto intro: has_derivative_continuous simp: has_vector_derivative_def) lemma continuous_on_vector_derivative: "(\x. x \ S \ (f has_vector_derivative f' x) (at x within S)) \ continuous_on S f" by (auto simp: continuous_on_eq_continuous_within intro!: has_vector_derivative_continuous) lemma has_vector_derivative_mult_right[derivative_intros]: fixes a :: "'a::real_normed_algebra" shows "(f has_vector_derivative x) F \ ((\x. a * f x) has_vector_derivative (a * x)) F" by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_right]) lemma has_vector_derivative_mult_left[derivative_intros]: fixes a :: "'a::real_normed_algebra" shows "(f has_vector_derivative x) F \ ((\x. f x * a) has_vector_derivative (x * a)) F" by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_left]) subsection \Derivatives\ lemma DERIV_D: "DERIV f x :> D \ (\h. (f (x + h) - f x) / h) \0\ D" by (simp add: DERIV_def) lemma has_field_derivativeD: "(f has_field_derivative D) (at x within S) \ ((\y. (f y - f x) / (y - x)) \ D) (at x within S)" by (simp add: has_field_derivative_iff) lemma DERIV_const [simp, derivative_intros]: "((\x. k) has_field_derivative 0) F" by (rule has_derivative_imp_has_field_derivative[OF has_derivative_const]) auto lemma DERIV_ident [simp, derivative_intros]: "((\x. x) has_field_derivative 1) F" by (rule has_derivative_imp_has_field_derivative[OF has_derivative_ident]) auto lemma field_differentiable_add[derivative_intros]: "(f has_field_derivative f') F \ (g has_field_derivative g') F \ ((\z. f z + g z) has_field_derivative f' + g') F" by (rule has_derivative_imp_has_field_derivative[OF has_derivative_add]) (auto simp: has_field_derivative_def field_simps mult_commute_abs) corollary DERIV_add: "(f has_field_derivative D) (at x within s) \ (g has_field_derivative E) (at x within s) \ ((\x. f x + g x) has_field_derivative D + E) (at x within s)" by (rule field_differentiable_add) lemma field_differentiable_minus[derivative_intros]: "(f has_field_derivative f') F \ ((\z. - (f z)) has_field_derivative -f') F" by (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus]) (auto simp: has_field_derivative_def field_simps mult_commute_abs) corollary DERIV_minus: "(f has_field_derivative D) (at x within s) \ ((\x. - f x) has_field_derivative -D) (at x within s)" by (rule field_differentiable_minus) lemma field_differentiable_diff[derivative_intros]: "(f has_field_derivative f') F \ (g has_field_derivative g') F \ ((\z. f z - g z) has_field_derivative f' - g') F" by (simp only: diff_conv_add_uminus field_differentiable_add field_differentiable_minus) corollary DERIV_diff: "(f has_field_derivative D) (at x within s) \ (g has_field_derivative E) (at x within s) \ ((\x. f x - g x) has_field_derivative D - E) (at x within s)" by (rule field_differentiable_diff) lemma DERIV_continuous: "(f has_field_derivative D) (at x within s) \ continuous (at x within s) f" by (drule has_derivative_continuous[OF has_field_derivative_imp_has_derivative]) simp corollary DERIV_isCont: "DERIV f x :> D \ isCont f x" by (rule DERIV_continuous) lemma DERIV_atLeastAtMost_imp_continuous_on: assumes "\x. \a \ x; x \ b\ \ \y. DERIV f x :> y" shows "continuous_on {a..b} f" by (meson DERIV_isCont assms atLeastAtMost_iff continuous_at_imp_continuous_at_within continuous_on_eq_continuous_within) lemma DERIV_continuous_on: "(\x. x \ s \ (f has_field_derivative (D x)) (at x within s)) \ continuous_on s f" unfolding continuous_on_eq_continuous_within by (intro continuous_at_imp_continuous_on ballI DERIV_continuous) lemma DERIV_mult': "(f has_field_derivative D) (at x within s) \ (g has_field_derivative E) (at x within s) \ ((\x. f x * g x) has_field_derivative f x * E + D * g x) (at x within s)" by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult]) (auto simp: field_simps mult_commute_abs dest: has_field_derivative_imp_has_derivative) lemma DERIV_mult[derivative_intros]: "(f has_field_derivative Da) (at x within s) \ (g has_field_derivative Db) (at x within s) \ ((\x. f x * g x) has_field_derivative Da * g x + Db * f x) (at x within s)" by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult]) (auto simp: field_simps dest: has_field_derivative_imp_has_derivative) text \Derivative of linear multiplication\ lemma DERIV_cmult: "(f has_field_derivative D) (at x within s) \ ((\x. c * f x) has_field_derivative c * D) (at x within s)" by (drule DERIV_mult' [OF DERIV_const]) simp lemma DERIV_cmult_right: "(f has_field_derivative D) (at x within s) \ ((\x. f x * c) has_field_derivative D * c) (at x within s)" using DERIV_cmult by (auto simp add: ac_simps) lemma DERIV_cmult_Id [simp]: "((*) c has_field_derivative c) (at x within s)" using DERIV_ident [THEN DERIV_cmult, where c = c and x = x] by simp lemma DERIV_cdivide: "(f has_field_derivative D) (at x within s) \ ((\x. f x / c) has_field_derivative D / c) (at x within s)" using DERIV_cmult_right[of f D x s "1 / c"] by simp lemma DERIV_unique: "DERIV f x :> D \ DERIV f x :> E \ D = E" unfolding DERIV_def by (rule LIM_unique) lemma DERIV_Uniq: "\\<^sub>\\<^sub>1D. DERIV f x :> D" by (simp add: DERIV_unique Uniq_def) lemma DERIV_sum[derivative_intros]: "(\ n. n \ S \ ((\x. f x n) has_field_derivative (f' x n)) F) \ ((\x. sum (f x) S) has_field_derivative sum (f' x) S) F" by (rule has_derivative_imp_has_field_derivative [OF has_derivative_sum]) (auto simp: sum_distrib_left mult_commute_abs dest: has_field_derivative_imp_has_derivative) lemma DERIV_inverse'[derivative_intros]: assumes "(f has_field_derivative D) (at x within s)" and "f x \ 0" shows "((\x. inverse (f x)) has_field_derivative - (inverse (f x) * D * inverse (f x))) (at x within s)" proof - have "(f has_derivative (\x. x * D)) = (f has_derivative (*) D)" by (rule arg_cong [of "\x. x * D"]) (simp add: fun_eq_iff) with assms have "(f has_derivative (\x. x * D)) (at x within s)" by (auto dest!: has_field_derivative_imp_has_derivative) then show ?thesis using \f x \ 0\ by (auto intro: has_derivative_imp_has_field_derivative has_derivative_inverse) qed text \Power of \-1\\ lemma DERIV_inverse: "x \ 0 \ ((\x. inverse(x)) has_field_derivative - (inverse x ^ Suc (Suc 0))) (at x within s)" by (drule DERIV_inverse' [OF DERIV_ident]) simp text \Derivative of inverse\ lemma DERIV_inverse_fun: "(f has_field_derivative d) (at x within s) \ f x \ 0 \ ((\x. inverse (f x)) has_field_derivative (- (d * inverse(f x ^ Suc (Suc 0))))) (at x within s)" by (drule (1) DERIV_inverse') (simp add: ac_simps nonzero_inverse_mult_distrib) text \Derivative of quotient\ lemma DERIV_divide[derivative_intros]: "(f has_field_derivative D) (at x within s) \ (g has_field_derivative E) (at x within s) \ g x \ 0 \ ((\x. f x / g x) has_field_derivative (D * g x - f x * E) / (g x * g x)) (at x within s)" by (rule has_derivative_imp_has_field_derivative[OF has_derivative_divide]) (auto dest: has_field_derivative_imp_has_derivative simp: field_simps) lemma DERIV_quotient: "(f has_field_derivative d) (at x within s) \ (g has_field_derivative e) (at x within s)\ g x \ 0 \ ((\y. f y / g y) has_field_derivative (d * g x - (e * f x)) / (g x ^ Suc (Suc 0))) (at x within s)" by (drule (2) DERIV_divide) (simp add: mult.commute) lemma DERIV_power_Suc: "(f has_field_derivative D) (at x within s) \ ((\x. f x ^ Suc n) has_field_derivative (1 + of_nat n) * (D * f x ^ n)) (at x within s)" by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power]) (auto simp: has_field_derivative_def) lemma DERIV_power[derivative_intros]: "(f has_field_derivative D) (at x within s) \ ((\x. f x ^ n) has_field_derivative of_nat n * (D * f x ^ (n - Suc 0))) (at x within s)" by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power]) (auto simp: has_field_derivative_def) lemma DERIV_pow: "((\x. x ^ n) has_field_derivative real n * (x ^ (n - Suc 0))) (at x within s)" using DERIV_power [OF DERIV_ident] by simp lemma DERIV_power_int [derivative_intros]: assumes [derivative_intros]: "(f has_field_derivative d) (at x within s)" and [simp]: "f x \ 0" shows "((\x. power_int (f x) n) has_field_derivative (of_int n * power_int (f x) (n - 1) * d)) (at x within s)" proof (cases n rule: int_cases4) case (nonneg n) thus ?thesis by (cases "n = 0") (auto intro!: derivative_eq_intros simp: field_simps power_int_diff simp flip: power_Suc power_Suc2 power_add) next case (neg n) thus ?thesis by (auto intro!: derivative_eq_intros simp: field_simps power_int_diff power_int_minus simp flip: power_Suc power_Suc2 power_add) qed lemma DERIV_chain': "(f has_field_derivative D) (at x within s) \ DERIV g (f x) :> E \ ((\x. g (f x)) has_field_derivative E * D) (at x within s)" using has_derivative_compose[of f "(*) D" x s g "(*) E"] by (simp only: has_field_derivative_def mult_commute_abs ac_simps) corollary DERIV_chain2: "DERIV f (g x) :> Da \ (g has_field_derivative Db) (at x within s) \ ((\x. f (g x)) has_field_derivative Da * Db) (at x within s)" by (rule DERIV_chain') text \Standard version\ lemma DERIV_chain: "DERIV f (g x) :> Da \ (g has_field_derivative Db) (at x within s) \ (f \ g has_field_derivative Da * Db) (at x within s)" by (drule (1) DERIV_chain', simp add: o_def mult.commute) lemma DERIV_image_chain: "(f has_field_derivative Da) (at (g x) within (g ` s)) \ (g has_field_derivative Db) (at x within s) \ (f \ g has_field_derivative Da * Db) (at x within s)" using has_derivative_in_compose [of g "(*) Db" x s f "(*) Da "] by (simp add: has_field_derivative_def o_def mult_commute_abs ac_simps) (*These two are from HOL Light: HAS_COMPLEX_DERIVATIVE_CHAIN*) lemma DERIV_chain_s: assumes "(\x. x \ s \ DERIV g x :> g'(x))" and "DERIV f x :> f'" and "f x \ s" shows "DERIV (\x. g(f x)) x :> f' * g'(f x)" by (metis (full_types) DERIV_chain' mult.commute assms) lemma DERIV_chain3: (*HAS_COMPLEX_DERIVATIVE_CHAIN_UNIV*) assumes "(\x. DERIV g x :> g'(x))" and "DERIV f x :> f'" shows "DERIV (\x. g(f x)) x :> f' * g'(f x)" by (metis UNIV_I DERIV_chain_s [of UNIV] assms) text \Alternative definition for differentiability\ lemma DERIV_LIM_iff: fixes f :: "'a::{real_normed_vector,inverse} \ 'a" shows "((\h. (f (a + h) - f a) / h) \0\ D) = ((\x. (f x - f a) / (x - a)) \a\ D)" (is "?lhs = ?rhs") proof assume ?lhs then have "(\x. (f (a + (x + - a)) - f a) / (x + - a)) \0 - - a\ D" by (rule LIM_offset) then show ?rhs by simp next assume ?rhs then have "(\x. (f (x+a) - f a) / ((x+a) - a)) \a-a\ D" by (rule LIM_offset) then show ?lhs by (simp add: add.commute) qed lemma has_field_derivative_cong_ev: assumes "x = y" and *: "eventually (\x. x \ S \ f x = g x) (nhds x)" and "u = v" "S = t" "x \ S" shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative v) (at y within t)" unfolding has_field_derivative_iff proof (rule filterlim_cong) from assms have "f y = g y" by (auto simp: eventually_nhds) with * show "\\<^sub>F z in at x within S. (f z - f x) / (z - x) = (g z - g y) / (z - y)" unfolding eventually_at_filter by eventually_elim (auto simp: assms \f y = g y\) qed (simp_all add: assms) lemma has_field_derivative_cong_eventually: assumes "eventually (\x. f x = g x) (at x within S)" "f x = g x" shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative u) (at x within S)" unfolding has_field_derivative_iff proof (rule tendsto_cong) show "\\<^sub>F y in at x within S. (f y - f x) / (y - x) = (g y - g x) / (y - x)" using assms by (auto elim: eventually_mono) qed lemma DERIV_cong_ev: "x = y \ eventually (\x. f x = g x) (nhds x) \ u = v \ DERIV f x :> u \ DERIV g y :> v" by (rule has_field_derivative_cong_ev) simp_all lemma DERIV_shift: "(f has_field_derivative y) (at (x + z)) = ((\x. f (x + z)) has_field_derivative y) (at x)" by (simp add: DERIV_def field_simps) lemma DERIV_mirror: "(DERIV f (- x) :> y) \ (DERIV (\x. f (- x)) x :> - y)" for f :: "real \ real" and x y :: real by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right tendsto_minus_cancel_left field_simps conj_commute) lemma floor_has_real_derivative: fixes f :: "real \ 'a::{floor_ceiling,order_topology}" assumes "isCont f x" and "f x \ \" shows "((\x. floor (f x)) has_real_derivative 0) (at x)" proof (subst DERIV_cong_ev[OF refl _ refl]) show "((\_. floor (f x)) has_real_derivative 0) (at x)" by simp have "\\<^sub>F y in at x. \f y\ = \f x\" by (rule eventually_floor_eq[OF assms[unfolded continuous_at]]) then show "\\<^sub>F y in nhds x. real_of_int \f y\ = real_of_int \f x\" unfolding eventually_at_filter by eventually_elim auto qed lemmas has_derivative_floor[derivative_intros] = floor_has_real_derivative[THEN DERIV_compose_FDERIV] lemma continuous_floor: fixes x::real shows "x \ \ \ continuous (at x) (real_of_int \ floor)" using floor_has_real_derivative [where f=id] by (auto simp: o_def has_field_derivative_def intro: has_derivative_continuous) lemma continuous_frac: fixes x::real assumes "x \ \" shows "continuous (at x) frac" proof - have "isCont (\x. real_of_int \x\) x" using continuous_floor [OF assms] by (simp add: o_def) then have *: "continuous (at x) (\x. x - real_of_int \x\)" by (intro continuous_intros) moreover have "\\<^sub>F x in nhds x. frac x = x - real_of_int \x\" by (simp add: frac_def) ultimately show ?thesis by (simp add: LIM_imp_LIM frac_def isCont_def) qed text \Caratheodory formulation of derivative at a point\ lemma CARAT_DERIV: "(DERIV f x :> l) \ (\g. (\z. f z - f x = g z * (z - x)) \ isCont g x \ g x = l)" (is "?lhs = ?rhs") proof assume ?lhs show "\g. (\z. f z - f x = g z * (z - x)) \ isCont g x \ g x = l" proof (intro exI conjI) let ?g = "(\z. if z = x then l else (f z - f x) / (z-x))" show "\z. f z - f x = ?g z * (z - x)" by simp show "isCont ?g x" using \?lhs\ by (simp add: isCont_iff DERIV_def cong: LIM_equal [rule_format]) show "?g x = l" by simp qed next assume ?rhs then show ?lhs by (auto simp add: isCont_iff DERIV_def cong: LIM_cong) qed subsection \Local extrema\ text \If \<^term>\0 < f' x\ then \<^term>\x\ is Locally Strictly Increasing At The Right.\ lemma has_real_derivative_pos_inc_right: fixes f :: "real \ real" assumes der: "(f has_real_derivative l) (at x within S)" and l: "0 < l" shows "\d > 0. \h > 0. x + h \ S \ h < d \ f x < f (x + h)" using assms proof - from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at] obtain s where s: "0 < s" and all: "\xa. xa\S \ xa \ x \ dist xa x < s \ \(f xa - f x) / (xa - x) - l\ < l" by (auto simp: dist_real_def) then show ?thesis proof (intro exI conjI strip) show "0 < s" by (rule s) next fix h :: real assume "0 < h" "h < s" "x + h \ S" with all [of "x + h"] show "f x < f (x+h)" proof (simp add: abs_if dist_real_def pos_less_divide_eq split: if_split_asm) assume "\ (f (x + h) - f x) / h < l" and h: "0 < h" with l have "0 < (f (x + h) - f x) / h" by arith then show "f x < f (x + h)" by (simp add: pos_less_divide_eq h) qed qed qed lemma DERIV_pos_inc_right: fixes f :: "real \ real" assumes der: "DERIV f x :> l" and l: "0 < l" shows "\d > 0. \h > 0. h < d \ f x < f (x + h)" using has_real_derivative_pos_inc_right[OF assms] by auto lemma has_real_derivative_neg_dec_left: fixes f :: "real \ real" assumes der: "(f has_real_derivative l) (at x within S)" and "l < 0" shows "\d > 0. \h > 0. x - h \ S \ h < d \ f x < f (x - h)" proof - from \l < 0\ have l: "- l > 0" by simp from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at] obtain s where s: "0 < s" and all: "\xa. xa\S \ xa \ x \ dist xa x < s \ \(f xa - f x) / (xa - x) - l\ < - l" by (auto simp: dist_real_def) then show ?thesis proof (intro exI conjI strip) show "0 < s" by (rule s) next fix h :: real assume "0 < h" "h < s" "x - h \ S" with all [of "x - h"] show "f x < f (x-h)" proof (simp add: abs_if pos_less_divide_eq dist_real_def split: if_split_asm) assume "- ((f (x-h) - f x) / h) < l" and h: "0 < h" with l have "0 < (f (x-h) - f x) / h" by arith then show "f x < f (x - h)" by (simp add: pos_less_divide_eq h) qed qed qed lemma DERIV_neg_dec_left: fixes f :: "real \ real" assumes der: "DERIV f x :> l" and l: "l < 0" shows "\d > 0. \h > 0. h < d \ f x < f (x - h)" using has_real_derivative_neg_dec_left[OF assms] by auto lemma has_real_derivative_pos_inc_left: fixes f :: "real \ real" shows "(f has_real_derivative l) (at x within S) \ 0 < l \ \d>0. \h>0. x - h \ S \ h < d \ f (x - h) < f x" by (rule has_real_derivative_neg_dec_left [of "\x. - f x" "-l" x S, simplified]) (auto simp add: DERIV_minus) lemma DERIV_pos_inc_left: fixes f :: "real \ real" shows "DERIV f x :> l \ 0 < l \ \d > 0. \h > 0. h < d \ f (x - h) < f x" using has_real_derivative_pos_inc_left by blast lemma has_real_derivative_neg_dec_right: fixes f :: "real \ real" shows "(f has_real_derivative l) (at x within S) \ l < 0 \ \d > 0. \h > 0. x + h \ S \ h < d \ f x > f (x + h)" by (rule has_real_derivative_pos_inc_right [of "\x. - f x" "-l" x S, simplified]) (auto simp add: DERIV_minus) lemma DERIV_neg_dec_right: fixes f :: "real \ real" shows "DERIV f x :> l \ l < 0 \ \d > 0. \h > 0. h < d \ f x > f (x + h)" using has_real_derivative_neg_dec_right by blast lemma DERIV_local_max: fixes f :: "real \ real" assumes der: "DERIV f x :> l" and d: "0 < d" and le: "\y. \x - y\ < d \ f y \ f x" shows "l = 0" proof (cases rule: linorder_cases [of l 0]) case equal then show ?thesis . next case less from DERIV_neg_dec_left [OF der less] obtain d' where d': "0 < d'" and lt: "\h > 0. h < d' \ f x < f (x - h)" by blast obtain e where "0 < e \ e < d \ e < d'" using field_lbound_gt_zero [OF d d'] .. with lt le [THEN spec [where x="x - e"]] show ?thesis by (auto simp add: abs_if) next case greater from DERIV_pos_inc_right [OF der greater] obtain d' where d': "0 < d'" and lt: "\h > 0. h < d' \ f x < f (x + h)" by blast obtain e where "0 < e \ e < d \ e < d'" using field_lbound_gt_zero [OF d d'] .. with lt le [THEN spec [where x="x + e"]] show ?thesis by (auto simp add: abs_if) qed text \Similar theorem for a local minimum\ lemma DERIV_local_min: fixes f :: "real \ real" shows "DERIV f x :> l \ 0 < d \ \y. \x - y\ < d \ f x \ f y \ l = 0" by (drule DERIV_minus [THEN DERIV_local_max]) auto text\In particular, if a function is locally flat\ lemma DERIV_local_const: fixes f :: "real \ real" shows "DERIV f x :> l \ 0 < d \ \y. \x - y\ < d \ f x = f y \ l = 0" by (auto dest!: DERIV_local_max) subsection \Rolle's Theorem\ text \Lemma about introducing open ball in open interval\ lemma lemma_interval_lt: fixes a b x :: real assumes "a < x" "x < b" shows "\d. 0 < d \ (\y. \x - y\ < d \ a < y \ y < b)" using linorder_linear [of "x - a" "b - x"] proof assume "x - a \ b - x" with assms show ?thesis by (rule_tac x = "x - a" in exI) auto next assume "b - x \ x - a" with assms show ?thesis by (rule_tac x = "b - x" in exI) auto qed lemma lemma_interval: "a < x \ x < b \ \d. 0 < d \ (\y. \x - y\ < d \ a \ y \ y \ b)" for a b x :: real by (force dest: lemma_interval_lt) text \Rolle's Theorem. If \<^term>\f\ is defined and continuous on the closed interval \[a,b]\ and differentiable on the open interval \(a,b)\, and \<^term>\f a = f b\, then there exists \x0 \ (a,b)\ such that \<^term>\f' x0 = 0\\ theorem Rolle_deriv: fixes f :: "real \ real" assumes "a < b" and fab: "f a = f b" and contf: "continuous_on {a..b} f" and derf: "\x. \a < x; x < b\ \ (f has_derivative f' x) (at x)" shows "\z. a < z \ z < b \ f' z = (\v. 0)" proof - have le: "a \ b" using \a < b\ by simp have "(a + b) / 2 \ {a..b}" using assms(1) by auto then have *: "{a..b} \ {}" by auto obtain x where x_max: "\z. a \ z \ z \ b \ f z \ f x" and "a \ x" "x \ b" using continuous_attains_sup[OF compact_Icc * contf] by (meson atLeastAtMost_iff) obtain x' where x'_min: "\z. a \ z \ z \ b \ f x' \ f z" and "a \ x'" "x' \ b" using continuous_attains_inf[OF compact_Icc * contf] by (meson atLeastAtMost_iff) consider "a < x" "x < b" | "x = a \ x = b" using \a \ x\ \x \ b\ by arith then show ?thesis proof cases case 1 \ \\<^term>\f\ attains its maximum within the interval\ then obtain l where der: "DERIV f x :> l" using derf differentiable_def real_differentiable_def by blast obtain d where d: "0 < d" and bound: "\y. \x - y\ < d \ a \ y \ y \ b" using lemma_interval [OF 1] by blast then have bound': "\y. \x - y\ < d \ f y \ f x" using x_max by blast \ \the derivative at a local maximum is zero\ have "l = 0" by (rule DERIV_local_max [OF der d bound']) with 1 der derf [of x] show ?thesis by (metis has_derivative_unique has_field_derivative_def mult_zero_left) next case 2 then have fx: "f b = f x" by (auto simp add: fab) consider "a < x'" "x' < b" | "x' = a \ x' = b" using \a \ x'\ \x' \ b\ by arith then show ?thesis proof cases case 1 \ \\<^term>\f\ attains its minimum within the interval\ then obtain l where der: "DERIV f x' :> l" using derf differentiable_def real_differentiable_def by blast from lemma_interval [OF 1] obtain d where d: "0y. \x'-y\ < d \ a \ y \ y \ b" by blast then have bound': "\y. \x' - y\ < d \ f x' \ f y" using x'_min by blast have "l = 0" by (rule DERIV_local_min [OF der d bound']) \ \the derivative at a local minimum is zero\ then show ?thesis using 1 der derf [of x'] by (metis has_derivative_unique has_field_derivative_def mult_zero_left) next case 2 \ \\<^term>\f\ is constant throughout the interval\ then have fx': "f b = f x'" by (auto simp: fab) from dense [OF \a < b\] obtain r where r: "a < r" "r < b" by blast obtain d where d: "0 < d" and bound: "\y. \r - y\ < d \ a \ y \ y \ b" using lemma_interval [OF r] by blast have eq_fb: "f z = f b" if "a \ z" and "z \ b" for z proof (rule order_antisym) show "f z \ f b" by (simp add: fx x_max that) show "f b \ f z" by (simp add: fx' x'_min that) qed have bound': "\y. \r - y\ < d \ f r = f y" proof (intro strip) fix y :: real assume lt: "\r - y\ < d" then have "f y = f b" by (simp add: eq_fb bound) then show "f r = f y" by (simp add: eq_fb r order_less_imp_le) qed obtain l where der: "DERIV f r :> l" using derf differentiable_def r(1) r(2) real_differentiable_def by blast have "l = 0" by (rule DERIV_local_const [OF der d bound']) \ \the derivative of a constant function is zero\ with r der derf [of r] show ?thesis by (metis has_derivative_unique has_field_derivative_def mult_zero_left) qed qed qed corollary Rolle: fixes a b :: real assumes ab: "a < b" "f a = f b" "continuous_on {a..b} f" and dif [rule_format]: "\x. \a < x; x < b\ \ f differentiable (at x)" shows "\z. a < z \ z < b \ DERIV f z :> 0" proof - obtain f' where f': "\x. \a < x; x < b\ \ (f has_derivative f' x) (at x)" using dif unfolding differentiable_def by metis then have "\z. a < z \ z < b \ f' z = (\v. 0)" by (metis Rolle_deriv [OF ab]) then show ?thesis using f' has_derivative_imp_has_field_derivative by fastforce qed subsection \Mean Value Theorem\ theorem mvt: fixes f :: "real \ real" assumes "a < b" and contf: "continuous_on {a..b} f" and derf: "\x. \a < x; x < b\ \ (f has_derivative f' x) (at x)" obtains \ where "a < \" "\ < b" "f b - f a = (f' \) (b - a)" proof - have "\x. a < x \ x < b \ (\y. f' x y - (f b - f a) / (b - a) * y) = (\v. 0)" proof (intro Rolle_deriv[OF \a < b\]) fix x assume x: "a < x" "x < b" show "((\x. f x - (f b - f a) / (b - a) * x) has_derivative (\y. f' x y - (f b - f a) / (b - a) * y)) (at x)" by (intro derivative_intros derf[OF x]) qed (use assms in \auto intro!: continuous_intros simp: field_simps\) then obtain \ where "a < \" "\ < b" "(\y. f' \ y - (f b - f a) / (b - a) * y) = (\v. 0)" by metis then show ?thesis by (metis (no_types, hide_lams) that add.right_neutral add_diff_cancel_left' add_diff_eq \a < b\ less_irrefl nonzero_eq_divide_eq) qed theorem MVT: fixes a b :: real assumes lt: "a < b" and contf: "continuous_on {a..b} f" and dif: "\x. \a < x; x < b\ \ f differentiable (at x)" shows "\l z. a < z \ z < b \ DERIV f z :> l \ f b - f a = (b - a) * l" proof - obtain f' :: "real \ real \ real" where derf: "\x. a < x \ x < b \ (f has_derivative f' x) (at x)" using dif unfolding differentiable_def by metis then obtain z where "a < z" "z < b" "f b - f a = (f' z) (b - a)" using mvt [OF lt contf] by blast then show ?thesis by (simp add: ac_simps) (metis derf dif has_derivative_unique has_field_derivative_imp_has_derivative real_differentiable_def) qed corollary MVT2: assumes "a < b" and der: "\x. \a \ x; x \ b\ \ DERIV f x :> f' x" shows "\z::real. a < z \ z < b \ (f b - f a = (b - a) * f' z)" proof - have "\l z. a < z \ z < b \ (f has_real_derivative l) (at z) \ f b - f a = (b - a) * l" proof (rule MVT [OF \a < b\]) show "continuous_on {a..b} f" by (meson DERIV_continuous atLeastAtMost_iff continuous_at_imp_continuous_on der) show "\x. \a < x; x < b\ \ f differentiable (at x)" using assms by (force dest: order_less_imp_le simp add: real_differentiable_def) qed with assms show ?thesis by (blast dest: DERIV_unique order_less_imp_le) qed lemma pos_deriv_imp_strict_mono: assumes "\x. (f has_real_derivative f' x) (at x)" assumes "\x. f' x > 0" shows "strict_mono f" proof (rule strict_monoI) fix x y :: real assume xy: "x < y" from assms and xy have "\z>x. z < y \ f y - f x = (y - x) * f' z" by (intro MVT2) (auto dest: connectedD_interval) then obtain z where z: "z > x" "z < y" "f y - f x = (y - x) * f' z" by blast note \f y - f x = (y - x) * f' z\ also have "(y - x) * f' z > 0" using xy assms by (intro mult_pos_pos) auto finally show "f x < f y" by simp qed proposition deriv_nonneg_imp_mono: assumes deriv: "\x. x \ {a..b} \ (g has_real_derivative g' x) (at x)" assumes nonneg: "\x. x \ {a..b} \ g' x \ 0" assumes ab: "a \ b" shows "g a \ g b" proof (cases "a < b") assume "a < b" from deriv have "\x. \x \ a; x \ b\ \ (g has_real_derivative g' x) (at x)" by simp with MVT2[OF \a < b\] and deriv obtain \ where \_ab: "\ > a" "\ < b" and g_ab: "g b - g a = (b - a) * g' \" by blast from \_ab ab nonneg have "(b - a) * g' \ \ 0" by simp with g_ab show ?thesis by simp qed (insert ab, simp) subsubsection \A function is constant if its derivative is 0 over an interval.\ lemma DERIV_isconst_end: fixes f :: "real \ real" assumes "a < b" and contf: "continuous_on {a..b} f" and 0: "\x. \a < x; x < b\ \ DERIV f x :> 0" shows "f b = f a" using MVT [OF \a < b\] "0" DERIV_unique contf real_differentiable_def by (fastforce simp: algebra_simps) lemma DERIV_isconst2: fixes f :: "real \ real" assumes "a < b" and contf: "continuous_on {a..b} f" and derf: "\x. \a < x; x < b\ \ DERIV f x :> 0" and "a \ x" "x \ b" shows "f x = f a" proof (cases "a < x") case True have *: "continuous_on {a..x} f" using \x \ b\ contf continuous_on_subset by fastforce show ?thesis by (rule DERIV_isconst_end [OF True *]) (use \x \ b\ derf in auto) qed (use \a \ x\ in auto) lemma DERIV_isconst3: fixes a b x y :: real assumes "a < b" and "x \ {a <..< b}" and "y \ {a <..< b}" and derivable: "\x. x \ {a <..< b} \ DERIV f x :> 0" shows "f x = f y" proof (cases "x = y") case False let ?a = "min x y" let ?b = "max x y" have *: "DERIV f z :> 0" if "?a \ z" "z \ ?b" for z proof - have "a < z" and "z < b" using that \x \ {a <..< b}\ and \y \ {a <..< b}\ by auto then have "z \ {a<.. 0" by (rule derivable) qed have isCont: "continuous_on {?a..?b} f" by (meson * DERIV_continuous_on atLeastAtMost_iff has_field_derivative_at_within) have DERIV: "\z. \?a < z; z < ?b\ \ DERIV f z :> 0" using * by auto have "?a < ?b" using \x \ y\ by auto from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y] show ?thesis by auto qed auto lemma DERIV_isconst_all: fixes f :: "real \ real" shows "\x. DERIV f x :> 0 \ f x = f y" apply (rule linorder_cases [of x y]) apply (metis DERIV_continuous DERIV_isconst_end continuous_at_imp_continuous_on)+ done lemma DERIV_const_ratio_const: fixes f :: "real \ real" assumes "a \ b" and df: "\x. DERIV f x :> k" shows "f b - f a = (b - a) * k" proof (cases a b rule: linorder_cases) case less show ?thesis using MVT [OF less] df by (metis DERIV_continuous DERIV_unique continuous_at_imp_continuous_on real_differentiable_def) next case greater have "f a - f b = (a - b) * k" using MVT [OF greater] df by (metis DERIV_continuous DERIV_unique continuous_at_imp_continuous_on real_differentiable_def) then show ?thesis by (simp add: algebra_simps) qed auto lemma DERIV_const_ratio_const2: fixes f :: "real \ real" assumes "a \ b" and df: "\x. DERIV f x :> k" shows "(f b - f a) / (b - a) = k" using DERIV_const_ratio_const [OF assms] \a \ b\ by auto lemma real_average_minus_first [simp]: "(a + b) / 2 - a = (b - a) / 2" for a b :: real by simp lemma real_average_minus_second [simp]: "(b + a) / 2 - a = (b - a) / 2" for a b :: real by simp text \Gallileo's "trick": average velocity = av. of end velocities.\ lemma DERIV_const_average: fixes v :: "real \ real" and a b :: real assumes neq: "a \ b" and der: "\x. DERIV v x :> k" shows "v ((a + b) / 2) = (v a + v b) / 2" proof (cases rule: linorder_cases [of a b]) case equal with neq show ?thesis by simp next case less have "(v b - v a) / (b - a) = k" by (rule DERIV_const_ratio_const2 [OF neq der]) then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k" by simp moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k" by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq) ultimately show ?thesis using neq by force next case greater have "(v b - v a) / (b - a) = k" by (rule DERIV_const_ratio_const2 [OF neq der]) then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k" by simp moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k" by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq) ultimately show ?thesis using neq by (force simp add: add.commute) qed subsubsection\A function with positive derivative is increasing\ text \A simple proof using the MVT, by Jeremy Avigad. And variants.\ lemma DERIV_pos_imp_increasing_open: fixes a b :: real and f :: "real \ real" assumes "a < b" and "\x. a < x \ x < b \ (\y. DERIV f x :> y \ y > 0)" and con: "continuous_on {a..b} f" shows "f a < f b" proof (rule ccontr) assume f: "\ ?thesis" have "\l z. a < z \ z < b \ DERIV f z :> l \ f b - f a = (b - a) * l" by (rule MVT) (use assms real_differentiable_def in \force+\) then obtain l z where z: "a < z" "z < b" "DERIV f z :> l" and "f b - f a = (b - a) * l" by auto with assms f have "\ l > 0" by (metis linorder_not_le mult_le_0_iff diff_le_0_iff_le) with assms z show False by (metis DERIV_unique) qed lemma DERIV_pos_imp_increasing: fixes a b :: real and f :: "real \ real" assumes "a < b" and der: "\x. \a \ x; x \ b\ \ \y. DERIV f x :> y \ y > 0" shows "f a < f b" by (metis less_le_not_le DERIV_atLeastAtMost_imp_continuous_on DERIV_pos_imp_increasing_open [OF \a < b\] der) lemma DERIV_nonneg_imp_nondecreasing: fixes a b :: real and f :: "real \ real" assumes "a \ b" and "\x. \a \ x; x \ b\ \ \y. DERIV f x :> y \ y \ 0" shows "f a \ f b" proof (rule ccontr, cases "a = b") assume "\ ?thesis" and "a = b" then show False by auto next assume *: "\ ?thesis" assume "a \ b" with \a \ b\ have "a < b" by linarith moreover have "continuous_on {a..b} f" by (meson DERIV_isCont assms(2) atLeastAtMost_iff continuous_at_imp_continuous_on) ultimately have "\l z. a < z \ z < b \ DERIV f z :> l \ f b - f a = (b - a) * l" using assms MVT [OF \a < b\, of f] real_differentiable_def less_eq_real_def by blast then obtain l z where lz: "a < z" "z < b" "DERIV f z :> l" and **: "f b - f a = (b - a) * l" by auto with * have "a < b" "f b < f a" by auto with ** have "\ l \ 0" by (auto simp add: not_le algebra_simps) (metis * add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl) with assms lz show False by (metis DERIV_unique order_less_imp_le) qed lemma DERIV_neg_imp_decreasing_open: fixes a b :: real and f :: "real \ real" assumes "a < b" and "\x. a < x \ x < b \ \y. DERIV f x :> y \ y < 0" and con: "continuous_on {a..b} f" shows "f a > f b" proof - have "(\x. -f x) a < (\x. -f x) b" proof (rule DERIV_pos_imp_increasing_open [of a b]) show "\x. \a < x; x < b\ \ \y. ((\x. - f x) has_real_derivative y) (at x) \ 0 < y" using assms by simp (metis field_differentiable_minus neg_0_less_iff_less) show "continuous_on {a..b} (\x. - f x)" using con continuous_on_minus by blast qed (use assms in auto) then show ?thesis by simp qed lemma DERIV_neg_imp_decreasing: fixes a b :: real and f :: "real \ real" assumes "a < b" and der: "\x. \a \ x; x \ b\ \ \y. DERIV f x :> y \ y < 0" shows "f a > f b" by (metis less_le_not_le DERIV_atLeastAtMost_imp_continuous_on DERIV_neg_imp_decreasing_open [OF \a < b\] der) lemma DERIV_nonpos_imp_nonincreasing: fixes a b :: real and f :: "real \ real" assumes "a \ b" and "\x. \a \ x; x \ b\ \ \y. DERIV f x :> y \ y \ 0" shows "f a \ f b" proof - have "(\x. -f x) a \ (\x. -f x) b" using DERIV_nonneg_imp_nondecreasing [of a b "\x. -f x"] assms DERIV_minus by fastforce then show ?thesis by simp qed lemma DERIV_pos_imp_increasing_at_bot: fixes f :: "real \ real" assumes "\x. x \ b \ (\y. DERIV f x :> y \ y > 0)" and lim: "(f \ flim) at_bot" shows "flim < f b" proof - have "\N. \n\N. f n \ f (b - 1)" by (rule_tac x="b - 2" in exI) (force intro: order.strict_implies_order DERIV_pos_imp_increasing assms) then have "flim \ f (b - 1)" by (auto simp: eventually_at_bot_linorder tendsto_upperbound [OF lim]) also have "\ < f b" by (force intro: DERIV_pos_imp_increasing [where f=f] assms) finally show ?thesis . qed lemma DERIV_neg_imp_decreasing_at_top: fixes f :: "real \ real" assumes der: "\x. x \ b \ \y. DERIV f x :> y \ y < 0" and lim: "(f \ flim) at_top" shows "flim < f b" apply (rule DERIV_pos_imp_increasing_at_bot [where f = "\i. f (-i)" and b = "-b", simplified]) apply (metis DERIV_mirror der le_minus_iff neg_0_less_iff_less) apply (metis filterlim_at_top_mirror lim) done text \Derivative of inverse function\ lemma DERIV_inverse_function: fixes f g :: "real \ real" assumes der: "DERIV f (g x) :> D" and neq: "D \ 0" and x: "a < x" "x < b" and inj: "\y. \a < y; y < b\ \ f (g y) = y" and cont: "isCont g x" shows "DERIV g x :> inverse D" unfolding has_field_derivative_iff proof (rule LIM_equal2) show "0 < min (x - a) (b - x)" using x by arith next fix y assume "norm (y - x) < min (x - a) (b - x)" then have "a < y" and "y < b" by (simp_all add: abs_less_iff) then show "(g y - g x) / (y - x) = inverse ((f (g y) - x) / (g y - g x))" by (simp add: inj) next have "(\z. (f z - f (g x)) / (z - g x)) \g x\ D" by (rule der [unfolded has_field_derivative_iff]) then have 1: "(\z. (f z - x) / (z - g x)) \g x\ D" using inj x by simp have 2: "\d>0. \y. y \ x \ norm (y - x) < d \ g y \ g x" proof (rule exI, safe) show "0 < min (x - a) (b - x)" using x by simp next fix y assume "norm (y - x) < min (x - a) (b - x)" then have y: "a < y" "y < b" by (simp_all add: abs_less_iff) assume "g y = g x" then have "f (g y) = f (g x)" by simp then have "y = x" using inj y x by simp also assume "y \ x" finally show False by simp qed have "(\y. (f (g y) - x) / (g y - g x)) \x\ D" using cont 1 2 by (rule isCont_LIM_compose2) then show "(\y. inverse ((f (g y) - x) / (g y - g x))) \x\ inverse D" using neq by (rule tendsto_inverse) qed subsection \Generalized Mean Value Theorem\ theorem GMVT: fixes a b :: real assumes alb: "a < b" and fc: "\x. a \ x \ x \ b \ isCont f x" and fd: "\x. a < x \ x < b \ f differentiable (at x)" and gc: "\x. a \ x \ x \ b \ isCont g x" and gd: "\x. a < x \ x < b \ g differentiable (at x)" shows "\g'c f'c c. DERIV g c :> g'c \ DERIV f c :> f'c \ a < c \ c < b \ (f b - f a) * g'c = (g b - g a) * f'c" proof - let ?h = "\x. (f b - f a) * g x - (g b - g a) * f x" have "\l z. a < z \ z < b \ DERIV ?h z :> l \ ?h b - ?h a = (b - a) * l" proof (rule MVT) from assms show "a < b" by simp show "continuous_on {a..b} ?h" by (simp add: continuous_at_imp_continuous_on fc gc) show "\x. \a < x; x < b\ \ ?h differentiable (at x)" using fd gd by simp qed then obtain l where l: "\z. a < z \ z < b \ DERIV ?h z :> l \ ?h b - ?h a = (b - a) * l" .. then obtain c where c: "a < c \ c < b \ DERIV ?h c :> l \ ?h b - ?h a = (b - a) * l" .. from c have cint: "a < c \ c < b" by auto then obtain g'c where g'c: "DERIV g c :> g'c" using gd real_differentiable_def by blast from c have "a < c \ c < b" by auto then obtain f'c where f'c: "DERIV f c :> f'c" using fd real_differentiable_def by blast from c have "DERIV ?h c :> l" by auto moreover have "DERIV ?h c :> g'c * (f b - f a) - f'c * (g b - g a)" using g'c f'c by (auto intro!: derivative_eq_intros) ultimately have leq: "l = g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique) have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" proof - from c have "?h b - ?h a = (b - a) * l" by auto also from leq have "\ = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp finally show ?thesis by simp qed moreover have "?h b - ?h a = 0" proof - have "?h b - ?h a = ((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) - ((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))" by (simp add: algebra_simps) then show ?thesis by auto qed ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp then have "g'c * (f b - f a) = f'c * (g b - g a)" by simp then have "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: ac_simps) with g'c f'c cint show ?thesis by auto qed lemma GMVT': fixes f g :: "real \ real" assumes "a < b" and isCont_f: "\z. a \ z \ z \ b \ isCont f z" and isCont_g: "\z. a \ z \ z \ b \ isCont g z" and DERIV_g: "\z. a < z \ z < b \ DERIV g z :> (g' z)" and DERIV_f: "\z. a < z \ z < b \ DERIV f z :> (f' z)" shows "\c. a < c \ c < b \ (f b - f a) * g' c = (g b - g a) * f' c" proof - have "\g'c f'c c. DERIV g c :> g'c \ DERIV f c :> f'c \ a < c \ c < b \ (f b - f a) * g'c = (g b - g a) * f'c" using assms by (intro GMVT) (force simp: real_differentiable_def)+ then obtain c where "a < c" "c < b" "(f b - f a) * g' c = (g b - g a) * f' c" using DERIV_f DERIV_g by (force dest: DERIV_unique) then show ?thesis by auto qed subsection \L'Hopitals rule\ lemma isCont_If_ge: fixes a :: "'a :: linorder_topology" assumes "continuous (at_left a) g" and f: "(f \ g a) (at_right a)" shows "isCont (\x. if x \ a then g x else f x) a" (is "isCont ?gf a") proof - have g: "(g \ g a) (at_left a)" using assms continuous_within by blast show ?thesis unfolding isCont_def continuous_within proof (intro filterlim_split_at; simp) show "(?gf \ g a) (at_left a)" by (subst filterlim_cong[OF refl refl, where g=g]) (simp_all add: eventually_at_filter less_le g) show "(?gf \ g a) (at_right a)" by (subst filterlim_cong[OF refl refl, where g=f]) (simp_all add: eventually_at_filter less_le f) qed qed lemma lhopital_right_0: fixes f0 g0 :: "real \ real" assumes f_0: "(f0 \ 0) (at_right 0)" and g_0: "(g0 \ 0) (at_right 0)" and ev: "eventually (\x. g0 x \ 0) (at_right 0)" "eventually (\x. g' x \ 0) (at_right 0)" "eventually (\x. DERIV f0 x :> f' x) (at_right 0)" "eventually (\x. DERIV g0 x :> g' x) (at_right 0)" and lim: "filterlim (\ x. (f' x / g' x)) F (at_right 0)" shows "filterlim (\ x. f0 x / g0 x) F (at_right 0)" proof - define f where [abs_def]: "f x = (if x \ 0 then 0 else f0 x)" for x then have "f 0 = 0" by simp define g where [abs_def]: "g x = (if x \ 0 then 0 else g0 x)" for x then have "g 0 = 0" by simp have "eventually (\x. g0 x \ 0 \ g' x \ 0 \ DERIV f0 x :> (f' x) \ DERIV g0 x :> (g' x)) (at_right 0)" using ev by eventually_elim auto then obtain a where [arith]: "0 < a" and g0_neq_0: "\x. 0 < x \ x < a \ g0 x \ 0" and g'_neq_0: "\x. 0 < x \ x < a \ g' x \ 0" and f0: "\x. 0 < x \ x < a \ DERIV f0 x :> (f' x)" and g0: "\x. 0 < x \ x < a \ DERIV g0 x :> (g' x)" unfolding eventually_at by (auto simp: dist_real_def) have g_neq_0: "\x. 0 < x \ x < a \ g x \ 0" using g0_neq_0 by (simp add: g_def) have f: "DERIV f x :> (f' x)" if x: "0 < x" "x < a" for x using that by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ f0[OF x]]) (auto simp: f_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) have g: "DERIV g x :> (g' x)" if x: "0 < x" "x < a" for x using that by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ g0[OF x]]) (auto simp: g_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) have "isCont f 0" unfolding f_def by (intro isCont_If_ge f_0 continuous_const) have "isCont g 0" unfolding g_def by (intro isCont_If_ge g_0 continuous_const) have "\\. \x\{0 <..< a}. 0 < \ x \ \ x < x \ f x / g x = f' (\ x) / g' (\ x)" proof (rule bchoice, rule ballI) fix x assume "x \ {0 <..< a}" then have x[arith]: "0 < x" "x < a" by auto with g'_neq_0 g_neq_0 \g 0 = 0\ have g': "\x. 0 < x \ x < a \ 0 \ g' x" "g 0 \ g x" by auto have "\x. 0 \ x \ x < a \ isCont f x" using \isCont f 0\ f by (auto intro: DERIV_isCont simp: le_less) moreover have "\x. 0 \ x \ x < a \ isCont g x" using \isCont g 0\ g by (auto intro: DERIV_isCont simp: le_less) ultimately have "\c. 0 < c \ c < x \ (f x - f 0) * g' c = (g x - g 0) * f' c" using f g \x < a\ by (intro GMVT') auto then obtain c where *: "0 < c" "c < x" "(f x - f 0) * g' c = (g x - g 0) * f' c" by blast moreover from * g'(1)[of c] g'(2) have "(f x - f 0) / (g x - g 0) = f' c / g' c" by (simp add: field_simps) ultimately show "\y. 0 < y \ y < x \ f x / g x = f' y / g' y" using \f 0 = 0\ \g 0 = 0\ by (auto intro!: exI[of _ c]) qed then obtain \ where "\x\{0 <..< a}. 0 < \ x \ \ x < x \ f x / g x = f' (\ x) / g' (\ x)" .. then have \: "eventually (\x. 0 < \ x \ \ x < x \ f x / g x = f' (\ x) / g' (\ x)) (at_right 0)" unfolding eventually_at by (intro exI[of _ a]) (auto simp: dist_real_def) moreover from \ have "eventually (\x. norm (\ x) \ x) (at_right 0)" by eventually_elim auto then have "((\x. norm (\ x)) \ 0) (at_right 0)" by (rule_tac real_tendsto_sandwich[where f="\x. 0" and h="\x. x"]) auto then have "(\ \ 0) (at_right 0)" by (rule tendsto_norm_zero_cancel) with \ have "filterlim \ (at_right 0) (at_right 0)" by (auto elim!: eventually_mono simp: filterlim_at) from this lim have "filterlim (\t. f' (\ t) / g' (\ t)) F (at_right 0)" by (rule_tac filterlim_compose[of _ _ _ \]) ultimately have "filterlim (\t. f t / g t) F (at_right 0)" (is ?P) by (rule_tac filterlim_cong[THEN iffD1, OF refl refl]) (auto elim: eventually_mono) also have "?P \ ?thesis" by (rule filterlim_cong) (auto simp: f_def g_def eventually_at_filter) finally show ?thesis . qed lemma lhopital_right: "(f \ 0) (at_right x) \ (g \ 0) (at_right x) \ eventually (\x. g x \ 0) (at_right x) \ eventually (\x. g' x \ 0) (at_right x) \ eventually (\x. DERIV f x :> f' x) (at_right x) \ eventually (\x. DERIV g x :> g' x) (at_right x) \ filterlim (\ x. (f' x / g' x)) F (at_right x) \ filterlim (\ x. f x / g x) F (at_right x)" for x :: real unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift by (rule lhopital_right_0) lemma lhopital_left: "(f \ 0) (at_left x) \ (g \ 0) (at_left x) \ eventually (\x. g x \ 0) (at_left x) \ eventually (\x. g' x \ 0) (at_left x) \ eventually (\x. DERIV f x :> f' x) (at_left x) \ eventually (\x. DERIV g x :> g' x) (at_left x) \ filterlim (\ x. (f' x / g' x)) F (at_left x) \ filterlim (\ x. f x / g x) F (at_left x)" for x :: real unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror by (rule lhopital_right[where f'="\x. - f' (- x)"]) (auto simp: DERIV_mirror) lemma lhopital: "(f \ 0) (at x) \ (g \ 0) (at x) \ eventually (\x. g x \ 0) (at x) \ eventually (\x. g' x \ 0) (at x) \ eventually (\x. DERIV f x :> f' x) (at x) \ eventually (\x. DERIV g x :> g' x) (at x) \ filterlim (\ x. (f' x / g' x)) F (at x) \ filterlim (\ x. f x / g x) F (at x)" for x :: real unfolding eventually_at_split filterlim_at_split by (auto intro!: lhopital_right[of f x g g' f'] lhopital_left[of f x g g' f']) lemma lhopital_right_0_at_top: fixes f g :: "real \ real" assumes g_0: "LIM x at_right 0. g x :> at_top" and ev: "eventually (\x. g' x \ 0) (at_right 0)" "eventually (\x. DERIV f x :> f' x) (at_right 0)" "eventually (\x. DERIV g x :> g' x) (at_right 0)" and lim: "((\ x. (f' x / g' x)) \ x) (at_right 0)" shows "((\ x. f x / g x) \ x) (at_right 0)" unfolding tendsto_iff proof safe fix e :: real assume "0 < e" with lim[unfolded tendsto_iff, rule_format, of "e / 4"] have "eventually (\t. dist (f' t / g' t) x < e / 4) (at_right 0)" by simp from eventually_conj[OF eventually_conj[OF ev(1) ev(2)] eventually_conj[OF ev(3) this]] obtain a where [arith]: "0 < a" and g'_neq_0: "\x. 0 < x \ x < a \ g' x \ 0" and f0: "\x. 0 < x \ x \ a \ DERIV f x :> (f' x)" and g0: "\x. 0 < x \ x \ a \ DERIV g x :> (g' x)" and Df: "\t. 0 < t \ t < a \ dist (f' t / g' t) x < e / 4" unfolding eventually_at_le by (auto simp: dist_real_def) from Df have "eventually (\t. t < a) (at_right 0)" "eventually (\t::real. 0 < t) (at_right 0)" unfolding eventually_at by (auto intro!: exI[of _ a] simp: dist_real_def) moreover have "eventually (\t. 0 < g t) (at_right 0)" "eventually (\t. g a < g t) (at_right 0)" using g_0 by (auto elim: eventually_mono simp: filterlim_at_top_dense) moreover have inv_g: "((\x. inverse (g x)) \ 0) (at_right 0)" using tendsto_inverse_0 filterlim_mono[OF g_0 at_top_le_at_infinity order_refl] by (rule filterlim_compose) then have "((\x. norm (1 - g a * inverse (g x))) \ norm (1 - g a * 0)) (at_right 0)" by (intro tendsto_intros) then have "((\x. norm (1 - g a / g x)) \ 1) (at_right 0)" by (simp add: inverse_eq_divide) from this[unfolded tendsto_iff, rule_format, of 1] have "eventually (\x. norm (1 - g a / g x) < 2) (at_right 0)" by (auto elim!: eventually_mono simp: dist_real_def) moreover from inv_g have "((\t. norm ((f a - x * g a) * inverse (g t))) \ norm ((f a - x * g a) * 0)) (at_right 0)" by (intro tendsto_intros) then have "((\t. norm (f a - x * g a) / norm (g t)) \ 0) (at_right 0)" by (simp add: inverse_eq_divide) from this[unfolded tendsto_iff, rule_format, of "e / 2"] \0 < e\ have "eventually (\t. norm (f a - x * g a) / norm (g t) < e / 2) (at_right 0)" by (auto simp: dist_real_def) ultimately show "eventually (\t. dist (f t / g t) x < e) (at_right 0)" proof eventually_elim fix t assume t[arith]: "0 < t" "t < a" "g a < g t" "0 < g t" assume ineq: "norm (1 - g a / g t) < 2" "norm (f a - x * g a) / norm (g t) < e / 2" have "\y. t < y \ y < a \ (g a - g t) * f' y = (f a - f t) * g' y" using f0 g0 t(1,2) by (intro GMVT') (force intro!: DERIV_isCont)+ then obtain y where [arith]: "t < y" "y < a" and D_eq0: "(g a - g t) * f' y = (f a - f t) * g' y" by blast from D_eq0 have D_eq: "(f t - f a) / (g t - g a) = f' y / g' y" using \g a < g t\ g'_neq_0[of y] by (auto simp add: field_simps) have *: "f t / g t - x = ((f t - f a) / (g t - g a) - x) * (1 - g a / g t) + (f a - x * g a) / g t" by (simp add: field_simps) have "norm (f t / g t - x) \ norm (((f t - f a) / (g t - g a) - x) * (1 - g a / g t)) + norm ((f a - x * g a) / g t)" unfolding * by (rule norm_triangle_ineq) also have "\ = dist (f' y / g' y) x * norm (1 - g a / g t) + norm (f a - x * g a) / norm (g t)" by (simp add: abs_mult D_eq dist_real_def) also have "\ < (e / 4) * 2 + e / 2" using ineq Df[of y] \0 < e\ by (intro add_le_less_mono mult_mono) auto finally show "dist (f t / g t) x < e" by (simp add: dist_real_def) qed qed lemma lhopital_right_at_top: "LIM x at_right x. (g::real \ real) x :> at_top \ eventually (\x. g' x \ 0) (at_right x) \ eventually (\x. DERIV f x :> f' x) (at_right x) \ eventually (\x. DERIV g x :> g' x) (at_right x) \ ((\ x. (f' x / g' x)) \ y) (at_right x) \ ((\ x. f x / g x) \ y) (at_right x)" unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift by (rule lhopital_right_0_at_top) lemma lhopital_left_at_top: "LIM x at_left x. g x :> at_top \ eventually (\x. g' x \ 0) (at_left x) \ eventually (\x. DERIV f x :> f' x) (at_left x) \ eventually (\x. DERIV g x :> g' x) (at_left x) \ ((\ x. (f' x / g' x)) \ y) (at_left x) \ ((\ x. f x / g x) \ y) (at_left x)" for x :: real unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror by (rule lhopital_right_at_top[where f'="\x. - f' (- x)"]) (auto simp: DERIV_mirror) lemma lhopital_at_top: "LIM x at x. (g::real \ real) x :> at_top \ eventually (\x. g' x \ 0) (at x) \ eventually (\x. DERIV f x :> f' x) (at x) \ eventually (\x. DERIV g x :> g' x) (at x) \ ((\ x. (f' x / g' x)) \ y) (at x) \ ((\ x. f x / g x) \ y) (at x)" unfolding eventually_at_split filterlim_at_split by (auto intro!: lhopital_right_at_top[of g x g' f f'] lhopital_left_at_top[of g x g' f f']) lemma lhospital_at_top_at_top: fixes f g :: "real \ real" assumes g_0: "LIM x at_top. g x :> at_top" and g': "eventually (\x. g' x \ 0) at_top" and Df: "eventually (\x. DERIV f x :> f' x) at_top" and Dg: "eventually (\x. DERIV g x :> g' x) at_top" and lim: "((\ x. (f' x / g' x)) \ x) at_top" shows "((\ x. f x / g x) \ x) at_top" unfolding filterlim_at_top_to_right proof (rule lhopital_right_0_at_top) let ?F = "\x. f (inverse x)" let ?G = "\x. g (inverse x)" let ?R = "at_right (0::real)" let ?D = "\f' x. f' (inverse x) * - (inverse x ^ Suc (Suc 0))" show "LIM x ?R. ?G x :> at_top" using g_0 unfolding filterlim_at_top_to_right . show "eventually (\x. DERIV ?G x :> ?D g' x) ?R" unfolding eventually_at_right_to_top using Dg eventually_ge_at_top[where c=1] by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+ show "eventually (\x. DERIV ?F x :> ?D f' x) ?R" unfolding eventually_at_right_to_top using Df eventually_ge_at_top[where c=1] by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+ show "eventually (\x. ?D g' x \ 0) ?R" unfolding eventually_at_right_to_top using g' eventually_ge_at_top[where c=1] by eventually_elim auto show "((\x. ?D f' x / ?D g' x) \ x) ?R" unfolding filterlim_at_right_to_top apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim]) using eventually_ge_at_top[where c=1] by eventually_elim simp qed lemma lhopital_right_at_top_at_top: fixes f g :: "real \ real" assumes f_0: "LIM x at_right a. f x :> at_top" assumes g_0: "LIM x at_right a. g x :> at_top" and ev: "eventually (\x. DERIV f x :> f' x) (at_right a)" "eventually (\x. DERIV g x :> g' x) (at_right a)" and lim: "filterlim (\ x. (f' x / g' x)) at_top (at_right a)" shows "filterlim (\ x. f x / g x) at_top (at_right a)" proof - from lim have pos: "eventually (\x. f' x / g' x > 0) (at_right a)" unfolding filterlim_at_top_dense by blast have "((\x. g x / f x) \ 0) (at_right a)" proof (rule lhopital_right_at_top) from pos show "eventually (\x. f' x \ 0) (at_right a)" by eventually_elim auto from tendsto_inverse_0_at_top[OF lim] show "((\x. g' x / f' x) \ 0) (at_right a)" by simp qed fact+ moreover from f_0 g_0 have "eventually (\x. f x > 0) (at_right a)" "eventually (\x. g x > 0) (at_right a)" unfolding filterlim_at_top_dense by blast+ hence "eventually (\x. g x / f x > 0) (at_right a)" by eventually_elim simp ultimately have "filterlim (\x. inverse (g x / f x)) at_top (at_right a)" by (rule filterlim_inverse_at_top) thus ?thesis by simp qed lemma lhopital_right_at_top_at_bot: fixes f g :: "real \ real" assumes f_0: "LIM x at_right a. f x :> at_top" assumes g_0: "LIM x at_right a. g x :> at_bot" and ev: "eventually (\x. DERIV f x :> f' x) (at_right a)" "eventually (\x. DERIV g x :> g' x) (at_right a)" and lim: "filterlim (\ x. (f' x / g' x)) at_bot (at_right a)" shows "filterlim (\ x. f x / g x) at_bot (at_right a)" proof - from ev(2) have ev': "eventually (\x. DERIV (\x. -g x) x :> -g' x) (at_right a)" by eventually_elim (auto intro: derivative_intros) have "filterlim (\x. f x / (-g x)) at_top (at_right a)" by (rule lhopital_right_at_top_at_top[where f' = f' and g' = "\x. -g' x"]) (insert assms ev', auto simp: filterlim_uminus_at_bot) hence "filterlim (\x. -(f x / g x)) at_top (at_right a)" by simp thus ?thesis by (simp add: filterlim_uminus_at_bot) qed lemma lhopital_left_at_top_at_top: fixes f g :: "real \ real" assumes f_0: "LIM x at_left a. f x :> at_top" assumes g_0: "LIM x at_left a. g x :> at_top" and ev: "eventually (\x. DERIV f x :> f' x) (at_left a)" "eventually (\x. DERIV g x :> g' x) (at_left a)" and lim: "filterlim (\ x. (f' x / g' x)) at_top (at_left a)" shows "filterlim (\ x. f x / g x) at_top (at_left a)" by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror, rule lhopital_right_at_top_at_top[where f'="\x. - f' (- x)"]) (insert assms, auto simp: DERIV_mirror) lemma lhopital_left_at_top_at_bot: fixes f g :: "real \ real" assumes f_0: "LIM x at_left a. f x :> at_top" assumes g_0: "LIM x at_left a. g x :> at_bot" and ev: "eventually (\x. DERIV f x :> f' x) (at_left a)" "eventually (\x. DERIV g x :> g' x) (at_left a)" and lim: "filterlim (\ x. (f' x / g' x)) at_bot (at_left a)" shows "filterlim (\ x. f x / g x) at_bot (at_left a)" by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror, rule lhopital_right_at_top_at_bot[where f'="\x. - f' (- x)"]) (insert assms, auto simp: DERIV_mirror) lemma lhopital_at_top_at_top: fixes f g :: "real \ real" assumes f_0: "LIM x at a. f x :> at_top" assumes g_0: "LIM x at a. g x :> at_top" and ev: "eventually (\x. DERIV f x :> f' x) (at a)" "eventually (\x. DERIV g x :> g' x) (at a)" and lim: "filterlim (\ x. (f' x / g' x)) at_top (at a)" shows "filterlim (\ x. f x / g x) at_top (at a)" using assms unfolding eventually_at_split filterlim_at_split by (auto intro!: lhopital_right_at_top_at_top[of f a g f' g'] lhopital_left_at_top_at_top[of f a g f' g']) lemma lhopital_at_top_at_bot: fixes f g :: "real \ real" assumes f_0: "LIM x at a. f x :> at_top" assumes g_0: "LIM x at a. g x :> at_bot" and ev: "eventually (\x. DERIV f x :> f' x) (at a)" "eventually (\x. DERIV g x :> g' x) (at a)" and lim: "filterlim (\ x. (f' x / g' x)) at_bot (at a)" shows "filterlim (\ x. f x / g x) at_bot (at a)" using assms unfolding eventually_at_split filterlim_at_split by (auto intro!: lhopital_right_at_top_at_bot[of f a g f' g'] lhopital_left_at_top_at_bot[of f a g f' g']) end