diff --git a/src/Pure/term.ML b/src/Pure/term.ML --- a/src/Pure/term.ML +++ b/src/Pure/term.ML @@ -1,1048 +1,1050 @@ (* Title: Pure/term.ML Author: Lawrence C Paulson, Cambridge University Computer Laboratory Author: Makarius Simply typed lambda-calculus: types, terms, and basic operations. *) infix 9 $; infixr 5 -->; infixr --->; infix aconv; signature BASIC_TERM = sig type indexname = string * int type class = string type sort = class list type arity = string * sort list * sort datatype typ = Type of string * typ list | TFree of string * sort | TVar of indexname * sort datatype term = Const of string * typ | Free of string * typ | Var of indexname * typ | Bound of int | Abs of string * typ * term | $ of term * term exception TYPE of string * typ list * term list exception TERM of string * term list val dummyS: sort val dummyT: typ val no_dummyT: typ -> typ val --> : typ * typ -> typ val ---> : typ list * typ -> typ val is_Type: typ -> bool val is_TFree: typ -> bool val is_TVar: typ -> bool val dest_Type: typ -> string * typ list val dest_TFree: typ -> string * sort val dest_TVar: typ -> indexname * sort val is_Bound: term -> bool val is_Const: term -> bool val is_Free: term -> bool val is_Var: term -> bool val dest_Const: term -> string * typ val dest_Free: term -> string * typ val dest_Var: term -> indexname * typ val dest_comb: term -> term * term val domain_type: typ -> typ val range_type: typ -> typ val dest_funT: typ -> typ * typ val binder_types: typ -> typ list val body_type: typ -> typ val strip_type: typ -> typ list * typ val type_of1: typ list * term -> typ val type_of: term -> typ val fastype_of1: typ list * term -> typ val fastype_of: term -> typ val strip_abs: term -> (string * typ) list * term val strip_abs_body: term -> term val strip_abs_vars: term -> (string * typ) list val strip_qnt_body: string -> term -> term val strip_qnt_vars: string -> term -> (string * typ) list val list_comb: term * term list -> term val strip_comb: term -> term * term list val head_of: term -> term val size_of_term: term -> int val size_of_typ: typ -> int val map_atyps: (typ -> typ) -> typ -> typ val map_aterms: (term -> term) -> term -> term val map_type_tvar: (indexname * sort -> typ) -> typ -> typ val map_type_tfree: (string * sort -> typ) -> typ -> typ val map_types: (typ -> typ) -> term -> term val fold_atyps: (typ -> 'a -> 'a) -> typ -> 'a -> 'a val fold_atyps_sorts: (typ * sort -> 'a -> 'a) -> typ -> 'a -> 'a val fold_aterms: (term -> 'a -> 'a) -> term -> 'a -> 'a val fold_term_types: (term -> typ -> 'a -> 'a) -> term -> 'a -> 'a val fold_types: (typ -> 'a -> 'a) -> term -> 'a -> 'a val burrow_types: (typ list -> typ list) -> term list -> term list val aconv: term * term -> bool val propT: typ val strip_all_body: term -> term val strip_all_vars: term -> (string * typ) list val incr_bv: int * int * term -> term val incr_boundvars: int -> term -> term val add_loose_bnos: term * int * int list -> int list val loose_bnos: term -> int list val loose_bvar: term * int -> bool val loose_bvar1: term * int -> bool val subst_bounds: term list * term -> term val subst_bound: term * term -> term val betapply: term * term -> term val betapplys: term * term list -> term val subst_free: (term * term) list -> term -> term val abstract_over: term * term -> term val lambda: term -> term -> term val absfree: string * typ -> term -> term val absdummy: typ -> term -> term val subst_atomic: (term * term) list -> term -> term val typ_subst_atomic: (typ * typ) list -> typ -> typ val subst_atomic_types: (typ * typ) list -> term -> term val typ_subst_TVars: (indexname * typ) list -> typ -> typ val subst_TVars: (indexname * typ) list -> term -> term val subst_Vars: (indexname * term) list -> term -> term val subst_vars: (indexname * typ) list * (indexname * term) list -> term -> term val is_first_order: string list -> term -> bool val maxidx_of_typ: typ -> int val maxidx_of_typs: typ list -> int val maxidx_of_term: term -> int val fold_subtypes: (typ -> 'a -> 'a) -> typ -> 'a -> 'a val exists_subtype: (typ -> bool) -> typ -> bool val exists_type: (typ -> bool) -> term -> bool val exists_subterm: (term -> bool) -> term -> bool val exists_Const: (string * typ -> bool) -> term -> bool end; signature TERM = sig include BASIC_TERM val aT: sort -> typ val itselfT: typ -> typ val a_itselfT: typ val argument_type_of: term -> int -> typ val abs: string * typ -> term -> term val add_tvar_namesT: typ -> indexname list -> indexname list val add_tvar_names: term -> indexname list -> indexname list val add_tvarsT: typ -> (indexname * sort) list -> (indexname * sort) list val add_tvars: term -> (indexname * sort) list -> (indexname * sort) list val add_var_names: term -> indexname list -> indexname list val add_vars: term -> (indexname * typ) list -> (indexname * typ) list val add_tfree_namesT: typ -> string list -> string list val add_tfree_names: term -> string list -> string list val add_tfreesT: typ -> (string * sort) list -> (string * sort) list val add_tfrees: term -> (string * sort) list -> (string * sort) list val add_free_names: term -> string list -> string list val add_frees: term -> (string * typ) list -> (string * typ) list val add_const_names: term -> string list -> string list val add_consts: term -> (string * typ) list -> (string * typ) list val hidden_polymorphism: term -> (indexname * sort) list val declare_typ_names: typ -> Name.context -> Name.context val declare_term_names: term -> Name.context -> Name.context val declare_term_frees: term -> Name.context -> Name.context val variant_frees: term -> (string * 'a) list -> (string * 'a) list val rename_wrt_term: term -> (string * 'a) list -> (string * 'a) list val eq_ix: indexname * indexname -> bool val eq_tvar: (indexname * sort) * (indexname * sort) -> bool val eq_var: (indexname * typ) * (indexname * typ) -> bool val aconv_untyped: term * term -> bool val could_unify: term * term -> bool val strip_abs_eta: int -> term -> (string * typ) list * term val match_bvars: (term * term) -> (string * string) list -> (string * string) list val map_abs_vars: (string -> string) -> term -> term val rename_abs: term -> term -> term -> term option val is_open: term -> bool val is_dependent: term -> bool val term_name: term -> string val dependent_lambda_name: string * term -> term -> term val lambda_name: string * term -> term -> term val close_schematic_term: term -> term val maxidx_typ: typ -> int -> int val maxidx_typs: typ list -> int -> int val maxidx_term: term -> int -> int val could_beta_contract: term -> bool val could_eta_contract: term -> bool val could_beta_eta_contract: term -> bool val dest_abs: string * typ * term -> string * term val dummy_pattern: typ -> term val dummy: term val dummy_prop: term val is_dummy_pattern: term -> bool val free_dummy_patterns: term -> Name.context -> term * Name.context val no_dummy_patterns: term -> term val replace_dummy_patterns: term -> int -> term * int val show_dummy_patterns: term -> term val string_of_vname: indexname -> string val string_of_vname': indexname -> string end; structure Term: TERM = struct (*Indexnames can be quickly renamed by adding an offset to the integer part, for resolution.*) type indexname = string * int; (*Types are classified by sorts.*) type class = string; type sort = class list; type arity = string * sort list * sort; (*The sorts attached to TFrees and TVars specify the sort of that variable.*) datatype typ = Type of string * typ list | TFree of string * sort | TVar of indexname * sort; (*Terms. Bound variables are indicated by depth number. Free variables, (scheme) variables and constants have names. An term is "closed" if every bound variable of level "lev" is enclosed by at least "lev" abstractions. It is possible to create meaningless terms containing loose bound vars or type mismatches. But such terms are not allowed in rules. *) datatype term = Const of string * typ | Free of string * typ | Var of indexname * typ | Bound of int | Abs of string*typ*term | op $ of term*term; (*Errors involving type mismatches*) exception TYPE of string * typ list * term list; (*Errors errors involving terms*) exception TERM of string * term list; (*Note variable naming conventions! a,b,c: string f,g,h: functions (including terms of function type) i,j,m,n: int t,u: term v,w: indexnames x,y: any A,B,C: term (denoting formulae) T,U: typ *) (** Types **) (*dummies for type-inference etc.*) val dummyS = [""]; val dummyT = Type ("dummy", []); fun no_dummyT typ = let fun check (T as Type ("dummy", _)) = raise TYPE ("Illegal occurrence of '_' dummy type", [T], []) | check (Type (_, Ts)) = List.app check Ts | check _ = (); in check typ; typ end; fun S --> T = Type("fun",[S,T]); (*handy for multiple args: [T1,...,Tn]--->T gives T1-->(T2--> ... -->T)*) val op ---> = Library.foldr (op -->); (** Discriminators **) fun is_Type (Type _) = true | is_Type _ = false; fun is_TFree (TFree _) = true | is_TFree _ = false; fun is_TVar (TVar _) = true | is_TVar _ = false; (** Destructors **) fun dest_Type (Type x) = x | dest_Type T = raise TYPE ("dest_Type", [T], []); fun dest_TFree (TFree x) = x | dest_TFree T = raise TYPE ("dest_TFree", [T], []); fun dest_TVar (TVar x) = x | dest_TVar T = raise TYPE ("dest_TVar", [T], []); (** Discriminators **) fun is_Bound (Bound _) = true | is_Bound _ = false; fun is_Const (Const _) = true | is_Const _ = false; fun is_Free (Free _) = true | is_Free _ = false; fun is_Var (Var _) = true | is_Var _ = false; (** Destructors **) fun dest_Const (Const x) = x | dest_Const t = raise TERM("dest_Const", [t]); fun dest_Free (Free x) = x | dest_Free t = raise TERM("dest_Free", [t]); fun dest_Var (Var x) = x | dest_Var t = raise TERM("dest_Var", [t]); fun dest_comb (t1 $ t2) = (t1, t2) | dest_comb t = raise TERM("dest_comb", [t]); fun domain_type (Type ("fun", [T, _])) = T; fun range_type (Type ("fun", [_, U])) = U; fun dest_funT (Type ("fun", [T, U])) = (T, U) | dest_funT T = raise TYPE ("dest_funT", [T], []); (*maps [T1,...,Tn]--->T to the list [T1,T2,...,Tn]*) fun binder_types (Type ("fun", [T, U])) = T :: binder_types U | binder_types _ = []; (*maps [T1,...,Tn]--->T to T*) fun body_type (Type ("fun", [_, U])) = body_type U | body_type T = T; (*maps [T1,...,Tn]--->T to ([T1,T2,...,Tn], T)*) fun strip_type T = (binder_types T, body_type T); (*Compute the type of the term, checking that combinations are well-typed Ts = [T0,T1,...] holds types of bound variables 0, 1, ...*) fun type_of1 (Ts, Const (_,T)) = T | type_of1 (Ts, Free (_,T)) = T | type_of1 (Ts, Bound i) = (nth Ts i handle General.Subscript => raise TYPE("type_of: bound variable", [], [Bound i])) | type_of1 (Ts, Var (_,T)) = T | type_of1 (Ts, Abs (_,T,body)) = T --> type_of1(T::Ts, body) | type_of1 (Ts, f$u) = let val U = type_of1(Ts,u) and T = type_of1(Ts,f) in case T of Type("fun",[T1,T2]) => if T1=U then T2 else raise TYPE ("type_of: type mismatch in application", [T1,U], [f$u]) | _ => raise TYPE ("type_of: function type is expected in application", [T,U], [f$u]) end; fun type_of t : typ = type_of1 ([],t); (*Determine the type of a term, with minimal checking*) local fun fastype_of_term Ts (Abs (_, T, t)) = T --> fastype_of_term (T :: Ts) t | fastype_of_term Ts (t $ _) = range_type_of Ts t | fastype_of_term Ts a = fastype_of_atom Ts a and fastype_of_atom _ (Const (_, T)) = T | fastype_of_atom _ (Free (_, T)) = T | fastype_of_atom _ (Var (_, T)) = T | fastype_of_atom Ts (Bound i) = fastype_of_bound Ts i and fastype_of_bound (T :: Ts) i = if i = 0 then T else fastype_of_bound Ts (i - 1) | fastype_of_bound [] i = raise TERM ("fastype_of: Bound", [Bound i]) and range_type_of Ts (Abs (_, T, u)) = fastype_of_term (T :: Ts) u | range_type_of Ts (t $ u) = range_type_ofT (t $ u) (range_type_of Ts t) | range_type_of Ts a = range_type_ofT a (fastype_of_atom Ts a) and range_type_ofT _ (Type ("fun", [_, T])) = T | range_type_ofT t _ = raise TERM ("fastype_of: expected function type", [t]); in val fastype_of1 = uncurry fastype_of_term; val fastype_of = fastype_of_term []; end; (*Determine the argument type of a function*) fun argument_type_of tm k = let fun argT i (Type ("fun", [T, U])) = if i = 0 then T else argT (i - 1) U | argT _ T = raise TYPE ("argument_type_of", [T], []); fun arg 0 _ (Abs (_, T, _)) = T | arg i Ts (Abs (_, T, t)) = arg (i - 1) (T :: Ts) t | arg i Ts (t $ _) = arg (i + 1) Ts t | arg i Ts a = argT i (fastype_of1 (Ts, a)); in arg k [] tm end; fun abs (x, T) t = Abs (x, T, t); fun strip_abs (Abs (a, T, t)) = let val (a', t') = strip_abs t in ((a, T) :: a', t') end | strip_abs t = ([], t); (*maps (x1,...,xn)t to t*) fun strip_abs_body (Abs(_,_,t)) = strip_abs_body t | strip_abs_body u = u; (*maps (x1,...,xn)t to [x1, ..., xn]*) fun strip_abs_vars (Abs(a,T,t)) = (a,T) :: strip_abs_vars t | strip_abs_vars u = [] : (string*typ) list; fun strip_qnt_body qnt = let fun strip(tm as Const(c,_)$Abs(_,_,t)) = if c=qnt then strip t else tm | strip t = t in strip end; fun strip_qnt_vars qnt = let fun strip(Const(c,_)$Abs(a,T,t)) = if c=qnt then (a,T)::strip t else [] | strip t = [] : (string*typ) list in strip end; (*maps (f, [t1,...,tn]) to f(t1,...,tn)*) val list_comb : term * term list -> term = Library.foldl (op $); (*maps f(t1,...,tn) to (f, [t1,...,tn]) ; naturally tail-recursive*) fun strip_comb u : term * term list = let fun stripc (f$t, ts) = stripc (f, t::ts) | stripc x = x in stripc(u,[]) end; (*maps f(t1,...,tn) to f , which is never a combination*) fun head_of (f$t) = head_of f | head_of u = u; (*number of atoms and abstractions in a term*) fun size_of_term tm = let fun add_size (t $ u) n = add_size t (add_size u n) | add_size (Abs (_ ,_, t)) n = add_size t (n + 1) | add_size _ n = n + 1; in add_size tm 0 end; (*number of atoms and constructors in a type*) fun size_of_typ ty = let fun add_size (Type (_, tys)) n = fold add_size tys (n + 1) | add_size _ n = n + 1; in add_size ty 0 end; fun map_atyps f (Type (a, Ts)) = Type (a, map (map_atyps f) Ts) | map_atyps f T = f T; fun map_aterms f (t $ u) = map_aterms f t $ map_aterms f u | map_aterms f (Abs (a, T, t)) = Abs (a, T, map_aterms f t) | map_aterms f t = f t; fun map_type_tvar f = map_atyps (fn TVar x => f x | T => T); fun map_type_tfree f = map_atyps (fn TFree x => f x | T => T); fun map_types f = let fun map_aux (Const (a, T)) = Const (a, f T) | map_aux (Free (a, T)) = Free (a, f T) | map_aux (Var (v, T)) = Var (v, f T) | map_aux (Bound i) = Bound i | map_aux (Abs (a, T, t)) = Abs (a, f T, map_aux t) | map_aux (t $ u) = map_aux t $ map_aux u; in map_aux end; (* fold types and terms *) fun fold_atyps f (Type (_, Ts)) = fold (fold_atyps f) Ts | fold_atyps f T = f T; fun fold_atyps_sorts f = fold_atyps (fn T as TFree (_, S) => f (T, S) | T as TVar (_, S) => f (T, S)); fun fold_aterms f (t $ u) = fold_aterms f t #> fold_aterms f u | fold_aterms f (Abs (_, _, t)) = fold_aterms f t | fold_aterms f a = f a; fun fold_term_types f (t as Const (_, T)) = f t T | fold_term_types f (t as Free (_, T)) = f t T | fold_term_types f (t as Var (_, T)) = f t T | fold_term_types f (Bound _) = I | fold_term_types f (t as Abs (_, T, b)) = f t T #> fold_term_types f b | fold_term_types f (t $ u) = fold_term_types f t #> fold_term_types f u; fun fold_types f = fold_term_types (K f); fun replace_types (Const (c, _)) (T :: Ts) = (Const (c, T), Ts) | replace_types (Free (x, _)) (T :: Ts) = (Free (x, T), Ts) | replace_types (Var (xi, _)) (T :: Ts) = (Var (xi, T), Ts) | replace_types (Bound i) Ts = (Bound i, Ts) | replace_types (Abs (x, _, b)) (T :: Ts) = let val (b', Ts') = replace_types b Ts in (Abs (x, T, b'), Ts') end | replace_types (t $ u) Ts = let val (t', Ts') = replace_types t Ts; val (u', Ts'') = replace_types u Ts'; in (t' $ u', Ts'') end; fun burrow_types f ts = let val Ts = rev ((fold o fold_types) cons ts []); val Ts' = f Ts; val (ts', []) = fold_map replace_types ts Ts'; in ts' end; (*collect variables*) val add_tvar_namesT = fold_atyps (fn TVar (xi, _) => insert (op =) xi | _ => I); val add_tvar_names = fold_types add_tvar_namesT; val add_tvarsT = fold_atyps (fn TVar v => insert (op =) v | _ => I); val add_tvars = fold_types add_tvarsT; val add_var_names = fold_aterms (fn Var (xi, _) => insert (op =) xi | _ => I); val add_vars = fold_aterms (fn Var v => insert (op =) v | _ => I); val add_tfree_namesT = fold_atyps (fn TFree (a, _) => insert (op =) a | _ => I); val add_tfree_names = fold_types add_tfree_namesT; val add_tfreesT = fold_atyps (fn TFree v => insert (op =) v | _ => I); val add_tfrees = fold_types add_tfreesT; val add_free_names = fold_aterms (fn Free (x, _) => insert (op =) x | _ => I); val add_frees = fold_aterms (fn Free v => insert (op =) v | _ => I); val add_const_names = fold_aterms (fn Const (c, _) => insert (op =) c | _ => I); val add_consts = fold_aterms (fn Const c => insert (op =) c | _ => I); (*extra type variables in a term, not covered by its type*) fun hidden_polymorphism t = let val T = fastype_of t; val tvarsT = add_tvarsT T []; val extra_tvars = fold_types (fold_atyps (fn TVar v => if member (op =) tvarsT v then I else insert (op =) v | _ => I)) t []; in extra_tvars end; (* renaming variables *) val declare_typ_names = fold_atyps (fn TFree (a, _) => Name.declare a | _ => I); fun declare_term_names tm = fold_aterms (fn Const (a, _) => Name.declare (Long_Name.base_name a) | Free (a, _) => Name.declare a | _ => I) tm #> fold_types declare_typ_names tm; val declare_term_frees = fold_aterms (fn Free (x, _) => Name.declare x | _ => I); fun variant_frees t frees = fst (fold_map Name.variant (map fst frees) (declare_term_names t Name.context)) ~~ map snd frees; fun rename_wrt_term t frees = rev (variant_frees t frees); (*reversed result!*) (** Comparing terms **) (* variables *) fun eq_ix ((x, i): indexname, (y, j)) = i = j andalso x = y; fun eq_tvar ((xi, S: sort), (xi', S')) = eq_ix (xi, xi') andalso S = S'; fun eq_var ((xi, T: typ), (xi', T')) = eq_ix (xi, xi') andalso T = T'; (* alpha equivalence *) fun tm1 aconv tm2 = pointer_eq (tm1, tm2) orelse (case (tm1, tm2) of (t1 $ u1, t2 $ u2) => t1 aconv t2 andalso u1 aconv u2 | (Abs (_, T1, t1), Abs (_, T2, t2)) => t1 aconv t2 andalso T1 = T2 | (a1, a2) => a1 = a2); fun aconv_untyped (tm1, tm2) = pointer_eq (tm1, tm2) orelse (case (tm1, tm2) of (t1 $ u1, t2 $ u2) => aconv_untyped (t1, t2) andalso aconv_untyped (u1, u2) | (Abs (_, _, t1), Abs (_, _, t2)) => aconv_untyped (t1, t2) | (Const (a, _), Const (b, _)) => a = b | (Free (x, _), Free (y, _)) => x = y | (Var (xi, _), Var (yj, _)) => xi = yj | (Bound i, Bound j) => i = j | _ => false); (*A fast unification filter: true unless the two terms cannot be unified. Terms must be NORMAL. Treats all Vars as distinct. *) fun could_unify (t, u) = let fun matchrands (f $ t) (g $ u) = could_unify (t, u) andalso matchrands f g | matchrands _ _ = true; in case (head_of t, head_of u) of (_, Var _) => true | (Var _, _) => true | (Const (a, _), Const (b, _)) => a = b andalso matchrands t u | (Free (a, _), Free (b, _)) => a = b andalso matchrands t u | (Bound i, Bound j) => i = j andalso matchrands t u | (Abs _, _) => true (*because of possible eta equality*) | (_, Abs _) => true | _ => false end; (** Connectives of higher order logic **) fun aT S = TFree (Name.aT, S); fun itselfT ty = Type ("itself", [ty]); val a_itselfT = itselfT (TFree (Name.aT, [])); val propT : typ = Type ("prop",[]); (*maps \x1...xn. t to t*) fun strip_all_body (Const ("Pure.all", _) $ Abs (_, _, t)) = strip_all_body t | strip_all_body t = t; (*maps \x1...xn. t to [x1, ..., xn]*) fun strip_all_vars (Const ("Pure.all", _) $ Abs (a, T, t)) = (a, T) :: strip_all_vars t | strip_all_vars t = []; (*increments a term's non-local bound variables required when moving a term within abstractions inc is increment for bound variables lev is level at which a bound variable is considered 'loose'*) fun incr_bv (inc, lev, u as Bound i) = if i>=lev then Bound(i+inc) else u | incr_bv (inc, lev, Abs(a,T,body)) = Abs(a, T, incr_bv(inc,lev+1,body)) | incr_bv (inc, lev, f$t) = incr_bv(inc,lev,f) $ incr_bv(inc,lev,t) | incr_bv (inc, lev, u) = u; fun incr_boundvars 0 t = t | incr_boundvars inc t = incr_bv(inc,0,t); (*Scan a pair of terms; while they are similar, accumulate corresponding bound vars in "al"*) fun match_bvs(Abs(x,_,s),Abs(y,_,t), al) = match_bvs(s, t, if x="" orelse y="" then al else (x,y)::al) | match_bvs(f$s, g$t, al) = match_bvs(f,g,match_bvs(s,t,al)) | match_bvs(_,_,al) = al; (* strip abstractions created by parameters *) fun match_bvars (s,t) al = match_bvs(strip_abs_body s, strip_abs_body t, al); fun map_abs_vars f (t $ u) = map_abs_vars f t $ map_abs_vars f u | map_abs_vars f (Abs (a, T, t)) = Abs (f a, T, map_abs_vars f t) | map_abs_vars f t = t; fun rename_abs pat obj t = let val ren = match_bvs (pat, obj, []); fun ren_abs (Abs (x, T, b)) = Abs (the_default x (AList.lookup (op =) ren x), T, ren_abs b) | ren_abs (f $ t) = ren_abs f $ ren_abs t | ren_abs t = t in if null ren then NONE else SOME (ren_abs t) end; (*Accumulate all 'loose' bound vars referring to level 'lev' or beyond. (Bound 0) is loose at level 0 *) fun add_loose_bnos (Bound i, lev, js) = if i= k | loose_bvar(f$t, k) = loose_bvar(f,k) orelse loose_bvar(t,k) | loose_bvar(Abs(_,_,t),k) = loose_bvar(t,k+1) | loose_bvar _ = false; fun loose_bvar1(Bound i,k) = i = k | loose_bvar1(f$t, k) = loose_bvar1(f,k) orelse loose_bvar1(t,k) | loose_bvar1(Abs(_,_,t),k) = loose_bvar1(t,k+1) | loose_bvar1 _ = false; fun is_open t = loose_bvar (t, 0); fun is_dependent t = loose_bvar1 (t, 0); (*Substitute arguments for loose bound variables. Beta-reduction of arg(n-1)...arg0 into t replacing (Bound i) with (argi). Note that for ((\x y. c) a b), the bound vars in c are x=1 and y=0 and the appropriate call is subst_bounds([b,a], c) . Loose bound variables >=n are reduced by "n" to compensate for the disappearance of lambdas. *) fun subst_bounds (args: term list, t) : term = let val n = length args; fun subst (t as Bound i, lev) = (if i < lev then raise Same.SAME (*var is locally bound*) else incr_boundvars lev (nth args (i - lev)) handle General.Subscript => Bound (i - n)) (*loose: change it*) | subst (Abs (a, T, body), lev) = Abs (a, T, subst (body, lev + 1)) | subst (f $ t, lev) = (subst (f, lev) $ (subst (t, lev) handle Same.SAME => t) handle Same.SAME => f $ subst (t, lev)) | subst _ = raise Same.SAME; in case args of [] => t | _ => (subst (t, 0) handle Same.SAME => t) end; (*Special case: one argument*) fun subst_bound (arg, t) : term = let fun subst (Bound i, lev) = if i < lev then raise Same.SAME (*var is locally bound*) else if i = lev then incr_boundvars lev arg else Bound (i - 1) (*loose: change it*) | subst (Abs (a, T, body), lev) = Abs (a, T, subst (body, lev + 1)) | subst (f $ t, lev) = (subst (f, lev) $ (subst (t, lev) handle Same.SAME => t) handle Same.SAME => f $ subst (t, lev)) | subst _ = raise Same.SAME; in subst (t, 0) handle Same.SAME => t end; (*beta-reduce if possible, else form application*) fun betapply (Abs(_,_,t), u) = subst_bound (u,t) | betapply (f,u) = f$u; val betapplys = Library.foldl betapply; (*unfolding abstractions with substitution of bound variables and implicit eta-expansion*) fun strip_abs_eta k t = let val used = fold_aterms declare_term_frees t Name.context; fun strip_abs t (0, used) = (([], t), (0, used)) | strip_abs (Abs (v, T, t)) (k, used) = let val (v', used') = Name.variant v used; val t' = subst_bound (Free (v', T), t); val ((vs, t''), (k', used'')) = strip_abs t' (k - 1, used'); in (((v', T) :: vs, t''), (k', used'')) end | strip_abs t (k, used) = (([], t), (k, used)); fun expand_eta [] t _ = ([], t) | expand_eta (T::Ts) t used = let val (v, used') = Name.variant "" used; val (vs, t') = expand_eta Ts (t $ Free (v, T)) used'; in ((v, T) :: vs, t') end; val ((vs1, t'), (k', used')) = strip_abs t (k, used); val Ts = fst (chop k' (binder_types (fastype_of t'))); val (vs2, t'') = expand_eta Ts t' used'; in (vs1 @ vs2, t'') end; (*Substitute new for free occurrences of old in a term*) fun subst_free [] = I | subst_free pairs = let fun substf u = case AList.lookup (op aconv) pairs u of SOME u' => u' | NONE => (case u of Abs(a,T,t) => Abs(a, T, substf t) | t$u' => substf t $ substf u' | _ => u) in substf end; (*Abstraction of the term "body" over its occurrences of v, which must contain no loose bound variables. The resulting term is ready to become the body of an Abs.*) fun abstract_over (v, body) = let fun abs lev tm = if v aconv tm then Bound lev else (case tm of Abs (a, T, t) => Abs (a, T, abs (lev + 1) t) | t $ u => (abs lev t $ (abs lev u handle Same.SAME => u) handle Same.SAME => t $ abs lev u) | _ => raise Same.SAME); in abs 0 body handle Same.SAME => body end; fun term_name (Const (x, _)) = Long_Name.base_name x | term_name (Free (x, _)) = x | term_name (Var ((x, _), _)) = x | term_name _ = Name.uu; fun dependent_lambda_name (x, v) t = let val t' = abstract_over (v, t) in if is_dependent t' then Abs (if x = "" then term_name v else x, fastype_of v, t') else t end; fun lambda_name (x, v) t = Abs (if x = "" then term_name v else x, fastype_of v, abstract_over (v, t)); fun lambda v t = lambda_name ("", v) t; fun absfree (a, T) body = Abs (a, T, abstract_over (Free (a, T), body)); fun absdummy T body = Abs (Name.uu_, T, body); (*Replace the ATOMIC term ti by ui; inst = [(t1,u1), ..., (tn,un)]. A simultaneous substitution: [ (a,b), (b,a) ] swaps a and b. *) fun subst_atomic [] tm = tm | subst_atomic inst tm = let fun subst (Abs (a, T, body)) = Abs (a, T, subst body) | subst (t $ u) = subst t $ subst u | subst t = the_default t (AList.lookup (op aconv) inst t); in subst tm end; (*Replace the ATOMIC type Ti by Ui; inst = [(T1,U1), ..., (Tn,Un)].*) fun typ_subst_atomic [] ty = ty | typ_subst_atomic inst ty = let fun subst (Type (a, Ts)) = Type (a, map subst Ts) | subst T = the_default T (AList.lookup (op = : typ * typ -> bool) inst T); in subst ty end; fun subst_atomic_types [] tm = tm | subst_atomic_types inst tm = map_types (typ_subst_atomic inst) tm; fun typ_subst_TVars [] ty = ty | typ_subst_TVars inst ty = let fun subst (Type (a, Ts)) = Type (a, map subst Ts) | subst (T as TVar (xi, _)) = the_default T (AList.lookup (op =) inst xi) | subst T = T; in subst ty end; fun subst_TVars [] tm = tm | subst_TVars inst tm = map_types (typ_subst_TVars inst) tm; fun subst_Vars [] tm = tm | subst_Vars inst tm = let fun subst (t as Var (xi, _)) = the_default t (AList.lookup (op =) inst xi) | subst (Abs (a, T, t)) = Abs (a, T, subst t) | subst (t $ u) = subst t $ subst u | subst t = t; in subst tm end; fun subst_vars ([], []) tm = tm | subst_vars ([], inst) tm = subst_Vars inst tm | subst_vars (instT, inst) tm = let fun subst (Const (a, T)) = Const (a, typ_subst_TVars instT T) | subst (Free (a, T)) = Free (a, typ_subst_TVars instT T) | subst (Var (xi, T)) = (case AList.lookup (op =) inst xi of NONE => Var (xi, typ_subst_TVars instT T) | SOME t => t) | subst (t as Bound _) = t | subst (Abs (a, T, t)) = Abs (a, typ_subst_TVars instT T, subst t) | subst (t $ u) = subst t $ subst u; in subst tm end; fun close_schematic_term t = let val extra_types = map (fn v => Const ("Pure.type", itselfT (TVar v))) (hidden_polymorphism t); val extra_terms = map Var (add_vars t []); in fold lambda (extra_terms @ extra_types) t end; (** Identifying first-order terms **) (*Differs from proofterm/is_fun in its treatment of TVar*) fun is_funtype (Type ("fun", [_, _])) = true | is_funtype _ = false; (*Argument Ts is a reverse list of binder types, needed if term t contains Bound vars*) fun has_not_funtype Ts t = not (is_funtype (fastype_of1 (Ts, t))); (*First order means in all terms of the form f(t1,...,tn) no argument has a function type. The supplied quantifiers are excluded: their argument always has a function type through a recursive call into its body.*) fun is_first_order quants = let fun first_order1 Ts (Abs (_,T,body)) = first_order1 (T::Ts) body | first_order1 Ts (Const(q,_) $ Abs(a,T,body)) = member (op =) quants q andalso (*it is a known quantifier*) not (is_funtype T) andalso first_order1 (T::Ts) body | first_order1 Ts t = case strip_comb t of (Var _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts | (Free _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts | (Const _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts | (Bound _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts | (Abs _, ts) => false (*not in beta-normal form*) | _ => error "first_order: unexpected case" in first_order1 [] end; (* maximum index of typs and terms *) fun maxidx_typ (TVar ((_, j), _)) i = Int.max (i, j) | maxidx_typ (Type (_, Ts)) i = maxidx_typs Ts i | maxidx_typ (TFree _) i = i and maxidx_typs [] i = i | maxidx_typs (T :: Ts) i = maxidx_typs Ts (maxidx_typ T i); fun maxidx_term (Var ((_, j), T)) i = maxidx_typ T (Int.max (i, j)) | maxidx_term (Const (_, T)) i = maxidx_typ T i | maxidx_term (Free (_, T)) i = maxidx_typ T i | maxidx_term (Bound _) i = i | maxidx_term (Abs (_, T, t)) i = maxidx_term t (maxidx_typ T i) | maxidx_term (t $ u) i = maxidx_term u (maxidx_term t i); fun maxidx_of_typ T = maxidx_typ T ~1; fun maxidx_of_typs Ts = maxidx_typs Ts ~1; fun maxidx_of_term t = maxidx_term t ~1; (** misc syntax operations **) (* substructure *) fun fold_subtypes f = let fun iter ty = (case ty of Type (_, Ts) => f ty #> fold iter Ts | _ => f ty); in iter end; fun exists_subtype P = let fun ex ty = P ty orelse (case ty of Type (_, Ts) => exists ex Ts | _ => false); in ex end; fun exists_type P = let fun ex (Const (_, T)) = P T | ex (Free (_, T)) = P T | ex (Var (_, T)) = P T | ex (Bound _) = false | ex (Abs (_, T, t)) = P T orelse ex t | ex (t $ u) = ex t orelse ex u; in ex end; fun exists_subterm P = let fun ex tm = P tm orelse (case tm of t $ u => ex t orelse ex u | Abs (_, _, t) => ex t | _ => false); in ex end; fun exists_Const P = exists_subterm (fn Const c => P c | _ => false); (* contraction *) fun could_beta_contract (Abs _ $ _) = true | could_beta_contract (t $ u) = could_beta_contract t orelse could_beta_contract u | could_beta_contract (Abs (_, _, b)) = could_beta_contract b | could_beta_contract _ = false; fun could_eta_contract (Abs (_, _, _ $ Bound 0)) = true | could_eta_contract (Abs (_, _, b)) = could_eta_contract b | could_eta_contract (t $ u) = could_eta_contract t orelse could_eta_contract u | could_eta_contract _ = false; fun could_beta_eta_contract (Abs _ $ _) = true | could_beta_eta_contract (Abs (_, _, _ $ Bound 0)) = true | could_beta_eta_contract (Abs (_, _, b)) = could_beta_eta_contract b | could_beta_eta_contract (t $ u) = could_beta_eta_contract t orelse could_beta_eta_contract u | could_beta_eta_contract _ = false; (* dest abstraction *) -fun dest_abs (x, T, body) = +fun used_free x = let - fun name_clash (Free (y, _)) = (x = y) - | name_clash (t $ u) = name_clash t orelse name_clash u - | name_clash (Abs (_, _, t)) = name_clash t - | name_clash _ = false; - in - if name_clash body then - dest_abs (singleton (Name.variant_list [x]) x, T, body) (*potentially slow*) - else (x, subst_bound (Free (x, T), body)) - end; + fun used (Free (y, _)) = (x = y) + | used (t $ u) = used t orelse used u + | used (Abs (_, _, t)) = used t + | used _ = false; + in used end; + +fun dest_abs (x, T, b) = + if used_free x b then + let val (x', _) = Name.variant x (declare_term_names b Name.context) + in (x', subst_bound (Free (x', T), b)) end + else (x, subst_bound (Free (x, T), b)); (* dummy patterns *) fun dummy_pattern T = Const ("Pure.dummy_pattern", T); val dummy = dummy_pattern dummyT; val dummy_prop = dummy_pattern propT; fun is_dummy_pattern (Const ("Pure.dummy_pattern", _)) = true | is_dummy_pattern _ = false; fun no_dummy_patterns tm = if not (fold_aterms (fn t => fn b => b orelse is_dummy_pattern t) tm false) then tm else raise TERM ("Illegal occurrence of '_' dummy pattern", [tm]); fun free_dummy_patterns (Const ("Pure.dummy_pattern", T)) used = let val [x] = Name.invent used Name.uu 1 in (Free (Name.internal x, T), Name.declare x used) end | free_dummy_patterns (Abs (x, T, b)) used = let val (b', used') = free_dummy_patterns b used in (Abs (x, T, b'), used') end | free_dummy_patterns (t $ u) used = let val (t', used') = free_dummy_patterns t used; val (u', used'') = free_dummy_patterns u used'; in (t' $ u', used'') end | free_dummy_patterns a used = (a, used); fun replace_dummy Ts (Const ("Pure.dummy_pattern", T)) i = (list_comb (Var (("_dummy_", i), Ts ---> T), map_range Bound (length Ts)), i + 1) | replace_dummy Ts (Abs (x, T, t)) i = let val (t', i') = replace_dummy (T :: Ts) t i in (Abs (x, T, t'), i') end | replace_dummy Ts (t $ u) i = let val (t', i') = replace_dummy Ts t i; val (u', i'') = replace_dummy Ts u i'; in (t' $ u', i'') end | replace_dummy _ a i = (a, i); val replace_dummy_patterns = replace_dummy []; fun show_dummy_patterns (Var (("_dummy_", _), T)) = dummy_pattern T | show_dummy_patterns (t $ u) = show_dummy_patterns t $ show_dummy_patterns u | show_dummy_patterns (Abs (x, T, t)) = Abs (x, T, show_dummy_patterns t) | show_dummy_patterns a = a; (* display variables *) fun string_of_vname (x, i) = let val idx = string_of_int i; val dot = (case rev (Symbol.explode x) of _ :: "\<^sub>" :: _ => false | c :: _ => Symbol.is_digit c | _ => true); in if dot then "?" ^ x ^ "." ^ idx else if i <> 0 then "?" ^ x ^ idx else "?" ^ x end; fun string_of_vname' (x, ~1) = x | string_of_vname' xi = string_of_vname xi; end; structure Basic_Term: BASIC_TERM = Term; open Basic_Term;