diff --git a/src/HOL/ex/Unification.thy b/src/HOL/ex/Unification.thy --- a/src/HOL/ex/Unification.thy +++ b/src/HOL/ex/Unification.thy @@ -1,720 +1,722 @@ (* Title: HOL/ex/Unification.thy Author: Martin Coen, Cambridge University Computer Laboratory Author: Konrad Slind, TUM & Cambridge University Computer Laboratory Author: Alexander Krauss, TUM *) section \Substitution and Unification\ theory Unification imports Main begin text \ Implements Manna \& Waldinger's formalization, with Paulson's simplifications, and some new simplifications by Slind and Krauss. Z Manna \& R Waldinger, Deductive Synthesis of the Unification Algorithm. SCP 1 (1981), 5-48 L C Paulson, Verifying the Unification Algorithm in LCF. SCP 5 (1985), 143-170 K Slind, Reasoning about Terminating Functional Programs, Ph.D. thesis, TUM, 1999, Sect. 5.8 A Krauss, Partial and Nested Recursive Function Definitions in Higher-Order Logic, JAR 44(4):303-336, 2010. Sect. 6.3 \ subsection \Terms\ text \Binary trees with leaves that are constants or variables.\ datatype 'a trm = Var 'a | Const 'a | Comb "'a trm" "'a trm" (infix "\" 60) primrec vars_of :: "'a trm \ 'a set" where "vars_of (Var v) = {v}" | "vars_of (Const c) = {}" | "vars_of (M \ N) = vars_of M \ vars_of N" fun occs :: "'a trm \ 'a trm \ bool" (infixl "\" 54) where "u \ Var v \ False" | "u \ Const c \ False" | "u \ M \ N \ u = M \ u = N \ u \ M \ u \ N" lemma finite_vars_of[intro]: "finite (vars_of t)" by (induct t) simp_all lemma vars_iff_occseq: "x \ vars_of t \ Var x \ t \ Var x = t" by (induct t) auto lemma occs_vars_subset: "M \ N \ vars_of M \ vars_of N" by (induct N) auto subsection \Substitutions\ type_synonym 'a subst = "('a \ 'a trm) list" fun assoc :: "'a \ 'b \ ('a \ 'b) list \ 'b" where "assoc x d [] = d" | "assoc x d ((p,q)#t) = (if x = p then q else assoc x d t)" primrec subst :: "'a trm \ 'a subst \ 'a trm" (infixl "\" 55) where "(Var v) \ s = assoc v (Var v) s" | "(Const c) \ s = (Const c)" | "(M \ N) \ s = (M \ s) \ (N \ s)" definition subst_eq (infixr "\" 52) where "s1 \ s2 \ (\t. t \ s1 = t \ s2)" fun comp :: "'a subst \ 'a subst \ 'a subst" (infixl "\" 56) where "[] \ bl = bl" | "((a,b) # al) \ bl = (a, b \ bl) # (al \ bl)" lemma subst_Nil[simp]: "t \ [] = t" by (induct t) auto lemma subst_mono: "t \ u \ t \ s \ u \ s" by (induct u) auto lemma agreement: "(t \ r = t \ s) \ (\v \ vars_of t. Var v \ r = Var v \ s)" by (induct t) auto lemma repl_invariance: "v \ vars_of t \ t \ (v,u) # s = t \ s" by (simp add: agreement) lemma remove_var: "v \ vars_of s \ v \ vars_of (t \ [(v, s)])" by (induct t) simp_all lemma subst_refl[iff]: "s \ s" by (auto simp:subst_eq_def) lemma subst_sym[sym]: "\s1 \ s2\ \ s2 \ s1" by (auto simp:subst_eq_def) lemma subst_trans[trans]: "\s1 \ s2; s2 \ s3\ \ s1 \ s3" by (auto simp:subst_eq_def) lemma subst_no_occs: "\ Var v \ t \ Var v \ t \ t \ [(v,s)] = t" by (induct t) auto lemma comp_Nil[simp]: "\ \ [] = \" by (induct \) auto lemma subst_comp[simp]: "t \ (r \ s) = t \ r \ s" proof (induct t) case (Var v) thus ?case by (induct r) auto qed auto lemma subst_eq_intro[intro]: "(\t. t \ \ = t \ \) \ \ \ \" by (auto simp:subst_eq_def) lemma subst_eq_dest[dest]: "s1 \ s2 \ t \ s1 = t \ s2" by (auto simp:subst_eq_def) lemma comp_assoc: "(a \ b) \ c \ a \ (b \ c)" by auto lemma subst_cong: "\\ \ \'; \ \ \'\ \ (\ \ \) \ (\' \ \')" by (auto simp: subst_eq_def) lemma var_self: "[(v, Var v)] \ []" proof fix t show "t \ [(v, Var v)] = t \ []" by (induct t) simp_all qed lemma var_same[simp]: "[(v, t)] \ [] \ t = Var v" by (metis assoc.simps(2) subst.simps(1) subst_eq_def var_self) lemma vars_of_subst_conv_Union: "vars_of (t \ \) = \(vars_of ` (\x. Var x \ \) ` vars_of t)" by (induction t) simp_all lemma domain_comp: "fst ` set (\ \ \) = fst ` (set \ \ set \)" by (induction \ \ rule: comp.induct) auto subsection \Unifiers and Most General Unifiers\ definition Unifier :: "'a subst \ 'a trm \ 'a trm \ bool" where "Unifier \ t u \ (t \ \ = u \ \)" definition MGU :: "'a subst \ 'a trm \ 'a trm \ bool" where "MGU \ t u \ Unifier \ t u \ (\\. Unifier \ t u \ (\\. \ \ \ \ \))" lemma MGUI[intro]: "\t \ \ = u \ \; \\. t \ \ = u \ \ \ \\. \ \ \ \ \\ \ MGU \ t u" by (simp only:Unifier_def MGU_def, auto) lemma MGU_sym[sym]: "MGU \ s t \ MGU \ t s" by (auto simp:MGU_def Unifier_def) lemma MGU_is_Unifier: "MGU \ t u \ Unifier \ t u" unfolding MGU_def by (rule conjunct1) lemma MGU_Var: assumes "\ Var v \ t" shows "MGU [(v,t)] (Var v) t" proof (intro MGUI exI) show "Var v \ [(v,t)] = t \ [(v,t)]" using assms by (metis assoc.simps(2) repl_invariance subst.simps(1) subst_Nil vars_iff_occseq) next fix \ assume th: "Var v \ \ = t \ \" show "\ \ [(v,t)] \ \" proof fix s show "s \ \ = s \ [(v,t)] \ \" using th by (induct s) auto qed qed lemma MGU_Const: "MGU [] (Const c) (Const d) \ c = d" by (auto simp: MGU_def Unifier_def) subsection \The unification algorithm\ function unify :: "'a trm \ 'a trm \ 'a subst option" where "unify (Const c) (M \ N) = None" | "unify (M \ N) (Const c) = None" | "unify (Const c) (Var v) = Some [(v, Const c)]" | "unify (M \ N) (Var v) = (if Var v \ M \ N then None else Some [(v, M \ N)])" | "unify (Var v) M = (if Var v \ M then None else Some [(v, M)])" | "unify (Const c) (Const d) = (if c=d then Some [] else None)" | "unify (M \ N) (M' \ N') = (case unify M M' of None \ None | Some \ \ (case unify (N \ \) (N' \ \) of None \ None | Some \ \ Some (\ \ \)))" by pat_completeness auto subsection \Properties used in termination proof\ text \Elimination of variables by a substitution:\ definition "elim \ v \ \t. v \ vars_of (t \ \)" lemma elim_intro[intro]: "(\t. v \ vars_of (t \ \)) \ elim \ v" by (auto simp:elim_def) lemma elim_dest[dest]: "elim \ v \ v \ vars_of (t \ \)" by (auto simp:elim_def) lemma elim_eq: "\ \ \ \ elim \ x = elim \ x" by (auto simp:elim_def subst_eq_def) lemma occs_elim: "\ Var v \ t \ elim [(v,t)] v \ [(v,t)] \ []" by (metis elim_intro remove_var var_same vars_iff_occseq) text \The result of a unification never introduces new variables:\ declare unify.psimps[simp] lemma unify_vars: assumes "unify_dom (M, N)" assumes "unify M N = Some \" shows "vars_of (t \ \) \ vars_of M \ vars_of N \ vars_of t" (is "?P M N \ t") using assms proof (induct M N arbitrary:\ t) case (3 c v) hence "\ = [(v, Const c)]" by simp thus ?case by (induct t) auto next case (4 M N v) hence "\ Var v \ M \ N" by auto with 4 have "\ = [(v, M\N)]" by simp thus ?case by (induct t) auto next case (5 v M) hence "\ Var v \ M" by auto with 5 have "\ = [(v, M)]" by simp thus ?case by (induct t) auto next case (7 M N M' N' \) then obtain \1 \2 where "unify M M' = Some \1" and "unify (N \ \1) (N' \ \1) = Some \2" and \: "\ = \1 \ \2" and ih1: "\t. ?P M M' \1 t" and ih2: "\t. ?P (N\\1) (N'\\1) \2 t" by (auto split:option.split_asm) show ?case proof fix v assume a: "v \ vars_of (t \ \)" show "v \ vars_of (M \ N) \ vars_of (M' \ N') \ vars_of t" proof (cases "v \ vars_of M \ v \ vars_of M' \ v \ vars_of N \ v \ vars_of N'") case True with ih1 have l:"\t. v \ vars_of (t \ \1) \ v \ vars_of t" by auto from a and ih2[where t="t \ \1"] have "v \ vars_of (N \ \1) \ vars_of (N' \ \1) \ v \ vars_of (t \ \1)" unfolding \ by auto hence "v \ vars_of t" proof assume "v \ vars_of (N \ \1) \ vars_of (N' \ \1)" with True show ?thesis by (auto dest:l) next assume "v \ vars_of (t \ \1)" thus ?thesis by (rule l) qed thus ?thesis by auto qed auto qed qed (auto split: if_split_asm) text \The result of a unification is either the identity substitution or it eliminates a variable from one of the terms:\ lemma unify_eliminates: assumes "unify_dom (M, N)" assumes "unify M N = Some \" shows "(\v\vars_of M \ vars_of N. elim \ v) \ \ \ []" (is "?P M N \") using assms proof (induct M N arbitrary:\) case 1 thus ?case by simp next case 2 thus ?case by simp next case (3 c v) have no_occs: "\ Var v \ Const c" by simp with 3 have "\ = [(v, Const c)]" by simp with occs_elim[OF no_occs] show ?case by auto next case (4 M N v) hence no_occs: "\ Var v \ M \ N" by auto with 4 have "\ = [(v, M\N)]" by simp with occs_elim[OF no_occs] show ?case by auto next case (5 v M) hence no_occs: "\ Var v \ M" by auto with 5 have "\ = [(v, M)]" by simp with occs_elim[OF no_occs] show ?case by auto next case (6 c d) thus ?case by (cases "c = d") auto next case (7 M N M' N' \) then obtain \1 \2 where "unify M M' = Some \1" and "unify (N \ \1) (N' \ \1) = Some \2" and \: "\ = \1 \ \2" and ih1: "?P M M' \1" and ih2: "?P (N\\1) (N'\\1) \2" by (auto split:option.split_asm) from \unify_dom (M \ N, M' \ N')\ have "unify_dom (M, M')" by (rule accp_downward) (rule unify_rel.intros) hence no_new_vars: "\t. vars_of (t \ \1) \ vars_of M \ vars_of M' \ vars_of t" by (rule unify_vars) (rule \unify M M' = Some \1\) from ih2 show ?case proof assume "\v\vars_of (N \ \1) \ vars_of (N' \ \1). elim \2 v" then obtain v where "v\vars_of (N \ \1) \ vars_of (N' \ \1)" and el: "elim \2 v" by auto with no_new_vars show ?thesis unfolding \ by (auto simp:elim_def) next assume empty[simp]: "\2 \ []" have "\ \ (\1 \ [])" unfolding \ by (rule subst_cong) auto also have "\ \ \1" by auto finally have "\ \ \1" . from ih1 show ?thesis proof assume "\v\vars_of M \ vars_of M'. elim \1 v" with elim_eq[OF \\ \ \1\] show ?thesis by auto next note \\ \ \1\ also assume "\1 \ []" finally show ?thesis .. qed qed qed declare unify.psimps[simp del] subsection \Termination proof\ termination unify proof let ?R = "measures [\(M,N). card (vars_of M \ vars_of N), \(M, N). size M]" show "wf ?R" by simp fix M N M' N' :: "'a trm" show "((M, M'), (M \ N, M' \ N')) \ ?R" \ \Inner call\ by (rule measures_lesseq) (auto intro: card_mono) fix \ \ \Outer call\ assume inner: "unify_dom (M, M')" "unify M M' = Some \" from unify_eliminates[OF inner] show "((N \ \, N' \ \), (M \ N, M' \ N')) \?R" proof \ \Either a variable is eliminated \ldots\ assume "(\v\vars_of M \ vars_of M'. elim \ v)" then obtain v where "elim \ v" and "v\vars_of M \ vars_of M'" by auto with unify_vars[OF inner] have "vars_of (N\\) \ vars_of (N'\\) \ vars_of (M\N) \ vars_of (M'\N')" by auto thus ?thesis by (auto intro!: measures_less intro: psubset_card_mono) next \ \Or the substitution is empty\ assume "\ \ []" hence "N \ \ = N" and "N' \ \ = N'" by auto thus ?thesis by (auto intro!: measures_less intro: psubset_card_mono) qed qed subsection \Unification returns a Most General Unifier\ lemma unify_computes_MGU: "unify M N = Some \ \ MGU \ M N" proof (induct M N arbitrary: \ rule: unify.induct) case (7 M N M' N' \) \ \The interesting case\ then obtain \1 \2 where "unify M M' = Some \1" and "unify (N \ \1) (N' \ \1) = Some \2" and \: "\ = \1 \ \2" and MGU_inner: "MGU \1 M M'" and MGU_outer: "MGU \2 (N \ \1) (N' \ \1)" by (auto split:option.split_asm) show ?case proof from MGU_inner and MGU_outer have "M \ \1 = M' \ \1" and "N \ \1 \ \2 = N' \ \1 \ \2" unfolding MGU_def Unifier_def by auto thus "M \ N \ \ = M' \ N' \ \" unfolding \ by simp next fix \' assume "M \ N \ \' = M' \ N' \ \'" hence "M \ \' = M' \ \'" and Ns: "N \ \' = N' \ \'" by auto with MGU_inner obtain \ where eqv: "\' \ \1 \ \" unfolding MGU_def Unifier_def by auto from Ns have "N \ \1 \ \ = N' \ \1 \ \" by (simp add:subst_eq_dest[OF eqv]) with MGU_outer obtain \ where eqv2: "\ \ \2 \ \" unfolding MGU_def Unifier_def by auto have "\' \ \ \ \" unfolding \ by (rule subst_eq_intro, auto simp:subst_eq_dest[OF eqv] subst_eq_dest[OF eqv2]) thus "\\. \' \ \ \ \" .. qed qed (auto simp: MGU_Const intro: MGU_Var MGU_Var[symmetric] split: if_split_asm) subsection \Unification returns Idempotent Substitution\ definition Idem :: "'a subst \ bool" where "Idem s \ (s \ s) \ s" lemma Idem_Nil [iff]: "Idem []" by (simp add: Idem_def) lemma Var_Idem: assumes "~ (Var v \ t)" shows "Idem [(v,t)]" unfolding Idem_def proof from assms have [simp]: "t \ [(v, t)] = t" by (metis assoc.simps(2) subst.simps(1) subst_no_occs) fix s show "s \ [(v, t)] \ [(v, t)] = s \ [(v, t)]" by (induct s) auto qed lemma Unifier_Idem_subst: "Idem(r) \ Unifier s (t \ r) (u \ r) \ Unifier (r \ s) (t \ r) (u \ r)" by (simp add: Idem_def Unifier_def subst_eq_def) lemma Idem_comp: "Idem r \ Unifier s (t \ r) (u \ r) \ (!!q. Unifier q (t \ r) (u \ r) \ s \ q \ q) \ Idem (r \ s)" apply (frule Unifier_Idem_subst, blast) apply (force simp add: Idem_def subst_eq_def) done theorem unify_gives_Idem: "unify M N = Some \ \ Idem \" proof (induct M N arbitrary: \ rule: unify.induct) case (7 M M' N N' \) then obtain \1 \2 where "unify M N = Some \1" and \2: "unify (M' \ \1) (N' \ \1) = Some \2" and \: "\ = \1 \ \2" and "Idem \1" and "Idem \2" by (auto split: option.split_asm) from \2 have "Unifier \2 (M' \ \1) (N' \ \1)" by (rule unify_computes_MGU[THEN MGU_is_Unifier]) with \Idem \1\ show "Idem \" unfolding \ proof (rule Idem_comp) fix \ assume "Unifier \ (M' \ \1) (N' \ \1)" with \2 obtain \ where \: "\ \ \2 \ \" using unify_computes_MGU MGU_def by blast have "\2 \ \ \ \2 \ (\2 \ \)" by (rule subst_cong) (auto simp: \) also have "... \ (\2 \ \2) \ \" by (rule comp_assoc[symmetric]) also have "... \ \2 \ \" by (rule subst_cong) (auto simp: \Idem \2\[unfolded Idem_def]) also have "... \ \" by (rule \[symmetric]) finally show "\2 \ \ \ \" . qed qed (auto intro!: Var_Idem split: option.splits if_splits) -subsection \Unification Returns Substitution With Minimal Range \ +subsection \Unification Returns Substitution With Minimal Domain And Range\ definition range_vars where "range_vars \ = \ {vars_of (Var x \ \) |x. Var x \ \ \ Var x}" lemma vars_of_subst_subset: "vars_of (N \ \) \ vars_of N \ range_vars \" proof (rule subsetI) fix x assume "x \ vars_of (N \ \)" thus "x \ vars_of N \ range_vars \" proof (induction N) case (Var y) - then show ?case - unfolding range_vars_def vars_of.simps - by force + thus ?case + unfolding range_vars_def vars_of.simps by force next case (Const y) - then show ?case by simp + thus ?case + by simp next case (Comb N1 N2) - then show ?case + thus ?case by auto qed qed lemma range_vars_comp_subset: "range_vars (\\<^sub>1 \ \\<^sub>2) \ range_vars \\<^sub>1 \ range_vars \\<^sub>2" proof (rule subsetI) fix x assume "x \ range_vars (\\<^sub>1 \ \\<^sub>2)" then obtain x' where x'_\\<^sub>1_\\<^sub>2: "Var x' \ \\<^sub>1 \ \\<^sub>2 \ Var x'" and x_in: "x \ vars_of (Var x' \ \\<^sub>1 \ \\<^sub>2)" unfolding range_vars_def by auto show "x \ range_vars \\<^sub>1 \ range_vars \\<^sub>2" proof (cases "Var x' \ \\<^sub>1 = Var x'") case True with x'_\\<^sub>1_\\<^sub>2 x_in show ?thesis unfolding range_vars_def by auto next case x'_\\<^sub>1_neq: False show ?thesis proof (cases "Var x' \ \\<^sub>1 \ \\<^sub>2 = Var x' \ \\<^sub>1") case True with x'_\\<^sub>1_\\<^sub>2 x_in x'_\\<^sub>1_neq show ?thesis unfolding range_vars_def by auto next case False with x_in obtain y where "y \ vars_of (Var x' \ \\<^sub>1)" and "x \ vars_of (Var y \ \\<^sub>2)" by (smt (verit, best) UN_iff image_iff vars_of_subst_conv_Union) with x'_\\<^sub>1_neq show ?thesis unfolding range_vars_def by force qed qed qed theorem unify_gives_minimal_range: "unify M N = Some \ \ range_vars \ \ vars_of M \ vars_of N" proof (induct M N arbitrary: \ rule: unify.induct) case (1 c M N) thus ?case by simp next case (2 M N c) thus ?case by simp next case (3 c v) hence "\ = [(v, Const c)]" by simp thus ?case by (simp add: range_vars_def) next case (4 M N v) hence "\ = [(v, M \ N)]" by (metis option.discI option.sel unify.simps(4)) thus ?case by (auto simp: range_vars_def) next case (5 v M) hence "\ = [(v, M)]" by (metis option.discI option.inject unify.simps(5)) thus ?case by (auto simp: range_vars_def) next case (6 c d) hence "\ = []" by (metis option.distinct(1) option.sel unify.simps(6)) thus ?case by (simp add: range_vars_def) next case (7 M N M' N') from "7.prems" obtain \\<^sub>1 \\<^sub>2 where "unify M M' = Some \\<^sub>1" and "unify (N \ \\<^sub>1) (N' \ \\<^sub>1) = Some \\<^sub>2" and "\ = \\<^sub>1 \ \\<^sub>2" apply simp by (metis (no_types, lifting) option.case_eq_if option.collapse option.discI option.sel) from "7.hyps"(1) have range_\\<^sub>1: "range_vars \\<^sub>1 \ vars_of M \ vars_of M'" using \unify M M' = Some \\<^sub>1\ by simp from "7.hyps"(2) have "range_vars \\<^sub>2 \ vars_of (N \ \\<^sub>1) \ vars_of (N' \ \\<^sub>1)" using \unify M M' = Some \\<^sub>1\ \unify (N \ \\<^sub>1) (N' \ \\<^sub>1) = Some \\<^sub>2\ by simp hence range_\\<^sub>2: "range_vars \\<^sub>2 \ vars_of N \ vars_of N' \ range_vars \\<^sub>1" using vars_of_subst_subset[of _ \\<^sub>1] by auto have "range_vars \ = range_vars (\\<^sub>1 \ \\<^sub>2)" unfolding \\ = \\<^sub>1 \ \\<^sub>2\ by simp also have "... \ range_vars \\<^sub>1 \ range_vars \\<^sub>2" by (rule range_vars_comp_subset) also have "... \ range_vars \\<^sub>1 \ vars_of N \ vars_of N'" using range_\\<^sub>2 by auto also have "... \ vars_of M \ vars_of M' \ vars_of N \ vars_of N'" using range_\\<^sub>1 by auto finally show ?case by auto qed theorem unify_gives_minimal_domain: "unify M N = Some \ \ fst ` set \ \ vars_of M \ vars_of N" proof (induct M N arbitrary: \ rule: unify.induct) case (1 c M N) thus ?case by simp next case (2 M N c) thus ?case by simp next case (3 c v) hence "\ = [(v, Const c)]" by simp thus ?case by (simp add: dom_def) next case (4 M N v) hence "\ = [(v, M \ N)]" by (metis option.distinct(1) option.inject unify.simps(4)) thus ?case by (simp add: dom_def) next case (5 v M) hence "\ = [(v, M)]" by (metis option.distinct(1) option.inject unify.simps(5)) thus ?case by (simp add: dom_def) next case (6 c d) - then show ?case - by (cases "c = d") simp_all + hence "\ = []" + by (metis option.distinct(1) option.sel unify.simps(6)) + thus ?case + by simp next case (7 M N M' N') from "7.prems" obtain \\<^sub>1 \\<^sub>2 where "unify M M' = Some \\<^sub>1" and "unify (N \ \\<^sub>1) (N' \ \\<^sub>1) = Some \\<^sub>2" and "\ = \\<^sub>1 \ \\<^sub>2" apply simp by (metis (no_types, lifting) option.case_eq_if option.collapse option.discI option.sel) from "7.hyps"(1) have dom_\\<^sub>1: "fst ` set \\<^sub>1 \ vars_of M \ vars_of M'" using \unify M M' = Some \\<^sub>1\ by simp from "7.hyps"(2) have "fst ` set \\<^sub>2 \ vars_of (N \ \\<^sub>1) \ vars_of (N' \ \\<^sub>1)" using \unify M M' = Some \\<^sub>1\ \unify (N \ \\<^sub>1) (N' \ \\<^sub>1) = Some \\<^sub>2\ by simp hence dom_\\<^sub>2: "fst ` set \\<^sub>2 \ vars_of N \ vars_of N' \ range_vars \\<^sub>1" using vars_of_subst_subset[of _ \\<^sub>1] by auto have "fst ` set \ = fst ` set (\\<^sub>1 \ \\<^sub>2)" unfolding \\ = \\<^sub>1 \ \\<^sub>2\ by simp also have "... = fst ` set \\<^sub>1 \ fst ` set \\<^sub>2" by (auto simp: domain_comp) also have "... \ vars_of M \ vars_of M' \ fst ` set \\<^sub>2" - using dom_\\<^sub>1 by (auto simp: dom_map_of_conv_image_fst) + using dom_\\<^sub>1 by auto also have "... \ vars_of M \ vars_of M' \ vars_of N \ vars_of N' \ range_vars \\<^sub>1" - using dom_\\<^sub>2 by (auto simp: dom_map_of_conv_image_fst) + using dom_\\<^sub>2 by auto also have "... \ vars_of M \ vars_of M' \ vars_of N \ vars_of N'" using unify_gives_minimal_range[OF \unify M M' = Some \\<^sub>1\] by auto finally show ?case by auto qed subsection \Idempotent Most General Unifier\ definition IMGU :: "'a subst \ 'a trm \ 'a trm \ bool" where "IMGU \ t u \ Unifier \ t u \ (\\. Unifier \ t u \ \ \ \ \ \)" lemma IMGU_iff_Idem_and_MGU: "IMGU \ t u \ Idem \ \ MGU \ t u" unfolding IMGU_def Idem_def MGU_def by (smt (verit, best) subst_comp subst_eq_def) lemma unify_computes_IMGU: "unify M N = Some \ \ IMGU \ M N" by (simp add: IMGU_iff_Idem_and_MGU unify_computes_MGU unify_gives_Idem) end