diff --git a/src/HOL/Computational_Algebra/Polynomial.thy b/src/HOL/Computational_Algebra/Polynomial.thy --- a/src/HOL/Computational_Algebra/Polynomial.thy +++ b/src/HOL/Computational_Algebra/Polynomial.thy @@ -1,5019 +1,5019 @@ (* Title: HOL/Computational_Algebra/Polynomial.thy Author: Brian Huffman Author: Clemens Ballarin Author: Amine Chaieb Author: Florian Haftmann *) section \Polynomials as type over a ring structure\ theory Polynomial imports Complex_Main "HOL-Library.More_List" "HOL-Library.Infinite_Set" Factorial_Ring begin subsection \Auxiliary: operations for lists (later) representing coefficients\ definition cCons :: "'a::zero \ 'a list \ 'a list" (infixr "##" 65) where "x ## xs = (if xs = [] \ x = 0 then [] else x # xs)" lemma cCons_0_Nil_eq [simp]: "0 ## [] = []" by (simp add: cCons_def) lemma cCons_Cons_eq [simp]: "x ## y # ys = x # y # ys" by (simp add: cCons_def) lemma cCons_append_Cons_eq [simp]: "x ## xs @ y # ys = x # xs @ y # ys" by (simp add: cCons_def) lemma cCons_not_0_eq [simp]: "x \ 0 \ x ## xs = x # xs" by (simp add: cCons_def) lemma strip_while_not_0_Cons_eq [simp]: "strip_while (\x. x = 0) (x # xs) = x ## strip_while (\x. x = 0) xs" proof (cases "x = 0") case False then show ?thesis by simp next case True show ?thesis proof (induct xs rule: rev_induct) case Nil with True show ?case by simp next case (snoc y ys) then show ?case by (cases "y = 0") (simp_all add: append_Cons [symmetric] del: append_Cons) qed qed lemma tl_cCons [simp]: "tl (x ## xs) = xs" by (simp add: cCons_def) subsection \Definition of type \poly\\ typedef (overloaded) 'a poly = "{f :: nat \ 'a::zero. \\<^sub>\ n. f n = 0}" morphisms coeff Abs_poly by (auto intro!: ALL_MOST) setup_lifting type_definition_poly lemma poly_eq_iff: "p = q \ (\n. coeff p n = coeff q n)" by (simp add: coeff_inject [symmetric] fun_eq_iff) lemma poly_eqI: "(\n. coeff p n = coeff q n) \ p = q" by (simp add: poly_eq_iff) lemma MOST_coeff_eq_0: "\\<^sub>\ n. coeff p n = 0" using coeff [of p] by simp subsection \Degree of a polynomial\ definition degree :: "'a::zero poly \ nat" where "degree p = (LEAST n. \i>n. coeff p i = 0)" lemma coeff_eq_0: assumes "degree p < n" shows "coeff p n = 0" proof - have "\n. \i>n. coeff p i = 0" using MOST_coeff_eq_0 by (simp add: MOST_nat) then have "\i>degree p. coeff p i = 0" unfolding degree_def by (rule LeastI_ex) with assms show ?thesis by simp qed lemma le_degree: "coeff p n \ 0 \ n \ degree p" by (erule contrapos_np, rule coeff_eq_0, simp) lemma degree_le: "\i>n. coeff p i = 0 \ degree p \ n" unfolding degree_def by (erule Least_le) lemma less_degree_imp: "n < degree p \ \i>n. coeff p i \ 0" unfolding degree_def by (drule not_less_Least, simp) subsection \The zero polynomial\ instantiation poly :: (zero) zero begin lift_definition zero_poly :: "'a poly" is "\_. 0" by (rule MOST_I) simp instance .. end lemma coeff_0 [simp]: "coeff 0 n = 0" by transfer rule lemma degree_0 [simp]: "degree 0 = 0" by (rule order_antisym [OF degree_le le0]) simp lemma leading_coeff_neq_0: assumes "p \ 0" shows "coeff p (degree p) \ 0" proof (cases "degree p") case 0 from \p \ 0\ obtain n where "coeff p n \ 0" by (auto simp add: poly_eq_iff) then have "n \ degree p" by (rule le_degree) with \coeff p n \ 0\ and \degree p = 0\ show "coeff p (degree p) \ 0" by simp next case (Suc n) from \degree p = Suc n\ have "n < degree p" by simp then have "\i>n. coeff p i \ 0" by (rule less_degree_imp) then obtain i where "n < i" and "coeff p i \ 0" by blast from \degree p = Suc n\ and \n < i\ have "degree p \ i" by simp also from \coeff p i \ 0\ have "i \ degree p" by (rule le_degree) finally have "degree p = i" . with \coeff p i \ 0\ show "coeff p (degree p) \ 0" by simp qed lemma leading_coeff_0_iff [simp]: "coeff p (degree p) = 0 \ p = 0" by (cases "p = 0") (simp_all add: leading_coeff_neq_0) lemma eq_zero_or_degree_less: assumes "degree p \ n" and "coeff p n = 0" shows "p = 0 \ degree p < n" proof (cases n) case 0 with \degree p \ n\ and \coeff p n = 0\ have "coeff p (degree p) = 0" by simp then have "p = 0" by simp then show ?thesis .. next case (Suc m) from \degree p \ n\ have "\i>n. coeff p i = 0" by (simp add: coeff_eq_0) with \coeff p n = 0\ have "\i\n. coeff p i = 0" by (simp add: le_less) with \n = Suc m\ have "\i>m. coeff p i = 0" by (simp add: less_eq_Suc_le) then have "degree p \ m" by (rule degree_le) with \n = Suc m\ have "degree p < n" by (simp add: less_Suc_eq_le) then show ?thesis .. qed lemma coeff_0_degree_minus_1: "coeff rrr dr = 0 \ degree rrr \ dr \ degree rrr \ dr - 1" using eq_zero_or_degree_less by fastforce subsection \List-style constructor for polynomials\ lift_definition pCons :: "'a::zero \ 'a poly \ 'a poly" is "\a p. case_nat a (coeff p)" by (rule MOST_SucD) (simp add: MOST_coeff_eq_0) lemmas coeff_pCons = pCons.rep_eq lemma coeff_pCons_0 [simp]: "coeff (pCons a p) 0 = a" by transfer simp lemma coeff_pCons_Suc [simp]: "coeff (pCons a p) (Suc n) = coeff p n" by (simp add: coeff_pCons) lemma degree_pCons_le: "degree (pCons a p) \ Suc (degree p)" by (rule degree_le) (simp add: coeff_eq_0 coeff_pCons split: nat.split) lemma degree_pCons_eq: "p \ 0 \ degree (pCons a p) = Suc (degree p)" by (simp add: degree_pCons_le le_antisym le_degree) lemma degree_pCons_0: "degree (pCons a 0) = 0" proof - have "degree (pCons a 0) \ Suc 0" by (metis (no_types) degree_0 degree_pCons_le) then show ?thesis by (metis coeff_0 coeff_pCons_Suc degree_0 eq_zero_or_degree_less less_Suc0) qed lemma degree_pCons_eq_if [simp]: "degree (pCons a p) = (if p = 0 then 0 else Suc (degree p))" by (simp add: degree_pCons_0 degree_pCons_eq) lemma pCons_0_0 [simp]: "pCons 0 0 = 0" by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) lemma pCons_eq_iff [simp]: "pCons a p = pCons b q \ a = b \ p = q" proof safe assume "pCons a p = pCons b q" then have "coeff (pCons a p) 0 = coeff (pCons b q) 0" by simp then show "a = b" by simp next assume "pCons a p = pCons b q" then have "coeff (pCons a p) (Suc n) = coeff (pCons b q) (Suc n)" for n by simp then show "p = q" by (simp add: poly_eq_iff) qed lemma pCons_eq_0_iff [simp]: "pCons a p = 0 \ a = 0 \ p = 0" using pCons_eq_iff [of a p 0 0] by simp lemma pCons_cases [cases type: poly]: obtains (pCons) a q where "p = pCons a q" proof show "p = pCons (coeff p 0) (Abs_poly (\n. coeff p (Suc n)))" by transfer (simp_all add: MOST_inj[where f=Suc and P="\n. p n = 0" for p] fun_eq_iff Abs_poly_inverse split: nat.split) qed lemma pCons_induct [case_names 0 pCons, induct type: poly]: assumes zero: "P 0" assumes pCons: "\a p. a \ 0 \ p \ 0 \ P p \ P (pCons a p)" shows "P p" proof (induct p rule: measure_induct_rule [where f=degree]) case (less p) obtain a q where "p = pCons a q" by (rule pCons_cases) have "P q" proof (cases "q = 0") case True then show "P q" by (simp add: zero) next case False then have "degree (pCons a q) = Suc (degree q)" by (rule degree_pCons_eq) with \p = pCons a q\ have "degree q < degree p" by simp then show "P q" by (rule less.hyps) qed have "P (pCons a q)" proof (cases "a \ 0 \ q \ 0") case True with \P q\ show ?thesis by (auto intro: pCons) next case False with zero show ?thesis by simp qed with \p = pCons a q\ show ?case by simp qed lemma degree_eq_zeroE: fixes p :: "'a::zero poly" assumes "degree p = 0" obtains a where "p = pCons a 0" proof - obtain a q where p: "p = pCons a q" by (cases p) with assms have "q = 0" by (cases "q = 0") simp_all with p have "p = pCons a 0" by simp then show thesis .. qed subsection \Quickcheck generator for polynomials\ quickcheck_generator poly constructors: "0 :: _ poly", pCons subsection \List-style syntax for polynomials\ syntax "_poly" :: "args \ 'a poly" ("[:(_):]") translations "[:x, xs:]" \ "CONST pCons x [:xs:]" "[:x:]" \ "CONST pCons x 0" "[:x:]" \ "CONST pCons x (_constrain 0 t)" subsection \Representation of polynomials by lists of coefficients\ primrec Poly :: "'a::zero list \ 'a poly" where [code_post]: "Poly [] = 0" | [code_post]: "Poly (a # as) = pCons a (Poly as)" lemma Poly_replicate_0 [simp]: "Poly (replicate n 0) = 0" by (induct n) simp_all lemma Poly_eq_0: "Poly as = 0 \ (\n. as = replicate n 0)" by (induct as) (auto simp add: Cons_replicate_eq) lemma Poly_append_replicate_zero [simp]: "Poly (as @ replicate n 0) = Poly as" by (induct as) simp_all lemma Poly_snoc_zero [simp]: "Poly (as @ [0]) = Poly as" using Poly_append_replicate_zero [of as 1] by simp lemma Poly_cCons_eq_pCons_Poly [simp]: "Poly (a ## p) = pCons a (Poly p)" by (simp add: cCons_def) lemma Poly_on_rev_starting_with_0 [simp]: "hd as = 0 \ Poly (rev (tl as)) = Poly (rev as)" by (cases as) simp_all lemma degree_Poly: "degree (Poly xs) \ length xs" by (induct xs) simp_all lemma coeff_Poly_eq [simp]: "coeff (Poly xs) = nth_default 0 xs" by (induct xs) (simp_all add: fun_eq_iff coeff_pCons split: nat.splits) definition coeffs :: "'a poly \ 'a::zero list" where "coeffs p = (if p = 0 then [] else map (\i. coeff p i) [0 ..< Suc (degree p)])" lemma coeffs_eq_Nil [simp]: "coeffs p = [] \ p = 0" by (simp add: coeffs_def) lemma not_0_coeffs_not_Nil: "p \ 0 \ coeffs p \ []" by simp lemma coeffs_0_eq_Nil [simp]: "coeffs 0 = []" by simp lemma coeffs_pCons_eq_cCons [simp]: "coeffs (pCons a p) = a ## coeffs p" proof - have *: "\m\set ms. m > 0 \ map (case_nat x f) ms = map f (map (\n. n - 1) ms)" for ms :: "nat list" and f :: "nat \ 'a" and x :: "'a" by (induct ms) (auto split: nat.split) show ?thesis by (simp add: * coeffs_def upt_conv_Cons coeff_pCons map_decr_upt del: upt_Suc) qed lemma length_coeffs: "p \ 0 \ length (coeffs p) = degree p + 1" by (simp add: coeffs_def) lemma coeffs_nth: "p \ 0 \ n \ degree p \ coeffs p ! n = coeff p n" by (auto simp: coeffs_def simp del: upt_Suc) lemma coeff_in_coeffs: "p \ 0 \ n \ degree p \ coeff p n \ set (coeffs p)" using coeffs_nth [of p n, symmetric] by (simp add: length_coeffs) lemma not_0_cCons_eq [simp]: "p \ 0 \ a ## coeffs p = a # coeffs p" by (simp add: cCons_def) lemma Poly_coeffs [simp, code abstype]: "Poly (coeffs p) = p" by (induct p) auto lemma coeffs_Poly [simp]: "coeffs (Poly as) = strip_while (HOL.eq 0) as" proof (induct as) case Nil then show ?case by simp next case (Cons a as) from replicate_length_same [of as 0] have "(\n. as \ replicate n 0) \ (\a\set as. a \ 0)" by (auto dest: sym [of _ as]) with Cons show ?case by auto qed lemma no_trailing_coeffs [simp]: "no_trailing (HOL.eq 0) (coeffs p)" by (induct p) auto lemma strip_while_coeffs [simp]: "strip_while (HOL.eq 0) (coeffs p) = coeffs p" by simp lemma coeffs_eq_iff: "p = q \ coeffs p = coeffs q" (is "?P \ ?Q") proof assume ?P then show ?Q by simp next assume ?Q then have "Poly (coeffs p) = Poly (coeffs q)" by simp then show ?P by simp qed lemma nth_default_coeffs_eq: "nth_default 0 (coeffs p) = coeff p" by (simp add: fun_eq_iff coeff_Poly_eq [symmetric]) lemma [code]: "coeff p = nth_default 0 (coeffs p)" by (simp add: nth_default_coeffs_eq) lemma coeffs_eqI: assumes coeff: "\n. coeff p n = nth_default 0 xs n" assumes zero: "no_trailing (HOL.eq 0) xs" shows "coeffs p = xs" proof - from coeff have "p = Poly xs" by (simp add: poly_eq_iff) with zero show ?thesis by simp qed lemma degree_eq_length_coeffs [code]: "degree p = length (coeffs p) - 1" by (simp add: coeffs_def) lemma length_coeffs_degree: "p \ 0 \ length (coeffs p) = Suc (degree p)" by (induct p) (auto simp: cCons_def) lemma [code abstract]: "coeffs 0 = []" by (fact coeffs_0_eq_Nil) lemma [code abstract]: "coeffs (pCons a p) = a ## coeffs p" by (fact coeffs_pCons_eq_cCons) lemma set_coeffs_subset_singleton_0_iff [simp]: "set (coeffs p) \ {0} \ p = 0" by (auto simp add: coeffs_def intro: classical) lemma set_coeffs_not_only_0 [simp]: "set (coeffs p) \ {0}" by (auto simp add: set_eq_subset) lemma forall_coeffs_conv: "(\n. P (coeff p n)) \ (\c \ set (coeffs p). P c)" if "P 0" using that by (auto simp add: coeffs_def) (metis atLeastLessThan_iff coeff_eq_0 not_less_iff_gr_or_eq zero_le) instantiation poly :: ("{zero, equal}") equal begin definition [code]: "HOL.equal (p::'a poly) q \ HOL.equal (coeffs p) (coeffs q)" instance by standard (simp add: equal equal_poly_def coeffs_eq_iff) end lemma [code nbe]: "HOL.equal (p :: _ poly) p \ True" by (fact equal_refl) definition is_zero :: "'a::zero poly \ bool" where [code]: "is_zero p \ List.null (coeffs p)" lemma is_zero_null [code_abbrev]: "is_zero p \ p = 0" by (simp add: is_zero_def null_def) subsubsection \Reconstructing the polynomial from the list\ \ \contributed by Sebastiaan J.C. Joosten and René Thiemann\ definition poly_of_list :: "'a::comm_monoid_add list \ 'a poly" where [simp]: "poly_of_list = Poly" lemma poly_of_list_impl [code abstract]: "coeffs (poly_of_list as) = strip_while (HOL.eq 0) as" by simp subsection \Fold combinator for polynomials\ definition fold_coeffs :: "('a::zero \ 'b \ 'b) \ 'a poly \ 'b \ 'b" where "fold_coeffs f p = foldr f (coeffs p)" lemma fold_coeffs_0_eq [simp]: "fold_coeffs f 0 = id" by (simp add: fold_coeffs_def) lemma fold_coeffs_pCons_eq [simp]: "f 0 = id \ fold_coeffs f (pCons a p) = f a \ fold_coeffs f p" by (simp add: fold_coeffs_def cCons_def fun_eq_iff) lemma fold_coeffs_pCons_0_0_eq [simp]: "fold_coeffs f (pCons 0 0) = id" by (simp add: fold_coeffs_def) lemma fold_coeffs_pCons_coeff_not_0_eq [simp]: "a \ 0 \ fold_coeffs f (pCons a p) = f a \ fold_coeffs f p" by (simp add: fold_coeffs_def) lemma fold_coeffs_pCons_not_0_0_eq [simp]: "p \ 0 \ fold_coeffs f (pCons a p) = f a \ fold_coeffs f p" by (simp add: fold_coeffs_def) subsection \Canonical morphism on polynomials -- evaluation\ definition poly :: \'a::comm_semiring_0 poly \ 'a \ 'a\ where \poly p a = horner_sum id a (coeffs p)\ lemma poly_eq_fold_coeffs: \poly p = fold_coeffs (\a f x. a + x * f x) p (\x. 0)\ by (induction p) (auto simp add: fun_eq_iff poly_def) lemma poly_0 [simp]: "poly 0 x = 0" by (simp add: poly_def) lemma poly_pCons [simp]: "poly (pCons a p) x = a + x * poly p x" by (cases "p = 0 \ a = 0") (auto simp add: poly_def) lemma poly_altdef: "poly p x = (\i\degree p. coeff p i * x ^ i)" for x :: "'a::{comm_semiring_0,semiring_1}" proof (induction p rule: pCons_induct) case 0 then show ?case by simp next case (pCons a p) show ?case proof (cases "p = 0") case True then show ?thesis by simp next case False let ?p' = "pCons a p" note poly_pCons[of a p x] also note pCons.IH also have "a + x * (\i\degree p. coeff p i * x ^ i) = coeff ?p' 0 * x^0 + (\i\degree p. coeff ?p' (Suc i) * x^Suc i)" by (simp add: field_simps sum_distrib_left coeff_pCons) also note sum.atMost_Suc_shift[symmetric] also note degree_pCons_eq[OF \p \ 0\, of a, symmetric] finally show ?thesis . qed qed lemma poly_0_coeff_0: "poly p 0 = coeff p 0" by (cases p) (auto simp: poly_altdef) subsection \Monomials\ lift_definition monom :: "'a \ nat \ 'a::zero poly" is "\a m n. if m = n then a else 0" by (simp add: MOST_iff_cofinite) lemma coeff_monom [simp]: "coeff (monom a m) n = (if m = n then a else 0)" by transfer rule lemma monom_0: "monom a 0 = pCons a 0" by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) lemma monom_Suc: "monom a (Suc n) = pCons 0 (monom a n)" by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) lemma monom_eq_0 [simp]: "monom 0 n = 0" by (rule poly_eqI) simp lemma monom_eq_0_iff [simp]: "monom a n = 0 \ a = 0" by (simp add: poly_eq_iff) lemma monom_eq_iff [simp]: "monom a n = monom b n \ a = b" by (simp add: poly_eq_iff) lemma degree_monom_le: "degree (monom a n) \ n" by (rule degree_le, simp) lemma degree_monom_eq: "a \ 0 \ degree (monom a n) = n" by (metis coeff_monom leading_coeff_0_iff) lemma coeffs_monom [code abstract]: "coeffs (monom a n) = (if a = 0 then [] else replicate n 0 @ [a])" by (induct n) (simp_all add: monom_0 monom_Suc) lemma fold_coeffs_monom [simp]: "a \ 0 \ fold_coeffs f (monom a n) = f 0 ^^ n \ f a" by (simp add: fold_coeffs_def coeffs_monom fun_eq_iff) lemma poly_monom: "poly (monom a n) x = a * x ^ n" for a x :: "'a::comm_semiring_1" by (cases "a = 0", simp_all) (induct n, simp_all add: mult.left_commute poly_eq_fold_coeffs) lemma monom_eq_iff': "monom c n = monom d m \ c = d \ (c = 0 \ n = m)" by (auto simp: poly_eq_iff) lemma monom_eq_const_iff: "monom c n = [:d:] \ c = d \ (c = 0 \ n = 0)" using monom_eq_iff'[of c n d 0] by (simp add: monom_0) subsection \Leading coefficient\ abbreviation lead_coeff:: "'a::zero poly \ 'a" where "lead_coeff p \ coeff p (degree p)" lemma lead_coeff_pCons[simp]: "p \ 0 \ lead_coeff (pCons a p) = lead_coeff p" "p = 0 \ lead_coeff (pCons a p) = a" by auto lemma lead_coeff_monom [simp]: "lead_coeff (monom c n) = c" by (cases "c = 0") (simp_all add: degree_monom_eq) lemma last_coeffs_eq_coeff_degree: "last (coeffs p) = lead_coeff p" if "p \ 0" using that by (simp add: coeffs_def) - + subsection \Addition and subtraction\ instantiation poly :: (comm_monoid_add) comm_monoid_add begin lift_definition plus_poly :: "'a poly \ 'a poly \ 'a poly" is "\p q n. coeff p n + coeff q n" proof - fix q p :: "'a poly" show "\\<^sub>\n. coeff p n + coeff q n = 0" using MOST_coeff_eq_0[of p] MOST_coeff_eq_0[of q] by eventually_elim simp qed lemma coeff_add [simp]: "coeff (p + q) n = coeff p n + coeff q n" by (simp add: plus_poly.rep_eq) instance proof fix p q r :: "'a poly" show "(p + q) + r = p + (q + r)" by (simp add: poly_eq_iff add.assoc) show "p + q = q + p" by (simp add: poly_eq_iff add.commute) show "0 + p = p" by (simp add: poly_eq_iff) qed end instantiation poly :: (cancel_comm_monoid_add) cancel_comm_monoid_add begin lift_definition minus_poly :: "'a poly \ 'a poly \ 'a poly" is "\p q n. coeff p n - coeff q n" proof - fix q p :: "'a poly" show "\\<^sub>\n. coeff p n - coeff q n = 0" using MOST_coeff_eq_0[of p] MOST_coeff_eq_0[of q] by eventually_elim simp qed lemma coeff_diff [simp]: "coeff (p - q) n = coeff p n - coeff q n" by (simp add: minus_poly.rep_eq) instance proof fix p q r :: "'a poly" show "p + q - p = q" by (simp add: poly_eq_iff) show "p - q - r = p - (q + r)" by (simp add: poly_eq_iff diff_diff_eq) qed end instantiation poly :: (ab_group_add) ab_group_add begin lift_definition uminus_poly :: "'a poly \ 'a poly" is "\p n. - coeff p n" proof - fix p :: "'a poly" show "\\<^sub>\n. - coeff p n = 0" using MOST_coeff_eq_0 by simp qed lemma coeff_minus [simp]: "coeff (- p) n = - coeff p n" by (simp add: uminus_poly.rep_eq) instance proof fix p q :: "'a poly" show "- p + p = 0" by (simp add: poly_eq_iff) show "p - q = p + - q" by (simp add: poly_eq_iff) qed end lemma add_pCons [simp]: "pCons a p + pCons b q = pCons (a + b) (p + q)" by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) lemma minus_pCons [simp]: "- pCons a p = pCons (- a) (- p)" by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) lemma diff_pCons [simp]: "pCons a p - pCons b q = pCons (a - b) (p - q)" by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) lemma degree_add_le_max: "degree (p + q) \ max (degree p) (degree q)" by (rule degree_le) (auto simp add: coeff_eq_0) lemma degree_add_le: "degree p \ n \ degree q \ n \ degree (p + q) \ n" by (auto intro: order_trans degree_add_le_max) lemma degree_add_less: "degree p < n \ degree q < n \ degree (p + q) < n" by (auto intro: le_less_trans degree_add_le_max) lemma degree_add_eq_right: assumes "degree p < degree q" shows "degree (p + q) = degree q" proof (cases "q = 0") case False show ?thesis proof (rule order_antisym) show "degree (p + q) \ degree q" by (simp add: assms degree_add_le order.strict_implies_order) show "degree q \ degree (p + q)" by (simp add: False assms coeff_eq_0 le_degree) qed qed (use assms in auto) lemma degree_add_eq_left: "degree q < degree p \ degree (p + q) = degree p" using degree_add_eq_right [of q p] by (simp add: add.commute) lemma degree_minus [simp]: "degree (- p) = degree p" by (simp add: degree_def) lemma lead_coeff_add_le: "degree p < degree q \ lead_coeff (p + q) = lead_coeff q" by (metis coeff_add coeff_eq_0 monoid_add_class.add.left_neutral degree_add_eq_right) lemma lead_coeff_minus: "lead_coeff (- p) = - lead_coeff p" by (metis coeff_minus degree_minus) lemma degree_diff_le_max: "degree (p - q) \ max (degree p) (degree q)" for p q :: "'a::ab_group_add poly" using degree_add_le [where p=p and q="-q"] by simp lemma degree_diff_le: "degree p \ n \ degree q \ n \ degree (p - q) \ n" for p q :: "'a::ab_group_add poly" using degree_add_le [of p n "- q"] by simp lemma degree_diff_less: "degree p < n \ degree q < n \ degree (p - q) < n" for p q :: "'a::ab_group_add poly" using degree_add_less [of p n "- q"] by simp lemma add_monom: "monom a n + monom b n = monom (a + b) n" by (rule poly_eqI) simp lemma diff_monom: "monom a n - monom b n = monom (a - b) n" by (rule poly_eqI) simp lemma minus_monom: "- monom a n = monom (- a) n" by (rule poly_eqI) simp lemma coeff_sum: "coeff (\x\A. p x) i = (\x\A. coeff (p x) i)" by (induct A rule: infinite_finite_induct) simp_all lemma monom_sum: "monom (\x\A. a x) n = (\x\A. monom (a x) n)" by (rule poly_eqI) (simp add: coeff_sum) fun plus_coeffs :: "'a::comm_monoid_add list \ 'a list \ 'a list" where "plus_coeffs xs [] = xs" | "plus_coeffs [] ys = ys" | "plus_coeffs (x # xs) (y # ys) = (x + y) ## plus_coeffs xs ys" lemma coeffs_plus_eq_plus_coeffs [code abstract]: "coeffs (p + q) = plus_coeffs (coeffs p) (coeffs q)" proof - have *: "nth_default 0 (plus_coeffs xs ys) n = nth_default 0 xs n + nth_default 0 ys n" for xs ys :: "'a list" and n proof (induct xs ys arbitrary: n rule: plus_coeffs.induct) case (3 x xs y ys n) then show ?case by (cases n) (auto simp add: cCons_def) qed simp_all have **: "no_trailing (HOL.eq 0) (plus_coeffs xs ys)" if "no_trailing (HOL.eq 0) xs" and "no_trailing (HOL.eq 0) ys" for xs ys :: "'a list" using that by (induct xs ys rule: plus_coeffs.induct) (simp_all add: cCons_def) show ?thesis by (rule coeffs_eqI) (auto simp add: * nth_default_coeffs_eq intro: **) qed lemma coeffs_uminus [code abstract]: "coeffs (- p) = map uminus (coeffs p)" proof - have eq_0: "HOL.eq 0 \ uminus = HOL.eq (0::'a)" by (simp add: fun_eq_iff) show ?thesis by (rule coeffs_eqI) (simp_all add: nth_default_map_eq nth_default_coeffs_eq no_trailing_map eq_0) qed lemma [code]: "p - q = p + - q" for p q :: "'a::ab_group_add poly" by (fact diff_conv_add_uminus) lemma poly_add [simp]: "poly (p + q) x = poly p x + poly q x" proof (induction p arbitrary: q) case (pCons a p) then show ?case by (cases q) (simp add: algebra_simps) qed auto lemma poly_minus [simp]: "poly (- p) x = - poly p x" for x :: "'a::comm_ring" by (induct p) simp_all lemma poly_diff [simp]: "poly (p - q) x = poly p x - poly q x" for x :: "'a::comm_ring" using poly_add [of p "- q" x] by simp lemma poly_sum: "poly (\k\A. p k) x = (\k\A. poly (p k) x)" by (induct A rule: infinite_finite_induct) simp_all lemma degree_sum_le: "finite S \ (\p. p \ S \ degree (f p) \ n) \ degree (sum f S) \ n" proof (induct S rule: finite_induct) case empty then show ?case by simp next case (insert p S) then have "degree (sum f S) \ n" "degree (f p) \ n" by auto then show ?case unfolding sum.insert[OF insert(1-2)] by (metis degree_add_le) qed lemma poly_as_sum_of_monoms': assumes "degree p \ n" shows "(\i\n. monom (coeff p i) i) = p" proof - have eq: "\i. {..n} \ {i} = (if i \ n then {i} else {})" by auto from assms show ?thesis by (simp add: poly_eq_iff coeff_sum coeff_eq_0 sum.If_cases eq if_distrib[where f="\x. x * a" for a]) qed lemma poly_as_sum_of_monoms: "(\i\degree p. monom (coeff p i) i) = p" by (intro poly_as_sum_of_monoms' order_refl) lemma Poly_snoc: "Poly (xs @ [x]) = Poly xs + monom x (length xs)" by (induct xs) (simp_all add: monom_0 monom_Suc) subsection \Multiplication by a constant, polynomial multiplication and the unit polynomial\ lift_definition smult :: "'a::comm_semiring_0 \ 'a poly \ 'a poly" is "\a p n. a * coeff p n" proof - fix a :: 'a and p :: "'a poly" show "\\<^sub>\ i. a * coeff p i = 0" using MOST_coeff_eq_0[of p] by eventually_elim simp qed lemma coeff_smult [simp]: "coeff (smult a p) n = a * coeff p n" by (simp add: smult.rep_eq) lemma degree_smult_le: "degree (smult a p) \ degree p" by (rule degree_le) (simp add: coeff_eq_0) lemma smult_smult [simp]: "smult a (smult b p) = smult (a * b) p" by (rule poly_eqI) (simp add: mult.assoc) lemma smult_0_right [simp]: "smult a 0 = 0" by (rule poly_eqI) simp lemma smult_0_left [simp]: "smult 0 p = 0" by (rule poly_eqI) simp lemma smult_1_left [simp]: "smult (1::'a::comm_semiring_1) p = p" by (rule poly_eqI) simp lemma smult_add_right: "smult a (p + q) = smult a p + smult a q" by (rule poly_eqI) (simp add: algebra_simps) lemma smult_add_left: "smult (a + b) p = smult a p + smult b p" by (rule poly_eqI) (simp add: algebra_simps) lemma smult_minus_right [simp]: "smult a (- p) = - smult a p" for a :: "'a::comm_ring" by (rule poly_eqI) simp lemma smult_minus_left [simp]: "smult (- a) p = - smult a p" for a :: "'a::comm_ring" by (rule poly_eqI) simp lemma smult_diff_right: "smult a (p - q) = smult a p - smult a q" for a :: "'a::comm_ring" by (rule poly_eqI) (simp add: algebra_simps) lemma smult_diff_left: "smult (a - b) p = smult a p - smult b p" for a b :: "'a::comm_ring" by (rule poly_eqI) (simp add: algebra_simps) lemmas smult_distribs = smult_add_left smult_add_right smult_diff_left smult_diff_right lemma smult_pCons [simp]: "smult a (pCons b p) = pCons (a * b) (smult a p)" by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) lemma smult_monom: "smult a (monom b n) = monom (a * b) n" by (induct n) (simp_all add: monom_0 monom_Suc) lemma smult_Poly: "smult c (Poly xs) = Poly (map ((*) c) xs)" by (auto simp: poly_eq_iff nth_default_def) lemma degree_smult_eq [simp]: "degree (smult a p) = (if a = 0 then 0 else degree p)" for a :: "'a::{comm_semiring_0,semiring_no_zero_divisors}" by (cases "a = 0") (simp_all add: degree_def) lemma smult_eq_0_iff [simp]: "smult a p = 0 \ a = 0 \ p = 0" for a :: "'a::{comm_semiring_0,semiring_no_zero_divisors}" by (simp add: poly_eq_iff) lemma coeffs_smult [code abstract]: "coeffs (smult a p) = (if a = 0 then [] else map (Groups.times a) (coeffs p))" for p :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" proof - have eq_0: "HOL.eq 0 \ times a = HOL.eq (0::'a)" if "a \ 0" using that by (simp add: fun_eq_iff) show ?thesis by (rule coeffs_eqI) (auto simp add: no_trailing_map nth_default_map_eq nth_default_coeffs_eq eq_0) -qed +qed lemma smult_eq_iff: fixes b :: "'a :: field" assumes "b \ 0" shows "smult a p = smult b q \ smult (a / b) p = q" (is "?lhs \ ?rhs") proof assume ?lhs also from assms have "smult (inverse b) \ = q" by simp finally show ?rhs by (simp add: field_simps) next assume ?rhs with assms show ?lhs by auto qed instantiation poly :: (comm_semiring_0) comm_semiring_0 begin definition "p * q = fold_coeffs (\a p. smult a q + pCons 0 p) p 0" lemma mult_poly_0_left: "(0::'a poly) * q = 0" by (simp add: times_poly_def) lemma mult_pCons_left [simp]: "pCons a p * q = smult a q + pCons 0 (p * q)" by (cases "p = 0 \ a = 0") (auto simp add: times_poly_def) lemma mult_poly_0_right: "p * (0::'a poly) = 0" by (induct p) (simp_all add: mult_poly_0_left) lemma mult_pCons_right [simp]: "p * pCons a q = smult a p + pCons 0 (p * q)" by (induct p) (simp_all add: mult_poly_0_left algebra_simps) lemmas mult_poly_0 = mult_poly_0_left mult_poly_0_right lemma mult_smult_left [simp]: "smult a p * q = smult a (p * q)" by (induct p) (simp_all add: mult_poly_0 smult_add_right) lemma mult_smult_right [simp]: "p * smult a q = smult a (p * q)" by (induct q) (simp_all add: mult_poly_0 smult_add_right) lemma mult_poly_add_left: "(p + q) * r = p * r + q * r" for p q r :: "'a poly" by (induct r) (simp_all add: mult_poly_0 smult_distribs algebra_simps) instance proof fix p q r :: "'a poly" show 0: "0 * p = 0" by (rule mult_poly_0_left) show "p * 0 = 0" by (rule mult_poly_0_right) show "(p + q) * r = p * r + q * r" by (rule mult_poly_add_left) show "(p * q) * r = p * (q * r)" by (induct p) (simp_all add: mult_poly_0 mult_poly_add_left) show "p * q = q * p" by (induct p) (simp_all add: mult_poly_0) qed end lemma coeff_mult_degree_sum: "coeff (p * q) (degree p + degree q) = coeff p (degree p) * coeff q (degree q)" by (induct p) (simp_all add: coeff_eq_0) instance poly :: ("{comm_semiring_0,semiring_no_zero_divisors}") semiring_no_zero_divisors proof fix p q :: "'a poly" assume "p \ 0" and "q \ 0" have "coeff (p * q) (degree p + degree q) = coeff p (degree p) * coeff q (degree q)" by (rule coeff_mult_degree_sum) also from \p \ 0\ \q \ 0\ have "coeff p (degree p) * coeff q (degree q) \ 0" by simp finally have "\n. coeff (p * q) n \ 0" .. then show "p * q \ 0" by (simp add: poly_eq_iff) qed instance poly :: (comm_semiring_0_cancel) comm_semiring_0_cancel .. lemma coeff_mult: "coeff (p * q) n = (\i\n. coeff p i * coeff q (n-i))" proof (induct p arbitrary: n) case 0 show ?case by simp next case (pCons a p n) then show ?case by (cases n) (simp_all add: sum.atMost_Suc_shift del: sum.atMost_Suc) qed lemma degree_mult_le: "degree (p * q) \ degree p + degree q" proof (rule degree_le) show "\i>degree p + degree q. coeff (p * q) i = 0" by (induct p) (simp_all add: coeff_eq_0 coeff_pCons split: nat.split) qed lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)" by (induct m) (simp add: monom_0 smult_monom, simp add: monom_Suc) instantiation poly :: (comm_semiring_1) comm_semiring_1 begin lift_definition one_poly :: "'a poly" is "\n. of_bool (n = 0)" by (rule MOST_SucD) simp lemma coeff_1 [simp]: "coeff 1 n = of_bool (n = 0)" by (simp add: one_poly.rep_eq) lemma one_pCons: "1 = [:1:]" by (simp add: poly_eq_iff coeff_pCons split: nat.splits) lemma pCons_one: "[:1:] = 1" by (simp add: one_pCons) instance by standard (simp_all add: one_pCons) end lemma poly_1 [simp]: "poly 1 x = 1" by (simp add: one_pCons) lemma one_poly_eq_simps [simp]: "1 = [:1:] \ True" "[:1:] = 1 \ True" by (simp_all add: one_pCons) lemma degree_1 [simp]: "degree 1 = 0" by (simp add: one_pCons) lemma coeffs_1_eq [simp, code abstract]: "coeffs 1 = [1]" by (simp add: one_pCons) lemma smult_one [simp]: "smult c 1 = [:c:]" by (simp add: one_pCons) lemma monom_eq_1 [simp]: "monom 1 0 = 1" by (simp add: monom_0 one_pCons) lemma monom_eq_1_iff: "monom c n = 1 \ c = 1 \ n = 0" using monom_eq_const_iff [of c n 1] by auto lemma monom_altdef: "monom c n = smult c ([:0, 1:] ^ n)" - by (induct n) (simp_all add: monom_0 monom_Suc) + by (induct n) (simp_all add: monom_0 monom_Suc) instance poly :: ("{comm_semiring_1,semiring_1_no_zero_divisors}") semiring_1_no_zero_divisors .. instance poly :: (comm_ring) comm_ring .. instance poly :: (comm_ring_1) comm_ring_1 .. instance poly :: (comm_ring_1) comm_semiring_1_cancel .. lemma degree_power_le: "degree (p ^ n) \ degree p * n" by (induct n) (auto intro: order_trans degree_mult_le) lemma coeff_0_power: "coeff (p ^ n) 0 = coeff p 0 ^ n" by (induct n) (simp_all add: coeff_mult) lemma poly_smult [simp]: "poly (smult a p) x = a * poly p x" by (induct p) (simp_all add: algebra_simps) lemma poly_mult [simp]: "poly (p * q) x = poly p x * poly q x" by (induct p) (simp_all add: algebra_simps) lemma poly_power [simp]: "poly (p ^ n) x = poly p x ^ n" for p :: "'a::comm_semiring_1 poly" by (induct n) simp_all lemma poly_prod: "poly (\k\A. p k) x = (\k\A. poly (p k) x)" by (induct A rule: infinite_finite_induct) simp_all lemma degree_prod_sum_le: "finite S \ degree (prod f S) \ sum (degree \ f) S" proof (induct S rule: finite_induct) case empty then show ?case by simp next case (insert a S) show ?case unfolding prod.insert[OF insert(1-2)] sum.insert[OF insert(1-2)] by (rule le_trans[OF degree_mult_le]) (use insert in auto) qed lemma coeff_0_prod_list: "coeff (prod_list xs) 0 = prod_list (map (\p. coeff p 0) xs)" by (induct xs) (simp_all add: coeff_mult) lemma coeff_monom_mult: "coeff (monom c n * p) k = (if k < n then 0 else c * coeff p (k - n))" proof - have "coeff (monom c n * p) k = (\i\k. (if n = i then c else 0) * coeff p (k - i))" by (simp add: coeff_mult) also have "\ = (\i\k. (if n = i then c * coeff p (k - i) else 0))" by (intro sum.cong) simp_all also have "\ = (if k < n then 0 else c * coeff p (k - n))" by simp finally show ?thesis . qed lemma monom_1_dvd_iff': "monom 1 n dvd p \ (\kkkk. coeff p (k + n))" have "\\<^sub>\k. coeff p (k + n) = 0" by (subst cofinite_eq_sequentially, subst eventually_sequentially_seg, subst cofinite_eq_sequentially [symmetric]) transfer then have coeff_r [simp]: "coeff r k = coeff p (k + n)" for k unfolding r_def by (subst poly.Abs_poly_inverse) simp_all have "p = monom 1 n * r" by (rule poly_eqI, subst coeff_monom_mult) (simp_all add: zero) then show "monom 1 n dvd p" by simp qed subsection \Mapping polynomials\ definition map_poly :: "('a :: zero \ 'b :: zero) \ 'a poly \ 'b poly" where "map_poly f p = Poly (map f (coeffs p))" lemma map_poly_0 [simp]: "map_poly f 0 = 0" by (simp add: map_poly_def) lemma map_poly_1: "map_poly f 1 = [:f 1:]" by (simp add: map_poly_def) lemma map_poly_1' [simp]: "f 1 = 1 \ map_poly f 1 = 1" by (simp add: map_poly_def one_pCons) lemma coeff_map_poly: assumes "f 0 = 0" shows "coeff (map_poly f p) n = f (coeff p n)" by (auto simp: assms map_poly_def nth_default_def coeffs_def not_less Suc_le_eq coeff_eq_0 simp del: upt_Suc) lemma coeffs_map_poly [code abstract]: "coeffs (map_poly f p) = strip_while ((=) 0) (map f (coeffs p))" by (simp add: map_poly_def) lemma coeffs_map_poly': assumes "\x. x \ 0 \ f x \ 0" shows "coeffs (map_poly f p) = map f (coeffs p)" using assms by (auto simp add: coeffs_map_poly strip_while_idem_iff last_coeffs_eq_coeff_degree no_trailing_unfold last_map) lemma set_coeffs_map_poly: "(\x. f x = 0 \ x = 0) \ set (coeffs (map_poly f p)) = f ` set (coeffs p)" by (simp add: coeffs_map_poly') lemma degree_map_poly: assumes "\x. x \ 0 \ f x \ 0" shows "degree (map_poly f p) = degree p" by (simp add: degree_eq_length_coeffs coeffs_map_poly' assms) lemma map_poly_eq_0_iff: assumes "f 0 = 0" "\x. x \ set (coeffs p) \ x \ 0 \ f x \ 0" shows "map_poly f p = 0 \ p = 0" proof - have "(coeff (map_poly f p) n = 0) = (coeff p n = 0)" for n proof - have "coeff (map_poly f p) n = f (coeff p n)" by (simp add: coeff_map_poly assms) also have "\ = 0 \ coeff p n = 0" proof (cases "n < length (coeffs p)") case True then have "coeff p n \ set (coeffs p)" by (auto simp: coeffs_def simp del: upt_Suc) with assms show "f (coeff p n) = 0 \ coeff p n = 0" by auto next case False then show ?thesis by (auto simp: assms length_coeffs nth_default_coeffs_eq [symmetric] nth_default_def) qed finally show ?thesis . qed then show ?thesis by (auto simp: poly_eq_iff) qed lemma map_poly_smult: assumes "f 0 = 0""\c x. f (c * x) = f c * f x" shows "map_poly f (smult c p) = smult (f c) (map_poly f p)" by (intro poly_eqI) (simp_all add: assms coeff_map_poly) lemma map_poly_pCons: assumes "f 0 = 0" shows "map_poly f (pCons c p) = pCons (f c) (map_poly f p)" by (intro poly_eqI) (simp_all add: assms coeff_map_poly coeff_pCons split: nat.splits) lemma map_poly_map_poly: assumes "f 0 = 0" "g 0 = 0" shows "map_poly f (map_poly g p) = map_poly (f \ g) p" by (intro poly_eqI) (simp add: coeff_map_poly assms) lemma map_poly_id [simp]: "map_poly id p = p" by (simp add: map_poly_def) lemma map_poly_id' [simp]: "map_poly (\x. x) p = p" by (simp add: map_poly_def) lemma map_poly_cong: assumes "(\x. x \ set (coeffs p) \ f x = g x)" shows "map_poly f p = map_poly g p" proof - from assms have "map f (coeffs p) = map g (coeffs p)" by (intro map_cong) simp_all then show ?thesis by (simp only: coeffs_eq_iff coeffs_map_poly) qed lemma map_poly_monom: "f 0 = 0 \ map_poly f (monom c n) = monom (f c) n" by (intro poly_eqI) (simp_all add: coeff_map_poly) lemma map_poly_idI: assumes "\x. x \ set (coeffs p) \ f x = x" shows "map_poly f p = p" using map_poly_cong[OF assms, of _ id] by simp lemma map_poly_idI': assumes "\x. x \ set (coeffs p) \ f x = x" shows "p = map_poly f p" using map_poly_cong[OF assms, of _ id] by simp lemma smult_conv_map_poly: "smult c p = map_poly (\x. c * x) p" by (intro poly_eqI) (simp_all add: coeff_map_poly) subsection \Conversions\ lemma of_nat_poly: "of_nat n = [:of_nat n:]" by (induct n) (simp_all add: one_pCons) lemma of_nat_monom: "of_nat n = monom (of_nat n) 0" by (simp add: of_nat_poly monom_0) lemma degree_of_nat [simp]: "degree (of_nat n) = 0" by (simp add: of_nat_poly) lemma lead_coeff_of_nat [simp]: "lead_coeff (of_nat n) = of_nat n" by (simp add: of_nat_poly) lemma of_int_poly: "of_int k = [:of_int k:]" by (simp only: of_int_of_nat of_nat_poly) simp lemma of_int_monom: "of_int k = monom (of_int k) 0" by (simp add: of_int_poly monom_0) lemma degree_of_int [simp]: "degree (of_int k) = 0" by (simp add: of_int_poly) lemma lead_coeff_of_int [simp]: "lead_coeff (of_int k) = of_int k" by (simp add: of_int_poly) lemma numeral_poly: "numeral n = [:numeral n:]" proof - have "numeral n = of_nat (numeral n)" by simp also have "\ = [:of_nat (numeral n):]" by (simp add: of_nat_poly) finally show ?thesis by simp qed lemma numeral_monom: "numeral n = monom (numeral n) 0" by (simp add: numeral_poly monom_0) lemma degree_numeral [simp]: "degree (numeral n) = 0" by (simp add: numeral_poly) lemma lead_coeff_numeral [simp]: "lead_coeff (numeral n) = numeral n" by (simp add: numeral_poly) subsection \Lemmas about divisibility\ lemma dvd_smult: assumes "p dvd q" shows "p dvd smult a q" proof - from assms obtain k where "q = p * k" .. then have "smult a q = p * smult a k" by simp then show "p dvd smult a q" .. qed lemma dvd_smult_cancel: "p dvd smult a q \ a \ 0 \ p dvd q" for a :: "'a::field" by (drule dvd_smult [where a="inverse a"]) simp lemma dvd_smult_iff: "a \ 0 \ p dvd smult a q \ p dvd q" for a :: "'a::field" by (safe elim!: dvd_smult dvd_smult_cancel) lemma smult_dvd_cancel: assumes "smult a p dvd q" shows "p dvd q" proof - from assms obtain k where "q = smult a p * k" .. then have "q = p * smult a k" by simp then show "p dvd q" .. qed lemma smult_dvd: "p dvd q \ a \ 0 \ smult a p dvd q" for a :: "'a::field" by (rule smult_dvd_cancel [where a="inverse a"]) simp lemma smult_dvd_iff: "smult a p dvd q \ (if a = 0 then q = 0 else p dvd q)" for a :: "'a::field" by (auto elim: smult_dvd smult_dvd_cancel) lemma is_unit_smult_iff: "smult c p dvd 1 \ c dvd 1 \ p dvd 1" proof - have "smult c p = [:c:] * p" by simp also have "\ dvd 1 \ c dvd 1 \ p dvd 1" proof safe assume *: "[:c:] * p dvd 1" then show "p dvd 1" by (rule dvd_mult_right) from * obtain q where q: "1 = [:c:] * p * q" by (rule dvdE) have "c dvd c * (coeff p 0 * coeff q 0)" by simp also have "\ = coeff ([:c:] * p * q) 0" by (simp add: mult.assoc coeff_mult) also note q [symmetric] finally have "c dvd coeff 1 0" . then show "c dvd 1" by simp next assume "c dvd 1" "p dvd 1" from this(1) obtain d where "1 = c * d" by (rule dvdE) then have "1 = [:c:] * [:d:]" by (simp add: one_pCons ac_simps) then have "[:c:] dvd 1" by (rule dvdI) from mult_dvd_mono[OF this \p dvd 1\] show "[:c:] * p dvd 1" by simp qed finally show ?thesis . qed subsection \Polynomials form an integral domain\ instance poly :: (idom) idom .. instance poly :: ("{ring_char_0, comm_ring_1}") ring_char_0 by standard (auto simp add: of_nat_poly intro: injI) lemma degree_mult_eq: "p \ 0 \ q \ 0 \ degree (p * q) = degree p + degree q" for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" by (rule order_antisym [OF degree_mult_le le_degree]) (simp add: coeff_mult_degree_sum) lemma degree_prod_eq_sum_degree: fixes A :: "'a set" and f :: "'a \ 'b::idom poly" assumes f0: "\i\A. f i \ 0" shows "degree (\i\A. (f i)) = (\i\A. degree (f i))" using assms by (induction A rule: infinite_finite_induct) (auto simp: degree_mult_eq) lemma degree_mult_eq_0: "degree (p * q) = 0 \ p = 0 \ q = 0 \ (p \ 0 \ q \ 0 \ degree p = 0 \ degree q = 0)" for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" by (auto simp: degree_mult_eq) lemma degree_power_eq: "p \ 0 \ degree ((p :: 'a :: idom poly) ^ n) = n * degree p" by (induction n) (simp_all add: degree_mult_eq) lemma degree_mult_right_le: fixes p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" assumes "q \ 0" shows "degree p \ degree (p * q)" using assms by (cases "p = 0") (simp_all add: degree_mult_eq) lemma coeff_degree_mult: "coeff (p * q) (degree (p * q)) = coeff q (degree q) * coeff p (degree p)" for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" by (cases "p = 0 \ q = 0") (auto simp: degree_mult_eq coeff_mult_degree_sum mult_ac) lemma dvd_imp_degree_le: "p dvd q \ q \ 0 \ degree p \ degree q" for p q :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly" by (erule dvdE, hypsubst, subst degree_mult_eq) auto lemma divides_degree: fixes p q :: "'a ::{comm_semiring_1,semiring_no_zero_divisors} poly" assumes "p dvd q" shows "degree p \ degree q \ q = 0" by (metis dvd_imp_degree_le assms) lemma const_poly_dvd_iff: fixes c :: "'a::{comm_semiring_1,semiring_no_zero_divisors}" shows "[:c:] dvd p \ (\n. c dvd coeff p n)" proof (cases "c = 0 \ p = 0") case True then show ?thesis by (auto intro!: poly_eqI) next case False show ?thesis proof assume "[:c:] dvd p" then show "\n. c dvd coeff p n" by (auto elim!: dvdE simp: coeffs_def) next assume *: "\n. c dvd coeff p n" define mydiv where "mydiv x y = (SOME z. x = y * z)" for x y :: 'a have mydiv: "x = y * mydiv x y" if "y dvd x" for x y using that unfolding mydiv_def dvd_def by (rule someI_ex) define q where "q = Poly (map (\a. mydiv a c) (coeffs p))" from False * have "p = q * [:c:]" by (intro poly_eqI) (auto simp: q_def nth_default_def not_less length_coeffs_degree coeffs_nth intro!: coeff_eq_0 mydiv) then show "[:c:] dvd p" by (simp only: dvd_triv_right) qed qed lemma const_poly_dvd_const_poly_iff [simp]: "[:a:] dvd [:b:] \ a dvd b" for a b :: "'a::{comm_semiring_1,semiring_no_zero_divisors}" by (subst const_poly_dvd_iff) (auto simp: coeff_pCons split: nat.splits) lemma lead_coeff_mult: "lead_coeff (p * q) = lead_coeff p * lead_coeff q" for p q :: "'a::{comm_semiring_0, semiring_no_zero_divisors} poly" by (cases "p = 0 \ q = 0") (auto simp: coeff_mult_degree_sum degree_mult_eq) lemma lead_coeff_prod: "lead_coeff (prod f A) = (\x\A. lead_coeff (f x))" for f :: "'a \ 'b::{comm_semiring_1, semiring_no_zero_divisors} poly" by (induction A rule: infinite_finite_induct) (auto simp: lead_coeff_mult) lemma lead_coeff_smult: "lead_coeff (smult c p) = c * lead_coeff p" for p :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" proof - have "smult c p = [:c:] * p" by simp also have "lead_coeff \ = c * lead_coeff p" by (subst lead_coeff_mult) simp_all finally show ?thesis . qed lemma lead_coeff_1 [simp]: "lead_coeff 1 = 1" by simp lemma lead_coeff_power: "lead_coeff (p ^ n) = lead_coeff p ^ n" for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly" by (induct n) (simp_all add: lead_coeff_mult) subsection \Polynomials form an ordered integral domain\ definition pos_poly :: "'a::linordered_semidom poly \ bool" where "pos_poly p \ 0 < coeff p (degree p)" lemma pos_poly_pCons: "pos_poly (pCons a p) \ pos_poly p \ (p = 0 \ 0 < a)" by (simp add: pos_poly_def) lemma not_pos_poly_0 [simp]: "\ pos_poly 0" by (simp add: pos_poly_def) lemma pos_poly_add: "pos_poly p \ pos_poly q \ pos_poly (p + q)" proof (induction p arbitrary: q) case (pCons a p) - then show ?case + then show ?case by (cases q; force simp add: pos_poly_pCons add_pos_pos) qed auto lemma pos_poly_mult: "pos_poly p \ pos_poly q \ pos_poly (p * q)" by (simp add: pos_poly_def coeff_degree_mult) lemma pos_poly_total: "p = 0 \ pos_poly p \ pos_poly (- p)" for p :: "'a::linordered_idom poly" by (induct p) (auto simp: pos_poly_pCons) lemma pos_poly_coeffs [code]: "pos_poly p \ (let as = coeffs p in as \ [] \ last as > 0)" (is "?lhs \ ?rhs") proof assume ?rhs then show ?lhs by (auto simp add: pos_poly_def last_coeffs_eq_coeff_degree) next assume ?lhs then have *: "0 < coeff p (degree p)" by (simp add: pos_poly_def) then have "p \ 0" by auto with * show ?rhs by (simp add: last_coeffs_eq_coeff_degree) qed instantiation poly :: (linordered_idom) linordered_idom begin definition "x < y \ pos_poly (y - x)" definition "x \ y \ x = y \ pos_poly (y - x)" definition "\x::'a poly\ = (if x < 0 then - x else x)" definition "sgn (x::'a poly) = (if x = 0 then 0 else if 0 < x then 1 else - 1)" instance proof fix x y z :: "'a poly" show "x < y \ x \ y \ \ y \ x" unfolding less_eq_poly_def less_poly_def using pos_poly_add by force then show "x \ y \ y \ x \ x = y" using less_eq_poly_def less_poly_def by force show "x \ x" by (simp add: less_eq_poly_def) show "x \ y \ y \ z \ x \ z" using less_eq_poly_def pos_poly_add by fastforce show "x \ y \ z + x \ z + y" by (simp add: less_eq_poly_def) show "x \ y \ y \ x" unfolding less_eq_poly_def using pos_poly_total [of "x - y"] by auto show "x < y \ 0 < z \ z * x < z * y" by (simp add: less_poly_def right_diff_distrib [symmetric] pos_poly_mult) show "\x\ = (if x < 0 then - x else x)" by (rule abs_poly_def) show "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)" by (rule sgn_poly_def) qed end text \TODO: Simplification rules for comparisons\ subsection \Synthetic division and polynomial roots\ subsubsection \Synthetic division\ text \Synthetic division is simply division by the linear polynomial \<^term>\x - c\.\ definition synthetic_divmod :: "'a::comm_semiring_0 poly \ 'a \ 'a poly \ 'a" where "synthetic_divmod p c = fold_coeffs (\a (q, r). (pCons r q, a + c * r)) p (0, 0)" definition synthetic_div :: "'a::comm_semiring_0 poly \ 'a \ 'a poly" where "synthetic_div p c = fst (synthetic_divmod p c)" lemma synthetic_divmod_0 [simp]: "synthetic_divmod 0 c = (0, 0)" by (simp add: synthetic_divmod_def) lemma synthetic_divmod_pCons [simp]: "synthetic_divmod (pCons a p) c = (\(q, r). (pCons r q, a + c * r)) (synthetic_divmod p c)" by (cases "p = 0 \ a = 0") (auto simp add: synthetic_divmod_def) lemma synthetic_div_0 [simp]: "synthetic_div 0 c = 0" by (simp add: synthetic_div_def) lemma synthetic_div_unique_lemma: "smult c p = pCons a p \ p = 0" by (induct p arbitrary: a) simp_all lemma snd_synthetic_divmod: "snd (synthetic_divmod p c) = poly p c" by (induct p) (simp_all add: split_def) lemma synthetic_div_pCons [simp]: "synthetic_div (pCons a p) c = pCons (poly p c) (synthetic_div p c)" by (simp add: synthetic_div_def split_def snd_synthetic_divmod) lemma synthetic_div_eq_0_iff: "synthetic_div p c = 0 \ degree p = 0" proof (induct p) case 0 then show ?case by simp next case (pCons a p) then show ?case by (cases p) simp qed lemma degree_synthetic_div: "degree (synthetic_div p c) = degree p - 1" by (induct p) (simp_all add: synthetic_div_eq_0_iff) lemma synthetic_div_correct: "p + smult c (synthetic_div p c) = pCons (poly p c) (synthetic_div p c)" by (induct p) simp_all lemma synthetic_div_unique: "p + smult c q = pCons r q \ r = poly p c \ q = synthetic_div p c" proof (induction p arbitrary: q r) case 0 then show ?case using synthetic_div_unique_lemma by fastforce next case (pCons a p) then show ?case by (cases q; force) qed lemma synthetic_div_correct': "[:-c, 1:] * synthetic_div p c + [:poly p c:] = p" for c :: "'a::comm_ring_1" using synthetic_div_correct [of p c] by (simp add: algebra_simps) subsubsection \Polynomial roots\ lemma poly_eq_0_iff_dvd: "poly p c = 0 \ [:- c, 1:] dvd p" (is "?lhs \ ?rhs") for c :: "'a::comm_ring_1" proof assume ?lhs with synthetic_div_correct' [of c p] have "p = [:-c, 1:] * synthetic_div p c" by simp then show ?rhs .. next assume ?rhs then obtain k where "p = [:-c, 1:] * k" by (rule dvdE) then show ?lhs by simp qed lemma dvd_iff_poly_eq_0: "[:c, 1:] dvd p \ poly p (- c) = 0" for c :: "'a::comm_ring_1" by (simp add: poly_eq_0_iff_dvd) lemma poly_roots_finite: "p \ 0 \ finite {x. poly p x = 0}" for p :: "'a::{comm_ring_1,ring_no_zero_divisors} poly" proof (induct n \ "degree p" arbitrary: p) case 0 then obtain a where "a \ 0" and "p = [:a:]" by (cases p) (simp split: if_splits) then show "finite {x. poly p x = 0}" by simp next case (Suc n) show "finite {x. poly p x = 0}" proof (cases "\x. poly p x = 0") case False then show "finite {x. poly p x = 0}" by simp next case True then obtain a where "poly p a = 0" .. then have "[:-a, 1:] dvd p" by (simp only: poly_eq_0_iff_dvd) then obtain k where k: "p = [:-a, 1:] * k" .. with \p \ 0\ have "k \ 0" by auto with k have "degree p = Suc (degree k)" by (simp add: degree_mult_eq del: mult_pCons_left) with \Suc n = degree p\ have "n = degree k" by simp from this \k \ 0\ have "finite {x. poly k x = 0}" by (rule Suc.hyps) then have "finite (insert a {x. poly k x = 0})" by simp then show "finite {x. poly p x = 0}" by (simp add: k Collect_disj_eq del: mult_pCons_left) qed qed lemma poly_eq_poly_eq_iff: "poly p = poly q \ p = q" (is "?lhs \ ?rhs") for p q :: "'a::{comm_ring_1,ring_no_zero_divisors,ring_char_0} poly" proof assume ?rhs then show ?lhs by simp next assume ?lhs have "poly p = poly 0 \ p = 0" for p :: "'a poly" proof (cases "p = 0") case False then show ?thesis by (auto simp add: infinite_UNIV_char_0 dest: poly_roots_finite) qed auto from \?lhs\ and this [of "p - q"] show ?rhs by auto qed lemma poly_all_0_iff_0: "(\x. poly p x = 0) \ p = 0" for p :: "'a::{ring_char_0,comm_ring_1,ring_no_zero_divisors} poly" by (auto simp add: poly_eq_poly_eq_iff [symmetric]) subsubsection \Order of polynomial roots\ definition order :: "'a::idom \ 'a poly \ nat" where "order a p = (LEAST n. \ [:-a, 1:] ^ Suc n dvd p)" lemma coeff_linear_power: "coeff ([:a, 1:] ^ n) n = 1" for a :: "'a::comm_semiring_1" proof (induct n) case (Suc n) have "degree ([:a, 1:] ^ n) \ 1 * n" by (metis One_nat_def degree_pCons_eq_if degree_power_le one_neq_zero one_pCons) then have "coeff ([:a, 1:] ^ n) (Suc n) = 0" by (simp add: coeff_eq_0) then show ?case using Suc.hyps by fastforce qed auto lemma degree_linear_power: "degree ([:a, 1:] ^ n) = n" for a :: "'a::comm_semiring_1" proof (rule order_antisym) show "degree ([:a, 1:] ^ n) \ n" by (metis One_nat_def degree_pCons_eq_if degree_power_le mult.left_neutral one_neq_zero one_pCons) qed (simp add: coeff_linear_power le_degree) lemma order_1: "[:-a, 1:] ^ order a p dvd p" proof (cases "p = 0") case False - show ?thesis + show ?thesis proof (cases "order a p") case (Suc n) then show ?thesis by (metis lessI not_less_Least order_def) qed auto qed auto -lemma order_2: - assumes "p \ 0" +lemma order_2: + assumes "p \ 0" shows "\ [:-a, 1:] ^ Suc (order a p) dvd p" proof - have False if "[:- a, 1:] ^ Suc (degree p) dvd p" using dvd_imp_degree_le [OF that] by (metis Suc_n_not_le_n assms degree_linear_power) then show ?thesis unfolding order_def by (metis (no_types, lifting) LeastI) qed lemma order: "p \ 0 \ [:-a, 1:] ^ order a p dvd p \ \ [:-a, 1:] ^ Suc (order a p) dvd p" by (rule conjI [OF order_1 order_2]) lemma order_degree: assumes p: "p \ 0" shows "order a p \ degree p" proof - have "order a p = degree ([:-a, 1:] ^ order a p)" by (simp only: degree_linear_power) also from order_1 p have "\ \ degree p" by (rule dvd_imp_degree_le) finally show ?thesis . qed lemma order_root: "poly p a = 0 \ p = 0 \ order a p \ 0" (is "?lhs = ?rhs") proof show "?lhs \ ?rhs" by (metis One_nat_def order_2 poly_eq_0_iff_dvd power_one_right) show "?rhs \ ?lhs" by (meson dvd_power dvd_trans neq0_conv order_1 poly_0 poly_eq_0_iff_dvd) qed lemma order_0I: "poly p a \ 0 \ order a p = 0" by (subst (asm) order_root) auto lemma order_unique_lemma: fixes p :: "'a::idom poly" assumes "[:-a, 1:] ^ n dvd p" "\ [:-a, 1:] ^ Suc n dvd p" shows "order a p = n" unfolding Polynomial.order_def by (metis (mono_tags, lifting) Least_equality assms not_less_eq_eq power_le_dvd) -lemma order_mult: +lemma order_mult: assumes "p * q \ 0" shows "order a (p * q) = order a p + order a q" proof - define i where "i \ order a p" define j where "j \ order a q" define t where "t \ [:-a, 1:]" have t_dvd_iff: "\u. t dvd u \ poly u a = 0" by (simp add: t_def dvd_iff_poly_eq_0) have dvd: "t ^ i dvd p" "t ^ j dvd q" and "\ t ^ Suc i dvd p" "\ t ^ Suc j dvd q" using assms i_def j_def order_1 order_2 t_def by auto then have "\ t ^ Suc(i + j) dvd p * q" by (elim dvdE) (simp add: power_add t_dvd_iff) moreover have "t ^ (i + j) dvd p * q" using dvd by (simp add: mult_dvd_mono power_add) ultimately show "order a (p * q) = i + j" using order_unique_lemma t_def by blast qed lemma order_smult: assumes "c \ 0" shows "order x (smult c p) = order x p" proof (cases "p = 0") case True then show ?thesis by simp next case False have "smult c p = [:c:] * p" by simp also from assms False have "order x \ = order x [:c:] + order x p" by (subst order_mult) simp_all also have "order x [:c:] = 0" by (rule order_0I) (use assms in auto) finally show ?thesis by simp qed text \Next three lemmas contributed by Wenda Li\ lemma order_1_eq_0 [simp]:"order x 1 = 0" by (metis order_root poly_1 zero_neq_one) lemma order_uminus[simp]: "order x (-p) = order x p" - by (metis neg_equal_0_iff_equal order_smult smult_1_left smult_minus_left) + by (metis neg_equal_0_iff_equal order_smult smult_1_left smult_minus_left) lemma order_power_n_n: "order a ([:-a,1:]^n)=n" proof (induct n) (*might be proved more concisely using nat_less_induct*) case 0 then show ?case by (metis order_root poly_1 power_0 zero_neq_one) next case (Suc n) have "order a ([:- a, 1:] ^ Suc n) = order a ([:- a, 1:] ^ n) + order a [:-a,1:]" by (metis (no_types, hide_lams) One_nat_def add_Suc_right monoid_add_class.add.right_neutral one_neq_zero order_mult pCons_eq_0_iff power_add power_eq_0_iff power_one_right) moreover have "order a [:-a,1:] = 1" unfolding order_def proof (rule Least_equality, rule notI) assume "[:- a, 1:] ^ Suc 1 dvd [:- a, 1:]" then have "degree ([:- a, 1:] ^ Suc 1) \ degree ([:- a, 1:])" by (rule dvd_imp_degree_le) auto then show False by auto next fix y assume *: "\ [:- a, 1:] ^ Suc y dvd [:- a, 1:]" show "1 \ y" proof (rule ccontr) assume "\ 1 \ y" then have "y = 0" by auto then have "[:- a, 1:] ^ Suc y dvd [:- a, 1:]" by auto with * show False by auto qed qed ultimately show ?case using Suc by auto qed lemma order_0_monom [simp]: "c \ 0 \ order 0 (monom c n) = n" using order_power_n_n[of 0 n] by (simp add: monom_altdef order_smult) lemma dvd_imp_order_le: "q \ 0 \ p dvd q \ Polynomial.order a p \ Polynomial.order a q" by (auto simp: order_mult elim: dvdE) text \Now justify the standard squarefree decomposition, i.e. \f / gcd f f'\.\ lemma order_divides: "[:-a, 1:] ^ n dvd p \ p = 0 \ n \ order a p" by (meson dvd_0_right not_less_eq_eq order_1 order_2 power_le_dvd) lemma order_decomp: assumes "p \ 0" shows "\q. p = [:- a, 1:] ^ order a p * q \ \ [:- a, 1:] dvd q" proof - from assms have *: "[:- a, 1:] ^ order a p dvd p" and **: "\ [:- a, 1:] ^ Suc (order a p) dvd p" by (auto dest: order) from * obtain q where q: "p = [:- a, 1:] ^ order a p * q" .. with ** have "\ [:- a, 1:] ^ Suc (order a p) dvd [:- a, 1:] ^ order a p * q" by simp then have "\ [:- a, 1:] ^ order a p * [:- a, 1:] dvd [:- a, 1:] ^ order a p * q" by simp with idom_class.dvd_mult_cancel_left [of "[:- a, 1:] ^ order a p" "[:- a, 1:]" q] have "\ [:- a, 1:] dvd q" by auto with q show ?thesis by blast qed lemma monom_1_dvd_iff: "p \ 0 \ monom 1 n dvd p \ n \ order 0 p" using order_divides[of 0 n p] by (simp add: monom_altdef) subsection \Additional induction rules on polynomials\ text \ An induction rule for induction over the roots of a polynomial with a certain property. (e.g. all positive roots) \ lemma poly_root_induct [case_names 0 no_roots root]: fixes p :: "'a :: idom poly" assumes "Q 0" and "\p. (\a. P a \ poly p a \ 0) \ Q p" and "\a p. P a \ Q p \ Q ([:a, -1:] * p)" shows "Q p" proof (induction "degree p" arbitrary: p rule: less_induct) case (less p) show ?case proof (cases "p = 0") case True with assms(1) show ?thesis by simp next case False show ?thesis proof (cases "\a. P a \ poly p a = 0") case False then show ?thesis by (intro assms(2)) blast next case True then obtain a where a: "P a" "poly p a = 0" by blast then have "-[:-a, 1:] dvd p" by (subst minus_dvd_iff) (simp add: poly_eq_0_iff_dvd) then obtain q where q: "p = [:a, -1:] * q" by (elim dvdE) simp with False have "q \ 0" by auto have "degree p = Suc (degree q)" by (subst q, subst degree_mult_eq) (simp_all add: \q \ 0\) then have "Q q" by (intro less) simp with a(1) have "Q ([:a, -1:] * q)" by (rule assms(3)) with q show ?thesis by simp qed qed qed lemma dropWhile_replicate_append: "dropWhile ((=) a) (replicate n a @ ys) = dropWhile ((=) a) ys" by (induct n) simp_all lemma Poly_append_replicate_0: "Poly (xs @ replicate n 0) = Poly xs" by (subst coeffs_eq_iff) (simp_all add: strip_while_def dropWhile_replicate_append) text \ An induction rule for simultaneous induction over two polynomials, prepending one coefficient in each step. \ lemma poly_induct2 [case_names 0 pCons]: assumes "P 0 0" "\a p b q. P p q \ P (pCons a p) (pCons b q)" shows "P p q" proof - define n where "n = max (length (coeffs p)) (length (coeffs q))" define xs where "xs = coeffs p @ (replicate (n - length (coeffs p)) 0)" define ys where "ys = coeffs q @ (replicate (n - length (coeffs q)) 0)" have "length xs = length ys" by (simp add: xs_def ys_def n_def) then have "P (Poly xs) (Poly ys)" by (induct rule: list_induct2) (simp_all add: assms) also have "Poly xs = p" by (simp add: xs_def Poly_append_replicate_0) also have "Poly ys = q" by (simp add: ys_def Poly_append_replicate_0) finally show ?thesis . qed subsection \Composition of polynomials\ (* Several lemmas contributed by René Thiemann and Akihisa Yamada *) definition pcompose :: "'a::comm_semiring_0 poly \ 'a poly \ 'a poly" where "pcompose p q = fold_coeffs (\a c. [:a:] + q * c) p 0" notation pcompose (infixl "\\<^sub>p" 71) lemma pcompose_0 [simp]: "pcompose 0 q = 0" by (simp add: pcompose_def) lemma pcompose_pCons: "pcompose (pCons a p) q = [:a:] + q * pcompose p q" by (cases "p = 0 \ a = 0") (auto simp add: pcompose_def) lemma pcompose_1: "pcompose 1 p = 1" for p :: "'a::comm_semiring_1 poly" by (auto simp: one_pCons pcompose_pCons) lemma poly_pcompose: "poly (pcompose p q) x = poly p (poly q x)" by (induct p) (simp_all add: pcompose_pCons) lemma degree_pcompose_le: "degree (pcompose p q) \ degree p * degree q" proof (induction p) case (pCons a p) then show ?case proof (clarsimp simp add: pcompose_pCons) assume "degree (p \\<^sub>p q) \ degree p * degree q" "p \ 0" then have "degree (q * p \\<^sub>p q) \ degree q + degree p * degree q" by (meson add_le_cancel_left degree_mult_le dual_order.trans pCons.IH) then show "degree ([:a:] + q * p \\<^sub>p q) \ degree q + degree p * degree q" by (simp add: degree_add_le) qed qed auto lemma pcompose_add: "pcompose (p + q) r = pcompose p r + pcompose q r" for p q r :: "'a::{comm_semiring_0, ab_semigroup_add} poly" proof (induction p q rule: poly_induct2) case 0 then show ?case by simp next case (pCons a p b q) have "pcompose (pCons a p + pCons b q) r = [:a + b:] + r * pcompose p r + r * pcompose q r" by (simp_all add: pcompose_pCons pCons.IH algebra_simps) also have "[:a + b:] = [:a:] + [:b:]" by simp also have "\ + r * pcompose p r + r * pcompose q r = pcompose (pCons a p) r + pcompose (pCons b q) r" by (simp only: pcompose_pCons add_ac) finally show ?case . qed lemma pcompose_uminus: "pcompose (-p) r = -pcompose p r" for p r :: "'a::comm_ring poly" by (induct p) (simp_all add: pcompose_pCons) lemma pcompose_diff: "pcompose (p - q) r = pcompose p r - pcompose q r" for p q r :: "'a::comm_ring poly" using pcompose_add[of p "-q"] by (simp add: pcompose_uminus) lemma pcompose_smult: "pcompose (smult a p) r = smult a (pcompose p r)" for p r :: "'a::comm_semiring_0 poly" by (induct p) (simp_all add: pcompose_pCons pcompose_add smult_add_right) lemma pcompose_mult: "pcompose (p * q) r = pcompose p r * pcompose q r" for p q r :: "'a::comm_semiring_0 poly" by (induct p arbitrary: q) (simp_all add: pcompose_add pcompose_smult pcompose_pCons algebra_simps) lemma pcompose_assoc: "pcompose p (pcompose q r) = pcompose (pcompose p q) r" for p q r :: "'a::comm_semiring_0 poly" by (induct p arbitrary: q) (simp_all add: pcompose_pCons pcompose_add pcompose_mult) lemma pcompose_idR[simp]: "pcompose p [: 0, 1 :] = p" for p :: "'a::comm_semiring_1 poly" by (induct p) (simp_all add: pcompose_pCons) lemma pcompose_sum: "pcompose (sum f A) p = sum (\i. pcompose (f i) p) A" by (induct A rule: infinite_finite_induct) (simp_all add: pcompose_1 pcompose_add) lemma pcompose_prod: "pcompose (prod f A) p = prod (\i. pcompose (f i) p) A" by (induct A rule: infinite_finite_induct) (simp_all add: pcompose_1 pcompose_mult) lemma pcompose_const [simp]: "pcompose [:a:] q = [:a:]" by (subst pcompose_pCons) simp lemma pcompose_0': "pcompose p 0 = [:coeff p 0:]" by (induct p) (auto simp add: pcompose_pCons) lemma degree_pcompose: "degree (pcompose p q) = degree p * degree q" for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" proof (induct p) case 0 then show ?case by auto next case (pCons a p) consider "degree (q * pcompose p q) = 0" | "degree (q * pcompose p q) > 0" by blast then show ?case proof cases case prems: 1 show ?thesis proof (cases "p = 0") case True then show ?thesis by auto next case False from prems have "degree q = 0 \ pcompose p q = 0" by (auto simp add: degree_mult_eq_0) moreover have False if "pcompose p q = 0" "degree q \ 0" proof - from pCons.hyps(2) that have "degree p = 0" by auto then obtain a1 where "p = [:a1:]" by (metis degree_pCons_eq_if old.nat.distinct(2) pCons_cases) with \pcompose p q = 0\ \p \ 0\ show False by auto qed ultimately have "degree (pCons a p) * degree q = 0" by auto moreover have "degree (pcompose (pCons a p) q) = 0" proof - from prems have "0 = max (degree [:a:]) (degree (q * pcompose p q))" by simp also have "\ \ degree ([:a:] + q * pcompose p q)" by (rule degree_add_le_max) finally show ?thesis by (auto simp add: pcompose_pCons) qed ultimately show ?thesis by simp qed next case prems: 2 then have "p \ 0" "q \ 0" "pcompose p q \ 0" by auto from prems degree_add_eq_right [of "[:a:]"] have "degree (pcompose (pCons a p) q) = degree (q * pcompose p q)" by (auto simp: pcompose_pCons) with pCons.hyps(2) degree_mult_eq[OF \q\0\ \pcompose p q\0\] show ?thesis by auto qed qed lemma pcompose_eq_0: fixes p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" assumes "pcompose p q = 0" "degree q > 0" shows "p = 0" proof - from assms degree_pcompose [of p q] have "degree p = 0" by auto then obtain a where "p = [:a:]" by (metis degree_pCons_eq_if gr0_conv_Suc neq0_conv pCons_cases) with assms(1) have "a = 0" by auto with \p = [:a:]\ show ?thesis by simp qed lemma lead_coeff_comp: fixes p q :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly" assumes "degree q > 0" shows "lead_coeff (pcompose p q) = lead_coeff p * lead_coeff q ^ (degree p)" proof (induct p) case 0 then show ?case by auto next case (pCons a p) consider "degree (q * pcompose p q) = 0" | "degree (q * pcompose p q) > 0" by blast then show ?case proof cases case prems: 1 then have "pcompose p q = 0" by (metis assms degree_0 degree_mult_eq_0 neq0_conv) with pcompose_eq_0[OF _ \degree q > 0\] have "p = 0" by simp then show ?thesis by auto next case prems: 2 then have "degree [:a:] < degree (q * pcompose p q)" by simp then have "lead_coeff ([:a:] + q * p \\<^sub>p q) = lead_coeff (q * p \\<^sub>p q)" by (rule lead_coeff_add_le) then have "lead_coeff (pcompose (pCons a p) q) = lead_coeff (q * pcompose p q)" by (simp add: pcompose_pCons) also have "\ = lead_coeff q * (lead_coeff p * lead_coeff q ^ degree p)" using pCons.hyps(2) lead_coeff_mult[of q "pcompose p q"] by simp also have "\ = lead_coeff p * lead_coeff q ^ (degree p + 1)" by (auto simp: mult_ac) finally show ?thesis by auto qed qed subsection \Closure properties of coefficients\ context fixes R :: "'a :: comm_semiring_1 set" assumes R_0: "0 \ R" assumes R_plus: "\x y. x \ R \ y \ R \ x + y \ R" assumes R_mult: "\x y. x \ R \ y \ R \ x * y \ R" begin lemma coeff_mult_semiring_closed: assumes "\i. coeff p i \ R" "\i. coeff q i \ R" shows "coeff (p * q) i \ R" proof - have R_sum: "sum f A \ R" if "\x. x \ A \ f x \ R" for A and f :: "nat \ 'a" using that by (induction A rule: infinite_finite_induct) (auto intro: R_0 R_plus) show ?thesis unfolding coeff_mult by (auto intro!: R_sum R_mult assms) qed lemma coeff_pcompose_semiring_closed: assumes "\i. coeff p i \ R" "\i. coeff q i \ R" shows "coeff (pcompose p q) i \ R" using assms(1) proof (induction p arbitrary: i) case (pCons a p i) have [simp]: "a \ R" using pCons.prems[of 0] by auto have "coeff p i \ R" for i using pCons.prems[of "Suc i"] by auto hence "coeff (p \\<^sub>p q) i \ R" for i using pCons.prems by (intro pCons.IH) thus ?case by (auto simp: pcompose_pCons coeff_pCons split: nat.splits intro!: assms R_plus coeff_mult_semiring_closed) qed auto end subsection \Shifting polynomials\ definition poly_shift :: "nat \ 'a::zero poly \ 'a poly" where "poly_shift n p = Abs_poly (\i. coeff p (i + n))" lemma nth_default_drop: "nth_default x (drop n xs) m = nth_default x xs (m + n)" by (auto simp add: nth_default_def add_ac) lemma nth_default_take: "nth_default x (take n xs) m = (if m < n then nth_default x xs m else x)" by (auto simp add: nth_default_def add_ac) lemma coeff_poly_shift: "coeff (poly_shift n p) i = coeff p (i + n)" proof - from MOST_coeff_eq_0[of p] obtain m where "\k>m. coeff p k = 0" by (auto simp: MOST_nat) then have "\k>m. coeff p (k + n) = 0" by auto then have "\\<^sub>\k. coeff p (k + n) = 0" by (auto simp: MOST_nat) then show ?thesis by (simp add: poly_shift_def poly.Abs_poly_inverse) qed lemma poly_shift_id [simp]: "poly_shift 0 = (\x. x)" by (simp add: poly_eq_iff fun_eq_iff coeff_poly_shift) lemma poly_shift_0 [simp]: "poly_shift n 0 = 0" by (simp add: poly_eq_iff coeff_poly_shift) lemma poly_shift_1: "poly_shift n 1 = (if n = 0 then 1 else 0)" by (simp add: poly_eq_iff coeff_poly_shift) lemma poly_shift_monom: "poly_shift n (monom c m) = (if m \ n then monom c (m - n) else 0)" by (auto simp add: poly_eq_iff coeff_poly_shift) lemma coeffs_shift_poly [code abstract]: "coeffs (poly_shift n p) = drop n (coeffs p)" proof (cases "p = 0") case True then show ?thesis by simp next case False then show ?thesis by (intro coeffs_eqI) (simp_all add: coeff_poly_shift nth_default_drop nth_default_coeffs_eq) qed subsection \Truncating polynomials\ definition poly_cutoff where "poly_cutoff n p = Abs_poly (\k. if k < n then coeff p k else 0)" lemma coeff_poly_cutoff: "coeff (poly_cutoff n p) k = (if k < n then coeff p k else 0)" unfolding poly_cutoff_def by (subst poly.Abs_poly_inverse) (auto simp: MOST_nat intro: exI[of _ n]) lemma poly_cutoff_0 [simp]: "poly_cutoff n 0 = 0" by (simp add: poly_eq_iff coeff_poly_cutoff) lemma poly_cutoff_1 [simp]: "poly_cutoff n 1 = (if n = 0 then 0 else 1)" by (simp add: poly_eq_iff coeff_poly_cutoff) lemma coeffs_poly_cutoff [code abstract]: "coeffs (poly_cutoff n p) = strip_while ((=) 0) (take n (coeffs p))" proof (cases "strip_while ((=) 0) (take n (coeffs p)) = []") case True then have "coeff (poly_cutoff n p) k = 0" for k unfolding coeff_poly_cutoff by (auto simp: nth_default_coeffs_eq [symmetric] nth_default_def set_conv_nth) then have "poly_cutoff n p = 0" by (simp add: poly_eq_iff) then show ?thesis by (subst True) simp_all next case False have "no_trailing ((=) 0) (strip_while ((=) 0) (take n (coeffs p)))" by simp with False have "last (strip_while ((=) 0) (take n (coeffs p))) \ 0" unfolding no_trailing_unfold by auto then show ?thesis by (intro coeffs_eqI) (simp_all add: coeff_poly_cutoff nth_default_take nth_default_coeffs_eq) qed subsection \Reflecting polynomials\ definition reflect_poly :: "'a::zero poly \ 'a poly" where "reflect_poly p = Poly (rev (coeffs p))" lemma coeffs_reflect_poly [code abstract]: "coeffs (reflect_poly p) = rev (dropWhile ((=) 0) (coeffs p))" by (simp add: reflect_poly_def) lemma reflect_poly_0 [simp]: "reflect_poly 0 = 0" by (simp add: reflect_poly_def) lemma reflect_poly_1 [simp]: "reflect_poly 1 = 1" by (simp add: reflect_poly_def one_pCons) lemma coeff_reflect_poly: "coeff (reflect_poly p) n = (if n > degree p then 0 else coeff p (degree p - n))" by (cases "p = 0") (auto simp add: reflect_poly_def nth_default_def rev_nth degree_eq_length_coeffs coeffs_nth not_less dest: le_imp_less_Suc) lemma coeff_0_reflect_poly_0_iff [simp]: "coeff (reflect_poly p) 0 = 0 \ p = 0" by (simp add: coeff_reflect_poly) lemma reflect_poly_at_0_eq_0_iff [simp]: "poly (reflect_poly p) 0 = 0 \ p = 0" by (simp add: coeff_reflect_poly poly_0_coeff_0) lemma reflect_poly_pCons': "p \ 0 \ reflect_poly (pCons c p) = reflect_poly p + monom c (Suc (degree p))" by (intro poly_eqI) (auto simp: coeff_reflect_poly coeff_pCons not_less Suc_diff_le split: nat.split) lemma reflect_poly_const [simp]: "reflect_poly [:a:] = [:a:]" by (cases "a = 0") (simp_all add: reflect_poly_def) lemma poly_reflect_poly_nz: "x \ 0 \ poly (reflect_poly p) x = x ^ degree p * poly p (inverse x)" for x :: "'a::field" by (induct rule: pCons_induct) (simp_all add: field_simps reflect_poly_pCons' poly_monom) lemma coeff_0_reflect_poly [simp]: "coeff (reflect_poly p) 0 = lead_coeff p" by (simp add: coeff_reflect_poly) lemma poly_reflect_poly_0 [simp]: "poly (reflect_poly p) 0 = lead_coeff p" by (simp add: poly_0_coeff_0) lemma reflect_poly_reflect_poly [simp]: "coeff p 0 \ 0 \ reflect_poly (reflect_poly p) = p" by (cases p rule: pCons_cases) (simp add: reflect_poly_def ) lemma degree_reflect_poly_le: "degree (reflect_poly p) \ degree p" by (simp add: degree_eq_length_coeffs coeffs_reflect_poly length_dropWhile_le diff_le_mono) lemma reflect_poly_pCons: "a \ 0 \ reflect_poly (pCons a p) = Poly (rev (a # coeffs p))" by (subst coeffs_eq_iff) (simp add: coeffs_reflect_poly) lemma degree_reflect_poly_eq [simp]: "coeff p 0 \ 0 \ degree (reflect_poly p) = degree p" by (cases p rule: pCons_cases) (simp add: reflect_poly_pCons degree_eq_length_coeffs) (* TODO: does this work with zero divisors as well? Probably not. *) lemma reflect_poly_mult: "reflect_poly (p * q) = reflect_poly p * reflect_poly q" for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" proof (cases "p = 0 \ q = 0") case False then have [simp]: "p \ 0" "q \ 0" by auto show ?thesis proof (rule poly_eqI) show "coeff (reflect_poly (p * q)) i = coeff (reflect_poly p * reflect_poly q) i" for i proof (cases "i \ degree (p * q)") case True define A where "A = {..i} \ {i - degree q..degree p}" define B where "B = {..degree p} \ {degree p - i..degree (p*q) - i}" let ?f = "\j. degree p - j" from True have "coeff (reflect_poly (p * q)) i = coeff (p * q) (degree (p * q) - i)" by (simp add: coeff_reflect_poly) also have "\ = (\j\degree (p * q) - i. coeff p j * coeff q (degree (p * q) - i - j))" by (simp add: coeff_mult) also have "\ = (\j\B. coeff p j * coeff q (degree (p * q) - i - j))" by (intro sum.mono_neutral_right) (auto simp: B_def degree_mult_eq not_le coeff_eq_0) also from True have "\ = (\j\A. coeff p (degree p - j) * coeff q (degree q - (i - j)))" by (intro sum.reindex_bij_witness[of _ ?f ?f]) (auto simp: A_def B_def degree_mult_eq add_ac) also have "\ = (\j\i. if j \ {i - degree q..degree p} then coeff p (degree p - j) * coeff q (degree q - (i - j)) else 0)" by (subst sum.inter_restrict [symmetric]) (simp_all add: A_def) also have "\ = coeff (reflect_poly p * reflect_poly q) i" by (fastforce simp: coeff_mult coeff_reflect_poly intro!: sum.cong) finally show ?thesis . qed (auto simp: coeff_mult coeff_reflect_poly coeff_eq_0 degree_mult_eq intro!: sum.neutral) qed qed auto lemma reflect_poly_smult: "reflect_poly (smult c p) = smult c (reflect_poly p)" for p :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly" using reflect_poly_mult[of "[:c:]" p] by simp lemma reflect_poly_power: "reflect_poly (p ^ n) = reflect_poly p ^ n" for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly" by (induct n) (simp_all add: reflect_poly_mult) lemma reflect_poly_prod: "reflect_poly (prod f A) = prod (\x. reflect_poly (f x)) A" for f :: "_ \ _::{comm_semiring_0,semiring_no_zero_divisors} poly" by (induct A rule: infinite_finite_induct) (simp_all add: reflect_poly_mult) lemma reflect_poly_prod_list: "reflect_poly (prod_list xs) = prod_list (map reflect_poly xs)" for xs :: "_::{comm_semiring_0,semiring_no_zero_divisors} poly list" by (induct xs) (simp_all add: reflect_poly_mult) lemma reflect_poly_Poly_nz: "no_trailing (HOL.eq 0) xs \ reflect_poly (Poly xs) = Poly (rev xs)" by (simp add: reflect_poly_def) lemmas reflect_poly_simps = reflect_poly_0 reflect_poly_1 reflect_poly_const reflect_poly_smult reflect_poly_mult reflect_poly_power reflect_poly_prod reflect_poly_prod_list subsection \Derivatives\ function pderiv :: "('a :: {comm_semiring_1,semiring_no_zero_divisors}) poly \ 'a poly" where "pderiv (pCons a p) = (if p = 0 then 0 else p + pCons 0 (pderiv p))" by (auto intro: pCons_cases) termination pderiv by (relation "measure degree") simp_all declare pderiv.simps[simp del] lemma pderiv_0 [simp]: "pderiv 0 = 0" using pderiv.simps [of 0 0] by simp lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)" by (simp add: pderiv.simps) lemma pderiv_1 [simp]: "pderiv 1 = 0" by (simp add: one_pCons pderiv_pCons) lemma pderiv_of_nat [simp]: "pderiv (of_nat n) = 0" and pderiv_numeral [simp]: "pderiv (numeral m) = 0" by (simp_all add: of_nat_poly numeral_poly pderiv_pCons) lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)" by (induct p arbitrary: n) (auto simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split) fun pderiv_coeffs_code :: "'a::{comm_semiring_1,semiring_no_zero_divisors} \ 'a list \ 'a list" where "pderiv_coeffs_code f (x # xs) = cCons (f * x) (pderiv_coeffs_code (f+1) xs)" | "pderiv_coeffs_code f [] = []" definition pderiv_coeffs :: "'a::{comm_semiring_1,semiring_no_zero_divisors} list \ 'a list" where "pderiv_coeffs xs = pderiv_coeffs_code 1 (tl xs)" (* Efficient code for pderiv contributed by René Thiemann and Akihisa Yamada *) lemma pderiv_coeffs_code: "nth_default 0 (pderiv_coeffs_code f xs) n = (f + of_nat n) * nth_default 0 xs n" proof (induct xs arbitrary: f n) case Nil then show ?case by simp next case (Cons x xs) show ?case proof (cases n) case 0 then show ?thesis by (cases "pderiv_coeffs_code (f + 1) xs = [] \ f * x = 0") (auto simp: cCons_def) next case n: (Suc m) show ?thesis proof (cases "pderiv_coeffs_code (f + 1) xs = [] \ f * x = 0") case False then have "nth_default 0 (pderiv_coeffs_code f (x # xs)) n = nth_default 0 (pderiv_coeffs_code (f + 1) xs) m" by (auto simp: cCons_def n) also have "\ = (f + of_nat n) * nth_default 0 xs m" by (simp add: Cons n add_ac) finally show ?thesis by (simp add: n) next case True have empty: "pderiv_coeffs_code g xs = [] \ g + of_nat m = 0 \ nth_default 0 xs m = 0" for g proof (induct xs arbitrary: g m) case Nil then show ?case by simp next case (Cons x xs) from Cons(2) have empty: "pderiv_coeffs_code (g + 1) xs = []" and g: "g = 0 \ x = 0" by (auto simp: cCons_def split: if_splits) note IH = Cons(1)[OF empty] from IH[of m] IH[of "m - 1"] g show ?case by (cases m) (auto simp: field_simps) qed from True have "nth_default 0 (pderiv_coeffs_code f (x # xs)) n = 0" by (auto simp: cCons_def n) moreover from True have "(f + of_nat n) * nth_default 0 (x # xs) n = 0" by (simp add: n) (use empty[of "f+1"] in \auto simp: field_simps\) ultimately show ?thesis by simp qed qed qed lemma coeffs_pderiv_code [code abstract]: "coeffs (pderiv p) = pderiv_coeffs (coeffs p)" unfolding pderiv_coeffs_def proof (rule coeffs_eqI, unfold pderiv_coeffs_code coeff_pderiv, goal_cases) case (1 n) have id: "coeff p (Suc n) = nth_default 0 (map (\i. coeff p (Suc i)) [0.. degree p = 0" for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors,semiring_char_0} poly" proof (cases "degree p") case 0 - then show ?thesis + then show ?thesis by (metis degree_eq_zeroE pderiv.simps) next case (Suc n) then show ?thesis using coeff_0 coeff_pderiv degree_0 leading_coeff_0_iff mult_eq_0_iff nat.distinct(1) of_nat_eq_0_iff by (metis coeff_0 coeff_pderiv degree_0 leading_coeff_0_iff mult_eq_0_iff nat.distinct(1) of_nat_eq_0_iff) qed lemma degree_pderiv: "degree (pderiv p) = degree p - 1" for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors,semiring_char_0} poly" proof - have "degree p - 1 \ degree (pderiv p)" proof (cases "degree p") case (Suc n) then show ?thesis - by (metis coeff_pderiv degree_0 diff_Suc_1 le_degree leading_coeff_0_iff mult_eq_0_iff nat.distinct(1) of_nat_eq_0_iff) + by (metis coeff_pderiv degree_0 diff_Suc_1 le_degree leading_coeff_0_iff mult_eq_0_iff nat.distinct(1) of_nat_eq_0_iff) qed auto moreover have "\i>degree p - 1. coeff (pderiv p) i = 0" by (simp add: coeff_eq_0 coeff_pderiv) ultimately show ?thesis using order_antisym [OF degree_le] by blast qed lemma not_dvd_pderiv: fixes p :: "'a::{comm_semiring_1,semiring_no_zero_divisors,semiring_char_0} poly" assumes "degree p \ 0" shows "\ p dvd pderiv p" proof assume dvd: "p dvd pderiv p" then obtain q where p: "pderiv p = p * q" unfolding dvd_def by auto from dvd have le: "degree p \ degree (pderiv p)" by (simp add: assms dvd_imp_degree_le pderiv_eq_0_iff) from assms and this [unfolded degree_pderiv] show False by auto qed lemma dvd_pderiv_iff [simp]: "p dvd pderiv p \ degree p = 0" for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors,semiring_char_0} poly" using not_dvd_pderiv[of p] by (auto simp: pderiv_eq_0_iff [symmetric]) lemma pderiv_singleton [simp]: "pderiv [:a:] = 0" by (simp add: pderiv_pCons) lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q" by (rule poly_eqI) (simp add: coeff_pderiv algebra_simps) lemma pderiv_minus: "pderiv (- p :: 'a :: idom poly) = - pderiv p" by (rule poly_eqI) (simp add: coeff_pderiv algebra_simps) lemma pderiv_diff: "pderiv ((p :: _ :: idom poly) - q) = pderiv p - pderiv q" by (rule poly_eqI) (simp add: coeff_pderiv algebra_simps) lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)" by (rule poly_eqI) (simp add: coeff_pderiv algebra_simps) lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p" by (induct p) (auto simp: pderiv_add pderiv_smult pderiv_pCons algebra_simps) lemma pderiv_power_Suc: "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p" proof (induction n) case (Suc n) then show ?case by (simp add: pderiv_mult smult_add_left algebra_simps) -qed auto +qed auto lemma pderiv_pcompose: "pderiv (pcompose p q) = pcompose (pderiv p) q * pderiv q" by (induction p rule: pCons_induct) (auto simp: pcompose_pCons pderiv_add pderiv_mult pderiv_pCons pcompose_add algebra_simps) lemma pderiv_prod: "pderiv (prod f (as)) = (\a\as. prod f (as - {a}) * pderiv (f a))" proof (induct as rule: infinite_finite_induct) case (insert a as) then have id: "prod f (insert a as) = f a * prod f as" "\g. sum g (insert a as) = g a + sum g as" "insert a as - {a} = as" by auto have "prod f (insert a as - {b}) = f a * prod f (as - {b})" if "b \ as" for b proof - from \a \ as\ that have *: "insert a as - {b} = insert a (as - {b})" by auto show ?thesis unfolding * by (subst prod.insert) (use insert in auto) qed then show ?case unfolding id pderiv_mult insert(3) sum_distrib_left by (auto simp add: ac_simps intro!: sum.cong) qed auto lemma DERIV_pow2: "DERIV (\x. x ^ Suc n) x :> real (Suc n) * (x ^ n)" by (rule DERIV_cong, rule DERIV_pow) simp declare DERIV_pow2 [simp] DERIV_pow [simp] lemma DERIV_add_const: "DERIV f x :> D \ DERIV (\x. a + f x :: 'a::real_normed_field) x :> D" by (rule DERIV_cong, rule DERIV_add) auto lemma poly_DERIV [simp]: "DERIV (\x. poly p x) x :> poly (pderiv p) x" by (induct p) (auto intro!: derivative_eq_intros simp add: pderiv_pCons) -lemma poly_isCont[simp]: +lemma poly_isCont[simp]: fixes x::"'a::real_normed_field" shows "isCont (\x. poly p x) x" by (rule poly_DERIV [THEN DERIV_isCont]) lemma tendsto_poly [tendsto_intros]: "(f \ a) F \ ((\x. poly p (f x)) \ poly p a) F" - for f :: "_ \ 'a::real_normed_field" + for f :: "_ \ 'a::real_normed_field" by (rule isCont_tendsto_compose [OF poly_isCont]) lemma continuous_within_poly: "continuous (at z within s) (poly p)" for z :: "'a::{real_normed_field}" - by (simp add: continuous_within tendsto_poly) - + by (simp add: continuous_within tendsto_poly) + lemma continuous_poly [continuous_intros]: "continuous F f \ continuous F (\x. poly p (f x))" for f :: "_ \ 'a::real_normed_field" unfolding continuous_def by (rule tendsto_poly) - + lemma continuous_on_poly [continuous_intros]: fixes p :: "'a :: {real_normed_field} poly" assumes "continuous_on A f" shows "continuous_on A (\x. poly p (f x))" by (metis DERIV_continuous_on assms continuous_on_compose2 poly_DERIV subset_UNIV) text \Consequences of the derivative theorem above.\ lemma poly_differentiable[simp]: "(\x. poly p x) differentiable (at x)" for x :: real by (simp add: real_differentiable_def) (blast intro: poly_DERIV) lemma poly_IVT_pos: "a < b \ poly p a < 0 \ 0 < poly p b \ \x. a < x \ x < b \ poly p x = 0" for a b :: real using IVT [of "poly p" a 0 b] by (auto simp add: order_le_less) lemma poly_IVT_neg: "a < b \ 0 < poly p a \ poly p b < 0 \ \x. a < x \ x < b \ poly p x = 0" for a b :: real using poly_IVT_pos [where p = "- p"] by simp lemma poly_IVT: "a < b \ poly p a * poly p b < 0 \ \x>a. x < b \ poly p x = 0" for p :: "real poly" by (metis less_not_sym mult_less_0_iff poly_IVT_neg poly_IVT_pos) lemma poly_MVT: "a < b \ \x. a < x \ x < b \ poly p b - poly p a = (b - a) * poly (pderiv p) x" for a b :: real by (simp add: MVT2) lemma poly_MVT': fixes a b :: real assumes "{min a b..max a b} \ A" shows "\x\A. poly p b - poly p a = (b - a) * poly (pderiv p) x" proof (cases a b rule: linorder_cases) case less from poly_MVT[OF less, of p] guess x by (elim exE conjE) then show ?thesis by (intro bexI[of _ x]) (auto intro!: subsetD[OF assms]) next case greater from poly_MVT[OF greater, of p] guess x by (elim exE conjE) then show ?thesis by (intro bexI[of _ x]) (auto simp: algebra_simps intro!: subsetD[OF assms]) qed (use assms in auto) lemma poly_pinfty_gt_lc: fixes p :: "real poly" assumes "lead_coeff p > 0" shows "\n. \ x \ n. poly p x \ lead_coeff p" using assms proof (induct p) case 0 then show ?case by auto next case (pCons a p) from this(1) consider "a \ 0" "p = 0" | "p \ 0" by auto then show ?case proof cases case 1 then show ?thesis by auto next case 2 with pCons obtain n1 where gte_lcoeff: "\x\n1. lead_coeff p \ poly p x" by auto from pCons(3) \p \ 0\ have gt_0: "lead_coeff p > 0" by auto define n where "n = max n1 (1 + \a\ / lead_coeff p)" have "lead_coeff (pCons a p) \ poly (pCons a p) x" if "n \ x" for x proof - from gte_lcoeff that have "lead_coeff p \ poly p x" by (auto simp: n_def) with gt_0 have "\a\ / lead_coeff p \ \a\ / poly p x" and "poly p x > 0" by (auto intro: frac_le) with \n \ x\[unfolded n_def] have "x \ 1 + \a\ / poly p x" by auto with \lead_coeff p \ poly p x\ \poly p x > 0\ \p \ 0\ show "lead_coeff (pCons a p) \ poly (pCons a p) x" by (auto simp: field_simps) qed then show ?thesis by blast qed qed lemma lemma_order_pderiv1: "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q + smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)" by (simp only: pderiv_mult pderiv_power_Suc) (simp del: power_Suc of_nat_Suc add: pderiv_pCons) lemma lemma_order_pderiv: fixes p :: "'a :: field_char_0 poly" assumes n: "0 < n" and pd: "pderiv p \ 0" and pe: "p = [:- a, 1:] ^ n * q" and nd: "\ [:- a, 1:] dvd q" shows "n = Suc (order a (pderiv p))" proof - from assms have "pderiv ([:- a, 1:] ^ n * q) \ 0" by auto from assms obtain n' where "n = Suc n'" "0 < Suc n'" "pderiv ([:- a, 1:] ^ Suc n' * q) \ 0" by (cases n) auto have "order a (pderiv ([:- a, 1:] ^ Suc n' * q)) = n'" proof (rule order_unique_lemma) show "[:- a, 1:] ^ n' dvd pderiv ([:- a, 1:] ^ Suc n' * q)" unfolding lemma_order_pderiv1 proof (rule dvd_add) show "[:- a, 1:] ^ n' dvd [:- a, 1:] ^ Suc n' * pderiv q" by (metis dvdI dvd_mult2 power_Suc2) show "[:- a, 1:] ^ n' dvd smult (of_nat (Suc n')) (q * [:- a, 1:] ^ n')" by (metis dvd_smult dvd_triv_right) qed have "k dvd k * pderiv q + smult (of_nat (Suc n')) l \ k dvd l" for k l by (auto simp del: of_nat_Suc simp: dvd_add_right_iff dvd_smult_iff) then show "\ [:- a, 1:] ^ Suc n' dvd pderiv ([:- a, 1:] ^ Suc n' * q)" unfolding lemma_order_pderiv1 by (metis nd dvd_mult_cancel_right power_not_zero pCons_eq_0_iff power_Suc zero_neq_one) qed then show ?thesis by (metis \n = Suc n'\ pe) qed lemma order_pderiv: "order a p = Suc (order a (pderiv p))" if "pderiv p \ 0" "order a p \ 0" for p :: "'a::field_char_0 poly" proof (cases "p = 0") case False obtain q where "p = [:- a, 1:] ^ order a p * q \ \ [:- a, 1:] dvd q" using False order_decomp by blast then show ?thesis using lemma_order_pderiv that by blast qed (use that in auto) lemma poly_squarefree_decomp_order: fixes p :: "'a::field_char_0 poly" assumes "pderiv p \ 0" and p: "p = q * d" and p': "pderiv p = e * d" and d: "d = r * p + s * pderiv p" shows "order a q = (if order a p = 0 then 0 else 1)" proof (rule classical) assume 1: "\ ?thesis" from \pderiv p \ 0\ have "p \ 0" by auto with p have "order a p = order a q + order a d" by (simp add: order_mult) with 1 have "order a p \ 0" by (auto split: if_splits) from \pderiv p \ 0\ \pderiv p = e * d\ have oapp: "order a (pderiv p) = order a e + order a d" by (simp add: order_mult) from \pderiv p \ 0\ \order a p \ 0\ have oap: "order a p = Suc (order a (pderiv p))" by (rule order_pderiv) from \p \ 0\ \p = q * d\ have "d \ 0" by simp have "[:- a, 1:] ^ order a (pderiv p) dvd r * p" by (metis dvd_trans dvd_triv_right oap order_1 power_Suc) then have "([:-a, 1:] ^ (order a (pderiv p))) dvd d" by (simp add: d order_1) with \d \ 0\ have "order a (pderiv p) \ order a d" by (simp add: order_divides) show ?thesis using \order a p = order a q + order a d\ and oapp oap and \order a (pderiv p) \ order a d\ by auto qed lemma poly_squarefree_decomp_order2: "pderiv p \ 0 \ p = q * d \ pderiv p = e * d \ d = r * p + s * pderiv p \ \a. order a q = (if order a p = 0 then 0 else 1)" for p :: "'a::field_char_0 poly" by (blast intro: poly_squarefree_decomp_order) lemma order_pderiv2: "pderiv p \ 0 \ order a p \ 0 \ order a (pderiv p) = n \ order a p = Suc n" for p :: "'a::field_char_0 poly" by (auto dest: order_pderiv) definition rsquarefree :: "'a::idom poly \ bool" where "rsquarefree p \ p \ 0 \ (\a. order a p = 0 \ order a p = 1)" lemma pderiv_iszero: "pderiv p = 0 \ \h. p = [:h:]" for p :: "'a::{semidom,semiring_char_0} poly" by (cases p) (auto simp: pderiv_eq_0_iff split: if_splits) lemma rsquarefree_roots: "rsquarefree p \ (\a. \ (poly p a = 0 \ poly (pderiv p) a = 0))" for p :: "'a::field_char_0 poly" proof (cases "p = 0") case False show ?thesis proof (cases "pderiv p = 0") case True with \p \ 0\ pderiv_iszero show ?thesis by (force simp add: order_0I rsquarefree_def) next case False with \p \ 0\ order_pderiv2 show ?thesis by (force simp add: rsquarefree_def order_root) qed qed (simp add: rsquarefree_def) lemma poly_squarefree_decomp: fixes p :: "'a::field_char_0 poly" assumes "pderiv p \ 0" and "p = q * d" and "pderiv p = e * d" and "d = r * p + s * pderiv p" shows "rsquarefree q \ (\a. poly q a = 0 \ poly p a = 0)" proof - from \pderiv p \ 0\ have "p \ 0" by auto with \p = q * d\ have "q \ 0" by simp from assms have "\a. order a q = (if order a p = 0 then 0 else 1)" by (rule poly_squarefree_decomp_order2) with \p \ 0\ \q \ 0\ show ?thesis by (simp add: rsquarefree_def order_root) qed subsection \Algebraic numbers\ text \ Algebraic numbers can be defined in two equivalent ways: all real numbers that are roots of rational polynomials or of integer polynomials. The Algebraic-Numbers AFP entry uses the rational definition, but we need the integer definition. The equivalence is obvious since any rational polynomial can be multiplied with the LCM of its coefficients, yielding an integer polynomial with the same roots. \ definition algebraic :: "'a :: field_char_0 \ bool" where "algebraic x \ (\p. (\i. coeff p i \ \) \ p \ 0 \ poly p x = 0)" lemma algebraicI: "(\i. coeff p i \ \) \ p \ 0 \ poly p x = 0 \ algebraic x" unfolding algebraic_def by blast lemma algebraicE: assumes "algebraic x" obtains p where "\i. coeff p i \ \" "p \ 0" "poly p x = 0" using assms unfolding algebraic_def by blast lemma algebraic_altdef: "algebraic x \ (\p. (\i. coeff p i \ \) \ p \ 0 \ poly p x = 0)" for p :: "'a::field_char_0 poly" proof safe fix p assume rat: "\i. coeff p i \ \" and root: "poly p x = 0" and nz: "p \ 0" define cs where "cs = coeffs p" from rat have "\c\range (coeff p). \c'. c = of_rat c'" unfolding Rats_def by blast then obtain f where f: "coeff p i = of_rat (f (coeff p i))" for i by (subst (asm) bchoice_iff) blast define cs' where "cs' = map (quotient_of \ f) (coeffs p)" define d where "d = Lcm (set (map snd cs'))" define p' where "p' = smult (of_int d) p" have "coeff p' n \ \" for n proof (cases "n \ degree p") case True define c where "c = coeff p n" define a where "a = fst (quotient_of (f (coeff p n)))" define b where "b = snd (quotient_of (f (coeff p n)))" have b_pos: "b > 0" unfolding b_def using quotient_of_denom_pos' by simp have "coeff p' n = of_int d * coeff p n" by (simp add: p'_def) also have "coeff p n = of_rat (of_int a / of_int b)" unfolding a_def b_def by (subst quotient_of_div [of "f (coeff p n)", symmetric]) (simp_all add: f [symmetric]) also have "of_int d * \ = of_rat (of_int (a*d) / of_int b)" by (simp add: of_rat_mult of_rat_divide) also from nz True have "b \ snd ` set cs'" by (force simp: cs'_def o_def b_def coeffs_def simp del: upt_Suc) then have "b dvd (a * d)" by (simp add: d_def) then have "of_int (a * d) / of_int b \ (\ :: rat set)" by (rule of_int_divide_in_Ints) then have "of_rat (of_int (a * d) / of_int b) \ \" by (elim Ints_cases) auto finally show ?thesis . next case False then show ?thesis by (auto simp: p'_def not_le coeff_eq_0) qed moreover have "set (map snd cs') \ {0<..}" unfolding cs'_def using quotient_of_denom_pos' by (auto simp: coeffs_def simp del: upt_Suc) then have "d \ 0" unfolding d_def by (induct cs') simp_all with nz have "p' \ 0" by (simp add: p'_def) moreover from root have "poly p' x = 0" by (simp add: p'_def) ultimately show "algebraic x" unfolding algebraic_def by blast next assume "algebraic x" then obtain p where p: "coeff p i \ \" "poly p x = 0" "p \ 0" for i by (force simp: algebraic_def) moreover have "coeff p i \ \ \ coeff p i \ \" for i by (elim Ints_cases) simp ultimately show "\p. (\i. coeff p i \ \) \ p \ 0 \ poly p x = 0" by auto qed subsection \Algebraic integers\ inductive algebraic_int :: "'a :: field \ bool" where "\lead_coeff p = 1; \i. coeff p i \ \; poly p x = 0\ \ algebraic_int x" lemma algebraic_int_altdef_ipoly: fixes x :: "'a :: field_char_0" shows "algebraic_int x \ (\p. poly (map_poly of_int p) x = 0 \ lead_coeff p = 1)" proof assume "algebraic_int x" then obtain p where p: "lead_coeff p = 1" "\i. coeff p i \ \" "poly p x = 0" by (auto elim: algebraic_int.cases) define the_int where "the_int = (\x::'a. THE r. x = of_int r)" define p' where "p' = map_poly the_int p" have of_int_the_int: "of_int (the_int x) = x" if "x \ \" for x unfolding the_int_def by (rule sym, rule theI') (insert that, auto simp: Ints_def) have the_int_0_iff: "the_int x = 0 \ x = 0" if "x \ \" for x using of_int_the_int[OF that] by auto have [simp]: "the_int 0 = 0" by (subst the_int_0_iff) auto have "map_poly of_int p' = map_poly (of_int \ the_int) p" by (simp add: p'_def map_poly_map_poly) also from p of_int_the_int have "\ = p" by (subst poly_eq_iff) (auto simp: coeff_map_poly) finally have p_p': "map_poly of_int p' = p" . show "(\p. poly (map_poly of_int p) x = 0 \ lead_coeff p = 1)" proof (intro exI conjI notI) from p show "poly (map_poly of_int p') x = 0" by (simp add: p_p') next show "lead_coeff p' = 1" using p by (simp flip: p_p' add: degree_map_poly coeff_map_poly) qed next assume "\p. poly (map_poly of_int p) x = 0 \ lead_coeff p = 1" then obtain p where p: "poly (map_poly of_int p) x = 0" "lead_coeff p = 1" by auto define p' where "p' = (map_poly of_int p :: 'a poly)" from p have "lead_coeff p' = 1" "poly p' x = 0" "\i. coeff p' i \ \" by (auto simp: p'_def coeff_map_poly degree_map_poly) thus "algebraic_int x" by (intro algebraic_int.intros) qed theorem rational_algebraic_int_is_int: assumes "algebraic_int x" and "x \ \" shows "x \ \" proof - from assms(2) obtain a b where ab: "b > 0" "Rings.coprime a b" and x_eq: "x = of_int a / of_int b" by (auto elim: Rats_cases') from \b > 0\ have [simp]: "b \ 0" by auto from assms(1) obtain p where p: "lead_coeff p = 1" "\i. coeff p i \ \" "poly p x = 0" by (auto simp: algebraic_int.simps) define q :: "'a poly" where "q = [:-of_int a, of_int b:]" have "poly q x = 0" "q \ 0" "\i. coeff q i \ \" by (auto simp: x_eq q_def coeff_pCons split: nat.splits) define n where "n = degree p" have "n > 0" using p by (intro Nat.gr0I) (auto simp: n_def elim!: degree_eq_zeroE) have "(\i \" using p by auto then obtain R where R: "of_int R = (\i = (\i\n. coeff p i * x ^ i * of_int b ^ n)" by (simp add: poly_altdef n_def sum_distrib_right) also have "\ = (\i\n. coeff p i * of_int (a ^ i * b ^ (n - i)))" by (intro sum.cong) (auto simp: x_eq field_simps simp flip: power_add) also have "{..n} = insert n {..n > 0\ by auto also have "(\i\\. coeff p i * of_int (a ^ i * b ^ (n - i))) = coeff p n * of_int (a ^ n) + (\iii = of_int (b * R)" by (simp add: R sum_distrib_left sum_distrib_right mult_ac) finally have "of_int (a ^ n) = (-of_int (b * R) :: 'a)" by (auto simp: add_eq_0_iff) hence "a ^ n = -b * R" by (simp flip: of_int_mult of_int_power of_int_minus) hence "b dvd a ^ n" by simp with \Rings.coprime a b\ have "b dvd 1" by (meson coprime_power_left_iff dvd_refl not_coprimeI) with x_eq and \b > 0\ show ?thesis by auto qed lemma algebraic_int_imp_algebraic [dest]: "algebraic_int x \ algebraic x" by (auto simp: algebraic_int.simps algebraic_def) lemma int_imp_algebraic_int: assumes "x \ \" shows "algebraic_int x" proof show "\i. coeff [:-x, 1:] i \ \" using assms by (auto simp: coeff_pCons split: nat.splits) qed auto lemma algebraic_int_0 [simp, intro]: "algebraic_int 0" and algebraic_int_1 [simp, intro]: "algebraic_int 1" and algebraic_int_numeral [simp, intro]: "algebraic_int (numeral n)" and algebraic_int_of_nat [simp, intro]: "algebraic_int (of_nat k)" and algebraic_int_of_int [simp, intro]: "algebraic_int (of_int m)" by (simp_all add: int_imp_algebraic_int) lemma algebraic_int_ii [simp, intro]: "algebraic_int \" proof show "poly [:1, 0, 1:] \ = 0" by simp qed (auto simp: coeff_pCons split: nat.splits) lemma algebraic_int_minus [intro]: assumes "algebraic_int x" shows "algebraic_int (-x)" proof - from assms obtain p where p: "lead_coeff p = 1" "\i. coeff p i \ \" "poly p x = 0" by (auto simp: algebraic_int.simps) define s where "s = (if even (degree p) then 1 else -1 :: 'a)" define q where "q = Polynomial.smult s (pcompose p [:0, -1:])" have "lead_coeff q = s * lead_coeff (pcompose p [:0, -1:])" by (simp add: q_def) also have "lead_coeff (pcompose p [:0, -1:]) = lead_coeff p * (- 1) ^ degree p" by (subst lead_coeff_comp) auto finally have "poly q (-x) = 0" and "lead_coeff q = 1" using p by (auto simp: q_def poly_pcompose s_def) moreover have "coeff q i \ \" for i proof - have "coeff (pcompose p [:0, -1:]) i \ \" using p by (intro coeff_pcompose_semiring_closed) (auto simp: coeff_pCons split: nat.splits) thus ?thesis by (simp add: q_def s_def) qed ultimately show ?thesis by (auto simp: algebraic_int.simps) qed lemma algebraic_int_minus_iff [simp]: "algebraic_int (-x) \ algebraic_int (x :: 'a :: field_char_0)" using algebraic_int_minus[of x] algebraic_int_minus[of "-x"] by auto lemma algebraic_int_inverse [intro]: assumes "poly p x = 0" and "\i. coeff p i \ \" and "coeff p 0 = 1" shows "algebraic_int (inverse x)" proof from assms have [simp]: "x \ 0" by (auto simp: poly_0_coeff_0) show "poly (reflect_poly p) (inverse x) = 0" using assms by (simp add: poly_reflect_poly_nz) qed (use assms in \auto simp: coeff_reflect_poly\) lemma algebraic_int_root: - assumes "algebraic_int y" + assumes "algebraic_int y" and "poly p x = y" and "\i. coeff p i \ \" and "lead_coeff p = 1" and "degree p > 0" shows "algebraic_int x" proof - from assms obtain q where q: "poly q y = 0" "\i. coeff q i \ \" "lead_coeff q = 1" by (auto simp: algebraic_int.simps) show ?thesis proof from assms q show "lead_coeff (pcompose q p) = 1" by (subst lead_coeff_comp) auto from assms q show "\i. coeff (pcompose q p) i \ \" by (intro allI coeff_pcompose_semiring_closed) auto show "poly (pcompose q p) x = 0" using assms q by (simp add: poly_pcompose) qed qed lemma algebraic_int_abs_real [simp]: "algebraic_int \x :: real\ \ algebraic_int x" by (auto simp: abs_if) lemma algebraic_int_nth_root_real [intro]: assumes "algebraic_int x" shows "algebraic_int (root n x)" proof (cases "n = 0") case False show ?thesis proof (rule algebraic_int_root) show "poly (monom 1 n) (root n x) = (if even n then \x\ else x)" using sgn_power_root[of n x] False by (auto simp add: poly_monom sgn_if split: if_splits) qed (use False assms in \auto simp: degree_monom_eq\) qed auto lemma algebraic_int_sqrt [intro]: "algebraic_int x \ algebraic_int (sqrt x)" by (auto simp: sqrt_def) lemma algebraic_int_csqrt [intro]: "algebraic_int x \ algebraic_int (csqrt x)" by (rule algebraic_int_root[where p = "monom 1 2"]) (auto simp: poly_monom degree_monom_eq) lemma poly_map_poly_cnj [simp]: "poly (map_poly cnj p) x = cnj (poly p (cnj x))" by (induction p) (auto simp: map_poly_pCons) lemma algebraic_int_cnj [intro]: assumes "algebraic_int x" shows "algebraic_int (cnj x)" proof - from assms obtain p where p: "lead_coeff p = 1" "\i. coeff p i \ \" "poly p x = 0" by (auto simp: algebraic_int.simps) show ?thesis proof show "poly (map_poly cnj p) (cnj x) = 0" using p by simp show "lead_coeff (map_poly cnj p) = 1" using p by (simp add: coeff_map_poly degree_map_poly) show "\i. coeff (map_poly cnj p) i \ \" using p by (auto simp: coeff_map_poly) qed qed lemma algebraic_int_cnj_iff [simp]: "algebraic_int (cnj x) \ algebraic_int x" using algebraic_int_cnj[of x] algebraic_int_cnj[of "cnj x"] by auto lemma algebraic_int_of_real [intro]: assumes "algebraic_int x" shows "algebraic_int (of_real x)" proof - from assms obtain p where p: "poly p x = 0" "\i. coeff p i \ \" "lead_coeff p = 1" by (auto simp: algebraic_int.simps) show "algebraic_int (of_real x :: 'a)" proof have "poly (map_poly of_real p) (of_real x) = (of_real (poly p x) :: 'a)" by (induction p) (auto simp: map_poly_pCons) thus "poly (map_poly of_real p) (of_real x) = (0 :: 'a)" using p by simp qed (use p in \auto simp: coeff_map_poly degree_map_poly\) qed lemma algebraic_int_of_real_iff [simp]: "algebraic_int (of_real x :: 'a :: {field_char_0, real_algebra_1}) \ algebraic_int x" proof assume "algebraic_int (of_real x :: 'a)" then obtain p where p: "poly (map_poly of_int p) (of_real x :: 'a) = 0" "lead_coeff p = 1" by (auto simp: algebraic_int_altdef_ipoly) show "algebraic_int x" unfolding algebraic_int_altdef_ipoly proof (intro exI[of _ p] conjI) have "of_real (poly (map_poly real_of_int p) x) = poly (map_poly of_int p) (of_real x :: 'a)" by (induction p) (auto simp: map_poly_pCons) also note p(1) finally show "poly (map_poly real_of_int p) x = 0" by simp qed (use p in auto) qed auto subsection \Division of polynomials\ subsubsection \Division in general\ instantiation poly :: (idom_divide) idom_divide begin fun divide_poly_main :: "'a \ 'a poly \ 'a poly \ 'a poly \ nat \ nat \ 'a poly" where "divide_poly_main lc q r d dr (Suc n) = (let cr = coeff r dr; a = cr div lc; mon = monom a n in if False \ a * lc = cr then \ \\False \\ is only because of problem in function-package\ divide_poly_main lc (q + mon) (r - mon * d) d (dr - 1) n else 0)" | "divide_poly_main lc q r d dr 0 = q" definition divide_poly :: "'a poly \ 'a poly \ 'a poly" where "divide_poly f g = (if g = 0 then 0 else divide_poly_main (coeff g (degree g)) 0 f g (degree f) (1 + length (coeffs f) - length (coeffs g)))" lemma divide_poly_main: assumes d: "d \ 0" "lc = coeff d (degree d)" and "degree (d * r) \ dr" "divide_poly_main lc q (d * r) d dr n = q'" and "n = 1 + dr - degree d \ dr = 0 \ n = 0 \ d * r = 0" shows "q' = q + r" using assms(3-) proof (induct n arbitrary: q r dr) case (Suc n) let ?rr = "d * r" let ?a = "coeff ?rr dr" let ?qq = "?a div lc" define b where [simp]: "b = monom ?qq n" let ?rrr = "d * (r - b)" let ?qqq = "q + b" note res = Suc(3) from Suc(4) have dr: "dr = n + degree d" by auto from d have lc: "lc \ 0" by auto have "coeff (b * d) dr = coeff b n * coeff d (degree d)" proof (cases "?qq = 0") case True then show ?thesis by simp next case False then have n: "n = degree b" by (simp add: degree_monom_eq) show ?thesis unfolding n dr by (simp add: coeff_mult_degree_sum) qed also have "\ = lc * coeff b n" by (simp add: d) finally have c2: "coeff (b * d) dr = lc * coeff b n" . have rrr: "?rrr = ?rr - b * d" by (simp add: field_simps) have c1: "coeff (d * r) dr = lc * coeff r n" proof (cases "degree r = n") case True with Suc(2) show ?thesis unfolding dr using coeff_mult_degree_sum[of d r] d by (auto simp: ac_simps) next case False from dr Suc(2) have "degree r \ n" by auto (metis add.commute add_le_cancel_left d(1) degree_0 degree_mult_eq diff_is_0_eq diff_zero le_cases) with False have r_n: "degree r < n" by auto then have right: "lc * coeff r n = 0" by (simp add: coeff_eq_0) have "coeff (d * r) dr = coeff (d * r) (degree d + n)" by (simp add: dr ac_simps) also from r_n have "\ = 0" by (metis False Suc.prems(1) add.commute add_left_imp_eq coeff_degree_mult coeff_eq_0 coeff_mult_degree_sum degree_mult_le dr le_eq_less_or_eq) finally show ?thesis by (simp only: right) qed have c0: "coeff ?rrr dr = 0" and id: "lc * (coeff (d * r) dr div lc) = coeff (d * r) dr" unfolding rrr coeff_diff c2 unfolding b_def coeff_monom coeff_smult c1 using lc by auto from res[unfolded divide_poly_main.simps[of lc q] Let_def] id have res: "divide_poly_main lc ?qqq ?rrr d (dr - 1) n = q'" by (simp del: divide_poly_main.simps add: field_simps) note IH = Suc(1)[OF _ res] from Suc(4) have dr: "dr = n + degree d" by auto from Suc(2) have deg_rr: "degree ?rr \ dr" by auto have deg_bd: "degree (b * d) \ dr" unfolding dr b_def by (rule order.trans[OF degree_mult_le]) (auto simp: degree_monom_le) have "degree ?rrr \ dr" unfolding rrr by (rule degree_diff_le[OF deg_rr deg_bd]) with c0 have deg_rrr: "degree ?rrr \ (dr - 1)" by (rule coeff_0_degree_minus_1) have "n = 1 + (dr - 1) - degree d \ dr - 1 = 0 \ n = 0 \ ?rrr = 0" proof (cases dr) case 0 with Suc(4) have 0: "dr = 0" "n = 0" "degree d = 0" by auto with deg_rrr have "degree ?rrr = 0" by simp from degree_eq_zeroE[OF this] obtain a where rrr: "?rrr = [:a:]" by metis show ?thesis unfolding 0 using c0 unfolding rrr 0 by simp next case _: Suc with Suc(4) show ?thesis by auto qed from IH[OF deg_rrr this] show ?case by simp next case 0 show ?case proof (cases "r = 0") case True with 0 show ?thesis by auto next case False from d False have "degree (d * r) = degree d + degree r" by (subst degree_mult_eq) auto with 0 d show ?thesis by auto qed qed lemma divide_poly_main_0: "divide_poly_main 0 0 r d dr n = 0" proof (induct n arbitrary: r d dr) case 0 then show ?case by simp next case Suc show ?case unfolding divide_poly_main.simps[of _ _ r] Let_def by (simp add: Suc del: divide_poly_main.simps) qed lemma divide_poly: assumes g: "g \ 0" shows "(f * g) div g = (f :: 'a poly)" proof - have len: "length (coeffs f) = Suc (degree f)" if "f \ 0" for f :: "'a poly" using that unfolding degree_eq_length_coeffs by auto have "divide_poly_main (coeff g (degree g)) 0 (g * f) g (degree (g * f)) (1 + length (coeffs (g * f)) - length (coeffs g)) = (f * g) div g" by (simp add: divide_poly_def Let_def ac_simps) note main = divide_poly_main[OF g refl le_refl this] have "(f * g) div g = 0 + f" proof (rule main, goal_cases) case 1 show ?case proof (cases "f = 0") case True with g show ?thesis by (auto simp: degree_eq_length_coeffs) next case False with g have fg: "g * f \ 0" by auto show ?thesis unfolding len[OF fg] len[OF g] by auto qed qed then show ?thesis by simp qed lemma divide_poly_0: "f div 0 = 0" for f :: "'a poly" by (simp add: divide_poly_def Let_def divide_poly_main_0) instance by standard (auto simp: divide_poly divide_poly_0) end instance poly :: (idom_divide) algebraic_semidom .. lemma div_const_poly_conv_map_poly: assumes "[:c:] dvd p" shows "p div [:c:] = map_poly (\x. x div c) p" proof (cases "c = 0") case True then show ?thesis by (auto intro!: poly_eqI simp: coeff_map_poly) next case False from assms obtain q where p: "p = [:c:] * q" by (rule dvdE) moreover { have "smult c q = [:c:] * q" by simp also have "\ div [:c:] = q" by (rule nonzero_mult_div_cancel_left) (use False in auto) finally have "smult c q div [:c:] = q" . } ultimately show ?thesis by (intro poly_eqI) (auto simp: coeff_map_poly False) qed lemma is_unit_monom_0: fixes a :: "'a::field" assumes "a \ 0" shows "is_unit (monom a 0)" proof from assms show "1 = monom a 0 * monom (inverse a) 0" by (simp add: mult_monom) qed lemma is_unit_triv: "a \ 0 \ is_unit [:a:]" for a :: "'a::field" by (simp add: is_unit_monom_0 monom_0 [symmetric]) lemma is_unit_iff_degree: fixes p :: "'a::field poly" assumes "p \ 0" shows "is_unit p \ degree p = 0" (is "?lhs \ ?rhs") proof assume ?rhs then obtain a where "p = [:a:]" by (rule degree_eq_zeroE) with assms show ?lhs by (simp add: is_unit_triv) next assume ?lhs then obtain q where "q \ 0" "p * q = 1" .. then have "degree (p * q) = degree 1" by simp with \p \ 0\ \q \ 0\ have "degree p + degree q = 0" by (simp add: degree_mult_eq) then show ?rhs by simp qed lemma is_unit_pCons_iff: "is_unit (pCons a p) \ p = 0 \ a \ 0" for p :: "'a::field poly" by (cases "p = 0") (auto simp: is_unit_triv is_unit_iff_degree) lemma is_unit_monom_trivial: "is_unit p \ monom (coeff p (degree p)) 0 = p" for p :: "'a::field poly" by (cases p) (simp_all add: monom_0 is_unit_pCons_iff) lemma is_unit_const_poly_iff: "[:c:] dvd 1 \ c dvd 1" for c :: "'a::{comm_semiring_1,semiring_no_zero_divisors}" by (auto simp: one_pCons) lemma is_unit_polyE: fixes p :: "'a :: {comm_semiring_1,semiring_no_zero_divisors} poly" assumes "p dvd 1" obtains c where "p = [:c:]" "c dvd 1" proof - from assms obtain q where "1 = p * q" by (rule dvdE) then have "p \ 0" and "q \ 0" by auto from \1 = p * q\ have "degree 1 = degree (p * q)" by simp also from \p \ 0\ and \q \ 0\ have "\ = degree p + degree q" by (simp add: degree_mult_eq) finally have "degree p = 0" by simp with degree_eq_zeroE obtain c where c: "p = [:c:]" . with \p dvd 1\ have "c dvd 1" by (simp add: is_unit_const_poly_iff) with c show thesis .. qed lemma is_unit_polyE': fixes p :: "'a::field poly" assumes "is_unit p" obtains a where "p = monom a 0" and "a \ 0" proof - obtain a q where "p = pCons a q" by (cases p) with assms have "p = [:a:]" and "a \ 0" by (simp_all add: is_unit_pCons_iff) with that show thesis by (simp add: monom_0) qed lemma is_unit_poly_iff: "p dvd 1 \ (\c. p = [:c:] \ c dvd 1)" for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly" by (auto elim: is_unit_polyE simp add: is_unit_const_poly_iff) subsubsection \Pseudo-Division\ text \This part is by René Thiemann and Akihisa Yamada.\ fun pseudo_divmod_main :: "'a :: comm_ring_1 \ 'a poly \ 'a poly \ 'a poly \ nat \ nat \ 'a poly \ 'a poly" where "pseudo_divmod_main lc q r d dr (Suc n) = (let rr = smult lc r; qq = coeff r dr; rrr = rr - monom qq n * d; qqq = smult lc q + monom qq n in pseudo_divmod_main lc qqq rrr d (dr - 1) n)" | "pseudo_divmod_main lc q r d dr 0 = (q,r)" definition pseudo_divmod :: "'a :: comm_ring_1 poly \ 'a poly \ 'a poly \ 'a poly" where "pseudo_divmod p q \ if q = 0 then (0, p) else pseudo_divmod_main (coeff q (degree q)) 0 p q (degree p) (1 + length (coeffs p) - length (coeffs q))" lemma pseudo_divmod_main: assumes d: "d \ 0" "lc = coeff d (degree d)" and "degree r \ dr" "pseudo_divmod_main lc q r d dr n = (q',r')" and "n = 1 + dr - degree d \ dr = 0 \ n = 0 \ r = 0" shows "(r' = 0 \ degree r' < degree d) \ smult (lc^n) (d * q + r) = d * q' + r'" using assms(3-) proof (induct n arbitrary: q r dr) case 0 then show ?case by auto next case (Suc n) let ?rr = "smult lc r" let ?qq = "coeff r dr" define b where [simp]: "b = monom ?qq n" let ?rrr = "?rr - b * d" let ?qqq = "smult lc q + b" note res = Suc(3) from res[unfolded pseudo_divmod_main.simps[of lc q] Let_def] have res: "pseudo_divmod_main lc ?qqq ?rrr d (dr - 1) n = (q',r')" by (simp del: pseudo_divmod_main.simps) from Suc(4) have dr: "dr = n + degree d" by auto have "coeff (b * d) dr = coeff b n * coeff d (degree d)" proof (cases "?qq = 0") case True then show ?thesis by auto next case False then have n: "n = degree b" by (simp add: degree_monom_eq) show ?thesis unfolding n dr by (simp add: coeff_mult_degree_sum) qed also have "\ = lc * coeff b n" by (simp add: d) finally have "coeff (b * d) dr = lc * coeff b n" . moreover have "coeff ?rr dr = lc * coeff r dr" by simp ultimately have c0: "coeff ?rrr dr = 0" by auto from Suc(4) have dr: "dr = n + degree d" by auto have deg_rr: "degree ?rr \ dr" using Suc(2) degree_smult_le dual_order.trans by blast have deg_bd: "degree (b * d) \ dr" unfolding dr by (rule order.trans[OF degree_mult_le]) (auto simp: degree_monom_le) have "degree ?rrr \ dr" using degree_diff_le[OF deg_rr deg_bd] by auto with c0 have deg_rrr: "degree ?rrr \ (dr - 1)" by (rule coeff_0_degree_minus_1) have "n = 1 + (dr - 1) - degree d \ dr - 1 = 0 \ n = 0 \ ?rrr = 0" proof (cases dr) case 0 with Suc(4) have 0: "dr = 0" "n = 0" "degree d = 0" by auto with deg_rrr have "degree ?rrr = 0" by simp then have "\a. ?rrr = [:a:]" by (metis degree_pCons_eq_if old.nat.distinct(2) pCons_cases) from this obtain a where rrr: "?rrr = [:a:]" by auto show ?thesis unfolding 0 using c0 unfolding rrr 0 by simp next case _: Suc with Suc(4) show ?thesis by auto qed note IH = Suc(1)[OF deg_rrr res this] show ?case proof (intro conjI) from IH show "r' = 0 \ degree r' < degree d" by blast show "smult (lc ^ Suc n) (d * q + r) = d * q' + r'" unfolding IH[THEN conjunct2,symmetric] by (simp add: field_simps smult_add_right) qed qed lemma pseudo_divmod: assumes g: "g \ 0" and *: "pseudo_divmod f g = (q,r)" shows "smult (coeff g (degree g) ^ (Suc (degree f) - degree g)) f = g * q + r" (is ?A) and "r = 0 \ degree r < degree g" (is ?B) proof - from *[unfolded pseudo_divmod_def Let_def] have "pseudo_divmod_main (coeff g (degree g)) 0 f g (degree f) (1 + length (coeffs f) - length (coeffs g)) = (q, r)" by (auto simp: g) note main = pseudo_divmod_main[OF _ _ _ this, OF g refl le_refl] from g have "1 + length (coeffs f) - length (coeffs g) = 1 + degree f - degree g \ degree f = 0 \ 1 + length (coeffs f) - length (coeffs g) = 0 \ f = 0" by (cases "f = 0"; cases "coeffs g") (auto simp: degree_eq_length_coeffs) note main' = main[OF this] then show "r = 0 \ degree r < degree g" by auto show "smult (coeff g (degree g) ^ (Suc (degree f) - degree g)) f = g * q + r" by (subst main'[THEN conjunct2, symmetric], simp add: degree_eq_length_coeffs, cases "f = 0"; cases "coeffs g", use g in auto) qed definition "pseudo_mod_main lc r d dr n = snd (pseudo_divmod_main lc 0 r d dr n)" lemma snd_pseudo_divmod_main: "snd (pseudo_divmod_main lc q r d dr n) = snd (pseudo_divmod_main lc q' r d dr n)" by (induct n arbitrary: q q' lc r d dr) (simp_all add: Let_def) definition pseudo_mod :: "'a::{comm_ring_1,semiring_1_no_zero_divisors} poly \ 'a poly \ 'a poly" where "pseudo_mod f g = snd (pseudo_divmod f g)" lemma pseudo_mod: fixes f g :: "'a::{comm_ring_1,semiring_1_no_zero_divisors} poly" defines "r \ pseudo_mod f g" assumes g: "g \ 0" shows "\a q. a \ 0 \ smult a f = g * q + r" "r = 0 \ degree r < degree g" proof - let ?cg = "coeff g (degree g)" let ?cge = "?cg ^ (Suc (degree f) - degree g)" define a where "a = ?cge" from r_def[unfolded pseudo_mod_def] obtain q where pdm: "pseudo_divmod f g = (q, r)" by (cases "pseudo_divmod f g") auto from pseudo_divmod[OF g pdm] have id: "smult a f = g * q + r" and "r = 0 \ degree r < degree g" by (auto simp: a_def) show "r = 0 \ degree r < degree g" by fact from g have "a \ 0" by (auto simp: a_def) with id show "\a q. a \ 0 \ smult a f = g * q + r" by auto qed lemma fst_pseudo_divmod_main_as_divide_poly_main: assumes d: "d \ 0" defines lc: "lc \ coeff d (degree d)" shows "fst (pseudo_divmod_main lc q r d dr n) = divide_poly_main lc (smult (lc^n) q) (smult (lc^n) r) d dr n" proof (induct n arbitrary: q r dr) case 0 then show ?case by simp next case (Suc n) note lc0 = leading_coeff_neq_0[OF d, folded lc] then have "pseudo_divmod_main lc q r d dr (Suc n) = pseudo_divmod_main lc (smult lc q + monom (coeff r dr) n) (smult lc r - monom (coeff r dr) n * d) d (dr - 1) n" by (simp add: Let_def ac_simps) also have "fst \ = divide_poly_main lc (smult (lc^n) (smult lc q + monom (coeff r dr) n)) (smult (lc^n) (smult lc r - monom (coeff r dr) n * d)) d (dr - 1) n" by (simp only: Suc[unfolded divide_poly_main.simps Let_def]) also have "\ = divide_poly_main lc (smult (lc ^ Suc n) q) (smult (lc ^ Suc n) r) d dr (Suc n)" unfolding smult_monom smult_distribs mult_smult_left[symmetric] using lc0 by (simp add: Let_def ac_simps) finally show ?case . qed subsubsection \Division in polynomials over fields\ lemma pseudo_divmod_field: fixes g :: "'a::field poly" assumes g: "g \ 0" and *: "pseudo_divmod f g = (q,r)" defines "c \ coeff g (degree g) ^ (Suc (degree f) - degree g)" shows "f = g * smult (1/c) q + smult (1/c) r" proof - from leading_coeff_neq_0[OF g] have c0: "c \ 0" by (auto simp: c_def) from pseudo_divmod(1)[OF g *, folded c_def] have "smult c f = g * q + r" by auto also have "smult (1 / c) \ = g * smult (1 / c) q + smult (1 / c) r" by (simp add: smult_add_right) finally show ?thesis using c0 by auto qed lemma divide_poly_main_field: fixes d :: "'a::field poly" assumes d: "d \ 0" defines lc: "lc \ coeff d (degree d)" shows "divide_poly_main lc q r d dr n = fst (pseudo_divmod_main lc (smult ((1 / lc)^n) q) (smult ((1 / lc)^n) r) d dr n)" unfolding lc by (subst fst_pseudo_divmod_main_as_divide_poly_main) (auto simp: d power_one_over) lemma divide_poly_field: fixes f g :: "'a::field poly" defines "f' \ smult ((1 / coeff g (degree g)) ^ (Suc (degree f) - degree g)) f" shows "f div g = fst (pseudo_divmod f' g)" proof (cases "g = 0") case True show ?thesis unfolding divide_poly_def pseudo_divmod_def Let_def f'_def True by (simp add: divide_poly_main_0) next case False from leading_coeff_neq_0[OF False] have "degree f' = degree f" by (auto simp: f'_def) then show ?thesis using length_coeffs_degree[of f'] length_coeffs_degree[of f] unfolding divide_poly_def pseudo_divmod_def Let_def divide_poly_main_field[OF False] length_coeffs_degree[OF False] f'_def by force qed instantiation poly :: ("{semidom_divide_unit_factor,idom_divide}") normalization_semidom begin definition unit_factor_poly :: "'a poly \ 'a poly" where "unit_factor_poly p = [:unit_factor (lead_coeff p):]" definition normalize_poly :: "'a poly \ 'a poly" where "normalize p = p div [:unit_factor (lead_coeff p):]" instance proof fix p :: "'a poly" show "unit_factor p * normalize p = p" proof (cases "p = 0") case True then show ?thesis by (simp add: unit_factor_poly_def normalize_poly_def) next case False then have "lead_coeff p \ 0" by simp then have *: "unit_factor (lead_coeff p) \ 0" using unit_factor_is_unit [of "lead_coeff p"] by auto then have "unit_factor (lead_coeff p) dvd 1" by (auto intro: unit_factor_is_unit) then have **: "unit_factor (lead_coeff p) dvd c" for c by (rule dvd_trans) simp have ***: "unit_factor (lead_coeff p) * (c div unit_factor (lead_coeff p)) = c" for c proof - from ** obtain b where "c = unit_factor (lead_coeff p) * b" .. with False * show ?thesis by simp qed have "p div [:unit_factor (lead_coeff p):] = map_poly (\c. c div unit_factor (lead_coeff p)) p" by (simp add: const_poly_dvd_iff div_const_poly_conv_map_poly **) then show ?thesis by (simp add: normalize_poly_def unit_factor_poly_def smult_conv_map_poly map_poly_map_poly o_def ***) qed next fix p :: "'a poly" assume "is_unit p" then obtain c where p: "p = [:c:]" "c dvd 1" by (auto simp: is_unit_poly_iff) then show "unit_factor p = p" by (simp add: unit_factor_poly_def monom_0 is_unit_unit_factor) next fix p :: "'a poly" assume "p \ 0" then show "is_unit (unit_factor p)" by (simp add: unit_factor_poly_def monom_0 is_unit_poly_iff unit_factor_is_unit) next - fix a b :: "'a poly" assume "is_unit a" + fix a b :: "'a poly" assume "is_unit a" thus "unit_factor (a * b) = a * unit_factor b" by (auto simp: unit_factor_poly_def lead_coeff_mult unit_factor_mult elim!: is_unit_polyE) qed (simp_all add: normalize_poly_def unit_factor_poly_def monom_0 lead_coeff_mult unit_factor_mult) end -instance poly :: ("{semidom_divide_unit_factor,idom_divide,normalization_semidom_multiplicative}") +instance poly :: ("{semidom_divide_unit_factor,idom_divide,normalization_semidom_multiplicative}") normalization_semidom_multiplicative by intro_classes (auto simp: unit_factor_poly_def lead_coeff_mult unit_factor_mult) lemma normalize_poly_eq_map_poly: "normalize p = map_poly (\x. x div unit_factor (lead_coeff p)) p" proof - have "[:unit_factor (lead_coeff p):] dvd p" by (metis unit_factor_poly_def unit_factor_self) then show ?thesis by (simp add: normalize_poly_def div_const_poly_conv_map_poly) qed lemma coeff_normalize [simp]: "coeff (normalize p) n = coeff p n div unit_factor (lead_coeff p)" by (simp add: normalize_poly_eq_map_poly coeff_map_poly) class field_unit_factor = field + unit_factor + assumes unit_factor_field [simp]: "unit_factor = id" begin subclass semidom_divide_unit_factor proof fix a assume "a \ 0" then have "1 = a * inverse a" by simp then have "a dvd 1" .. then show "unit_factor a dvd 1" by simp qed simp_all end lemma unit_factor_pCons: "unit_factor (pCons a p) = (if p = 0 then [:unit_factor a:] else unit_factor p)" by (simp add: unit_factor_poly_def) lemma normalize_monom [simp]: "normalize (monom a n) = monom (normalize a) n" by (cases "a = 0") (simp_all add: map_poly_monom normalize_poly_eq_map_poly degree_monom_eq) lemma unit_factor_monom [simp]: "unit_factor (monom a n) = [:unit_factor a:]" by (cases "a = 0") (simp_all add: unit_factor_poly_def degree_monom_eq) lemma normalize_const_poly: "normalize [:c:] = [:normalize c:]" by (simp add: normalize_poly_eq_map_poly map_poly_pCons) lemma normalize_smult: fixes c :: "'a :: {normalization_semidom_multiplicative, idom_divide}" shows "normalize (smult c p) = smult (normalize c) (normalize p)" proof - have "smult c p = [:c:] * p" by simp also have "normalize \ = smult (normalize c) (normalize p)" by (subst normalize_mult) (simp add: normalize_const_poly) finally show ?thesis . qed inductive eucl_rel_poly :: "'a::field poly \ 'a poly \ 'a poly \ 'a poly \ bool" where eucl_rel_poly_by0: "eucl_rel_poly x 0 (0, x)" | eucl_rel_poly_dividesI: "y \ 0 \ x = q * y \ eucl_rel_poly x y (q, 0)" | eucl_rel_poly_remainderI: "y \ 0 \ degree r < degree y \ x = q * y + r \ eucl_rel_poly x y (q, r)" lemma eucl_rel_poly_iff: "eucl_rel_poly x y (q, r) \ x = q * y + r \ (if y = 0 then q = 0 else r = 0 \ degree r < degree y)" by (auto elim: eucl_rel_poly.cases intro: eucl_rel_poly_by0 eucl_rel_poly_dividesI eucl_rel_poly_remainderI) lemma eucl_rel_poly_0: "eucl_rel_poly 0 y (0, 0)" by (simp add: eucl_rel_poly_iff) lemma eucl_rel_poly_by_0: "eucl_rel_poly x 0 (0, x)" by (simp add: eucl_rel_poly_iff) lemma eucl_rel_poly_pCons: assumes rel: "eucl_rel_poly x y (q, r)" assumes y: "y \ 0" assumes b: "b = coeff (pCons a r) (degree y) / coeff y (degree y)" shows "eucl_rel_poly (pCons a x) y (pCons b q, pCons a r - smult b y)" (is "eucl_rel_poly ?x y (?q, ?r)") proof - from assms have x: "x = q * y + r" and r: "r = 0 \ degree r < degree y" by (simp_all add: eucl_rel_poly_iff) from b x have "?x = ?q * y + ?r" by simp moreover have "?r = 0 \ degree ?r < degree y" proof (rule eq_zero_or_degree_less) show "degree ?r \ degree y" proof (rule degree_diff_le) from r show "degree (pCons a r) \ degree y" by auto show "degree (smult b y) \ degree y" by (rule degree_smult_le) qed from \y \ 0\ show "coeff ?r (degree y) = 0" by (simp add: b) qed ultimately show ?thesis unfolding eucl_rel_poly_iff using \y \ 0\ by simp qed lemma eucl_rel_poly_exists: "\q r. eucl_rel_poly x y (q, r)" proof (cases "y = 0") case False show ?thesis proof (induction x) case 0 then show ?case - using eucl_rel_poly_0 by blast + using eucl_rel_poly_0 by blast next case (pCons a x) then show ?case using False eucl_rel_poly_pCons by blast qed qed (use eucl_rel_poly_by0 in blast) lemma eucl_rel_poly_unique: assumes 1: "eucl_rel_poly x y (q1, r1)" assumes 2: "eucl_rel_poly x y (q2, r2)" shows "q1 = q2 \ r1 = r2" proof (cases "y = 0") assume "y = 0" with assms show ?thesis by (simp add: eucl_rel_poly_iff) next assume [simp]: "y \ 0" from 1 have q1: "x = q1 * y + r1" and r1: "r1 = 0 \ degree r1 < degree y" unfolding eucl_rel_poly_iff by simp_all from 2 have q2: "x = q2 * y + r2" and r2: "r2 = 0 \ degree r2 < degree y" unfolding eucl_rel_poly_iff by simp_all from q1 q2 have q3: "(q1 - q2) * y = r2 - r1" by (simp add: algebra_simps) from r1 r2 have r3: "(r2 - r1) = 0 \ degree (r2 - r1) < degree y" by (auto intro: degree_diff_less) show "q1 = q2 \ r1 = r2" proof (rule classical) assume "\ ?thesis" with q3 have "q1 \ q2" and "r1 \ r2" by auto with r3 have "degree (r2 - r1) < degree y" by simp also have "degree y \ degree (q1 - q2) + degree y" by simp also from \q1 \ q2\ have "\ = degree ((q1 - q2) * y)" by (simp add: degree_mult_eq) also from q3 have "\ = degree (r2 - r1)" by simp finally have "degree (r2 - r1) < degree (r2 - r1)" . then show ?thesis by simp qed qed lemma eucl_rel_poly_0_iff: "eucl_rel_poly 0 y (q, r) \ q = 0 \ r = 0" by (auto dest: eucl_rel_poly_unique intro: eucl_rel_poly_0) lemma eucl_rel_poly_by_0_iff: "eucl_rel_poly x 0 (q, r) \ q = 0 \ r = x" by (auto dest: eucl_rel_poly_unique intro: eucl_rel_poly_by_0) lemmas eucl_rel_poly_unique_div = eucl_rel_poly_unique [THEN conjunct1] lemmas eucl_rel_poly_unique_mod = eucl_rel_poly_unique [THEN conjunct2] instantiation poly :: (field) semidom_modulo begin definition modulo_poly :: "'a poly \ 'a poly \ 'a poly" where mod_poly_def: "f mod g = (if g = 0 then f else pseudo_mod (smult ((1 / lead_coeff g) ^ (Suc (degree f) - degree g)) f) g)" instance proof fix x y :: "'a poly" show "x div y * y + x mod y = x" proof (cases "y = 0") case True then show ?thesis by (simp add: divide_poly_0 mod_poly_def) next case False then have "pseudo_divmod (smult ((1 / lead_coeff y) ^ (Suc (degree x) - degree y)) x) y = (x div y, x mod y)" by (simp add: divide_poly_field mod_poly_def pseudo_mod_def) with False pseudo_divmod [OF False this] show ?thesis by (simp add: power_mult_distrib [symmetric] ac_simps) qed qed end lemma eucl_rel_poly: "eucl_rel_poly x y (x div y, x mod y)" unfolding eucl_rel_poly_iff proof show "x = x div y * y + x mod y" by (simp add: div_mult_mod_eq) show "if y = 0 then x div y = 0 else x mod y = 0 \ degree (x mod y) < degree y" proof (cases "y = 0") case True then show ?thesis by auto next case False with pseudo_mod[OF this] show ?thesis by (simp add: mod_poly_def) qed qed lemma div_poly_eq: "eucl_rel_poly x y (q, r) \ x div y = q" for x :: "'a::field poly" by (rule eucl_rel_poly_unique_div [OF eucl_rel_poly]) lemma mod_poly_eq: "eucl_rel_poly x y (q, r) \ x mod y = r" for x :: "'a::field poly" by (rule eucl_rel_poly_unique_mod [OF eucl_rel_poly]) instance poly :: (field) idom_modulo .. lemma div_pCons_eq: "pCons a p div q = (if q = 0 then 0 else pCons (coeff (pCons a (p mod q)) (degree q) / lead_coeff q) (p div q))" using eucl_rel_poly_pCons [OF eucl_rel_poly _ refl, of q a p] by (auto intro: div_poly_eq) lemma mod_pCons_eq: "pCons a p mod q = (if q = 0 then pCons a p else pCons a (p mod q) - smult (coeff (pCons a (p mod q)) (degree q) / lead_coeff q) q)" using eucl_rel_poly_pCons [OF eucl_rel_poly _ refl, of q a p] by (auto intro: mod_poly_eq) lemma div_mod_fold_coeffs: "(p div q, p mod q) = (if q = 0 then (0, p) else fold_coeffs (\a (s, r). let b = coeff (pCons a r) (degree q) / coeff q (degree q) in (pCons b s, pCons a r - smult b q)) p (0, 0))" by (rule sym, induct p) (auto simp: div_pCons_eq mod_pCons_eq Let_def) lemma degree_mod_less: "y \ 0 \ x mod y = 0 \ degree (x mod y) < degree y" using eucl_rel_poly [of x y] unfolding eucl_rel_poly_iff by simp lemma degree_mod_less': "b \ 0 \ a mod b \ 0 \ degree (a mod b) < degree b" using degree_mod_less[of b a] by auto lemma div_poly_less: fixes x :: "'a::field poly" assumes "degree x < degree y" shows "x div y = 0" proof - from assms have "eucl_rel_poly x y (0, x)" by (simp add: eucl_rel_poly_iff) then show "x div y = 0" by (rule div_poly_eq) qed lemma mod_poly_less: assumes "degree x < degree y" shows "x mod y = x" proof - from assms have "eucl_rel_poly x y (0, x)" by (simp add: eucl_rel_poly_iff) then show "x mod y = x" by (rule mod_poly_eq) qed lemma eucl_rel_poly_smult_left: "eucl_rel_poly x y (q, r) \ eucl_rel_poly (smult a x) y (smult a q, smult a r)" by (simp add: eucl_rel_poly_iff smult_add_right) lemma div_smult_left: "(smult a x) div y = smult a (x div y)" for x y :: "'a::field poly" by (rule div_poly_eq, rule eucl_rel_poly_smult_left, rule eucl_rel_poly) lemma mod_smult_left: "(smult a x) mod y = smult a (x mod y)" by (rule mod_poly_eq, rule eucl_rel_poly_smult_left, rule eucl_rel_poly) lemma poly_div_minus_left [simp]: "(- x) div y = - (x div y)" for x y :: "'a::field poly" using div_smult_left [of "- 1::'a"] by simp lemma poly_mod_minus_left [simp]: "(- x) mod y = - (x mod y)" for x y :: "'a::field poly" using mod_smult_left [of "- 1::'a"] by simp lemma eucl_rel_poly_add_left: assumes "eucl_rel_poly x y (q, r)" assumes "eucl_rel_poly x' y (q', r')" shows "eucl_rel_poly (x + x') y (q + q', r + r')" using assms unfolding eucl_rel_poly_iff by (auto simp: algebra_simps degree_add_less) lemma poly_div_add_left: "(x + y) div z = x div z + y div z" for x y z :: "'a::field poly" using eucl_rel_poly_add_left [OF eucl_rel_poly eucl_rel_poly] by (rule div_poly_eq) lemma poly_mod_add_left: "(x + y) mod z = x mod z + y mod z" for x y z :: "'a::field poly" using eucl_rel_poly_add_left [OF eucl_rel_poly eucl_rel_poly] by (rule mod_poly_eq) lemma poly_div_diff_left: "(x - y) div z = x div z - y div z" for x y z :: "'a::field poly" by (simp only: diff_conv_add_uminus poly_div_add_left poly_div_minus_left) lemma poly_mod_diff_left: "(x - y) mod z = x mod z - y mod z" for x y z :: "'a::field poly" by (simp only: diff_conv_add_uminus poly_mod_add_left poly_mod_minus_left) lemma eucl_rel_poly_smult_right: "a \ 0 \ eucl_rel_poly x y (q, r) \ eucl_rel_poly x (smult a y) (smult (inverse a) q, r)" by (simp add: eucl_rel_poly_iff) lemma div_smult_right: "a \ 0 \ x div (smult a y) = smult (inverse a) (x div y)" for x y :: "'a::field poly" by (rule div_poly_eq, erule eucl_rel_poly_smult_right, rule eucl_rel_poly) lemma mod_smult_right: "a \ 0 \ x mod (smult a y) = x mod y" by (rule mod_poly_eq, erule eucl_rel_poly_smult_right, rule eucl_rel_poly) lemma poly_div_minus_right [simp]: "x div (- y) = - (x div y)" for x y :: "'a::field poly" using div_smult_right [of "- 1::'a"] by (simp add: nonzero_inverse_minus_eq) lemma poly_mod_minus_right [simp]: "x mod (- y) = x mod y" for x y :: "'a::field poly" using mod_smult_right [of "- 1::'a"] by simp lemma eucl_rel_poly_mult: assumes "eucl_rel_poly x y (q, r)" "eucl_rel_poly q z (q', r')" shows "eucl_rel_poly x (y * z) (q', y * r' + r)" proof (cases "y = 0") case True with assms eucl_rel_poly_0_iff show ?thesis by (force simp add: eucl_rel_poly_iff) next case False show ?thesis proof (cases "r' = 0") case True with assms show ?thesis by (auto simp add: eucl_rel_poly_iff degree_mult_eq) next case False with assms \y \ 0\ show ?thesis by (auto simp add: eucl_rel_poly_iff degree_add_less degree_mult_eq field_simps) qed qed lemma poly_div_mult_right: "x div (y * z) = (x div y) div z" for x y z :: "'a::field poly" by (rule div_poly_eq, rule eucl_rel_poly_mult, (rule eucl_rel_poly)+) lemma poly_mod_mult_right: "x mod (y * z) = y * (x div y mod z) + x mod y" for x y z :: "'a::field poly" by (rule mod_poly_eq, rule eucl_rel_poly_mult, (rule eucl_rel_poly)+) lemma mod_pCons: fixes a :: "'a::field" and x y :: "'a::field poly" assumes y: "y \ 0" defines "b \ coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)" shows "(pCons a x) mod y = pCons a (x mod y) - smult b y" unfolding b_def by (rule mod_poly_eq, rule eucl_rel_poly_pCons [OF eucl_rel_poly y refl]) subsubsection \List-based versions for fast implementation\ (* Subsection by: Sebastiaan Joosten René Thiemann Akihisa Yamada *) fun minus_poly_rev_list :: "'a :: group_add list \ 'a list \ 'a list" where "minus_poly_rev_list (x # xs) (y # ys) = (x - y) # (minus_poly_rev_list xs ys)" | "minus_poly_rev_list xs [] = xs" | "minus_poly_rev_list [] (y # ys) = []" fun pseudo_divmod_main_list :: "'a::comm_ring_1 \ 'a list \ 'a list \ 'a list \ nat \ 'a list \ 'a list" where "pseudo_divmod_main_list lc q r d (Suc n) = (let rr = map ((*) lc) r; a = hd r; qqq = cCons a (map ((*) lc) q); rrr = tl (if a = 0 then rr else minus_poly_rev_list rr (map ((*) a) d)) in pseudo_divmod_main_list lc qqq rrr d n)" | "pseudo_divmod_main_list lc q r d 0 = (q, r)" fun pseudo_mod_main_list :: "'a::comm_ring_1 \ 'a list \ 'a list \ nat \ 'a list" where "pseudo_mod_main_list lc r d (Suc n) = (let rr = map ((*) lc) r; a = hd r; rrr = tl (if a = 0 then rr else minus_poly_rev_list rr (map ((*) a) d)) in pseudo_mod_main_list lc rrr d n)" | "pseudo_mod_main_list lc r d 0 = r" fun divmod_poly_one_main_list :: "'a::comm_ring_1 list \ 'a list \ 'a list \ nat \ 'a list \ 'a list" where "divmod_poly_one_main_list q r d (Suc n) = (let a = hd r; qqq = cCons a q; rr = tl (if a = 0 then r else minus_poly_rev_list r (map ((*) a) d)) in divmod_poly_one_main_list qqq rr d n)" | "divmod_poly_one_main_list q r d 0 = (q, r)" fun mod_poly_one_main_list :: "'a::comm_ring_1 list \ 'a list \ nat \ 'a list" where "mod_poly_one_main_list r d (Suc n) = (let a = hd r; rr = tl (if a = 0 then r else minus_poly_rev_list r (map ((*) a) d)) in mod_poly_one_main_list rr d n)" | "mod_poly_one_main_list r d 0 = r" definition pseudo_divmod_list :: "'a::comm_ring_1 list \ 'a list \ 'a list \ 'a list" where "pseudo_divmod_list p q = (if q = [] then ([], p) else (let rq = rev q; (qu,re) = pseudo_divmod_main_list (hd rq) [] (rev p) rq (1 + length p - length q) in (qu, rev re)))" definition pseudo_mod_list :: "'a::comm_ring_1 list \ 'a list \ 'a list" where "pseudo_mod_list p q = (if q = [] then p else (let rq = rev q; re = pseudo_mod_main_list (hd rq) (rev p) rq (1 + length p - length q) in rev re))" lemma minus_zero_does_nothing: "minus_poly_rev_list x (map ((*) 0) y) = x" for x :: "'a::ring list" by (induct x y rule: minus_poly_rev_list.induct) auto lemma length_minus_poly_rev_list [simp]: "length (minus_poly_rev_list xs ys) = length xs" by (induct xs ys rule: minus_poly_rev_list.induct) auto lemma if_0_minus_poly_rev_list: "(if a = 0 then x else minus_poly_rev_list x (map ((*) a) y)) = minus_poly_rev_list x (map ((*) a) y)" for a :: "'a::ring" by(cases "a = 0") (simp_all add: minus_zero_does_nothing) lemma Poly_append: "Poly (a @ b) = Poly a + monom 1 (length a) * Poly b" for a :: "'a::comm_semiring_1 list" by (induct a) (auto simp: monom_0 monom_Suc) lemma minus_poly_rev_list: "length p \ length q \ Poly (rev (minus_poly_rev_list (rev p) (rev q))) = Poly p - monom 1 (length p - length q) * Poly q" for p q :: "'a :: comm_ring_1 list" proof (induct "rev p" "rev q" arbitrary: p q rule: minus_poly_rev_list.induct) case (1 x xs y ys) then have "length (rev q) \ length (rev p)" by simp from this[folded 1(2,3)] have ys_xs: "length ys \ length xs" by simp then have *: "Poly (rev (minus_poly_rev_list xs ys)) = Poly (rev xs) - monom 1 (length xs - length ys) * Poly (rev ys)" by (subst "1.hyps"(1)[of "rev xs" "rev ys", unfolded rev_rev_ident length_rev]) auto have "Poly p - monom 1 (length p - length q) * Poly q = Poly (rev (rev p)) - monom 1 (length (rev (rev p)) - length (rev (rev q))) * Poly (rev (rev q))" by simp also have "\ = Poly (rev (x # xs)) - monom 1 (length (x # xs) - length (y # ys)) * Poly (rev (y # ys))" unfolding 1(2,3) by simp also from ys_xs have "\ = Poly (rev xs) + monom x (length xs) - (monom 1 (length xs - length ys) * Poly (rev ys) + monom y (length xs))" by (simp add: Poly_append distrib_left mult_monom smult_monom) also have "\ = Poly (rev (minus_poly_rev_list xs ys)) + monom (x - y) (length xs)" unfolding * diff_monom[symmetric] by simp finally show ?case by (simp add: 1(2,3)[symmetric] smult_monom Poly_append) qed auto lemma smult_monom_mult: "smult a (monom b n * f) = monom (a * b) n * f" using smult_monom [of a _ n] by (metis mult_smult_left) lemma head_minus_poly_rev_list: "length d \ length r \ d \ [] \ hd (minus_poly_rev_list (map ((*) (last d)) r) (map ((*) (hd r)) (rev d))) = 0" for d r :: "'a::comm_ring list" proof (induct r) case Nil then show ?case by simp next case (Cons a rs) then show ?case by (cases "rev d") (simp_all add: ac_simps) qed lemma Poly_map: "Poly (map ((*) a) p) = smult a (Poly p)" proof (induct p) case Nil then show ?case by simp next case (Cons x xs) then show ?case by (cases "Poly xs = 0") auto qed lemma last_coeff_is_hd: "xs \ [] \ coeff (Poly xs) (length xs - 1) = hd (rev xs)" by (simp_all add: hd_conv_nth rev_nth nth_default_nth nth_append) lemma pseudo_divmod_main_list_invar: assumes leading_nonzero: "last d \ 0" and lc: "last d = lc" and "d \ []" and "pseudo_divmod_main_list lc q (rev r) (rev d) n = (q', rev r')" and "n = 1 + length r - length d" shows "pseudo_divmod_main lc (monom 1 n * Poly q) (Poly r) (Poly d) (length r - 1) n = (Poly q', Poly r')" using assms(4-) proof (induct n arbitrary: r q) case (Suc n) from Suc.prems have *: "\ Suc (length r) \ length d" by simp with \d \ []\ have "r \ []" using Suc_leI length_greater_0_conv list.size(3) by fastforce let ?a = "(hd (rev r))" let ?rr = "map ((*) lc) (rev r)" let ?rrr = "rev (tl (minus_poly_rev_list ?rr (map ((*) ?a) (rev d))))" let ?qq = "cCons ?a (map ((*) lc) q)" from * Suc(3) have n: "n = (1 + length r - length d - 1)" by simp from * have rr_val:"(length ?rrr) = (length r - 1)" by auto with \r \ []\ * have rr_smaller: "(1 + length r - length d - 1) = (1 + length ?rrr - length d)" by auto from * have id: "Suc (length r) - length d = Suc (length r - length d)" by auto from Suc.prems * have "pseudo_divmod_main_list lc ?qq (rev ?rrr) (rev d) (1 + length r - length d - 1) = (q', rev r')" by (simp add: Let_def if_0_minus_poly_rev_list id) with n have v: "pseudo_divmod_main_list lc ?qq (rev ?rrr) (rev d) n = (q', rev r')" by auto from * have sucrr:"Suc (length r) - length d = Suc (length r - length d)" using Suc_diff_le not_less_eq_eq by blast from Suc(3) \r \ []\ have n_ok : "n = 1 + (length ?rrr) - length d" by simp have cong: "\x1 x2 x3 x4 y1 y2 y3 y4. x1 = y1 \ x2 = y2 \ x3 = y3 \ x4 = y4 \ pseudo_divmod_main lc x1 x2 x3 x4 n = pseudo_divmod_main lc y1 y2 y3 y4 n" by simp have hd_rev: "coeff (Poly r) (length r - Suc 0) = hd (rev r)" using last_coeff_is_hd[OF \r \ []\] by simp show ?case unfolding Suc.hyps(1)[OF v n_ok, symmetric] pseudo_divmod_main.simps Let_def proof (rule cong[OF _ _ refl], goal_cases) case 1 show ?case by (simp add: monom_Suc hd_rev[symmetric] smult_monom Poly_map) next case 2 show ?case proof (subst Poly_on_rev_starting_with_0, goal_cases) show "hd (minus_poly_rev_list (map ((*) lc) (rev r)) (map ((*) (hd (rev r))) (rev d))) = 0" by (fold lc, subst head_minus_poly_rev_list, insert * \d \ []\, auto) from * have "length d \ length r" by simp then show "smult lc (Poly r) - monom (coeff (Poly r) (length r - 1)) n * Poly d = Poly (rev (minus_poly_rev_list (map ((*) lc) (rev r)) (map ((*) (hd (rev r))) (rev d))))" by (fold rev_map) (auto simp add: n smult_monom_mult Poly_map hd_rev [symmetric] minus_poly_rev_list) qed qed simp qed simp lemma pseudo_divmod_impl [code]: "pseudo_divmod f g = map_prod poly_of_list poly_of_list (pseudo_divmod_list (coeffs f) (coeffs g))" for f g :: "'a::comm_ring_1 poly" proof (cases "g = 0") case False then have "last (coeffs g) \ 0" and "last (coeffs g) = lead_coeff g" and "coeffs g \ []" by (simp_all add: last_coeffs_eq_coeff_degree) moreover obtain q r where qr: "pseudo_divmod_main_list (last (coeffs g)) (rev []) (rev (coeffs f)) (rev (coeffs g)) (1 + length (coeffs f) - length (coeffs g)) = (q, rev (rev r))" by force ultimately have "(Poly q, Poly (rev r)) = pseudo_divmod_main (lead_coeff g) 0 f g (length (coeffs f) - Suc 0) (Suc (length (coeffs f)) - length (coeffs g))" by (subst pseudo_divmod_main_list_invar [symmetric]) auto moreover have "pseudo_divmod_main_list (hd (rev (coeffs g))) [] (rev (coeffs f)) (rev (coeffs g)) (1 + length (coeffs f) - length (coeffs g)) = (q, r)" - using qr hd_rev [OF \coeffs g \ []\] by simp + by (metis hd_rev qr rev.simps(1) rev_swap) ultimately show ?thesis - by (auto simp: degree_eq_length_coeffs pseudo_divmod_def pseudo_divmod_list_def Let_def) + by (simp add: degree_eq_length_coeffs pseudo_divmod_def pseudo_divmod_list_def) next case True then show ?thesis by (auto simp add: pseudo_divmod_def pseudo_divmod_list_def) qed lemma pseudo_mod_main_list: "snd (pseudo_divmod_main_list l q xs ys n) = pseudo_mod_main_list l xs ys n" by (induct n arbitrary: l q xs ys) (auto simp: Let_def) lemma pseudo_mod_impl[code]: "pseudo_mod f g = poly_of_list (pseudo_mod_list (coeffs f) (coeffs g))" proof - have snd_case: "\f g p. snd ((\(x,y). (f x, g y)) p) = g (snd p)" by auto show ?thesis unfolding pseudo_mod_def pseudo_divmod_impl pseudo_divmod_list_def pseudo_mod_list_def Let_def by (simp add: snd_case pseudo_mod_main_list) qed subsubsection \Improved Code-Equations for Polynomial (Pseudo) Division\ lemma pdivmod_pdivmodrel: "eucl_rel_poly p q (r, s) \ (p div q, p mod q) = (r, s)" by (metis eucl_rel_poly eucl_rel_poly_unique) lemma pdivmod_via_pseudo_divmod: "(f div g, f mod g) = (if g = 0 then (0, f) else let ilc = inverse (coeff g (degree g)); h = smult ilc g; (q,r) = pseudo_divmod f h in (smult ilc q, r))" (is "?l = ?r") proof (cases "g = 0") case True then show ?thesis by simp next case False define lc where "lc = inverse (coeff g (degree g))" define h where "h = smult lc g" from False have h1: "coeff h (degree h) = 1" and lc: "lc \ 0" by (auto simp: h_def lc_def) then have h0: "h \ 0" by auto obtain q r where p: "pseudo_divmod f h = (q, r)" by force from False have id: "?r = (smult lc q, r)" by (auto simp: Let_def h_def[symmetric] lc_def[symmetric] p) from pseudo_divmod[OF h0 p, unfolded h1] have f: "f = h * q + r" and r: "r = 0 \ degree r < degree h" by auto from f r h0 have "eucl_rel_poly f h (q, r)" by (auto simp: eucl_rel_poly_iff) then have "(f div h, f mod h) = (q, r)" by (simp add: pdivmod_pdivmodrel) with lc have "(f div g, f mod g) = (smult lc q, r)" by (auto simp: h_def div_smult_right[OF lc] mod_smult_right[OF lc]) with id show ?thesis by auto qed lemma pdivmod_via_pseudo_divmod_list: "(f div g, f mod g) = (let cg = coeffs g in if cg = [] then (0, f) else let cf = coeffs f; ilc = inverse (last cg); ch = map ((*) ilc) cg; (q, r) = pseudo_divmod_main_list 1 [] (rev cf) (rev ch) (1 + length cf - length cg) in (poly_of_list (map ((*) ilc) q), poly_of_list (rev r)))" proof - note d = pdivmod_via_pseudo_divmod pseudo_divmod_impl pseudo_divmod_list_def show ?thesis proof (cases "g = 0") case True with d show ?thesis by auto next case False define ilc where "ilc = inverse (coeff g (degree g))" from False have ilc: "ilc \ 0" by (auto simp: ilc_def) with False have id: "g = 0 \ False" "coeffs g = [] \ False" "last (coeffs g) = coeff g (degree g)" "coeffs (smult ilc g) = [] \ False" by (auto simp: last_coeffs_eq_coeff_degree) have id2: "hd (rev (coeffs (smult ilc g))) = 1" by (subst hd_rev, insert id ilc, auto simp: coeffs_smult, subst last_map, auto simp: id ilc_def) have id3: "length (coeffs (smult ilc g)) = length (coeffs g)" "rev (coeffs (smult ilc g)) = rev (map ((*) ilc) (coeffs g))" unfolding coeffs_smult using ilc by auto obtain q r where pair: "pseudo_divmod_main_list 1 [] (rev (coeffs f)) (rev (map ((*) ilc) (coeffs g))) (1 + length (coeffs f) - length (coeffs g)) = (q, r)" by force show ?thesis unfolding d Let_def id if_False ilc_def[symmetric] map_prod_def[symmetric] id2 unfolding id3 pair map_prod_def split by (auto simp: Poly_map) qed qed lemma pseudo_divmod_main_list_1: "pseudo_divmod_main_list 1 = divmod_poly_one_main_list" proof (intro ext, goal_cases) case (1 q r d n) have *: "map ((*) 1) xs = xs" for xs :: "'a list" by (induct xs) auto show ?case by (induct n arbitrary: q r d) (auto simp: * Let_def) qed fun divide_poly_main_list :: "'a::idom_divide \ 'a list \ 'a list \ 'a list \ nat \ 'a list" where "divide_poly_main_list lc q r d (Suc n) = (let cr = hd r in if cr = 0 then divide_poly_main_list lc (cCons cr q) (tl r) d n else let a = cr div lc; qq = cCons a q; rr = minus_poly_rev_list r (map ((*) a) d) in if hd rr = 0 then divide_poly_main_list lc qq (tl rr) d n else [])" | "divide_poly_main_list lc q r d 0 = q" lemma divide_poly_main_list_simp [simp]: "divide_poly_main_list lc q r d (Suc n) = (let cr = hd r; a = cr div lc; qq = cCons a q; rr = minus_poly_rev_list r (map ((*) a) d) in if hd rr = 0 then divide_poly_main_list lc qq (tl rr) d n else [])" by (simp add: Let_def minus_zero_does_nothing) declare divide_poly_main_list.simps(1)[simp del] definition divide_poly_list :: "'a::idom_divide poly \ 'a poly \ 'a poly" where "divide_poly_list f g = (let cg = coeffs g in if cg = [] then g else let cf = coeffs f; cgr = rev cg in poly_of_list (divide_poly_main_list (hd cgr) [] (rev cf) cgr (1 + length cf - length cg)))" lemmas pdivmod_via_divmod_list = pdivmod_via_pseudo_divmod_list[unfolded pseudo_divmod_main_list_1] lemma mod_poly_one_main_list: "snd (divmod_poly_one_main_list q r d n) = mod_poly_one_main_list r d n" by (induct n arbitrary: q r d) (auto simp: Let_def) lemma mod_poly_code [code]: "f mod g = (let cg = coeffs g in if cg = [] then f else let cf = coeffs f; ilc = inverse (last cg); ch = map ((*) ilc) cg; r = mod_poly_one_main_list (rev cf) (rev ch) (1 + length cf - length cg) in poly_of_list (rev r))" (is "_ = ?rhs") proof - have "snd (f div g, f mod g) = ?rhs" unfolding pdivmod_via_divmod_list Let_def mod_poly_one_main_list [symmetric, of _ _ _ Nil] by (auto split: prod.splits) then show ?thesis by simp qed definition div_field_poly_impl :: "'a :: field poly \ 'a poly \ 'a poly" where "div_field_poly_impl f g = (let cg = coeffs g in if cg = [] then 0 else let cf = coeffs f; ilc = inverse (last cg); ch = map ((*) ilc) cg; q = fst (divmod_poly_one_main_list [] (rev cf) (rev ch) (1 + length cf - length cg)) in poly_of_list ((map ((*) ilc) q)))" text \We do not declare the following lemma as code equation, since then polynomial division on non-fields will no longer be executable. However, a code-unfold is possible, since \div_field_poly_impl\ is a bit more efficient than the generic polynomial division.\ lemma div_field_poly_impl[code_unfold]: "(div) = div_field_poly_impl" proof (intro ext) fix f g :: "'a poly" have "fst (f div g, f mod g) = div_field_poly_impl f g" unfolding div_field_poly_impl_def pdivmod_via_divmod_list Let_def by (auto split: prod.splits) then show "f div g = div_field_poly_impl f g" by simp qed lemma divide_poly_main_list: assumes lc0: "lc \ 0" and lc: "last d = lc" and d: "d \ []" and "n = (1 + length r - length d)" shows "Poly (divide_poly_main_list lc q (rev r) (rev d) n) = divide_poly_main lc (monom 1 n * Poly q) (Poly r) (Poly d) (length r - 1) n" using assms(4-) proof (induct "n" arbitrary: r q) case (Suc n) from Suc.prems have ifCond: "\ Suc (length r) \ length d" by simp with d have r: "r \ []" using Suc_leI length_greater_0_conv list.size(3) by fastforce then obtain rr lcr where r: "r = rr @ [lcr]" by (cases r rule: rev_cases) auto from d lc obtain dd where d: "d = dd @ [lc]" by (cases d rule: rev_cases) auto from Suc(2) ifCond have n: "n = 1 + length rr - length d" by (auto simp: r) from ifCond have len: "length dd \ length rr" by (simp add: r d) show ?case proof (cases "lcr div lc * lc = lcr") case False with r d show ?thesis unfolding Suc(2)[symmetric] by (auto simp add: Let_def nth_default_append) next case True with r d have id: "?thesis \ Poly (divide_poly_main_list lc (cCons (lcr div lc) q) (rev (rev (minus_poly_rev_list (rev rr) (rev (map ((*) (lcr div lc)) dd))))) (rev d) n) = divide_poly_main lc (monom 1 (Suc n) * Poly q + monom (lcr div lc) n) (Poly r - monom (lcr div lc) n * Poly d) (Poly d) (length rr - 1) n" by (cases r rule: rev_cases; cases "d" rule: rev_cases) (auto simp add: Let_def rev_map nth_default_append) have cong: "\x1 x2 x3 x4 y1 y2 y3 y4. x1 = y1 \ x2 = y2 \ x3 = y3 \ x4 = y4 \ divide_poly_main lc x1 x2 x3 x4 n = divide_poly_main lc y1 y2 y3 y4 n" by simp show ?thesis unfolding id proof (subst Suc(1), simp add: n, subst minus_poly_rev_list, force simp: len, rule cong[OF _ _ refl], goal_cases) case 2 have "monom lcr (length rr) = monom (lcr div lc) (length rr - length dd) * monom lc (length dd)" by (simp add: mult_monom len True) then show ?case unfolding r d Poly_append n ring_distribs by (auto simp: Poly_map smult_monom smult_monom_mult) qed (auto simp: len monom_Suc smult_monom) qed qed simp lemma divide_poly_list[code]: "f div g = divide_poly_list f g" proof - note d = divide_poly_def divide_poly_list_def show ?thesis proof (cases "g = 0") case True show ?thesis by (auto simp: d True) next case False then obtain cg lcg where cg: "coeffs g = cg @ [lcg]" by (cases "coeffs g" rule: rev_cases) auto with False have id: "(g = 0) = False" "(cg @ [lcg] = []) = False" by auto from cg False have lcg: "coeff g (degree g) = lcg" using last_coeffs_eq_coeff_degree last_snoc by force with False have "lcg \ 0" by auto from cg Poly_coeffs [of g] have ltp: "Poly (cg @ [lcg]) = g" by auto show ?thesis unfolding d cg Let_def id if_False poly_of_list_def by (subst divide_poly_main_list, insert False cg \lcg \ 0\) (auto simp: lcg ltp, simp add: degree_eq_length_coeffs) qed qed subsection \Primality and irreducibility in polynomial rings\ lemma prod_mset_const_poly: "(\x\#A. [:f x:]) = [:prod_mset (image_mset f A):]" by (induct A) (simp_all add: ac_simps) lemma irreducible_const_poly_iff: fixes c :: "'a :: {comm_semiring_1,semiring_no_zero_divisors}" shows "irreducible [:c:] \ irreducible c" proof assume A: "irreducible c" show "irreducible [:c:]" proof (rule irreducibleI) fix a b assume ab: "[:c:] = a * b" hence "degree [:c:] = degree (a * b)" by (simp only: ) also from A ab have "a \ 0" "b \ 0" by auto hence "degree (a * b) = degree a + degree b" by (simp add: degree_mult_eq) finally have "degree a = 0" "degree b = 0" by auto then obtain a' b' where ab': "a = [:a':]" "b = [:b':]" by (auto elim!: degree_eq_zeroE) from ab have "coeff [:c:] 0 = coeff (a * b) 0" by (simp only: ) hence "c = a' * b'" by (simp add: ab' mult_ac) from A and this have "a' dvd 1 \ b' dvd 1" by (rule irreducibleD) with ab' show "a dvd 1 \ b dvd 1" by (auto simp add: is_unit_const_poly_iff) qed (insert A, auto simp: irreducible_def is_unit_poly_iff) next assume A: "irreducible [:c:]" then have "c \ 0" and "\ c dvd 1" by (auto simp add: irreducible_def is_unit_const_poly_iff) then show "irreducible c" proof (rule irreducibleI) fix a b assume ab: "c = a * b" hence "[:c:] = [:a:] * [:b:]" by (simp add: mult_ac) from A and this have "[:a:] dvd 1 \ [:b:] dvd 1" by (rule irreducibleD) then show "a dvd 1 \ b dvd 1" by (auto simp add: is_unit_const_poly_iff) qed qed lemma lift_prime_elem_poly: assumes "prime_elem (c :: 'a :: semidom)" shows "prime_elem [:c:]" proof (rule prime_elemI) fix a b assume *: "[:c:] dvd a * b" from * have dvd: "c dvd coeff (a * b) n" for n by (subst (asm) const_poly_dvd_iff) blast { define m where "m = (GREATEST m. \c dvd coeff b m)" assume "\[:c:] dvd b" hence A: "\i. \c dvd coeff b i" by (subst (asm) const_poly_dvd_iff) blast have B: "\i. \c dvd coeff b i \ i \ degree b" by (auto intro: le_degree) have coeff_m: "\c dvd coeff b m" unfolding m_def by (rule GreatestI_ex_nat[OF A B]) have "i \ m" if "\c dvd coeff b i" for i unfolding m_def by (metis (mono_tags, lifting) B Greatest_le_nat that) hence dvd_b: "c dvd coeff b i" if "i > m" for i using that by force have "c dvd coeff a i" for i proof (induction i rule: nat_descend_induct[of "degree a"]) case (base i) thus ?case by (simp add: coeff_eq_0) next case (descend i) let ?A = "{..i+m} - {i}" have "c dvd coeff (a * b) (i + m)" by (rule dvd) also have "coeff (a * b) (i + m) = (\k\i + m. coeff a k * coeff b (i + m - k))" by (simp add: coeff_mult) also have "{..i+m} = insert i ?A" by auto also have "(\k\\. coeff a k * coeff b (i + m - k)) = coeff a i * coeff b m + (\k\?A. coeff a k * coeff b (i + m - k))" (is "_ = _ + ?S") by (subst sum.insert) simp_all finally have eq: "c dvd coeff a i * coeff b m + ?S" . moreover have "c dvd ?S" proof (rule dvd_sum) fix k assume k: "k \ {..i+m} - {i}" show "c dvd coeff a k * coeff b (i + m - k)" proof (cases "k < i") case False with k have "c dvd coeff a k" by (intro descend.IH) simp thus ?thesis by simp next case True hence "c dvd coeff b (i + m - k)" by (intro dvd_b) simp thus ?thesis by simp qed qed ultimately have "c dvd coeff a i * coeff b m" by (simp add: dvd_add_left_iff) with assms coeff_m show "c dvd coeff a i" by (simp add: prime_elem_dvd_mult_iff) qed hence "[:c:] dvd a" by (subst const_poly_dvd_iff) blast } then show "[:c:] dvd a \ [:c:] dvd b" by blast next from assms show "[:c:] \ 0" and "\ [:c:] dvd 1" by (simp_all add: prime_elem_def is_unit_const_poly_iff) qed lemma prime_elem_const_poly_iff: fixes c :: "'a :: semidom" shows "prime_elem [:c:] \ prime_elem c" proof assume A: "prime_elem [:c:]" show "prime_elem c" proof (rule prime_elemI) fix a b assume "c dvd a * b" hence "[:c:] dvd [:a:] * [:b:]" by (simp add: mult_ac) from A and this have "[:c:] dvd [:a:] \ [:c:] dvd [:b:]" by (rule prime_elem_dvd_multD) thus "c dvd a \ c dvd b" by simp qed (insert A, auto simp: prime_elem_def is_unit_poly_iff) qed (auto intro: lift_prime_elem_poly) subsection \Content and primitive part of a polynomial\ definition content :: "'a::semiring_gcd poly \ 'a" where "content p = gcd_list (coeffs p)" lemma content_eq_fold_coeffs [code]: "content p = fold_coeffs gcd p 0" by (simp add: content_def Gcd_fin.set_eq_fold fold_coeffs_def foldr_fold fun_eq_iff ac_simps) lemma content_0 [simp]: "content 0 = 0" by (simp add: content_def) lemma content_1 [simp]: "content 1 = 1" by (simp add: content_def) lemma content_const [simp]: "content [:c:] = normalize c" by (simp add: content_def cCons_def) lemma const_poly_dvd_iff_dvd_content: "[:c:] dvd p \ c dvd content p" for c :: "'a::semiring_gcd" proof (cases "p = 0") case True then show ?thesis by simp next case False have "[:c:] dvd p \ (\n. c dvd coeff p n)" by (rule const_poly_dvd_iff) also have "\ \ (\a\set (coeffs p). c dvd a)" proof safe fix n :: nat assume "\a\set (coeffs p). c dvd a" then show "c dvd coeff p n" by (cases "n \ degree p") (auto simp: coeff_eq_0 coeffs_def split: if_splits) qed (auto simp: coeffs_def simp del: upt_Suc split: if_splits) also have "\ \ c dvd content p" by (simp add: content_def dvd_Gcd_fin_iff dvd_mult_unit_iff) finally show ?thesis . qed lemma content_dvd [simp]: "[:content p:] dvd p" by (subst const_poly_dvd_iff_dvd_content) simp_all lemma content_dvd_coeff [simp]: "content p dvd coeff p n" proof (cases "p = 0") case True then show ?thesis by simp next case False then show ?thesis by (cases "n \ degree p") (auto simp add: content_def not_le coeff_eq_0 coeff_in_coeffs intro: Gcd_fin_dvd) qed lemma content_dvd_coeffs: "c \ set (coeffs p) \ content p dvd c" by (simp add: content_def Gcd_fin_dvd) lemma normalize_content [simp]: "normalize (content p) = content p" by (simp add: content_def) lemma is_unit_content_iff [simp]: "is_unit (content p) \ content p = 1" proof assume "is_unit (content p)" then have "normalize (content p) = 1" by (simp add: is_unit_normalize del: normalize_content) then show "content p = 1" by simp qed auto lemma content_smult [simp]: fixes c :: "'a :: {normalization_semidom_multiplicative, semiring_gcd}" shows "content (smult c p) = normalize c * content p" by (simp add: content_def coeffs_smult Gcd_fin_mult normalize_mult) lemma content_eq_zero_iff [simp]: "content p = 0 \ p = 0" by (auto simp: content_def simp: poly_eq_iff coeffs_def) definition primitive_part :: "'a :: semiring_gcd poly \ 'a poly" where "primitive_part p = map_poly (\x. x div content p) p" lemma primitive_part_0 [simp]: "primitive_part 0 = 0" by (simp add: primitive_part_def) lemma content_times_primitive_part [simp]: "smult (content p) (primitive_part p) = p" for p :: "'a :: semiring_gcd poly" proof (cases "p = 0") case True then show ?thesis by simp next case False then show ?thesis unfolding primitive_part_def by (auto simp: smult_conv_map_poly map_poly_map_poly o_def content_dvd_coeffs intro: map_poly_idI) qed lemma primitive_part_eq_0_iff [simp]: "primitive_part p = 0 \ p = 0" proof (cases "p = 0") case True then show ?thesis by simp next case False then have "primitive_part p = map_poly (\x. x div content p) p" by (simp add: primitive_part_def) also from False have "\ = 0 \ p = 0" by (intro map_poly_eq_0_iff) (auto simp: dvd_div_eq_0_iff content_dvd_coeffs) finally show ?thesis using False by simp qed lemma content_primitive_part [simp]: fixes p :: "'a :: {normalization_semidom_multiplicative, semiring_gcd} poly" assumes "p \ 0" shows "content (primitive_part p) = 1" proof - have "p = smult (content p) (primitive_part p)" by simp also have "content \ = content (primitive_part p) * content p" by (simp del: content_times_primitive_part add: ac_simps) finally have "1 * content p = content (primitive_part p) * content p" by simp then have "1 * content p div content p = content (primitive_part p) * content p div content p" by simp with assms show ?thesis by simp qed lemma content_decompose: obtains p' :: "'a :: {normalization_semidom_multiplicative, semiring_gcd} poly" where "p = smult (content p) p'" "content p' = 1" proof (cases "p = 0") case True then have "p = smult (content p) 1" "content 1 = 1" by simp_all then show ?thesis .. next case False then have "p = smult (content p) (primitive_part p)" "content (primitive_part p) = 1" by simp_all then show ?thesis .. qed - + lemma content_dvd_contentI [intro]: "p dvd q \ content p dvd content q" using const_poly_dvd_iff_dvd_content content_dvd dvd_trans by blast lemma primitive_part_const_poly [simp]: "primitive_part [:x:] = [:unit_factor x:]" by (simp add: primitive_part_def map_poly_pCons) lemma primitive_part_prim: "content p = 1 \ primitive_part p = p" by (auto simp: primitive_part_def) lemma degree_primitive_part [simp]: "degree (primitive_part p) = degree p" proof (cases "p = 0") case True then show ?thesis by simp next case False have "p = smult (content p) (primitive_part p)" by simp also from False have "degree \ = degree (primitive_part p)" by (subst degree_smult_eq) simp_all finally show ?thesis .. qed lemma smult_content_normalize_primitive_part [simp]: fixes p :: "'a :: {normalization_semidom_multiplicative, semiring_gcd, idom_divide} poly" shows "smult (content p) (normalize (primitive_part p)) = normalize p" proof - have "smult (content p) (normalize (primitive_part p)) = normalize ([:content p:] * primitive_part p)" by (subst normalize_mult) (simp_all add: normalize_const_poly) also have "[:content p:] * primitive_part p = p" by simp finally show ?thesis . qed context begin private lemma content_1_mult: fixes f g :: "'a :: {semiring_gcd, factorial_semiring} poly" assumes "content f = 1" "content g = 1" shows "content (f * g) = 1" proof (cases "f * g = 0") case False from assms have "f \ 0" "g \ 0" by auto hence "f * g \ 0" by auto { assume "\is_unit (content (f * g))" with False have "\p. p dvd content (f * g) \ prime p" by (intro prime_divisor_exists) simp_all then obtain p where "p dvd content (f * g)" "prime p" by blast from \p dvd content (f * g)\ have "[:p:] dvd f * g" by (simp add: const_poly_dvd_iff_dvd_content) moreover from \prime p\ have "prime_elem [:p:]" by (simp add: lift_prime_elem_poly) ultimately have "[:p:] dvd f \ [:p:] dvd g" by (simp add: prime_elem_dvd_mult_iff) with assms have "is_unit p" by (simp add: const_poly_dvd_iff_dvd_content) with \prime p\ have False by simp } hence "is_unit (content (f * g))" by blast hence "normalize (content (f * g)) = 1" by (simp add: is_unit_normalize del: normalize_content) thus ?thesis by simp qed (insert assms, auto) lemma content_mult: fixes p q :: "'a :: {factorial_semiring, semiring_gcd, normalization_semidom_multiplicative} poly" shows "content (p * q) = content p * content q" proof (cases "p * q = 0") case False then have "p \ 0" and "q \ 0" by simp_all then have *: "content (primitive_part p * primitive_part q) = 1" by (auto intro: content_1_mult) have "p * q = smult (content p) (primitive_part p) * smult (content q) (primitive_part q)" by simp also have "\ = smult (content p * content q) (primitive_part p * primitive_part q)" by (metis mult.commute mult_smult_right smult_smult) with * show ?thesis by (simp add: normalize_mult) next case True then show ?thesis by auto qed end lemma primitive_part_mult: fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide, normalization_semidom_multiplicative} poly" shows "primitive_part (p * q) = primitive_part p * primitive_part q" proof - have "primitive_part (p * q) = p * q div [:content (p * q):]" by (simp add: primitive_part_def div_const_poly_conv_map_poly) also have "\ = (p div [:content p:]) * (q div [:content q:])" by (subst div_mult_div_if_dvd) (simp_all add: content_mult mult_ac) also have "\ = primitive_part p * primitive_part q" by (simp add: primitive_part_def div_const_poly_conv_map_poly) finally show ?thesis . qed lemma primitive_part_smult: fixes p :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide, normalization_semidom_multiplicative} poly" shows "primitive_part (smult a p) = smult (unit_factor a) (primitive_part p)" proof - have "smult a p = [:a:] * p" by simp also have "primitive_part \ = smult (unit_factor a) (primitive_part p)" by (subst primitive_part_mult) simp_all finally show ?thesis . -qed +qed lemma primitive_part_dvd_primitive_partI [intro]: fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide, normalization_semidom_multiplicative} poly" shows "p dvd q \ primitive_part p dvd primitive_part q" by (auto elim!: dvdE simp: primitive_part_mult) -lemma content_prod_mset: +lemma content_prod_mset: fixes A :: "'a :: {factorial_semiring, semiring_Gcd, normalization_semidom_multiplicative} poly multiset" shows "content (prod_mset A) = prod_mset (image_mset content A)" by (induction A) (simp_all add: content_mult mult_ac) -lemma content_prod_eq_1_iff: +lemma content_prod_eq_1_iff: fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, normalization_semidom_multiplicative} poly" shows "content (p * q) = 1 \ content p = 1 \ content q = 1" proof safe assume A: "content (p * q) = 1" { fix p q :: "'a poly" assume "content p * content q = 1" hence "1 = content p * content q" by simp hence "content p dvd 1" by (rule dvdI) hence "content p = 1" by simp } note B = this - from A B[of p q] B [of q p] show "content p = 1" "content q = 1" + from A B[of p q] B [of q p] show "content p = 1" "content q = 1" by (simp_all add: content_mult mult_ac) qed (auto simp: content_mult) no_notation cCons (infixr "##" 65) end diff --git a/src/HOL/List.thy b/src/HOL/List.thy --- a/src/HOL/List.thy +++ b/src/HOL/List.thy @@ -1,8227 +1,8230 @@ (* Title: HOL/List.thy Author: Tobias Nipkow; proofs tidied by LCP *) section \The datatype of finite lists\ theory List imports Sledgehammer Code_Numeral Lifting_Set begin datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype_compat list lemma [case_names Nil Cons, cases type: list]: \ \for backward compatibility -- names of variables differ\ "(y = [] \ P) \ (\a list. y = a # list \ P) \ P" by (rule list.exhaust) lemma [case_names Nil Cons, induct type: list]: \ \for backward compatibility -- names of variables differ\ "P [] \ (\a list. P list \ P (a # list)) \ P list" by (rule list.induct) text \Compatibility:\ setup \Sign.mandatory_path "list"\ lemmas inducts = list.induct lemmas recs = list.rec lemmas cases = list.case setup \Sign.parent_path\ lemmas set_simps = list.set (* legacy *) syntax \ \list Enumeration\ "_list" :: "args => 'a list" ("[(_)]") translations "[x, xs]" == "x#[xs]" "[x]" == "x#[]" subsection \Basic list processing functions\ primrec (nonexhaustive) last :: "'a list \ 'a" where "last (x # xs) = (if xs = [] then x else last xs)" primrec butlast :: "'a list \ 'a list" where "butlast [] = []" | "butlast (x # xs) = (if xs = [] then [] else x # butlast xs)" lemma set_rec: "set xs = rec_list {} (\x _. insert x) xs" by (induct xs) auto definition coset :: "'a list \ 'a set" where [simp]: "coset xs = - set xs" primrec append :: "'a list \ 'a list \ 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" primrec rev :: "'a list \ 'a list" where "rev [] = []" | "rev (x # xs) = rev xs @ [x]" primrec filter:: "('a \ bool) \ 'a list \ 'a list" where "filter P [] = []" | "filter P (x # xs) = (if P x then x # filter P xs else filter P xs)" text \Special input syntax for filter:\ syntax (ASCII) "_filter" :: "[pttrn, 'a list, bool] => 'a list" ("(1[_<-_./ _])") syntax "_filter" :: "[pttrn, 'a list, bool] => 'a list" ("(1[_\_ ./ _])") translations "[x<-xs . P]" \ "CONST filter (\x. P) xs" primrec fold :: "('a \ 'b \ 'b) \ 'a list \ 'b \ 'b" where fold_Nil: "fold f [] = id" | fold_Cons: "fold f (x # xs) = fold f xs \ f x" primrec foldr :: "('a \ 'b \ 'b) \ 'a list \ 'b \ 'b" where foldr_Nil: "foldr f [] = id" | foldr_Cons: "foldr f (x # xs) = f x \ foldr f xs" primrec foldl :: "('b \ 'a \ 'b) \ 'b \ 'a list \ 'b" where foldl_Nil: "foldl f a [] = a" | foldl_Cons: "foldl f a (x # xs) = foldl f (f a x) xs" primrec concat:: "'a list list \ 'a list" where "concat [] = []" | "concat (x # xs) = x @ concat xs" primrec drop:: "nat \ 'a list \ 'a list" where drop_Nil: "drop n [] = []" | drop_Cons: "drop n (x # xs) = (case n of 0 \ x # xs | Suc m \ drop m xs)" \ \Warning: simpset does not contain this definition, but separate theorems for \n = 0\ and \n = Suc k\\ primrec take:: "nat \ 'a list \ 'a list" where take_Nil:"take n [] = []" | take_Cons: "take n (x # xs) = (case n of 0 \ [] | Suc m \ x # take m xs)" \ \Warning: simpset does not contain this definition, but separate theorems for \n = 0\ and \n = Suc k\\ primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \ x | Suc k \ xs ! k)" \ \Warning: simpset does not contain this definition, but separate theorems for \n = 0\ and \n = Suc k\\ primrec list_update :: "'a list \ nat \ 'a \ 'a list" where "list_update [] i v = []" | "list_update (x # xs) i v = (case i of 0 \ v # xs | Suc j \ x # list_update xs j v)" nonterminal lupdbinds and lupdbind syntax "_lupdbind":: "['a, 'a] => lupdbind" ("(2_ :=/ _)") "" :: "lupdbind => lupdbinds" ("_") "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds" ("_,/ _") "_LUpdate" :: "['a, lupdbinds] => 'a" ("_/[(_)]" [1000,0] 900) translations "_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs" "xs[i:=x]" == "CONST list_update xs i x" primrec takeWhile :: "('a \ bool) \ 'a list \ 'a list" where "takeWhile P [] = []" | "takeWhile P (x # xs) = (if P x then x # takeWhile P xs else [])" primrec dropWhile :: "('a \ bool) \ 'a list \ 'a list" where "dropWhile P [] = []" | "dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)" primrec zip :: "'a list \ 'b list \ ('a \ 'b) list" where "zip xs [] = []" | zip_Cons: "zip xs (y # ys) = (case xs of [] \ [] | z # zs \ (z, y) # zip zs ys)" \ \Warning: simpset does not contain this definition, but separate theorems for \xs = []\ and \xs = z # zs\\ abbreviation map2 :: "('a \ 'b \ 'c) \ 'a list \ 'b list \ 'c list" where "map2 f xs ys \ map (\(x,y). f x y) (zip xs ys)" primrec product :: "'a list \ 'b list \ ('a \ 'b) list" where "product [] _ = []" | "product (x#xs) ys = map (Pair x) ys @ product xs ys" hide_const (open) product primrec product_lists :: "'a list list \ 'a list list" where "product_lists [] = [[]]" | "product_lists (xs # xss) = concat (map (\x. map (Cons x) (product_lists xss)) xs)" primrec upt :: "nat \ nat \ nat list" ("(1[_.. j then [i.. 'a list \ 'a list" where "insert x xs = (if x \ set xs then xs else x # xs)" definition union :: "'a list \ 'a list \ 'a list" where "union = fold insert" hide_const (open) insert union hide_fact (open) insert_def union_def primrec find :: "('a \ bool) \ 'a list \ 'a option" where "find _ [] = None" | "find P (x#xs) = (if P x then Some x else find P xs)" text \In the context of multisets, \count_list\ is equivalent to \<^term>\count \ mset\ and it it advisable to use the latter.\ primrec count_list :: "'a list \ 'a \ nat" where "count_list [] y = 0" | "count_list (x#xs) y = (if x=y then count_list xs y + 1 else count_list xs y)" definition "extract" :: "('a \ bool) \ 'a list \ ('a list * 'a * 'a list) option" where "extract P xs = (case dropWhile (Not \ P) xs of [] \ None | y#ys \ Some(takeWhile (Not \ P) xs, y, ys))" hide_const (open) "extract" primrec those :: "'a option list \ 'a list option" where "those [] = Some []" | "those (x # xs) = (case x of None \ None | Some y \ map_option (Cons y) (those xs))" primrec remove1 :: "'a \ 'a list \ 'a list" where "remove1 x [] = []" | "remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)" primrec removeAll :: "'a \ 'a list \ 'a list" where "removeAll x [] = []" | "removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)" primrec distinct :: "'a list \ bool" where "distinct [] \ True" | "distinct (x # xs) \ x \ set xs \ distinct xs" fun successively :: "('a \ 'a \ bool) \ 'a list \ bool" where "successively P [] = True" | "successively P [x] = True" | "successively P (x # y # xs) = (P x y \ successively P (y#xs))" definition distinct_adj where "distinct_adj = successively (\)" primrec remdups :: "'a list \ 'a list" where "remdups [] = []" | "remdups (x # xs) = (if x \ set xs then remdups xs else x # remdups xs)" fun remdups_adj :: "'a list \ 'a list" where "remdups_adj [] = []" | "remdups_adj [x] = [x]" | "remdups_adj (x # y # xs) = (if x = y then remdups_adj (x # xs) else x # remdups_adj (y # xs))" primrec replicate :: "nat \ 'a \ 'a list" where replicate_0: "replicate 0 x = []" | replicate_Suc: "replicate (Suc n) x = x # replicate n x" text \ Function \size\ is overloaded for all datatypes. Users may refer to the list version as \length\.\ abbreviation length :: "'a list \ nat" where "length \ size" definition enumerate :: "nat \ 'a list \ (nat \ 'a) list" where enumerate_eq_zip: "enumerate n xs = zip [n.. 'a list" where "rotate1 [] = []" | "rotate1 (x # xs) = xs @ [x]" definition rotate :: "nat \ 'a list \ 'a list" where "rotate n = rotate1 ^^ n" definition nths :: "'a list => nat set => 'a list" where "nths xs A = map fst (filter (\p. snd p \ A) (zip xs [0.. 'a list list" where "subseqs [] = [[]]" | "subseqs (x#xs) = (let xss = subseqs xs in map (Cons x) xss @ xss)" primrec n_lists :: "nat \ 'a list \ 'a list list" where "n_lists 0 xs = [[]]" | "n_lists (Suc n) xs = concat (map (\ys. map (\y. y # ys) xs) (n_lists n xs))" hide_const (open) n_lists function splice :: "'a list \ 'a list \ 'a list" where "splice [] ys = ys" | "splice (x#xs) ys = x # splice ys xs" by pat_completeness auto termination by(relation "measure(\(xs,ys). size xs + size ys)") auto function shuffles where "shuffles [] ys = {ys}" | "shuffles xs [] = {xs}" | "shuffles (x # xs) (y # ys) = (#) x ` shuffles xs (y # ys) \ (#) y ` shuffles (x # xs) ys" by pat_completeness simp_all termination by lexicographic_order text\Use only if you cannot use \<^const>\Min\ instead:\ fun min_list :: "'a::ord list \ 'a" where "min_list (x # xs) = (case xs of [] \ x | _ \ min x (min_list xs))" text\Returns first minimum:\ fun arg_min_list :: "('a \ ('b::linorder)) \ 'a list \ 'a" where "arg_min_list f [x] = x" | "arg_min_list f (x#y#zs) = (let m = arg_min_list f (y#zs) in if f x \ f m then x else m)" text\ \begin{figure}[htbp] \fbox{ \begin{tabular}{l} @{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\ @{lemma "length [a,b,c] = 3" by simp}\\ @{lemma "set [a,b,c] = {a,b,c}" by simp}\\ @{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\ @{lemma "rev [a,b,c] = [c,b,a]" by simp}\\ @{lemma "hd [a,b,c,d] = a" by simp}\\ @{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\ @{lemma "last [a,b,c,d] = d" by simp}\\ @{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\ @{lemma[source] "filter (\n::nat. n<2) [0,2,1] = [0,1]" by simp}\\ @{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\ @{lemma "fold f [a,b,c] x = f c (f b (f a x))" by simp}\\ @{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\ @{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\ @{lemma "successively (\) [True,False,True,False]" by simp}\\ @{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\ @{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\ @{lemma "enumerate 3 [a,b,c] = [(3,a),(4,b),(5,c)]" by normalization}\\ @{lemma "List.product [a,b] [c,d] = [(a, c), (a, d), (b, c), (b, d)]" by simp}\\ @{lemma "product_lists [[a,b], [c], [d,e]] = [[a,c,d], [a,c,e], [b,c,d], [b,c,e]]" by simp}\\ @{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\ @{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\ @{lemma "shuffles [a,b] [c,d] = {[a,b,c,d],[a,c,b,d],[a,c,d,b],[c,a,b,d],[c,a,d,b],[c,d,a,b]}" by (simp add: insert_commute)}\\ @{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\ @{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\ @{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\ @{lemma "drop 6 [a,b,c,d] = []" by simp}\\ @{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\ @{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\ @{lemma "distinct [2,0,1::nat]" by simp}\\ @{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\ @{lemma "remdups_adj [2,2,3,1,1::nat,2,1] = [2,3,1,2,1]" by simp}\\ @{lemma "List.insert 2 [0::nat,1,2] = [0,1,2]" by (simp add: List.insert_def)}\\ @{lemma "List.insert 3 [0::nat,1,2] = [3,0,1,2]" by (simp add: List.insert_def)}\\ @{lemma "List.union [2,3,4] [0::int,1,2] = [4,3,0,1,2]" by (simp add: List.insert_def List.union_def)}\\ @{lemma "List.find (%i::int. i>0) [0,0] = None" by simp}\\ @{lemma "List.find (%i::int. i>0) [0,1,0,2] = Some 1" by simp}\\ @{lemma "count_list [0,1,0,2::int] 0 = 2" by (simp)}\\ @{lemma "List.extract (%i::int. i>0) [0,0] = None" by(simp add: extract_def)}\\ @{lemma "List.extract (%i::int. i>0) [0,1,0,2] = Some([0], 1, [0,2])" by(simp add: extract_def)}\\ @{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\ @{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\ @{lemma "nth [a,b,c,d] 2 = c" by simp}\\ @{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\ @{lemma "nths [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:nths_def)}\\ @{lemma "subseqs [a,b] = [[a, b], [a], [b], []]" by simp}\\ @{lemma "List.n_lists 2 [a,b,c] = [[a, a], [b, a], [c, a], [a, b], [b, b], [c, b], [a, c], [b, c], [c, c]]" by (simp add: eval_nat_numeral)}\\ @{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by simp}\\ @{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate_def eval_nat_numeral)}\\ @{lemma "replicate 4 a = [a,a,a,a]" by (simp add:eval_nat_numeral)}\\ @{lemma "[2..<5] = [2,3,4]" by (simp add:eval_nat_numeral)}\\ @{lemma "min_list [3,1,-2::int] = -2" by (simp)}\\ @{lemma "arg_min_list (\i. i*i) [3,-1,1,-2::int] = -1" by (simp)} \end{tabular}} \caption{Characteristic examples} \label{fig:Characteristic} \end{figure} Figure~\ref{fig:Characteristic} shows characteristic examples that should give an intuitive understanding of the above functions. \ text\The following simple sort(ed) functions are intended for proofs, not for efficient implementations.\ text \A sorted predicate w.r.t. a relation:\ fun sorted_wrt :: "('a \ 'a \ bool) \ 'a list \ bool" where "sorted_wrt P [] = True" | "sorted_wrt P (x # ys) = ((\y \ set ys. P x y) \ sorted_wrt P ys)" text \A class-based sorted predicate:\ context linorder begin fun sorted :: "'a list \ bool" where "sorted [] = True" | "sorted (x # ys) = ((\y \ set ys. x \ y) \ sorted ys)" fun strict_sorted :: "'a list \ bool" where "strict_sorted [] = True" | "strict_sorted (x # ys) = ((\y \ List.set ys. x < y) \ strict_sorted ys)" lemma sorted_sorted_wrt: "sorted = sorted_wrt (\)" proof (rule ext) fix xs show "sorted xs = sorted_wrt (\) xs" by(induction xs rule: sorted.induct) auto qed lemma strict_sorted_sorted_wrt: "strict_sorted = sorted_wrt (<)" proof (rule ext) fix xs show "strict_sorted xs = sorted_wrt (<) xs" by(induction xs rule: strict_sorted.induct) auto qed primrec insort_key :: "('b \ 'a) \ 'b \ 'b list \ 'b list" where "insort_key f x [] = [x]" | "insort_key f x (y#ys) = (if f x \ f y then (x#y#ys) else y#(insort_key f x ys))" definition sort_key :: "('b \ 'a) \ 'b list \ 'b list" where "sort_key f xs = foldr (insort_key f) xs []" definition insort_insert_key :: "('b \ 'a) \ 'b \ 'b list \ 'b list" where "insort_insert_key f x xs = (if f x \ f ` set xs then xs else insort_key f x xs)" abbreviation "sort \ sort_key (\x. x)" abbreviation "insort \ insort_key (\x. x)" abbreviation "insort_insert \ insort_insert_key (\x. x)" definition stable_sort_key :: "(('b \ 'a) \ 'b list \ 'b list) \ bool" where "stable_sort_key sk = (\f xs k. filter (\y. f y = k) (sk f xs) = filter (\y. f y = k) xs)" lemma strict_sorted_iff: "strict_sorted l \ sorted l \ distinct l" by (induction l) (auto iff: antisym_conv1) lemma strict_sorted_imp_sorted: "strict_sorted xs \ sorted xs" by (auto simp: strict_sorted_iff) end subsubsection \List comprehension\ text\Input syntax for Haskell-like list comprehension notation. Typical example: \[(x,y). x \ xs, y \ ys, x \ y]\, the list of all pairs of distinct elements from \xs\ and \ys\. The syntax is as in Haskell, except that \|\ becomes a dot (like in Isabelle's set comprehension): \[e. x \ xs, \]\ rather than \verb![e| x <- xs, ...]!. The qualifiers after the dot are \begin{description} \item[generators] \p \ xs\, where \p\ is a pattern and \xs\ an expression of list type, or \item[guards] \b\, where \b\ is a boolean expression. %\item[local bindings] @ {text"let x = e"}. \end{description} Just like in Haskell, list comprehension is just a shorthand. To avoid misunderstandings, the translation into desugared form is not reversed upon output. Note that the translation of \[e. x \ xs]\ is optmized to \<^term>\map (%x. e) xs\. It is easy to write short list comprehensions which stand for complex expressions. During proofs, they may become unreadable (and mangled). In such cases it can be advisable to introduce separate definitions for the list comprehensions in question.\ nonterminal lc_qual and lc_quals syntax "_listcompr" :: "'a \ lc_qual \ lc_quals \ 'a list" ("[_ . __") "_lc_gen" :: "'a \ 'a list \ lc_qual" ("_ \ _") "_lc_test" :: "bool \ lc_qual" ("_") (*"_lc_let" :: "letbinds => lc_qual" ("let _")*) "_lc_end" :: "lc_quals" ("]") "_lc_quals" :: "lc_qual \ lc_quals \ lc_quals" (", __") syntax (ASCII) "_lc_gen" :: "'a \ 'a list \ lc_qual" ("_ <- _") parse_translation \ let val NilC = Syntax.const \<^const_syntax>\Nil\; val ConsC = Syntax.const \<^const_syntax>\Cons\; val mapC = Syntax.const \<^const_syntax>\map\; val concatC = Syntax.const \<^const_syntax>\concat\; val IfC = Syntax.const \<^const_syntax>\If\; val dummyC = Syntax.const \<^const_syntax>\Pure.dummy_pattern\ fun single x = ConsC $ x $ NilC; fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *) let (* FIXME proper name context!? *) val x = Free (singleton (Name.variant_list (fold Term.add_free_names [p, e] [])) "x", dummyT); val e = if opti then single e else e; val case1 = Syntax.const \<^syntax_const>\_case1\ $ p $ e; val case2 = Syntax.const \<^syntax_const>\_case1\ $ dummyC $ NilC; val cs = Syntax.const \<^syntax_const>\_case2\ $ case1 $ case2; in Syntax_Trans.abs_tr [x, Case_Translation.case_tr false ctxt [x, cs]] end; fun pair_pat_tr (x as Free _) e = Syntax_Trans.abs_tr [x, e] | pair_pat_tr (_ $ p1 $ p2) e = Syntax.const \<^const_syntax>\case_prod\ $ pair_pat_tr p1 (pair_pat_tr p2 e) | pair_pat_tr dummy e = Syntax_Trans.abs_tr [Syntax.const "_idtdummy", e] fun pair_pat ctxt (Const (\<^const_syntax>\Pair\,_) $ s $ t) = pair_pat ctxt s andalso pair_pat ctxt t | pair_pat ctxt (Free (s,_)) = let val thy = Proof_Context.theory_of ctxt; val s' = Proof_Context.intern_const ctxt s; in not (Sign.declared_const thy s') end | pair_pat _ t = (t = dummyC); fun abs_tr ctxt p e opti = let val p = Term_Position.strip_positions p in if pair_pat ctxt p then (pair_pat_tr p e, true) else (pat_tr ctxt p e opti, false) end fun lc_tr ctxt [e, Const (\<^syntax_const>\_lc_test\, _) $ b, qs] = let val res = (case qs of Const (\<^syntax_const>\_lc_end\, _) => single e | Const (\<^syntax_const>\_lc_quals\, _) $ q $ qs => lc_tr ctxt [e, q, qs]); in IfC $ b $ res $ NilC end | lc_tr ctxt [e, Const (\<^syntax_const>\_lc_gen\, _) $ p $ es, Const(\<^syntax_const>\_lc_end\, _)] = (case abs_tr ctxt p e true of (f, true) => mapC $ f $ es | (f, false) => concatC $ (mapC $ f $ es)) | lc_tr ctxt [e, Const (\<^syntax_const>\_lc_gen\, _) $ p $ es, Const (\<^syntax_const>\_lc_quals\, _) $ q $ qs] = let val e' = lc_tr ctxt [e, q, qs]; in concatC $ (mapC $ (fst (abs_tr ctxt p e' false)) $ es) end; in [(\<^syntax_const>\_listcompr\, lc_tr)] end \ ML_val \ let val read = Syntax.read_term \<^context> o Syntax.implode_input; fun check s1 s2 = read s1 aconv read s2 orelse error ("Check failed: " ^ quote (#1 (Input.source_content s1)) ^ Position.here_list [Input.pos_of s1, Input.pos_of s2]); in check \[(x,y,z). b]\ \if b then [(x, y, z)] else []\; check \[(x,y,z). (x,_,y)\xs]\ \map (\(x,_,y). (x, y, z)) xs\; check \[e x y. (x,_)\xs, y\ys]\ \concat (map (\(x,_). map (\y. e x y) ys) xs)\; check \[(x,y,z). xb]\ \if x < a then if b < x then [(x, y, z)] else [] else []\; check \[(x,y,z). x\xs, x>b]\ \concat (map (\x. if b < x then [(x, y, z)] else []) xs)\; check \[(x,y,z). xxs]\ \if x < a then map (\x. (x, y, z)) xs else []\; check \[(x,y). Cons True x \ xs]\ \concat (map (\xa. case xa of [] \ [] | True # x \ [(x, y)] | False # x \ []) xs)\; check \[(x,y,z). Cons x [] \ xs]\ \concat (map (\xa. case xa of [] \ [] | [x] \ [(x, y, z)] | x # aa # lista \ []) xs)\; check \[(x,y,z). xb, x=d]\ \if x < a then if b < x then if x = d then [(x, y, z)] else [] else [] else []\; check \[(x,y,z). xb, y\ys]\ \if x < a then if b < x then map (\y. (x, y, z)) ys else [] else []\; check \[(x,y,z). xxs,y>b]\ \if x < a then concat (map (\(_,x). if b < y then [(x, y, z)] else []) xs) else []\; check \[(x,y,z). xxs, y\ys]\ \if x < a then concat (map (\x. map (\y. (x, y, z)) ys) xs) else []\; check \[(x,y,z). x\xs, x>b, y \concat (map (\x. if b < x then if y < a then [(x, y, z)] else [] else []) xs)\; check \[(x,y,z). x\xs, x>b, y\ys]\ \concat (map (\x. if b < x then map (\y. (x, y, z)) ys else []) xs)\; check \[(x,y,z). x\xs, (y,_)\ys,y>x]\ \concat (map (\x. concat (map (\(y,_). if x < y then [(x, y, z)] else []) ys)) xs)\; check \[(x,y,z). x\xs, y\ys,z\zs]\ \concat (map (\x. concat (map (\y. map (\z. (x, y, z)) zs) ys)) xs)\ end; \ ML \ (* Simproc for rewriting list comprehensions applied to List.set to set comprehension. *) signature LIST_TO_SET_COMPREHENSION = sig val simproc : Proof.context -> cterm -> thm option end structure List_to_Set_Comprehension : LIST_TO_SET_COMPREHENSION = struct (* conversion *) fun all_exists_conv cv ctxt ct = (case Thm.term_of ct of Const (\<^const_name>\Ex\, _) $ Abs _ => Conv.arg_conv (Conv.abs_conv (all_exists_conv cv o #2) ctxt) ct | _ => cv ctxt ct) fun all_but_last_exists_conv cv ctxt ct = (case Thm.term_of ct of Const (\<^const_name>\Ex\, _) $ Abs (_, _, Const (\<^const_name>\Ex\, _) $ _) => Conv.arg_conv (Conv.abs_conv (all_but_last_exists_conv cv o #2) ctxt) ct | _ => cv ctxt ct) fun Collect_conv cv ctxt ct = (case Thm.term_of ct of Const (\<^const_name>\Collect\, _) $ Abs _ => Conv.arg_conv (Conv.abs_conv cv ctxt) ct | _ => raise CTERM ("Collect_conv", [ct])) fun rewr_conv' th = Conv.rewr_conv (mk_meta_eq th) fun conjunct_assoc_conv ct = Conv.try_conv (rewr_conv' @{thm conj_assoc} then_conv HOLogic.conj_conv Conv.all_conv conjunct_assoc_conv) ct fun right_hand_set_comprehension_conv conv ctxt = HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv (Collect_conv (all_exists_conv conv o #2) ctxt)) (* term abstraction of list comprehension patterns *) datatype termlets = If | Case of typ * int local val set_Nil_I = @{lemma "set [] = {x. False}" by (simp add: empty_def [symmetric])} val set_singleton = @{lemma "set [a] = {x. x = a}" by simp} val inst_Collect_mem_eq = @{lemma "set A = {x. x \ set A}" by simp} val del_refl_eq = @{lemma "(t = t \ P) \ P" by simp} fun mk_set T = Const (\<^const_name>\set\, HOLogic.listT T --> HOLogic.mk_setT T) fun dest_set (Const (\<^const_name>\set\, _) $ xs) = xs fun dest_singleton_list (Const (\<^const_name>\Cons\, _) $ t $ (Const (\<^const_name>\Nil\, _))) = t | dest_singleton_list t = raise TERM ("dest_singleton_list", [t]) (*We check that one case returns a singleton list and all other cases return [], and return the index of the one singleton list case.*) fun possible_index_of_singleton_case cases = let fun check (i, case_t) s = (case strip_abs_body case_t of (Const (\<^const_name>\Nil\, _)) => s | _ => (case s of SOME NONE => SOME (SOME i) | _ => NONE)) in fold_index check cases (SOME NONE) |> the_default NONE end (*returns condition continuing term option*) fun dest_if (Const (\<^const_name>\If\, _) $ cond $ then_t $ Const (\<^const_name>\Nil\, _)) = SOME (cond, then_t) | dest_if _ = NONE (*returns (case_expr type index chosen_case constr_name) option*) fun dest_case ctxt case_term = let val (case_const, args) = strip_comb case_term in (case try dest_Const case_const of SOME (c, T) => (case Ctr_Sugar.ctr_sugar_of_case ctxt c of SOME {ctrs, ...} => (case possible_index_of_singleton_case (fst (split_last args)) of SOME i => let val constr_names = map (fst o dest_Const) ctrs val (Ts, _) = strip_type T val T' = List.last Ts in SOME (List.last args, T', i, nth args i, nth constr_names i) end | NONE => NONE) | NONE => NONE) | NONE => NONE) end fun tac ctxt [] = resolve_tac ctxt [set_singleton] 1 ORELSE resolve_tac ctxt [inst_Collect_mem_eq] 1 | tac ctxt (If :: cont) = Splitter.split_tac ctxt @{thms if_split} 1 THEN resolve_tac ctxt @{thms conjI} 1 THEN resolve_tac ctxt @{thms impI} 1 THEN Subgoal.FOCUS (fn {prems, context = ctxt', ...} => CONVERSION (right_hand_set_comprehension_conv (K (HOLogic.conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_TrueI})) Conv.all_conv then_conv rewr_conv' @{lemma "(True \ P) = P" by simp})) ctxt') 1) ctxt 1 THEN tac ctxt cont THEN resolve_tac ctxt @{thms impI} 1 THEN Subgoal.FOCUS (fn {prems, context = ctxt', ...} => CONVERSION (right_hand_set_comprehension_conv (K (HOLogic.conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_FalseI})) Conv.all_conv then_conv rewr_conv' @{lemma "(False \ P) = False" by simp})) ctxt') 1) ctxt 1 THEN resolve_tac ctxt [set_Nil_I] 1 | tac ctxt (Case (T, i) :: cont) = let val SOME {injects, distincts, case_thms, split, ...} = Ctr_Sugar.ctr_sugar_of ctxt (fst (dest_Type T)) in (* do case distinction *) Splitter.split_tac ctxt [split] 1 THEN EVERY (map_index (fn (i', _) => (if i' < length case_thms - 1 then resolve_tac ctxt @{thms conjI} 1 else all_tac) THEN REPEAT_DETERM (resolve_tac ctxt @{thms allI} 1) THEN resolve_tac ctxt @{thms impI} 1 THEN (if i' = i then (* continue recursively *) Subgoal.FOCUS (fn {prems, context = ctxt', ...} => CONVERSION (Thm.eta_conversion then_conv right_hand_set_comprehension_conv (K ((HOLogic.conj_conv (HOLogic.eq_conv Conv.all_conv (rewr_conv' (List.last prems)) then_conv (Conv.try_conv (Conv.rewrs_conv (map mk_meta_eq injects)))) Conv.all_conv) then_conv (Conv.try_conv (Conv.rewr_conv del_refl_eq)) then_conv conjunct_assoc_conv)) ctxt' then_conv (HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv (Collect_conv (fn (_, ctxt'') => Conv.repeat_conv (all_but_last_exists_conv (K (rewr_conv' @{lemma "(\x. x = t \ P x) = P t" by simp})) ctxt'')) ctxt')))) 1) ctxt 1 THEN tac ctxt cont else Subgoal.FOCUS (fn {prems, context = ctxt', ...} => CONVERSION (right_hand_set_comprehension_conv (K (HOLogic.conj_conv ((HOLogic.eq_conv Conv.all_conv (rewr_conv' (List.last prems))) then_conv (Conv.rewrs_conv (map (fn th => th RS @{thm Eq_FalseI}) distincts))) Conv.all_conv then_conv (rewr_conv' @{lemma "(False \ P) = False" by simp}))) ctxt' then_conv HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv (Collect_conv (fn (_, ctxt'') => Conv.repeat_conv (Conv.bottom_conv (K (rewr_conv' @{lemma "(\x. P) = P" by simp})) ctxt'')) ctxt'))) 1) ctxt 1 THEN resolve_tac ctxt [set_Nil_I] 1)) case_thms) end in fun simproc ctxt redex = let fun make_inner_eqs bound_vs Tis eqs t = (case dest_case ctxt t of SOME (x, T, i, cont, constr_name) => let val (vs, body) = strip_abs (Envir.eta_long (map snd bound_vs) cont) val x' = incr_boundvars (length vs) x val eqs' = map (incr_boundvars (length vs)) eqs val constr_t = list_comb (Const (constr_name, map snd vs ---> T), map Bound (((length vs) - 1) downto 0)) val constr_eq = Const (\<^const_name>\HOL.eq\, T --> T --> \<^typ>\bool\) $ constr_t $ x' in make_inner_eqs (rev vs @ bound_vs) (Case (T, i) :: Tis) (constr_eq :: eqs') body end | NONE => (case dest_if t of SOME (condition, cont) => make_inner_eqs bound_vs (If :: Tis) (condition :: eqs) cont | NONE => if null eqs then NONE (*no rewriting, nothing to be done*) else let val Type (\<^type_name>\list\, [rT]) = fastype_of1 (map snd bound_vs, t) val pat_eq = (case try dest_singleton_list t of SOME t' => Const (\<^const_name>\HOL.eq\, rT --> rT --> \<^typ>\bool\) $ Bound (length bound_vs) $ t' | NONE => Const (\<^const_name>\Set.member\, rT --> HOLogic.mk_setT rT --> \<^typ>\bool\) $ Bound (length bound_vs) $ (mk_set rT $ t)) val reverse_bounds = curry subst_bounds ((map Bound ((length bound_vs - 1) downto 0)) @ [Bound (length bound_vs)]) val eqs' = map reverse_bounds eqs val pat_eq' = reverse_bounds pat_eq val inner_t = fold (fn (_, T) => fn t => HOLogic.exists_const T $ absdummy T t) (rev bound_vs) (fold (curry HOLogic.mk_conj) eqs' pat_eq') val lhs = Thm.term_of redex val rhs = HOLogic.mk_Collect ("x", rT, inner_t) val rewrite_rule_t = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) in SOME ((Goal.prove ctxt [] [] rewrite_rule_t (fn {context = ctxt', ...} => tac ctxt' (rev Tis))) RS @{thm eq_reflection}) end)) in make_inner_eqs [] [] [] (dest_set (Thm.term_of redex)) end end end \ simproc_setup list_to_set_comprehension ("set xs") = \K List_to_Set_Comprehension.simproc\ code_datatype set coset hide_const (open) coset subsubsection \\<^const>\Nil\ and \<^const>\Cons\\ lemma not_Cons_self [simp]: "xs \ x # xs" by (induct xs) auto lemma not_Cons_self2 [simp]: "x # xs \ xs" by (rule not_Cons_self [symmetric]) lemma neq_Nil_conv: "(xs \ []) = (\y ys. xs = y # ys)" by (induct xs) auto lemma tl_Nil: "tl xs = [] \ xs = [] \ (\x. xs = [x])" by (cases xs) auto lemma Nil_tl: "[] = tl xs \ xs = [] \ (\x. xs = [x])" by (cases xs) auto lemma length_induct: "(\xs. \ys. length ys < length xs \ P ys \ P xs) \ P xs" by (fact measure_induct) lemma induct_list012: "\P []; \x. P [x]; \x y zs. \ P zs; P (y # zs) \ \ P (x # y # zs)\ \ P xs" by induction_schema (pat_completeness, lexicographic_order) lemma list_nonempty_induct [consumes 1, case_names single cons]: "\ xs \ []; \x. P [x]; \x xs. xs \ [] \ P xs \ P (x # xs)\ \ P xs" by(induction xs rule: induct_list012) auto lemma inj_split_Cons: "inj_on (\(xs, n). n#xs) X" by (auto intro!: inj_onI) lemma inj_on_Cons1 [simp]: "inj_on ((#) x) A" by(simp add: inj_on_def) subsubsection \\<^const>\length\\ text \ Needs to come before \@\ because of theorem \append_eq_append_conv\. \ lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" by (induct xs) auto lemma length_map [simp]: "length (map f xs) = length xs" by (induct xs) auto lemma length_rev [simp]: "length (rev xs) = length xs" by (induct xs) auto lemma length_tl [simp]: "length (tl xs) = length xs - 1" by (cases xs) auto lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" by (induct xs) auto lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \ [])" by (induct xs) auto lemma length_pos_if_in_set: "x \ set xs \ length xs > 0" by auto lemma length_Suc_conv: "(length xs = Suc n) = (\y ys. xs = y # ys \ length ys = n)" by (induct xs) auto lemma Suc_length_conv: "(Suc n = length xs) = (\y ys. xs = y # ys \ length ys = n)" by (induct xs; simp; blast) lemma Suc_le_length_iff: "(Suc n \ length xs) = (\x ys. xs = x # ys \ n \ length ys)" by (metis Suc_le_D[of n] Suc_le_mono[of n] Suc_length_conv[of _ xs]) lemma impossible_Cons: "length xs \ length ys \ xs = x # ys = False" by (induct xs) auto lemma list_induct2 [consumes 1, case_names Nil Cons]: "length xs = length ys \ P [] [] \ (\x xs y ys. length xs = length ys \ P xs ys \ P (x#xs) (y#ys)) \ P xs ys" proof (induct xs arbitrary: ys) case (Cons x xs ys) then show ?case by (cases ys) simp_all qed simp lemma list_induct3 [consumes 2, case_names Nil Cons]: "length xs = length ys \ length ys = length zs \ P [] [] [] \ (\x xs y ys z zs. length xs = length ys \ length ys = length zs \ P xs ys zs \ P (x#xs) (y#ys) (z#zs)) \ P xs ys zs" proof (induct xs arbitrary: ys zs) case Nil then show ?case by simp next case (Cons x xs ys zs) then show ?case by (cases ys, simp_all) (cases zs, simp_all) qed lemma list_induct4 [consumes 3, case_names Nil Cons]: "length xs = length ys \ length ys = length zs \ length zs = length ws \ P [] [] [] [] \ (\x xs y ys z zs w ws. length xs = length ys \ length ys = length zs \ length zs = length ws \ P xs ys zs ws \ P (x#xs) (y#ys) (z#zs) (w#ws)) \ P xs ys zs ws" proof (induct xs arbitrary: ys zs ws) case Nil then show ?case by simp next case (Cons x xs ys zs ws) then show ?case by ((cases ys, simp_all), (cases zs,simp_all)) (cases ws, simp_all) qed lemma list_induct2': "\ P [] []; \x xs. P (x#xs) []; \y ys. P [] (y#ys); \x xs y ys. P xs ys \ P (x#xs) (y#ys) \ \ P xs ys" by (induct xs arbitrary: ys) (case_tac x, auto)+ lemma list_all2_iff: "list_all2 P xs ys \ length xs = length ys \ (\(x, y) \ set (zip xs ys). P x y)" by (induct xs ys rule: list_induct2') auto lemma neq_if_length_neq: "length xs \ length ys \ (xs = ys) == False" by (rule Eq_FalseI) auto subsubsection \\@\ -- append\ global_interpretation append: monoid append Nil proof fix xs ys zs :: "'a list" show "(xs @ ys) @ zs = xs @ (ys @ zs)" by (induct xs) simp_all show "xs @ [] = xs" by (induct xs) simp_all qed simp lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" by (fact append.assoc) lemma append_Nil2: "xs @ [] = xs" by (fact append.right_neutral) lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \ ys = [])" by (induct xs) auto lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \ ys = [])" by (induct xs) auto lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" by (induct xs) auto lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" by (induct xs) auto lemma append_eq_append_conv [simp]: "length xs = length ys \ length us = length vs \ (xs@us = ys@vs) = (xs=ys \ us=vs)" by (induct xs arbitrary: ys; case_tac ys; force) lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) = (\us. xs = zs @ us \ us @ ys = ts \ xs @ us = zs \ ys = us @ ts)" proof (induct xs arbitrary: ys zs ts) case (Cons x xs) then show ?case by (cases zs) auto qed fastforce lemma same_append_eq [iff, induct_simp]: "(xs @ ys = xs @ zs) = (ys = zs)" by simp lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \ x = y)" by simp lemma append_same_eq [iff, induct_simp]: "(ys @ xs = zs @ xs) = (ys = zs)" by simp lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" using append_same_eq [of _ _ "[]"] by auto lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" using append_same_eq [of "[]"] by auto lemma hd_Cons_tl: "xs \ [] \ hd xs # tl xs = xs" by (fact list.collapse) lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" by (induct xs) auto lemma hd_append2 [simp]: "xs \ [] \ hd (xs @ ys) = hd xs" by (simp add: hd_append split: list.split) lemma tl_append: "tl (xs @ ys) = (case xs of [] \ tl ys | z#zs \ zs @ ys)" by (simp split: list.split) lemma tl_append2 [simp]: "xs \ [] \ tl (xs @ ys) = tl xs @ ys" by (simp add: tl_append split: list.split) lemma Cons_eq_append_conv: "x#xs = ys@zs = (ys = [] \ x#xs = zs \ (\ys'. x#ys' = ys \ xs = ys'@zs))" by(cases ys) auto lemma append_eq_Cons_conv: "(ys@zs = x#xs) = (ys = [] \ zs = x#xs \ (\ys'. ys = x#ys' \ ys'@zs = xs))" by(cases ys) auto lemma longest_common_prefix: "\ps xs' ys'. xs = ps @ xs' \ ys = ps @ ys' \ (xs' = [] \ ys' = [] \ hd xs' \ hd ys')" by (induct xs ys rule: list_induct2') (blast, blast, blast, metis (no_types, hide_lams) append_Cons append_Nil list.sel(1)) text \Trivial rules for solving \@\-equations automatically.\ lemma eq_Nil_appendI: "xs = ys \ xs = [] @ ys" by simp lemma Cons_eq_appendI: "\x # xs1 = ys; xs = xs1 @ zs\ \ x # xs = ys @ zs" by auto lemma append_eq_appendI: "\xs @ xs1 = zs; ys = xs1 @ us\ \ xs @ ys = zs @ us" by auto text \ Simplification procedure for all list equalities. Currently only tries to rearrange \@\ to see if - both lists end in a singleton list, - or both lists end in the same list. \ simproc_setup list_eq ("(xs::'a list) = ys") = \ let fun last (cons as Const (\<^const_name>\Cons\, _) $ _ $ xs) = (case xs of Const (\<^const_name>\Nil\, _) => cons | _ => last xs) | last (Const(\<^const_name>\append\,_) $ _ $ ys) = last ys | last t = t; fun list1 (Const(\<^const_name>\Cons\,_) $ _ $ Const(\<^const_name>\Nil\,_)) = true | list1 _ = false; fun butlast ((cons as Const(\<^const_name>\Cons\,_) $ x) $ xs) = (case xs of Const (\<^const_name>\Nil\, _) => xs | _ => cons $ butlast xs) | butlast ((app as Const (\<^const_name>\append\, _) $ xs) $ ys) = app $ butlast ys | butlast xs = Const(\<^const_name>\Nil\, fastype_of xs); val rearr_ss = simpset_of (put_simpset HOL_basic_ss \<^context> addsimps [@{thm append_assoc}, @{thm append_Nil}, @{thm append_Cons}]); fun list_eq ctxt (F as (eq as Const(_,eqT)) $ lhs $ rhs) = let val lastl = last lhs and lastr = last rhs; fun rearr conv = let val lhs1 = butlast lhs and rhs1 = butlast rhs; val Type(_,listT::_) = eqT val appT = [listT,listT] ---> listT val app = Const(\<^const_name>\append\,appT) val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2)); val thm = Goal.prove ctxt [] [] eq (K (simp_tac (put_simpset rearr_ss ctxt) 1)); in SOME ((conv RS (thm RS trans)) RS eq_reflection) end; in if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv} else if lastl aconv lastr then rearr @{thm append_same_eq} else NONE end; in fn _ => fn ctxt => fn ct => list_eq ctxt (Thm.term_of ct) end \ subsubsection \\<^const>\map\\ lemma hd_map: "xs \ [] \ hd (map f xs) = f (hd xs)" by (cases xs) simp_all lemma map_tl: "map f (tl xs) = tl (map f xs)" by (cases xs) simp_all lemma map_ext: "(\x. x \ set xs \ f x = g x) \ map f xs = map g xs" by (induct xs) simp_all lemma map_ident [simp]: "map (\x. x) = (\xs. xs)" by (rule ext, induct_tac xs) auto lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" by (induct xs) auto lemma map_map [simp]: "map f (map g xs) = map (f \ g) xs" by (induct xs) auto lemma map_comp_map[simp]: "((map f) \ (map g)) = map(f \ g)" by (rule ext) simp lemma rev_map: "rev (map f xs) = map f (rev xs)" by (induct xs) auto lemma map_eq_conv[simp]: "(map f xs = map g xs) = (\x \ set xs. f x = g x)" by (induct xs) auto lemma map_cong [fundef_cong]: "xs = ys \ (\x. x \ set ys \ f x = g x) \ map f xs = map g ys" by simp lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" by (cases xs) auto lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" by (cases xs) auto lemma map_eq_Cons_conv: "(map f xs = y#ys) = (\z zs. xs = z#zs \ f z = y \ map f zs = ys)" by (cases xs) auto lemma Cons_eq_map_conv: "(x#xs = map f ys) = (\z zs. ys = z#zs \ x = f z \ xs = map f zs)" by (cases ys) auto lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1] lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1] declare map_eq_Cons_D [dest!] Cons_eq_map_D [dest!] lemma ex_map_conv: "(\xs. ys = map f xs) = (\y \ set ys. \x. y = f x)" by(induct ys, auto simp add: Cons_eq_map_conv) lemma map_eq_imp_length_eq: assumes "map f xs = map g ys" shows "length xs = length ys" using assms proof (induct ys arbitrary: xs) case Nil then show ?case by simp next case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto from Cons xs have "map f zs = map g ys" by simp with Cons have "length zs = length ys" by blast with xs show ?case by simp qed lemma map_inj_on: assumes map: "map f xs = map f ys" and inj: "inj_on f (set xs Un set ys)" shows "xs = ys" using map_eq_imp_length_eq [OF map] assms proof (induct rule: list_induct2) case (Cons x xs y ys) then show ?case by (auto intro: sym) qed auto lemma inj_on_map_eq_map: "inj_on f (set xs Un set ys) \ (map f xs = map f ys) = (xs = ys)" by(blast dest:map_inj_on) lemma map_injective: "map f xs = map f ys \ inj f \ xs = ys" by (induct ys arbitrary: xs) (auto dest!:injD) lemma inj_map_eq_map[simp]: "inj f \ (map f xs = map f ys) = (xs = ys)" by(blast dest:map_injective) lemma inj_mapI: "inj f \ inj (map f)" by (iprover dest: map_injective injD intro: inj_onI) lemma inj_mapD: "inj (map f) \ inj f" by (metis (no_types, hide_lams) injI list.inject list.simps(9) the_inv_f_f) lemma inj_map[iff]: "inj (map f) = inj f" by (blast dest: inj_mapD intro: inj_mapI) lemma inj_on_mapI: "inj_on f (\(set ` A)) \ inj_on (map f) A" by (blast intro:inj_onI dest:inj_onD map_inj_on) lemma map_idI: "(\x. x \ set xs \ f x = x) \ map f xs = xs" by (induct xs, auto) lemma map_fun_upd [simp]: "y \ set xs \ map (f(y:=v)) xs = map f xs" by (induct xs) auto lemma map_fst_zip[simp]: "length xs = length ys \ map fst (zip xs ys) = xs" by (induct rule:list_induct2, simp_all) lemma map_snd_zip[simp]: "length xs = length ys \ map snd (zip xs ys) = ys" by (induct rule:list_induct2, simp_all) lemma map_fst_zip_take: "map fst (zip xs ys) = take (min (length xs) (length ys)) xs" by (induct xs ys rule: list_induct2') simp_all lemma map_snd_zip_take: "map snd (zip xs ys) = take (min (length xs) (length ys)) ys" by (induct xs ys rule: list_induct2') simp_all lemma map2_map_map: "map2 h (map f xs) (map g xs) = map (\x. h (f x) (g x)) xs" by (induction xs) (auto) functor map: map by (simp_all add: id_def) declare map.id [simp] subsubsection \\<^const>\rev\\ lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" by (induct xs) auto lemma rev_rev_ident [simp]: "rev (rev xs) = xs" by (induct xs) auto lemma rev_swap: "(rev xs = ys) = (xs = rev ys)" by auto lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" by (induct xs) auto lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" by (induct xs) auto lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])" by (cases xs) auto lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])" by (cases xs) auto lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)" proof (induct xs arbitrary: ys) case Nil then show ?case by force next case Cons then show ?case by (cases ys) auto qed lemma inj_on_rev[iff]: "inj_on rev A" by(simp add:inj_on_def) lemma rev_induct [case_names Nil snoc]: assumes "P []" and "\x xs. P xs \ P (xs @ [x])" shows "P xs" proof - have "P (rev (rev xs))" by (rule_tac list = "rev xs" in list.induct, simp_all add: assms) then show ?thesis by simp qed lemma rev_exhaust [case_names Nil snoc]: "(xs = [] \ P) \(\ys y. xs = ys @ [y] \ P) \ P" by (induct xs rule: rev_induct) auto lemmas rev_cases = rev_exhaust lemma rev_nonempty_induct [consumes 1, case_names single snoc]: assumes "xs \ []" and single: "\x. P [x]" and snoc': "\x xs. xs \ [] \ P xs \ P (xs@[x])" shows "P xs" using \xs \ []\ proof (induct xs rule: rev_induct) case (snoc x xs) then show ?case proof (cases xs) case Nil thus ?thesis by (simp add: single) next case Cons with snoc show ?thesis by (fastforce intro!: snoc') qed qed simp lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])" by(rule rev_cases[of xs]) auto subsubsection \\<^const>\set\\ declare list.set[code_post] \ \pretty output\ lemma finite_set [iff]: "finite (set xs)" by (induct xs) auto lemma set_append [simp]: "set (xs @ ys) = (set xs \ set ys)" by (induct xs) auto lemma hd_in_set[simp]: "xs \ [] \ hd xs \ set xs" by(cases xs) auto lemma set_subset_Cons: "set xs \ set (x # xs)" by auto lemma set_ConsD: "y \ set (x # xs) \ y=x \ y \ set xs" by auto lemma set_empty [iff]: "(set xs = {}) = (xs = [])" by (induct xs) auto lemma set_empty2[iff]: "({} = set xs) = (xs = [])" by(induct xs) auto lemma set_rev [simp]: "set (rev xs) = set xs" by (induct xs) auto lemma set_map [simp]: "set (map f xs) = f`(set xs)" by (induct xs) auto lemma set_filter [simp]: "set (filter P xs) = {x. x \ set xs \ P x}" by (induct xs) auto lemma set_upt [simp]: "set[i.. set xs \ \ys zs. xs = ys @ x # zs" proof (induct xs) case Nil thus ?case by simp next case Cons thus ?case by (auto intro: Cons_eq_appendI) qed lemma in_set_conv_decomp: "x \ set xs \ (\ys zs. xs = ys @ x # zs)" by (auto elim: split_list) lemma split_list_first: "x \ set xs \ \ys zs. xs = ys @ x # zs \ x \ set ys" proof (induct xs) case Nil thus ?case by simp next case (Cons a xs) show ?case proof cases assume "x = a" thus ?case using Cons by fastforce next assume "x \ a" thus ?case using Cons by(fastforce intro!: Cons_eq_appendI) qed qed lemma in_set_conv_decomp_first: "(x \ set xs) = (\ys zs. xs = ys @ x # zs \ x \ set ys)" by (auto dest!: split_list_first) lemma split_list_last: "x \ set xs \ \ys zs. xs = ys @ x # zs \ x \ set zs" proof (induct xs rule: rev_induct) case Nil thus ?case by simp next case (snoc a xs) show ?case proof cases assume "x = a" thus ?case using snoc by (auto intro!: exI) next assume "x \ a" thus ?case using snoc by fastforce qed qed lemma in_set_conv_decomp_last: "(x \ set xs) = (\ys zs. xs = ys @ x # zs \ x \ set zs)" by (auto dest!: split_list_last) lemma split_list_prop: "\x \ set xs. P x \ \ys x zs. xs = ys @ x # zs \ P x" proof (induct xs) case Nil thus ?case by simp next case Cons thus ?case by(simp add:Bex_def)(metis append_Cons append.simps(1)) qed lemma split_list_propE: assumes "\x \ set xs. P x" obtains ys x zs where "xs = ys @ x # zs" and "P x" using split_list_prop [OF assms] by blast lemma split_list_first_prop: "\x \ set xs. P x \ \ys x zs. xs = ys@x#zs \ P x \ (\y \ set ys. \ P y)" proof (induct xs) case Nil thus ?case by simp next case (Cons x xs) show ?case proof cases assume "P x" hence "x # xs = [] @ x # xs \ P x \ (\y\set []. \ P y)" by simp thus ?thesis by fast next assume "\ P x" hence "\x\set xs. P x" using Cons(2) by simp thus ?thesis using \\ P x\ Cons(1) by (metis append_Cons set_ConsD) qed qed lemma split_list_first_propE: assumes "\x \ set xs. P x" obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\y \ set ys. \ P y" using split_list_first_prop [OF assms] by blast lemma split_list_first_prop_iff: "(\x \ set xs. P x) \ (\ys x zs. xs = ys@x#zs \ P x \ (\y \ set ys. \ P y))" by (rule, erule split_list_first_prop) auto lemma split_list_last_prop: "\x \ set xs. P x \ \ys x zs. xs = ys@x#zs \ P x \ (\z \ set zs. \ P z)" proof(induct xs rule:rev_induct) case Nil thus ?case by simp next case (snoc x xs) show ?case proof cases assume "P x" thus ?thesis by (auto intro!: exI) next assume "\ P x" hence "\x\set xs. P x" using snoc(2) by simp thus ?thesis using \\ P x\ snoc(1) by fastforce qed qed lemma split_list_last_propE: assumes "\x \ set xs. P x" obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\z \ set zs. \ P z" using split_list_last_prop [OF assms] by blast lemma split_list_last_prop_iff: "(\x \ set xs. P x) \ (\ys x zs. xs = ys@x#zs \ P x \ (\z \ set zs. \ P z))" by rule (erule split_list_last_prop, auto) lemma finite_list: "finite A \ \xs. set xs = A" by (erule finite_induct) (auto simp add: list.set(2)[symmetric] simp del: list.set(2)) lemma card_length: "card (set xs) \ length xs" by (induct xs) (auto simp add: card_insert_if) lemma set_minus_filter_out: "set xs - {y} = set (filter (\x. \ (x = y)) xs)" by (induct xs) auto lemma append_Cons_eq_iff: "\ x \ set xs; x \ set ys \ \ xs @ x # ys = xs' @ x # ys' \ (xs = xs' \ ys = ys')" by(auto simp: append_eq_Cons_conv Cons_eq_append_conv append_eq_append_conv2) subsubsection \\<^const>\concat\\ lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" by (induct xs) auto lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\xs \ set xss. xs = [])" by (induct xss) auto lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\xs \ set xss. xs = [])" by (induct xss) auto lemma set_concat [simp]: "set (concat xs) = (\x\set xs. set x)" by (induct xs) auto lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs" by (induct xs) auto lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" by (induct xs) auto lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" by (induct xs) auto lemma length_concat_rev[simp]: "length (concat (rev xs)) = length (concat xs)" by (induction xs) auto lemma concat_eq_concat_iff: "\(x, y) \ set (zip xs ys). length x = length y \ length xs = length ys \ (concat xs = concat ys) = (xs = ys)" proof (induct xs arbitrary: ys) case (Cons x xs ys) thus ?case by (cases ys) auto qed (auto) lemma concat_injective: "concat xs = concat ys \ length xs = length ys \ \(x, y) \ set (zip xs ys). length x = length y \ xs = ys" by (simp add: concat_eq_concat_iff) lemma concat_eq_appendD: assumes "concat xss = ys @ zs" "xss \ []" shows "\xss1 xs xs' xss2. xss = xss1 @ (xs @ xs') # xss2 \ ys = concat xss1 @ xs \ zs = xs' @ concat xss2" using assms proof(induction xss arbitrary: ys) case (Cons xs xss) from Cons.prems consider us where "xs @ us = ys" "concat xss = us @ zs" | us where "xs = ys @ us" "us @ concat xss = zs" by(auto simp add: append_eq_append_conv2) then show ?case proof cases case 1 then show ?thesis using Cons.IH[OF 1(2)] by(cases xss)(auto intro: exI[where x="[]"], metis append.assoc append_Cons concat.simps(2)) qed(auto intro: exI[where x="[]"]) qed simp lemma concat_eq_append_conv: "concat xss = ys @ zs \ (if xss = [] then ys = [] \ zs = [] else \xss1 xs xs' xss2. xss = xss1 @ (xs @ xs') # xss2 \ ys = concat xss1 @ xs \ zs = xs' @ concat xss2)" by(auto dest: concat_eq_appendD) lemma hd_concat: "\xs \ []; hd xs \ []\ \ hd (concat xs) = hd (hd xs)" by (metis concat.simps(2) hd_Cons_tl hd_append2) simproc_setup list_neq ("(xs::'a list) = ys") = \ (* Reduces xs=ys to False if xs and ys cannot be of the same length. This is the case if the atomic sublists of one are a submultiset of those of the other list and there are fewer Cons's in one than the other. *) let fun len (Const(\<^const_name>\Nil\,_)) acc = acc | len (Const(\<^const_name>\Cons\,_) $ _ $ xs) (ts,n) = len xs (ts,n+1) | len (Const(\<^const_name>\append\,_) $ xs $ ys) acc = len xs (len ys acc) | len (Const(\<^const_name>\rev\,_) $ xs) acc = len xs acc | len (Const(\<^const_name>\map\,_) $ _ $ xs) acc = len xs acc | len (Const(\<^const_name>\concat\,T) $ (Const(\<^const_name>\rev\,_) $ xss)) acc = len (Const(\<^const_name>\concat\,T) $ xss) acc | len t (ts,n) = (t::ts,n); val ss = simpset_of \<^context>; fun list_neq ctxt ct = let val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct; val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0); fun prove_neq() = let val Type(_,listT::_) = eqT; val size = HOLogic.size_const listT; val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs); val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len); val thm = Goal.prove ctxt [] [] neq_len (K (simp_tac (put_simpset ss ctxt) 1)); in SOME (thm RS @{thm neq_if_length_neq}) end in if m < n andalso submultiset (op aconv) (ls,rs) orelse n < m andalso submultiset (op aconv) (rs,ls) then prove_neq() else NONE end; in K list_neq end \ subsubsection \\<^const>\filter\\ lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" by (induct xs) auto lemma rev_filter: "rev (filter P xs) = filter P (rev xs)" by (induct xs) simp_all lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\x. Q x \ P x) xs" by (induct xs) auto lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" by (induct xs) auto lemma length_filter_le [simp]: "length (filter P xs) \ length xs" by (induct xs) (auto simp add: le_SucI) lemma sum_length_filter_compl: "length(filter P xs) + length(filter (\x. \P x) xs) = length xs" by(induct xs) simp_all lemma filter_True [simp]: "\x \ set xs. P x \ filter P xs = xs" by (induct xs) auto lemma filter_False [simp]: "\x \ set xs. \ P x \ filter P xs = []" by (induct xs) auto lemma filter_empty_conv: "(filter P xs = []) = (\x\set xs. \ P x)" by (induct xs) simp_all lemma filter_id_conv: "(filter P xs = xs) = (\x\set xs. P x)" proof (induct xs) case (Cons x xs) then show ?case using length_filter_le by (simp add: impossible_Cons) qed auto lemma filter_map: "filter P (map f xs) = map f (filter (P \ f) xs)" by (induct xs) simp_all lemma length_filter_map[simp]: "length (filter P (map f xs)) = length(filter (P \ f) xs)" by (simp add:filter_map) lemma filter_is_subset [simp]: "set (filter P xs) \ set xs" by auto lemma length_filter_less: "\ x \ set xs; \ P x \ \ length(filter P xs) < length xs" proof (induct xs) case Nil thus ?case by simp next case (Cons x xs) thus ?case using Suc_le_eq by fastforce qed lemma length_filter_conv_card: "length(filter p xs) = card{i. i < length xs \ p(xs!i)}" proof (induct xs) case Nil thus ?case by simp next case (Cons x xs) let ?S = "{i. i < length xs \ p(xs!i)}" have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite) show ?case (is "?l = card ?S'") proof (cases) assume "p x" hence eq: "?S' = insert 0 (Suc ` ?S)" by(auto simp: image_def split:nat.split dest:gr0_implies_Suc) have "length (filter p (x # xs)) = Suc(card ?S)" using Cons \p x\ by simp also have "\ = Suc(card(Suc ` ?S))" using fin by (simp add: card_image) also have "\ = card ?S'" using eq fin by (simp add:card_insert_if) finally show ?thesis . next assume "\ p x" hence eq: "?S' = Suc ` ?S" by(auto simp add: image_def split:nat.split elim:lessE) have "length (filter p (x # xs)) = card ?S" using Cons \\ p x\ by simp also have "\ = card(Suc ` ?S)" using fin by (simp add: card_image) also have "\ = card ?S'" using eq fin by (simp add:card_insert_if) finally show ?thesis . qed qed lemma Cons_eq_filterD: "x#xs = filter P ys \ \us vs. ys = us @ x # vs \ (\u\set us. \ P u) \ P x \ xs = filter P vs" (is "_ \ \us vs. ?P ys us vs") proof(induct ys) case Nil thus ?case by simp next case (Cons y ys) show ?case (is "\x. ?Q x") proof cases assume Py: "P y" show ?thesis proof cases assume "x = y" with Py Cons.prems have "?Q []" by simp then show ?thesis .. next assume "x \ y" with Py Cons.prems show ?thesis by simp qed next assume "\ P y" with Cons obtain us vs where "?P (y#ys) (y#us) vs" by fastforce then have "?Q (y#us)" by simp then show ?thesis .. qed qed lemma filter_eq_ConsD: "filter P ys = x#xs \ \us vs. ys = us @ x # vs \ (\u\set us. \ P u) \ P x \ xs = filter P vs" by(rule Cons_eq_filterD) simp lemma filter_eq_Cons_iff: "(filter P ys = x#xs) = (\us vs. ys = us @ x # vs \ (\u\set us. \ P u) \ P x \ xs = filter P vs)" by(auto dest:filter_eq_ConsD) lemma Cons_eq_filter_iff: "(x#xs = filter P ys) = (\us vs. ys = us @ x # vs \ (\u\set us. \ P u) \ P x \ xs = filter P vs)" by(auto dest:Cons_eq_filterD) lemma inj_on_filter_key_eq: assumes "inj_on f (insert y (set xs))" shows "filter (\x. f y = f x) xs = filter (HOL.eq y) xs" using assms by (induct xs) auto lemma filter_cong[fundef_cong]: "xs = ys \ (\x. x \ set ys \ P x = Q x) \ filter P xs = filter Q ys" by (induct ys arbitrary: xs) auto subsubsection \List partitioning\ primrec partition :: "('a \ bool) \'a list \ 'a list \ 'a list" where "partition P [] = ([], [])" | "partition P (x # xs) = (let (yes, no) = partition P xs in if P x then (x # yes, no) else (yes, x # no))" lemma partition_filter1: "fst (partition P xs) = filter P xs" by (induct xs) (auto simp add: Let_def split_def) lemma partition_filter2: "snd (partition P xs) = filter (Not \ P) xs" by (induct xs) (auto simp add: Let_def split_def) lemma partition_P: assumes "partition P xs = (yes, no)" shows "(\p \ set yes. P p) \ (\p \ set no. \ P p)" proof - from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" by simp_all then show ?thesis by (simp_all add: partition_filter1 partition_filter2) qed lemma partition_set: assumes "partition P xs = (yes, no)" shows "set yes \ set no = set xs" proof - from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" by simp_all then show ?thesis by (auto simp add: partition_filter1 partition_filter2) qed lemma partition_filter_conv[simp]: "partition f xs = (filter f xs,filter (Not \ f) xs)" unfolding partition_filter2[symmetric] unfolding partition_filter1[symmetric] by simp declare partition.simps[simp del] subsubsection \\<^const>\nth\\ lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x" by auto lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n" by auto declare nth.simps [simp del] lemma nth_Cons_pos[simp]: "0 < n \ (x#xs) ! n = xs ! (n - 1)" by(auto simp: Nat.gr0_conv_Suc) lemma nth_append: "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" proof (induct xs arbitrary: n) case (Cons x xs) then show ?case using less_Suc_eq_0_disj by auto qed simp lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x" by (induct xs) auto lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n" by (induct xs) auto lemma nth_map [simp]: "n < length xs \ (map f xs)!n = f(xs!n)" proof (induct xs arbitrary: n) case (Cons x xs) then show ?case using less_Suc_eq_0_disj by auto qed simp lemma nth_tl: "n < length (tl xs) \ tl xs ! n = xs ! Suc n" by (induction xs) auto lemma hd_conv_nth: "xs \ [] \ hd xs = xs!0" by(cases xs) simp_all lemma list_eq_iff_nth_eq: "(xs = ys) = (length xs = length ys \ (\i ?R" by force show "?R \ ?L" using less_Suc_eq_0_disj by auto qed with Cons show ?case by simp qed simp lemma in_set_conv_nth: "(x \ set xs) = (\i < length xs. xs!i = x)" by(auto simp:set_conv_nth) lemma nth_equal_first_eq: assumes "x \ set xs" assumes "n \ length xs" shows "(x # xs) ! n = x \ n = 0" (is "?lhs \ ?rhs") proof assume ?lhs show ?rhs proof (rule ccontr) assume "n \ 0" then have "n > 0" by simp with \?lhs\ have "xs ! (n - 1) = x" by simp moreover from \n > 0\ \n \ length xs\ have "n - 1 < length xs" by simp ultimately have "\ix \ set xs\ in_set_conv_nth [of x xs] show False by simp qed next assume ?rhs then show ?lhs by simp qed lemma nth_non_equal_first_eq: assumes "x \ y" shows "(x # xs) ! n = y \ xs ! (n - 1) = y \ n > 0" (is "?lhs \ ?rhs") proof assume "?lhs" with assms have "n > 0" by (cases n) simp_all with \?lhs\ show ?rhs by simp next assume "?rhs" then show "?lhs" by simp qed lemma list_ball_nth: "\n < length xs; \x \ set xs. P x\ \ P(xs!n)" by (auto simp add: set_conv_nth) lemma nth_mem [simp]: "n < length xs \ xs!n \ set xs" by (auto simp add: set_conv_nth) lemma all_nth_imp_all_set: "\\i < length xs. P(xs!i); x \ set xs\ \ P x" by (auto simp add: set_conv_nth) lemma all_set_conv_all_nth: "(\x \ set xs. P x) = (\i. i < length xs \ P (xs ! i))" by (auto simp add: set_conv_nth) lemma rev_nth: "n < size xs \ rev xs ! n = xs ! (length xs - Suc n)" proof (induct xs arbitrary: n) case Nil thus ?case by simp next case (Cons x xs) hence n: "n < Suc (length xs)" by simp moreover { assume "n < length xs" with n obtain n' where n': "length xs - n = Suc n'" by (cases "length xs - n", auto) moreover from n' have "length xs - Suc n = n'" by simp ultimately have "xs ! (length xs - Suc n) = (x # xs) ! (length xs - n)" by simp } ultimately show ?case by (clarsimp simp add: Cons nth_append) qed lemma Skolem_list_nth: "(\ix. P i x) = (\xs. size xs = k \ (\ixs. ?P k xs)") proof(induct k) case 0 show ?case by simp next case (Suc k) show ?case (is "?L = ?R" is "_ = (\xs. ?P' xs)") proof assume "?R" thus "?L" using Suc by auto next assume "?L" with Suc obtain x xs where "?P k xs \ P k x" by (metis less_Suc_eq) hence "?P'(xs@[x])" by(simp add:nth_append less_Suc_eq) thus "?R" .. qed qed subsubsection \\<^const>\list_update\\ lemma length_list_update [simp]: "length(xs[i:=x]) = length xs" by (induct xs arbitrary: i) (auto split: nat.split) lemma nth_list_update: "i < length xs\ (xs[i:=x])!j = (if i = j then x else xs!j)" by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) lemma nth_list_update_eq [simp]: "i < length xs \ (xs[i:=x])!i = x" by (simp add: nth_list_update) lemma nth_list_update_neq [simp]: "i \ j \ xs[i:=x]!j = xs!j" by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) lemma list_update_id[simp]: "xs[i := xs!i] = xs" by (induct xs arbitrary: i) (simp_all split:nat.splits) lemma list_update_beyond[simp]: "length xs \ i \ xs[i:=x] = xs" proof (induct xs arbitrary: i) case (Cons x xs i) then show ?case by (metis leD length_list_update list_eq_iff_nth_eq nth_list_update_neq) qed simp lemma list_update_nonempty[simp]: "xs[k:=x] = [] \ xs=[]" by (simp only: length_0_conv[symmetric] length_list_update) lemma list_update_same_conv: "i < length xs \ (xs[i := x] = xs) = (xs!i = x)" by (induct xs arbitrary: i) (auto split: nat.split) lemma list_update_append1: "i < size xs \ (xs @ ys)[i:=x] = xs[i:=x] @ ys" by (induct xs arbitrary: i)(auto split:nat.split) lemma list_update_append: "(xs @ ys) [n:= x] = (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))" by (induct xs arbitrary: n) (auto split:nat.splits) lemma list_update_length [simp]: "(xs @ x # ys)[length xs := y] = (xs @ y # ys)" by (induct xs, auto) lemma map_update: "map f (xs[k:= y]) = (map f xs)[k := f y]" by(induct xs arbitrary: k)(auto split:nat.splits) lemma rev_update: "k < length xs \ rev (xs[k:= y]) = (rev xs)[length xs - k - 1 := y]" by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits) lemma update_zip: "(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split) lemma set_update_subset_insert: "set(xs[i:=x]) \ insert x (set xs)" by (induct xs arbitrary: i) (auto split: nat.split) lemma set_update_subsetI: "\set xs \ A; x \ A\ \ set(xs[i := x]) \ A" by (blast dest!: set_update_subset_insert [THEN subsetD]) lemma set_update_memI: "n < length xs \ x \ set (xs[n := x])" by (induct xs arbitrary: n) (auto split:nat.splits) lemma list_update_overwrite[simp]: "xs [i := x, i := y] = xs [i := y]" by (induct xs arbitrary: i) (simp_all split: nat.split) lemma list_update_swap: "i \ i' \ xs [i := x, i' := x'] = xs [i' := x', i := x]" by (induct xs arbitrary: i i') (simp_all split: nat.split) lemma list_update_code [code]: "[][i := y] = []" "(x # xs)[0 := y] = y # xs" "(x # xs)[Suc i := y] = x # xs[i := y]" by simp_all subsubsection \\<^const>\last\ and \<^const>\butlast\\ +lemma hd_Nil_eq_last: "hd Nil = last Nil" + unfolding hd_def last_def by simp + lemma last_snoc [simp]: "last (xs @ [x]) = x" by (induct xs) auto lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" by (induct xs) auto lemma last_ConsL: "xs = [] \ last(x#xs) = x" by simp lemma last_ConsR: "xs \ [] \ last(x#xs) = last xs" by simp lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)" by (induct xs) (auto) lemma last_appendL[simp]: "ys = [] \ last(xs @ ys) = last xs" by(simp add:last_append) lemma last_appendR[simp]: "ys \ [] \ last(xs @ ys) = last ys" by(simp add:last_append) lemma last_tl: "xs = [] \ tl xs \ [] \last (tl xs) = last xs" by (induct xs) simp_all lemma butlast_tl: "butlast (tl xs) = tl (butlast xs)" by (induct xs) simp_all -lemma hd_rev: "xs \ [] \ hd(rev xs) = last xs" - by(rule rev_exhaust[of xs]) simp_all - -lemma last_rev: "xs \ [] \ last(rev xs) = hd xs" - by(cases xs) simp_all +lemma hd_rev: "hd(rev xs) = last xs" + by (metis hd_Cons_tl hd_Nil_eq_last last_snoc rev_eq_Cons_iff rev_is_Nil_conv) + +lemma last_rev: "last(rev xs) = hd xs" + by (metis hd_rev rev_swap) lemma last_in_set[simp]: "as \ [] \ last as \ set as" by (induct as) auto lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" by (induct xs rule: rev_induct) auto lemma butlast_append: "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" by (induct xs arbitrary: ys) auto lemma append_butlast_last_id [simp]: "xs \ [] \ butlast xs @ [last xs] = xs" by (induct xs) auto lemma in_set_butlastD: "x \ set (butlast xs) \ x \ set xs" by (induct xs) (auto split: if_split_asm) lemma in_set_butlast_appendI: "x \ set (butlast xs) \ x \ set (butlast ys) \ x \ set (butlast (xs @ ys))" by (auto dest: in_set_butlastD simp add: butlast_append) lemma last_drop[simp]: "n < length xs \ last (drop n xs) = last xs" by (induct xs arbitrary: n)(auto split:nat.split) lemma nth_butlast: assumes "n < length (butlast xs)" shows "butlast xs ! n = xs ! n" proof (cases xs) case (Cons y ys) moreover from assms have "butlast xs ! n = (butlast xs @ [last xs]) ! n" by (simp add: nth_append) ultimately show ?thesis using append_butlast_last_id by simp qed simp lemma last_conv_nth: "xs\[] \ last xs = xs!(length xs - 1)" by(induct xs)(auto simp:neq_Nil_conv) lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs" by (induction xs rule: induct_list012) simp_all lemma last_list_update: "xs \ [] \ last(xs[k:=x]) = (if k = size xs - 1 then x else last xs)" by (auto simp: last_conv_nth) lemma butlast_list_update: "butlast(xs[k:=x]) = (if k = size xs - 1 then butlast xs else (butlast xs)[k:=x])" by(cases xs rule:rev_cases)(auto simp: list_update_append split: nat.splits) lemma last_map: "xs \ [] \ last (map f xs) = f (last xs)" by (cases xs rule: rev_cases) simp_all lemma map_butlast: "map f (butlast xs) = butlast (map f xs)" by (induct xs) simp_all lemma snoc_eq_iff_butlast: "xs @ [x] = ys \ (ys \ [] \ butlast ys = xs \ last ys = x)" by fastforce corollary longest_common_suffix: "\ss xs' ys'. xs = xs' @ ss \ ys = ys' @ ss \ (xs' = [] \ ys' = [] \ last xs' \ last ys')" using longest_common_prefix[of "rev xs" "rev ys"] unfolding rev_swap rev_append by (metis last_rev rev_is_Nil_conv) lemma butlast_rev [simp]: "butlast (rev xs) = rev (tl xs)" by (cases xs) simp_all subsubsection \\<^const>\take\ and \<^const>\drop\\ lemma take_0: "take 0 xs = []" by (induct xs) auto lemma drop_0: "drop 0 xs = xs" by (induct xs) auto lemma take0[simp]: "take 0 = (\xs. [])" by(rule ext) (rule take_0) lemma drop0[simp]: "drop 0 = (\x. x)" by(rule ext) (rule drop_0) lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" by simp lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" by simp declare take_Cons [simp del] and drop_Cons [simp del] lemma take_Suc: "xs \ [] \ take (Suc n) xs = hd xs # take n (tl xs)" by(clarsimp simp add:neq_Nil_conv) lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)" by(cases xs, simp_all) lemma hd_take[simp]: "j > 0 \ hd (take j xs) = hd xs" by (metis gr0_conv_Suc list.sel(1) take.simps(1) take_Suc) lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)" by (induct xs arbitrary: n) simp_all lemma drop_tl: "drop n (tl xs) = tl(drop n xs)" by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split) lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)" by (cases n, simp, cases xs, auto) lemma tl_drop: "tl (drop n xs) = drop n (tl xs)" by (simp only: drop_tl) lemma nth_via_drop: "drop n xs = y#ys \ xs!n = y" by (induct xs arbitrary: n, simp)(auto simp: drop_Cons nth_Cons split: nat.splits) lemma take_Suc_conv_app_nth: "i < length xs \ take (Suc i) xs = take i xs @ [xs!i]" proof (induct xs arbitrary: i) case Nil then show ?case by simp next case Cons then show ?case by (cases i) auto qed lemma Cons_nth_drop_Suc: "i < length xs \ (xs!i) # (drop (Suc i) xs) = drop i xs" proof (induct xs arbitrary: i) case Nil then show ?case by simp next case Cons then show ?case by (cases i) auto qed lemma length_take [simp]: "length (take n xs) = min (length xs) n" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma length_drop [simp]: "length (drop n xs) = (length xs - n)" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma take_all [simp]: "length xs \ n \ take n xs = xs" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma drop_all [simp]: "length xs \ n \ drop n xs = []" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma take_all_iff [simp]: "take n xs = xs \ length xs \ n" by (metis length_take min.order_iff take_all) lemma drop_all_iff [simp]: "drop n xs = [] \ length xs \ n" by (metis diff_is_0_eq drop_all length_drop list.size(3)) lemma take_append [simp]: "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma drop_append [simp]: "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma take_take [simp]: "take n (take m xs) = take (min n m) xs" proof (induct m arbitrary: xs n) case 0 then show ?case by simp next case Suc then show ?case by (cases xs; cases n) simp_all qed lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs" proof (induct m arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)" proof (induct m arbitrary: xs n) case 0 then show ?case by simp next case Suc then show ?case by (cases xs; cases n) simp_all qed lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)" by(induct xs arbitrary: m n)(auto simp: take_Cons drop_Cons split: nat.split) lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs" proof (induct n arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \ xs = [])" by(induct xs arbitrary: n)(auto simp: take_Cons split:nat.split) lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs \ n)" by (induct xs arbitrary: n) (auto simp: drop_Cons split:nat.split) lemma take_map: "take n (map f xs) = map f (take n xs)" proof (induct n arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma drop_map: "drop n (map f xs) = map f (drop n xs)" proof (induct n arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)" proof (induct xs arbitrary: i) case Nil then show ?case by simp next case Cons then show ?case by (cases i) auto qed lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)" proof (induct xs arbitrary: i) case Nil then show ?case by simp next case Cons then show ?case by (cases i) auto qed lemma drop_rev: "drop n (rev xs) = rev (take (length xs - n) xs)" by (cases "length xs < n") (auto simp: rev_take) lemma take_rev: "take n (rev xs) = rev (drop (length xs - n) xs)" by (cases "length xs < n") (auto simp: rev_drop) lemma nth_take [simp]: "i < n \ (take n xs)!i = xs!i" proof (induct xs arbitrary: i n) case Nil then show ?case by simp next case Cons then show ?case by (cases n; cases i) simp_all qed lemma nth_drop [simp]: "n \ length xs \ (drop n xs)!i = xs!(n + i)" proof (induct n arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma butlast_take: "n \ length xs \ butlast (take n xs) = take (n - 1) xs" by (simp add: butlast_conv_take min.absorb1 min.absorb2) lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)" by (simp add: butlast_conv_take drop_take ac_simps) lemma take_butlast: "n < length xs \ take n (butlast xs) = take n xs" by (simp add: butlast_conv_take min.absorb1) lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)" by (simp add: butlast_conv_take drop_take ac_simps) lemma butlast_power: "(butlast ^^ n) xs = take (length xs - n) xs" by (induct n) (auto simp: butlast_take) lemma hd_drop_conv_nth: "n < length xs \ hd(drop n xs) = xs!n" by(simp add: hd_conv_nth) lemma set_take_subset_set_take: "m \ n \ set(take m xs) \ set(take n xs)" proof (induct xs arbitrary: m n) case (Cons x xs m n) then show ?case by (cases n) (auto simp: take_Cons) qed simp lemma set_take_subset: "set(take n xs) \ set xs" by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split) lemma set_drop_subset: "set(drop n xs) \ set xs" by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split) lemma set_drop_subset_set_drop: "m \ n \ set(drop m xs) \ set(drop n xs)" proof (induct xs arbitrary: m n) case (Cons x xs m n) then show ?case by (clarsimp simp: drop_Cons split: nat.split) (metis set_drop_subset subset_iff) qed simp lemma in_set_takeD: "x \ set(take n xs) \ x \ set xs" using set_take_subset by fast lemma in_set_dropD: "x \ set(drop n xs) \ x \ set xs" using set_drop_subset by fast lemma append_eq_conv_conj: "(xs @ ys = zs) = (xs = take (length xs) zs \ ys = drop (length xs) zs)" proof (induct xs arbitrary: zs) case (Cons x xs zs) then show ?case by (cases zs, auto) qed auto lemma map_eq_append_conv: "map f xs = ys @ zs \ (\us vs. xs = us @ vs \ ys = map f us \ zs = map f vs)" proof - have "map f xs \ ys @ zs \ map f xs \ ys @ zs \ map f xs \ ys @ zs \ map f xs = ys @ zs \ (\bs bsa. xs = bs @ bsa \ ys = map f bs \ zs = map f bsa)" by (metis append_eq_conv_conj append_take_drop_id drop_map take_map) then show ?thesis using map_append by blast qed lemma append_eq_map_conv: "ys @ zs = map f xs \ (\us vs. xs = us @ vs \ ys = map f us \ zs = map f vs)" by (metis map_eq_append_conv) lemma take_add: "take (i+j) xs = take i xs @ take j (drop i xs)" proof (induct xs arbitrary: i) case (Cons x xs i) then show ?case by (cases i, auto) qed auto lemma append_eq_append_conv_if: "(xs\<^sub>1 @ xs\<^sub>2 = ys\<^sub>1 @ ys\<^sub>2) = (if size xs\<^sub>1 \ size ys\<^sub>1 then xs\<^sub>1 = take (size xs\<^sub>1) ys\<^sub>1 \ xs\<^sub>2 = drop (size xs\<^sub>1) ys\<^sub>1 @ ys\<^sub>2 else take (size ys\<^sub>1) xs\<^sub>1 = ys\<^sub>1 \ drop (size ys\<^sub>1) xs\<^sub>1 @ xs\<^sub>2 = ys\<^sub>2)" proof (induct xs\<^sub>1 arbitrary: ys\<^sub>1) case (Cons a xs\<^sub>1 ys\<^sub>1) then show ?case by (cases ys\<^sub>1, auto) qed auto lemma take_hd_drop: "n < length xs \ take n xs @ [hd (drop n xs)] = take (Suc n) xs" by (induct xs arbitrary: n) (simp_all add:drop_Cons split:nat.split) lemma id_take_nth_drop: "i < length xs \ xs = take i xs @ xs!i # drop (Suc i) xs" proof - assume si: "i < length xs" hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto moreover from si have "take (Suc i) xs = take i xs @ [xs!i]" using take_Suc_conv_app_nth by blast ultimately show ?thesis by auto qed lemma take_update_cancel[simp]: "n \ m \ take n (xs[m := y]) = take n xs" by(simp add: list_eq_iff_nth_eq) lemma drop_update_cancel[simp]: "n < m \ drop m (xs[n := x]) = drop m xs" by(simp add: list_eq_iff_nth_eq) lemma upd_conv_take_nth_drop: "i < length xs \ xs[i:=a] = take i xs @ a # drop (Suc i) xs" proof - assume i: "i < length xs" have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]" by(rule arg_cong[OF id_take_nth_drop[OF i]]) also have "\ = take i xs @ a # drop (Suc i) xs" using i by (simp add: list_update_append) finally show ?thesis . qed lemma take_update_swap: "take m (xs[n := x]) = (take m xs)[n := x]" proof (cases "n \ length xs") case False then show ?thesis by (simp add: upd_conv_take_nth_drop take_Cons drop_take min_def diff_Suc split: nat.split) qed auto lemma drop_update_swap: assumes "m \ n" shows "drop m (xs[n := x]) = (drop m xs)[n-m := x]" proof (cases "n \ length xs") case False with assms show ?thesis by (simp add: upd_conv_take_nth_drop drop_take) qed auto lemma nth_image: "l \ size xs \ nth xs ` {0..\<^const>\takeWhile\ and \<^const>\dropWhile\\ lemma length_takeWhile_le: "length (takeWhile P xs) \ length xs" by (induct xs) auto lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" by (induct xs) auto lemma takeWhile_append1 [simp]: "\x \ set xs; \P(x)\ \ takeWhile P (xs @ ys) = takeWhile P xs" by (induct xs) auto lemma takeWhile_append2 [simp]: "(\x. x \ set xs \ P x) \ takeWhile P (xs @ ys) = xs @ takeWhile P ys" by (induct xs) auto lemma takeWhile_append: "takeWhile P (xs @ ys) = (if \x\set xs. P x then xs @ takeWhile P ys else takeWhile P xs)" using takeWhile_append1[of _ xs P ys] takeWhile_append2[of xs P ys] by auto lemma takeWhile_tail: "\ P x \ takeWhile P (xs @ (x#l)) = takeWhile P xs" by (induct xs) auto lemma takeWhile_eq_Nil_iff: "takeWhile P xs = [] \ xs = [] \ \P (hd xs)" by (cases xs) auto lemma takeWhile_nth: "j < length (takeWhile P xs) \ takeWhile P xs ! j = xs ! j" by (metis nth_append takeWhile_dropWhile_id) lemma dropWhile_nth: "j < length (dropWhile P xs) \ dropWhile P xs ! j = xs ! (j + length (takeWhile P xs))" by (metis add.commute nth_append_length_plus takeWhile_dropWhile_id) lemma length_dropWhile_le: "length (dropWhile P xs) \ length xs" by (induct xs) auto lemma dropWhile_append1 [simp]: "\x \ set xs; \P(x)\ \ dropWhile P (xs @ ys) = (dropWhile P xs)@ys" by (induct xs) auto lemma dropWhile_append2 [simp]: "(\x. x \ set xs \ P(x)) \ dropWhile P (xs @ ys) = dropWhile P ys" by (induct xs) auto lemma dropWhile_append3: "\ P y \dropWhile P (xs @ y # ys) = dropWhile P xs @ y # ys" by (induct xs) auto lemma dropWhile_append: "dropWhile P (xs @ ys) = (if \x\set xs. P x then dropWhile P ys else dropWhile P xs @ ys)" using dropWhile_append1[of _ xs P ys] dropWhile_append2[of xs P ys] by auto lemma dropWhile_last: "x \ set xs \ \ P x \ last (dropWhile P xs) = last xs" by (auto simp add: dropWhile_append3 in_set_conv_decomp) lemma set_dropWhileD: "x \ set (dropWhile P xs) \ x \ set xs" by (induct xs) (auto split: if_split_asm) lemma set_takeWhileD: "x \ set (takeWhile P xs) \ x \ set xs \ P x" by (induct xs) (auto split: if_split_asm) lemma takeWhile_eq_all_conv[simp]: "(takeWhile P xs = xs) = (\x \ set xs. P x)" by(induct xs, auto) lemma dropWhile_eq_Nil_conv[simp]: "(dropWhile P xs = []) = (\x \ set xs. P x)" by(induct xs, auto) lemma dropWhile_eq_Cons_conv: "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys \ \ P y)" by(induct xs, auto) lemma dropWhile_eq_self_iff: "dropWhile P xs = xs \ xs = [] \ \P (hd xs)" by (cases xs) (auto simp: dropWhile_eq_Cons_conv) lemma distinct_takeWhile[simp]: "distinct xs \ distinct (takeWhile P xs)" by (induct xs) (auto dest: set_takeWhileD) lemma distinct_dropWhile[simp]: "distinct xs \ distinct (dropWhile P xs)" by (induct xs) auto lemma takeWhile_map: "takeWhile P (map f xs) = map f (takeWhile (P \ f) xs)" by (induct xs) auto lemma dropWhile_map: "dropWhile P (map f xs) = map f (dropWhile (P \ f) xs)" by (induct xs) auto lemma takeWhile_eq_take: "takeWhile P xs = take (length (takeWhile P xs)) xs" by (induct xs) auto lemma dropWhile_eq_drop: "dropWhile P xs = drop (length (takeWhile P xs)) xs" by (induct xs) auto lemma hd_dropWhile: "dropWhile P xs \ [] \ \ P (hd (dropWhile P xs))" by (induct xs) auto lemma takeWhile_eq_filter: assumes "\ x. x \ set (dropWhile P xs) \ \ P x" shows "takeWhile P xs = filter P xs" proof - have A: "filter P xs = filter P (takeWhile P xs @ dropWhile P xs)" by simp have B: "filter P (dropWhile P xs) = []" unfolding filter_empty_conv using assms by blast have "filter P xs = takeWhile P xs" unfolding A filter_append B by (auto simp add: filter_id_conv dest: set_takeWhileD) thus ?thesis .. qed lemma takeWhile_eq_take_P_nth: "\ \ i. \ i < n ; i < length xs \ \ P (xs ! i) ; n < length xs \ \ P (xs ! n) \ \ takeWhile P xs = take n xs" proof (induct xs arbitrary: n) case Nil thus ?case by simp next case (Cons x xs) show ?case proof (cases n) case 0 with Cons show ?thesis by simp next case [simp]: (Suc n') have "P x" using Cons.prems(1)[of 0] by simp moreover have "takeWhile P xs = take n' xs" proof (rule Cons.hyps) fix i assume "i < n'" "i < length xs" thus "P (xs ! i)" using Cons.prems(1)[of "Suc i"] by simp next assume "n' < length xs" thus "\ P (xs ! n')" using Cons by auto qed ultimately show ?thesis by simp qed qed lemma nth_length_takeWhile: "length (takeWhile P xs) < length xs \ \ P (xs ! length (takeWhile P xs))" by (induct xs) auto lemma length_takeWhile_less_P_nth: assumes all: "\ i. i < j \ P (xs ! i)" and "j \ length xs" shows "j \ length (takeWhile P xs)" proof (rule classical) assume "\ ?thesis" hence "length (takeWhile P xs) < length xs" using assms by simp thus ?thesis using all \\ ?thesis\ nth_length_takeWhile[of P xs] by auto qed lemma takeWhile_neq_rev: "\distinct xs; x \ set xs\ \ takeWhile (\y. y \ x) (rev xs) = rev (tl (dropWhile (\y. y \ x) xs))" by(induct xs) (auto simp: takeWhile_tail[where l="[]"]) lemma dropWhile_neq_rev: "\distinct xs; x \ set xs\ \ dropWhile (\y. y \ x) (rev xs) = x # rev (takeWhile (\y. y \ x) xs)" proof (induct xs) case (Cons a xs) then show ?case by(auto, subst dropWhile_append2, auto) qed simp lemma takeWhile_not_last: "distinct xs \ takeWhile (\y. y \ last xs) xs = butlast xs" by(induction xs rule: induct_list012) auto lemma takeWhile_cong [fundef_cong]: "\l = k; \x. x \ set l \ P x = Q x\ \ takeWhile P l = takeWhile Q k" by (induct k arbitrary: l) (simp_all) lemma dropWhile_cong [fundef_cong]: "\l = k; \x. x \ set l \ P x = Q x\ \ dropWhile P l = dropWhile Q k" by (induct k arbitrary: l, simp_all) lemma takeWhile_idem [simp]: "takeWhile P (takeWhile P xs) = takeWhile P xs" by (induct xs) auto lemma dropWhile_idem [simp]: "dropWhile P (dropWhile P xs) = dropWhile P xs" by (induct xs) auto subsubsection \\<^const>\zip\\ lemma zip_Nil [simp]: "zip [] ys = []" by (induct ys) auto lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" by simp declare zip_Cons [simp del] lemma [code]: "zip [] ys = []" "zip xs [] = []" "zip (x # xs) (y # ys) = (x, y) # zip xs ys" by (fact zip_Nil zip.simps(1) zip_Cons_Cons)+ lemma zip_Cons1: "zip (x#xs) ys = (case ys of [] \ [] | y#ys \ (x,y)#zip xs ys)" by(auto split:list.split) lemma length_zip [simp]: "length (zip xs ys) = min (length xs) (length ys)" by (induct xs ys rule:list_induct2') auto lemma zip_obtain_same_length: assumes "\zs ws n. length zs = length ws \ n = min (length xs) (length ys) \ zs = take n xs \ ws = take n ys \ P (zip zs ws)" shows "P (zip xs ys)" proof - let ?n = "min (length xs) (length ys)" have "P (zip (take ?n xs) (take ?n ys))" by (rule assms) simp_all moreover have "zip xs ys = zip (take ?n xs) (take ?n ys)" proof (induct xs arbitrary: ys) case Nil then show ?case by simp next case (Cons x xs) then show ?case by (cases ys) simp_all qed ultimately show ?thesis by simp qed lemma zip_append1: "zip (xs @ ys) zs = zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" by (induct xs zs rule:list_induct2') auto lemma zip_append2: "zip xs (ys @ zs) = zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" by (induct xs ys rule:list_induct2') auto lemma zip_append [simp]: "\length xs = length us\ \ zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" by (simp add: zip_append1) lemma zip_rev: "length xs = length ys \ zip (rev xs) (rev ys) = rev (zip xs ys)" by (induct rule:list_induct2, simp_all) lemma zip_map_map: "zip (map f xs) (map g ys) = map (\ (x, y). (f x, g y)) (zip xs ys)" proof (induct xs arbitrary: ys) case (Cons x xs) note Cons_x_xs = Cons.hyps show ?case proof (cases ys) case (Cons y ys') show ?thesis unfolding Cons using Cons_x_xs by simp qed simp qed simp lemma zip_map1: "zip (map f xs) ys = map (\(x, y). (f x, y)) (zip xs ys)" using zip_map_map[of f xs "\x. x" ys] by simp lemma zip_map2: "zip xs (map f ys) = map (\(x, y). (x, f y)) (zip xs ys)" using zip_map_map[of "\x. x" xs f ys] by simp lemma map_zip_map: "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)" by (auto simp: zip_map1) lemma map_zip_map2: "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)" by (auto simp: zip_map2) text\Courtesy of Andreas Lochbihler:\ lemma zip_same_conv_map: "zip xs xs = map (\x. (x, x)) xs" by(induct xs) auto lemma nth_zip [simp]: "\i < length xs; i < length ys\ \ (zip xs ys)!i = (xs!i, ys!i)" proof (induct ys arbitrary: i xs) case (Cons y ys) then show ?case by (cases xs) (simp_all add: nth.simps split: nat.split) qed auto lemma set_zip: "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}" by(simp add: set_conv_nth cong: rev_conj_cong) lemma zip_same: "((a,b) \ set (zip xs xs)) = (a \ set xs \ a = b)" by(induct xs) auto lemma zip_update: "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" by (simp add: update_zip) lemma zip_replicate [simp]: "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" proof (induct i arbitrary: j) case (Suc i) then show ?case by (cases j, auto) qed auto lemma zip_replicate1: "zip (replicate n x) ys = map (Pair x) (take n ys)" by(induction ys arbitrary: n)(case_tac [2] n, simp_all) lemma take_zip: "take n (zip xs ys) = zip (take n xs) (take n ys)" proof (induct n arbitrary: xs ys) case 0 then show ?case by simp next case Suc then show ?case by (cases xs; cases ys) simp_all qed lemma drop_zip: "drop n (zip xs ys) = zip (drop n xs) (drop n ys)" proof (induct n arbitrary: xs ys) case 0 then show ?case by simp next case Suc then show ?case by (cases xs; cases ys) simp_all qed lemma zip_takeWhile_fst: "zip (takeWhile P xs) ys = takeWhile (P \ fst) (zip xs ys)" proof (induct xs arbitrary: ys) case Nil then show ?case by simp next case Cons then show ?case by (cases ys) auto qed lemma zip_takeWhile_snd: "zip xs (takeWhile P ys) = takeWhile (P \ snd) (zip xs ys)" proof (induct xs arbitrary: ys) case Nil then show ?case by simp next case Cons then show ?case by (cases ys) auto qed lemma set_zip_leftD: "(x,y)\ set (zip xs ys) \ x \ set xs" by (induct xs ys rule:list_induct2') auto lemma set_zip_rightD: "(x,y)\ set (zip xs ys) \ y \ set ys" by (induct xs ys rule:list_induct2') auto lemma in_set_zipE: "(x,y) \ set(zip xs ys) \ (\ x \ set xs; y \ set ys \ \ R) \ R" by(blast dest: set_zip_leftD set_zip_rightD) lemma zip_map_fst_snd: "zip (map fst zs) (map snd zs) = zs" by (induct zs) simp_all lemma zip_eq_conv: "length xs = length ys \ zip xs ys = zs \ map fst zs = xs \ map snd zs = ys" by (auto simp add: zip_map_fst_snd) lemma in_set_zip: "p \ set (zip xs ys) \ (\n. xs ! n = fst p \ ys ! n = snd p \ n < length xs \ n < length ys)" by (cases p) (auto simp add: set_zip) lemma in_set_impl_in_set_zip1: assumes "length xs = length ys" assumes "x \ set xs" obtains y where "(x, y) \ set (zip xs ys)" proof - from assms have "x \ set (map fst (zip xs ys))" by simp from this that show ?thesis by fastforce qed lemma in_set_impl_in_set_zip2: assumes "length xs = length ys" assumes "y \ set ys" obtains x where "(x, y) \ set (zip xs ys)" proof - from assms have "y \ set (map snd (zip xs ys))" by simp from this that show ?thesis by fastforce qed lemma zip_eq_Nil_iff: "zip xs ys = [] \ xs = [] \ ys = []" by (cases xs; cases ys) simp_all lemma zip_eq_ConsE: assumes "zip xs ys = xy # xys" obtains x xs' y ys' where "xs = x # xs'" and "ys = y # ys'" and "xy = (x, y)" and "xys = zip xs' ys'" proof - from assms have "xs \ []" and "ys \ []" using zip_eq_Nil_iff [of xs ys] by simp_all then obtain x xs' y ys' where xs: "xs = x # xs'" and ys: "ys = y # ys'" by (cases xs; cases ys) auto with assms have "xy = (x, y)" and "xys = zip xs' ys'" by simp_all with xs ys show ?thesis .. qed lemma semilattice_map2: "semilattice (map2 (\<^bold>*))" if "semilattice (\<^bold>*)" for f (infixl "\<^bold>*" 70) proof - from that interpret semilattice f . show ?thesis proof show "map2 (\<^bold>*) (map2 (\<^bold>*) xs ys) zs = map2 (\<^bold>*) xs (map2 (\<^bold>*) ys zs)" for xs ys zs :: "'a list" proof (induction "zip xs (zip ys zs)" arbitrary: xs ys zs) case Nil from Nil [symmetric] show ?case by (auto simp add: zip_eq_Nil_iff) next case (Cons xyz xyzs) from Cons.hyps(2) [symmetric] show ?case by (rule zip_eq_ConsE) (erule zip_eq_ConsE, auto intro: Cons.hyps(1) simp add: ac_simps) qed show "map2 (\<^bold>*) xs ys = map2 (\<^bold>*) ys xs" for xs ys :: "'a list" proof (induction "zip xs ys" arbitrary: xs ys) case Nil then show ?case by (auto simp add: zip_eq_Nil_iff dest: sym) next case (Cons xy xys) from Cons.hyps(2) [symmetric] show ?case by (rule zip_eq_ConsE) (auto intro: Cons.hyps(1) simp add: ac_simps) qed show "map2 (\<^bold>*) xs xs = xs" for xs :: "'a list" by (induction xs) simp_all qed qed lemma pair_list_eqI: assumes "map fst xs = map fst ys" and "map snd xs = map snd ys" shows "xs = ys" proof - from assms(1) have "length xs = length ys" by (rule map_eq_imp_length_eq) from this assms show ?thesis by (induct xs ys rule: list_induct2) (simp_all add: prod_eqI) qed lemma hd_zip: \hd (zip xs ys) = (hd xs, hd ys)\ if \xs \ []\ and \ys \ []\ using that by (cases xs; cases ys) simp_all lemma last_zip: \last (zip xs ys) = (last xs, last ys)\ if \xs \ []\ and \ys \ []\ and \length xs = length ys\ using that by (cases xs rule: rev_cases; cases ys rule: rev_cases) simp_all subsubsection \\<^const>\list_all2\\ lemma list_all2_lengthD [intro?]: "list_all2 P xs ys \ length xs = length ys" by (simp add: list_all2_iff) lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])" by (simp add: list_all2_iff) lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])" by (simp add: list_all2_iff) lemma list_all2_Cons [iff, code]: "list_all2 P (x # xs) (y # ys) = (P x y \ list_all2 P xs ys)" by (auto simp add: list_all2_iff) lemma list_all2_Cons1: "list_all2 P (x # xs) ys = (\z zs. ys = z # zs \ P x z \ list_all2 P xs zs)" by (cases ys) auto lemma list_all2_Cons2: "list_all2 P xs (y # ys) = (\z zs. xs = z # zs \ P z y \ list_all2 P zs ys)" by (cases xs) auto lemma list_all2_induct [consumes 1, case_names Nil Cons, induct set: list_all2]: assumes P: "list_all2 P xs ys" assumes Nil: "R [] []" assumes Cons: "\x xs y ys. \P x y; list_all2 P xs ys; R xs ys\ \ R (x # xs) (y # ys)" shows "R xs ys" using P by (induct xs arbitrary: ys) (auto simp add: list_all2_Cons1 Nil Cons) lemma list_all2_rev [iff]: "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" by (simp add: list_all2_iff zip_rev cong: conj_cong) lemma list_all2_rev1: "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)" by (subst list_all2_rev [symmetric]) simp lemma list_all2_append1: "list_all2 P (xs @ ys) zs = (\us vs. zs = us @ vs \ length us = length xs \ length vs = length ys \ list_all2 P xs us \ list_all2 P ys vs)" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs apply (rule_tac x = "take (length xs) zs" in exI) apply (rule_tac x = "drop (length xs) zs" in exI) apply (force split: nat_diff_split simp add: list_all2_iff zip_append1) done next assume ?rhs then show ?lhs by (auto simp add: list_all2_iff) qed lemma list_all2_append2: "list_all2 P xs (ys @ zs) = (\us vs. xs = us @ vs \ length us = length ys \ length vs = length zs \ list_all2 P us ys \ list_all2 P vs zs)" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs apply (rule_tac x = "take (length ys) xs" in exI) apply (rule_tac x = "drop (length ys) xs" in exI) apply (force split: nat_diff_split simp add: list_all2_iff zip_append2) done next assume ?rhs then show ?lhs by (auto simp add: list_all2_iff) qed lemma list_all2_append: "length xs = length ys \ list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \ list_all2 P us vs)" by (induct rule:list_induct2, simp_all) lemma list_all2_appendI [intro?, trans]: "\ list_all2 P a b; list_all2 P c d \ \ list_all2 P (a@c) (b@d)" by (simp add: list_all2_append list_all2_lengthD) lemma list_all2_conv_all_nth: "list_all2 P xs ys = (length xs = length ys \ (\i < length xs. P (xs!i) (ys!i)))" by (force simp add: list_all2_iff set_zip) lemma list_all2_trans: assumes tr: "!!a b c. P1 a b \ P2 b c \ P3 a c" shows "!!bs cs. list_all2 P1 as bs \ list_all2 P2 bs cs \ list_all2 P3 as cs" (is "!!bs cs. PROP ?Q as bs cs") proof (induct as) fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs" show "!!cs. PROP ?Q (x # xs) bs cs" proof (induct bs) fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs" show "PROP ?Q (x # xs) (y # ys) cs" by (induct cs) (auto intro: tr I1 I2) qed simp qed simp lemma list_all2_all_nthI [intro?]: "length a = length b \ (\n. n < length a \ P (a!n) (b!n)) \ list_all2 P a b" by (simp add: list_all2_conv_all_nth) lemma list_all2I: "\x \ set (zip a b). case_prod P x \ length a = length b \ list_all2 P a b" by (simp add: list_all2_iff) lemma list_all2_nthD: "\ list_all2 P xs ys; p < size xs \ \ P (xs!p) (ys!p)" by (simp add: list_all2_conv_all_nth) lemma list_all2_nthD2: "\list_all2 P xs ys; p < size ys\ \ P (xs!p) (ys!p)" by (frule list_all2_lengthD) (auto intro: list_all2_nthD) lemma list_all2_map1: "list_all2 P (map f as) bs = list_all2 (\x y. P (f x) y) as bs" by (simp add: list_all2_conv_all_nth) lemma list_all2_map2: "list_all2 P as (map f bs) = list_all2 (\x y. P x (f y)) as bs" by (auto simp add: list_all2_conv_all_nth) lemma list_all2_refl [intro?]: "(\x. P x x) \ list_all2 P xs xs" by (simp add: list_all2_conv_all_nth) lemma list_all2_update_cong: "\ list_all2 P xs ys; P x y \ \ list_all2 P (xs[i:=x]) (ys[i:=y])" by (cases "i < length ys") (auto simp add: list_all2_conv_all_nth nth_list_update) lemma list_all2_takeI [simp,intro?]: "list_all2 P xs ys \ list_all2 P (take n xs) (take n ys)" proof (induct xs arbitrary: n ys) case (Cons x xs) then show ?case by (cases n) (auto simp: list_all2_Cons1) qed auto lemma list_all2_dropI [simp,intro?]: "list_all2 P xs ys \ list_all2 P (drop n xs) (drop n ys)" proof (induct xs arbitrary: n ys) case (Cons x xs) then show ?case by (cases n) (auto simp: list_all2_Cons1) qed auto lemma list_all2_mono [intro?]: "list_all2 P xs ys \ (\xs ys. P xs ys \ Q xs ys) \ list_all2 Q xs ys" by (rule list.rel_mono_strong) lemma list_all2_eq: "xs = ys \ list_all2 (=) xs ys" by (induct xs ys rule: list_induct2') auto lemma list_eq_iff_zip_eq: "xs = ys \ length xs = length ys \ (\(x,y) \ set (zip xs ys). x = y)" by(auto simp add: set_zip list_all2_eq list_all2_conv_all_nth cong: conj_cong) lemma list_all2_same: "list_all2 P xs xs \ (\x\set xs. P x x)" by(auto simp add: list_all2_conv_all_nth set_conv_nth) lemma zip_assoc: "zip xs (zip ys zs) = map (\((x, y), z). (x, y, z)) (zip (zip xs ys) zs)" by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all lemma zip_commute: "zip xs ys = map (\(x, y). (y, x)) (zip ys xs)" by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all lemma zip_left_commute: "zip xs (zip ys zs) = map (\(y, (x, z)). (x, y, z)) (zip ys (zip xs zs))" by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all lemma zip_replicate2: "zip xs (replicate n y) = map (\x. (x, y)) (take n xs)" by(subst zip_commute)(simp add: zip_replicate1) subsubsection \\<^const>\List.product\ and \<^const>\product_lists\\ lemma product_concat_map: "List.product xs ys = concat (map (\x. map (\y. (x,y)) ys) xs)" by(induction xs) (simp)+ lemma set_product[simp]: "set (List.product xs ys) = set xs \ set ys" by (induct xs) auto lemma length_product [simp]: "length (List.product xs ys) = length xs * length ys" by (induct xs) simp_all lemma product_nth: assumes "n < length xs * length ys" shows "List.product xs ys ! n = (xs ! (n div length ys), ys ! (n mod length ys))" using assms proof (induct xs arbitrary: n) case Nil then show ?case by simp next case (Cons x xs n) then have "length ys > 0" by auto with Cons show ?case by (auto simp add: nth_append not_less le_mod_geq le_div_geq) qed lemma in_set_product_lists_length: "xs \ set (product_lists xss) \ length xs = length xss" by (induct xss arbitrary: xs) auto lemma product_lists_set: "set (product_lists xss) = {xs. list_all2 (\x ys. x \ set ys) xs xss}" (is "?L = Collect ?R") proof (intro equalityI subsetI, unfold mem_Collect_eq) fix xs assume "xs \ ?L" then have "length xs = length xss" by (rule in_set_product_lists_length) from this \xs \ ?L\ show "?R xs" by (induct xs xss rule: list_induct2) auto next fix xs assume "?R xs" then show "xs \ ?L" by induct auto qed subsubsection \\<^const>\fold\ with natural argument order\ lemma fold_simps [code]: \ \eta-expanded variant for generated code -- enables tail-recursion optimisation in Scala\ "fold f [] s = s" "fold f (x # xs) s = fold f xs (f x s)" by simp_all lemma fold_remove1_split: "\ \x y. x \ set xs \ y \ set xs \ f x \ f y = f y \ f x; x \ set xs \ \ fold f xs = fold f (remove1 x xs) \ f x" by (induct xs) (auto simp add: comp_assoc) lemma fold_cong [fundef_cong]: "a = b \ xs = ys \ (\x. x \ set xs \ f x = g x) \ fold f xs a = fold g ys b" by (induct ys arbitrary: a b xs) simp_all lemma fold_id: "(\x. x \ set xs \ f x = id) \ fold f xs = id" by (induct xs) simp_all lemma fold_commute: "(\x. x \ set xs \ h \ g x = f x \ h) \ h \ fold g xs = fold f xs \ h" by (induct xs) (simp_all add: fun_eq_iff) lemma fold_commute_apply: assumes "\x. x \ set xs \ h \ g x = f x \ h" shows "h (fold g xs s) = fold f xs (h s)" proof - from assms have "h \ fold g xs = fold f xs \ h" by (rule fold_commute) then show ?thesis by (simp add: fun_eq_iff) qed lemma fold_invariant: "\ \x. x \ set xs \ Q x; P s; \x s. Q x \ P s \ P (f x s) \ \ P (fold f xs s)" by (induct xs arbitrary: s) simp_all lemma fold_append [simp]: "fold f (xs @ ys) = fold f ys \ fold f xs" by (induct xs) simp_all lemma fold_map [code_unfold]: "fold g (map f xs) = fold (g \ f) xs" by (induct xs) simp_all lemma fold_filter: "fold f (filter P xs) = fold (\x. if P x then f x else id) xs" by (induct xs) simp_all lemma fold_rev: "(\x y. x \ set xs \ y \ set xs \ f y \ f x = f x \ f y) \ fold f (rev xs) = fold f xs" by (induct xs) (simp_all add: fold_commute_apply fun_eq_iff) lemma fold_Cons_rev: "fold Cons xs = append (rev xs)" by (induct xs) simp_all lemma rev_conv_fold [code]: "rev xs = fold Cons xs []" by (simp add: fold_Cons_rev) lemma fold_append_concat_rev: "fold append xss = append (concat (rev xss))" by (induct xss) simp_all text \\<^const>\Finite_Set.fold\ and \<^const>\fold\\ lemma (in comp_fun_commute) fold_set_fold_remdups: "Finite_Set.fold f y (set xs) = fold f (remdups xs) y" by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_left_comm insert_absorb) lemma (in comp_fun_idem) fold_set_fold: "Finite_Set.fold f y (set xs) = fold f xs y" by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_left_comm) lemma union_set_fold [code]: "set xs \ A = fold Set.insert xs A" proof - interpret comp_fun_idem Set.insert by (fact comp_fun_idem_insert) show ?thesis by (simp add: union_fold_insert fold_set_fold) qed lemma union_coset_filter [code]: "List.coset xs \ A = List.coset (List.filter (\x. x \ A) xs)" by auto lemma minus_set_fold [code]: "A - set xs = fold Set.remove xs A" proof - interpret comp_fun_idem Set.remove by (fact comp_fun_idem_remove) show ?thesis by (simp add: minus_fold_remove [of _ A] fold_set_fold) qed lemma minus_coset_filter [code]: "A - List.coset xs = set (List.filter (\x. x \ A) xs)" by auto lemma inter_set_filter [code]: "A \ set xs = set (List.filter (\x. x \ A) xs)" by auto lemma inter_coset_fold [code]: "A \ List.coset xs = fold Set.remove xs A" by (simp add: Diff_eq [symmetric] minus_set_fold) lemma (in semilattice_set) set_eq_fold [code]: "F (set (x # xs)) = fold f xs x" proof - interpret comp_fun_idem f by standard (simp_all add: fun_eq_iff left_commute) show ?thesis by (simp add: eq_fold fold_set_fold) qed lemma (in complete_lattice) Inf_set_fold: "Inf (set xs) = fold inf xs top" proof - interpret comp_fun_idem "inf :: 'a \ 'a \ 'a" by (fact comp_fun_idem_inf) show ?thesis by (simp add: Inf_fold_inf fold_set_fold inf_commute) qed declare Inf_set_fold [where 'a = "'a set", code] lemma (in complete_lattice) Sup_set_fold: "Sup (set xs) = fold sup xs bot" proof - interpret comp_fun_idem "sup :: 'a \ 'a \ 'a" by (fact comp_fun_idem_sup) show ?thesis by (simp add: Sup_fold_sup fold_set_fold sup_commute) qed declare Sup_set_fold [where 'a = "'a set", code] lemma (in complete_lattice) INF_set_fold: "\(f ` set xs) = fold (inf \ f) xs top" using Inf_set_fold [of "map f xs"] by (simp add: fold_map) lemma (in complete_lattice) SUP_set_fold: "\(f ` set xs) = fold (sup \ f) xs bot" using Sup_set_fold [of "map f xs"] by (simp add: fold_map) subsubsection \Fold variants: \<^const>\foldr\ and \<^const>\foldl\\ text \Correspondence\ lemma foldr_conv_fold [code_abbrev]: "foldr f xs = fold f (rev xs)" by (induct xs) simp_all lemma foldl_conv_fold: "foldl f s xs = fold (\x s. f s x) xs s" by (induct xs arbitrary: s) simp_all lemma foldr_conv_foldl: \ \The ``Third Duality Theorem'' in Bird \& Wadler:\ "foldr f xs a = foldl (\x y. f y x) a (rev xs)" by (simp add: foldr_conv_fold foldl_conv_fold) lemma foldl_conv_foldr: "foldl f a xs = foldr (\x y. f y x) (rev xs) a" by (simp add: foldr_conv_fold foldl_conv_fold) lemma foldr_fold: "(\x y. x \ set xs \ y \ set xs \ f y \ f x = f x \ f y) \ foldr f xs = fold f xs" unfolding foldr_conv_fold by (rule fold_rev) lemma foldr_cong [fundef_cong]: "a = b \ l = k \ (\a x. x \ set l \ f x a = g x a) \ foldr f l a = foldr g k b" by (auto simp add: foldr_conv_fold intro!: fold_cong) lemma foldl_cong [fundef_cong]: "a = b \ l = k \ (\a x. x \ set l \ f a x = g a x) \ foldl f a l = foldl g b k" by (auto simp add: foldl_conv_fold intro!: fold_cong) lemma foldr_append [simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)" by (simp add: foldr_conv_fold) lemma foldl_append [simp]: "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" by (simp add: foldl_conv_fold) lemma foldr_map [code_unfold]: "foldr g (map f xs) a = foldr (g \ f) xs a" by (simp add: foldr_conv_fold fold_map rev_map) lemma foldr_filter: "foldr f (filter P xs) = foldr (\x. if P x then f x else id) xs" by (simp add: foldr_conv_fold rev_filter fold_filter) lemma foldl_map [code_unfold]: "foldl g a (map f xs) = foldl (\a x. g a (f x)) a xs" by (simp add: foldl_conv_fold fold_map comp_def) lemma concat_conv_foldr [code]: "concat xss = foldr append xss []" by (simp add: fold_append_concat_rev foldr_conv_fold) subsubsection \\<^const>\upt\\ lemma upt_rec[code]: "[i.. \simp does not terminate!\ by (induct j) auto lemmas upt_rec_numeral[simp] = upt_rec[of "numeral m" "numeral n"] for m n lemma upt_conv_Nil [simp]: "j \ i \ [i.. j \ i)" by(induct j)simp_all lemma upt_eq_Cons_conv: "([i.. i = x \ [i+1.. j \ [i..<(Suc j)] = [i.. \Only needed if \upt_Suc\ is deleted from the simpset.\ by simp lemma upt_conv_Cons: "i < j \ [i.. \no precondition\ "m # n # ns = [m.. n # ns = [Suc m.. [i.. \LOOPS as a simprule, since \j \ j\.\ by (induct k) auto lemma length_upt [simp]: "length [i.. [i.. hd[i.. last[i.. n \ take m [i..i. i + n) [0.. (map f [m..n. n - Suc 0) [Suc m..i. f (Suc i)) [0 ..< n]" by (induct n arbitrary: f) auto lemma nth_take_lemma: "k \ length xs \ k \ length ys \ (\i. i < k \ xs!i = ys!i) \ take k xs = take k ys" proof (induct k arbitrary: xs ys) case (Suc k) then show ?case apply (simp add: less_Suc_eq_0_disj) by (simp add: Suc.prems(3) take_Suc_conv_app_nth) qed simp lemma nth_equalityI: "\length xs = length ys; \i. i < length xs \ xs!i = ys!i\ \ xs = ys" by (frule nth_take_lemma [OF le_refl eq_imp_le]) simp_all lemma map_nth: "map (\i. xs ! i) [0.. (\x y. \P x y; Q y x\ \ x = y); list_all2 P xs ys; list_all2 Q ys xs \ \ xs = ys" by (simp add: list_all2_conv_all_nth nth_equalityI) lemma take_equalityI: "(\i. take i xs = take i ys) \ xs = ys" \ \The famous take-lemma.\ by (metis length_take min.commute order_refl take_all) lemma take_Cons': "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" by (cases n) simp_all lemma drop_Cons': "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" by (cases n) simp_all lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" by (cases n) simp_all lemma take_Cons_numeral [simp]: "take (numeral v) (x # xs) = x # take (numeral v - 1) xs" by (simp add: take_Cons') lemma drop_Cons_numeral [simp]: "drop (numeral v) (x # xs) = drop (numeral v - 1) xs" by (simp add: drop_Cons') lemma nth_Cons_numeral [simp]: "(x # xs) ! numeral v = xs ! (numeral v - 1)" by (simp add: nth_Cons') lemma map_upt_eqI: \map f [m.. if \length xs = n - m\ \\i. i < length xs \ xs ! i = f (m + i)\ proof (rule nth_equalityI) from \length xs = n - m\ show \length (map f [m.. by simp next fix i assume \i < length (map f [m.. then have \i < n - m\ by simp with that have \xs ! i = f (m + i)\ by simp with \i < n - m\ show \map f [m.. by simp qed subsubsection \\upto\: interval-list on \<^typ>\int\\ function upto :: "int \ int \ int list" ("(1[_../_])") where "upto i j = (if i \ j then i # [i+1..j] else [])" by auto termination by(relation "measure(%(i::int,j). nat(j - i + 1))") auto declare upto.simps[simp del] lemmas upto_rec_numeral [simp] = upto.simps[of "numeral m" "numeral n"] upto.simps[of "numeral m" "- numeral n"] upto.simps[of "- numeral m" "numeral n"] upto.simps[of "- numeral m" "- numeral n"] for m n lemma upto_empty[simp]: "j < i \ [i..j] = []" by(simp add: upto.simps) lemma upto_single[simp]: "[i..i] = [i]" by(simp add: upto.simps) lemma upto_Nil[simp]: "[i..j] = [] \ j < i" by (simp add: upto.simps) lemma upto_Nil2[simp]: "[] = [i..j] \ j < i" by (simp add: upto.simps) lemma upto_rec1: "i \ j \ [i..j] = i#[i+1..j]" by(simp add: upto.simps) lemma upto_rec2: "i \ j \ [i..j] = [i..j - 1]@[j]" proof(induct "nat(j-i)" arbitrary: i j) case 0 thus ?case by(simp add: upto.simps) next case (Suc n) hence "n = nat (j - (i + 1))" "i < j" by linarith+ from this(2) Suc.hyps(1)[OF this(1)] Suc(2,3) upto_rec1 show ?case by simp qed lemma length_upto[simp]: "length [i..j] = nat(j - i + 1)" by(induction i j rule: upto.induct) (auto simp: upto.simps) lemma set_upto[simp]: "set[i..j] = {i..j}" proof(induct i j rule:upto.induct) case (1 i j) from this show ?case unfolding upto.simps[of i j] by auto qed lemma nth_upto[simp]: "i + int k \ j \ [i..j] ! k = i + int k" proof(induction i j arbitrary: k rule: upto.induct) case (1 i j) then show ?case by (auto simp add: upto_rec1 [of i j] nth_Cons') qed lemma upto_split1: "i \ j \ j \ k \ [i..k] = [i..j-1] @ [j..k]" proof (induction j rule: int_ge_induct) case base thus ?case by (simp add: upto_rec1) next case step thus ?case using upto_rec1 upto_rec2 by simp qed lemma upto_split2: "i \ j \ j \ k \ [i..k] = [i..j] @ [j+1..k]" using upto_rec1 upto_rec2 upto_split1 by auto lemma upto_split3: "\ i \ j; j \ k \ \ [i..k] = [i..j-1] @ j # [j+1..k]" using upto_rec1 upto_split1 by auto text\Tail recursive version for code generation:\ definition upto_aux :: "int \ int \ int list \ int list" where "upto_aux i j js = [i..j] @ js" lemma upto_aux_rec [code]: "upto_aux i j js = (if j\<^const>\successively\\ lemma successively_Cons: "successively P (x # xs) \ xs = [] \ P x (hd xs) \ successively P xs" by (cases xs) auto lemma successively_cong [cong]: assumes "\x y. x \ set xs \ y \ set xs \ P x y \ Q x y" "xs = ys" shows "successively P xs \ successively Q ys" unfolding assms(2) [symmetric] using assms(1) by (induction xs) (auto simp: successively_Cons) lemma successively_append_iff: "successively P (xs @ ys) \ successively P xs \ successively P ys \ (xs = [] \ ys = [] \ P (last xs) (hd ys))" by (induction xs) (auto simp: successively_Cons) lemma successively_if_sorted_wrt: "sorted_wrt P xs \ successively P xs" by (induction xs rule: induct_list012) auto lemma successively_iff_sorted_wrt_strong: assumes "\x y z. x \ set xs \ y \ set xs \ z \ set xs \ P x y \ P y z \ P x z" shows "successively P xs \ sorted_wrt P xs" proof assume "successively P xs" from this and assms show "sorted_wrt P xs" proof (induction xs rule: induct_list012) case (3 x y xs) from "3.prems" have "P x y" by auto have IH: "sorted_wrt P (y # xs)" using "3.prems" by(intro "3.IH"(2) list.set_intros(2))(simp, blast intro: list.set_intros(2)) have "P x z" if asm: "z \ set xs" for z proof - from IH and asm have "P y z" by auto with \P x y\ show "P x z" using "3.prems" asm by auto qed with IH and \P x y\ show ?case by auto qed auto qed (use successively_if_sorted_wrt in blast) lemma successively_conv_sorted_wrt: assumes "transp P" shows "successively P xs \ sorted_wrt P xs" using assms unfolding transp_def by (intro successively_iff_sorted_wrt_strong) blast lemma successively_rev [simp]: "successively P (rev xs) \ successively (\x y. P y x) xs" by (induction xs rule: remdups_adj.induct) (auto simp: successively_append_iff successively_Cons) lemma successively_map: "successively P (map f xs) \ successively (\x y. P (f x) (f y)) xs" by (induction xs rule: induct_list012) auto lemma successively_mono: assumes "successively P xs" assumes "\x y. x \ set xs \ y \ set xs \ P x y \ Q x y" shows "successively Q xs" using assms by (induction Q xs rule: successively.induct) auto lemma successively_altdef: "successively = (\P. rec_list True (\x xs b. case xs of [] \ True | y # _ \ P x y \ b))" proof (intro ext) fix P and xs :: "'a list" show "successively P xs = rec_list True (\x xs b. case xs of [] \ True | y # _ \ P x y \ b) xs" by (induction xs) (auto simp: successively_Cons split: list.splits) qed subsubsection \\<^const>\distinct\ and \<^const>\remdups\ and \<^const>\remdups_adj\\ lemma distinct_tl: "distinct xs \ distinct (tl xs)" by (cases xs) simp_all lemma distinct_append [simp]: "distinct (xs @ ys) = (distinct xs \ distinct ys \ set xs \ set ys = {})" by (induct xs) auto lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs" by(induct xs) auto lemma set_remdups [simp]: "set (remdups xs) = set xs" by (induct xs) (auto simp add: insert_absorb) lemma distinct_remdups [iff]: "distinct (remdups xs)" by (induct xs) auto lemma distinct_remdups_id: "distinct xs \ remdups xs = xs" by (induct xs, auto) lemma remdups_id_iff_distinct [simp]: "remdups xs = xs \ distinct xs" by (metis distinct_remdups distinct_remdups_id) lemma finite_distinct_list: "finite A \ \xs. set xs = A \ distinct xs" by (metis distinct_remdups finite_list set_remdups) lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])" by (induct x, auto) lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])" by (induct x, auto) lemma length_remdups_leq[iff]: "length(remdups xs) \ length xs" by (induct xs) auto lemma length_remdups_eq[iff]: "(length (remdups xs) = length xs) = (remdups xs = xs)" proof (induct xs) case (Cons a xs) then show ?case by simp (metis Suc_n_not_le_n impossible_Cons length_remdups_leq) qed auto lemma remdups_filter: "remdups(filter P xs) = filter P (remdups xs)" by (induct xs) auto lemma distinct_map: "distinct(map f xs) = (distinct xs \ inj_on f (set xs))" by (induct xs) auto lemma distinct_map_filter: "distinct (map f xs) \ distinct (map f (filter P xs))" by (induct xs) auto lemma distinct_filter [simp]: "distinct xs \ distinct (filter P xs)" by (induct xs) auto lemma distinct_upt[simp]: "distinct[i.. distinct (take i xs)" proof (induct xs arbitrary: i) case (Cons a xs) then show ?case by (metis Cons.prems append_take_drop_id distinct_append) qed auto lemma distinct_drop[simp]: "distinct xs \ distinct (drop i xs)" proof (induct xs arbitrary: i) case (Cons a xs) then show ?case by (metis Cons.prems append_take_drop_id distinct_append) qed auto lemma distinct_list_update: assumes d: "distinct xs" and a: "a \ set xs - {xs!i}" shows "distinct (xs[i:=a])" proof (cases "i < length xs") case True with a have anot: "a \ set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}" by simp (metis in_set_dropD in_set_takeD) show ?thesis proof (cases "a = xs!i") case True with d show ?thesis by auto next case False have "set (take i xs) \ set (drop (Suc i) xs) = {}" by (metis True d disjoint_insert(1) distinct_append id_take_nth_drop list.set(2)) then show ?thesis using d False anot \i < length xs\ by (simp add: upd_conv_take_nth_drop) qed next case False with d show ?thesis by auto qed lemma distinct_concat: "\ distinct xs; \ ys. ys \ set xs \ distinct ys; \ ys zs. \ ys \ set xs ; zs \ set xs ; ys \ zs \ \ set ys \ set zs = {} \ \ distinct (concat xs)" by (induct xs) auto text \An iff-version of @{thm distinct_concat} is available further down as \distinct_concat_iff\.\ text \It is best to avoid the following indexed version of distinct, but sometimes it is useful.\ lemma distinct_conv_nth: "distinct xs = (\i < size xs. \j < size xs. i \ j \ xs!i \ xs!j)" proof (induct xs) case (Cons x xs) show ?case apply (auto simp add: Cons nth_Cons split: nat.split_asm) apply (metis Suc_less_eq2 in_set_conv_nth less_not_refl zero_less_Suc)+ done qed auto lemma nth_eq_iff_index_eq: "\ distinct xs; i < length xs; j < length xs \ \ (xs!i = xs!j) = (i = j)" by(auto simp: distinct_conv_nth) lemma distinct_Ex1: "distinct xs \ x \ set xs \ (\!i. i < length xs \ xs ! i = x)" by (auto simp: in_set_conv_nth nth_eq_iff_index_eq) lemma inj_on_nth: "distinct xs \ \i \ I. i < length xs \ inj_on (nth xs) I" by (rule inj_onI) (simp add: nth_eq_iff_index_eq) lemma bij_betw_nth: assumes "distinct xs" "A = {.. distinct xs; n < length xs \ \ set(xs[n := x]) = insert x (set xs - {xs!n})" by(auto simp: set_eq_iff in_set_conv_nth nth_list_update nth_eq_iff_index_eq) lemma distinct_swap[simp]: "\ i < size xs; j < size xs\ \ distinct(xs[i := xs!j, j := xs!i]) = distinct xs" apply (simp add: distinct_conv_nth nth_list_update) apply (safe; metis) done lemma set_swap[simp]: "\ i < size xs; j < size xs \ \ set(xs[i := xs!j, j := xs!i]) = set xs" by(simp add: set_conv_nth nth_list_update) metis lemma distinct_card: "distinct xs \ card (set xs) = size xs" by (induct xs) auto lemma card_distinct: "card (set xs) = size xs \ distinct xs" proof (induct xs) case (Cons x xs) show ?case proof (cases "x \ set xs") case False with Cons show ?thesis by simp next case True with Cons.prems have "card (set xs) = Suc (length xs)" by (simp add: card_insert_if split: if_split_asm) moreover have "card (set xs) \ length xs" by (rule card_length) ultimately have False by simp thus ?thesis .. qed qed simp lemma distinct_length_filter: "distinct xs \ length (filter P xs) = card ({x. P x} Int set xs)" by (induct xs) (auto) lemma not_distinct_decomp: "\ distinct ws \ \xs ys zs y. ws = xs@[y]@ys@[y]@zs" proof (induct n == "length ws" arbitrary:ws) case (Suc n ws) then show ?case using length_Suc_conv [of ws n] apply (auto simp: eq_commute) apply (metis append_Nil in_set_conv_decomp_first) by (metis append_Cons) qed simp lemma not_distinct_conv_prefix: defines "dec as xs y ys \ y \ set xs \ distinct xs \ as = xs @ y # ys" shows "\distinct as \ (\xs y ys. dec as xs y ys)" (is "?L = ?R") proof assume "?L" then show "?R" proof (induct "length as" arbitrary: as rule: less_induct) case less obtain xs ys zs y where decomp: "as = (xs @ y # ys) @ y # zs" using not_distinct_decomp[OF less.prems] by auto show ?case proof (cases "distinct (xs @ y # ys)") case True with decomp have "dec as (xs @ y # ys) y zs" by (simp add: dec_def) then show ?thesis by blast next case False with less decomp obtain xs' y' ys' where "dec (xs @ y # ys) xs' y' ys'" by atomize_elim auto with decomp have "dec as xs' y' (ys' @ y # zs)" by (simp add: dec_def) then show ?thesis by blast qed qed qed (auto simp: dec_def) lemma distinct_product: "distinct xs \ distinct ys \ distinct (List.product xs ys)" by (induct xs) (auto intro: inj_onI simp add: distinct_map) lemma distinct_product_lists: assumes "\xs \ set xss. distinct xs" shows "distinct (product_lists xss)" using assms proof (induction xss) case (Cons xs xss) note * = this then show ?case proof (cases "product_lists xss") case Nil then show ?thesis by (induct xs) simp_all next case (Cons ps pss) with * show ?thesis by (auto intro!: inj_onI distinct_concat simp add: distinct_map) qed qed simp lemma length_remdups_concat: "length (remdups (concat xss)) = card (\xs\set xss. set xs)" by (simp add: distinct_card [symmetric]) lemma remdups_append2: "remdups (xs @ remdups ys) = remdups (xs @ ys)" by(induction xs) auto lemma length_remdups_card_conv: "length(remdups xs) = card(set xs)" proof - have xs: "concat[xs] = xs" by simp from length_remdups_concat[of "[xs]"] show ?thesis unfolding xs by simp qed lemma remdups_remdups: "remdups (remdups xs) = remdups xs" by (induct xs) simp_all lemma distinct_butlast: assumes "distinct xs" shows "distinct (butlast xs)" proof (cases "xs = []") case False from \xs \ []\ obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto with \distinct xs\ show ?thesis by simp qed (auto) lemma remdups_map_remdups: "remdups (map f (remdups xs)) = remdups (map f xs)" by (induct xs) simp_all lemma distinct_zipI1: assumes "distinct xs" shows "distinct (zip xs ys)" proof (rule zip_obtain_same_length) fix xs' :: "'a list" and ys' :: "'b list" and n assume "length xs' = length ys'" assume "xs' = take n xs" with assms have "distinct xs'" by simp with \length xs' = length ys'\ show "distinct (zip xs' ys')" by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE) qed lemma distinct_zipI2: assumes "distinct ys" shows "distinct (zip xs ys)" proof (rule zip_obtain_same_length) fix xs' :: "'b list" and ys' :: "'a list" and n assume "length xs' = length ys'" assume "ys' = take n ys" with assms have "distinct ys'" by simp with \length xs' = length ys'\ show "distinct (zip xs' ys')" by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE) qed lemma set_take_disj_set_drop_if_distinct: "distinct vs \ i \ j \ set (take i vs) \ set (drop j vs) = {}" by (auto simp: in_set_conv_nth distinct_conv_nth) (* The next two lemmas help Sledgehammer. *) lemma distinct_singleton: "distinct [x]" by simp lemma distinct_length_2_or_more: "distinct (a # b # xs) \ (a \ b \ distinct (a # xs) \ distinct (b # xs))" by force lemma remdups_adj_altdef: "(remdups_adj xs = ys) \ (\f::nat => nat. mono f \ f ` {0 ..< size xs} = {0 ..< size ys} \ (\i < size xs. xs!i = ys!(f i)) \ (\i. i + 1 < size xs \ (xs!i = xs!(i+1) \ f i = f(i+1))))" (is "?L \ (\f. ?p f xs ys)") proof assume ?L then show "\f. ?p f xs ys" proof (induct xs arbitrary: ys rule: remdups_adj.induct) case (1 ys) thus ?case by (intro exI[of _ id]) (auto simp: mono_def) next case (2 x ys) thus ?case by (intro exI[of _ id]) (auto simp: mono_def) next case (3 x1 x2 xs ys) let ?xs = "x1 # x2 # xs" let ?cond = "x1 = x2" define zs where "zs = remdups_adj (x2 # xs)" from 3(1-2)[of zs] obtain f where p: "?p f (x2 # xs) zs" unfolding zs_def by (cases ?cond) auto then have f0: "f 0 = 0" by (intro mono_image_least[where f=f]) blast+ from p have mono: "mono f" and f_xs_zs: "f ` {0.. []" unfolding zs_def by (induct xs) auto let ?Succ = "if ?cond then id else Suc" let ?x1 = "if ?cond then id else Cons x1" let ?f = "\ i. if i = 0 then 0 else ?Succ (f (i - 1))" have ys: "ys = ?x1 zs" unfolding ys by (cases ?cond, auto) have mono: "mono ?f" using \mono f\ unfolding mono_def by auto show ?case unfolding ys proof (intro exI[of _ ?f] conjI allI impI) show "mono ?f" by fact next fix i assume i: "i < length ?xs" with p show "?xs ! i = ?x1 zs ! (?f i)" using zs0 by auto next fix i assume i: "i + 1 < length ?xs" with p show "(?xs ! i = ?xs ! (i + 1)) = (?f i = ?f (i + 1))" by (cases i) (auto simp: f0) next have id: "{0 ..< length (?x1 zs)} = insert 0 (?Succ ` {0 ..< length zs})" using zsne by (cases ?cond, auto) { fix i assume "i < Suc (length xs)" hence "Suc i \ {0.. Collect ((<) 0)" by auto from imageI[OF this, of "\i. ?Succ (f (i - Suc 0))"] have "?Succ (f i) \ (\i. ?Succ (f (i - Suc 0))) ` ({0.. Collect ((<) 0))" by auto } then show "?f ` {0 ..< length ?xs} = {0 ..< length (?x1 zs)}" unfolding id f_xs_zs[symmetric] by auto qed qed next assume "\ f. ?p f xs ys" then show ?L proof (induct xs arbitrary: ys rule: remdups_adj.induct) case 1 then show ?case by auto next case (2 x) then obtain f where f_img: "f ` {0 ..< size [x]} = {0 ..< size ys}" and f_nth: "\i. i < size [x] \ [x]!i = ys!(f i)" by blast have "length ys = card (f ` {0 ..< size [x]})" using f_img by auto then have *: "length ys = 1" by auto then have "f 0 = 0" using f_img by auto with * show ?case using f_nth by (cases ys) auto next case (3 x1 x2 xs) from "3.prems" obtain f where f_mono: "mono f" and f_img: "f ` {0..i. i < length (x1 # x2 # xs) \ (x1 # x2 # xs) ! i = ys ! f i" "\i. i + 1 < length (x1 # x2 #xs) \ ((x1 # x2 # xs) ! i = (x1 # x2 # xs) ! (i + 1)) = (f i = f (i + 1))" by blast show ?case proof cases assume "x1 = x2" let ?f' = "f \ Suc" have "remdups_adj (x1 # xs) = ys" proof (intro "3.hyps" exI conjI impI allI) show "mono ?f'" using f_mono by (simp add: mono_iff_le_Suc) next have "?f' ` {0 ..< length (x1 # xs)} = f ` {Suc 0 ..< length (x1 # x2 # xs)}" using less_Suc_eq_0_disj by auto also have "\ = f ` {0 ..< length (x1 # x2 # xs)}" proof - have "f 0 = f (Suc 0)" using \x1 = x2\ f_nth[of 0] by simp then show ?thesis using less_Suc_eq_0_disj by auto qed also have "\ = {0 ..< length ys}" by fact finally show "?f' ` {0 ..< length (x1 # xs)} = {0 ..< length ys}" . qed (insert f_nth[of "Suc i" for i], auto simp: \x1 = x2\) then show ?thesis using \x1 = x2\ by simp next assume "x1 \ x2" have two: "Suc (Suc 0) \ length ys" proof - have "2 = card {f 0, f 1}" using \x1 \ x2\ f_nth[of 0] by auto also have "\ \ card (f ` {0..< length (x1 # x2 # xs)})" by (rule card_mono) auto finally show ?thesis using f_img by simp qed have "f 0 = 0" using f_mono f_img by (rule mono_image_least) simp have "f (Suc 0) = Suc 0" proof (rule ccontr) assume "f (Suc 0) \ Suc 0" then have "Suc 0 < f (Suc 0)" using f_nth[of 0] \x1 \ x2\ \f 0 = 0\ by auto then have "\i. Suc 0 < f (Suc i)" using f_mono by (meson Suc_le_mono le0 less_le_trans monoD) then have "Suc 0 \ f i" for i using \f 0 = 0\ by (cases i) fastforce+ then have "Suc 0 \ f ` {0 ..< length (x1 # x2 # xs)}" by auto then show False using f_img two by auto qed obtain ys' where "ys = x1 # x2 # ys'" using two f_nth[of 0] f_nth[of 1] by (auto simp: Suc_le_length_iff \f 0 = 0\ \f (Suc 0) = Suc 0\) have Suc0_le_f_Suc: "Suc 0 \ f (Suc i)" for i by (metis Suc_le_mono \f (Suc 0) = Suc 0\ f_mono le0 mono_def) define f' where "f' x = f (Suc x) - 1" for x have f_Suc: "f (Suc i) = Suc (f' i)" for i using Suc0_le_f_Suc[of i] by (auto simp: f'_def) have "remdups_adj (x2 # xs) = (x2 # ys')" proof (intro "3.hyps" exI conjI impI allI) show "mono f'" using Suc0_le_f_Suc f_mono by (auto simp: f'_def mono_iff_le_Suc le_diff_iff) next have "f' ` {0 ..< length (x2 # xs)} = (\x. f x - 1) ` {0 ..< length (x1 # x2 #xs)}" by (auto simp: f'_def \f 0 = 0\ \f (Suc 0) = Suc 0\ image_def Bex_def less_Suc_eq_0_disj) also have "\ = (\x. x - 1) ` f ` {0 ..< length (x1 # x2 #xs)}" by (auto simp: image_comp) also have "\ = (\x. x - 1) ` {0 ..< length ys}" by (simp only: f_img) also have "\ = {0 ..< length (x2 # ys')}" using \ys = _\ by (fastforce intro: rev_image_eqI) finally show "f' ` {0 ..< length (x2 # xs)} = {0 ..< length (x2 # ys')}" . qed (insert f_nth[of "Suc i" for i] \x1 \ x2\, auto simp add: f_Suc \ys = _\) then show ?case using \ys = _\ \x1 \ x2\ by simp qed qed qed lemma hd_remdups_adj[simp]: "hd (remdups_adj xs) = hd xs" by (induction xs rule: remdups_adj.induct) simp_all lemma remdups_adj_Cons: "remdups_adj (x # xs) = (case remdups_adj xs of [] \ [x] | y # xs \ if x = y then y # xs else x # y # xs)" by (induct xs arbitrary: x) (auto split: list.splits) lemma remdups_adj_append_two: "remdups_adj (xs @ [x,y]) = remdups_adj (xs @ [x]) @ (if x = y then [] else [y])" by (induct xs rule: remdups_adj.induct, simp_all) lemma remdups_adj_adjacent: "Suc i < length (remdups_adj xs) \ remdups_adj xs ! i \ remdups_adj xs ! Suc i" proof (induction xs arbitrary: i rule: remdups_adj.induct) case (3 x y xs i) thus ?case by (cases i, cases "x = y") (simp, auto simp: hd_conv_nth[symmetric]) qed simp_all lemma remdups_adj_rev[simp]: "remdups_adj (rev xs) = rev (remdups_adj xs)" by (induct xs rule: remdups_adj.induct, simp_all add: remdups_adj_append_two) lemma remdups_adj_length[simp]: "length (remdups_adj xs) \ length xs" by (induct xs rule: remdups_adj.induct, auto) lemma remdups_adj_length_ge1[simp]: "xs \ [] \ length (remdups_adj xs) \ Suc 0" by (induct xs rule: remdups_adj.induct, simp_all) lemma remdups_adj_Nil_iff[simp]: "remdups_adj xs = [] \ xs = []" by (induct xs rule: remdups_adj.induct, simp_all) lemma remdups_adj_set[simp]: "set (remdups_adj xs) = set xs" by (induct xs rule: remdups_adj.induct, simp_all) lemma last_remdups_adj [simp]: "last (remdups_adj xs) = last xs" by (induction xs rule: remdups_adj.induct) auto lemma remdups_adj_Cons_alt[simp]: "x # tl (remdups_adj (x # xs)) = remdups_adj (x # xs)" by (induct xs rule: remdups_adj.induct, auto) lemma remdups_adj_distinct: "distinct xs \ remdups_adj xs = xs" by (induct xs rule: remdups_adj.induct, simp_all) lemma remdups_adj_append: "remdups_adj (xs\<^sub>1 @ x # xs\<^sub>2) = remdups_adj (xs\<^sub>1 @ [x]) @ tl (remdups_adj (x # xs\<^sub>2))" by (induct xs\<^sub>1 rule: remdups_adj.induct, simp_all) lemma remdups_adj_singleton: "remdups_adj xs = [x] \ xs = replicate (length xs) x" by (induct xs rule: remdups_adj.induct, auto split: if_split_asm) lemma remdups_adj_map_injective: assumes "inj f" shows "remdups_adj (map f xs) = map f (remdups_adj xs)" by (induct xs rule: remdups_adj.induct) (auto simp add: injD[OF assms]) lemma remdups_adj_replicate: "remdups_adj (replicate n x) = (if n = 0 then [] else [x])" by (induction n) (auto simp: remdups_adj_Cons) lemma remdups_upt [simp]: "remdups [m.. n") case False then show ?thesis by simp next case True then obtain q where "n = m + q" by (auto simp add: le_iff_add) moreover have "remdups [m.. successively P (remdups_adj xs)" by (induction xs rule: remdups_adj.induct) (auto simp: successively_Cons) lemma successively_remdups_adj_iff: "(\x. x \ set xs \ P x x) \ successively P (remdups_adj xs) \ successively P xs" by (induction xs rule: remdups_adj.induct)(auto simp: successively_Cons) lemma remdups_adj_Cons': "remdups_adj (x # xs) = x # remdups_adj (dropWhile (\y. y = x) xs)" by (induction xs) auto lemma remdups_adj_singleton_iff: "length (remdups_adj xs) = Suc 0 \ xs \ [] \ xs = replicate (length xs) (hd xs)" proof safe assume *: "xs = replicate (length xs) (hd xs)" and [simp]: "xs \ []" show "length (remdups_adj xs) = Suc 0" by (subst *) (auto simp: remdups_adj_replicate) next assume "length (remdups_adj xs) = Suc 0" thus "xs = replicate (length xs) (hd xs)" by (induction xs rule: remdups_adj.induct) (auto split: if_splits) qed auto lemma tl_remdups_adj: "ys \ [] \ tl (remdups_adj ys) = remdups_adj (dropWhile (\x. x = hd ys) (tl ys))" by (cases ys) (simp_all add: remdups_adj_Cons') lemma remdups_adj_append_dropWhile: "remdups_adj (xs @ y # ys) = remdups_adj (xs @ [y]) @ remdups_adj (dropWhile (\x. x = y) ys)" by (subst remdups_adj_append) (simp add: tl_remdups_adj) lemma remdups_adj_append': assumes "xs = [] \ ys = [] \ last xs \ hd ys" shows "remdups_adj (xs @ ys) = remdups_adj xs @ remdups_adj ys" proof - have ?thesis if [simp]: "xs \ []" "ys \ []" and "last xs \ hd ys" proof - obtain x xs' where xs: "xs = xs' @ [x]" by (cases xs rule: rev_cases) auto have "remdups_adj (xs' @ x # ys) = remdups_adj (xs' @ [x]) @ remdups_adj ys" using \last xs \ hd ys\ unfolding xs by (metis (full_types) dropWhile_eq_self_iff last_snoc remdups_adj_append_dropWhile) thus ?thesis by (simp add: xs) qed thus ?thesis using assms by (cases "xs = []"; cases "ys = []") auto qed lemma remdups_adj_append'': "xs \ [] \ remdups_adj (xs @ ys) = remdups_adj xs @ remdups_adj (dropWhile (\y. y = last xs) ys)" by (induction xs rule: remdups_adj.induct) (auto simp: remdups_adj_Cons') subsection \@{const distinct_adj}\ lemma distinct_adj_Nil [simp]: "distinct_adj []" and distinct_adj_singleton [simp]: "distinct_adj [x]" and distinct_adj_Cons_Cons [simp]: "distinct_adj (x # y # xs) \ x \ y \ distinct_adj (y # xs)" by (auto simp: distinct_adj_def) lemma distinct_adj_Cons: "distinct_adj (x # xs) \ xs = [] \ x \ hd xs \ distinct_adj xs" by (cases xs) auto lemma distinct_adj_ConsD: "distinct_adj (x # xs) \ distinct_adj xs" by (cases xs) auto lemma distinct_adj_remdups_adj[simp]: "distinct_adj (remdups_adj xs)" by (induction xs rule: remdups_adj.induct) (auto simp: distinct_adj_Cons) lemma distinct_adj_altdef: "distinct_adj xs \ remdups_adj xs = xs" proof assume "remdups_adj xs = xs" with distinct_adj_remdups_adj[of xs] show "distinct_adj xs" by simp next assume "distinct_adj xs" thus "remdups_adj xs = xs" by (induction xs rule: induct_list012) auto qed lemma distinct_adj_rev [simp]: "distinct_adj (rev xs) \ distinct_adj xs" by (simp add: distinct_adj_def eq_commute) lemma distinct_adj_append_iff: "distinct_adj (xs @ ys) \ distinct_adj xs \ distinct_adj ys \ (xs = [] \ ys = [] \ last xs \ hd ys)" by (auto simp: distinct_adj_def successively_append_iff) lemma distinct_adj_appendD1 [dest]: "distinct_adj (xs @ ys) \ distinct_adj xs" and distinct_adj_appendD2 [dest]: "distinct_adj (xs @ ys) \ distinct_adj ys" by (auto simp: distinct_adj_append_iff) lemma distinct_adj_mapI: "distinct_adj xs \ inj_on f (set xs) \ distinct_adj (map f xs)" unfolding distinct_adj_def successively_map by (erule successively_mono) (auto simp: inj_on_def) lemma distinct_adj_mapD: "distinct_adj (map f xs) \ distinct_adj xs" unfolding distinct_adj_def successively_map by (erule successively_mono) auto lemma distinct_adj_map_iff: "inj_on f (set xs) \ distinct_adj (map f xs) \ distinct_adj xs" using distinct_adj_mapD distinct_adj_mapI by blast subsubsection \\<^const>\insert\\ lemma in_set_insert [simp]: "x \ set xs \ List.insert x xs = xs" by (simp add: List.insert_def) lemma not_in_set_insert [simp]: "x \ set xs \ List.insert x xs = x # xs" by (simp add: List.insert_def) lemma insert_Nil [simp]: "List.insert x [] = [x]" by simp lemma set_insert [simp]: "set (List.insert x xs) = insert x (set xs)" by (auto simp add: List.insert_def) lemma distinct_insert [simp]: "distinct (List.insert x xs) = distinct xs" by (simp add: List.insert_def) lemma insert_remdups: "List.insert x (remdups xs) = remdups (List.insert x xs)" by (simp add: List.insert_def) subsubsection \\<^const>\List.union\\ text\This is all one should need to know about union:\ lemma set_union[simp]: "set (List.union xs ys) = set xs \ set ys" unfolding List.union_def by(induct xs arbitrary: ys) simp_all lemma distinct_union[simp]: "distinct(List.union xs ys) = distinct ys" unfolding List.union_def by(induct xs arbitrary: ys) simp_all subsubsection \\<^const>\List.find\\ lemma find_None_iff: "List.find P xs = None \ \ (\x. x \ set xs \ P x)" proof (induction xs) case Nil thus ?case by simp next case (Cons x xs) thus ?case by (fastforce split: if_splits) qed lemma find_Some_iff: "List.find P xs = Some x \ (\i x = xs!i \ (\j P (xs!j)))" proof (induction xs) case Nil thus ?case by simp next case (Cons x xs) thus ?case apply(auto simp: nth_Cons' split: if_splits) using diff_Suc_1[unfolded One_nat_def] less_Suc_eq_0_disj by fastforce qed lemma find_cong[fundef_cong]: assumes "xs = ys" and "\x. x \ set ys \ P x = Q x" shows "List.find P xs = List.find Q ys" proof (cases "List.find P xs") case None thus ?thesis by (metis find_None_iff assms) next case (Some x) hence "List.find Q ys = Some x" using assms by (auto simp add: find_Some_iff) thus ?thesis using Some by auto qed lemma find_dropWhile: "List.find P xs = (case dropWhile (Not \ P) xs of [] \ None | x # _ \ Some x)" by (induct xs) simp_all subsubsection \\<^const>\count_list\\ lemma count_notin[simp]: "x \ set xs \ count_list xs x = 0" by (induction xs) auto lemma count_le_length: "count_list xs x \ length xs" by (induction xs) auto lemma sum_count_set: "set xs \ X \ finite X \ sum (count_list xs) X = length xs" proof (induction xs arbitrary: X) case (Cons x xs) then show ?case using sum.remove [of X x "count_list xs"] by (auto simp: sum.If_cases simp flip: diff_eq) qed simp subsubsection \\<^const>\List.extract\\ lemma extract_None_iff: "List.extract P xs = None \ \ (\ x\set xs. P x)" by(auto simp: extract_def dropWhile_eq_Cons_conv split: list.splits) (metis in_set_conv_decomp) lemma extract_SomeE: "List.extract P xs = Some (ys, y, zs) \ xs = ys @ y # zs \ P y \ \ (\ y \ set ys. P y)" by(auto simp: extract_def dropWhile_eq_Cons_conv split: list.splits) lemma extract_Some_iff: "List.extract P xs = Some (ys, y, zs) \ xs = ys @ y # zs \ P y \ \ (\ y \ set ys. P y)" by(auto simp: extract_def dropWhile_eq_Cons_conv dest: set_takeWhileD split: list.splits) lemma extract_Nil_code[code]: "List.extract P [] = None" by(simp add: extract_def) lemma extract_Cons_code[code]: "List.extract P (x # xs) = (if P x then Some ([], x, xs) else (case List.extract P xs of None \ None | Some (ys, y, zs) \ Some (x#ys, y, zs)))" by(auto simp add: extract_def comp_def split: list.splits) (metis dropWhile_eq_Nil_conv list.distinct(1)) subsubsection \\<^const>\remove1\\ lemma remove1_append: "remove1 x (xs @ ys) = (if x \ set xs then remove1 x xs @ ys else xs @ remove1 x ys)" by (induct xs) auto lemma remove1_commute: "remove1 x (remove1 y zs) = remove1 y (remove1 x zs)" by (induct zs) auto lemma in_set_remove1[simp]: "a \ b \ a \ set(remove1 b xs) = (a \ set xs)" by (induct xs) auto lemma set_remove1_subset: "set(remove1 x xs) \ set xs" by (induct xs) auto lemma set_remove1_eq [simp]: "distinct xs \ set(remove1 x xs) = set xs - {x}" by (induct xs) auto lemma length_remove1: "length(remove1 x xs) = (if x \ set xs then length xs - 1 else length xs)" by (induct xs) (auto dest!:length_pos_if_in_set) lemma remove1_filter_not[simp]: "\ P x \ remove1 x (filter P xs) = filter P xs" by(induct xs) auto lemma filter_remove1: "filter Q (remove1 x xs) = remove1 x (filter Q xs)" by (induct xs) auto lemma notin_set_remove1[simp]: "x \ set xs \ x \ set(remove1 y xs)" by(insert set_remove1_subset) fast lemma distinct_remove1[simp]: "distinct xs \ distinct(remove1 x xs)" by (induct xs) simp_all lemma remove1_remdups: "distinct xs \ remove1 x (remdups xs) = remdups (remove1 x xs)" by (induct xs) simp_all lemma remove1_idem: "x \ set xs \ remove1 x xs = xs" by (induct xs) simp_all lemma remove1_split: "a \ set xs \ remove1 a xs = ys \ (\ls rs. xs = ls @ a # rs \ a \ set ls \ ys = ls @ rs)" by (metis remove1.simps(2) remove1_append split_list_first) subsubsection \\<^const>\removeAll\\ lemma removeAll_filter_not_eq: "removeAll x = filter (\y. x \ y)" proof fix xs show "removeAll x xs = filter (\y. x \ y) xs" by (induct xs) auto qed lemma removeAll_append[simp]: "removeAll x (xs @ ys) = removeAll x xs @ removeAll x ys" by (induct xs) auto lemma set_removeAll[simp]: "set(removeAll x xs) = set xs - {x}" by (induct xs) auto lemma removeAll_id[simp]: "x \ set xs \ removeAll x xs = xs" by (induct xs) auto (* Needs count:: 'a \ 'a list \ nat lemma length_removeAll: "length(removeAll x xs) = length xs - count x xs" *) lemma removeAll_filter_not[simp]: "\ P x \ removeAll x (filter P xs) = filter P xs" by(induct xs) auto lemma distinct_removeAll: "distinct xs \ distinct (removeAll x xs)" by (simp add: removeAll_filter_not_eq) lemma distinct_remove1_removeAll: "distinct xs \ remove1 x xs = removeAll x xs" by (induct xs) simp_all lemma map_removeAll_inj_on: "inj_on f (insert x (set xs)) \ map f (removeAll x xs) = removeAll (f x) (map f xs)" by (induct xs) (simp_all add:inj_on_def) lemma map_removeAll_inj: "inj f \ map f (removeAll x xs) = removeAll (f x) (map f xs)" by (rule map_removeAll_inj_on, erule subset_inj_on, rule subset_UNIV) lemma length_removeAll_less_eq [simp]: "length (removeAll x xs) \ length xs" by (simp add: removeAll_filter_not_eq) lemma length_removeAll_less [termination_simp]: "x \ set xs \ length (removeAll x xs) < length xs" by (auto dest: length_filter_less simp add: removeAll_filter_not_eq) lemma distinct_concat_iff: "distinct (concat xs) \ distinct (removeAll [] xs) \ (\ys. ys \ set xs \ distinct ys) \ (\ys zs. ys \ set xs \ zs \ set xs \ ys \ zs \ set ys \ set zs = {})" apply (induct xs) apply(simp_all, safe, auto) by (metis Int_iff UN_I empty_iff equals0I set_empty) subsubsection \\<^const>\replicate\\ lemma length_replicate [simp]: "length (replicate n x) = n" by (induct n) auto lemma replicate_eqI: assumes "length xs = n" and "\y. y \ set xs \ y = x" shows "xs = replicate n x" using assms proof (induct xs arbitrary: n) case Nil then show ?case by simp next case (Cons x xs) then show ?case by (cases n) simp_all qed lemma Ex_list_of_length: "\xs. length xs = n" by (rule exI[of _ "replicate n undefined"]) simp lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" by (induct n) auto lemma map_replicate_const: "map (\ x. k) lst = replicate (length lst) k" by (induct lst) auto lemma replicate_app_Cons_same: "(replicate n x) @ (x # xs) = x # replicate n x @ xs" by (induct n) auto lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" by (induct n) (auto simp: replicate_app_Cons_same) lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" by (induct n) auto text\Courtesy of Matthias Daum:\ lemma append_replicate_commute: "replicate n x @ replicate k x = replicate k x @ replicate n x" by (metis add.commute replicate_add) text\Courtesy of Andreas Lochbihler:\ lemma filter_replicate: "filter P (replicate n x) = (if P x then replicate n x else [])" by(induct n) auto lemma hd_replicate [simp]: "n \ 0 \ hd (replicate n x) = x" by (induct n) auto lemma tl_replicate [simp]: "tl (replicate n x) = replicate (n - 1) x" by (induct n) auto lemma last_replicate [simp]: "n \ 0 \ last (replicate n x) = x" by (atomize (full), induct n) auto lemma nth_replicate[simp]: "i < n \ (replicate n x)!i = x" by (induct n arbitrary: i)(auto simp: nth_Cons split: nat.split) text\Courtesy of Matthias Daum (2 lemmas):\ lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x" proof (cases "k \ i") case True then show ?thesis by (simp add: min_def) next case False then have "replicate k x = replicate i x @ replicate (k - i) x" by (simp add: replicate_add [symmetric]) then show ?thesis by (simp add: min_def) qed lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x" proof (induct k arbitrary: i) case (Suc k) then show ?case by (simp add: drop_Cons') qed simp lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}" by (induct n) auto lemma set_replicate [simp]: "n \ 0 \ set (replicate n x) = {x}" by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})" by auto lemma in_set_replicate[simp]: "(x \ set (replicate n y)) = (x = y \ n \ 0)" by (simp add: set_replicate_conv_if) lemma Ball_set_replicate[simp]: "(\x \ set(replicate n a). P x) = (P a \ n=0)" by(simp add: set_replicate_conv_if) lemma Bex_set_replicate[simp]: "(\x \ set(replicate n a). P x) = (P a \ n\0)" by(simp add: set_replicate_conv_if) lemma replicate_append_same: "replicate i x @ [x] = x # replicate i x" by (induct i) simp_all lemma map_replicate_trivial: "map (\i. x) [0.. n=0" by (induct n) auto lemma empty_replicate[simp]: "([] = replicate n x) \ n=0" by (induct n) auto lemma replicate_eq_replicate[simp]: "(replicate m x = replicate n y) \ (m=n \ (m\0 \ x=y))" proof (induct m arbitrary: n) case (Suc m n) then show ?case by (induct n) auto qed simp lemma takeWhile_replicate[simp]: "takeWhile P (replicate n x) = (if P x then replicate n x else [])" using takeWhile_eq_Nil_iff by fastforce lemma dropWhile_replicate[simp]: "dropWhile P (replicate n x) = (if P x then [] else replicate n x)" using dropWhile_eq_self_iff by fastforce lemma replicate_length_filter: "replicate (length (filter (\y. x = y) xs)) x = filter (\y. x = y) xs" by (induct xs) auto lemma comm_append_are_replicate: "xs @ ys = ys @ xs \ \m n zs. concat (replicate m zs) = xs \ concat (replicate n zs) = ys" proof (induction "length (xs @ ys) + length xs" arbitrary: xs ys rule: less_induct) case less consider (1) "length ys < length xs" | (2) "xs = []" | (3) "length xs \ length ys \ xs \ []" by linarith then show ?case proof (cases) case 1 then show ?thesis using less.hyps[OF _ less.prems[symmetric]] nat_add_left_cancel_less by auto next case 2 then have "concat (replicate 0 ys) = xs \ concat (replicate 1 ys) = ys" by simp then show ?thesis by blast next case 3 then have "length xs \ length ys" and "xs \ []" by blast+ from \length xs \ length ys\ and \xs @ ys = ys @ xs\ obtain ws where "ys = xs @ ws" by (auto simp: append_eq_append_conv2) from this and \xs \ []\ have "length ws < length ys" by simp from \xs @ ys = ys @ xs\[unfolded \ys = xs @ ws\] have "xs @ ws = ws @ xs" by simp from less.hyps[OF _ this] \length ws < length ys\ obtain m n' zs where "concat (replicate m zs) = xs" and "concat (replicate n' zs) = ws" by auto then have "concat (replicate (m+n') zs) = ys" using \ys = xs @ ws\ by (simp add: replicate_add) then show ?thesis using \concat (replicate m zs) = xs\ by blast qed qed lemma comm_append_is_replicate: fixes xs ys :: "'a list" assumes "xs \ []" "ys \ []" assumes "xs @ ys = ys @ xs" shows "\n zs. n > 1 \ concat (replicate n zs) = xs @ ys" proof - obtain m n zs where "concat (replicate m zs) = xs" and "concat (replicate n zs) = ys" using comm_append_are_replicate[OF assms(3)] by blast then have "m + n > 1" and "concat (replicate (m+n) zs) = xs @ ys" using \xs \ []\ and \ys \ []\ by (auto simp: replicate_add) then show ?thesis by blast qed lemma Cons_replicate_eq: "x # xs = replicate n y \ x = y \ n > 0 \ xs = replicate (n - 1) x" by (induct n) auto lemma replicate_length_same: "(\y\set xs. y = x) \ replicate (length xs) x = xs" by (induct xs) simp_all lemma foldr_replicate [simp]: "foldr f (replicate n x) = f x ^^ n" by (induct n) (simp_all) lemma fold_replicate [simp]: "fold f (replicate n x) = f x ^^ n" by (subst foldr_fold [symmetric]) simp_all subsubsection \\<^const>\enumerate\\ lemma enumerate_simps [simp, code]: "enumerate n [] = []" "enumerate n (x # xs) = (n, x) # enumerate (Suc n) xs" by (simp_all add: enumerate_eq_zip upt_rec) lemma length_enumerate [simp]: "length (enumerate n xs) = length xs" by (simp add: enumerate_eq_zip) lemma map_fst_enumerate [simp]: "map fst (enumerate n xs) = [n.. set (enumerate n xs) \ n \ fst p \ fst p < length xs + n \ nth xs (fst p - n) = snd p" proof - { fix m assume "n \ m" moreover assume "m < length xs + n" ultimately have "[n.. xs ! (m - n) = xs ! (m - n) \ m - n < length xs" by auto then have "\q. [n.. xs ! q = xs ! (m - n) \ q < length xs" .. } then show ?thesis by (cases p) (auto simp add: enumerate_eq_zip in_set_zip) qed lemma nth_enumerate_eq: "m < length xs \ enumerate n xs ! m = (n + m, xs ! m)" by (simp add: enumerate_eq_zip) lemma enumerate_replicate_eq: "enumerate n (replicate m a) = map (\q. (q, a)) [n..k. (k, f k)) [n.. m") (simp_all add: zip_map2 zip_same_conv_map enumerate_eq_zip) subsubsection \\<^const>\rotate1\ and \<^const>\rotate\\ lemma rotate0[simp]: "rotate 0 = id" by(simp add:rotate_def) lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)" by(simp add:rotate_def) lemma rotate_add: "rotate (m+n) = rotate m \ rotate n" by(simp add:rotate_def funpow_add) lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs" by(simp add:rotate_add) lemma rotate1_map: "rotate1 (map f xs) = map f (rotate1 xs)" by(cases xs) simp_all lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)" by(simp add:rotate_def funpow_swap1) lemma rotate1_length01[simp]: "length xs \ 1 \ rotate1 xs = xs" by(cases xs) simp_all lemma rotate_length01[simp]: "length xs \ 1 \ rotate n xs = xs" by (induct n) (simp_all add:rotate_def) lemma rotate1_hd_tl: "xs \ [] \ rotate1 xs = tl xs @ [hd xs]" by (cases xs) simp_all lemma rotate_drop_take: "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs" proof (induct n) case (Suc n) show ?case proof (cases "xs = []") case False then show ?thesis proof (cases "n mod length xs = 0") case True then show ?thesis by (auto simp add: mod_Suc False Suc.hyps drop_Suc rotate1_hd_tl take_Suc Suc_length_conv) next case False with \xs \ []\ Suc show ?thesis by (simp add: rotate_def mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric] take_hd_drop linorder_not_le) qed qed simp qed simp lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs" by(simp add:rotate_drop_take) lemma rotate_id[simp]: "n mod length xs = 0 \ rotate n xs = xs" by(simp add:rotate_drop_take) lemma length_rotate1[simp]: "length(rotate1 xs) = length xs" by (cases xs) simp_all lemma length_rotate[simp]: "length(rotate n xs) = length xs" by (induct n arbitrary: xs) (simp_all add:rotate_def) lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs" by (cases xs) auto lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs" by (induct n) (simp_all add:rotate_def) lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)" by(simp add:rotate_drop_take take_map drop_map) lemma set_rotate1[simp]: "set(rotate1 xs) = set xs" by (cases xs) auto lemma set_rotate[simp]: "set(rotate n xs) = set xs" by (induct n) (simp_all add:rotate_def) lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])" by (cases xs) auto lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])" by (induct n) (simp_all add:rotate_def) lemma rotate_rev: "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)" proof (cases "length xs = 0 \ n mod length xs = 0") case False then show ?thesis by(simp add:rotate_drop_take rev_drop rev_take) qed force lemma hd_rotate_conv_nth: assumes "xs \ []" shows "hd(rotate n xs) = xs!(n mod length xs)" proof - have "n mod length xs < length xs" using assms by simp then show ?thesis by (metis drop_eq_Nil hd_append2 hd_drop_conv_nth leD rotate_drop_take) qed lemma rotate_append: "rotate (length l) (l @ q) = q @ l" by (induct l arbitrary: q) (auto simp add: rotate1_rotate_swap) lemma nth_rotate: \rotate m xs ! n = xs ! ((m + n) mod length xs)\ if \n < length xs\ using that apply (auto simp add: rotate_drop_take nth_append not_less less_diff_conv ac_simps dest!: le_Suc_ex) apply (metis add.commute mod_add_right_eq mod_less) apply (metis (no_types, lifting) Nat.diff_diff_right add.commute add_diff_cancel_right' diff_le_self dual_order.strict_trans2 length_greater_0_conv less_nat_zero_code list.size(3) mod_add_right_eq mod_add_self2 mod_le_divisor mod_less) done lemma nth_rotate1: \rotate1 xs ! n = xs ! (Suc n mod length xs)\ if \n < length xs\ using that nth_rotate [of n xs 1] by simp subsubsection \\<^const>\nths\ --- a generalization of \<^const>\nth\ to sets\ lemma nths_empty [simp]: "nths xs {} = []" by (auto simp add: nths_def) lemma nths_nil [simp]: "nths [] A = []" by (auto simp add: nths_def) lemma nths_all: "\i < length xs. i \ I \ nths xs I = xs" apply (simp add: nths_def) apply (subst filter_True) apply (auto simp: in_set_zip subset_iff) done lemma length_nths: "length (nths xs I) = card{i. i < length xs \ i \ I}" by(simp add: nths_def length_filter_conv_card cong:conj_cong) lemma nths_shift_lemma_Suc: "map fst (filter (\p. P(Suc(snd p))) (zip xs is)) = map fst (filter (\p. P(snd p)) (zip xs (map Suc is)))" proof (induct xs arbitrary: "is") case (Cons x xs "is") show ?case by (cases "is") (auto simp add: Cons.hyps) qed simp lemma nths_shift_lemma: "map fst (filter (\p. snd p \ A) (zip xs [i..p. snd p + i \ A) (zip xs [0.. A}" unfolding nths_def proof (induct l' rule: rev_induct) case (snoc x xs) then show ?case by (simp add: upt_add_eq_append[of 0] nths_shift_lemma add.commute) qed auto lemma nths_Cons: "nths (x # l) A = (if 0 \ A then [x] else []) @ nths l {j. Suc j \ A}" proof (induct l rule: rev_induct) case (snoc x xs) then show ?case by (simp flip: append_Cons add: nths_append) qed (auto simp: nths_def) lemma nths_map: "nths (map f xs) I = map f (nths xs I)" by(induction xs arbitrary: I) (simp_all add: nths_Cons) lemma set_nths: "set(nths xs I) = {xs!i|i. i i \ I}" by (induct xs arbitrary: I) (auto simp: nths_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc) lemma set_nths_subset: "set(nths xs I) \ set xs" by(auto simp add:set_nths) lemma notin_set_nthsI[simp]: "x \ set xs \ x \ set(nths xs I)" by(auto simp add:set_nths) lemma in_set_nthsD: "x \ set(nths xs I) \ x \ set xs" by(auto simp add:set_nths) lemma nths_singleton [simp]: "nths [x] A = (if 0 \ A then [x] else [])" by (simp add: nths_Cons) lemma distinct_nthsI[simp]: "distinct xs \ distinct (nths xs I)" by (induct xs arbitrary: I) (auto simp: nths_Cons) lemma nths_upt_eq_take [simp]: "nths l {.. A. \j \ B. card {i' \ A. i' < i} = j}" by (induction xs arbitrary: A B) (auto simp add: nths_Cons card_less_Suc card_less_Suc2) lemma drop_eq_nths: "drop n xs = nths xs {i. i \ n}" by (induction xs arbitrary: n) (auto simp add: nths_Cons nths_all drop_Cons' intro: arg_cong2[where f=nths, OF refl]) lemma nths_drop: "nths (drop n xs) I = nths xs ((+) n ` I)" by(force simp: drop_eq_nths nths_nths simp flip: atLeastLessThan_iff intro: arg_cong2[where f=nths, OF refl]) lemma filter_eq_nths: "filter P xs = nths xs {i. i P(xs!i)}" by(induction xs) (auto simp: nths_Cons) lemma filter_in_nths: "distinct xs \ filter (%x. x \ set (nths xs s)) xs = nths xs s" proof (induct xs arbitrary: s) case Nil thus ?case by simp next case (Cons a xs) then have "\x. x \ set xs \ x \ a" by auto with Cons show ?case by(simp add: nths_Cons cong:filter_cong) qed subsubsection \\<^const>\subseqs\ and \<^const>\List.n_lists\\ lemma length_subseqs: "length (subseqs xs) = 2 ^ length xs" by (induct xs) (simp_all add: Let_def) lemma subseqs_powset: "set ` set (subseqs xs) = Pow (set xs)" proof - have aux: "\x A. set ` Cons x ` A = insert x ` set ` A" by (auto simp add: image_def) have "set (map set (subseqs xs)) = Pow (set xs)" by (induct xs) (simp_all add: aux Let_def Pow_insert Un_commute comp_def del: map_map) then show ?thesis by simp qed lemma distinct_set_subseqs: assumes "distinct xs" shows "distinct (map set (subseqs xs))" proof (rule card_distinct) have "finite (set xs)" .. then have "card (Pow (set xs)) = 2 ^ card (set xs)" by (rule card_Pow) with assms distinct_card [of xs] have "card (Pow (set xs)) = 2 ^ length xs" by simp then show "card (set (map set (subseqs xs))) = length (map set (subseqs xs))" by (simp add: subseqs_powset length_subseqs) qed lemma n_lists_Nil [simp]: "List.n_lists n [] = (if n = 0 then [[]] else [])" by (induct n) simp_all lemma length_n_lists_elem: "ys \ set (List.n_lists n xs) \ length ys = n" by (induct n arbitrary: ys) auto lemma set_n_lists: "set (List.n_lists n xs) = {ys. length ys = n \ set ys \ set xs}" proof (rule set_eqI) fix ys :: "'a list" show "ys \ set (List.n_lists n xs) \ ys \ {ys. length ys = n \ set ys \ set xs}" proof - have "ys \ set (List.n_lists n xs) \ length ys = n" by (induct n arbitrary: ys) auto moreover have "\x. ys \ set (List.n_lists n xs) \ x \ set ys \ x \ set xs" by (induct n arbitrary: ys) auto moreover have "set ys \ set xs \ ys \ set (List.n_lists (length ys) xs)" by (induct ys) auto ultimately show ?thesis by auto qed qed lemma subseqs_refl: "xs \ set (subseqs xs)" by (induct xs) (simp_all add: Let_def) lemma subset_subseqs: "X \ set xs \ X \ set ` set (subseqs xs)" unfolding subseqs_powset by simp lemma Cons_in_subseqsD: "y # ys \ set (subseqs xs) \ ys \ set (subseqs xs)" by (induct xs) (auto simp: Let_def) lemma subseqs_distinctD: "\ ys \ set (subseqs xs); distinct xs \ \ distinct ys" proof (induct xs arbitrary: ys) case (Cons x xs ys) then show ?case by (auto simp: Let_def) (metis Pow_iff contra_subsetD image_eqI subseqs_powset) qed simp subsubsection \\<^const>\splice\\ lemma splice_Nil2 [simp]: "splice xs [] = xs" by (cases xs) simp_all lemma length_splice[simp]: "length(splice xs ys) = length xs + length ys" by (induct xs ys rule: splice.induct) auto lemma split_Nil_iff[simp]: "splice xs ys = [] \ xs = [] \ ys = []" by (induct xs ys rule: splice.induct) auto lemma splice_replicate[simp]: "splice (replicate m x) (replicate n x) = replicate (m+n) x" proof (induction "replicate m x" "replicate n x" arbitrary: m n rule: splice.induct) case (2 x xs) then show ?case by (auto simp add: Cons_replicate_eq dest: gr0_implies_Suc) qed auto subsubsection \\<^const>\shuffles\\ lemma shuffles_commutes: "shuffles xs ys = shuffles ys xs" by (induction xs ys rule: shuffles.induct) (simp_all add: Un_commute) lemma Nil_in_shuffles[simp]: "[] \ shuffles xs ys \ xs = [] \ ys = []" by (induct xs ys rule: shuffles.induct) auto lemma shufflesE: "zs \ shuffles xs ys \ (zs = xs \ ys = [] \ P) \ (zs = ys \ xs = [] \ P) \ (\x xs' z zs'. xs = x # xs' \ zs = z # zs' \ x = z \ zs' \ shuffles xs' ys \ P) \ (\y ys' z zs'. ys = y # ys' \ zs = z # zs' \ y = z \ zs' \ shuffles xs ys' \ P) \ P" by (induct xs ys rule: shuffles.induct) auto lemma Cons_in_shuffles_iff: "z # zs \ shuffles xs ys \ (xs \ [] \ hd xs = z \ zs \ shuffles (tl xs) ys \ ys \ [] \ hd ys = z \ zs \ shuffles xs (tl ys))" by (induct xs ys rule: shuffles.induct) auto lemma splice_in_shuffles [simp, intro]: "splice xs ys \ shuffles xs ys" by (induction xs ys rule: splice.induct) (simp_all add: Cons_in_shuffles_iff shuffles_commutes) lemma Nil_in_shufflesI: "xs = [] \ ys = [] \ [] \ shuffles xs ys" by simp lemma Cons_in_shuffles_leftI: "zs \ shuffles xs ys \ z # zs \ shuffles (z # xs) ys" by (cases ys) auto lemma Cons_in_shuffles_rightI: "zs \ shuffles xs ys \ z # zs \ shuffles xs (z # ys)" by (cases xs) auto lemma finite_shuffles [simp, intro]: "finite (shuffles xs ys)" by (induction xs ys rule: shuffles.induct) simp_all lemma length_shuffles: "zs \ shuffles xs ys \ length zs = length xs + length ys" by (induction xs ys arbitrary: zs rule: shuffles.induct) auto lemma set_shuffles: "zs \ shuffles xs ys \ set zs = set xs \ set ys" by (induction xs ys arbitrary: zs rule: shuffles.induct) auto lemma distinct_disjoint_shuffles: assumes "distinct xs" "distinct ys" "set xs \ set ys = {}" "zs \ shuffles xs ys" shows "distinct zs" using assms proof (induction xs ys arbitrary: zs rule: shuffles.induct) case (3 x xs y ys) show ?case proof (cases zs) case (Cons z zs') with "3.prems" and "3.IH"[of zs'] show ?thesis by (force dest: set_shuffles) qed simp_all qed simp_all lemma Cons_shuffles_subset1: "(#) x ` shuffles xs ys \ shuffles (x # xs) ys" by (cases ys) auto lemma Cons_shuffles_subset2: "(#) y ` shuffles xs ys \ shuffles xs (y # ys)" by (cases xs) auto lemma filter_shuffles: "filter P ` shuffles xs ys = shuffles (filter P xs) (filter P ys)" proof - have *: "filter P ` (#) x ` A = (if P x then (#) x ` filter P ` A else filter P ` A)" for x A by (auto simp: image_image) show ?thesis by (induction xs ys rule: shuffles.induct) (simp_all split: if_splits add: image_Un * Un_absorb1 Un_absorb2 Cons_shuffles_subset1 Cons_shuffles_subset2) qed lemma filter_shuffles_disjoint1: assumes "set xs \ set ys = {}" "zs \ shuffles xs ys" shows "filter (\x. x \ set xs) zs = xs" (is "filter ?P _ = _") and "filter (\x. x \ set xs) zs = ys" (is "filter ?Q _ = _") using assms proof - from assms have "filter ?P zs \ filter ?P ` shuffles xs ys" by blast also have "filter ?P ` shuffles xs ys = shuffles (filter ?P xs) (filter ?P ys)" by (rule filter_shuffles) also have "filter ?P xs = xs" by (rule filter_True) simp_all also have "filter ?P ys = []" by (rule filter_False) (insert assms(1), auto) also have "shuffles xs [] = {xs}" by simp finally show "filter ?P zs = xs" by simp next from assms have "filter ?Q zs \ filter ?Q ` shuffles xs ys" by blast also have "filter ?Q ` shuffles xs ys = shuffles (filter ?Q xs) (filter ?Q ys)" by (rule filter_shuffles) also have "filter ?Q ys = ys" by (rule filter_True) (insert assms(1), auto) also have "filter ?Q xs = []" by (rule filter_False) (insert assms(1), auto) also have "shuffles [] ys = {ys}" by simp finally show "filter ?Q zs = ys" by simp qed lemma filter_shuffles_disjoint2: assumes "set xs \ set ys = {}" "zs \ shuffles xs ys" shows "filter (\x. x \ set ys) zs = ys" "filter (\x. x \ set ys) zs = xs" using filter_shuffles_disjoint1[of ys xs zs] assms by (simp_all add: shuffles_commutes Int_commute) lemma partition_in_shuffles: "xs \ shuffles (filter P xs) (filter (\x. \P x) xs)" proof (induction xs) case (Cons x xs) show ?case proof (cases "P x") case True hence "x # xs \ (#) x ` shuffles (filter P xs) (filter (\x. \P x) xs)" by (intro imageI Cons.IH) also have "\ \ shuffles (filter P (x # xs)) (filter (\x. \P x) (x # xs))" by (simp add: True Cons_shuffles_subset1) finally show ?thesis . next case False hence "x # xs \ (#) x ` shuffles (filter P xs) (filter (\x. \P x) xs)" by (intro imageI Cons.IH) also have "\ \ shuffles (filter P (x # xs)) (filter (\x. \P x) (x # xs))" by (simp add: False Cons_shuffles_subset2) finally show ?thesis . qed qed auto lemma inv_image_partition: assumes "\x. x \ set xs \ P x" "\y. y \ set ys \ \P y" shows "partition P -` {(xs, ys)} = shuffles xs ys" proof (intro equalityI subsetI) fix zs assume zs: "zs \ shuffles xs ys" hence [simp]: "set zs = set xs \ set ys" by (rule set_shuffles) from assms have "filter P zs = filter (\x. x \ set xs) zs" "filter (\x. \P x) zs = filter (\x. x \ set ys) zs" by (intro filter_cong refl; force)+ moreover from assms have "set xs \ set ys = {}" by auto ultimately show "zs \ partition P -` {(xs, ys)}" using zs by (simp add: o_def filter_shuffles_disjoint1 filter_shuffles_disjoint2) next fix zs assume "zs \ partition P -` {(xs, ys)}" thus "zs \ shuffles xs ys" using partition_in_shuffles[of zs] by (auto simp: o_def) qed subsubsection \Transpose\ function transpose where "transpose [] = []" | "transpose ([] # xss) = transpose xss" | "transpose ((x#xs) # xss) = (x # [h. (h#t) \ xss]) # transpose (xs # [t. (h#t) \ xss])" by pat_completeness auto lemma transpose_aux_filter_head: "concat (map (case_list [] (\h t. [h])) xss) = map (\xs. hd xs) (filter (\ys. ys \ []) xss)" by (induct xss) (auto split: list.split) lemma transpose_aux_filter_tail: "concat (map (case_list [] (\h t. [t])) xss) = map (\xs. tl xs) (filter (\ys. ys \ []) xss)" by (induct xss) (auto split: list.split) lemma transpose_aux_max: "max (Suc (length xs)) (foldr (\xs. max (length xs)) xss 0) = Suc (max (length xs) (foldr (\x. max (length x - Suc 0)) (filter (\ys. ys \ []) xss) 0))" (is "max _ ?foldB = Suc (max _ ?foldA)") proof (cases "(filter (\ys. ys \ []) xss) = []") case True hence "foldr (\xs. max (length xs)) xss 0 = 0" proof (induct xss) case (Cons x xs) then have "x = []" by (cases x) auto with Cons show ?case by auto qed simp thus ?thesis using True by simp next case False have foldA: "?foldA = foldr (\x. max (length x)) (filter (\ys. ys \ []) xss) 0 - 1" by (induct xss) auto have foldB: "?foldB = foldr (\x. max (length x)) (filter (\ys. ys \ []) xss) 0" by (induct xss) auto have "0 < ?foldB" proof - from False obtain z zs where zs: "(filter (\ys. ys \ []) xss) = z#zs" by (auto simp: neq_Nil_conv) hence "z \ set (filter (\ys. ys \ []) xss)" by auto hence "z \ []" by auto thus ?thesis unfolding foldB zs by (auto simp: max_def intro: less_le_trans) qed thus ?thesis unfolding foldA foldB max_Suc_Suc[symmetric] by simp qed termination transpose by (relation "measure (\xs. foldr (\xs. max (length xs)) xs 0 + length xs)") (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max less_Suc_eq_le) lemma transpose_empty: "(transpose xs = []) \ (\x \ set xs. x = [])" by (induct rule: transpose.induct) simp_all lemma length_transpose: fixes xs :: "'a list list" shows "length (transpose xs) = foldr (\xs. max (length xs)) xs 0" by (induct rule: transpose.induct) (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max max_Suc_Suc[symmetric] simp del: max_Suc_Suc) lemma nth_transpose: fixes xs :: "'a list list" assumes "i < length (transpose xs)" shows "transpose xs ! i = map (\xs. xs ! i) (filter (\ys. i < length ys) xs)" using assms proof (induct arbitrary: i rule: transpose.induct) case (3 x xs xss) define XS where "XS = (x # xs) # xss" hence [simp]: "XS \ []" by auto thus ?case proof (cases i) case 0 thus ?thesis by (simp add: transpose_aux_filter_head hd_conv_nth) next case (Suc j) have *: "\xss. xs # map tl xss = map tl ((x#xs)#xss)" by simp have **: "\xss. (x#xs) # filter (\ys. ys \ []) xss = filter (\ys. ys \ []) ((x#xs)#xss)" by simp { fix x have "Suc j < length x \ x \ [] \ j < length x - Suc 0" by (cases x) simp_all } note *** = this have j_less: "j < length (transpose (xs # concat (map (case_list [] (\h t. [t])) xss)))" using "3.prems" by (simp add: transpose_aux_filter_tail length_transpose Suc) show ?thesis unfolding transpose.simps \i = Suc j\ nth_Cons_Suc "3.hyps"[OF j_less] apply (auto simp: transpose_aux_filter_tail filter_map comp_def length_transpose * ** *** XS_def[symmetric]) by (simp add: nth_tl) qed qed simp_all lemma transpose_map_map: "transpose (map (map f) xs) = map (map f) (transpose xs)" proof (rule nth_equalityI) have [simp]: "length (transpose (map (map f) xs)) = length (transpose xs)" by (simp add: length_transpose foldr_map comp_def) show "length (transpose (map (map f) xs)) = length (map (map f) (transpose xs))" by simp fix i assume "i < length (transpose (map (map f) xs))" thus "transpose (map (map f) xs) ! i = map (map f) (transpose xs) ! i" by (simp add: nth_transpose filter_map comp_def) qed subsubsection \\<^const>\min\ and \<^const>\arg_min\\ lemma min_list_Min: "xs \ [] \ min_list xs = Min (set xs)" by (induction xs rule: induct_list012)(auto) lemma f_arg_min_list_f: "xs \ [] \ f (arg_min_list f xs) = Min (f ` (set xs))" by(induction f xs rule: arg_min_list.induct) (auto simp: min_def intro!: antisym) lemma arg_min_list_in: "xs \ [] \ arg_min_list f xs \ set xs" by(induction xs rule: induct_list012) (auto simp: Let_def) subsubsection \(In)finiteness\ lemma finite_maxlen: "finite (M::'a list set) \ \n. \s\M. size s < n" proof (induct rule: finite.induct) case emptyI show ?case by simp next case (insertI M xs) then obtain n where "\s\M. length s < n" by blast hence "\s\insert xs M. size s < max n (size xs) + 1" by auto thus ?case .. qed lemma lists_length_Suc_eq: "{xs. set xs \ A \ length xs = Suc n} = (\(xs, n). n#xs) ` ({xs. set xs \ A \ length xs = n} \ A)" by (auto simp: length_Suc_conv) lemma assumes "finite A" shows finite_lists_length_eq: "finite {xs. set xs \ A \ length xs = n}" and card_lists_length_eq: "card {xs. set xs \ A \ length xs = n} = (card A)^n" using \finite A\ by (induct n) (auto simp: card_image inj_split_Cons lists_length_Suc_eq cong: conj_cong) lemma finite_lists_length_le: assumes "finite A" shows "finite {xs. set xs \ A \ length xs \ n}" (is "finite ?S") proof- have "?S = (\n\{0..n}. {xs. set xs \ A \ length xs = n})" by auto thus ?thesis by (auto intro!: finite_lists_length_eq[OF \finite A\] simp only:) qed lemma card_lists_length_le: assumes "finite A" shows "card {xs. set xs \ A \ length xs \ n} = (\i\n. card A^i)" proof - have "(\i\n. card A^i) = card (\i\n. {xs. set xs \ A \ length xs = i})" using \finite A\ by (subst card_UN_disjoint) (auto simp add: card_lists_length_eq finite_lists_length_eq) also have "(\i\n. {xs. set xs \ A \ length xs = i}) = {xs. set xs \ A \ length xs \ n}" by auto finally show ?thesis by simp qed lemma finite_lists_distinct_length_eq [intro]: assumes "finite A" shows "finite {xs. length xs = n \ distinct xs \ set xs \ A}" (is "finite ?S") proof - have "finite {xs. set xs \ A \ length xs = n}" using \finite A\ by (rule finite_lists_length_eq) moreover have "?S \ {xs. set xs \ A \ length xs = n}" by auto ultimately show ?thesis using finite_subset by auto qed lemma card_lists_distinct_length_eq: assumes "finite A" "k \ card A" shows "card {xs. length xs = k \ distinct xs \ set xs \ A} = \{card A - k + 1 .. card A}" using assms proof (induct k) case 0 then have "{xs. length xs = 0 \ distinct xs \ set xs \ A} = {[]}" by auto then show ?case by simp next case (Suc k) let "?k_list" = "\k xs. length xs = k \ distinct xs \ set xs \ A" have inj_Cons: "\A. inj_on (\(xs, n). n # xs) A" by (rule inj_onI) auto from Suc have "k \ card A" by simp moreover note \finite A\ moreover have "finite {xs. ?k_list k xs}" by (rule finite_subset) (use finite_lists_length_eq[OF \finite A\, of k] in auto) moreover have "\i j. i \ j \ {i} \ (A - set i) \ {j} \ (A - set j) = {}" by auto moreover have "\i. i \ {xs. ?k_list k xs} \ card (A - set i) = card A - k" by (simp add: card_Diff_subset distinct_card) moreover have "{xs. ?k_list (Suc k) xs} = (\(xs, n). n#xs) ` \((\xs. {xs} \ (A - set xs)) ` {xs. ?k_list k xs})" by (auto simp: length_Suc_conv) moreover have "Suc (card A - Suc k) = card A - k" using Suc.prems by simp then have "(card A - k) * \{Suc (card A - k)..card A} = \{Suc (card A - Suc k)..card A}" by (subst prod.insert[symmetric]) (simp add: atLeastAtMost_insertL)+ ultimately show ?case by (simp add: card_image inj_Cons card_UN_disjoint Suc.hyps algebra_simps) qed lemma card_lists_distinct_length_eq': assumes "k < card A" shows "card {xs. length xs = k \ distinct xs \ set xs \ A} = \{card A - k + 1 .. card A}" proof - from \k < card A\ have "finite A" and "k \ card A" using card.infinite by force+ from this show ?thesis by (rule card_lists_distinct_length_eq) qed lemma infinite_UNIV_listI: "\ finite(UNIV::'a list set)" by (metis UNIV_I finite_maxlen length_replicate less_irrefl) lemma same_length_different: assumes "xs \ ys" and "length xs = length ys" shows "\pre x xs' y ys'. x\y \ xs = pre @ [x] @ xs' \ ys = pre @ [y] @ ys'" using assms proof (induction xs arbitrary: ys) case Nil then show ?case by auto next case (Cons x xs) then obtain z zs where ys: "ys = Cons z zs" by (metis length_Suc_conv) show ?case proof (cases "x=z") case True then have "xs \ zs" "length xs = length zs" using Cons.prems ys by auto then obtain pre u xs' v ys' where "u\v" and xs: "xs = pre @ [u] @ xs'" and zs: "zs = pre @ [v] @ys'" using Cons.IH by meson then have "x # xs = (z#pre) @ [u] @ xs' \ ys = (z#pre) @ [v] @ ys'" by (simp add: True ys) with \u\v\ show ?thesis by blast next case False then have "x # xs = [] @ [x] @ xs \ ys = [] @ [z] @ zs" by (simp add: ys) then show ?thesis using False by blast qed qed subsection \Sorting\ subsubsection \\<^const>\sorted_wrt\\ text \Sometimes the second equation in the definition of \<^const>\sorted_wrt\ is too aggressive because it relates each list element to \emph{all} its successors. Then this equation should be removed and \sorted_wrt2_simps\ should be added instead.\ lemma sorted_wrt1: "sorted_wrt P [x] = True" by(simp) lemma sorted_wrt2: "transp P \ sorted_wrt P (x # y # zs) = (P x y \ sorted_wrt P (y # zs))" proof (induction zs arbitrary: x y) case (Cons z zs) then show ?case by simp (meson transpD)+ qed auto lemmas sorted_wrt2_simps = sorted_wrt1 sorted_wrt2 lemma sorted_wrt_true [simp]: "sorted_wrt (\_ _. True) xs" by (induction xs) simp_all lemma sorted_wrt_append: "sorted_wrt P (xs @ ys) \ sorted_wrt P xs \ sorted_wrt P ys \ (\x\set xs. \y\set ys. P x y)" by (induction xs) auto lemma sorted_wrt_map: "sorted_wrt R (map f xs) = sorted_wrt (\x y. R (f x) (f y)) xs" by (induction xs) simp_all lemma assumes "sorted_wrt f xs" shows sorted_wrt_take: "sorted_wrt f (take n xs)" and sorted_wrt_drop: "sorted_wrt f (drop n xs)" proof - from assms have "sorted_wrt f (take n xs @ drop n xs)" by simp thus "sorted_wrt f (take n xs)" and "sorted_wrt f (drop n xs)" unfolding sorted_wrt_append by simp_all qed lemma sorted_wrt_filter: "sorted_wrt f xs \ sorted_wrt f (filter P xs)" by (induction xs) auto lemma sorted_wrt_rev: "sorted_wrt P (rev xs) = sorted_wrt (\x y. P y x) xs" by (induction xs) (auto simp add: sorted_wrt_append) lemma sorted_wrt_mono_rel: "(\x y. \ x \ set xs; y \ set xs; P x y \ \ Q x y) \ sorted_wrt P xs \ sorted_wrt Q xs" by(induction xs)(auto) lemma sorted_wrt01: "length xs \ 1 \ sorted_wrt P xs" by(auto simp: le_Suc_eq length_Suc_conv) lemma sorted_wrt_iff_nth_less: "sorted_wrt P xs = (\i j. i < j \ j < length xs \ P (xs ! i) (xs ! j))" by (induction xs) (auto simp add: in_set_conv_nth Ball_def nth_Cons split: nat.split) lemma sorted_wrt_nth_less: "\ sorted_wrt P xs; i < j; j < length xs \ \ P (xs ! i) (xs ! j)" by(auto simp: sorted_wrt_iff_nth_less) lemma sorted_wrt_iff_nth_Suc_transp: assumes "transp P" shows "sorted_wrt P xs \ (\i. Suc i < length xs \ P (xs!i) (xs!(Suc i)))" (is "?L = ?R") proof assume ?L thus ?R by (simp add: sorted_wrt_iff_nth_less) next assume ?R have "i < j \ j < length xs \ P (xs ! i) (xs ! j)" for i j by(induct i j rule: less_Suc_induct)(simp add: \?R\, meson assms transpE transp_less) thus ?L by (simp add: sorted_wrt_iff_nth_less) qed lemma sorted_wrt_upt[simp]: "sorted_wrt (<) [m..Each element is greater or equal to its index:\ lemma sorted_wrt_less_idx: "sorted_wrt (<) ns \ i < length ns \ i \ ns!i" proof (induction ns arbitrary: i rule: rev_induct) case Nil thus ?case by simp next case snoc thus ?case by (auto simp: nth_append sorted_wrt_append) (metis less_antisym not_less nth_mem) qed subsubsection \\<^const>\sorted\\ context linorder begin text \Sometimes the second equation in the definition of \<^const>\sorted\ is too aggressive because it relates each list element to \emph{all} its successors. Then this equation should be removed and \sorted2_simps\ should be added instead. Executable code is one such use case.\ lemma sorted1: "sorted [x] = True" by simp lemma sorted2: "sorted (x # y # zs) = (x \ y \ sorted (y # zs))" by(induction zs) auto lemmas sorted2_simps = sorted1 sorted2 lemmas [code] = sorted.simps(1) sorted2_simps lemma sorted_append: "sorted (xs@ys) = (sorted xs \ sorted ys \ (\x \ set xs. \y \ set ys. x\y))" by (simp add: sorted_sorted_wrt sorted_wrt_append) lemma sorted_map: "sorted (map f xs) = sorted_wrt (\x y. f x \ f y) xs" by (simp add: sorted_sorted_wrt sorted_wrt_map) lemma sorted01: "length xs \ 1 \ sorted xs" by (simp add: sorted_sorted_wrt sorted_wrt01) lemma sorted_tl: "sorted xs \ sorted (tl xs)" by (cases xs) (simp_all) lemma sorted_iff_nth_mono_less: "sorted xs = (\i j. i < j \ j < length xs \ xs ! i \ xs ! j)" by (simp add: sorted_sorted_wrt sorted_wrt_iff_nth_less) lemma sorted_iff_nth_mono: "sorted xs = (\i j. i \ j \ j < length xs \ xs ! i \ xs ! j)" by (auto simp: sorted_iff_nth_mono_less nat_less_le) lemma sorted_nth_mono: "sorted xs \ i \ j \ j < length xs \ xs!i \ xs!j" by (auto simp: sorted_iff_nth_mono) lemma sorted_iff_nth_Suc: "sorted xs \ (\i. Suc i < length xs \ xs!i \ xs!(Suc i))" by(simp add: sorted_sorted_wrt sorted_wrt_iff_nth_Suc_transp) lemma sorted_rev_nth_mono: "sorted (rev xs) \ i \ j \ j < length xs \ xs!j \ xs!i" using sorted_nth_mono[ of "rev xs" "length xs - j - 1" "length xs - i - 1"] rev_nth[of "length xs - i - 1" "xs"] rev_nth[of "length xs - j - 1" "xs"] by auto lemma sorted_rev_iff_nth_mono: "sorted (rev xs) \ (\ i j. i \ j \ j < length xs \ xs!j \ xs!i)" (is "?L = ?R") proof assume ?L thus ?R by (blast intro: sorted_rev_nth_mono) next assume ?R have "rev xs ! k \ rev xs ! l" if asms: "k \ l" "l < length(rev xs)" for k l proof - have "k < length xs" "l < length xs" "length xs - Suc l \ length xs - Suc k" "length xs - Suc k < length xs" using asms by auto thus "rev xs ! k \ rev xs ! l" using \?R\ \k \ l\ unfolding rev_nth[OF \k < length xs\] rev_nth[OF \l < length xs\] by blast qed thus ?L by (simp add: sorted_iff_nth_mono) qed lemma sorted_rev_iff_nth_Suc: "sorted (rev xs) \ (\i. Suc i < length xs \ xs!(Suc i) \ xs!i)" proof- interpret dual: linorder "(\x y. y \ x)" "(\x y. y < x)" using dual_linorder . show ?thesis using dual_linorder dual.sorted_iff_nth_Suc dual.sorted_iff_nth_mono unfolding sorted_rev_iff_nth_mono by simp qed lemma sorted_map_remove1: "sorted (map f xs) \ sorted (map f (remove1 x xs))" by (induct xs) (auto) lemma sorted_remove1: "sorted xs \ sorted (remove1 a xs)" using sorted_map_remove1 [of "\x. x"] by simp lemma sorted_butlast: assumes "xs \ []" and "sorted xs" shows "sorted (butlast xs)" proof - from \xs \ []\ obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto with \sorted xs\ show ?thesis by (simp add: sorted_append) qed lemma sorted_replicate [simp]: "sorted(replicate n x)" by(induction n) (auto) lemma sorted_remdups[simp]: "sorted xs \ sorted (remdups xs)" by (induct xs) (auto) lemma sorted_remdups_adj[simp]: "sorted xs \ sorted (remdups_adj xs)" by (induct xs rule: remdups_adj.induct, simp_all split: if_split_asm) lemma sorted_nths: "sorted xs \ sorted (nths xs I)" by(induction xs arbitrary: I)(auto simp: nths_Cons) lemma sorted_distinct_set_unique: assumes "sorted xs" "distinct xs" "sorted ys" "distinct ys" "set xs = set ys" shows "xs = ys" proof - from assms have 1: "length xs = length ys" by (auto dest!: distinct_card) from assms show ?thesis proof(induct rule:list_induct2[OF 1]) case 1 show ?case by simp next case (2 x xs y ys) then show ?case by (cases \x = y\) (auto simp add: insert_eq_iff) qed qed lemma map_sorted_distinct_set_unique: assumes "inj_on f (set xs \ set ys)" assumes "sorted (map f xs)" "distinct (map f xs)" "sorted (map f ys)" "distinct (map f ys)" assumes "set xs = set ys" shows "xs = ys" proof - from assms have "map f xs = map f ys" by (simp add: sorted_distinct_set_unique) with \inj_on f (set xs \ set ys)\ show "xs = ys" by (blast intro: map_inj_on) qed lemma assumes "sorted xs" shows sorted_take: "sorted (take n xs)" and sorted_drop: "sorted (drop n xs)" proof - from assms have "sorted (take n xs @ drop n xs)" by simp then show "sorted (take n xs)" and "sorted (drop n xs)" unfolding sorted_append by simp_all qed lemma sorted_dropWhile: "sorted xs \ sorted (dropWhile P xs)" by (auto dest: sorted_drop simp add: dropWhile_eq_drop) lemma sorted_takeWhile: "sorted xs \ sorted (takeWhile P xs)" by (subst takeWhile_eq_take) (auto dest: sorted_take) lemma sorted_filter: "sorted (map f xs) \ sorted (map f (filter P xs))" by (induct xs) simp_all lemma foldr_max_sorted: assumes "sorted (rev xs)" shows "foldr max xs y = (if xs = [] then y else max (xs ! 0) y)" using assms proof (induct xs) case (Cons x xs) then have "sorted (rev xs)" using sorted_append by auto with Cons show ?case by (cases xs) (auto simp add: sorted_append max_def) qed simp lemma filter_equals_takeWhile_sorted_rev: assumes sorted: "sorted (rev (map f xs))" shows "filter (\x. t < f x) xs = takeWhile (\ x. t < f x) xs" (is "filter ?P xs = ?tW") proof (rule takeWhile_eq_filter[symmetric]) let "?dW" = "dropWhile ?P xs" fix x assume "x \ set ?dW" then obtain i where i: "i < length ?dW" and nth_i: "x = ?dW ! i" unfolding in_set_conv_nth by auto hence "length ?tW + i < length (?tW @ ?dW)" unfolding length_append by simp hence i': "length (map f ?tW) + i < length (map f xs)" by simp have "(map f ?tW @ map f ?dW) ! (length (map f ?tW) + i) \ (map f ?tW @ map f ?dW) ! (length (map f ?tW) + 0)" using sorted_rev_nth_mono[OF sorted _ i', of "length ?tW"] unfolding map_append[symmetric] by simp hence "f x \ f (?dW ! 0)" unfolding nth_append_length_plus nth_i using i preorder_class.le_less_trans[OF le0 i] by simp also have "... \ t" using hd_dropWhile[of "?P" xs] le0[THEN preorder_class.le_less_trans, OF i] using hd_conv_nth[of "?dW"] by simp finally show "\ t < f x" by simp qed lemma sorted_map_same: "sorted (map f (filter (\x. f x = g xs) xs))" proof (induct xs arbitrary: g) case Nil then show ?case by simp next case (Cons x xs) then have "sorted (map f (filter (\y. f y = (\xs. f x) xs) xs))" . moreover from Cons have "sorted (map f (filter (\y. f y = (g \ Cons x) xs) xs))" . ultimately show ?case by simp_all qed lemma sorted_same: "sorted (filter (\x. x = g xs) xs)" using sorted_map_same [of "\x. x"] by simp end lemma sorted_upt[simp]: "sorted [m..Sorting functions\ text\Currently it is not shown that \<^const>\sort\ returns a permutation of its input because the nicest proof is via multisets, which are not part of Main. Alternatively one could define a function that counts the number of occurrences of an element in a list and use that instead of multisets to state the correctness property.\ context linorder begin lemma set_insort_key: "set (insort_key f x xs) = insert x (set xs)" by (induct xs) auto lemma length_insort [simp]: "length (insort_key f x xs) = Suc (length xs)" by (induct xs) simp_all lemma insort_key_left_comm: assumes "f x \ f y" shows "insort_key f y (insort_key f x xs) = insort_key f x (insort_key f y xs)" by (induct xs) (auto simp add: assms dest: order.antisym) lemma insort_left_comm: "insort x (insort y xs) = insort y (insort x xs)" by (cases "x = y") (auto intro: insort_key_left_comm) lemma comp_fun_commute_insort: "comp_fun_commute insort" proof qed (simp add: insort_left_comm fun_eq_iff) lemma sort_key_simps [simp]: "sort_key f [] = []" "sort_key f (x#xs) = insort_key f x (sort_key f xs)" by (simp_all add: sort_key_def) lemma sort_key_conv_fold: assumes "inj_on f (set xs)" shows "sort_key f xs = fold (insort_key f) xs []" proof - have "fold (insort_key f) (rev xs) = fold (insort_key f) xs" proof (rule fold_rev, rule ext) fix zs fix x y assume "x \ set xs" "y \ set xs" with assms have *: "f y = f x \ y = x" by (auto dest: inj_onD) have **: "x = y \ y = x" by auto show "(insort_key f y \ insort_key f x) zs = (insort_key f x \ insort_key f y) zs" by (induct zs) (auto intro: * simp add: **) qed then show ?thesis by (simp add: sort_key_def foldr_conv_fold) qed lemma sort_conv_fold: "sort xs = fold insort xs []" by (rule sort_key_conv_fold) simp lemma length_sort[simp]: "length (sort_key f xs) = length xs" by (induct xs, auto) lemma set_sort[simp]: "set(sort_key f xs) = set xs" by (induct xs) (simp_all add: set_insort_key) lemma distinct_insort: "distinct (insort_key f x xs) = (x \ set xs \ distinct xs)" by(induct xs)(auto simp: set_insort_key) lemma distinct_sort[simp]: "distinct (sort_key f xs) = distinct xs" by (induct xs) (simp_all add: distinct_insort) lemma sorted_insort_key: "sorted (map f (insort_key f x xs)) = sorted (map f xs)" by (induct xs) (auto simp: set_insort_key) lemma sorted_insort: "sorted (insort x xs) = sorted xs" using sorted_insort_key [where f="\x. x"] by simp theorem sorted_sort_key [simp]: "sorted (map f (sort_key f xs))" by (induct xs) (auto simp:sorted_insort_key) theorem sorted_sort [simp]: "sorted (sort xs)" using sorted_sort_key [where f="\x. x"] by simp lemma insort_not_Nil [simp]: "insort_key f a xs \ []" by (induction xs) simp_all lemma insort_is_Cons: "\x\set xs. f a \ f x \ insort_key f a xs = a # xs" by (cases xs) auto lemma sorted_sort_id: "sorted xs \ sort xs = xs" by (induct xs) (auto simp add: insort_is_Cons) lemma insort_key_remove1: assumes "a \ set xs" and "sorted (map f xs)" and "hd (filter (\x. f a = f x) xs) = a" shows "insort_key f a (remove1 a xs) = xs" using assms proof (induct xs) case (Cons x xs) then show ?case proof (cases "x = a") case False then have "f x \ f a" using Cons.prems by auto then have "f x < f a" using Cons.prems by auto with \f x \ f a\ show ?thesis using Cons by (auto simp: insort_is_Cons) qed (auto simp: insort_is_Cons) qed simp lemma insort_remove1: assumes "a \ set xs" and "sorted xs" shows "insort a (remove1 a xs) = xs" proof (rule insort_key_remove1) define n where "n = length (filter ((=) a) xs) - 1" from \a \ set xs\ show "a \ set xs" . from \sorted xs\ show "sorted (map (\x. x) xs)" by simp from \a \ set xs\ have "a \ set (filter ((=) a) xs)" by auto then have "set (filter ((=) a) xs) \ {}" by auto then have "filter ((=) a) xs \ []" by (auto simp only: set_empty) then have "length (filter ((=) a) xs) > 0" by simp then have n: "Suc n = length (filter ((=) a) xs)" by (simp add: n_def) moreover have "replicate (Suc n) a = a # replicate n a" by simp ultimately show "hd (filter ((=) a) xs) = a" by (simp add: replicate_length_filter) qed lemma finite_sorted_distinct_unique: assumes "finite A" shows "\!xs. set xs = A \ sorted xs \ distinct xs" proof - obtain xs where "distinct xs" "A = set xs" using finite_distinct_list [OF assms] by metis then show ?thesis by (rule_tac a="sort xs" in ex1I) (auto simp: sorted_distinct_set_unique) qed lemma insort_insert_key_triv: "f x \ f ` set xs \ insort_insert_key f x xs = xs" by (simp add: insort_insert_key_def) lemma insort_insert_triv: "x \ set xs \ insort_insert x xs = xs" using insort_insert_key_triv [of "\x. x"] by simp lemma insort_insert_insort_key: "f x \ f ` set xs \ insort_insert_key f x xs = insort_key f x xs" by (simp add: insort_insert_key_def) lemma insort_insert_insort: "x \ set xs \ insort_insert x xs = insort x xs" using insort_insert_insort_key [of "\x. x"] by simp lemma set_insort_insert: "set (insort_insert x xs) = insert x (set xs)" by (auto simp add: insort_insert_key_def set_insort_key) lemma distinct_insort_insert: assumes "distinct xs" shows "distinct (insort_insert_key f x xs)" using assms by (induct xs) (auto simp add: insort_insert_key_def set_insort_key) lemma sorted_insort_insert_key: assumes "sorted (map f xs)" shows "sorted (map f (insort_insert_key f x xs))" using assms by (simp add: insort_insert_key_def sorted_insort_key) lemma sorted_insort_insert: assumes "sorted xs" shows "sorted (insort_insert x xs)" using assms sorted_insort_insert_key [of "\x. x"] by simp lemma filter_insort_triv: "\ P x \ filter P (insort_key f x xs) = filter P xs" by (induct xs) simp_all lemma filter_insort: "sorted (map f xs) \ P x \ filter P (insort_key f x xs) = insort_key f x (filter P xs)" by (induct xs) (auto, subst insort_is_Cons, auto) lemma filter_sort: "filter P (sort_key f xs) = sort_key f (filter P xs)" by (induct xs) (simp_all add: filter_insort_triv filter_insort) lemma remove1_insort [simp]: "remove1 x (insort x xs) = xs" by (induct xs) simp_all end lemma sort_upt [simp]: "sort [m.. \x \ set xs. P x \ List.find P xs = Some (Min {x\set xs. P x})" proof (induct xs) case Nil then show ?case by simp next case (Cons x xs) show ?case proof (cases "P x") case True with Cons show ?thesis by (auto intro: Min_eqI [symmetric]) next case False then have "{y. (y = x \ y \ set xs) \ P y} = {y \ set xs. P y}" by auto with Cons False show ?thesis by (simp_all) qed qed lemma sorted_enumerate [simp]: "sorted (map fst (enumerate n xs))" by (simp add: enumerate_eq_zip) text \Stability of \<^const>\sort_key\:\ lemma sort_key_stable: "filter (\y. f y = k) (sort_key f xs) = filter (\y. f y = k) xs" by (induction xs) (auto simp: filter_insort insort_is_Cons filter_insort_triv) corollary stable_sort_key_sort_key: "stable_sort_key sort_key" by(simp add: stable_sort_key_def sort_key_stable) lemma sort_key_const: "sort_key (\x. c) xs = xs" by (metis (mono_tags) filter_True sort_key_stable) subsubsection \\<^const>\transpose\ on sorted lists\ lemma sorted_transpose[simp]: "sorted (rev (map length (transpose xs)))" by (auto simp: sorted_iff_nth_mono rev_nth nth_transpose length_filter_conv_card intro: card_mono) lemma transpose_max_length: "foldr (\xs. max (length xs)) (transpose xs) 0 = length (filter (\x. x \ []) xs)" (is "?L = ?R") proof (cases "transpose xs = []") case False have "?L = foldr max (map length (transpose xs)) 0" by (simp add: foldr_map comp_def) also have "... = length (transpose xs ! 0)" using False sorted_transpose by (simp add: foldr_max_sorted) finally show ?thesis using False by (simp add: nth_transpose) next case True hence "filter (\x. x \ []) xs = []" by (auto intro!: filter_False simp: transpose_empty) thus ?thesis by (simp add: transpose_empty True) qed lemma length_transpose_sorted: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" shows "length (transpose xs) = (if xs = [] then 0 else length (xs ! 0))" proof (cases "xs = []") case False thus ?thesis using foldr_max_sorted[OF sorted] False unfolding length_transpose foldr_map comp_def by simp qed simp lemma nth_nth_transpose_sorted[simp]: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" and i: "i < length (transpose xs)" and j: "j < length (filter (\ys. i < length ys) xs)" shows "transpose xs ! i ! j = xs ! j ! i" using j filter_equals_takeWhile_sorted_rev[OF sorted, of i] nth_transpose[OF i] nth_map[OF j] by (simp add: takeWhile_nth) lemma transpose_column_length: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" and "i < length xs" shows "length (filter (\ys. i < length ys) (transpose xs)) = length (xs ! i)" proof - have "xs \ []" using \i < length xs\ by auto note filter_equals_takeWhile_sorted_rev[OF sorted, simp] { fix j assume "j \ i" note sorted_rev_nth_mono[OF sorted, of j i, simplified, OF this \i < length xs\] } note sortedE = this[consumes 1] have "{j. j < length (transpose xs) \ i < length (transpose xs ! j)} = {..< length (xs ! i)}" proof safe fix j assume "j < length (transpose xs)" and "i < length (transpose xs ! j)" with this(2) nth_transpose[OF this(1)] have "i < length (takeWhile (\ys. j < length ys) xs)" by simp from nth_mem[OF this] takeWhile_nth[OF this] show "j < length (xs ! i)" by (auto dest: set_takeWhileD) next fix j assume "j < length (xs ! i)" thus "j < length (transpose xs)" using foldr_max_sorted[OF sorted] \xs \ []\ sortedE[OF le0] by (auto simp: length_transpose comp_def foldr_map) have "Suc i \ length (takeWhile (\ys. j < length ys) xs)" using \i < length xs\ \j < length (xs ! i)\ less_Suc_eq_le by (auto intro!: length_takeWhile_less_P_nth dest!: sortedE) with nth_transpose[OF \j < length (transpose xs)\] show "i < length (transpose xs ! j)" by simp qed thus ?thesis by (simp add: length_filter_conv_card) qed lemma transpose_column: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" and "i < length xs" shows "map (\ys. ys ! i) (filter (\ys. i < length ys) (transpose xs)) = xs ! i" (is "?R = _") proof (rule nth_equalityI) show length: "length ?R = length (xs ! i)" using transpose_column_length[OF assms] by simp fix j assume j: "j < length ?R" note * = less_le_trans[OF this, unfolded length_map, OF length_filter_le] from j have j_less: "j < length (xs ! i)" using length by simp have i_less_tW: "Suc i \ length (takeWhile (\ys. Suc j \ length ys) xs)" proof (rule length_takeWhile_less_P_nth) show "Suc i \ length xs" using \i < length xs\ by simp fix k assume "k < Suc i" hence "k \ i" by auto with sorted_rev_nth_mono[OF sorted this] \i < length xs\ have "length (xs ! i) \ length (xs ! k)" by simp thus "Suc j \ length (xs ! k)" using j_less by simp qed have i_less_filter: "i < length (filter (\ys. j < length ys) xs) " unfolding filter_equals_takeWhile_sorted_rev[OF sorted, of j] using i_less_tW by (simp_all add: Suc_le_eq) from j show "?R ! j = xs ! i ! j" unfolding filter_equals_takeWhile_sorted_rev[OF sorted_transpose, of i] by (simp add: takeWhile_nth nth_nth_transpose_sorted[OF sorted * i_less_filter]) qed lemma transpose_transpose: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" shows "transpose (transpose xs) = takeWhile (\x. x \ []) xs" (is "?L = ?R") proof - have len: "length ?L = length ?R" unfolding length_transpose transpose_max_length using filter_equals_takeWhile_sorted_rev[OF sorted, of 0] by simp { fix i assume "i < length ?R" with less_le_trans[OF _ length_takeWhile_le[of _ xs]] have "i < length xs" by simp } note * = this show ?thesis by (rule nth_equalityI) (simp_all add: len nth_transpose transpose_column[OF sorted] * takeWhile_nth) qed theorem transpose_rectangle: assumes "xs = [] \ n = 0" assumes rect: "\ i. i < length xs \ length (xs ! i) = n" shows "transpose xs = map (\ i. map (\ j. xs ! j ! i) [0..ys. i < length ys) xs = xs" using rect by (auto simp: in_set_conv_nth intro!: filter_True) } ultimately show "\i. i < length (transpose xs) \ ?trans ! i = ?map ! i" by (auto simp: nth_transpose intro: nth_equalityI) qed subsubsection \\sorted_list_of_set\\ text\This function maps (finite) linearly ordered sets to sorted lists. Warning: in most cases it is not a good idea to convert from sets to lists but one should convert in the other direction (via \<^const>\set\).\ context linorder begin definition sorted_list_of_set :: "'a set \ 'a list" where "sorted_list_of_set = folding.F insort []" sublocale sorted_list_of_set: folding insort Nil rewrites "folding.F insort [] = sorted_list_of_set" proof - interpret comp_fun_commute insort by (fact comp_fun_commute_insort) show "folding insort" by standard (fact comp_fun_commute) show "folding.F insort [] = sorted_list_of_set" by (simp only: sorted_list_of_set_def) qed lemma sorted_list_of_set_empty: "sorted_list_of_set {} = []" by (fact sorted_list_of_set.empty) lemma sorted_list_of_set_insert [simp]: "finite A \ sorted_list_of_set (insert x A) = insort x (sorted_list_of_set (A - {x}))" by (fact sorted_list_of_set.insert_remove) lemma sorted_list_of_set_eq_Nil_iff [simp]: "finite A \ sorted_list_of_set A = [] \ A = {}" by (auto simp: sorted_list_of_set.remove) lemma set_sorted_list_of_set [simp]: "finite A \ set (sorted_list_of_set A) = A" by(induct A rule: finite_induct) (simp_all add: set_insort_key) lemma sorted_sorted_list_of_set [simp]: "sorted (sorted_list_of_set A)" proof (cases "finite A") case True thus ?thesis by(induction A) (simp_all add: sorted_insort) next case False thus ?thesis by simp qed lemma distinct_sorted_list_of_set [simp]: "distinct (sorted_list_of_set A)" proof (cases "finite A") case True thus ?thesis by(induction A) (simp_all add: distinct_insort) next case False thus ?thesis by simp qed lemma length_sorted_list_of_set [simp]: "length (sorted_list_of_set A) = card A" proof (cases "finite A") case True then show ?thesis by(metis distinct_card distinct_sorted_list_of_set set_sorted_list_of_set) qed auto lemmas sorted_list_of_set = set_sorted_list_of_set sorted_sorted_list_of_set distinct_sorted_list_of_set lemma sorted_list_of_set_sort_remdups [code]: "sorted_list_of_set (set xs) = sort (remdups xs)" proof - interpret comp_fun_commute insort by (fact comp_fun_commute_insort) show ?thesis by (simp add: sorted_list_of_set.eq_fold sort_conv_fold fold_set_fold_remdups) qed lemma sorted_list_of_set_remove: assumes "finite A" shows "sorted_list_of_set (A - {x}) = remove1 x (sorted_list_of_set A)" proof (cases "x \ A") case False with assms have "x \ set (sorted_list_of_set A)" by simp with False show ?thesis by (simp add: remove1_idem) next case True then obtain B where A: "A = insert x B" by (rule Set.set_insert) with assms show ?thesis by simp qed lemma strict_sorted_list_of_set [simp]: "strict_sorted (sorted_list_of_set A)" by (simp add: strict_sorted_iff) lemma finite_set_strict_sorted: assumes "finite A" obtains l where "strict_sorted l" "set l = A" "length l = card A" by (metis assms distinct_card distinct_sorted_list_of_set set_sorted_list_of_set strict_sorted_list_of_set) lemma strict_sorted_equal: assumes "strict_sorted xs" and "strict_sorted ys" and "set ys = set xs" shows "ys = xs" using assms proof (induction xs arbitrary: ys) case (Cons x xs) show ?case proof (cases ys) case Nil then show ?thesis using Cons.prems by auto next case (Cons y ys') then have "xs = ys'" by (metis Cons.prems list.inject sorted_distinct_set_unique strict_sorted_iff) moreover have "x = y" using Cons.prems \xs = ys'\ local.Cons by fastforce ultimately show ?thesis using local.Cons by blast qed qed auto lemma strict_sorted_equal_Uniq: "\\<^sub>\\<^sub>1xs. strict_sorted xs \ set xs = A" by (simp add: Uniq_def strict_sorted_equal) lemma sorted_list_of_set_inject: assumes "sorted_list_of_set A = sorted_list_of_set B" "finite A" "finite B" shows "A = B" using assms set_sorted_list_of_set by fastforce lemma sorted_list_of_set_unique: assumes "finite A" shows "strict_sorted l \ set l = A \ length l = card A \ sorted_list_of_set A = l" using assms strict_sorted_equal by force end lemma sorted_list_of_set_range [simp]: "sorted_list_of_set {m.. {}" shows "sorted_list_of_set A = Min A # sorted_list_of_set (A - {Min A})" using assms by (auto simp: less_le simp flip: sorted_list_of_set_unique intro: Min_in) lemma sorted_list_of_set_greaterThanLessThan: assumes "Suc i < j" shows "sorted_list_of_set {i<.. j" shows "sorted_list_of_set {i<..j} = Suc i # sorted_list_of_set {Suc i<..j}" using sorted_list_of_set_greaterThanLessThan [of i "Suc j"] by (metis assms greaterThanAtMost_def greaterThanLessThan_eq le_imp_less_Suc lessThan_Suc_atMost) lemma nth_sorted_list_of_set_greaterThanLessThan: "n < j - Suc i \ sorted_list_of_set {i<.. sorted_list_of_set {i<..j} ! n = Suc (i+n)" using nth_sorted_list_of_set_greaterThanLessThan [of n "Suc j" i] by (simp add: greaterThanAtMost_def greaterThanLessThan_eq lessThan_Suc_atMost) subsubsection \\lists\: the list-forming operator over sets\ inductive_set lists :: "'a set => 'a list set" for A :: "'a set" where Nil [intro!, simp]: "[] \ lists A" | Cons [intro!, simp]: "\a \ A; l \ lists A\ \ a#l \ lists A" inductive_cases listsE [elim!]: "x#l \ lists A" inductive_cases listspE [elim!]: "listsp A (x # l)" inductive_simps listsp_simps[code]: "listsp A []" "listsp A (x # xs)" lemma listsp_mono [mono]: "A \ B \ listsp A \ listsp B" by (rule predicate1I, erule listsp.induct, blast+) lemmas lists_mono = listsp_mono [to_set] lemma listsp_infI: assumes l: "listsp A l" shows "listsp B l \ listsp (inf A B) l" using l by induct blast+ lemmas lists_IntI = listsp_infI [to_set] lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)" proof (rule mono_inf [where f=listsp, THEN order_antisym]) show "mono listsp" by (simp add: mono_def listsp_mono) show "inf (listsp A) (listsp B) \ listsp (inf A B)" by (blast intro!: listsp_infI) qed lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_def inf_bool_def] lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set] lemma Cons_in_lists_iff[simp]: "x#xs \ lists A \ x \ A \ xs \ lists A" by auto lemma append_in_listsp_conv [iff]: "(listsp A (xs @ ys)) = (listsp A xs \ listsp A ys)" by (induct xs) auto lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set] lemma in_listsp_conv_set: "(listsp A xs) = (\x \ set xs. A x)" \ \eliminate \listsp\ in favour of \set\\ by (induct xs) auto lemmas in_lists_conv_set [code_unfold] = in_listsp_conv_set [to_set] lemma in_listspD [dest!]: "listsp A xs \ \x\set xs. A x" by (rule in_listsp_conv_set [THEN iffD1]) lemmas in_listsD [dest!] = in_listspD [to_set] lemma in_listspI [intro!]: "\x\set xs. A x \ listsp A xs" by (rule in_listsp_conv_set [THEN iffD2]) lemmas in_listsI [intro!] = in_listspI [to_set] lemma lists_eq_set: "lists A = {xs. set xs \ A}" by auto lemma lists_empty [simp]: "lists {} = {[]}" by auto lemma lists_UNIV [simp]: "lists UNIV = UNIV" by auto lemma lists_image: "lists (f`A) = map f ` lists A" proof - { fix xs have "\x\set xs. x \ f ` A \ xs \ map f ` lists A" by (induct xs) (auto simp del: list.map simp add: list.map[symmetric] intro!: imageI) } then show ?thesis by auto qed subsubsection \Inductive definition for membership\ inductive ListMem :: "'a \ 'a list \ bool" where elem: "ListMem x (x # xs)" | insert: "ListMem x xs \ ListMem x (y # xs)" lemma ListMem_iff: "(ListMem x xs) = (x \ set xs)" proof show "ListMem x xs \ x \ set xs" by (induct set: ListMem) auto show "x \ set xs \ ListMem x xs" by (induct xs) (auto intro: ListMem.intros) qed subsubsection \Lists as Cartesian products\ text\\set_Cons A Xs\: the set of lists with head drawn from \<^term>\A\ and tail drawn from \<^term>\Xs\.\ definition set_Cons :: "'a set \ 'a list set \ 'a list set" where "set_Cons A XS = {z. \x xs. z = x # xs \ x \ A \ xs \ XS}" lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A" by (auto simp add: set_Cons_def) text\Yields the set of lists, all of the same length as the argument and with elements drawn from the corresponding element of the argument.\ primrec listset :: "'a set list \ 'a list set" where "listset [] = {[]}" | "listset (A # As) = set_Cons A (listset As)" subsection \Relations on Lists\ subsubsection \Length Lexicographic Ordering\ text\These orderings preserve well-foundedness: shorter lists precede longer lists. These ordering are not used in dictionaries.\ primrec \ \The lexicographic ordering for lists of the specified length\ lexn :: "('a \ 'a) set \ nat \ ('a list \ 'a list) set" where "lexn r 0 = {}" | "lexn r (Suc n) = (map_prod (%(x, xs). x#xs) (%(x, xs). x#xs) ` (r <*lex*> lexn r n)) Int {(xs, ys). length xs = Suc n \ length ys = Suc n}" definition lex :: "('a \ 'a) set \ ('a list \ 'a list) set" where "lex r = (\n. lexn r n)" \ \Holds only between lists of the same length\ definition lenlex :: "('a \ 'a) set => ('a list \ 'a list) set" where "lenlex r = inv_image (less_than <*lex*> lex r) (\xs. (length xs, xs))" \ \Compares lists by their length and then lexicographically\ lemma wf_lexn: assumes "wf r" shows "wf (lexn r n)" proof (induct n) case (Suc n) have inj: "inj (\(x, xs). x # xs)" using assms by (auto simp: inj_on_def) have wf: "wf (map_prod (\(x, xs). x # xs) (\(x, xs). x # xs) ` (r <*lex*> lexn r n))" by (simp add: Suc.hyps assms wf_lex_prod wf_map_prod_image [OF _ inj]) then show ?case by (rule wf_subset) auto qed auto lemma lexn_length: "(xs, ys) \ lexn r n \ length xs = n \ length ys = n" by (induct n arbitrary: xs ys) auto lemma wf_lex [intro!]: assumes "wf r" shows "wf (lex r)" unfolding lex_def proof (rule wf_UN) show "wf (lexn r i)" for i by (simp add: assms wf_lexn) show "\i j. lexn r i \ lexn r j \ Domain (lexn r i) \ Range (lexn r j) = {}" by (metis DomainE Int_emptyI RangeE lexn_length) qed lemma lexn_conv: "lexn r n = {(xs,ys). length xs = n \ length ys = n \ (\xys x y xs' ys'. xs= xys @ x#xs' \ ys= xys @ y # ys' \ (x, y) \ r)}" proof (induction n) case (Suc n) then show ?case apply (simp add: image_Collect lex_prod_def, safe, blast) apply (rule_tac x = "ab # xys" in exI, simp) apply (case_tac xys; force) done qed auto text\By Mathias Fleury:\ proposition lexn_transI: assumes "trans r" shows "trans (lexn r n)" unfolding trans_def proof (intro allI impI) fix as bs cs assume asbs: "(as, bs) \ lexn r n" and bscs: "(bs, cs) \ lexn r n" obtain abs a b as' bs' where n: "length as = n" and "length bs = n" and as: "as = abs @ a # as'" and bs: "bs = abs @ b # bs'" and abr: "(a, b) \ r" using asbs unfolding lexn_conv by blast obtain bcs b' c' cs' bs' where n': "length cs = n" and "length bs = n" and bs': "bs = bcs @ b' # bs'" and cs: "cs = bcs @ c' # cs'" and b'c'r: "(b', c') \ r" using bscs unfolding lexn_conv by blast consider (le) "length bcs < length abs" | (eq) "length bcs = length abs" | (ge) "length bcs > length abs" by linarith thus "(as, cs) \ lexn r n" proof cases let ?k = "length bcs" case le hence "as ! ?k = bs ! ?k" unfolding as bs by (simp add: nth_append) hence "(as ! ?k, cs ! ?k) \ r" using b'c'r unfolding bs' cs by auto moreover have "length bcs < length as" using le unfolding as by simp from id_take_nth_drop[OF this] have "as = take ?k as @ as ! ?k # drop (Suc ?k) as" . moreover have "length bcs < length cs" unfolding cs by simp from id_take_nth_drop[OF this] have "cs = take ?k cs @ cs ! ?k # drop (Suc ?k) cs" . moreover have "take ?k as = take ?k cs" using le arg_cong[OF bs, of "take (length bcs)"] unfolding cs as bs' by auto ultimately show ?thesis using n n' unfolding lexn_conv by auto next let ?k = "length abs" case ge hence "bs ! ?k = cs ! ?k" unfolding bs' cs by (simp add: nth_append) hence "(as ! ?k, cs ! ?k) \ r" using abr unfolding as bs by auto moreover have "length abs < length as" using ge unfolding as by simp from id_take_nth_drop[OF this] have "as = take ?k as @ as ! ?k # drop (Suc ?k) as" . moreover have "length abs < length cs" using n n' unfolding as by simp from id_take_nth_drop[OF this] have "cs = take ?k cs @ cs ! ?k # drop (Suc ?k) cs" . moreover have "take ?k as = take ?k cs" using ge arg_cong[OF bs', of "take (length abs)"] unfolding cs as bs by auto ultimately show ?thesis using n n' unfolding lexn_conv by auto next let ?k = "length abs" case eq hence *: "abs = bcs" "b = b'" using bs bs' by auto hence "(a, c') \ r" using abr b'c'r assms unfolding trans_def by blast with * show ?thesis using n n' unfolding lexn_conv as bs cs by auto qed qed corollary lex_transI: assumes "trans r" shows "trans (lex r)" using lexn_transI [OF assms] by (clarsimp simp add: lex_def trans_def) (metis lexn_length) lemma lex_conv: "lex r = {(xs,ys). length xs = length ys \ (\xys x y xs' ys'. xs = xys @ x # xs' \ ys = xys @ y # ys' \ (x, y) \ r)}" by (force simp add: lex_def lexn_conv) lemma wf_lenlex [intro!]: "wf r \ wf (lenlex r)" by (unfold lenlex_def) blast lemma lenlex_conv: "lenlex r = {(xs,ys). length xs < length ys \ length xs = length ys \ (xs, ys) \ lex r}" by (auto simp add: lenlex_def Id_on_def lex_prod_def inv_image_def) lemma total_lenlex: assumes "total r" shows "total (lenlex r)" proof - have "(xs,ys) \ lexn r (length xs) \ (ys,xs) \ lexn r (length xs)" if "xs \ ys" and len: "length xs = length ys" for xs ys proof - obtain pre x xs' y ys' where "x\y" and xs: "xs = pre @ [x] @ xs'" and ys: "ys = pre @ [y] @ys'" by (meson len \xs \ ys\ same_length_different) then consider "(x,y) \ r" | "(y,x) \ r" by (meson UNIV_I assms total_on_def) then show ?thesis by cases (use len in \(force simp add: lexn_conv xs ys)+\) qed then show ?thesis by (fastforce simp: lenlex_def total_on_def lex_def) qed lemma lenlex_transI [intro]: "trans r \ trans (lenlex r)" unfolding lenlex_def by (meson lex_transI trans_inv_image trans_less_than trans_lex_prod) lemma Nil_notin_lex [iff]: "([], ys) \ lex r" by (simp add: lex_conv) lemma Nil2_notin_lex [iff]: "(xs, []) \ lex r" by (simp add:lex_conv) lemma Cons_in_lex [simp]: "(x # xs, y # ys) \ lex r \ (x, y) \ r \ length xs = length ys \ x = y \ (xs, ys) \ lex r" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs by (simp add: lex_conv) (metis hd_append list.sel(1) list.sel(3) tl_append2) next assume ?rhs then show ?lhs by (simp add: lex_conv) (blast intro: Cons_eq_appendI) qed lemma Nil_lenlex_iff1 [simp]: "([], ns) \ lenlex r \ ns \ []" and Nil_lenlex_iff2 [simp]: "(ns,[]) \ lenlex r" by (auto simp: lenlex_def) lemma Cons_lenlex_iff: "((m # ms, n # ns) \ lenlex r) \ length ms < length ns \ length ms = length ns \ (m,n) \ r \ (m = n \ (ms,ns) \ lenlex r)" by (auto simp: lenlex_def) lemma lenlex_irreflexive: "(\x. (x,x) \ r) \ (xs,xs) \ lenlex r" by (induction xs) (auto simp add: Cons_lenlex_iff) lemma lenlex_trans: "\(x,y) \ lenlex r; (y,z) \ lenlex r; trans r\ \ (x,z) \ lenlex r" by (meson lenlex_transI transD) lemma lenlex_length: "(ms, ns) \ lenlex r \ length ms \ length ns" by (auto simp: lenlex_def) lemma lex_append_rightI: "(xs, ys) \ lex r \ length vs = length us \ (xs @ us, ys @ vs) \ lex r" by (fastforce simp: lex_def lexn_conv) lemma lex_append_leftI: "(ys, zs) \ lex r \ (xs @ ys, xs @ zs) \ lex r" by (induct xs) auto lemma lex_append_leftD: "\x. (x,x) \ r \ (xs @ ys, xs @ zs) \ lex r \ (ys, zs) \ lex r" by (induct xs) auto lemma lex_append_left_iff: "\x. (x,x) \ r \ (xs @ ys, xs @ zs) \ lex r \ (ys, zs) \ lex r" by(metis lex_append_leftD lex_append_leftI) lemma lex_take_index: assumes "(xs, ys) \ lex r" obtains i where "i < length xs" and "i < length ys" and "take i xs = take i ys" and "(xs ! i, ys ! i) \ r" proof - obtain n us x xs' y ys' where "(xs, ys) \ lexn r n" and "length xs = n" and "length ys = n" and "xs = us @ x # xs'" and "ys = us @ y # ys'" and "(x, y) \ r" using assms by (fastforce simp: lex_def lexn_conv) then show ?thesis by (intro that [of "length us"]) auto qed lemma irrefl_lex: "irrefl r \ irrefl (lex r)" by (meson irrefl_def lex_take_index) lemma lexl_not_refl [simp]: "irrefl r \ (x,x) \ lex r" by (meson irrefl_def lex_take_index) subsubsection \Lexicographic Ordering\ text \Classical lexicographic ordering on lists, ie. "a" < "ab" < "b". This ordering does \emph{not} preserve well-foundedness. Author: N. Voelker, March 2005.\ definition lexord :: "('a \ 'a) set \ ('a list \ 'a list) set" where "lexord r = {(x,y). \ a v. y = x @ a # v \ (\ u a b v w. (a,b) \ r \ x = u @ (a # v) \ y = u @ (b # w))}" lemma lexord_Nil_left[simp]: "([],y) \ lexord r = (\ a x. y = a # x)" by (unfold lexord_def, induct_tac y, auto) lemma lexord_Nil_right[simp]: "(x,[]) \ lexord r" by (unfold lexord_def, induct_tac x, auto) lemma lexord_cons_cons[simp]: "(a # x, b # y) \ lexord r \ (a,b)\ r \ (a = b \ (x,y)\ lexord r)" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs apply (simp add: lexord_def) apply (metis hd_append list.sel(1) list.sel(3) tl_append2) done qed (auto simp add: lexord_def; (blast | meson Cons_eq_appendI)) lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons lemma lexord_same_pref_iff: "(xs @ ys, xs @ zs) \ lexord r \ (\x \ set xs. (x,x) \ r) \ (ys, zs) \ lexord r" by(induction xs) auto lemma lexord_same_pref_if_irrefl[simp]: "irrefl r \ (xs @ ys, xs @ zs) \ lexord r \ (ys, zs) \ lexord r" by (simp add: irrefl_def lexord_same_pref_iff) lemma lexord_append_rightI: "\ b z. y = b # z \ (x, x @ y) \ lexord r" by (metis append_Nil2 lexord_Nil_left lexord_same_pref_iff) lemma lexord_append_left_rightI: "(a,b) \ r \ (u @ a # x, u @ b # y) \ lexord r" by (simp add: lexord_same_pref_iff) lemma lexord_append_leftI: "(u,v) \ lexord r \ (x @ u, x @ v) \ lexord r" by (simp add: lexord_same_pref_iff) lemma lexord_append_leftD: "\(x @ u, x @ v) \ lexord r; (\a. (a,a) \ r) \ \ (u,v) \ lexord r" by (simp add: lexord_same_pref_iff) lemma lexord_take_index_conv: "((x,y) \ lexord r) = ((length x < length y \ take (length x) y = x) \ (\i. i < min(length x)(length y) \ take i x = take i y \ (x!i,y!i) \ r))" proof - have "(\a v. y = x @ a # v) = (length x < length y \ take (length x) y = x)" by (metis Cons_nth_drop_Suc append_eq_conv_conj drop_all list.simps(3) not_le) moreover have "(\u a b. (a, b) \ r \ (\v. x = u @ a # v) \ (\w. y = u @ b # w)) = (\i take i x = take i y \ (x ! i, y ! i) \ r)" apply safe using less_iff_Suc_add apply auto[1] by (metis id_take_nth_drop) ultimately show ?thesis by (auto simp: lexord_def Let_def) qed \ \lexord is extension of partial ordering List.lex\ lemma lexord_lex: "(x,y) \ lex r = ((x,y) \ lexord r \ length x = length y)" proof (induction x arbitrary: y) case (Cons a x y) then show ?case by (cases y) (force+) qed auto lemma lexord_sufI: assumes "(u,w) \ lexord r" "length w \ length u" shows "(u@v,w@z) \ lexord r" proof- from leD[OF assms(2)] assms(1)[unfolded lexord_take_index_conv[of u w r] min_absorb2[OF assms(2)]] obtain i where "take i u = take i w" and "(u!i,w!i) \ r" and "i < length w" by blast hence "((u@v)!i, (w@z)!i) \ r" unfolding nth_append using less_le_trans[OF \i < length w\ assms(2)] \(u!i,w!i) \ r\ by presburger moreover have "i < min (length (u@v)) (length (w@z))" using assms(2) \i < length w\ by simp moreover have "take i (u@v) = take i (w@z)" using assms(2) \i < length w\ \take i u = take i w\ by simp ultimately show ?thesis using lexord_take_index_conv by blast qed lemma lexord_sufE: assumes "(xs@zs,ys@qs) \ lexord r" "xs \ ys" "length xs = length ys" "length zs = length qs" shows "(xs,ys) \ lexord r" proof- obtain i where "i < length (xs@zs)" and "i < length (ys@qs)" and "take i (xs@zs) = take i (ys@qs)" and "((xs@zs) ! i, (ys@qs) ! i) \ r" using assms(1) lex_take_index[unfolded lexord_lex,of "xs @ zs" "ys @ qs" r] length_append[of xs zs, unfolded assms(3,4), folded length_append[of ys qs]] by blast have "length (take i xs) = length (take i ys)" by (simp add: assms(3)) have "i < length xs" using assms(2,3) le_less_linear take_all[of xs i] take_all[of ys i] \take i (xs @ zs) = take i (ys @ qs)\ append_eq_append_conv take_append by metis hence "(xs ! i, ys ! i) \ r" using \((xs @ zs) ! i, (ys @ qs) ! i) \ r\ assms(3) by (simp add: nth_append) moreover have "take i xs = take i ys" using assms(3) \take i (xs @ zs) = take i (ys @ qs)\ by auto ultimately show ?thesis unfolding lexord_take_index_conv using \i < length xs\ assms(3) by fastforce qed lemma lexord_irreflexive: "\x. (x,x) \ r \ (xs,xs) \ lexord r" by (induct xs) auto text\By Ren\'e Thiemann:\ lemma lexord_partial_trans: "(\x y z. x \ set xs \ (x,y) \ r \ (y,z) \ r \ (x,z) \ r) \ (xs,ys) \ lexord r \ (ys,zs) \ lexord r \ (xs,zs) \ lexord r" proof (induct xs arbitrary: ys zs) case Nil from Nil(3) show ?case unfolding lexord_def by (cases zs, auto) next case (Cons x xs yys zzs) from Cons(3) obtain y ys where yys: "yys = y # ys" unfolding lexord_def by (cases yys, auto) note Cons = Cons[unfolded yys] from Cons(3) have one: "(x,y) \ r \ x = y \ (xs,ys) \ lexord r" by auto from Cons(4) obtain z zs where zzs: "zzs = z # zs" unfolding lexord_def by (cases zzs, auto) note Cons = Cons[unfolded zzs] from Cons(4) have two: "(y,z) \ r \ y = z \ (ys,zs) \ lexord r" by auto { assume "(xs,ys) \ lexord r" and "(ys,zs) \ lexord r" from Cons(1)[OF _ this] Cons(2) have "(xs,zs) \ lexord r" by auto } note ind1 = this { assume "(x,y) \ r" and "(y,z) \ r" from Cons(2)[OF _ this] have "(x,z) \ r" by auto } note ind2 = this from one two ind1 ind2 have "(x,z) \ r \ x = z \ (xs,zs) \ lexord r" by blast thus ?case unfolding zzs by auto qed lemma lexord_trans: "\ (x, y) \ lexord r; (y, z) \ lexord r; trans r \ \ (x, z) \ lexord r" by(auto simp: trans_def intro:lexord_partial_trans) lemma lexord_transI: "trans r \ trans (lexord r)" by (meson lexord_trans transI) lemma total_lexord: "total r \ total (lexord r)" unfolding total_on_def proof clarsimp fix x y assume "\x y. x \ y \ (x, y) \ r \ (y, x) \ r" and "(x::'a list) \ y" and "(y, x) \ lexord r" then show "(x, y) \ lexord r" proof (induction x arbitrary: y) case Nil then show ?case by (metis lexord_Nil_left list.exhaust) next case (Cons a x y) then show ?case by (cases y) (force+) qed qed corollary lexord_linear: "(\a b. (a,b) \ r \ a = b \ (b,a) \ r) \ (x,y) \ lexord r \ x = y \ (y,x) \ lexord r" using total_lexord by (metis UNIV_I total_on_def) lemma lexord_irrefl: "irrefl R \ irrefl (lexord R)" by (simp add: irrefl_def lexord_irreflexive) lemma lexord_asym: assumes "asym R" shows "asym (lexord R)" proof fix xs ys assume "(xs, ys) \ lexord R" then show "(ys, xs) \ lexord R" proof (induct xs arbitrary: ys) case Nil then show ?case by simp next case (Cons x xs) then obtain z zs where ys: "ys = z # zs" by (cases ys) auto with assms Cons show ?case by (auto elim: asym.cases) qed qed lemma lexord_asymmetric: assumes "asym R" assumes hyp: "(a, b) \ lexord R" shows "(b, a) \ lexord R" proof - from \asym R\ have "asym (lexord R)" by (rule lexord_asym) then show ?thesis by (rule asym.cases) (auto simp add: hyp) qed lemma asym_lex: "asym R \ asym (lex R)" by (meson asym.simps irrefl_lex lexord_asym lexord_lex) lemma asym_lenlex: "asym R \ asym (lenlex R)" by (simp add: lenlex_def asym_inv_image asym_less_than asym_lex asym_lex_prod) lemma lenlex_append1: assumes len: "(us,xs) \ lenlex R" and eq: "length vs = length ys" shows "(us @ vs, xs @ ys) \ lenlex R" using len proof (induction us) case Nil then show ?case by (simp add: lenlex_def eq) next case (Cons u us) with lex_append_rightI show ?case by (fastforce simp add: lenlex_def eq) qed lemma lenlex_append2 [simp]: assumes "irrefl R" shows "(us @ xs, us @ ys) \ lenlex R \ (xs, ys) \ lenlex R" proof (induction us) case Nil then show ?case by (simp add: lenlex_def) next case (Cons u us) with assms show ?case by (auto simp: lenlex_def irrefl_def) qed text \ Predicate version of lexicographic order integrated with Isabelle's order type classes. Author: Andreas Lochbihler \ context ord begin context notes [[inductive_internals]] begin inductive lexordp :: "'a list \ 'a list \ bool" where Nil: "lexordp [] (y # ys)" | Cons: "x < y \ lexordp (x # xs) (y # ys)" | Cons_eq: "\ \ x < y; \ y < x; lexordp xs ys \ \ lexordp (x # xs) (y # ys)" end lemma lexordp_simps [simp]: "lexordp [] ys = (ys \ [])" "lexordp xs [] = False" "lexordp (x # xs) (y # ys) \ x < y \ \ y < x \ lexordp xs ys" by(subst lexordp.simps, fastforce simp add: neq_Nil_conv)+ inductive lexordp_eq :: "'a list \ 'a list \ bool" where Nil: "lexordp_eq [] ys" | Cons: "x < y \ lexordp_eq (x # xs) (y # ys)" | Cons_eq: "\ \ x < y; \ y < x; lexordp_eq xs ys \ \ lexordp_eq (x # xs) (y # ys)" lemma lexordp_eq_simps [simp]: "lexordp_eq [] ys = True" "lexordp_eq xs [] \ xs = []" "lexordp_eq (x # xs) [] = False" "lexordp_eq (x # xs) (y # ys) \ x < y \ \ y < x \ lexordp_eq xs ys" by(subst lexordp_eq.simps, fastforce)+ lemma lexordp_append_rightI: "ys \ Nil \ lexordp xs (xs @ ys)" by(induct xs)(auto simp add: neq_Nil_conv) lemma lexordp_append_left_rightI: "x < y \ lexordp (us @ x # xs) (us @ y # ys)" by(induct us) auto lemma lexordp_eq_refl: "lexordp_eq xs xs" by(induct xs) simp_all lemma lexordp_append_leftI: "lexordp us vs \ lexordp (xs @ us) (xs @ vs)" by(induct xs) auto lemma lexordp_append_leftD: "\ lexordp (xs @ us) (xs @ vs); \a. \ a < a \ \ lexordp us vs" by(induct xs) auto lemma lexordp_irreflexive: assumes irrefl: "\x. \ x < x" shows "\ lexordp xs xs" proof assume "lexordp xs xs" thus False by(induct xs ys\xs)(simp_all add: irrefl) qed lemma lexordp_into_lexordp_eq: "lexordp xs ys \ lexordp_eq xs ys" by (induction rule: lexordp.induct) simp_all lemma lexordp_eq_pref: "lexordp_eq u (u @ v)" by (metis append_Nil2 lexordp_append_rightI lexordp_eq_refl lexordp_into_lexordp_eq) end declare ord.lexordp_simps [simp, code] declare ord.lexordp_eq_simps [code, simp] context order begin lemma lexordp_antisym: assumes "lexordp xs ys" "lexordp ys xs" shows False using assms by induct auto lemma lexordp_irreflexive': "\ lexordp xs xs" by(rule lexordp_irreflexive) simp end context linorder begin lemma lexordp_cases [consumes 1, case_names Nil Cons Cons_eq, cases pred: lexordp]: assumes "lexordp xs ys" obtains (Nil) y ys' where "xs = []" "ys = y # ys'" | (Cons) x xs' y ys' where "xs = x # xs'" "ys = y # ys'" "x < y" | (Cons_eq) x xs' ys' where "xs = x # xs'" "ys = x # ys'" "lexordp xs' ys'" using assms by cases (fastforce simp add: not_less_iff_gr_or_eq)+ lemma lexordp_induct [consumes 1, case_names Nil Cons Cons_eq, induct pred: lexordp]: assumes major: "lexordp xs ys" and Nil: "\y ys. P [] (y # ys)" and Cons: "\x xs y ys. x < y \ P (x # xs) (y # ys)" and Cons_eq: "\x xs ys. \ lexordp xs ys; P xs ys \ \ P (x # xs) (x # ys)" shows "P xs ys" using major by induct (simp_all add: Nil Cons not_less_iff_gr_or_eq Cons_eq) lemma lexordp_iff: "lexordp xs ys \ (\x vs. ys = xs @ x # vs) \ (\us a b vs ws. a < b \ xs = us @ a # vs \ ys = us @ b # ws)" (is "?lhs = ?rhs") proof assume ?lhs thus ?rhs proof induct case Cons_eq thus ?case by simp (metis append.simps(2)) qed(fastforce intro: disjI2 del: disjCI intro: exI[where x="[]"])+ next assume ?rhs thus ?lhs by(auto intro: lexordp_append_leftI[where us="[]", simplified] lexordp_append_leftI) qed lemma lexordp_conv_lexord: "lexordp xs ys \ (xs, ys) \ lexord {(x, y). x < y}" by(simp add: lexordp_iff lexord_def) lemma lexordp_eq_antisym: assumes "lexordp_eq xs ys" "lexordp_eq ys xs" shows "xs = ys" using assms by induct simp_all lemma lexordp_eq_trans: assumes "lexordp_eq xs ys" and "lexordp_eq ys zs" shows "lexordp_eq xs zs" using assms by (induct arbitrary: zs) (case_tac zs; auto)+ lemma lexordp_trans: assumes "lexordp xs ys" "lexordp ys zs" shows "lexordp xs zs" using assms by (induct arbitrary: zs) (case_tac zs; auto)+ lemma lexordp_linear: "lexordp xs ys \ xs = ys \ lexordp ys xs" by(induct xs arbitrary: ys; case_tac ys; fastforce) lemma lexordp_conv_lexordp_eq: "lexordp xs ys \ lexordp_eq xs ys \ \ lexordp_eq ys xs" (is "?lhs \ ?rhs") proof assume ?lhs hence "\ lexordp_eq ys xs" by induct simp_all with \?lhs\ show ?rhs by (simp add: lexordp_into_lexordp_eq) next assume ?rhs hence "lexordp_eq xs ys" "\ lexordp_eq ys xs" by simp_all thus ?lhs by induct simp_all qed lemma lexordp_eq_conv_lexord: "lexordp_eq xs ys \ xs = ys \ lexordp xs ys" by(auto simp add: lexordp_conv_lexordp_eq lexordp_eq_refl dest: lexordp_eq_antisym) lemma lexordp_eq_linear: "lexordp_eq xs ys \ lexordp_eq ys xs" by (induct xs arbitrary: ys) (case_tac ys; auto)+ lemma lexordp_linorder: "class.linorder lexordp_eq lexordp" by unfold_locales (auto simp add: lexordp_conv_lexordp_eq lexordp_eq_refl lexordp_eq_antisym intro: lexordp_eq_trans del: disjCI intro: lexordp_eq_linear) end lemma sorted_insort_is_snoc: "sorted xs \ \x \ set xs. a \ x \ insort a xs = xs @ [a]" by (induct xs) (auto dest!: insort_is_Cons) subsubsection \Lexicographic combination of measure functions\ text \These are useful for termination proofs\ definition "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)" lemma wf_measures[simp]: "wf (measures fs)" unfolding measures_def by blast lemma in_measures[simp]: "(x, y) \ measures [] = False" "(x, y) \ measures (f # fs) = (f x < f y \ (f x = f y \ (x, y) \ measures fs))" unfolding measures_def by auto lemma measures_less: "f x < f y \ (x, y) \ measures (f#fs)" by simp lemma measures_lesseq: "f x \ f y \ (x, y) \ measures fs \ (x, y) \ measures (f#fs)" by auto subsubsection \Lifting Relations to Lists: one element\ definition listrel1 :: "('a \ 'a) set \ ('a list \ 'a list) set" where "listrel1 r = {(xs,ys). \us z z' vs. xs = us @ z # vs \ (z,z') \ r \ ys = us @ z' # vs}" lemma listrel1I: "\ (x, y) \ r; xs = us @ x # vs; ys = us @ y # vs \ \ (xs, ys) \ listrel1 r" unfolding listrel1_def by auto lemma listrel1E: "\ (xs, ys) \ listrel1 r; !!x y us vs. \ (x, y) \ r; xs = us @ x # vs; ys = us @ y # vs \ \ P \ \ P" unfolding listrel1_def by auto lemma not_Nil_listrel1 [iff]: "([], xs) \ listrel1 r" unfolding listrel1_def by blast lemma not_listrel1_Nil [iff]: "(xs, []) \ listrel1 r" unfolding listrel1_def by blast lemma Cons_listrel1_Cons [iff]: "(x # xs, y # ys) \ listrel1 r \ (x,y) \ r \ xs = ys \ x = y \ (xs, ys) \ listrel1 r" by (simp add: listrel1_def Cons_eq_append_conv) (blast) lemma listrel1I1: "(x,y) \ r \ (x # xs, y # xs) \ listrel1 r" by fast lemma listrel1I2: "(xs, ys) \ listrel1 r \ (x # xs, x # ys) \ listrel1 r" by fast lemma append_listrel1I: "(xs, ys) \ listrel1 r \ us = vs \ xs = ys \ (us, vs) \ listrel1 r \ (xs @ us, ys @ vs) \ listrel1 r" unfolding listrel1_def by auto (blast intro: append_eq_appendI)+ lemma Cons_listrel1E1[elim!]: assumes "(x # xs, ys) \ listrel1 r" and "\y. ys = y # xs \ (x, y) \ r \ R" and "\zs. ys = x # zs \ (xs, zs) \ listrel1 r \ R" shows R using assms by (cases ys) blast+ lemma Cons_listrel1E2[elim!]: assumes "(xs, y # ys) \ listrel1 r" and "\x. xs = x # ys \ (x, y) \ r \ R" and "\zs. xs = y # zs \ (zs, ys) \ listrel1 r \ R" shows R using assms by (cases xs) blast+ lemma snoc_listrel1_snoc_iff: "(xs @ [x], ys @ [y]) \ listrel1 r \ (xs, ys) \ listrel1 r \ x = y \ xs = ys \ (x,y) \ r" (is "?L \ ?R") proof assume ?L thus ?R by (fastforce simp: listrel1_def snoc_eq_iff_butlast butlast_append) next assume ?R then show ?L unfolding listrel1_def by force qed lemma listrel1_eq_len: "(xs,ys) \ listrel1 r \ length xs = length ys" unfolding listrel1_def by auto lemma listrel1_mono: "r \ s \ listrel1 r \ listrel1 s" unfolding listrel1_def by blast lemma listrel1_converse: "listrel1 (r\) = (listrel1 r)\" unfolding listrel1_def by blast lemma in_listrel1_converse: "(x,y) \ listrel1 (r\) \ (x,y) \ (listrel1 r)\" unfolding listrel1_def by blast lemma listrel1_iff_update: "(xs,ys) \ (listrel1 r) \ (\y n. (xs ! n, y) \ r \ n < length xs \ ys = xs[n:=y])" (is "?L \ ?R") proof assume "?L" then obtain x y u v where "xs = u @ x # v" "ys = u @ y # v" "(x,y) \ r" unfolding listrel1_def by auto then have "ys = xs[length u := y]" and "length u < length xs" and "(xs ! length u, y) \ r" by auto then show "?R" by auto next assume "?R" then obtain x y n where "(xs!n, y) \ r" "n < size xs" "ys = xs[n:=y]" "x = xs!n" by auto then obtain u v where "xs = u @ x # v" and "ys = u @ y # v" and "(x, y) \ r" by (auto intro: upd_conv_take_nth_drop id_take_nth_drop) then show "?L" by (auto simp: listrel1_def) qed text\Accessible part and wellfoundedness:\ lemma Cons_acc_listrel1I [intro!]: "x \ Wellfounded.acc r \ xs \ Wellfounded.acc (listrel1 r) \ (x # xs) \ Wellfounded.acc (listrel1 r)" apply (induct arbitrary: xs set: Wellfounded.acc) apply (erule thin_rl) apply (erule acc_induct) apply (rule accI) apply (blast) done lemma lists_accD: "xs \ lists (Wellfounded.acc r) \ xs \ Wellfounded.acc (listrel1 r)" proof (induct set: lists) case Nil then show ?case by (meson acc.intros not_listrel1_Nil) next case (Cons a l) then show ?case by blast qed lemma lists_accI: "xs \ Wellfounded.acc (listrel1 r) \ xs \ lists (Wellfounded.acc r)" apply (induct set: Wellfounded.acc) apply clarify apply (rule accI) apply (fastforce dest!: in_set_conv_decomp[THEN iffD1] simp: listrel1_def) done lemma wf_listrel1_iff[simp]: "wf(listrel1 r) = wf r" by (auto simp: wf_acc_iff intro: lists_accD lists_accI[THEN Cons_in_lists_iff[THEN iffD1, THEN conjunct1]]) subsubsection \Lifting Relations to Lists: all elements\ inductive_set listrel :: "('a \ 'b) set \ ('a list \ 'b list) set" for r :: "('a \ 'b) set" where Nil: "([],[]) \ listrel r" | Cons: "\(x,y) \ r; (xs,ys) \ listrel r\ \ (x#xs, y#ys) \ listrel r" inductive_cases listrel_Nil1 [elim!]: "([],xs) \ listrel r" inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \ listrel r" inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \ listrel r" inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \ listrel r" lemma listrel_eq_len: "(xs, ys) \ listrel r \ length xs = length ys" by(induct rule: listrel.induct) auto lemma listrel_iff_zip [code_unfold]: "(xs,ys) \ listrel r \ length xs = length ys \ (\(x,y) \ set(zip xs ys). (x,y) \ r)" (is "?L \ ?R") proof assume ?L thus ?R by induct (auto intro: listrel_eq_len) next assume ?R thus ?L apply (clarify) by (induct rule: list_induct2) (auto intro: listrel.intros) qed lemma listrel_iff_nth: "(xs,ys) \ listrel r \ length xs = length ys \ (\n < length xs. (xs!n, ys!n) \ r)" (is "?L \ ?R") by (auto simp add: all_set_conv_all_nth listrel_iff_zip) lemma listrel_mono: "r \ s \ listrel r \ listrel s" by (meson listrel_iff_nth subrelI subset_eq) lemma listrel_subset: assumes "r \ A \ A" shows "listrel r \ lists A \ lists A" proof clarify show "a \ lists A \ b \ lists A" if "(a, b) \ listrel r" for a b using that assms by (induction rule: listrel.induct, auto) qed lemma listrel_refl_on: assumes "refl_on A r" shows "refl_on (lists A) (listrel r)" proof - have "l \ lists A \ (l, l) \ listrel r" for l using assms unfolding refl_on_def by (induction l, auto intro: listrel.intros) then show ?thesis by (meson assms listrel_subset refl_on_def) qed lemma listrel_sym: "sym r \ sym (listrel r)" by (simp add: listrel_iff_nth sym_def) lemma listrel_trans: assumes "trans r" shows "trans (listrel r)" proof - have "(x, z) \ listrel r" if "(x, y) \ listrel r" "(y, z) \ listrel r" for x y z using that proof induction case (Cons x y xs ys) then show ?case by clarsimp (metis assms listrel.Cons listrel_iff_nth transD) qed auto then show ?thesis using transI by blast qed theorem equiv_listrel: "equiv A r \ equiv (lists A) (listrel r)" by (simp add: equiv_def listrel_refl_on listrel_sym listrel_trans) lemma listrel_rtrancl_refl[iff]: "(xs,xs) \ listrel(r\<^sup>*)" using listrel_refl_on[of UNIV, OF refl_rtrancl] by(auto simp: refl_on_def) lemma listrel_rtrancl_trans: "\(xs,ys) \ listrel(r\<^sup>*); (ys,zs) \ listrel(r\<^sup>*)\ \ (xs,zs) \ listrel(r\<^sup>*)" by (metis listrel_trans trans_def trans_rtrancl) lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}" by (blast intro: listrel.intros) lemma listrel_Cons: "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})" by (auto simp add: set_Cons_def intro: listrel.intros) text \Relating \<^term>\listrel1\, \<^term>\listrel\ and closures:\ lemma listrel1_rtrancl_subset_rtrancl_listrel1: "listrel1 (r\<^sup>*) \ (listrel1 r)\<^sup>*" proof (rule subrelI) fix xs ys assume 1: "(xs,ys) \ listrel1 (r\<^sup>*)" { fix x y us vs have "(x,y) \ r\<^sup>* \ (us @ x # vs, us @ y # vs) \ (listrel1 r)\<^sup>*" proof(induct rule: rtrancl.induct) case rtrancl_refl show ?case by simp next case rtrancl_into_rtrancl thus ?case by (metis listrel1I rtrancl.rtrancl_into_rtrancl) qed } thus "(xs,ys) \ (listrel1 r)\<^sup>*" using 1 by(blast elim: listrel1E) qed lemma rtrancl_listrel1_eq_len: "(x,y) \ (listrel1 r)\<^sup>* \ length x = length y" by (induct rule: rtrancl.induct) (auto intro: listrel1_eq_len) lemma rtrancl_listrel1_ConsI1: "(xs,ys) \ (listrel1 r)\<^sup>* \ (x#xs,x#ys) \ (listrel1 r)\<^sup>*" proof (induction rule: rtrancl.induct) case (rtrancl_into_rtrancl a b c) then show ?case by (metis listrel1I2 rtrancl.rtrancl_into_rtrancl) qed auto lemma rtrancl_listrel1_ConsI2: "(x,y) \ r\<^sup>* \ (xs, ys) \ (listrel1 r)\<^sup>* \ (x # xs, y # ys) \ (listrel1 r)\<^sup>*" by (meson in_mono listrel1I1 listrel1_rtrancl_subset_rtrancl_listrel1 rtrancl_listrel1_ConsI1 rtrancl_trans) lemma listrel1_subset_listrel: "r \ r' \ refl r' \ listrel1 r \ listrel(r')" by(auto elim!: listrel1E simp add: listrel_iff_zip set_zip refl_on_def) lemma listrel_reflcl_if_listrel1: "(xs,ys) \ listrel1 r \ (xs,ys) \ listrel(r\<^sup>*)" by(erule listrel1E)(auto simp add: listrel_iff_zip set_zip) lemma listrel_rtrancl_eq_rtrancl_listrel1: "listrel (r\<^sup>*) = (listrel1 r)\<^sup>*" proof { fix x y assume "(x,y) \ listrel (r\<^sup>*)" then have "(x,y) \ (listrel1 r)\<^sup>*" by induct (auto intro: rtrancl_listrel1_ConsI2) } then show "listrel (r\<^sup>*) \ (listrel1 r)\<^sup>*" by (rule subrelI) next show "listrel (r\<^sup>*) \ (listrel1 r)\<^sup>*" proof(rule subrelI) fix xs ys assume "(xs,ys) \ (listrel1 r)\<^sup>*" then show "(xs,ys) \ listrel (r\<^sup>*)" proof induct case base show ?case by(auto simp add: listrel_iff_zip set_zip) next case (step ys zs) thus ?case by (metis listrel_reflcl_if_listrel1 listrel_rtrancl_trans) qed qed qed lemma rtrancl_listrel1_if_listrel: "(xs,ys) \ listrel r \ (xs,ys) \ (listrel1 r)\<^sup>*" by(metis listrel_rtrancl_eq_rtrancl_listrel1 subsetD[OF listrel_mono] r_into_rtrancl subsetI) lemma listrel_subset_rtrancl_listrel1: "listrel r \ (listrel1 r)\<^sup>*" by(fast intro:rtrancl_listrel1_if_listrel) subsection \Size function\ lemma [measure_function]: "is_measure f \ is_measure (size_list f)" by (rule is_measure_trivial) lemma [measure_function]: "is_measure f \ is_measure (size_option f)" by (rule is_measure_trivial) lemma size_list_estimation[termination_simp]: "x \ set xs \ y < f x \ y < size_list f xs" by (induct xs) auto lemma size_list_estimation'[termination_simp]: "x \ set xs \ y \ f x \ y \ size_list f xs" by (induct xs) auto lemma size_list_map[simp]: "size_list f (map g xs) = size_list (f \ g) xs" by (induct xs) auto lemma size_list_append[simp]: "size_list f (xs @ ys) = size_list f xs + size_list f ys" by (induct xs, auto) lemma size_list_pointwise[termination_simp]: "(\x. x \ set xs \ f x \ g x) \ size_list f xs \ size_list g xs" by (induct xs) force+ subsection \Monad operation\ definition bind :: "'a list \ ('a \ 'b list) \ 'b list" where "bind xs f = concat (map f xs)" hide_const (open) bind lemma bind_simps [simp]: "List.bind [] f = []" "List.bind (x # xs) f = f x @ List.bind xs f" by (simp_all add: bind_def) lemma list_bind_cong [fundef_cong]: assumes "xs = ys" "(\x. x \ set xs \ f x = g x)" shows "List.bind xs f = List.bind ys g" proof - from assms(2) have "List.bind xs f = List.bind xs g" by (induction xs) simp_all with assms(1) show ?thesis by simp qed lemma set_list_bind: "set (List.bind xs f) = (\x\set xs. set (f x))" by (induction xs) simp_all subsection \Code generation\ text\Optional tail recursive version of \<^const>\map\. Can avoid stack overflow in some target languages.\ fun map_tailrec_rev :: "('a \ 'b) \ 'a list \ 'b list \ 'b list" where "map_tailrec_rev f [] bs = bs" | "map_tailrec_rev f (a#as) bs = map_tailrec_rev f as (f a # bs)" lemma map_tailrec_rev: "map_tailrec_rev f as bs = rev(map f as) @ bs" by(induction as arbitrary: bs) simp_all definition map_tailrec :: "('a \ 'b) \ 'a list \ 'b list" where "map_tailrec f as = rev (map_tailrec_rev f as [])" text\Code equation:\ lemma map_eq_map_tailrec: "map = map_tailrec" by(simp add: fun_eq_iff map_tailrec_def map_tailrec_rev) subsubsection \Counterparts for set-related operations\ definition member :: "'a list \ 'a \ bool" where [code_abbrev]: "member xs x \ x \ set xs" text \ Use \member\ only for generating executable code. Otherwise use \<^prop>\x \ set xs\ instead --- it is much easier to reason about. \ lemma member_rec [code]: "member (x # xs) y \ x = y \ member xs y" "member [] y \ False" by (auto simp add: member_def) lemma in_set_member (* FIXME delete candidate *): "x \ set xs \ member xs x" by (simp add: member_def) lemmas list_all_iff [code_abbrev] = fun_cong[OF list.pred_set] definition list_ex :: "('a \ bool) \ 'a list \ bool" where list_ex_iff [code_abbrev]: "list_ex P xs \ Bex (set xs) P" definition list_ex1 :: "('a \ bool) \ 'a list \ bool" where list_ex1_iff [code_abbrev]: "list_ex1 P xs \ (\! x. x \ set xs \ P x)" text \ Usually you should prefer \\x\set xs\, \\x\set xs\ and \\!x. x\set xs \ _\ over \<^const>\list_all\, \<^const>\list_ex\ and \<^const>\list_ex1\ in specifications. \ lemma list_all_simps [code]: "list_all P (x # xs) \ P x \ list_all P xs" "list_all P [] \ True" by (simp_all add: list_all_iff) lemma list_ex_simps [simp, code]: "list_ex P (x # xs) \ P x \ list_ex P xs" "list_ex P [] \ False" by (simp_all add: list_ex_iff) lemma list_ex1_simps [simp, code]: "list_ex1 P [] = False" "list_ex1 P (x # xs) = (if P x then list_all (\y. \ P y \ x = y) xs else list_ex1 P xs)" by (auto simp add: list_ex1_iff list_all_iff) lemma Ball_set_list_all: (* FIXME delete candidate *) "Ball (set xs) P \ list_all P xs" by (simp add: list_all_iff) lemma Bex_set_list_ex: (* FIXME delete candidate *) "Bex (set xs) P \ list_ex P xs" by (simp add: list_ex_iff) lemma list_all_append [simp]: "list_all P (xs @ ys) \ list_all P xs \ list_all P ys" by (auto simp add: list_all_iff) lemma list_ex_append [simp]: "list_ex P (xs @ ys) \ list_ex P xs \ list_ex P ys" by (auto simp add: list_ex_iff) lemma list_all_rev [simp]: "list_all P (rev xs) \ list_all P xs" by (simp add: list_all_iff) lemma list_ex_rev [simp]: "list_ex P (rev xs) \ list_ex P xs" by (simp add: list_ex_iff) lemma list_all_length: "list_all P xs \ (\n < length xs. P (xs ! n))" by (auto simp add: list_all_iff set_conv_nth) lemma list_ex_length: "list_ex P xs \ (\n < length xs. P (xs ! n))" by (auto simp add: list_ex_iff set_conv_nth) lemmas list_all_cong [fundef_cong] = list.pred_cong lemma list_ex_cong [fundef_cong]: "xs = ys \ (\x. x \ set ys \ f x = g x) \ list_ex f xs = list_ex g ys" by (simp add: list_ex_iff) definition can_select :: "('a \ bool) \ 'a set \ bool" where [code_abbrev]: "can_select P A = (\!x\A. P x)" lemma can_select_set_list_ex1 [code]: "can_select P (set A) = list_ex1 P A" by (simp add: list_ex1_iff can_select_def) text \Executable checks for relations on sets\ definition listrel1p :: "('a \ 'a \ bool) \ 'a list \ 'a list \ bool" where "listrel1p r xs ys = ((xs, ys) \ listrel1 {(x, y). r x y})" lemma [code_unfold]: "(xs, ys) \ listrel1 r = listrel1p (\x y. (x, y) \ r) xs ys" unfolding listrel1p_def by auto lemma [code]: "listrel1p r [] xs = False" "listrel1p r xs [] = False" "listrel1p r (x # xs) (y # ys) \ r x y \ xs = ys \ x = y \ listrel1p r xs ys" by (simp add: listrel1p_def)+ definition lexordp :: "('a \ 'a \ bool) \ 'a list \ 'a list \ bool" where "lexordp r xs ys = ((xs, ys) \ lexord {(x, y). r x y})" lemma [code_unfold]: "(xs, ys) \ lexord r = lexordp (\x y. (x, y) \ r) xs ys" unfolding lexordp_def by auto lemma [code]: "lexordp r xs [] = False" "lexordp r [] (y#ys) = True" "lexordp r (x # xs) (y # ys) = (r x y \ (x = y \ lexordp r xs ys))" unfolding lexordp_def by auto text \Bounded quantification and summation over nats.\ lemma atMost_upto [code_unfold]: "{..n} = set [0..m (\m \ {0..m (\m \ {0..m\n::nat. P m) \ (\m \ {0..n}. P m)" by auto lemma ex_nat_less [code_unfold]: "(\m\n::nat. P m) \ (\m \ {0..n}. P m)" by auto text\Bounded \LEAST\ operator:\ definition "Bleast S P = (LEAST x. x \ S \ P x)" definition "abort_Bleast S P = (LEAST x. x \ S \ P x)" declare [[code abort: abort_Bleast]] lemma Bleast_code [code]: "Bleast (set xs) P = (case filter P (sort xs) of x#xs \ x | [] \ abort_Bleast (set xs) P)" proof (cases "filter P (sort xs)") case Nil thus ?thesis by (simp add: Bleast_def abort_Bleast_def) next case (Cons x ys) have "(LEAST x. x \ set xs \ P x) = x" proof (rule Least_equality) show "x \ set xs \ P x" by (metis Cons Cons_eq_filter_iff in_set_conv_decomp set_sort) next fix y assume "y \ set xs \ P y" hence "y \ set (filter P xs)" by auto thus "x \ y" by (metis Cons eq_iff filter_sort set_ConsD set_sort sorted.simps(2) sorted_sort) qed thus ?thesis using Cons by (simp add: Bleast_def) qed declare Bleast_def[symmetric, code_unfold] text \Summation over ints.\ lemma greaterThanLessThan_upto [code_unfold]: "{i<..Optimizing by rewriting\ definition null :: "'a list \ bool" where [code_abbrev]: "null xs \ xs = []" text \ Efficient emptyness check is implemented by \<^const>\null\. \ lemma null_rec [code]: "null (x # xs) \ False" "null [] \ True" by (simp_all add: null_def) lemma eq_Nil_null: (* FIXME delete candidate *) "xs = [] \ null xs" by (simp add: null_def) lemma equal_Nil_null [code_unfold]: "HOL.equal xs [] \ null xs" "HOL.equal [] = null" by (auto simp add: equal null_def) definition maps :: "('a \ 'b list) \ 'a list \ 'b list" where [code_abbrev]: "maps f xs = concat (map f xs)" definition map_filter :: "('a \ 'b option) \ 'a list \ 'b list" where [code_post]: "map_filter f xs = map (the \ f) (filter (\x. f x \ None) xs)" text \ Operations \<^const>\maps\ and \<^const>\map_filter\ avoid intermediate lists on execution -- do not use for proving. \ lemma maps_simps [code]: "maps f (x # xs) = f x @ maps f xs" "maps f [] = []" by (simp_all add: maps_def) lemma map_filter_simps [code]: "map_filter f (x # xs) = (case f x of None \ map_filter f xs | Some y \ y # map_filter f xs)" "map_filter f [] = []" by (simp_all add: map_filter_def split: option.split) lemma concat_map_maps: (* FIXME delete candidate *) "concat (map f xs) = maps f xs" by (simp add: maps_def) lemma map_filter_map_filter [code_unfold]: "map f (filter P xs) = map_filter (\x. if P x then Some (f x) else None) xs" by (simp add: map_filter_def) text \Optimized code for \\i\{a..b::int}\ and \\n:{a.. and similiarly for \\\.\ definition all_interval_nat :: "(nat \ bool) \ nat \ nat \ bool" where "all_interval_nat P i j \ (\n \ {i.. i \ j \ P i \ all_interval_nat P (Suc i) j" proof - have *: "\n. P i \ \n\{Suc i.. i \ n \ n < j \ P n" proof - fix n assume "P i" "\n\{Suc i.. n" "n < j" then show "P n" by (cases "n = i") simp_all qed show ?thesis by (auto simp add: all_interval_nat_def intro: *) qed lemma list_all_iff_all_interval_nat [code_unfold]: "list_all P [i.. all_interval_nat P i j" by (simp add: list_all_iff all_interval_nat_def) lemma list_ex_iff_not_all_inverval_nat [code_unfold]: "list_ex P [i.. \ (all_interval_nat (Not \ P) i j)" by (simp add: list_ex_iff all_interval_nat_def) definition all_interval_int :: "(int \ bool) \ int \ int \ bool" where "all_interval_int P i j \ (\k \ {i..j}. P k)" lemma [code]: "all_interval_int P i j \ i > j \ P i \ all_interval_int P (i + 1) j" proof - have *: "\k. P i \ \k\{i+1..j}. P k \ i \ k \ k \ j \ P k" proof - fix k assume "P i" "\k\{i+1..j}. P k" "i \ k" "k \ j" then show "P k" by (cases "k = i") simp_all qed show ?thesis by (auto simp add: all_interval_int_def intro: *) qed lemma list_all_iff_all_interval_int [code_unfold]: "list_all P [i..j] \ all_interval_int P i j" by (simp add: list_all_iff all_interval_int_def) lemma list_ex_iff_not_all_inverval_int [code_unfold]: "list_ex P [i..j] \ \ (all_interval_int (Not \ P) i j)" by (simp add: list_ex_iff all_interval_int_def) text \optimized code (tail-recursive) for \<^term>\length\\ definition gen_length :: "nat \ 'a list \ nat" where "gen_length n xs = n + length xs" lemma gen_length_code [code]: "gen_length n [] = n" "gen_length n (x # xs) = gen_length (Suc n) xs" by(simp_all add: gen_length_def) declare list.size(3-4)[code del] lemma length_code [code]: "length = gen_length 0" by(simp add: gen_length_def fun_eq_iff) hide_const (open) member null maps map_filter all_interval_nat all_interval_int gen_length subsubsection \Pretty lists\ ML \ (* Code generation for list literals. *) signature LIST_CODE = sig val add_literal_list: string -> theory -> theory end; structure List_Code : LIST_CODE = struct open Basic_Code_Thingol; fun implode_list t = let fun dest_cons (IConst { sym = Code_Symbol.Constant \<^const_name>\Cons\, ... } `$ t1 `$ t2) = SOME (t1, t2) | dest_cons _ = NONE; val (ts, t') = Code_Thingol.unfoldr dest_cons t; in case t' of IConst { sym = Code_Symbol.Constant \<^const_name>\Nil\, ... } => SOME ts | _ => NONE end; fun print_list (target_fxy, target_cons) pr fxy t1 t2 = Code_Printer.brackify_infix (target_fxy, Code_Printer.R) fxy ( pr (Code_Printer.INFX (target_fxy, Code_Printer.X)) t1, Code_Printer.str target_cons, pr (Code_Printer.INFX (target_fxy, Code_Printer.R)) t2 ); fun add_literal_list target = let fun pretty literals pr _ vars fxy [(t1, _), (t2, _)] = case Option.map (cons t1) (implode_list t2) of SOME ts => Code_Printer.literal_list literals (map (pr vars Code_Printer.NOBR) ts) | NONE => print_list (Code_Printer.infix_cons literals) (pr vars) fxy t1 t2; in Code_Target.set_printings (Code_Symbol.Constant (\<^const_name>\Cons\, [(target, SOME (Code_Printer.complex_const_syntax (2, pretty)))])) end end; \ code_printing type_constructor list \ (SML) "_ list" and (OCaml) "_ list" and (Haskell) "![(_)]" and (Scala) "List[(_)]" | constant Nil \ (SML) "[]" and (OCaml) "[]" and (Haskell) "[]" and (Scala) "!Nil" | class_instance list :: equal \ (Haskell) - | constant "HOL.equal :: 'a list \ 'a list \ bool" \ (Haskell) infix 4 "==" setup \fold (List_Code.add_literal_list) ["SML", "OCaml", "Haskell", "Scala"]\ code_reserved SML list code_reserved OCaml list subsubsection \Use convenient predefined operations\ code_printing constant "(@)" \ (SML) infixr 7 "@" and (OCaml) infixr 6 "@" and (Haskell) infixr 5 "++" and (Scala) infixl 7 "++" | constant map \ (Haskell) "map" | constant filter \ (Haskell) "filter" | constant concat \ (Haskell) "concat" | constant List.maps \ (Haskell) "concatMap" | constant rev \ (Haskell) "reverse" | constant zip \ (Haskell) "zip" | constant List.null \ (Haskell) "null" | constant takeWhile \ (Haskell) "takeWhile" | constant dropWhile \ (Haskell) "dropWhile" | constant list_all \ (Haskell) "all" | constant list_ex \ (Haskell) "any" subsubsection \Implementation of sets by lists\ lemma is_empty_set [code]: "Set.is_empty (set xs) \ List.null xs" by (simp add: Set.is_empty_def null_def) lemma empty_set [code]: "{} = set []" by simp lemma UNIV_coset [code]: "UNIV = List.coset []" by simp lemma compl_set [code]: "- set xs = List.coset xs" by simp lemma compl_coset [code]: "- List.coset xs = set xs" by simp lemma [code]: "x \ set xs \ List.member xs x" "x \ List.coset xs \ \ List.member xs x" by (simp_all add: member_def) lemma insert_code [code]: "insert x (set xs) = set (List.insert x xs)" "insert x (List.coset xs) = List.coset (removeAll x xs)" by simp_all lemma remove_code [code]: "Set.remove x (set xs) = set (removeAll x xs)" "Set.remove x (List.coset xs) = List.coset (List.insert x xs)" by (simp_all add: remove_def Compl_insert) lemma filter_set [code]: "Set.filter P (set xs) = set (filter P xs)" by auto lemma image_set [code]: "image f (set xs) = set (map f xs)" by simp lemma subset_code [code]: "set xs \ B \ (\x\set xs. x \ B)" "A \ List.coset ys \ (\y\set ys. y \ A)" "List.coset [] \ set [] \ False" by auto text \A frequent case -- avoid intermediate sets\ lemma [code_unfold]: "set xs \ set ys \ list_all (\x. x \ set ys) xs" by (auto simp: list_all_iff) lemma Ball_set [code]: "Ball (set xs) P \ list_all P xs" by (simp add: list_all_iff) lemma Bex_set [code]: "Bex (set xs) P \ list_ex P xs" by (simp add: list_ex_iff) lemma card_set [code]: "card (set xs) = length (remdups xs)" proof - have "card (set (remdups xs)) = length (remdups xs)" by (rule distinct_card) simp then show ?thesis by simp qed lemma the_elem_set [code]: "the_elem (set [x]) = x" by simp lemma Pow_set [code]: "Pow (set []) = {{}}" "Pow (set (x # xs)) = (let A = Pow (set xs) in A \ insert x ` A)" by (simp_all add: Pow_insert Let_def) definition map_project :: "('a \ 'b option) \ 'a set \ 'b set" where "map_project f A = {b. \ a \ A. f a = Some b}" lemma [code]: "map_project f (set xs) = set (List.map_filter f xs)" by (auto simp add: map_project_def map_filter_def image_def) hide_const (open) map_project text \Operations on relations\ lemma product_code [code]: "Product_Type.product (set xs) (set ys) = set [(x, y). x \ xs, y \ ys]" by (auto simp add: Product_Type.product_def) lemma Id_on_set [code]: "Id_on (set xs) = set [(x, x). x \ xs]" by (auto simp add: Id_on_def) lemma [code]: "R `` S = List.map_project (\(x, y). if x \ S then Some y else None) R" unfolding map_project_def by (auto split: prod.split if_split_asm) lemma trancl_set_ntrancl [code]: "trancl (set xs) = ntrancl (card (set xs) - 1) (set xs)" by (simp add: finite_trancl_ntranl) lemma set_relcomp [code]: "set xys O set yzs = set ([(fst xy, snd yz). xy \ xys, yz \ yzs, snd xy = fst yz])" by auto (auto simp add: Bex_def image_def) lemma wf_set [code]: "wf (set xs) = acyclic (set xs)" by (simp add: wf_iff_acyclic_if_finite) subsection \Setup for Lifting/Transfer\ subsubsection \Transfer rules for the Transfer package\ context includes lifting_syntax begin lemma tl_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A) tl tl" unfolding tl_def[abs_def] by transfer_prover lemma butlast_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A) butlast butlast" by (rule rel_funI, erule list_all2_induct, auto) lemma map_rec: "map f xs = rec_list Nil (%x _ y. Cons (f x) y) xs" by (induct xs) auto lemma append_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A ===> list_all2 A) append append" unfolding List.append_def by transfer_prover lemma rev_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A) rev rev" unfolding List.rev_def by transfer_prover lemma filter_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> list_all2 A) filter filter" unfolding List.filter_def by transfer_prover lemma fold_transfer [transfer_rule]: "((A ===> B ===> B) ===> list_all2 A ===> B ===> B) fold fold" unfolding List.fold_def by transfer_prover lemma foldr_transfer [transfer_rule]: "((A ===> B ===> B) ===> list_all2 A ===> B ===> B) foldr foldr" unfolding List.foldr_def by transfer_prover lemma foldl_transfer [transfer_rule]: "((B ===> A ===> B) ===> B ===> list_all2 A ===> B) foldl foldl" unfolding List.foldl_def by transfer_prover lemma concat_transfer [transfer_rule]: "(list_all2 (list_all2 A) ===> list_all2 A) concat concat" unfolding List.concat_def by transfer_prover lemma drop_transfer [transfer_rule]: "((=) ===> list_all2 A ===> list_all2 A) drop drop" unfolding List.drop_def by transfer_prover lemma take_transfer [transfer_rule]: "((=) ===> list_all2 A ===> list_all2 A) take take" unfolding List.take_def by transfer_prover lemma list_update_transfer [transfer_rule]: "(list_all2 A ===> (=) ===> A ===> list_all2 A) list_update list_update" unfolding list_update_def by transfer_prover lemma takeWhile_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> list_all2 A) takeWhile takeWhile" unfolding takeWhile_def by transfer_prover lemma dropWhile_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> list_all2 A) dropWhile dropWhile" unfolding dropWhile_def by transfer_prover lemma zip_transfer [transfer_rule]: "(list_all2 A ===> list_all2 B ===> list_all2 (rel_prod A B)) zip zip" unfolding zip_def by transfer_prover lemma product_transfer [transfer_rule]: "(list_all2 A ===> list_all2 B ===> list_all2 (rel_prod A B)) List.product List.product" unfolding List.product_def by transfer_prover lemma product_lists_transfer [transfer_rule]: "(list_all2 (list_all2 A) ===> list_all2 (list_all2 A)) product_lists product_lists" unfolding product_lists_def by transfer_prover lemma insert_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(A ===> list_all2 A ===> list_all2 A) List.insert List.insert" unfolding List.insert_def [abs_def] by transfer_prover lemma find_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> rel_option A) List.find List.find" unfolding List.find_def by transfer_prover lemma those_transfer [transfer_rule]: "(list_all2 (rel_option P) ===> rel_option (list_all2 P)) those those" unfolding List.those_def by transfer_prover lemma remove1_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(A ===> list_all2 A ===> list_all2 A) remove1 remove1" unfolding remove1_def by transfer_prover lemma removeAll_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(A ===> list_all2 A ===> list_all2 A) removeAll removeAll" unfolding removeAll_def by transfer_prover lemma successively_transfer [transfer_rule]: "((A ===> A ===> (=)) ===> list_all2 A ===> (=)) successively successively" unfolding successively_altdef by transfer_prover lemma distinct_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(list_all2 A ===> (=)) distinct distinct" unfolding distinct_def by transfer_prover lemma distinct_adj_transfer [transfer_rule]: assumes "bi_unique A" shows "(list_all2 A ===> (=)) distinct_adj distinct_adj" unfolding rel_fun_def proof (intro allI impI) fix xs ys assume "list_all2 A xs ys" thus "distinct_adj xs \ distinct_adj ys" proof (induction rule: list_all2_induct) case (Cons x xs y ys) note * = this show ?case proof (cases xs) case [simp]: (Cons x' xs') with * obtain y' ys' where [simp]: "ys = y' # ys'" by (cases ys) auto from * show ?thesis using assms by (auto simp: distinct_adj_Cons bi_unique_def) qed (use * in auto) qed auto qed lemma remdups_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(list_all2 A ===> list_all2 A) remdups remdups" unfolding remdups_def by transfer_prover lemma remdups_adj_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(list_all2 A ===> list_all2 A) remdups_adj remdups_adj" proof (rule rel_funI, erule list_all2_induct) qed (auto simp: remdups_adj_Cons assms[unfolded bi_unique_def] split: list.splits) lemma replicate_transfer [transfer_rule]: "((=) ===> A ===> list_all2 A) replicate replicate" unfolding replicate_def by transfer_prover lemma length_transfer [transfer_rule]: "(list_all2 A ===> (=)) length length" unfolding size_list_overloaded_def size_list_def by transfer_prover lemma rotate1_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A) rotate1 rotate1" unfolding rotate1_def by transfer_prover lemma rotate_transfer [transfer_rule]: "((=) ===> list_all2 A ===> list_all2 A) rotate rotate" unfolding rotate_def [abs_def] by transfer_prover lemma nths_transfer [transfer_rule]: "(list_all2 A ===> rel_set (=) ===> list_all2 A) nths nths" unfolding nths_def [abs_def] by transfer_prover lemma subseqs_transfer [transfer_rule]: "(list_all2 A ===> list_all2 (list_all2 A)) subseqs subseqs" unfolding subseqs_def [abs_def] by transfer_prover lemma partition_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> rel_prod (list_all2 A) (list_all2 A)) partition partition" unfolding partition_def by transfer_prover lemma lists_transfer [transfer_rule]: "(rel_set A ===> rel_set (list_all2 A)) lists lists" proof (rule rel_funI, rule rel_setI) show "\l \ lists X; rel_set A X Y\ \ \y\lists Y. list_all2 A l y" for X Y l proof (induction l rule: lists.induct) case (Cons a l) then show ?case by (simp only: rel_set_def list_all2_Cons1, metis lists.Cons) qed auto show "\l \ lists Y; rel_set A X Y\ \ \x\lists X. list_all2 A x l" for X Y l proof (induction l rule: lists.induct) case (Cons a l) then show ?case by (simp only: rel_set_def list_all2_Cons2, metis lists.Cons) qed auto qed lemma set_Cons_transfer [transfer_rule]: "(rel_set A ===> rel_set (list_all2 A) ===> rel_set (list_all2 A)) set_Cons set_Cons" unfolding rel_fun_def rel_set_def set_Cons_def by (fastforce simp add: list_all2_Cons1 list_all2_Cons2) lemma listset_transfer [transfer_rule]: "(list_all2 (rel_set A) ===> rel_set (list_all2 A)) listset listset" unfolding listset_def by transfer_prover lemma null_transfer [transfer_rule]: "(list_all2 A ===> (=)) List.null List.null" unfolding rel_fun_def List.null_def by auto lemma list_all_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> (=)) list_all list_all" unfolding list_all_iff [abs_def] by transfer_prover lemma list_ex_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> (=)) list_ex list_ex" unfolding list_ex_iff [abs_def] by transfer_prover lemma splice_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A ===> list_all2 A) splice splice" apply (rule rel_funI, erule list_all2_induct, simp add: rel_fun_def, simp) apply (rule rel_funI) apply (erule_tac xs=x in list_all2_induct, simp, simp add: rel_fun_def) done lemma shuffles_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A ===> rel_set (list_all2 A)) shuffles shuffles" proof (intro rel_funI, goal_cases) case (1 xs xs' ys ys') thus ?case proof (induction xs ys arbitrary: xs' ys' rule: shuffles.induct) case (3 x xs y ys xs' ys') from "3.prems" obtain x' xs'' where xs': "xs' = x' # xs''" by (cases xs') auto from "3.prems" obtain y' ys'' where ys': "ys' = y' # ys''" by (cases ys') auto have [transfer_rule]: "A x x'" "A y y'" "list_all2 A xs xs''" "list_all2 A ys ys''" using "3.prems" by (simp_all add: xs' ys') have [transfer_rule]: "rel_set (list_all2 A) (shuffles xs (y # ys)) (shuffles xs'' ys')" and [transfer_rule]: "rel_set (list_all2 A) (shuffles (x # xs) ys) (shuffles xs' ys'')" using "3.prems" by (auto intro!: "3.IH" simp: xs' ys') have "rel_set (list_all2 A) ((#) x ` shuffles xs (y # ys) \ (#) y ` shuffles (x # xs) ys) ((#) x' ` shuffles xs'' ys' \ (#) y' ` shuffles xs' ys'')" by transfer_prover thus ?case by (simp add: xs' ys') qed (auto simp: rel_set_def) qed lemma rtrancl_parametric [transfer_rule]: assumes [transfer_rule]: "bi_unique A" "bi_total A" shows "(rel_set (rel_prod A A) ===> rel_set (rel_prod A A)) rtrancl rtrancl" unfolding rtrancl_def by transfer_prover lemma monotone_parametric [transfer_rule]: assumes [transfer_rule]: "bi_total A" shows "((A ===> A ===> (=)) ===> (B ===> B ===> (=)) ===> (A ===> B) ===> (=)) monotone monotone" unfolding monotone_def[abs_def] by transfer_prover lemma fun_ord_parametric [transfer_rule]: assumes [transfer_rule]: "bi_total C" shows "((A ===> B ===> (=)) ===> (C ===> A) ===> (C ===> B) ===> (=)) fun_ord fun_ord" unfolding fun_ord_def[abs_def] by transfer_prover lemma fun_lub_parametric [transfer_rule]: assumes [transfer_rule]: "bi_total A" "bi_unique A" shows "((rel_set A ===> B) ===> rel_set (C ===> A) ===> C ===> B) fun_lub fun_lub" unfolding fun_lub_def[abs_def] by transfer_prover end end