diff --git a/src/ZF/ZF_Base.thy b/src/ZF/ZF_Base.thy --- a/src/ZF/ZF_Base.thy +++ b/src/ZF/ZF_Base.thy @@ -1,650 +1,650 @@ (* Title: ZF/ZF_Base.thy Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory Copyright 1993 University of Cambridge *) section \Base of Zermelo-Fraenkel Set Theory\ theory ZF_Base imports FOL begin subsection \Signature\ declare [[eta_contract = false]] typedecl i instance i :: "term" .. axiomatization mem :: "[i, i] \ o" (infixl \\\ 50) \ \membership relation\ and zero :: "i" (\0\) \ \the empty set\ and Pow :: "i \ i" \ \power sets\ and Inf :: "i" \ \infinite set\ and Union :: "i \ i" (\\_\ [90] 90) and PrimReplace :: "[i, [i, i] \ o] \ i" abbreviation not_mem :: "[i, i] \ o" (infixl \\\ 50) \ \negated membership relation\ where "x \ y \ \ (x \ y)" subsection \Bounded Quantifiers\ definition Ball :: "[i, i \ o] \ o" where "Ball(A, P) \ \x. x\A \ P(x)" definition Bex :: "[i, i \ o] \ o" where "Bex(A, P) \ \x. x\A \ P(x)" syntax "_Ball" :: "[pttrn, i, o] \ o" (\(3\_\_./ _)\ 10) "_Bex" :: "[pttrn, i, o] \ o" (\(3\_\_./ _)\ 10) translations "\x\A. P" \ "CONST Ball(A, \x. P)" "\x\A. P" \ "CONST Bex(A, \x. P)" subsection \Variations on Replacement\ (* Derived form of replacement, restricting P to its functional part. The resulting set (for functional P) is the same as with PrimReplace, but the rules are simpler. *) definition Replace :: "[i, [i, i] \ o] \ i" where "Replace(A,P) == PrimReplace(A, %x y. (\!z. P(x,z)) & P(x,y))" syntax "_Replace" :: "[pttrn, pttrn, i, o] => i" (\(1{_ ./ _ \ _, _})\) translations "{y. x\A, Q}" \ "CONST Replace(A, \x y. Q)" (* Functional form of replacement -- analgous to ML's map functional *) definition RepFun :: "[i, i \ i] \ i" where "RepFun(A,f) == {y . x\A, y=f(x)}" syntax "_RepFun" :: "[i, pttrn, i] => i" (\(1{_ ./ _ \ _})\ [51,0,51]) translations "{b. x\A}" \ "CONST RepFun(A, \x. b)" (* Separation and Pairing can be derived from the Replacement and Powerset Axioms using the following definitions. *) definition Collect :: "[i, i \ o] \ i" where "Collect(A,P) == {y . x\A, x=y & P(x)}" syntax "_Collect" :: "[pttrn, i, o] \ i" (\(1{_ \ _ ./ _})\) translations "{x\A. P}" \ "CONST Collect(A, \x. P)" subsection \General union and intersection\ definition Inter :: "i => i" (\\_\ [90] 90) where "\(A) == { x\\(A) . \y\A. x\y}" syntax "_UNION" :: "[pttrn, i, i] => i" (\(3\_\_./ _)\ 10) "_INTER" :: "[pttrn, i, i] => i" (\(3\_\_./ _)\ 10) translations "\x\A. B" == "CONST Union({B. x\A})" "\x\A. B" == "CONST Inter({B. x\A})" subsection \Finite sets and binary operations\ (*Unordered pairs (Upair) express binary union/intersection and cons; set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*) definition Upair :: "[i, i] => i" where "Upair(a,b) == {y. x\Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}" definition Subset :: "[i, i] \ o" (infixl \\\ 50) \ \subset relation\ where subset_def: "A \ B \ \x\A. x\B" definition Diff :: "[i, i] \ i" (infixl \-\ 65) \ \set difference\ where "A - B == { x\A . ~(x\B) }" definition Un :: "[i, i] \ i" (infixl \\\ 65) \ \binary union\ where "A \ B == \(Upair(A,B))" definition Int :: "[i, i] \ i" (infixl \\\ 70) \ \binary intersection\ where "A \ B == \(Upair(A,B))" definition cons :: "[i, i] => i" where "cons(a,A) == Upair(a,a) \ A" definition succ :: "i => i" where "succ(i) == cons(i, i)" nonterminal "is" syntax "" :: "i \ is" (\_\) "_Enum" :: "[i, is] \ is" (\_,/ _\) "_Finset" :: "is \ i" (\{(_)}\) translations "{x, xs}" == "CONST cons(x, {xs})" "{x}" == "CONST cons(x, 0)" subsection \Axioms\ (* ZF axioms -- see Suppes p.238 Axioms for Union, Pow and Replace state existence only, uniqueness is derivable using extensionality. *) axiomatization where extension: "A = B \ A \ B \ B \ A" and Union_iff: "A \ \(C) \ (\B\C. A\B)" and Pow_iff: "A \ Pow(B) \ A \ B" and (*We may name this set, though it is not uniquely defined.*) infinity: "0 \ Inf \ (\y\Inf. succ(y) \ Inf)" and (*This formulation facilitates case analysis on A.*) foundation: "A = 0 \ (\x\A. \y\x. y\A)" and (*Schema axiom since predicate P is a higher-order variable*) replacement: "(\x\A. \y z. P(x,y) \ P(x,z) \ y = z) \ b \ PrimReplace(A,P) \ (\x\A. P(x,b))" subsection \Definite descriptions -- via Replace over the set "1"\ definition The :: "(i \ o) \ i" (binder \THE \ 10) where the_def: "The(P) == \({y . x \ {0}, P(y)})" definition If :: "[o, i, i] \ i" (\(if (_)/ then (_)/ else (_))\ [10] 10) where if_def: "if P then a else b == THE z. P & z=a | ~P & z=b" abbreviation (input) old_if :: "[o, i, i] => i" (\if '(_,_,_')\) where "if(P,a,b) == If(P,a,b)" subsection \Ordered Pairing\ (* this "symmetric" definition works better than {{a}, {a,b}} *) definition Pair :: "[i, i] => i" where "Pair(a,b) == {{a,a}, {a,b}}" definition fst :: "i \ i" where "fst(p) == THE a. \b. p = Pair(a, b)" definition snd :: "i \ i" where "snd(p) == THE b. \a. p = Pair(a, b)" definition split :: "[[i, i] \ 'a, i] \ 'a::{}" \ \for pattern-matching\ where "split(c) == \p. c(fst(p), snd(p))" (* Patterns -- extends pre-defined type "pttrn" used in abstractions *) nonterminal patterns syntax "_pattern" :: "patterns => pttrn" (\\_\\) "" :: "pttrn => patterns" (\_\) "_patterns" :: "[pttrn, patterns] => patterns" (\_,/_\) "_Tuple" :: "[i, is] => i" (\\(_,/ _)\\) translations "\x, y, z\" == "\x, \y, z\\" "\x, y\" == "CONST Pair(x, y)" "\\x,y,zs\.b" == "CONST split(\x \y,zs\.b)" "\\x,y\.b" == "CONST split(\x y. b)" definition Sigma :: "[i, i \ i] \ i" where "Sigma(A,B) == \x\A. \y\B(x). {\x,y\}" abbreviation cart_prod :: "[i, i] => i" (infixr \\\ 80) \ \Cartesian product\ where "A \ B \ Sigma(A, \_. B)" subsection \Relations and Functions\ (*converse of relation r, inverse of function*) definition converse :: "i \ i" where "converse(r) == {z. w\r, \x y. w=\x,y\ \ z=\y,x\}" definition domain :: "i \ i" where "domain(r) == {x. w\r, \y. w=\x,y\}" definition range :: "i \ i" where "range(r) == domain(converse(r))" definition field :: "i \ i" where "field(r) == domain(r) \ range(r)" definition relation :: "i \ o" \ \recognizes sets of pairs\ where "relation(r) == \z\r. \x y. z = \x,y\" definition "function" :: "i \ o" \ \recognizes functions; can have non-pairs\ where "function(r) == \x y. \x,y\ \ r \ (\y'. \x,y'\ \ r \ y = y')" definition Image :: "[i, i] \ i" (infixl \``\ 90) \ \image\ where image_def: "r `` A == {y \ range(r). \x\A. \x,y\ \ r}" definition vimage :: "[i, i] \ i" (infixl \-``\ 90) \ \inverse image\ where vimage_def: "r -`` A == converse(r)``A" (* Restrict the relation r to the domain A *) definition restrict :: "[i, i] \ i" where "restrict(r,A) == {z \ r. \x\A. \y. z = \x,y\}" (* Abstraction, application and Cartesian product of a family of sets *) definition Lambda :: "[i, i \ i] \ i" where lam_def: "Lambda(A,b) == {\x,b(x)\. x\A}" definition "apply" :: "[i, i] \ i" (infixl \`\ 90) \ \function application\ where "f`a == \(f``{a})" definition Pi :: "[i, i \ i] \ i" where "Pi(A,B) == {f\Pow(Sigma(A,B)). A\domain(f) & function(f)}" -abbreviation function_space :: "[i, i] \ i" (infixr \->\ 60) \ \function space\ - where "A -> B \ Pi(A, \_. B)" +abbreviation function_space :: "[i, i] \ i" (infixr \\\ 60) \ \function space\ + where "A \ B \ Pi(A, \_. B)" (* binder syntax *) syntax "_PROD" :: "[pttrn, i, i] => i" (\(3\_\_./ _)\ 10) "_SUM" :: "[pttrn, i, i] => i" (\(3\_\_./ _)\ 10) "_lam" :: "[pttrn, i, i] => i" (\(3\_\_./ _)\ 10) translations "\x\A. B" == "CONST Pi(A, \x. B)" "\x\A. B" == "CONST Sigma(A, \x. B)" "\x\A. f" == "CONST Lambda(A, \x. f)" subsection \ASCII syntax\ notation (ASCII) cart_prod (infixr \*\ 80) and Int (infixl \Int\ 70) and Un (infixl \Un\ 65) and - function_space (infixr \\\ 60) and + function_space (infixr \->\ 60) and Subset (infixl \<=\ 50) and mem (infixl \:\ 50) and not_mem (infixl \~:\ 50) syntax (ASCII) "_Ball" :: "[pttrn, i, o] => o" (\(3ALL _:_./ _)\ 10) "_Bex" :: "[pttrn, i, o] => o" (\(3EX _:_./ _)\ 10) "_Collect" :: "[pttrn, i, o] => i" (\(1{_: _ ./ _})\) "_Replace" :: "[pttrn, pttrn, i, o] => i" (\(1{_ ./ _: _, _})\) "_RepFun" :: "[i, pttrn, i] => i" (\(1{_ ./ _: _})\ [51,0,51]) "_UNION" :: "[pttrn, i, i] => i" (\(3UN _:_./ _)\ 10) "_INTER" :: "[pttrn, i, i] => i" (\(3INT _:_./ _)\ 10) "_PROD" :: "[pttrn, i, i] => i" (\(3PROD _:_./ _)\ 10) "_SUM" :: "[pttrn, i, i] => i" (\(3SUM _:_./ _)\ 10) "_lam" :: "[pttrn, i, i] => i" (\(3lam _:_./ _)\ 10) "_Tuple" :: "[i, is] => i" (\<(_,/ _)>\) "_pattern" :: "patterns => pttrn" (\<_>\) subsection \Substitution\ (*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *) lemma subst_elem: "[| b\A; a=b |] ==> a\A" by (erule ssubst, assumption) subsection\Bounded universal quantifier\ lemma ballI [intro!]: "[| !!x. x\A ==> P(x) |] ==> \x\A. P(x)" by (simp add: Ball_def) lemmas strip = impI allI ballI lemma bspec [dest?]: "[| \x\A. P(x); x: A |] ==> P(x)" by (simp add: Ball_def) (*Instantiates x first: better for automatic theorem proving?*) lemma rev_ballE [elim]: "[| \x\A. P(x); x\A ==> Q; P(x) ==> Q |] ==> Q" by (simp add: Ball_def, blast) lemma ballE: "[| \x\A. P(x); P(x) ==> Q; x\A ==> Q |] ==> Q" by blast (*Used in the datatype package*) lemma rev_bspec: "[| x: A; \x\A. P(x) |] ==> P(x)" by (simp add: Ball_def) (*Trival rewrite rule; @{term"(\x\A.P)<->P"} holds only if A is nonempty!*) lemma ball_triv [simp]: "(\x\A. P) <-> ((\x. x\A) \ P)" by (simp add: Ball_def) (*Congruence rule for rewriting*) lemma ball_cong [cong]: "[| A=A'; !!x. x\A' ==> P(x) <-> P'(x) |] ==> (\x\A. P(x)) <-> (\x\A'. P'(x))" by (simp add: Ball_def) lemma atomize_ball: "(!!x. x \ A ==> P(x)) == Trueprop (\x\A. P(x))" by (simp only: Ball_def atomize_all atomize_imp) lemmas [symmetric, rulify] = atomize_ball and [symmetric, defn] = atomize_ball subsection\Bounded existential quantifier\ lemma bexI [intro]: "[| P(x); x: A |] ==> \x\A. P(x)" by (simp add: Bex_def, blast) (*The best argument order when there is only one @{term"x\A"}*) lemma rev_bexI: "[| x\A; P(x) |] ==> \x\A. P(x)" by blast (*Not of the general form for such rules. The existential quanitifer becomes universal. *) lemma bexCI: "[| \x\A. ~P(x) ==> P(a); a: A |] ==> \x\A. P(x)" by blast lemma bexE [elim!]: "[| \x\A. P(x); !!x. [| x\A; P(x) |] ==> Q |] ==> Q" by (simp add: Bex_def, blast) (*We do not even have @{term"(\x\A. True) <-> True"} unless @{term"A" is nonempty!!*) lemma bex_triv [simp]: "(\x\A. P) <-> ((\x. x\A) & P)" by (simp add: Bex_def) lemma bex_cong [cong]: "[| A=A'; !!x. x\A' ==> P(x) <-> P'(x) |] ==> (\x\A. P(x)) <-> (\x\A'. P'(x))" by (simp add: Bex_def cong: conj_cong) subsection\Rules for subsets\ lemma subsetI [intro!]: "(!!x. x\A ==> x\B) ==> A \ B" by (simp add: subset_def) (*Rule in Modus Ponens style [was called subsetE] *) lemma subsetD [elim]: "[| A \ B; c\A |] ==> c\B" apply (unfold subset_def) apply (erule bspec, assumption) done (*Classical elimination rule*) lemma subsetCE [elim]: "[| A \ B; c\A ==> P; c\B ==> P |] ==> P" by (simp add: subset_def, blast) (*Sometimes useful with premises in this order*) lemma rev_subsetD: "[| c\A; A<=B |] ==> c\B" by blast lemma contra_subsetD: "[| A \ B; c \ B |] ==> c \ A" by blast lemma rev_contra_subsetD: "[| c \ B; A \ B |] ==> c \ A" by blast lemma subset_refl [simp]: "A \ A" by blast lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C" by blast (*Useful for proving A<=B by rewriting in some cases*) lemma subset_iff: "A<=B <-> (\x. x\A \ x\B)" apply (unfold subset_def Ball_def) apply (rule iff_refl) done text\For calculations\ declare subsetD [trans] rev_subsetD [trans] subset_trans [trans] subsection\Rules for equality\ (*Anti-symmetry of the subset relation*) lemma equalityI [intro]: "[| A \ B; B \ A |] ==> A = B" by (rule extension [THEN iffD2], rule conjI) lemma equality_iffI: "(!!x. x\A <-> x\B) ==> A = B" by (rule equalityI, blast+) lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1] lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2] lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P" by (blast dest: equalityD1 equalityD2) lemma equalityCE: "[| A = B; [| c\A; c\B |] ==> P; [| c\A; c\B |] ==> P |] ==> P" by (erule equalityE, blast) lemma equality_iffD: "A = B ==> (!!x. x \ A <-> x \ B)" by auto subsection\Rules for Replace -- the derived form of replacement\ lemma Replace_iff: "b \ {y. x\A, P(x,y)} <-> (\x\A. P(x,b) & (\y. P(x,y) \ y=b))" apply (unfold Replace_def) apply (rule replacement [THEN iff_trans], blast+) done (*Introduction; there must be a unique y such that P(x,y), namely y=b. *) lemma ReplaceI [intro]: "[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==> b \ {y. x\A, P(x,y)}" by (rule Replace_iff [THEN iffD2], blast) (*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *) lemma ReplaceE: "[| b \ {y. x\A, P(x,y)}; !!x. [| x: A; P(x,b); \y. P(x,y)\y=b |] ==> R |] ==> R" by (rule Replace_iff [THEN iffD1, THEN bexE], simp+) (*As above but without the (generally useless) 3rd assumption*) lemma ReplaceE2 [elim!]: "[| b \ {y. x\A, P(x,y)}; !!x. [| x: A; P(x,b) |] ==> R |] ==> R" by (erule ReplaceE, blast) lemma Replace_cong [cong]: "[| A=B; !!x y. x\B ==> P(x,y) <-> Q(x,y) |] ==> Replace(A,P) = Replace(B,Q)" apply (rule equality_iffI) apply (simp add: Replace_iff) done subsection\Rules for RepFun\ lemma RepFunI: "a \ A ==> f(a) \ {f(x). x\A}" by (simp add: RepFun_def Replace_iff, blast) (*Useful for coinduction proofs*) lemma RepFun_eqI [intro]: "[| b=f(a); a \ A |] ==> b \ {f(x). x\A}" apply (erule ssubst) apply (erule RepFunI) done lemma RepFunE [elim!]: "[| b \ {f(x). x\A}; !!x.[| x\A; b=f(x) |] ==> P |] ==> P" by (simp add: RepFun_def Replace_iff, blast) lemma RepFun_cong [cong]: "[| A=B; !!x. x\B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)" by (simp add: RepFun_def) lemma RepFun_iff [simp]: "b \ {f(x). x\A} <-> (\x\A. b=f(x))" by (unfold Bex_def, blast) lemma triv_RepFun [simp]: "{x. x\A} = A" by blast subsection\Rules for Collect -- forming a subset by separation\ (*Separation is derivable from Replacement*) lemma separation [simp]: "a \ {x\A. P(x)} <-> a\A & P(a)" by (unfold Collect_def, blast) lemma CollectI [intro!]: "[| a\A; P(a) |] ==> a \ {x\A. P(x)}" by simp lemma CollectE [elim!]: "[| a \ {x\A. P(x)}; [| a\A; P(a) |] ==> R |] ==> R" by simp lemma CollectD1: "a \ {x\A. P(x)} ==> a\A" by (erule CollectE, assumption) lemma CollectD2: "a \ {x\A. P(x)} ==> P(a)" by (erule CollectE, assumption) lemma Collect_cong [cong]: "[| A=B; !!x. x\B ==> P(x) <-> Q(x) |] ==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))" by (simp add: Collect_def) subsection\Rules for Unions\ declare Union_iff [simp] (*The order of the premises presupposes that C is rigid; A may be flexible*) lemma UnionI [intro]: "[| B: C; A: B |] ==> A: \(C)" by (simp, blast) lemma UnionE [elim!]: "[| A \ \(C); !!B.[| A: B; B: C |] ==> R |] ==> R" by (simp, blast) subsection\Rules for Unions of families\ (* @{term"\x\A. B(x)"} abbreviates @{term"\({B(x). x\A})"} *) lemma UN_iff [simp]: "b \ (\x\A. B(x)) <-> (\x\A. b \ B(x))" by (simp add: Bex_def, blast) (*The order of the premises presupposes that A is rigid; b may be flexible*) lemma UN_I: "[| a: A; b: B(a) |] ==> b: (\x\A. B(x))" by (simp, blast) lemma UN_E [elim!]: "[| b \ (\x\A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R" by blast lemma UN_cong: "[| A=B; !!x. x\B ==> C(x)=D(x) |] ==> (\x\A. C(x)) = (\x\B. D(x))" by simp (*No "Addcongs [UN_cong]" because @{term\} is a combination of constants*) (* UN_E appears before UnionE so that it is tried first, to avoid expensive calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge the search space.*) subsection\Rules for the empty set\ (*The set @{term"{x\0. False}"} is empty; by foundation it equals 0 See Suppes, page 21.*) lemma not_mem_empty [simp]: "a \ 0" apply (cut_tac foundation) apply (best dest: equalityD2) done lemmas emptyE [elim!] = not_mem_empty [THEN notE] lemma empty_subsetI [simp]: "0 \ A" by blast lemma equals0I: "[| !!y. y\A ==> False |] ==> A=0" by blast lemma equals0D [dest]: "A=0 ==> a \ A" by blast declare sym [THEN equals0D, dest] lemma not_emptyI: "a\A ==> A \ 0" by blast lemma not_emptyE: "[| A \ 0; !!x. x\A ==> R |] ==> R" by blast subsection\Rules for Inter\ (*Not obviously useful for proving InterI, InterD, InterE*) lemma Inter_iff: "A \ \(C) <-> (\x\C. A: x) & C\0" by (simp add: Inter_def Ball_def, blast) (* Intersection is well-behaved only if the family is non-empty! *) lemma InterI [intro!]: "[| !!x. x: C ==> A: x; C\0 |] ==> A \ \(C)" by (simp add: Inter_iff) (*A "destruct" rule -- every B in C contains A as an element, but A\B can hold when B\C does not! This rule is analogous to "spec". *) lemma InterD [elim, Pure.elim]: "[| A \ \(C); B \ C |] ==> A \ B" by (unfold Inter_def, blast) (*"Classical" elimination rule -- does not require exhibiting @{term"B\C"} *) lemma InterE [elim]: "[| A \ \(C); B\C ==> R; A\B ==> R |] ==> R" by (simp add: Inter_def, blast) subsection\Rules for Intersections of families\ (* @{term"\x\A. B(x)"} abbreviates @{term"\({B(x). x\A})"} *) lemma INT_iff: "b \ (\x\A. B(x)) <-> (\x\A. b \ B(x)) & A\0" by (force simp add: Inter_def) lemma INT_I: "[| !!x. x: A ==> b: B(x); A\0 |] ==> b: (\x\A. B(x))" by blast lemma INT_E: "[| b \ (\x\A. B(x)); a: A |] ==> b \ B(a)" by blast lemma INT_cong: "[| A=B; !!x. x\B ==> C(x)=D(x) |] ==> (\x\A. C(x)) = (\x\B. D(x))" by simp (*No "Addcongs [INT_cong]" because @{term\} is a combination of constants*) subsection\Rules for Powersets\ lemma PowI: "A \ B ==> A \ Pow(B)" by (erule Pow_iff [THEN iffD2]) lemma PowD: "A \ Pow(B) ==> A<=B" by (erule Pow_iff [THEN iffD1]) declare Pow_iff [iff] lemmas Pow_bottom = empty_subsetI [THEN PowI] \ \\<^term>\0 \ Pow(B)\\ lemmas Pow_top = subset_refl [THEN PowI] \ \\<^term>\A \ Pow(A)\\ subsection\Cantor's Theorem: There is no surjection from a set to its powerset.\ (*The search is undirected. Allowing redundant introduction rules may make it diverge. Variable b represents ANY map, such as (lam x\A.b(x)): A->Pow(A). *) lemma cantor: "\S \ Pow(A). \x\A. b(x) \ S" by (best elim!: equalityCE del: ReplaceI RepFun_eqI) end