diff --git a/src/HOL/Library/AList.thy b/src/HOL/Library/AList.thy --- a/src/HOL/Library/AList.thy +++ b/src/HOL/Library/AList.thy @@ -1,780 +1,780 @@ (* Title: HOL/Library/AList.thy Author: Norbert Schirmer, Tobias Nipkow, Martin Wildmoser, TU Muenchen *) section \Implementation of Association Lists\ theory AList imports Main begin context begin text \ The operations preserve distinctness of keys and function \<^term>\clearjunk\ distributes over them. Since \<^term>\clearjunk\ enforces distinctness of keys it can be used to establish the invariant, e.g. for inductive proofs. \ subsection \\update\ and \updates\\ qualified primrec update :: "'key \ 'val \ ('key \ 'val) list \ ('key \ 'val) list" where "update k v [] = [(k, v)]" | "update k v (p # ps) = (if fst p = k then (k, v) # ps else p # update k v ps)" lemma update_conv': "map_of (update k v al) = (map_of al)(k\v)" by (induct al) (auto simp add: fun_eq_iff) corollary update_conv: "map_of (update k v al) k' = ((map_of al)(k\v)) k'" by (simp add: update_conv') lemma dom_update: "fst ` set (update k v al) = {k} \ fst ` set al" by (induct al) auto lemma update_keys: "map fst (update k v al) = (if k \ set (map fst al) then map fst al else map fst al @ [k])" by (induct al) simp_all lemma distinct_update: assumes "distinct (map fst al)" shows "distinct (map fst (update k v al))" using assms by (simp add: update_keys) lemma update_filter: "a \ k \ update k v [q\ps. fst q \ a] = [q\update k v ps. fst q \ a]" by (induct ps) auto lemma update_triv: "map_of al k = Some v \ update k v al = al" by (induct al) auto lemma update_nonempty [simp]: "update k v al \ []" by (induct al) auto lemma update_eqD: "update k v al = update k v' al' \ v = v'" proof (induct al arbitrary: al') case Nil then show ?case by (cases al') (auto split: if_split_asm) next case Cons then show ?case by (cases al') (auto split: if_split_asm) qed lemma update_last [simp]: "update k v (update k v' al) = update k v al" by (induct al) auto text \Note that the lists are not necessarily the same: \<^term>\update k v (update k' v' []) = [(k', v'), (k, v)]\ and \<^term>\update k' v' (update k v []) = [(k, v), (k', v')]\.\ lemma update_swap: "k \ k' \ map_of (update k v (update k' v' al)) = map_of (update k' v' (update k v al))" by (simp add: update_conv' fun_eq_iff) lemma update_Some_unfold: "map_of (update k v al) x = Some y \ x = k \ v = y \ x \ k \ map_of al x = Some y" by (simp add: update_conv' map_upd_Some_unfold) lemma image_update [simp]: "x \ A \ map_of (update x y al) ` A = map_of al ` A" by (auto simp add: update_conv') qualified definition updates :: "'key list \ 'val list \ ('key \ 'val) list \ ('key \ 'val) list" where "updates ks vs = fold (case_prod update) (zip ks vs)" lemma updates_simps [simp]: "updates [] vs ps = ps" "updates ks [] ps = ps" "updates (k#ks) (v#vs) ps = updates ks vs (update k v ps)" by (simp_all add: updates_def) lemma updates_key_simp [simp]: "updates (k # ks) vs ps = (case vs of [] \ ps | v # vs \ updates ks vs (update k v ps))" by (cases vs) simp_all lemma updates_conv': "map_of (updates ks vs al) = (map_of al)(ks[\]vs)" proof - have "map_of \ fold (case_prod update) (zip ks vs) = fold (\(k, v) f. f(k \ v)) (zip ks vs) \ map_of" by (rule fold_commute) (auto simp add: fun_eq_iff update_conv') then show ?thesis by (auto simp add: updates_def fun_eq_iff map_upds_fold_map_upd foldl_conv_fold split_def) qed lemma updates_conv: "map_of (updates ks vs al) k = ((map_of al)(ks[\]vs)) k" by (simp add: updates_conv') lemma distinct_updates: assumes "distinct (map fst al)" shows "distinct (map fst (updates ks vs al))" proof - have "distinct (fold (\(k, v) al. if k \ set al then al else al @ [k]) (zip ks vs) (map fst al))" by (rule fold_invariant [of "zip ks vs" "\_. True"]) (auto intro: assms) moreover have "map fst \ fold (case_prod update) (zip ks vs) = fold (\(k, v) al. if k \ set al then al else al @ [k]) (zip ks vs) \ map fst" by (rule fold_commute) (simp add: update_keys split_def case_prod_beta comp_def) ultimately show ?thesis by (simp add: updates_def fun_eq_iff) qed lemma updates_append1[simp]: "size ks < size vs \ updates (ks@[k]) vs al = update k (vs!size ks) (updates ks vs al)" by (induct ks arbitrary: vs al) (auto split: list.splits) lemma updates_list_update_drop[simp]: "size ks \ i \ i < size vs \ updates ks (vs[i:=v]) al = updates ks vs al" by (induct ks arbitrary: al vs i) (auto split: list.splits nat.splits) lemma update_updates_conv_if: "map_of (updates xs ys (update x y al)) = map_of (if x \ set (take (length ys) xs) then updates xs ys al else (update x y (updates xs ys al)))" by (simp add: updates_conv' update_conv' map_upd_upds_conv_if) lemma updates_twist [simp]: "k \ set ks \ map_of (updates ks vs (update k v al)) = map_of (update k v (updates ks vs al))" by (simp add: updates_conv' update_conv') lemma updates_apply_notin [simp]: "k \ set ks \ map_of (updates ks vs al) k = map_of al k" by (simp add: updates_conv) lemma updates_append_drop [simp]: "size xs = size ys \ updates (xs @ zs) ys al = updates xs ys al" by (induct xs arbitrary: ys al) (auto split: list.splits) lemma updates_append2_drop [simp]: "size xs = size ys \ updates xs (ys @ zs) al = updates xs ys al" by (induct xs arbitrary: ys al) (auto split: list.splits) subsection \\delete\\ qualified definition delete :: "'key \ ('key \ 'val) list \ ('key \ 'val) list" where delete_eq: "delete k = filter (\(k', _). k \ k')" lemma delete_simps [simp]: "delete k [] = []" "delete k (p # ps) = (if fst p = k then delete k ps else p # delete k ps)" by (auto simp add: delete_eq) lemma delete_conv': "map_of (delete k al) = (map_of al)(k := None)" by (induct al) (auto simp add: fun_eq_iff) corollary delete_conv: "map_of (delete k al) k' = ((map_of al)(k := None)) k'" by (simp add: delete_conv') lemma delete_keys: "map fst (delete k al) = removeAll k (map fst al)" by (simp add: delete_eq removeAll_filter_not_eq filter_map split_def comp_def) lemma distinct_delete: assumes "distinct (map fst al)" shows "distinct (map fst (delete k al))" using assms by (simp add: delete_keys distinct_removeAll) lemma delete_id [simp]: "k \ fst ` set al \ delete k al = al" by (auto simp add: image_iff delete_eq filter_id_conv) lemma delete_idem: "delete k (delete k al) = delete k al" by (simp add: delete_eq) lemma map_of_delete [simp]: "k' \ k \ map_of (delete k al) k' = map_of al k'" by (simp add: delete_conv') lemma delete_notin_dom: "k \ fst ` set (delete k al)" by (auto simp add: delete_eq) lemma dom_delete_subset: "fst ` set (delete k al) \ fst ` set al" by (auto simp add: delete_eq) lemma delete_update_same: "delete k (update k v al) = delete k al" by (induct al) simp_all lemma delete_update: "k \ l \ delete l (update k v al) = update k v (delete l al)" by (induct al) simp_all lemma delete_twist: "delete x (delete y al) = delete y (delete x al)" by (simp add: delete_eq conj_commute) lemma length_delete_le: "length (delete k al) \ length al" by (simp add: delete_eq) subsection \\update_with_aux\ and \delete_aux\\ qualified primrec update_with_aux :: "'val \ 'key \ ('val \ 'val) \ ('key \ 'val) list \ ('key \ 'val) list" where "update_with_aux v k f [] = [(k, f v)]" | "update_with_aux v k f (p # ps) = (if (fst p = k) then (k, f (snd p)) # ps else p # update_with_aux v k f ps)" text \ The above \<^term>\delete\ traverses all the list even if it has found the key. This one does not have to keep going because is assumes the invariant that keys are distinct. \ qualified fun delete_aux :: "'key \ ('key \ 'val) list \ ('key \ 'val) list" where "delete_aux k [] = []" | "delete_aux k ((k', v) # xs) = (if k = k' then xs else (k', v) # delete_aux k xs)" lemma map_of_update_with_aux': "map_of (update_with_aux v k f ps) k' = ((map_of ps)(k \ (case map_of ps k of None \ f v | Some v \ f v))) k'" by (induct ps) auto lemma map_of_update_with_aux: "map_of (update_with_aux v k f ps) = (map_of ps)(k \ (case map_of ps k of None \ f v | Some v \ f v))" by (simp add: fun_eq_iff map_of_update_with_aux') lemma dom_update_with_aux: "fst ` set (update_with_aux v k f ps) = {k} \ fst ` set ps" by (induct ps) auto lemma distinct_update_with_aux [simp]: "distinct (map fst (update_with_aux v k f ps)) = distinct (map fst ps)" by (induct ps) (auto simp add: dom_update_with_aux) lemma set_update_with_aux: "distinct (map fst xs) \ set (update_with_aux v k f xs) = (set xs - {k} \ UNIV \ {(k, f (case map_of xs k of None \ v | Some v \ v))})" by (induct xs) (auto intro: rev_image_eqI) lemma set_delete_aux: "distinct (map fst xs) \ set (delete_aux k xs) = set xs - {k} \ UNIV" apply (induct xs) apply simp_all apply clarsimp apply (fastforce intro: rev_image_eqI) done lemma dom_delete_aux: "distinct (map fst ps) \ fst ` set (delete_aux k ps) = fst ` set ps - {k}" by (auto simp add: set_delete_aux) lemma distinct_delete_aux [simp]: "distinct (map fst ps) \ distinct (map fst (delete_aux k ps))" proof (induct ps) case Nil then show ?case by simp next case (Cons a ps) obtain k' v where a: "a = (k', v)" by (cases a) show ?case proof (cases "k' = k") case True with Cons a show ?thesis by simp next case False with Cons a have "k' \ fst ` set ps" "distinct (map fst ps)" by simp_all with False a have "k' \ fst ` set (delete_aux k ps)" by (auto dest!: dom_delete_aux[where k=k]) with Cons a show ?thesis by simp qed qed lemma map_of_delete_aux': "distinct (map fst xs) \ map_of (delete_aux k xs) = (map_of xs)(k := None)" apply (induct xs) apply (fastforce simp add: map_of_eq_None_iff fun_upd_twist) apply (auto intro!: ext) apply (simp add: map_of_eq_None_iff) done lemma map_of_delete_aux: "distinct (map fst xs) \ map_of (delete_aux k xs) k' = ((map_of xs)(k := None)) k'" by (simp add: map_of_delete_aux') lemma delete_aux_eq_Nil_conv: "delete_aux k ts = [] \ ts = [] \ (\v. ts = [(k, v)])" by (cases ts) (auto split: if_split_asm) subsection \\restrict\\ qualified definition restrict :: "'key set \ ('key \ 'val) list \ ('key \ 'val) list" where restrict_eq: "restrict A = filter (\(k, v). k \ A)" lemma restr_simps [simp]: "restrict A [] = []" "restrict A (p#ps) = (if fst p \ A then p # restrict A ps else restrict A ps)" by (auto simp add: restrict_eq) lemma restr_conv': "map_of (restrict A al) = ((map_of al)|` A)" proof show "map_of (restrict A al) k = ((map_of al)|` A) k" for k apply (induct al) apply simp apply (cases "k \ A") apply auto done qed corollary restr_conv: "map_of (restrict A al) k = ((map_of al)|` A) k" by (simp add: restr_conv') lemma distinct_restr: "distinct (map fst al) \ distinct (map fst (restrict A al))" by (induct al) (auto simp add: restrict_eq) lemma restr_empty [simp]: "restrict {} al = []" "restrict A [] = []" by (induct al) (auto simp add: restrict_eq) lemma restr_in [simp]: "x \ A \ map_of (restrict A al) x = map_of al x" by (simp add: restr_conv') lemma restr_out [simp]: "x \ A \ map_of (restrict A al) x = None" by (simp add: restr_conv') lemma dom_restr [simp]: "fst ` set (restrict A al) = fst ` set al \ A" by (induct al) (auto simp add: restrict_eq) lemma restr_upd_same [simp]: "restrict (-{x}) (update x y al) = restrict (-{x}) al" by (induct al) (auto simp add: restrict_eq) lemma restr_restr [simp]: "restrict A (restrict B al) = restrict (A\B) al" by (induct al) (auto simp add: restrict_eq) lemma restr_update[simp]: "map_of (restrict D (update x y al)) = map_of ((if x \ D then (update x y (restrict (D-{x}) al)) else restrict D al))" by (simp add: restr_conv' update_conv') lemma restr_delete [simp]: "delete x (restrict D al) = (if x \ D then restrict (D - {x}) al else restrict D al)" apply (simp add: delete_eq restrict_eq) apply (auto simp add: split_def) proof - have "y \ x \ x \ y" for y by auto then show "[p \ al. fst p \ D \ x \ fst p] = [p \ al. fst p \ D \ fst p \ x]" by simp assume "x \ D" then have "y \ D \ y \ D \ x \ y" for y by auto then show "[p \ al . fst p \ D \ x \ fst p] = [p \ al . fst p \ D]" by simp qed lemma update_restr: "map_of (update x y (restrict D al)) = map_of (update x y (restrict (D - {x}) al))" by (simp add: update_conv' restr_conv') (rule fun_upd_restrict) lemma update_restr_conv [simp]: "x \ D \ map_of (update x y (restrict D al)) = map_of (update x y (restrict (D - {x}) al))" by (simp add: update_conv' restr_conv') lemma restr_updates [simp]: "length xs = length ys \ set xs \ D \ map_of (restrict D (updates xs ys al)) = map_of (updates xs ys (restrict (D - set xs) al))" by (simp add: updates_conv' restr_conv') lemma restr_delete_twist: "(restrict A (delete a ps)) = delete a (restrict A ps)" by (induct ps) auto subsection \\clearjunk\\ qualified function clearjunk :: "('key \ 'val) list \ ('key \ 'val) list" where "clearjunk [] = []" | "clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)" by pat_completeness auto termination by (relation "measure length") (simp_all add: less_Suc_eq_le length_delete_le) lemma map_of_clearjunk: "map_of (clearjunk al) = map_of al" by (induct al rule: clearjunk.induct) (simp_all add: fun_eq_iff) lemma clearjunk_keys_set: "set (map fst (clearjunk al)) = set (map fst al)" by (induct al rule: clearjunk.induct) (simp_all add: delete_keys) lemma dom_clearjunk: "fst ` set (clearjunk al) = fst ` set al" using clearjunk_keys_set by simp lemma distinct_clearjunk [simp]: "distinct (map fst (clearjunk al))" by (induct al rule: clearjunk.induct) (simp_all del: set_map add: clearjunk_keys_set delete_keys) lemma ran_clearjunk: "ran (map_of (clearjunk al)) = ran (map_of al)" by (simp add: map_of_clearjunk) lemma ran_map_of: "ran (map_of al) = snd ` set (clearjunk al)" proof - have "ran (map_of al) = ran (map_of (clearjunk al))" by (simp add: ran_clearjunk) also have "\ = snd ` set (clearjunk al)" by (simp add: ran_distinct) finally show ?thesis . qed lemma graph_map_of: "Map.graph (map_of al) = set (clearjunk al)" - by (metis distinct_clearjunk graph_map_of_if_distinct_ran map_of_clearjunk) + by (metis distinct_clearjunk graph_map_of_if_distinct_dom map_of_clearjunk) lemma clearjunk_update: "clearjunk (update k v al) = update k v (clearjunk al)" by (induct al rule: clearjunk.induct) (simp_all add: delete_update) lemma clearjunk_updates: "clearjunk (updates ks vs al) = updates ks vs (clearjunk al)" proof - have "clearjunk \ fold (case_prod update) (zip ks vs) = fold (case_prod update) (zip ks vs) \ clearjunk" by (rule fold_commute) (simp add: clearjunk_update case_prod_beta o_def) then show ?thesis by (simp add: updates_def fun_eq_iff) qed lemma clearjunk_delete: "clearjunk (delete x al) = delete x (clearjunk al)" by (induct al rule: clearjunk.induct) (auto simp add: delete_idem delete_twist) lemma clearjunk_restrict: "clearjunk (restrict A al) = restrict A (clearjunk al)" by (induct al rule: clearjunk.induct) (auto simp add: restr_delete_twist) lemma distinct_clearjunk_id [simp]: "distinct (map fst al) \ clearjunk al = al" by (induct al rule: clearjunk.induct) auto lemma clearjunk_idem: "clearjunk (clearjunk al) = clearjunk al" by simp lemma length_clearjunk: "length (clearjunk al) \ length al" proof (induct al rule: clearjunk.induct [case_names Nil Cons]) case Nil then show ?case by simp next case (Cons kv al) moreover have "length (delete (fst kv) al) \ length al" by (fact length_delete_le) ultimately have "length (clearjunk (delete (fst kv) al)) \ length al" by (rule order_trans) then show ?case by simp qed lemma delete_map: assumes "\kv. fst (f kv) = fst kv" shows "delete k (map f ps) = map f (delete k ps)" by (simp add: delete_eq filter_map comp_def split_def assms) lemma clearjunk_map: assumes "\kv. fst (f kv) = fst kv" shows "clearjunk (map f ps) = map f (clearjunk ps)" by (induct ps rule: clearjunk.induct [case_names Nil Cons]) (simp_all add: clearjunk_delete delete_map assms) subsection \\map_ran\\ definition map_ran :: "('key \ 'val1 \ 'val2) \ ('key \ 'val1) list \ ('key \ 'val2) list" where "map_ran f = map (\(k, v). (k, f k v))" lemma map_ran_simps [simp]: "map_ran f [] = []" "map_ran f ((k, v) # ps) = (k, f k v) # map_ran f ps" by (simp_all add: map_ran_def) lemma map_ran_Cons_sel: "map_ran f (p # ps) = (fst p, f (fst p) (snd p)) # map_ran f ps" by (simp add: map_ran_def case_prod_beta) lemma length_map_ran[simp]: "length (map_ran f al) = length al" by (simp add: map_ran_def) lemma map_fst_map_ran[simp]: "map fst (map_ran f al) = map fst al" by (simp add: map_ran_def case_prod_beta) lemma dom_map_ran: "fst ` set (map_ran f al) = fst ` set al" by (simp add: map_ran_def image_image split_def) lemma map_ran_conv: "map_of (map_ran f al) k = map_option (f k) (map_of al k)" by (induct al) auto lemma distinct_map_ran: "distinct (map fst al) \ distinct (map fst (map_ran f al))" by simp lemma map_ran_filter: "map_ran f [p\ps. fst p \ a] = [p\map_ran f ps. fst p \ a]" by (simp add: map_ran_def filter_map split_def comp_def) lemma clearjunk_map_ran: "clearjunk (map_ran f al) = map_ran f (clearjunk al)" by (simp add: map_ran_def split_def clearjunk_map) subsection \\merge\\ qualified definition merge :: "('key \ 'val) list \ ('key \ 'val) list \ ('key \ 'val) list" where "merge qs ps = foldr (\(k, v). update k v) ps qs" lemma merge_simps [simp]: "merge qs [] = qs" "merge qs (p#ps) = update (fst p) (snd p) (merge qs ps)" by (simp_all add: merge_def split_def) lemma merge_updates: "merge qs ps = updates (rev (map fst ps)) (rev (map snd ps)) qs" by (simp add: merge_def updates_def foldr_conv_fold zip_rev zip_map_fst_snd) lemma dom_merge: "fst ` set (merge xs ys) = fst ` set xs \ fst ` set ys" by (induct ys arbitrary: xs) (auto simp add: dom_update) lemma distinct_merge: "distinct (map fst xs) \ distinct (map fst (merge xs ys))" by (simp add: merge_updates distinct_updates) lemma clearjunk_merge: "clearjunk (merge xs ys) = merge (clearjunk xs) ys" by (simp add: merge_updates clearjunk_updates) lemma merge_conv': "map_of (merge xs ys) = map_of xs ++ map_of ys" proof - have "map_of \ fold (case_prod update) (rev ys) = fold (\(k, v) m. m(k \ v)) (rev ys) \ map_of" by (rule fold_commute) (simp add: update_conv' case_prod_beta split_def fun_eq_iff) then show ?thesis by (simp add: merge_def map_add_map_of_foldr foldr_conv_fold fun_eq_iff) qed corollary merge_conv: "map_of (merge xs ys) k = (map_of xs ++ map_of ys) k" by (simp add: merge_conv') lemma merge_empty: "map_of (merge [] ys) = map_of ys" by (simp add: merge_conv') lemma merge_assoc [simp]: "map_of (merge m1 (merge m2 m3)) = map_of (merge (merge m1 m2) m3)" by (simp add: merge_conv') lemma merge_Some_iff: "map_of (merge m n) k = Some x \ map_of n k = Some x \ map_of n k = None \ map_of m k = Some x" by (simp add: merge_conv' map_add_Some_iff) lemmas merge_SomeD [dest!] = merge_Some_iff [THEN iffD1] lemma merge_find_right [simp]: "map_of n k = Some v \ map_of (merge m n) k = Some v" by (simp add: merge_conv') lemma merge_None [iff]: "(map_of (merge m n) k = None) = (map_of n k = None \ map_of m k = None)" by (simp add: merge_conv') lemma merge_upd [simp]: "map_of (merge m (update k v n)) = map_of (update k v (merge m n))" by (simp add: update_conv' merge_conv') lemma merge_updatess [simp]: "map_of (merge m (updates xs ys n)) = map_of (updates xs ys (merge m n))" by (simp add: updates_conv' merge_conv') lemma merge_append: "map_of (xs @ ys) = map_of (merge ys xs)" by (simp add: merge_conv') subsection \\compose\\ qualified function compose :: "('key \ 'a) list \ ('a \ 'b) list \ ('key \ 'b) list" where "compose [] ys = []" | "compose (x # xs) ys = (case map_of ys (snd x) of None \ compose (delete (fst x) xs) ys | Some v \ (fst x, v) # compose xs ys)" by pat_completeness auto termination by (relation "measure (length \ fst)") (simp_all add: less_Suc_eq_le length_delete_le) lemma compose_first_None [simp]: "map_of xs k = None \ map_of (compose xs ys) k = None" by (induct xs ys rule: compose.induct) (auto split: option.splits if_split_asm) lemma compose_conv: "map_of (compose xs ys) k = (map_of ys \\<^sub>m map_of xs) k" proof (induct xs ys rule: compose.induct) case 1 then show ?case by simp next case (2 x xs ys) show ?case proof (cases "map_of ys (snd x)") case None with 2 have hyp: "map_of (compose (delete (fst x) xs) ys) k = (map_of ys \\<^sub>m map_of (delete (fst x) xs)) k" by simp show ?thesis proof (cases "fst x = k") case True from True delete_notin_dom [of k xs] have "map_of (delete (fst x) xs) k = None" by (simp add: map_of_eq_None_iff) with hyp show ?thesis using True None by simp next case False from False have "map_of (delete (fst x) xs) k = map_of xs k" by simp with hyp show ?thesis using False None by (simp add: map_comp_def) qed next case (Some v) with 2 have "map_of (compose xs ys) k = (map_of ys \\<^sub>m map_of xs) k" by simp with Some show ?thesis by (auto simp add: map_comp_def) qed qed lemma compose_conv': "map_of (compose xs ys) = (map_of ys \\<^sub>m map_of xs)" by (rule ext) (rule compose_conv) lemma compose_first_Some [simp]: "map_of xs k = Some v \ map_of (compose xs ys) k = map_of ys v" by (simp add: compose_conv) lemma dom_compose: "fst ` set (compose xs ys) \ fst ` set xs" proof (induct xs ys rule: compose.induct) case 1 then show ?case by simp next case (2 x xs ys) show ?case proof (cases "map_of ys (snd x)") case None with "2.hyps" have "fst ` set (compose (delete (fst x) xs) ys) \ fst ` set (delete (fst x) xs)" by simp also have "\ \ fst ` set xs" by (rule dom_delete_subset) finally show ?thesis using None by auto next case (Some v) with "2.hyps" have "fst ` set (compose xs ys) \ fst ` set xs" by simp with Some show ?thesis by auto qed qed lemma distinct_compose: assumes "distinct (map fst xs)" shows "distinct (map fst (compose xs ys))" using assms proof (induct xs ys rule: compose.induct) case 1 then show ?case by simp next case (2 x xs ys) show ?case proof (cases "map_of ys (snd x)") case None with 2 show ?thesis by simp next case (Some v) with 2 dom_compose [of xs ys] show ?thesis by auto qed qed lemma compose_delete_twist: "compose (delete k xs) ys = delete k (compose xs ys)" proof (induct xs ys rule: compose.induct) case 1 then show ?case by simp next case (2 x xs ys) show ?case proof (cases "map_of ys (snd x)") case None with 2 have hyp: "compose (delete k (delete (fst x) xs)) ys = delete k (compose (delete (fst x) xs) ys)" by simp show ?thesis proof (cases "fst x = k") case True with None hyp show ?thesis by (simp add: delete_idem) next case False from None False hyp show ?thesis by (simp add: delete_twist) qed next case (Some v) with 2 have hyp: "compose (delete k xs) ys = delete k (compose xs ys)" by simp with Some show ?thesis by simp qed qed lemma compose_clearjunk: "compose xs (clearjunk ys) = compose xs ys" by (induct xs ys rule: compose.induct) (auto simp add: map_of_clearjunk split: option.splits) lemma clearjunk_compose: "clearjunk (compose xs ys) = compose (clearjunk xs) ys" by (induct xs rule: clearjunk.induct) (auto split: option.splits simp add: clearjunk_delete delete_idem compose_delete_twist) lemma compose_empty [simp]: "compose xs [] = []" by (induct xs) (auto simp add: compose_delete_twist) lemma compose_Some_iff: "(map_of (compose xs ys) k = Some v) \ (\k'. map_of xs k = Some k' \ map_of ys k' = Some v)" by (simp add: compose_conv map_comp_Some_iff) lemma map_comp_None_iff: "map_of (compose xs ys) k = None \ (map_of xs k = None \ (\k'. map_of xs k = Some k' \ map_of ys k' = None))" by (simp add: compose_conv map_comp_None_iff) subsection \\map_entry\\ qualified fun map_entry :: "'key \ ('val \ 'val) \ ('key \ 'val) list \ ('key \ 'val) list" where "map_entry k f [] = []" | "map_entry k f (p # ps) = (if fst p = k then (k, f (snd p)) # ps else p # map_entry k f ps)" lemma map_of_map_entry: "map_of (map_entry k f xs) = (map_of xs)(k := case map_of xs k of None \ None | Some v' \ Some (f v'))" by (induct xs) auto lemma dom_map_entry: "fst ` set (map_entry k f xs) = fst ` set xs" by (induct xs) auto lemma distinct_map_entry: assumes "distinct (map fst xs)" shows "distinct (map fst (map_entry k f xs))" using assms by (induct xs) (auto simp add: dom_map_entry) subsection \\map_default\\ fun map_default :: "'key \ 'val \ ('val \ 'val) \ ('key \ 'val) list \ ('key \ 'val) list" where "map_default k v f [] = [(k, v)]" | "map_default k v f (p # ps) = (if fst p = k then (k, f (snd p)) # ps else p # map_default k v f ps)" lemma map_of_map_default: "map_of (map_default k v f xs) = (map_of xs)(k := case map_of xs k of None \ Some v | Some v' \ Some (f v'))" by (induct xs) auto lemma dom_map_default: "fst ` set (map_default k v f xs) = insert k (fst ` set xs)" by (induct xs) auto lemma distinct_map_default: assumes "distinct (map fst xs)" shows "distinct (map fst (map_default k v f xs))" using assms by (induct xs) (auto simp add: dom_map_default) end end diff --git a/src/HOL/Library/Mapping.thy b/src/HOL/Library/Mapping.thy --- a/src/HOL/Library/Mapping.thy +++ b/src/HOL/Library/Mapping.thy @@ -1,934 +1,971 @@ (* Title: HOL/Library/Mapping.thy Author: Florian Haftmann and Ondrej Kuncar *) section \An abstract view on maps for code generation.\ theory Mapping imports Main AList begin subsection \Parametricity transfer rules\ lemma map_of_foldr: "map_of xs = foldr (\(k, v) m. m(k \ v)) xs Map.empty" (* FIXME move *) using map_add_map_of_foldr [of Map.empty] by auto context includes lifting_syntax begin lemma empty_parametric: "(A ===> rel_option B) Map.empty Map.empty" by transfer_prover lemma lookup_parametric: "((A ===> B) ===> A ===> B) (\m k. m k) (\m k. m k)" by transfer_prover lemma update_parametric: assumes [transfer_rule]: "bi_unique A" shows "(A ===> B ===> (A ===> rel_option B) ===> A ===> rel_option B) (\k v m. m(k \ v)) (\k v m. m(k \ v))" by transfer_prover lemma delete_parametric: assumes [transfer_rule]: "bi_unique A" shows "(A ===> (A ===> rel_option B) ===> A ===> rel_option B) (\k m. m(k := None)) (\k m. m(k := None))" by transfer_prover lemma is_none_parametric [transfer_rule]: "(rel_option A ===> HOL.eq) Option.is_none Option.is_none" by (auto simp add: Option.is_none_def rel_fun_def rel_option_iff split: option.split) lemma dom_parametric: assumes [transfer_rule]: "bi_total A" shows "((A ===> rel_option B) ===> rel_set A) dom dom" unfolding dom_def [abs_def] Option.is_none_def [symmetric] by transfer_prover lemma graph_parametric: assumes "bi_total A" shows "((A ===> rel_option B) ===> rel_set (rel_prod A B)) Map.graph Map.graph" proof fix f g assume "(A ===> rel_option B) f g" with assms[unfolded bi_total_def] show "rel_set (rel_prod A B) (Map.graph f) (Map.graph g)" unfolding graph_def rel_set_def rel_fun_def by auto (metis option_rel_Some1 option_rel_Some2)+ qed lemma map_of_parametric [transfer_rule]: assumes [transfer_rule]: "bi_unique R1" shows "(list_all2 (rel_prod R1 R2) ===> R1 ===> rel_option R2) map_of map_of" unfolding map_of_def by transfer_prover lemma map_entry_parametric [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(A ===> (B ===> B) ===> (A ===> rel_option B) ===> A ===> rel_option B) (\k f m. (case m k of None \ m | Some v \ m (k \ (f v)))) (\k f m. (case m k of None \ m | Some v \ m (k \ (f v))))" by transfer_prover lemma tabulate_parametric: assumes [transfer_rule]: "bi_unique A" shows "(list_all2 A ===> (A ===> B) ===> A ===> rel_option B) (\ks f. (map_of (map (\k. (k, f k)) ks))) (\ks f. (map_of (map (\k. (k, f k)) ks)))" by transfer_prover lemma bulkload_parametric: "(list_all2 A ===> HOL.eq ===> rel_option A) (\xs k. if k < length xs then Some (xs ! k) else None) (\xs k. if k < length xs then Some (xs ! k) else None)" proof fix xs ys assume "list_all2 A xs ys" then show "(HOL.eq ===> rel_option A) (\k. if k < length xs then Some (xs ! k) else None) (\k. if k < length ys then Some (ys ! k) else None)" apply induct apply auto unfolding rel_fun_def apply clarsimp apply (case_tac xa) apply (auto dest: list_all2_lengthD list_all2_nthD) done qed lemma map_parametric: "((A ===> B) ===> (C ===> D) ===> (B ===> rel_option C) ===> A ===> rel_option D) (\f g m. (map_option g \ m \ f)) (\f g m. (map_option g \ m \ f))" by transfer_prover lemma combine_with_key_parametric: "((A ===> B ===> B ===> B) ===> (A ===> rel_option B) ===> (A ===> rel_option B) ===> (A ===> rel_option B)) (\f m1 m2 x. combine_options (f x) (m1 x) (m2 x)) (\f m1 m2 x. combine_options (f x) (m1 x) (m2 x))" unfolding combine_options_def by transfer_prover lemma combine_parametric: "((B ===> B ===> B) ===> (A ===> rel_option B) ===> (A ===> rel_option B) ===> (A ===> rel_option B)) (\f m1 m2 x. combine_options f (m1 x) (m2 x)) (\f m1 m2 x. combine_options f (m1 x) (m2 x))" unfolding combine_options_def by transfer_prover end subsection \Type definition and primitive operations\ typedef ('a, 'b) mapping = "UNIV :: ('a \ 'b) set" morphisms rep Mapping .. setup_lifting type_definition_mapping lift_definition empty :: "('a, 'b) mapping" is Map.empty parametric empty_parametric . lift_definition lookup :: "('a, 'b) mapping \ 'a \ 'b option" is "\m k. m k" parametric lookup_parametric . definition "lookup_default d m k = (case Mapping.lookup m k of None \ d | Some v \ v)" lift_definition update :: "'a \ 'b \ ('a, 'b) mapping \ ('a, 'b) mapping" is "\k v m. m(k \ v)" parametric update_parametric . lift_definition delete :: "'a \ ('a, 'b) mapping \ ('a, 'b) mapping" is "\k m. m(k := None)" parametric delete_parametric . lift_definition filter :: "('a \ 'b \ bool) \ ('a, 'b) mapping \ ('a, 'b) mapping" is "\P m k. case m k of None \ None | Some v \ if P k v then Some v else None" . lift_definition keys :: "('a, 'b) mapping \ 'a set" is dom parametric dom_parametric . lift_definition entries :: "('a, 'b) mapping \ ('a \ 'b) set" is Map.graph parametric graph_parametric . lift_definition tabulate :: "'a list \ ('a \ 'b) \ ('a, 'b) mapping" is "\ks f. (map_of (List.map (\k. (k, f k)) ks))" parametric tabulate_parametric . lift_definition bulkload :: "'a list \ (nat, 'a) mapping" is "\xs k. if k < length xs then Some (xs ! k) else None" parametric bulkload_parametric . lift_definition map :: "('c \ 'a) \ ('b \ 'd) \ ('a, 'b) mapping \ ('c, 'd) mapping" is "\f g m. (map_option g \ m \ f)" parametric map_parametric . lift_definition map_values :: "('c \ 'a \ 'b) \ ('c, 'a) mapping \ ('c, 'b) mapping" is "\f m x. map_option (f x) (m x)" . lift_definition combine_with_key :: "('a \ 'b \ 'b \ 'b) \ ('a,'b) mapping \ ('a,'b) mapping \ ('a,'b) mapping" is "\f m1 m2 x. combine_options (f x) (m1 x) (m2 x)" parametric combine_with_key_parametric . lift_definition combine :: "('b \ 'b \ 'b) \ ('a,'b) mapping \ ('a,'b) mapping \ ('a,'b) mapping" is "\f m1 m2 x. combine_options f (m1 x) (m2 x)" parametric combine_parametric . definition "All_mapping m P \ (\x. case Mapping.lookup m x of None \ True | Some y \ P x y)" declare [[code drop: map]] subsection \Functorial structure\ functor map: map by (transfer, auto simp add: fun_eq_iff option.map_comp option.map_id)+ subsection \Derived operations\ definition ordered_keys :: "('a::linorder, 'b) mapping \ 'a list" where "ordered_keys m = (if finite (keys m) then sorted_list_of_set (keys m) else [])" definition ordered_entries :: "('a::linorder, 'b) mapping \ ('a \ 'b) list" where "ordered_entries m = (if finite (entries m) then sorted_key_list_of_set fst (entries m) else [])" definition fold :: "('a::linorder \ 'b \ 'c \ 'c) \ ('a, 'b) mapping \ 'c \ 'c" where "fold f m a = List.fold (case_prod f) (ordered_entries m) a" definition is_empty :: "('a, 'b) mapping \ bool" where "is_empty m \ keys m = {}" definition size :: "('a, 'b) mapping \ nat" where "size m = (if finite (keys m) then card (keys m) else 0)" definition replace :: "'a \ 'b \ ('a, 'b) mapping \ ('a, 'b) mapping" where "replace k v m = (if k \ keys m then update k v m else m)" definition default :: "'a \ 'b \ ('a, 'b) mapping \ ('a, 'b) mapping" where "default k v m = (if k \ keys m then m else update k v m)" text \Manual derivation of transfer rule is non-trivial\ lift_definition map_entry :: "'a \ ('b \ 'b) \ ('a, 'b) mapping \ ('a, 'b) mapping" is "\k f m. (case m k of None \ m | Some v \ m (k \ (f v)))" parametric map_entry_parametric . lemma map_entry_code [code]: "map_entry k f m = (case lookup m k of None \ m | Some v \ update k (f v) m)" by transfer rule definition map_default :: "'a \ 'b \ ('b \ 'b) \ ('a, 'b) mapping \ ('a, 'b) mapping" where "map_default k v f m = map_entry k f (default k v m)" definition of_alist :: "('k \ 'v) list \ ('k, 'v) mapping" where "of_alist xs = foldr (\(k, v) m. update k v m) xs empty" instantiation mapping :: (type, type) equal begin definition "HOL.equal m1 m2 \ (\k. lookup m1 k = lookup m2 k)" instance apply standard unfolding equal_mapping_def apply transfer apply auto done end context includes lifting_syntax begin lemma [transfer_rule]: assumes [transfer_rule]: "bi_total A" and [transfer_rule]: "bi_unique B" shows "(pcr_mapping A B ===> pcr_mapping A B ===> (=)) HOL.eq HOL.equal" unfolding equal by transfer_prover lemma of_alist_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique R1" shows "(list_all2 (rel_prod R1 R2) ===> pcr_mapping R1 R2) map_of of_alist" unfolding of_alist_def [abs_def] map_of_foldr [abs_def] by transfer_prover end subsection \Properties\ lemma mapping_eqI: "(\x. lookup m x = lookup m' x) \ m = m'" by transfer (simp add: fun_eq_iff) lemma mapping_eqI': assumes "\x. x \ Mapping.keys m \ Mapping.lookup_default d m x = Mapping.lookup_default d m' x" and "Mapping.keys m = Mapping.keys m'" shows "m = m'" proof (intro mapping_eqI) show "Mapping.lookup m x = Mapping.lookup m' x" for x proof (cases "Mapping.lookup m x") case None then have "x \ Mapping.keys m" by transfer (simp add: dom_def) then have "x \ Mapping.keys m'" by (simp add: assms) then have "Mapping.lookup m' x = None" by transfer (simp add: dom_def) with None show ?thesis by simp next case (Some y) then have A: "x \ Mapping.keys m" by transfer (simp add: dom_def) then have "x \ Mapping.keys m'" by (simp add: assms) then have "\y'. Mapping.lookup m' x = Some y'" by transfer (simp add: dom_def) with Some assms(1)[OF A] show ?thesis by (auto simp add: lookup_default_def) qed qed -lemma lookup_update: "lookup (update k v m) k = Some v" +lemma lookup_update[simp]: "lookup (update k v m) k = Some v" by transfer simp -lemma lookup_update_neq: "k \ k' \ lookup (update k v m) k' = lookup m k'" +lemma lookup_update_neq[simp]: "k \ k' \ lookup (update k v m) k' = lookup m k'" by transfer simp -lemma lookup_update': "Mapping.lookup (update k v m) k' = (if k = k' then Some v else lookup m k')" - by (auto simp: lookup_update lookup_update_neq) +lemma lookup_update': "lookup (update k v m) k' = (if k = k' then Some v else lookup m k')" + by transfer simp -lemma lookup_empty: "lookup empty k = None" +lemma lookup_empty[simp]: "lookup empty k = None" + by transfer simp + +lemma lookup_delete[simp]: "lookup (delete k m) k = None" + by transfer simp + +lemma lookup_delete_neq[simp]: "k \ k' \ lookup (delete k m) k' = lookup m k'" by transfer simp lemma lookup_filter: "lookup (filter P m) k = (case lookup m k of None \ None | Some v \ if P k v then Some v else None)" by transfer simp_all lemma lookup_map_values: "lookup (map_values f m) k = map_option (f k) (lookup m k)" by transfer simp_all lemma lookup_default_empty: "lookup_default d empty k = d" by (simp add: lookup_default_def lookup_empty) lemma lookup_default_update: "lookup_default d (update k v m) k = v" - by (simp add: lookup_default_def lookup_update) + by (simp add: lookup_default_def) lemma lookup_default_update_neq: "k \ k' \ lookup_default d (update k v m) k' = lookup_default d m k'" - by (simp add: lookup_default_def lookup_update_neq) + by (simp add: lookup_default_def) lemma lookup_default_update': "lookup_default d (update k v m) k' = (if k = k' then v else lookup_default d m k')" by (auto simp: lookup_default_update lookup_default_update_neq) lemma lookup_default_filter: "lookup_default d (filter P m) k = (if P k (lookup_default d m k) then lookup_default d m k else d)" by (simp add: lookup_default_def lookup_filter split: option.splits) lemma lookup_default_map_values: "lookup_default (f k d) (map_values f m) k = f k (lookup_default d m k)" by (simp add: lookup_default_def lookup_map_values split: option.splits) lemma lookup_combine_with_key: "Mapping.lookup (combine_with_key f m1 m2) x = combine_options (f x) (Mapping.lookup m1 x) (Mapping.lookup m2 x)" by transfer (auto split: option.splits) lemma combine_altdef: "combine f m1 m2 = combine_with_key (\_. f) m1 m2" by transfer' (rule refl) lemma lookup_combine: "Mapping.lookup (combine f m1 m2) x = combine_options f (Mapping.lookup m1 x) (Mapping.lookup m2 x)" by transfer (auto split: option.splits) lemma lookup_default_neutral_combine_with_key: assumes "\x. f k d x = x" "\x. f k x d = x" shows "Mapping.lookup_default d (combine_with_key f m1 m2) k = f k (Mapping.lookup_default d m1 k) (Mapping.lookup_default d m2 k)" by (auto simp: lookup_default_def lookup_combine_with_key assms split: option.splits) lemma lookup_default_neutral_combine: assumes "\x. f d x = x" "\x. f x d = x" shows "Mapping.lookup_default d (combine f m1 m2) x = f (Mapping.lookup_default d m1 x) (Mapping.lookup_default d m2 x)" by (auto simp: lookup_default_def lookup_combine assms split: option.splits) lemma lookup_map_entry: "lookup (map_entry x f m) x = map_option f (lookup m x)" by transfer (auto split: option.splits) lemma lookup_map_entry_neq: "x \ y \ lookup (map_entry x f m) y = lookup m y" by transfer (auto split: option.splits) lemma lookup_map_entry': "lookup (map_entry x f m) y = (if x = y then map_option f (lookup m y) else lookup m y)" by transfer (auto split: option.splits) lemma lookup_default: "lookup (default x d m) x = Some (lookup_default d m x)" unfolding lookup_default_def default_def by transfer (auto split: option.splits) lemma lookup_default_neq: "x \ y \ lookup (default x d m) y = lookup m y" unfolding lookup_default_def default_def by transfer (auto split: option.splits) lemma lookup_default': "lookup (default x d m) y = (if x = y then Some (lookup_default d m x) else lookup m y)" unfolding lookup_default_def default_def by transfer (auto split: option.splits) lemma lookup_map_default: "lookup (map_default x d f m) x = Some (f (lookup_default d m x))" unfolding lookup_default_def default_def by (simp add: map_default_def lookup_map_entry lookup_default lookup_default_def) lemma lookup_map_default_neq: "x \ y \ lookup (map_default x d f m) y = lookup m y" unfolding lookup_default_def default_def by (simp add: map_default_def lookup_map_entry_neq lookup_default_neq) lemma lookup_map_default': "lookup (map_default x d f m) y = (if x = y then Some (f (lookup_default d m x)) else lookup m y)" unfolding lookup_default_def default_def by (simp add: map_default_def lookup_map_entry' lookup_default' lookup_default_def) lemma lookup_tabulate: assumes "distinct xs" shows "Mapping.lookup (Mapping.tabulate xs f) x = (if x \ set xs then Some (f x) else None)" using assms by transfer (auto simp: map_of_eq_None_iff o_def dest!: map_of_SomeD) -lemma lookup_of_alist: "Mapping.lookup (Mapping.of_alist xs) k = map_of xs k" +lemma lookup_of_alist: "lookup (of_alist xs) k = map_of xs k" by transfer simp_all lemma keys_is_none_rep [code_unfold]: "k \ keys m \ \ (Option.is_none (lookup m k))" by transfer (auto simp add: Option.is_none_def) lemma update_update: "update k v (update k w m) = update k v m" "k \ l \ update k v (update l w m) = update l w (update k v m)" by (transfer; simp add: fun_upd_twist)+ lemma update_delete [simp]: "update k v (delete k m) = update k v m" by transfer simp lemma delete_update: "delete k (update k v m) = delete k m" "k \ l \ delete k (update l v m) = update l v (delete k m)" by (transfer; simp add: fun_upd_twist)+ lemma delete_empty [simp]: "delete k empty = empty" by transfer simp +lemma Mapping_delete_if_notin_keys[simp]: + "k \ keys m \ delete k m = m" + by transfer simp + lemma replace_update: "k \ keys m \ replace k v m = m" "k \ keys m \ replace k v m = update k v m" by (transfer; auto simp add: replace_def fun_upd_twist)+ lemma map_values_update: "map_values f (update k v m) = update k (f k v) (map_values f m)" by transfer (simp_all add: fun_eq_iff) lemma size_mono: "finite (keys m') \ keys m \ keys m' \ size m \ size m'" unfolding size_def by (auto intro: card_mono) lemma size_empty [simp]: "size empty = 0" unfolding size_def by transfer simp lemma size_update: "finite (keys m) \ size (update k v m) = (if k \ keys m then size m else Suc (size m))" unfolding size_def by transfer (auto simp add: insert_dom) lemma size_delete: "size (delete k m) = (if k \ keys m then size m - 1 else size m)" unfolding size_def by transfer simp lemma size_tabulate [simp]: "size (tabulate ks f) = length (remdups ks)" unfolding size_def by transfer (auto simp add: map_of_map_restrict card_set comp_def) lemma keys_filter: "keys (filter P m) \ keys m" by transfer (auto split: option.splits) lemma size_filter: "finite (keys m) \ size (filter P m) \ size m" by (intro size_mono keys_filter) lemma bulkload_tabulate: "bulkload xs = tabulate [0.. is_empty (update k v m)" unfolding is_empty_def by transfer simp lemma is_empty_delete: "is_empty (delete k m) \ is_empty m \ keys m = {k}" unfolding is_empty_def by transfer (auto simp del: dom_eq_empty_conv) lemma is_empty_replace [simp]: "is_empty (replace k v m) \ is_empty m" unfolding is_empty_def replace_def by transfer auto lemma is_empty_default [simp]: "\ is_empty (default k v m)" unfolding is_empty_def default_def by transfer auto lemma is_empty_map_entry [simp]: "is_empty (map_entry k f m) \ is_empty m" unfolding is_empty_def by transfer (auto split: option.split) lemma is_empty_map_values [simp]: "is_empty (map_values f m) \ is_empty m" unfolding is_empty_def by transfer (auto simp: fun_eq_iff) lemma is_empty_map_default [simp]: "\ is_empty (map_default k v f m)" by (simp add: map_default_def) lemma keys_dom_lookup: "keys m = dom (Mapping.lookup m)" by transfer rule lemma keys_empty [simp]: "keys empty = {}" by transfer (fact dom_empty) lemma in_keysD: "k \ keys m \ \v. lookup m k = Some v" by transfer (fact domD) -lemma in_entriesI: "lookup m k = Some v \ (k, v) \ entries m" - by transfer (fact in_graphI) - lemma keys_update [simp]: "keys (update k v m) = insert k (keys m)" by transfer simp lemma keys_delete [simp]: "keys (delete k m) = keys m - {k}" by transfer simp lemma keys_replace [simp]: "keys (replace k v m) = keys m" unfolding replace_def by transfer (simp add: insert_absorb) lemma keys_default [simp]: "keys (default k v m) = insert k (keys m)" unfolding default_def by transfer (simp add: insert_absorb) lemma keys_map_entry [simp]: "keys (map_entry k f m) = keys m" by transfer (auto split: option.split) lemma keys_map_default [simp]: "keys (map_default k v f m) = insert k (keys m)" by (simp add: map_default_def) lemma keys_map_values [simp]: "keys (map_values f m) = keys m" by transfer (simp_all add: dom_def) lemma keys_combine_with_key [simp]: "Mapping.keys (combine_with_key f m1 m2) = Mapping.keys m1 \ Mapping.keys m2" by transfer (auto simp: dom_def combine_options_def split: option.splits) lemma keys_combine [simp]: "Mapping.keys (combine f m1 m2) = Mapping.keys m1 \ Mapping.keys m2" by (simp add: combine_altdef) lemma keys_tabulate [simp]: "keys (tabulate ks f) = set ks" by transfer (simp add: map_of_map_restrict o_def) lemma keys_of_alist [simp]: "keys (of_alist xs) = set (List.map fst xs)" by transfer (simp_all add: dom_map_of_conv_image_fst) lemma keys_bulkload [simp]: "keys (bulkload xs) = {0.. set (Mapping.ordered_keys m) = Mapping.keys m" + unfolding ordered_keys_def by transfer auto + lemma distinct_ordered_keys [simp]: "distinct (ordered_keys m)" by (simp add: ordered_keys_def) lemma ordered_keys_infinite [simp]: "\ finite (keys m) \ ordered_keys m = []" by (simp add: ordered_keys_def) lemma ordered_keys_empty [simp]: "ordered_keys empty = []" by (simp add: ordered_keys_def) +lemma sorted_ordered_keys[simp]: "sorted (ordered_keys m)" + unfolding ordered_keys_def by simp + lemma ordered_keys_update [simp]: "k \ keys m \ ordered_keys (update k v m) = ordered_keys m" "finite (keys m) \ k \ keys m \ ordered_keys (update k v m) = insort k (ordered_keys m)" by (simp_all add: ordered_keys_def) (auto simp only: sorted_list_of_set_insert_remove[symmetric] insert_absorb) lemma ordered_keys_delete [simp]: "ordered_keys (delete k m) = remove1 k (ordered_keys m)" proof (cases "finite (keys m)") case False then show ?thesis by simp next case fin: True show ?thesis proof (cases "k \ keys m") case False with fin have "k \ set (sorted_list_of_set (keys m))" by simp with False show ?thesis by (simp add: ordered_keys_def remove1_idem) next case True with fin show ?thesis by (simp add: ordered_keys_def sorted_list_of_set_remove) qed qed lemma ordered_keys_replace [simp]: "ordered_keys (replace k v m) = ordered_keys m" by (simp add: replace_def) lemma ordered_keys_default [simp]: "k \ keys m \ ordered_keys (default k v m) = ordered_keys m" "finite (keys m) \ k \ keys m \ ordered_keys (default k v m) = insort k (ordered_keys m)" by (simp_all add: default_def) lemma ordered_keys_map_entry [simp]: "ordered_keys (map_entry k f m) = ordered_keys m" by (simp add: ordered_keys_def) lemma ordered_keys_map_default [simp]: "k \ keys m \ ordered_keys (map_default k v f m) = ordered_keys m" "finite (keys m) \ k \ keys m \ ordered_keys (map_default k v f m) = insort k (ordered_keys m)" by (simp_all add: map_default_def) lemma ordered_keys_tabulate [simp]: "ordered_keys (tabulate ks f) = sort (remdups ks)" by (simp add: ordered_keys_def sorted_list_of_set_sort_remdups) lemma ordered_keys_bulkload [simp]: "ordered_keys (bulkload ks) = [0..k m. update k (f k) m) xs empty" proof transfer fix f :: "'a \ 'b" and xs have "map_of (List.map (\k. (k, f k)) xs) = foldr (\k m. m(k \ f k)) xs Map.empty" by (simp add: foldr_map comp_def map_of_foldr) also have "foldr (\k m. m(k \ f k)) xs = List.fold (\k m. m(k \ f k)) xs" by (rule foldr_fold) (simp add: fun_eq_iff) ultimately show "map_of (List.map (\k. (k, f k)) xs) = List.fold (\k m. m(k \ f k)) xs Map.empty" by simp qed lemma All_mapping_mono: "(\k v. k \ keys m \ P k v \ Q k v) \ All_mapping m P \ All_mapping m Q" unfolding All_mapping_def by transfer (auto simp: All_mapping_def dom_def split: option.splits) lemma All_mapping_empty [simp]: "All_mapping Mapping.empty P" by (auto simp: All_mapping_def lookup_empty) lemma All_mapping_update_iff: "All_mapping (Mapping.update k v m) P \ P k v \ All_mapping m (\k' v'. k = k' \ P k' v')" unfolding All_mapping_def proof safe assume "\x. case Mapping.lookup (Mapping.update k v m) x of None \ True | Some y \ P x y" then have *: "case Mapping.lookup (Mapping.update k v m) x of None \ True | Some y \ P x y" for x by blast from *[of k] show "P k v" by (simp add: lookup_update) show "case Mapping.lookup m x of None \ True | Some v' \ k = x \ P x v'" for x using *[of x] by (auto simp add: lookup_update' split: if_splits option.splits) next assume "P k v" assume "\x. case Mapping.lookup m x of None \ True | Some v' \ k = x \ P x v'" then have A: "case Mapping.lookup m x of None \ True | Some v' \ k = x \ P x v'" for x by blast show "case Mapping.lookup (Mapping.update k v m) x of None \ True | Some xa \ P x xa" for x using \P k v\ A[of x] by (auto simp: lookup_update' split: option.splits) qed lemma All_mapping_update: "P k v \ All_mapping m (\k' v'. k = k' \ P k' v') \ All_mapping (Mapping.update k v m) P" by (simp add: All_mapping_update_iff) lemma All_mapping_filter_iff: "All_mapping (filter P m) Q \ All_mapping m (\k v. P k v \ Q k v)" by (auto simp: All_mapping_def lookup_filter split: option.splits) lemma All_mapping_filter: "All_mapping m Q \ All_mapping (filter P m) Q" by (auto simp: All_mapping_filter_iff intro: All_mapping_mono) lemma All_mapping_map_values: "All_mapping (map_values f m) P \ All_mapping m (\k v. P k (f k v))" by (auto simp: All_mapping_def lookup_map_values split: option.splits) lemma All_mapping_tabulate: "(\x\set xs. P x (f x)) \ All_mapping (Mapping.tabulate xs f) P" unfolding All_mapping_def apply (intro allI) apply transfer apply (auto split: option.split dest!: map_of_SomeD) done lemma All_mapping_alist: "(\k v. (k, v) \ set xs \ P k v) \ All_mapping (Mapping.of_alist xs) P" by (auto simp: All_mapping_def lookup_of_alist dest!: map_of_SomeD split: option.splits) lemma combine_empty [simp]: "combine f Mapping.empty y = y" "combine f y Mapping.empty = y" by (transfer; force)+ lemma (in abel_semigroup) comm_monoid_set_combine: "comm_monoid_set (combine f) Mapping.empty" by standard (transfer fixing: f, simp add: combine_options_ac[of f] ac_simps)+ locale combine_mapping_abel_semigroup = abel_semigroup begin sublocale combine: comm_monoid_set "combine f" Mapping.empty by (rule comm_monoid_set_combine) lemma fold_combine_code: "combine.F g (set xs) = foldr (\x. combine f (g x)) (remdups xs) Mapping.empty" proof - have "combine.F g (set xs) = foldr (\x. combine f (g x)) xs Mapping.empty" if "distinct xs" for xs using that by (induction xs) simp_all from this[of "remdups xs"] show ?thesis by simp qed lemma keys_fold_combine: "finite A \ Mapping.keys (combine.F g A) = (\x\A. Mapping.keys (g x))" by (induct A rule: finite_induct) simp_all end subsubsection \@{term [source] entries}, @{term [source] ordered_entries}, and @{term [source] fold}\ context linorder begin sublocale folding_Map_graph: folding_insort_key "(\)" "(<)" "Map.graph m" fst for m by unfold_locales (fact inj_on_fst_graph) end lemma sorted_fst_list_of_set_insort_Map_graph[simp]: assumes "finite (dom m)" "fst x \ dom m" shows "sorted_key_list_of_set fst (insert x (Map.graph m)) = insort_key fst x (sorted_key_list_of_set fst (Map.graph m))" proof(cases x) case (Pair k v) with \fst x \ dom m\ have "Map.graph m \ Map.graph (m(k \ v))" by(auto simp: graph_def) moreover from Pair \fst x \ dom m\ have "(k, v) \ Map.graph m" using graph_domD by fastforce ultimately show ?thesis using Pair assms folding_Map_graph.sorted_key_list_of_set_insert[where ?m="m(k \ v)"] by auto qed lemma sorted_fst_list_of_set_insort_insert_Map_graph[simp]: assumes "finite (dom m)" "fst x \ dom m" shows "sorted_key_list_of_set fst (insert x (Map.graph m)) = insort_insert_key fst x (sorted_key_list_of_set fst (Map.graph m))" proof(cases x) case (Pair k v) with \fst x \ dom m\ have "Map.graph m \ Map.graph (m(k \ v))" by(auto simp: graph_def) with assms Pair show ?thesis unfolding sorted_fst_list_of_set_insort_Map_graph[OF assms] insort_insert_key_def using folding_Map_graph.set_sorted_key_list_of_set in_graphD by (fastforce split: if_splits) qed lemma linorder_finite_Map_induct[consumes 1, case_names empty update]: fixes m :: "'a::linorder \ 'b" assumes "finite (dom m)" assumes "P Map.empty" assumes "\k v m. \ finite (dom m); k \ dom m; (\k'. k' \ dom m \ k' \ k); P m \ \ P (m(k \ v))" shows "P m" proof - let ?key_list = "\m. sorted_list_of_set (dom m)" from assms(1,2) show ?thesis proof(induction "length (?key_list m)" arbitrary: m) case 0 then have "sorted_list_of_set (dom m) = []" by auto with \finite (dom m)\ have "m = Map.empty" by auto with \P Map.empty\ show ?case by simp next case (Suc n) then obtain x xs where x_xs: "sorted_list_of_set (dom m) = xs @ [x]" by (metis append_butlast_last_id length_greater_0_conv zero_less_Suc) have "sorted_list_of_set (dom (m(x := None))) = xs" proof - have "distinct (xs @ [x])" by (metis sorted_list_of_set.distinct_sorted_key_list_of_set x_xs) then have "remove1 x (xs @ [x]) = xs" by (simp add: remove1_append) with \finite (dom m)\ x_xs show ?thesis by (simp add: sorted_list_of_set_remove) qed moreover have "k \ x" if "k \ dom (m(x := None))" for k proof - from x_xs have "sorted (xs @ [x])" by (metis sorted_list_of_set.sorted_sorted_key_list_of_set) moreover from \k \ dom (m(x := None))\ have "k \ set xs" using \finite (dom m)\ \sorted_list_of_set (dom (m(x := None))) = xs\ by auto ultimately show "k \ x" by (simp add: sorted_append) qed moreover from \finite (dom m)\ have "finite (dom (m(x := None)))" "x \ dom (m(x := None))" by simp_all moreover have "P (m(x := None))" using Suc \sorted_list_of_set (dom (m(x := None))) = xs\ x_xs by auto ultimately show ?case using assms(3)[where ?m="m(x := None)"] by (metis fun_upd_triv fun_upd_upd not_Some_eq) qed qed lemma delete_insort_fst[simp]: "AList.delete k (insort_key fst (k, v) xs) = AList.delete k xs" by (induction xs) simp_all lemma insort_fst_delete: "\ fst x \ k2; sorted (List.map fst xs) \ \ insort_key fst x (AList.delete k2 xs) = AList.delete k2 (insort_key fst x xs)" by (induction xs) (fastforce simp add: insort_is_Cons order_trans)+ lemma sorted_fst_list_of_set_Map_graph_fun_upd_None[simp]: "sorted_key_list_of_set fst (Map.graph (m(k := None))) = AList.delete k (sorted_key_list_of_set fst (Map.graph m))" proof(cases "finite (Map.graph m)") assume "finite (Map.graph m)" from this[unfolded finite_graph_iff_finite_dom] show ?thesis proof(induction rule: finite_Map_induct) let ?list_of="sorted_key_list_of_set fst" case (update k2 v2 m) note [simp] = \k2 \ dom m\ \finite (dom m)\ have right_eq: "AList.delete k (?list_of (Map.graph (m(k2 \ v2)))) = AList.delete k (insort_key fst (k2, v2) (?list_of (Map.graph m)))" by simp show ?case proof(cases "k = k2") case True then have "?list_of (Map.graph ((m(k2 \ v2))(k := None))) = AList.delete k (insort_key fst (k2, v2) (?list_of (Map.graph m)))" using fst_graph_eq_dom update.IH by auto then show ?thesis using right_eq by metis next case False then have "AList.delete k (insort_key fst (k2, v2) (?list_of (Map.graph m))) = insort_key fst (k2, v2) (?list_of (Map.graph (m(k := None))))" by (auto simp add: insort_fst_delete update.IH folding_Map_graph.sorted_sorted_key_list_of_set[OF subset_refl]) also have "\ = ?list_of (insert (k2, v2) (Map.graph (m(k := None))))" by auto also from False \k2 \ dom m\ have "\ = ?list_of (Map.graph ((m(k2 \ v2))(k := None)))" by (metis graph_map_upd domIff fun_upd_triv fun_upd_twist) finally show ?thesis using right_eq by metis qed qed simp qed simp +lemma entries_empty[simp]: "entries empty = {}" + by transfer (fact graph_empty) + lemma entries_lookup: "entries m = Map.graph (lookup m)" by transfer rule -lemma entries_empty[simp]: "entries empty = {}" - by transfer (fact graph_empty) +lemma in_entriesI: "lookup m k = Some v \ (k, v) \ entries m" + by transfer (fact in_graphI) + +lemma in_entriesD: "(k, v) \ entries m \ lookup m k = Some v" + by transfer (fact in_graphD) + +lemma fst_image_entries_eq_keys[simp]: "fst ` Mapping.entries m = Mapping.keys m" + by transfer (fact fst_graph_eq_dom) lemma finite_entries_iff_finite_keys[simp]: "finite (entries m) = finite (keys m)" by transfer (fact finite_graph_iff_finite_dom) -lemma entries_update[simp]: +lemma entries_update: "entries (update k v m) = insert (k, v) (entries (delete k m))" by transfer (fact graph_map_upd) -lemma Mapping_delete_if_notin_keys[simp]: - "k \ Mapping.keys m \ delete k m = m" - by transfer simp - lemma entries_delete: "entries (delete k m) = {e \ entries m. fst e \ k}" by transfer (fact graph_fun_upd_None) lemma entries_of_alist[simp]: "distinct (List.map fst xs) \ entries (of_alist xs) = set xs" - by transfer (fact graph_map_of_if_distinct_ran) + by transfer (fact graph_map_of_if_distinct_dom) lemma entries_keysD: "x \ entries m \ fst x \ keys m" by transfer (fact graph_domD) -lemma finite_keys_entries[simp]: - "finite (keys (update k v m)) = finite (keys m)" - by transfer simp - lemma set_ordered_entries[simp]: - "finite (Mapping.keys m) \ set (ordered_entries m) = entries m" + "finite (keys m) \ set (ordered_entries m) = entries m" unfolding ordered_entries_def by transfer (auto simp: folding_Map_graph.set_sorted_key_list_of_set[OF subset_refl]) lemma distinct_ordered_entries[simp]: "distinct (List.map fst (ordered_entries m))" unfolding ordered_entries_def by transfer (simp add: folding_Map_graph.distinct_sorted_key_list_of_set[OF subset_refl]) lemma sorted_ordered_entries[simp]: "sorted (List.map fst (ordered_entries m))" unfolding ordered_entries_def by transfer (auto intro: folding_Map_graph.sorted_sorted_key_list_of_set) lemma ordered_entries_infinite[simp]: "\ finite (Mapping.keys m) \ ordered_entries m = []" by (simp add: ordered_entries_def) lemma ordered_entries_empty[simp]: "ordered_entries empty = []" by (simp add: ordered_entries_def) lemma ordered_entries_update[simp]: assumes "finite (keys m)" shows "ordered_entries (update k v m) = insort_insert_key fst (k, v) (AList.delete k (ordered_entries m))" proof - let ?list_of="sorted_key_list_of_set fst" and ?insort="insort_insert_key fst" have *: "?list_of (insert (k, v) (Map.graph (m(k := None)))) = ?insort (k, v) (AList.delete k (?list_of (Map.graph m)))" if "finite (dom m)" for m proof - from \finite (dom m)\ have "?list_of (insert (k, v) (Map.graph (m(k := None)))) = ?insort (k, v) (?list_of (Map.graph (m(k := None))))" by (intro sorted_fst_list_of_set_insort_insert_Map_graph) (simp_all add: subset_insertI) then show ?thesis by simp qed from assms show ?thesis unfolding ordered_entries_def apply (transfer fixing: k v) using "*" by auto qed lemma ordered_entries_delete[simp]: "ordered_entries (delete k m) = AList.delete k (ordered_entries m)" unfolding ordered_entries_def by transfer auto +lemma map_fst_ordered_entries[simp]: + "List.map fst (ordered_entries m) = ordered_keys m" +proof(cases "finite (Mapping.keys m)") + case True + then have "set (List.map fst (Mapping.ordered_entries m)) = set (Mapping.ordered_keys m)" + unfolding ordered_entries_def ordered_keys_def + by (transfer) (simp add: folding_Map_graph.set_sorted_key_list_of_set[OF subset_refl] fst_graph_eq_dom) + with True show "List.map fst (Mapping.ordered_entries m) = Mapping.ordered_keys m" + by (metis distinct_ordered_entries ordered_keys_def sorted_list_of_set.idem_if_sorted_distinct + sorted_list_of_set.set_sorted_key_list_of_set sorted_ordered_entries) +next + case False + then show ?thesis + unfolding ordered_entries_def ordered_keys_def by simp +qed + lemma fold_empty[simp]: "fold f empty a = a" unfolding fold_def by simp lemma insort_key_is_snoc_if_sorted_and_distinct: assumes "sorted (List.map f xs)" "f y \ f ` set xs" "\x \ set xs. f x \ f y" shows "insort_key f y xs = xs @ [y]" using assms by (induction xs) (auto dest!: insort_is_Cons) lemma fold_update: assumes "finite (keys m)" assumes "k \ keys m" "\k'. k' \ keys m \ k' \ k" shows "fold f (update k v m) a = f k v (fold f m a)" proof - from assms have k_notin_entries: "k \ fst ` set (ordered_entries m)" using entries_keysD by fastforce with assms have "ordered_entries (update k v m) = insort_insert_key fst (k, v) (ordered_entries m)" by simp also from k_notin_entries have "\ = ordered_entries m @ [(k, v)]" proof - from assms have "\x \ set (ordered_entries m). fst x \ fst (k, v)" unfolding ordered_entries_def by transfer (fastforce simp: folding_Map_graph.set_sorted_key_list_of_set[OF order_refl] dest: graph_domD) - from insort_key_is_snoc_if_sorted_and_distinct[OF _ _ this] k_notin_entries show ?thesis + from insort_key_is_snoc_if_sorted_and_distinct[OF _ _ this] k_notin_entries \finite (keys m)\ + show ?thesis + using sorted_ordered_keys unfolding insort_insert_key_def by auto qed finally show ?thesis unfolding fold_def by simp qed lemma linorder_finite_Mapping_induct[consumes 1, case_names empty update]: fixes m :: "('a::linorder, 'b) mapping" assumes "finite (keys m)" assumes "P empty" assumes "\k v m. \ finite (keys m); k \ keys m; (\k'. k' \ keys m \ k' \ k); P m \ \ P (update k v m)" shows "P m" using assms by transfer (simp add: linorder_finite_Map_induct) subsection \Code generator setup\ hide_const (open) empty is_empty rep lookup lookup_default filter update delete ordered_keys keys size replace default map_entry map_default tabulate bulkload map map_values combine of_alist entries ordered_entries fold end diff --git a/src/HOL/Library/RBT_Mapping.thy b/src/HOL/Library/RBT_Mapping.thy --- a/src/HOL/Library/RBT_Mapping.thy +++ b/src/HOL/Library/RBT_Mapping.thy @@ -1,247 +1,247 @@ (* Title: HOL/Library/RBT_Mapping.thy Author: Florian Haftmann and Ondrej Kuncar *) section \Implementation of mappings with Red-Black Trees\ (*<*) theory RBT_Mapping imports RBT Mapping begin subsection \Implementation of mappings\ context includes rbt.lifting begin lift_definition Mapping :: "('a::linorder, 'b) rbt \ ('a, 'b) mapping" is RBT.lookup . end code_datatype Mapping context includes rbt.lifting begin lemma lookup_Mapping [simp, code]: "Mapping.lookup (Mapping t) = RBT.lookup t" by (transfer fixing: t) rule lemma empty_Mapping [code]: "Mapping.empty = Mapping RBT.empty" proof - note RBT.empty.transfer[transfer_rule del] show ?thesis by transfer simp qed lemma is_empty_Mapping [code]: "Mapping.is_empty (Mapping t) \ RBT.is_empty t" unfolding is_empty_def by (transfer fixing: t) simp lemma insert_Mapping [code]: "Mapping.update k v (Mapping t) = Mapping (RBT.insert k v t)" by (transfer fixing: t) simp lemma delete_Mapping [code]: "Mapping.delete k (Mapping t) = Mapping (RBT.delete k t)" by (transfer fixing: t) simp lemma map_entry_Mapping [code]: "Mapping.map_entry k f (Mapping t) = Mapping (RBT.map_entry k f t)" apply (transfer fixing: t) apply (case_tac "RBT.lookup t k") apply auto done lemma keys_Mapping [code]: "Mapping.keys (Mapping t) = set (RBT.keys t)" by (transfer fixing: t) (simp add: lookup_keys) lemma ordered_keys_Mapping [code]: "Mapping.ordered_keys (Mapping t) = RBT.keys t" unfolding ordered_keys_def by (transfer fixing: t) (auto simp add: lookup_keys intro: sorted_distinct_set_unique) lemma Map_graph_lookup: "Map.graph (RBT.lookup t) = set (RBT.entries t)" - by (metis RBT.distinct_entries RBT.map_of_entries graph_map_of_if_distinct_ran) + by (metis RBT.distinct_entries RBT.map_of_entries graph_map_of_if_distinct_dom) lemma entries_Mapping [code]: "Mapping.entries (Mapping t) = set (RBT.entries t)" by (transfer fixing: t) (fact Map_graph_lookup) lemma ordered_entries_Mapping [code]: "Mapping.ordered_entries (Mapping t) = RBT.entries t" proof - note folding_Map_graph.idem_if_sorted_distinct[ where ?m="RBT.lookup t", OF _ _ folding_Map_graph.distinct_if_distinct_map] then show ?thesis unfolding ordered_entries_def by (transfer fixing: t) (auto simp: Map_graph_lookup distinct_entries sorted_entries) qed lemma fold_Mapping [code]: "Mapping.fold f (Mapping t) a = RBT.fold f t a" by (simp add: Mapping.fold_def fold_fold ordered_entries_Mapping) lemma Mapping_size_card_keys: (*FIXME*) "Mapping.size m = card (Mapping.keys m)" unfolding size_def by transfer simp lemma size_Mapping [code]: "Mapping.size (Mapping t) = length (RBT.keys t)" unfolding size_def by (transfer fixing: t) (simp add: lookup_keys distinct_card) context notes RBT.bulkload.transfer[transfer_rule del] begin lemma tabulate_Mapping [code]: "Mapping.tabulate ks f = Mapping (RBT.bulkload (List.map (\k. (k, f k)) ks))" by transfer (simp add: map_of_map_restrict) lemma bulkload_Mapping [code]: "Mapping.bulkload vs = Mapping (RBT.bulkload (List.map (\n. (n, vs ! n)) [0.. RBT.entries t1 = RBT.entries t2" by (transfer fixing: t1 t2) (simp add: RBT.entries_lookup) lemma [code nbe]: "HOL.equal (x :: (_, _) mapping) x \ True" by (fact equal_refl) end (*>*) text \ This theory defines abstract red-black trees as an efficient representation of finite maps, backed by the implementation in \<^theory>\HOL-Library.RBT_Impl\. \ subsection \Data type and invariant\ text \ The type \<^typ>\('k, 'v) RBT_Impl.rbt\ denotes red-black trees with keys of type \<^typ>\'k\ and values of type \<^typ>\'v\. To function properly, the key type musorted belong to the \linorder\ class. A value \<^term>\t\ of this type is a valid red-black tree if it satisfies the invariant \is_rbt t\. The abstract type \<^typ>\('k, 'v) rbt\ always obeys this invariant, and for this reason you should only use this in our application. Going back to \<^typ>\('k, 'v) RBT_Impl.rbt\ may be necessary in proofs if not yet proven properties about the operations must be established. The interpretation function \<^const>\RBT.lookup\ returns the partial map represented by a red-black tree: @{term_type[display] "RBT.lookup"} This function should be used for reasoning about the semantics of the RBT operations. Furthermore, it implements the lookup functionality for the data structure: It is executable and the lookup is performed in $O(\log n)$. \ subsection \Operations\ text \ Currently, the following operations are supported: @{term_type [display] "RBT.empty"} Returns the empty tree. $O(1)$ @{term_type [display] "RBT.insert"} Updates the map at a given position. $O(\log n)$ @{term_type [display] "RBT.delete"} Deletes a map entry at a given position. $O(\log n)$ @{term_type [display] "RBT.entries"} Return a corresponding key-value list for a tree. @{term_type [display] "RBT.bulkload"} Builds a tree from a key-value list. @{term_type [display] "RBT.map_entry"} Maps a single entry in a tree. @{term_type [display] "RBT.map"} Maps all values in a tree. $O(n)$ @{term_type [display] "RBT.fold"} Folds over all entries in a tree. $O(n)$ \ subsection \Invariant preservation\ text \ \noindent @{thm Empty_is_rbt}\hfill(\Empty_is_rbt\) \noindent @{thm rbt_insert_is_rbt}\hfill(\rbt_insert_is_rbt\) \noindent @{thm rbt_delete_is_rbt}\hfill(\delete_is_rbt\) \noindent @{thm rbt_bulkload_is_rbt}\hfill(\bulkload_is_rbt\) \noindent @{thm rbt_map_entry_is_rbt}\hfill(\map_entry_is_rbt\) \noindent @{thm map_is_rbt}\hfill(\map_is_rbt\) \noindent @{thm rbt_union_is_rbt}\hfill(\union_is_rbt\) \ subsection \Map Semantics\ text \ \noindent \underline{\lookup_empty\} @{thm [display] lookup_empty} \vspace{1ex} \noindent \underline{\lookup_insert\} @{thm [display] lookup_insert} \vspace{1ex} \noindent \underline{\lookup_delete\} @{thm [display] lookup_delete} \vspace{1ex} \noindent \underline{\lookup_bulkload\} @{thm [display] lookup_bulkload} \vspace{1ex} \noindent \underline{\lookup_map\} @{thm [display] lookup_map} \vspace{1ex} \ end diff --git a/src/HOL/Map.thy b/src/HOL/Map.thy --- a/src/HOL/Map.thy +++ b/src/HOL/Map.thy @@ -1,942 +1,942 @@ (* Title: HOL/Map.thy Author: Tobias Nipkow, based on a theory by David von Oheimb Copyright 1997-2003 TU Muenchen The datatype of "maps"; strongly resembles maps in VDM. *) section \Maps\ theory Map imports List abbrevs "(=" = "\\<^sub>m" begin type_synonym ('a, 'b) "map" = "'a \ 'b option" (infixr "\" 0) abbreviation empty :: "'a \ 'b" where "empty \ \x. None" definition map_comp :: "('b \ 'c) \ ('a \ 'b) \ ('a \ 'c)" (infixl "\\<^sub>m" 55) where "f \\<^sub>m g = (\k. case g k of None \ None | Some v \ f v)" definition map_add :: "('a \ 'b) \ ('a \ 'b) \ ('a \ 'b)" (infixl "++" 100) where "m1 ++ m2 = (\x. case m2 x of None \ m1 x | Some y \ Some y)" definition restrict_map :: "('a \ 'b) \ 'a set \ ('a \ 'b)" (infixl "|`" 110) where "m|`A = (\x. if x \ A then m x else None)" notation (latex output) restrict_map ("_\\<^bsub>_\<^esub>" [111,110] 110) definition dom :: "('a \ 'b) \ 'a set" where "dom m = {a. m a \ None}" definition ran :: "('a \ 'b) \ 'b set" where "ran m = {b. \a. m a = Some b}" definition graph :: "('a \ 'b) \ ('a \ 'b) set" where "graph m = {(a, b) | a b. m a = Some b}" definition map_le :: "('a \ 'b) \ ('a \ 'b) \ bool" (infix "\\<^sub>m" 50) where "(m\<^sub>1 \\<^sub>m m\<^sub>2) \ (\a \ dom m\<^sub>1. m\<^sub>1 a = m\<^sub>2 a)" nonterminal maplets and maplet syntax "_maplet" :: "['a, 'a] \ maplet" ("_ /\/ _") "_maplets" :: "['a, 'a] \ maplet" ("_ /[\]/ _") "" :: "maplet \ maplets" ("_") "_Maplets" :: "[maplet, maplets] \ maplets" ("_,/ _") "_MapUpd" :: "['a \ 'b, maplets] \ 'a \ 'b" ("_/'(_')" [900, 0] 900) "_Map" :: "maplets \ 'a \ 'b" ("(1[_])") syntax (ASCII) "_maplet" :: "['a, 'a] \ maplet" ("_ /|->/ _") "_maplets" :: "['a, 'a] \ maplet" ("_ /[|->]/ _") translations "_MapUpd m (_Maplets xy ms)" \ "_MapUpd (_MapUpd m xy) ms" "_MapUpd m (_maplet x y)" \ "m(x := CONST Some y)" "_Map ms" \ "_MapUpd (CONST empty) ms" "_Map (_Maplets ms1 ms2)" \ "_MapUpd (_Map ms1) ms2" "_Maplets ms1 (_Maplets ms2 ms3)" \ "_Maplets (_Maplets ms1 ms2) ms3" primrec map_of :: "('a \ 'b) list \ 'a \ 'b" where "map_of [] = empty" | "map_of (p # ps) = (map_of ps)(fst p \ snd p)" definition map_upds :: "('a \ 'b) \ 'a list \ 'b list \ 'a \ 'b" where "map_upds m xs ys = m ++ map_of (rev (zip xs ys))" translations "_MapUpd m (_maplets x y)" \ "CONST map_upds m x y" lemma map_of_Cons_code [code]: "map_of [] k = None" "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)" by simp_all subsection \@{term [source] empty}\ lemma empty_upd_none [simp]: "empty(x := None) = empty" by (rule ext) simp subsection \@{term [source] map_upd}\ lemma map_upd_triv: "t k = Some x \ t(k\x) = t" by (rule ext) simp lemma map_upd_nonempty [simp]: "t(k\x) \ empty" proof assume "t(k \ x) = empty" then have "(t(k \ x)) k = None" by simp then show False by simp qed lemma map_upd_eqD1: assumes "m(a\x) = n(a\y)" shows "x = y" proof - from assms have "(m(a\x)) a = (n(a\y)) a" by simp then show ?thesis by simp qed lemma map_upd_Some_unfold: "((m(a\b)) x = Some y) = (x = a \ b = y \ x \ a \ m x = Some y)" by auto lemma image_map_upd [simp]: "x \ A \ m(x \ y) ` A = m ` A" by auto lemma finite_range_updI: assumes "finite (range f)" shows "finite (range (f(a\b)))" proof - have "range (f(a\b)) \ insert (Some b) (range f)" by auto then show ?thesis by (rule finite_subset) (use assms in auto) qed subsection \@{term [source] map_of}\ lemma map_of_eq_empty_iff [simp]: "map_of xys = empty \ xys = []" proof show "map_of xys = empty \ xys = []" by (induction xys) simp_all qed simp lemma empty_eq_map_of_iff [simp]: "empty = map_of xys \ xys = []" by(subst eq_commute) simp lemma map_of_eq_None_iff: "(map_of xys x = None) = (x \ fst ` (set xys))" by (induct xys) simp_all lemma map_of_eq_Some_iff [simp]: "distinct(map fst xys) \ (map_of xys x = Some y) = ((x,y) \ set xys)" proof (induct xys) case (Cons xy xys) then show ?case by (cases xy) (auto simp flip: map_of_eq_None_iff) qed auto lemma Some_eq_map_of_iff [simp]: "distinct(map fst xys) \ (Some y = map_of xys x) = ((x,y) \ set xys)" by (auto simp del: map_of_eq_Some_iff simp: map_of_eq_Some_iff [symmetric]) lemma map_of_is_SomeI [simp]: "\distinct(map fst xys); (x,y) \ set xys\ \ map_of xys x = Some y" by simp lemma map_of_zip_is_None [simp]: "length xs = length ys \ (map_of (zip xs ys) x = None) = (x \ set xs)" by (induct rule: list_induct2) simp_all lemma map_of_zip_is_Some: assumes "length xs = length ys" shows "x \ set xs \ (\y. map_of (zip xs ys) x = Some y)" using assms by (induct rule: list_induct2) simp_all lemma map_of_zip_upd: fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list" assumes "length ys = length xs" and "length zs = length xs" and "x \ set xs" and "map_of (zip xs ys)(x \ y) = map_of (zip xs zs)(x \ z)" shows "map_of (zip xs ys) = map_of (zip xs zs)" proof fix x' :: 'a show "map_of (zip xs ys) x' = map_of (zip xs zs) x'" proof (cases "x = x'") case True from assms True map_of_zip_is_None [of xs ys x'] have "map_of (zip xs ys) x' = None" by simp moreover from assms True map_of_zip_is_None [of xs zs x'] have "map_of (zip xs zs) x' = None" by simp ultimately show ?thesis by simp next case False from assms have "(map_of (zip xs ys)(x \ y)) x' = (map_of (zip xs zs)(x \ z)) x'" by auto with False show ?thesis by simp qed qed lemma map_of_zip_inject: assumes "length ys = length xs" and "length zs = length xs" and dist: "distinct xs" and map_of: "map_of (zip xs ys) = map_of (zip xs zs)" shows "ys = zs" using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3) case Nil show ?case by simp next case (Cons y ys x xs z zs) from \map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))\ have map_of: "map_of (zip xs ys)(x \ y) = map_of (zip xs zs)(x \ z)" by simp from Cons have "length ys = length xs" and "length zs = length xs" and "x \ set xs" by simp_all then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd) with Cons.hyps \distinct (x # xs)\ have "ys = zs" by simp moreover from map_of have "y = z" by (rule map_upd_eqD1) ultimately show ?case by simp qed lemma map_of_zip_nth: assumes "length xs = length ys" assumes "distinct xs" assumes "i < length ys" shows "map_of (zip xs ys) (xs ! i) = Some (ys ! i)" using assms proof (induct arbitrary: i rule: list_induct2) case Nil then show ?case by simp next case (Cons x xs y ys) then show ?case using less_Suc_eq_0_disj by auto qed lemma map_of_zip_map: "map_of (zip xs (map f xs)) = (\x. if x \ set xs then Some (f x) else None)" by (induct xs) (simp_all add: fun_eq_iff) lemma finite_range_map_of: "finite (range (map_of xys))" proof (induct xys) case (Cons a xys) then show ?case using finite_range_updI by fastforce qed auto lemma map_of_SomeD: "map_of xs k = Some y \ (k, y) \ set xs" by (induct xs) (auto split: if_splits) lemma map_of_mapk_SomeI: "inj f \ map_of t k = Some x \ map_of (map (case_prod (\k. Pair (f k))) t) (f k) = Some x" by (induct t) (auto simp: inj_eq) lemma weak_map_of_SomeI: "(k, x) \ set l \ \x. map_of l k = Some x" by (induct l) auto lemma map_of_filter_in: "map_of xs k = Some z \ P k z \ map_of (filter (case_prod P) xs) k = Some z" by (induct xs) auto lemma map_of_map: "map_of (map (\(k, v). (k, f v)) xs) = map_option f \ map_of xs" by (induct xs) (auto simp: fun_eq_iff) lemma dom_map_option: "dom (\k. map_option (f k) (m k)) = dom m" by (simp add: dom_def) lemma dom_map_option_comp [simp]: "dom (map_option g \ m) = dom m" using dom_map_option [of "\_. g" m] by (simp add: comp_def) subsection \\<^const>\map_option\ related\ lemma map_option_o_empty [simp]: "map_option f \ empty = empty" by (rule ext) simp lemma map_option_o_map_upd [simp]: "map_option f \ m(a\b) = (map_option f \ m)(a\f b)" by (rule ext) simp subsection \@{term [source] map_comp} related\ lemma map_comp_empty [simp]: "m \\<^sub>m empty = empty" "empty \\<^sub>m m = empty" by (auto simp: map_comp_def split: option.splits) lemma map_comp_simps [simp]: "m2 k = None \ (m1 \\<^sub>m m2) k = None" "m2 k = Some k' \ (m1 \\<^sub>m m2) k = m1 k'" by (auto simp: map_comp_def) lemma map_comp_Some_iff: "((m1 \\<^sub>m m2) k = Some v) = (\k'. m2 k = Some k' \ m1 k' = Some v)" by (auto simp: map_comp_def split: option.splits) lemma map_comp_None_iff: "((m1 \\<^sub>m m2) k = None) = (m2 k = None \ (\k'. m2 k = Some k' \ m1 k' = None)) " by (auto simp: map_comp_def split: option.splits) subsection \\++\\ lemma map_add_empty[simp]: "m ++ empty = m" by(simp add: map_add_def) lemma empty_map_add[simp]: "empty ++ m = m" by (rule ext) (simp add: map_add_def split: option.split) lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" by (rule ext) (simp add: map_add_def split: option.split) lemma map_add_Some_iff: "((m ++ n) k = Some x) = (n k = Some x \ n k = None \ m k = Some x)" by (simp add: map_add_def split: option.split) lemma map_add_SomeD [dest!]: "(m ++ n) k = Some x \ n k = Some x \ n k = None \ m k = Some x" by (rule map_add_Some_iff [THEN iffD1]) lemma map_add_find_right [simp]: "n k = Some xx \ (m ++ n) k = Some xx" by (subst map_add_Some_iff) fast lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None \ m k = None)" by (simp add: map_add_def split: option.split) lemma map_add_upd[simp]: "f ++ g(x\y) = (f ++ g)(x\y)" by (rule ext) (simp add: map_add_def) lemma map_add_upds[simp]: "m1 ++ (m2(xs[\]ys)) = (m1++m2)(xs[\]ys)" by (simp add: map_upds_def) lemma map_add_upd_left: "m\dom e2 \ e1(m \ u1) ++ e2 = (e1 ++ e2)(m \ u1)" by (rule ext) (auto simp: map_add_def dom_def split: option.split) lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" unfolding map_add_def proof (induct xs) case (Cons a xs) then show ?case by (force split: option.split) qed auto lemma finite_range_map_of_map_add: "finite (range f) \ finite (range (f ++ map_of l))" proof (induct l) case (Cons a l) then show ?case by (metis finite_range_updI map_add_upd map_of.simps(2)) qed auto lemma inj_on_map_add_dom [iff]: "inj_on (m ++ m') (dom m') = inj_on m' (dom m')" by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits) lemma map_upds_fold_map_upd: "m(ks[\]vs) = foldl (\m (k, v). m(k \ v)) m (zip ks vs)" unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length) fix ks :: "'a list" and vs :: "'b list" assume "length ks = length vs" then show "foldl (\m (k, v). m(k\v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))" by(induct arbitrary: m rule: list_induct2) simp_all qed lemma map_add_map_of_foldr: "m ++ map_of ps = foldr (\(k, v) m. m(k \ v)) ps m" by (induct ps) (auto simp: fun_eq_iff map_add_def) subsection \@{term [source] restrict_map}\ lemma restrict_map_to_empty [simp]: "m|`{} = empty" by (simp add: restrict_map_def) lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)" by (auto simp: restrict_map_def) lemma restrict_map_empty [simp]: "empty|`D = empty" by (simp add: restrict_map_def) lemma restrict_in [simp]: "x \ A \ (m|`A) x = m x" by (simp add: restrict_map_def) lemma restrict_out [simp]: "x \ A \ (m|`A) x = None" by (simp add: restrict_map_def) lemma ran_restrictD: "y \ ran (m|`A) \ \x\A. m x = Some y" by (auto simp: restrict_map_def ran_def split: if_split_asm) lemma dom_restrict [simp]: "dom (m|`A) = dom m \ A" by (auto simp: restrict_map_def dom_def split: if_split_asm) lemma restrict_upd_same [simp]: "m(x\y)|`(-{x}) = m|`(-{x})" by (rule ext) (auto simp: restrict_map_def) lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\B)" by (rule ext) (auto simp: restrict_map_def) lemma restrict_fun_upd [simp]: "m(x := y)|`D = (if x \ D then (m|`(D-{x}))(x := y) else m|`D)" by (simp add: restrict_map_def fun_eq_iff) lemma fun_upd_None_restrict [simp]: "(m|`D)(x := None) = (if x \ D then m|`(D - {x}) else m|`D)" by (simp add: restrict_map_def fun_eq_iff) lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)" by (simp add: restrict_map_def fun_eq_iff) lemma fun_upd_restrict_conv [simp]: "x \ D \ (m|`D)(x := y) = (m|`(D-{x}))(x := y)" by (rule fun_upd_restrict) lemma map_of_map_restrict: "map_of (map (\k. (k, f k)) ks) = (Some \ f) |` set ks" by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert) lemma restrict_complement_singleton_eq: "f |` (- {x}) = f(x := None)" by auto subsection \@{term [source] map_upds}\ lemma map_upds_Nil1 [simp]: "m([] [\] bs) = m" by (simp add: map_upds_def) lemma map_upds_Nil2 [simp]: "m(as [\] []) = m" by (simp add:map_upds_def) lemma map_upds_Cons [simp]: "m(a#as [\] b#bs) = (m(a\b))(as[\]bs)" by (simp add:map_upds_def) lemma map_upds_append1 [simp]: "size xs < size ys \ m(xs@[x] [\] ys) = m(xs [\] ys)(x \ ys!size xs)" proof (induct xs arbitrary: ys m) case Nil then show ?case by (auto simp: neq_Nil_conv) next case (Cons a xs) then show ?case by (cases ys) auto qed lemma map_upds_list_update2_drop [simp]: "size xs \ i \ m(xs[\]ys[i:=y]) = m(xs[\]ys)" proof (induct xs arbitrary: m ys i) case Nil then show ?case by auto next case (Cons a xs) then show ?case by (cases ys) (use Cons in \auto split: nat.split\) qed text \Something weirdly sensitive about this proof, which needs only four lines in apply style\ lemma map_upd_upds_conv_if: "(f(x\y))(xs [\] ys) = (if x \ set(take (length ys) xs) then f(xs [\] ys) else (f(xs [\] ys))(x\y))" proof (induct xs arbitrary: x y ys f) case (Cons a xs) show ?case proof (cases ys) case (Cons z zs) then show ?thesis using Cons.hyps apply (auto split: if_split simp: fun_upd_twist) using Cons.hyps apply fastforce+ done qed auto qed auto lemma map_upds_twist [simp]: "a \ set as \ m(a\b)(as[\]bs) = m(as[\]bs)(a\b)" using set_take_subset by (fastforce simp add: map_upd_upds_conv_if) lemma map_upds_apply_nontin [simp]: "x \ set xs \ (f(xs[\]ys)) x = f x" proof (induct xs arbitrary: ys) case (Cons a xs) then show ?case by (cases ys) (auto simp: map_upd_upds_conv_if) qed auto lemma fun_upds_append_drop [simp]: "size xs = size ys \ m(xs@zs[\]ys) = m(xs[\]ys)" proof (induct xs arbitrary: ys) case (Cons a xs) then show ?case by (cases ys) (auto simp: map_upd_upds_conv_if) qed auto lemma fun_upds_append2_drop [simp]: "size xs = size ys \ m(xs[\]ys@zs) = m(xs[\]ys)" proof (induct xs arbitrary: ys) case (Cons a xs) then show ?case by (cases ys) (auto simp: map_upd_upds_conv_if) qed auto lemma restrict_map_upds[simp]: "\ length xs = length ys; set xs \ D \ \ m(xs [\] ys)|`D = (m|`(D - set xs))(xs [\] ys)" proof (induct xs arbitrary: m ys) case (Cons a xs) then show ?case proof (cases ys) case (Cons z zs) with Cons.hyps Cons.prems show ?thesis apply (simp add: insert_absorb flip: Diff_insert) apply (auto simp add: map_upd_upds_conv_if) done qed auto qed auto subsection \@{term [source] dom}\ lemma dom_eq_empty_conv [simp]: "dom f = {} \ f = empty" by (auto simp: dom_def) lemma domI: "m a = Some b \ a \ dom m" by (simp add: dom_def) (* declare domI [intro]? *) lemma domD: "a \ dom m \ \b. m a = Some b" by (cases "m a") (auto simp add: dom_def) lemma domIff [iff, simp del, code_unfold]: "a \ dom m \ m a \ None" by (simp add: dom_def) lemma dom_empty [simp]: "dom empty = {}" by (simp add: dom_def) lemma dom_fun_upd [simp]: "dom(f(x := y)) = (if y = None then dom f - {x} else insert x (dom f))" by (auto simp: dom_def) lemma dom_if: "dom (\x. if P x then f x else g x) = dom f \ {x. P x} \ dom g \ {x. \ P x}" by (auto split: if_splits) lemma dom_map_of_conv_image_fst: "dom (map_of xys) = fst ` set xys" by (induct xys) (auto simp add: dom_if) lemma dom_map_of_zip [simp]: "length xs = length ys \ dom (map_of (zip xs ys)) = set xs" by (induct rule: list_induct2) (auto simp: dom_if) lemma finite_dom_map_of: "finite (dom (map_of l))" by (induct l) (auto simp: dom_def insert_Collect [symmetric]) lemma dom_map_upds [simp]: "dom(m(xs[\]ys)) = set(take (length ys) xs) \ dom m" proof (induct xs arbitrary: ys) case (Cons a xs) then show ?case by (cases ys) (auto simp: map_upd_upds_conv_if) qed auto lemma dom_map_add [simp]: "dom (m ++ n) = dom n \ dom m" by (auto simp: dom_def) lemma dom_override_on [simp]: "dom (override_on f g A) = (dom f - {a. a \ A - dom g}) \ {a. a \ A \ dom g}" by (auto simp: dom_def override_on_def) lemma map_add_comm: "dom m1 \ dom m2 = {} \ m1 ++ m2 = m2 ++ m1" by (rule ext) (force simp: map_add_def dom_def split: option.split) lemma map_add_dom_app_simps: "m \ dom l2 \ (l1 ++ l2) m = l2 m" "m \ dom l1 \ (l1 ++ l2) m = l2 m" "m \ dom l2 \ (l1 ++ l2) m = l1 m" by (auto simp add: map_add_def split: option.split_asm) lemma dom_const [simp]: "dom (\x. Some (f x)) = UNIV" by auto (* Due to John Matthews - could be rephrased with dom *) lemma finite_map_freshness: "finite (dom (f :: 'a \ 'b)) \ \ finite (UNIV :: 'a set) \ \x. f x = None" by (bestsimp dest: ex_new_if_finite) lemma dom_minus: "f x = None \ dom f - insert x A = dom f - A" unfolding dom_def by simp lemma insert_dom: "f x = Some y \ insert x (dom f) = dom f" unfolding dom_def by auto lemma map_of_map_keys: "set xs = dom m \ map_of (map (\k. (k, the (m k))) xs) = m" by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def) lemma map_of_eqI: assumes set_eq: "set (map fst xs) = set (map fst ys)" assumes map_eq: "\k\set (map fst xs). map_of xs k = map_of ys k" shows "map_of xs = map_of ys" proof (rule ext) fix k show "map_of xs k = map_of ys k" proof (cases "map_of xs k") case None then have "k \ set (map fst xs)" by (simp add: map_of_eq_None_iff) with set_eq have "k \ set (map fst ys)" by simp then have "map_of ys k = None" by (simp add: map_of_eq_None_iff) with None show ?thesis by simp next case (Some v) then have "k \ set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric]) with map_eq show ?thesis by auto qed qed lemma map_of_eq_dom: assumes "map_of xs = map_of ys" shows "fst ` set xs = fst ` set ys" proof - from assms have "dom (map_of xs) = dom (map_of ys)" by simp then show ?thesis by (simp add: dom_map_of_conv_image_fst) qed lemma finite_set_of_finite_maps: assumes "finite A" "finite B" shows "finite {m. dom m = A \ ran m \ B}" (is "finite ?S") proof - let ?S' = "{m. \x. (x \ A \ m x \ Some ` B) \ (x \ A \ m x = None)}" have "?S = ?S'" proof show "?S \ ?S'" by (auto simp: dom_def ran_def image_def) show "?S' \ ?S" proof fix m assume "m \ ?S'" hence 1: "dom m = A" by force hence 2: "ran m \ B" using \m \ ?S'\ by (auto simp: dom_def ran_def) from 1 2 show "m \ ?S" by blast qed qed with assms show ?thesis by(simp add: finite_set_of_finite_funs) qed subsection \@{term [source] ran}\ lemma ranI: "m a = Some b \ b \ ran m" by (auto simp: ran_def) (* declare ranI [intro]? *) lemma ran_empty [simp]: "ran empty = {}" by (auto simp: ran_def) lemma ran_map_upd [simp]: "m a = None \ ran(m(a\b)) = insert b (ran m)" unfolding ran_def by force lemma fun_upd_None_if_notin_dom[simp]: "k \ dom m \ m(k := None) = m" by auto lemma ran_map_add: assumes "dom m1 \ dom m2 = {}" shows "ran (m1 ++ m2) = ran m1 \ ran m2" proof show "ran (m1 ++ m2) \ ran m1 \ ran m2" unfolding ran_def by auto next show "ran m1 \ ran m2 \ ran (m1 ++ m2)" proof - have "(m1 ++ m2) x = Some y" if "m1 x = Some y" for x y using assms map_add_comm that by fastforce moreover have "(m1 ++ m2) x = Some y" if "m2 x = Some y" for x y using assms that by auto ultimately show ?thesis unfolding ran_def by blast qed qed lemma finite_ran: assumes "finite (dom p)" shows "finite (ran p)" proof - have "ran p = (\x. the (p x)) ` dom p" unfolding ran_def by force from this \finite (dom p)\ show ?thesis by auto qed lemma ran_distinct: assumes dist: "distinct (map fst al)" shows "ran (map_of al) = snd ` set al" using assms proof (induct al) case Nil then show ?case by simp next case (Cons kv al) then have "ran (map_of al) = snd ` set al" by simp moreover from Cons.prems have "map_of al (fst kv) = None" by (simp add: map_of_eq_None_iff) ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp qed lemma ran_map_of_zip: assumes "length xs = length ys" "distinct xs" shows "ran (map_of (zip xs ys)) = set ys" using assms by (simp add: ran_distinct set_map[symmetric]) lemma ran_map_option: "ran (\x. map_option f (m x)) = f ` ran m" by (auto simp add: ran_def) subsection \@{term [source] graph}\ lemma graph_empty[simp]: "graph empty = {}" unfolding graph_def by simp lemma in_graphI: "m k = Some v \ (k, v) \ graph m" unfolding graph_def by blast lemma in_graphD: "(k, v) \ graph m \ m k = Some v" unfolding graph_def by blast lemma graph_map_upd[simp]: "graph (m(k \ v)) = insert (k, v) (graph (m(k := None)))" unfolding graph_def by (auto split: if_splits) lemma graph_fun_upd_None: "graph (m(k := None)) = {e \ graph m. fst e \ k}" unfolding graph_def by (auto split: if_splits) lemma graph_restrictD: assumes "(k, v) \ graph (m |` A)" shows "k \ A" and "m k = Some v" using assms unfolding graph_def by (auto simp: restrict_map_def split: if_splits) lemma graph_map_comp[simp]: "graph (m1 \\<^sub>m m2) = graph m2 O graph m1" unfolding graph_def by (auto simp: map_comp_Some_iff relcomp_unfold) lemma graph_map_add: "dom m1 \ dom m2 = {} \ graph (m1 ++ m2) = graph m1 \ graph m2" unfolding graph_def using map_add_comm by force lemma graph_eq_to_snd_dom: "graph m = (\x. (x, the (m x))) ` dom m" unfolding graph_def dom_def by force lemma fst_graph_eq_dom: "fst ` graph m = dom m" unfolding graph_eq_to_snd_dom by force lemma graph_domD: "x \ graph m \ fst x \ dom m" using fst_graph_eq_dom by (metis imageI) lemma snd_graph_ran: "snd ` graph m = ran m" unfolding graph_def ran_def by force lemma graph_ranD: "x \ graph m \ snd x \ ran m" using snd_graph_ran by (metis imageI) lemma finite_graph_map_of: "finite (graph (map_of al))" unfolding graph_eq_to_snd_dom finite_dom_map_of using finite_dom_map_of by blast -lemma graph_map_of_if_distinct_ran: "distinct (map fst al) \ graph (map_of al) = set al" +lemma graph_map_of_if_distinct_dom: "distinct (map fst al) \ graph (map_of al) = set al" unfolding graph_def by auto lemma finite_graph_iff_finite_dom[simp]: "finite (graph m) = finite (dom m)" by (metis graph_eq_to_snd_dom finite_imageI fst_graph_eq_dom) lemma inj_on_fst_graph: "inj_on fst (graph m)" unfolding graph_def inj_on_def by force subsection \\map_le\\ lemma map_le_empty [simp]: "empty \\<^sub>m g" by (simp add: map_le_def) lemma upd_None_map_le [simp]: "f(x := None) \\<^sub>m f" by (force simp add: map_le_def) lemma map_le_upd[simp]: "f \\<^sub>m g ==> f(a := b) \\<^sub>m g(a := b)" by (fastforce simp add: map_le_def) lemma map_le_imp_upd_le [simp]: "m1 \\<^sub>m m2 \ m1(x := None) \\<^sub>m m2(x \ y)" by (force simp add: map_le_def) lemma map_le_upds [simp]: "f \\<^sub>m g \ f(as [\] bs) \\<^sub>m g(as [\] bs)" proof (induct as arbitrary: f g bs) case (Cons a as) then show ?case by (cases bs) (use Cons in auto) qed auto lemma map_le_implies_dom_le: "(f \\<^sub>m g) \ (dom f \ dom g)" by (fastforce simp add: map_le_def dom_def) lemma map_le_refl [simp]: "f \\<^sub>m f" by (simp add: map_le_def) lemma map_le_trans[trans]: "\ m1 \\<^sub>m m2; m2 \\<^sub>m m3\ \ m1 \\<^sub>m m3" by (auto simp add: map_le_def dom_def) lemma map_le_antisym: "\ f \\<^sub>m g; g \\<^sub>m f \ \ f = g" unfolding map_le_def by (metis ext domIff) lemma map_le_map_add [simp]: "f \\<^sub>m g ++ f" by (fastforce simp: map_le_def) lemma map_le_iff_map_add_commute: "f \\<^sub>m f ++ g \ f ++ g = g ++ f" by (fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits) lemma map_add_le_mapE: "f ++ g \\<^sub>m h \ g \\<^sub>m h" by (fastforce simp: map_le_def map_add_def dom_def) lemma map_add_le_mapI: "\ f \\<^sub>m h; g \\<^sub>m h \ \ f ++ g \\<^sub>m h" by (auto simp: map_le_def map_add_def dom_def split: option.splits) lemma map_add_subsumed1: "f \\<^sub>m g \ f++g = g" by (simp add: map_add_le_mapI map_le_antisym) lemma map_add_subsumed2: "f \\<^sub>m g \ g++f = g" by (metis map_add_subsumed1 map_le_iff_map_add_commute) lemma dom_eq_singleton_conv: "dom f = {x} \ (\v. f = [x \ v])" (is "?lhs \ ?rhs") proof assume ?rhs then show ?lhs by (auto split: if_split_asm) next assume ?lhs then obtain v where v: "f x = Some v" by auto show ?rhs proof show "f = [x \ v]" proof (rule map_le_antisym) show "[x \ v] \\<^sub>m f" using v by (auto simp add: map_le_def) show "f \\<^sub>m [x \ v]" using \dom f = {x}\ \f x = Some v\ by (auto simp add: map_le_def) qed qed qed lemma map_add_eq_empty_iff[simp]: "(f++g = empty) \ f = empty \ g = empty" by (metis map_add_None) lemma empty_eq_map_add_iff[simp]: "(empty = f++g) \ f = empty \ g = empty" by(subst map_add_eq_empty_iff[symmetric])(rule eq_commute) subsection \Various\ lemma set_map_of_compr: assumes distinct: "distinct (map fst xs)" shows "set xs = {(k, v). map_of xs k = Some v}" using assms proof (induct xs) case Nil then show ?case by simp next case (Cons x xs) obtain k v where "x = (k, v)" by (cases x) blast with Cons.prems have "k \ dom (map_of xs)" by (simp add: dom_map_of_conv_image_fst) then have *: "insert (k, v) {(k, v). map_of xs k = Some v} = {(k', v'). (map_of xs(k \ v)) k' = Some v'}" by (auto split: if_splits) from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp with * \x = (k, v)\ show ?case by simp qed lemma eq_key_imp_eq_value: "v1 = v2" if "distinct (map fst xs)" "(k, v1) \ set xs" "(k, v2) \ set xs" proof - from that have "inj_on fst (set xs)" by (simp add: distinct_map) moreover have "fst (k, v1) = fst (k, v2)" by simp ultimately have "(k, v1) = (k, v2)" by (rule inj_onD) (fact that)+ then show ?thesis by simp qed lemma map_of_inject_set: assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)" shows "map_of xs = map_of ys \ set xs = set ys" (is "?lhs \ ?rhs") proof assume ?lhs moreover from \distinct (map fst xs)\ have "set xs = {(k, v). map_of xs k = Some v}" by (rule set_map_of_compr) moreover from \distinct (map fst ys)\ have "set ys = {(k, v). map_of ys k = Some v}" by (rule set_map_of_compr) ultimately show ?rhs by simp next assume ?rhs show ?lhs proof fix k show "map_of xs k = map_of ys k" proof (cases "map_of xs k") case None with \?rhs\ have "map_of ys k = None" by (simp add: map_of_eq_None_iff) with None show ?thesis by simp next case (Some v) with distinct \?rhs\ have "map_of ys k = Some v" by simp with Some show ?thesis by simp qed qed qed lemma finite_Map_induct[consumes 1, case_names empty update]: assumes "finite (dom m)" assumes "P Map.empty" assumes "\k v m. finite (dom m) \ k \ dom m \ P m \ P (m(k \ v))" shows "P m" using assms(1) proof(induction "dom m" arbitrary: m rule: finite_induct) case empty then show ?case using assms(2) unfolding dom_def by simp next case (insert x F) then have "finite (dom (m(x:=None)))" "x \ dom (m(x:=None))" "P (m(x:=None))" by (metis Diff_insert_absorb dom_fun_upd)+ with assms(3)[OF this] show ?case by (metis fun_upd_triv fun_upd_upd option.exhaust) qed hide_const (open) Map.empty Map.graph end