diff --git a/src/HOL/Library/Complete_Partial_Order2.thy b/src/HOL/Library/Complete_Partial_Order2.thy --- a/src/HOL/Library/Complete_Partial_Order2.thy +++ b/src/HOL/Library/Complete_Partial_Order2.thy @@ -1,1753 +1,1765 @@ (* Title: HOL/Library/Complete_Partial_Order2.thy Author: Andreas Lochbihler, ETH Zurich *) section \Formalisation of chain-complete partial orders, continuity and admissibility\ theory Complete_Partial_Order2 imports Main begin unbundle lattice_syntax lemma chain_transfer [transfer_rule]: includes lifting_syntax shows "((A ===> A ===> (=)) ===> rel_set A ===> (=)) Complete_Partial_Order.chain Complete_Partial_Order.chain" unfolding chain_def[abs_def] by transfer_prover lemma linorder_chain [simp, intro!]: fixes Y :: "_ :: linorder set" shows "Complete_Partial_Order.chain (\) Y" by(auto intro: chainI) lemma fun_lub_apply: "\Sup. fun_lub Sup Y x = Sup ((\f. f x) ` Y)" by(simp add: fun_lub_def image_def) lemma fun_lub_empty [simp]: "fun_lub lub {} = (\_. lub {})" by(rule ext)(simp add: fun_lub_apply) lemma chain_fun_ordD: assumes "Complete_Partial_Order.chain (fun_ord le) Y" shows "Complete_Partial_Order.chain le ((\f. f x) ` Y)" by(rule chainI)(auto dest: chainD[OF assms] simp add: fun_ord_def) lemma chain_Diff: "Complete_Partial_Order.chain ord A \ Complete_Partial_Order.chain ord (A - B)" by(erule chain_subset) blast lemma chain_rel_prodD1: "Complete_Partial_Order.chain (rel_prod orda ordb) Y \ Complete_Partial_Order.chain orda (fst ` Y)" by(auto 4 3 simp add: chain_def) lemma chain_rel_prodD2: "Complete_Partial_Order.chain (rel_prod orda ordb) Y \ Complete_Partial_Order.chain ordb (snd ` Y)" by(auto 4 3 simp add: chain_def) context ccpo begin lemma ccpo_fun: "class.ccpo (fun_lub Sup) (fun_ord (\)) (mk_less (fun_ord (\)))" by standard (auto 4 3 simp add: mk_less_def fun_ord_def fun_lub_apply intro: order.trans order.antisym chain_imageI ccpo_Sup_upper ccpo_Sup_least) lemma ccpo_Sup_below_iff: "Complete_Partial_Order.chain (\) Y \ Sup Y \ x \ (\y\Y. y \ x)" by(fast intro: order_trans[OF ccpo_Sup_upper] ccpo_Sup_least) lemma Sup_minus_bot: assumes chain: "Complete_Partial_Order.chain (\) A" shows "\(A - {\{}}) = \A" (is "?lhs = ?rhs") proof (rule order.antisym) show "?lhs \ ?rhs" by (blast intro: ccpo_Sup_least chain_Diff[OF chain] ccpo_Sup_upper[OF chain]) show "?rhs \ ?lhs" proof (rule ccpo_Sup_least [OF chain]) show "x \ A \ x \ ?lhs" for x by (cases "x = \{}") (blast intro: ccpo_Sup_least chain_empty ccpo_Sup_upper[OF chain_Diff[OF chain]])+ qed qed lemma mono_lub: fixes le_b (infix "\" 60) assumes chain: "Complete_Partial_Order.chain (fun_ord (\)) Y" and mono: "\f. f \ Y \ monotone le_b (\) f" shows "monotone (\) (\) (fun_lub Sup Y)" proof(rule monotoneI) fix x y assume "x \ y" have chain'': "\x. Complete_Partial_Order.chain (\) ((\f. f x) ` Y)" using chain by(rule chain_imageI)(simp add: fun_ord_def) then show "fun_lub Sup Y x \ fun_lub Sup Y y" unfolding fun_lub_apply proof(rule ccpo_Sup_least) fix x' assume "x' \ (\f. f x) ` Y" then obtain f where "f \ Y" "x' = f x" by blast note \x' = f x\ also from \f \ Y\ \x \ y\ have "f x \ f y" by(blast dest: mono monotoneD) also have "\ \ \((\f. f y) ` Y)" using chain'' by(rule ccpo_Sup_upper)(simp add: \f \ Y\) finally show "x' \ \((\f. f y) ` Y)" . qed qed context fixes le_b (infix "\" 60) and Y f assumes chain: "Complete_Partial_Order.chain le_b Y" and mono1: "\y. y \ Y \ monotone le_b (\) (\x. f x y)" and mono2: "\x a b. \ x \ Y; a \ b; a \ Y; b \ Y \ \ f x a \ f x b" begin lemma Sup_mono: assumes le: "x \ y" and x: "x \ Y" and y: "y \ Y" shows "\(f x ` Y) \ \(f y ` Y)" (is "_ \ ?rhs") proof(rule ccpo_Sup_least) from chain show chain': "Complete_Partial_Order.chain (\) (f x ` Y)" when "x \ Y" for x by(rule chain_imageI) (insert that, auto dest: mono2) fix x' assume "x' \ f x ` Y" then obtain y' where "y' \ Y" "x' = f x y'" by blast note this(2) also from mono1[OF \y' \ Y\] le have "\ \ f y y'" by(rule monotoneD) also have "\ \ ?rhs" using chain'[OF y] by (auto intro!: ccpo_Sup_upper simp add: \y' \ Y\) finally show "x' \ ?rhs" . qed(rule x) lemma diag_Sup: "\((\x. \(f x ` Y)) ` Y) = \((\x. f x x) ` Y)" (is "?lhs = ?rhs") proof(rule order.antisym) have chain1: "Complete_Partial_Order.chain (\) ((\x. \(f x ` Y)) ` Y)" using chain by(rule chain_imageI)(rule Sup_mono) have chain2: "\y'. y' \ Y \ Complete_Partial_Order.chain (\) (f y' ` Y)" using chain by(rule chain_imageI)(auto dest: mono2) have chain3: "Complete_Partial_Order.chain (\) ((\x. f x x) ` Y)" using chain by(rule chain_imageI)(auto intro: monotoneD[OF mono1] mono2 order.trans) show "?lhs \ ?rhs" using chain1 proof(rule ccpo_Sup_least) fix x' assume "x' \ (\x. \(f x ` Y)) ` Y" then obtain y' where "y' \ Y" "x' = \(f y' ` Y)" by blast note this(2) also have "\ \ ?rhs" using chain2[OF \y' \ Y\] proof(rule ccpo_Sup_least) fix x assume "x \ f y' ` Y" then obtain y where "y \ Y" and x: "x = f y' y" by blast define y'' where "y'' = (if y \ y' then y' else y)" from chain \y \ Y\ \y' \ Y\ have "y \ y' \ y' \ y" by(rule chainD) hence "f y' y \ f y'' y''" using \y \ Y\ \y' \ Y\ by(auto simp add: y''_def intro: mono2 monotoneD[OF mono1]) also from \y \ Y\ \y' \ Y\ have "y'' \ Y" by(simp add: y''_def) from chain3 have "f y'' y'' \ ?rhs" by(rule ccpo_Sup_upper)(simp add: \y'' \ Y\) finally show "x \ ?rhs" by(simp add: x) qed finally show "x' \ ?rhs" . qed show "?rhs \ ?lhs" using chain3 proof(rule ccpo_Sup_least) fix y assume "y \ (\x. f x x) ` Y" then obtain x where "x \ Y" and "y = f x x" by blast note this(2) also from chain2[OF \x \ Y\] have "\ \ \(f x ` Y)" by(rule ccpo_Sup_upper)(simp add: \x \ Y\) also have "\ \ ?lhs" by(rule ccpo_Sup_upper[OF chain1])(simp add: \x \ Y\) finally show "y \ ?lhs" . qed qed end lemma Sup_image_mono_le: fixes le_b (infix "\" 60) and Sup_b ("\") assumes ccpo: "class.ccpo Sup_b (\) lt_b" assumes chain: "Complete_Partial_Order.chain (\) Y" and mono: "\x y. \ x \ y; x \ Y \ \ f x \ f y" shows "Sup (f ` Y) \ f (\Y)" proof(rule ccpo_Sup_least) show "Complete_Partial_Order.chain (\) (f ` Y)" using chain by(rule chain_imageI)(rule mono) fix x assume "x \ f ` Y" then obtain y where "y \ Y" and "x = f y" by blast note this(2) also have "y \ \Y" using ccpo chain \y \ Y\ by(rule ccpo.ccpo_Sup_upper) hence "f y \ f (\Y)" using \y \ Y\ by(rule mono) finally show "x \ \" . qed lemma swap_Sup: fixes le_b (infix "\" 60) assumes Y: "Complete_Partial_Order.chain (\) Y" and Z: "Complete_Partial_Order.chain (fun_ord (\)) Z" and mono: "\f. f \ Z \ monotone (\) (\) f" shows "\((\x. \(x ` Y)) ` Z) = \((\x. \((\f. f x) ` Z)) ` Y)" (is "?lhs = ?rhs") proof(cases "Y = {}") case True then show ?thesis by (simp add: image_constant_conv cong del: SUP_cong_simp) next case False have chain1: "\f. f \ Z \ Complete_Partial_Order.chain (\) (f ` Y)" by(rule chain_imageI[OF Y])(rule monotoneD[OF mono]) have chain2: "Complete_Partial_Order.chain (\) ((\x. \(x ` Y)) ` Z)" using Z proof(rule chain_imageI) fix f g assume "f \ Z" "g \ Z" and "fun_ord (\) f g" from chain1[OF \f \ Z\] show "\(f ` Y) \ \(g ` Y)" proof(rule ccpo_Sup_least) fix x assume "x \ f ` Y" then obtain y where "y \ Y" "x = f y" by blast note this(2) also have "\ \ g y" using \fun_ord (\) f g\ by(simp add: fun_ord_def) also have "\ \ \(g ` Y)" using chain1[OF \g \ Z\] by(rule ccpo_Sup_upper)(simp add: \y \ Y\) finally show "x \ \(g ` Y)" . qed qed have chain3: "\x. Complete_Partial_Order.chain (\) ((\f. f x) ` Z)" using Z by(rule chain_imageI)(simp add: fun_ord_def) have chain4: "Complete_Partial_Order.chain (\) ((\x. \((\f. f x) ` Z)) ` Y)" using Y proof(rule chain_imageI) fix f x y assume "x \ y" show "\((\f. f x) ` Z) \ \((\f. f y) ` Z)" (is "_ \ ?rhs") using chain3 proof(rule ccpo_Sup_least) fix x' assume "x' \ (\f. f x) ` Z" then obtain f where "f \ Z" "x' = f x" by blast note this(2) also have "f x \ f y" using \f \ Z\ \x \ y\ by(rule monotoneD[OF mono]) also have "f y \ ?rhs" using chain3 by(rule ccpo_Sup_upper)(simp add: \f \ Z\) finally show "x' \ ?rhs" . qed qed from chain2 have "?lhs \ ?rhs" proof(rule ccpo_Sup_least) fix x assume "x \ (\x. \(x ` Y)) ` Z" then obtain f where "f \ Z" "x = \(f ` Y)" by blast note this(2) also have "\ \ ?rhs" using chain1[OF \f \ Z\] proof(rule ccpo_Sup_least) fix x' assume "x' \ f ` Y" then obtain y where "y \ Y" "x' = f y" by blast note this(2) also have "f y \ \((\f. f y) ` Z)" using chain3 by(rule ccpo_Sup_upper)(simp add: \f \ Z\) also have "\ \ ?rhs" using chain4 by(rule ccpo_Sup_upper)(simp add: \y \ Y\) finally show "x' \ ?rhs" . qed finally show "x \ ?rhs" . qed moreover have "?rhs \ ?lhs" using chain4 proof(rule ccpo_Sup_least) fix x assume "x \ (\x. \((\f. f x) ` Z)) ` Y" then obtain y where "y \ Y" "x = \((\f. f y) ` Z)" by blast note this(2) also have "\ \ ?lhs" using chain3 proof(rule ccpo_Sup_least) fix x' assume "x' \ (\f. f y) ` Z" then obtain f where "f \ Z" "x' = f y" by blast note this(2) also have "f y \ \(f ` Y)" using chain1[OF \f \ Z\] by(rule ccpo_Sup_upper)(simp add: \y \ Y\) also have "\ \ ?lhs" using chain2 by(rule ccpo_Sup_upper)(simp add: \f \ Z\) finally show "x' \ ?lhs" . qed finally show "x \ ?lhs" . qed ultimately show "?lhs = ?rhs" by (rule order.antisym) qed lemma fixp_mono: assumes fg: "fun_ord (\) f g" and f: "monotone (\) (\) f" and g: "monotone (\) (\) g" shows "ccpo_class.fixp f \ ccpo_class.fixp g" unfolding fixp_def proof(rule ccpo_Sup_least) fix x assume "x \ ccpo_class.iterates f" thus "x \ \ccpo_class.iterates g" proof induction case (step x) from f step.IH have "f x \ f (\ccpo_class.iterates g)" by(rule monotoneD) also have "\ \ g (\ccpo_class.iterates g)" using fg by(simp add: fun_ord_def) also have "\ = \ccpo_class.iterates g" by(fold fixp_def fixp_unfold[OF g]) simp finally show ?case . qed(blast intro: ccpo_Sup_least) qed(rule chain_iterates[OF f]) context fixes ordb :: "'b \ 'b \ bool" (infix "\" 60) begin lemma iterates_mono: assumes f: "f \ ccpo.iterates (fun_lub Sup) (fun_ord (\)) F" and mono: "\f. monotone (\) (\) f \ monotone (\) (\) (F f)" shows "monotone (\) (\) f" using f by(induction rule: ccpo.iterates.induct[OF ccpo_fun, consumes 1, case_names step Sup])(blast intro: mono mono_lub)+ lemma fixp_preserves_mono: assumes mono: "\x. monotone (fun_ord (\)) (\) (\f. F f x)" and mono2: "\f. monotone (\) (\) f \ monotone (\) (\) (F f)" shows "monotone (\) (\) (ccpo.fixp (fun_lub Sup) (fun_ord (\)) F)" (is "monotone _ _ ?fixp") proof(rule monotoneI) have mono: "monotone (fun_ord (\)) (fun_ord (\)) F" by(rule monotoneI)(auto simp add: fun_ord_def intro: monotoneD[OF mono]) let ?iter = "ccpo.iterates (fun_lub Sup) (fun_ord (\)) F" have chain: "\x. Complete_Partial_Order.chain (\) ((\f. f x) ` ?iter)" by(rule chain_imageI[OF ccpo.chain_iterates[OF ccpo_fun mono]])(simp add: fun_ord_def) fix x y assume "x \ y" show "?fixp x \ ?fixp y" apply (simp only: ccpo.fixp_def[OF ccpo_fun] fun_lub_apply) using chain proof(rule ccpo_Sup_least) fix x' assume "x' \ (\f. f x) ` ?iter" then obtain f where "f \ ?iter" "x' = f x" by blast note this(2) also have "f x \ f y" by(rule monotoneD[OF iterates_mono[OF \f \ ?iter\ mono2]])(blast intro: \x \ y\)+ also have "f y \ \((\f. f y) ` ?iter)" using chain by(rule ccpo_Sup_upper)(simp add: \f \ ?iter\) finally show "x' \ \" . qed qed end end lemma monotone2monotone: assumes 2: "\x. monotone ordb ordc (\y. f x y)" and t: "monotone orda ordb (\x. t x)" and 1: "\y. monotone orda ordc (\x. f x y)" and trans: "transp ordc" shows "monotone orda ordc (\x. f x (t x))" by(blast intro: monotoneI transpD[OF trans] monotoneD[OF t] monotoneD[OF 2] monotoneD[OF 1]) subsection \Continuity\ definition cont :: "('a set \ 'a) \ ('a \ 'a \ bool) \ ('b set \ 'b) \ ('b \ 'b \ bool) \ ('a \ 'b) \ bool" where "cont luba orda lubb ordb f \ (\Y. Complete_Partial_Order.chain orda Y \ Y \ {} \ f (luba Y) = lubb (f ` Y))" definition mcont :: "('a set \ 'a) \ ('a \ 'a \ bool) \ ('b set \ 'b) \ ('b \ 'b \ bool) \ ('a \ 'b) \ bool" where "mcont luba orda lubb ordb f \ monotone orda ordb f \ cont luba orda lubb ordb f" subsubsection \Theorem collection \cont_intro\\ named_theorems cont_intro "continuity and admissibility intro rules" ML \ (* apply cont_intro rules as intro and try to solve the remaining of the emerging subgoals with simp *) fun cont_intro_tac ctxt = REPEAT_ALL_NEW (resolve_tac ctxt (rev (Named_Theorems.get ctxt \<^named_theorems>\cont_intro\))) THEN_ALL_NEW (SOLVED' (simp_tac ctxt)) fun cont_intro_simproc ctxt ct = let fun mk_stmt t = t |> HOLogic.mk_Trueprop |> Thm.cterm_of ctxt |> Goal.init fun mk_thm t = - case SINGLE (cont_intro_tac ctxt 1) (mk_stmt t) of - SOME thm => SOME (Goal.finish ctxt thm RS @{thm Eq_TrueI}) - | NONE => NONE + if exists_subterm Term.is_Var t then + NONE + else + case SINGLE (cont_intro_tac ctxt 1) (mk_stmt t) of + SOME thm => SOME (Goal.finish ctxt thm RS @{thm Eq_TrueI}) + | NONE => NONE in case Thm.term_of ct of t as \<^Const_>\ccpo.admissible _ for _ _ _\ => mk_thm t | t as \<^Const_>\mcont _ _ for _ _ _ _ _\ => mk_thm t - | t as \<^Const_>\monotone_on _ _ for \<^Const_>\Orderings.top _\ _ _ _\ => mk_thm t + | t as \<^Const_>\monotone_on _ _ for _ _ _ _\ => mk_thm t | _ => NONE end handle THM _ => NONE | TYPE _ => NONE \ simproc_setup "cont_intro" ( "ccpo.admissible lub ord P" | "mcont lub ord lub' ord' f" | "monotone ord ord' f" ) = \K cont_intro_simproc\ lemmas [cont_intro] = call_mono let_mono if_mono option.const_mono tailrec.const_mono bind_mono +experiment begin + +text \The following proof by simplification diverges if variables are not handled properly.\ + +lemma "(\f. monotone R S f \ thesis) \ monotone R S g \ thesis" + by simp + +end + declare if_mono[simp] lemma monotone_id' [cont_intro]: "monotone ord ord (\x. x)" by(simp add: monotone_def) lemma monotone_applyI: "monotone orda ordb F \ monotone (fun_ord orda) ordb (\f. F (f x))" by(rule monotoneI)(auto simp add: fun_ord_def dest: monotoneD) lemma monotone_if_fun [partial_function_mono]: "\ monotone (fun_ord orda) (fun_ord ordb) F; monotone (fun_ord orda) (fun_ord ordb) G \ \ monotone (fun_ord orda) (fun_ord ordb) (\f n. if c n then F f n else G f n)" by(simp add: monotone_def fun_ord_def) lemma monotone_fun_apply_fun [partial_function_mono]: "monotone (fun_ord (fun_ord ord)) (fun_ord ord) (\f n. f t (g n))" by(rule monotoneI)(simp add: fun_ord_def) lemma monotone_fun_ord_apply: "monotone orda (fun_ord ordb) f \ (\x. monotone orda ordb (\y. f y x))" by(auto simp add: monotone_def fun_ord_def) context preorder begin declare transp_le[cont_intro] lemma monotone_const [simp, cont_intro]: "monotone ord (\) (\_. c)" by(rule monotoneI) simp end lemma transp_le [cont_intro, simp]: "class.preorder ord (mk_less ord) \ transp ord" by(rule preorder.transp_le) context partial_function_definitions begin declare const_mono [cont_intro, simp] lemma transp_le [cont_intro, simp]: "transp leq" by(rule transpI)(rule leq_trans) lemma preorder [cont_intro, simp]: "class.preorder leq (mk_less leq)" by(unfold_locales)(auto simp add: mk_less_def intro: leq_refl leq_trans) declare ccpo[cont_intro, simp] end lemma contI [intro?]: "(\Y. \ Complete_Partial_Order.chain orda Y; Y \ {} \ \ f (luba Y) = lubb (f ` Y)) \ cont luba orda lubb ordb f" unfolding cont_def by blast lemma contD: "\ cont luba orda lubb ordb f; Complete_Partial_Order.chain orda Y; Y \ {} \ \ f (luba Y) = lubb (f ` Y)" unfolding cont_def by blast lemma cont_id [simp, cont_intro]: "\Sup. cont Sup ord Sup ord id" by(rule contI) simp lemma cont_id' [simp, cont_intro]: "\Sup. cont Sup ord Sup ord (\x. x)" using cont_id[unfolded id_def] . lemma cont_applyI [cont_intro]: assumes cont: "cont luba orda lubb ordb g" shows "cont (fun_lub luba) (fun_ord orda) lubb ordb (\f. g (f x))" by(rule contI)(drule chain_fun_ordD[where x=x], simp add: fun_lub_apply image_image contD[OF cont]) lemma call_cont: "cont (fun_lub lub) (fun_ord ord) lub ord (\f. f t)" by(simp add: cont_def fun_lub_apply) lemma cont_if [cont_intro]: "\ cont luba orda lubb ordb f; cont luba orda lubb ordb g \ \ cont luba orda lubb ordb (\x. if c then f x else g x)" by(cases c) simp_all lemma mcontI [intro?]: "\ monotone orda ordb f; cont luba orda lubb ordb f \ \ mcont luba orda lubb ordb f" by(simp add: mcont_def) lemma mcont_mono: "mcont luba orda lubb ordb f \ monotone orda ordb f" by(simp add: mcont_def) lemma mcont_cont [simp]: "mcont luba orda lubb ordb f \ cont luba orda lubb ordb f" by(simp add: mcont_def) lemma mcont_monoD: "\ mcont luba orda lubb ordb f; orda x y \ \ ordb (f x) (f y)" by(auto simp add: mcont_def dest: monotoneD) lemma mcont_contD: "\ mcont luba orda lubb ordb f; Complete_Partial_Order.chain orda Y; Y \ {} \ \ f (luba Y) = lubb (f ` Y)" by(auto simp add: mcont_def dest: contD) lemma mcont_call [cont_intro, simp]: "mcont (fun_lub lub) (fun_ord ord) lub ord (\f. f t)" by(simp add: mcont_def call_mono call_cont) lemma mcont_id' [cont_intro, simp]: "mcont lub ord lub ord (\x. x)" by(simp add: mcont_def monotone_id') lemma mcont_applyI: "mcont luba orda lubb ordb (\x. F x) \ mcont (fun_lub luba) (fun_ord orda) lubb ordb (\f. F (f x))" by(simp add: mcont_def monotone_applyI cont_applyI) lemma mcont_if [cont_intro, simp]: "\ mcont luba orda lubb ordb (\x. f x); mcont luba orda lubb ordb (\x. g x) \ \ mcont luba orda lubb ordb (\x. if c then f x else g x)" by(simp add: mcont_def cont_if) lemma cont_fun_lub_apply: "cont luba orda (fun_lub lubb) (fun_ord ordb) f \ (\x. cont luba orda lubb ordb (\y. f y x))" by(simp add: cont_def fun_lub_def fun_eq_iff)(auto simp add: image_def) lemma mcont_fun_lub_apply: "mcont luba orda (fun_lub lubb) (fun_ord ordb) f \ (\x. mcont luba orda lubb ordb (\y. f y x))" by(auto simp add: monotone_fun_ord_apply cont_fun_lub_apply mcont_def) context ccpo begin lemma cont_const [simp, cont_intro]: "cont luba orda Sup (\) (\x. c)" by (rule contI) (simp add: image_constant_conv cong del: SUP_cong_simp) lemma mcont_const [cont_intro, simp]: "mcont luba orda Sup (\) (\x. c)" by(simp add: mcont_def) lemma cont_apply: assumes 2: "\x. cont lubb ordb Sup (\) (\y. f x y)" and t: "cont luba orda lubb ordb (\x. t x)" and 1: "\y. cont luba orda Sup (\) (\x. f x y)" and mono: "monotone orda ordb (\x. t x)" and mono2: "\x. monotone ordb (\) (\y. f x y)" and mono1: "\y. monotone orda (\) (\x. f x y)" shows "cont luba orda Sup (\) (\x. f x (t x))" proof fix Y assume chain: "Complete_Partial_Order.chain orda Y" and "Y \ {}" moreover from chain have chain': "Complete_Partial_Order.chain ordb (t ` Y)" by(rule chain_imageI)(rule monotoneD[OF mono]) ultimately show "f (luba Y) (t (luba Y)) = \((\x. f x (t x)) ` Y)" by(simp add: contD[OF 1] contD[OF t] contD[OF 2] image_image) (rule diag_Sup[OF chain], auto intro: monotone2monotone[OF mono2 mono monotone_const transpI] monotoneD[OF mono1]) qed lemma mcont2mcont': "\ \x. mcont lub' ord' Sup (\) (\y. f x y); \y. mcont lub ord Sup (\) (\x. f x y); mcont lub ord lub' ord' (\y. t y) \ \ mcont lub ord Sup (\) (\x. f x (t x))" unfolding mcont_def by(blast intro: transp_le monotone2monotone cont_apply) lemma mcont2mcont: "\mcont lub' ord' Sup (\) (\x. f x); mcont lub ord lub' ord' (\x. t x)\ \ mcont lub ord Sup (\) (\x. f (t x))" by(rule mcont2mcont'[OF _ mcont_const]) context fixes ord :: "'b \ 'b \ bool" (infix "\" 60) and lub :: "'b set \ 'b" ("\") begin lemma cont_fun_lub_Sup: assumes chainM: "Complete_Partial_Order.chain (fun_ord (\)) M" and mcont [rule_format]: "\f\M. mcont lub (\) Sup (\) f" shows "cont lub (\) Sup (\) (fun_lub Sup M)" proof(rule contI) fix Y assume chain: "Complete_Partial_Order.chain (\) Y" and Y: "Y \ {}" from swap_Sup[OF chain chainM mcont[THEN mcont_mono]] show "fun_lub Sup M (\Y) = \(fun_lub Sup M ` Y)" by(simp add: mcont_contD[OF mcont chain Y] fun_lub_apply cong: image_cong) qed lemma mcont_fun_lub_Sup: "\ Complete_Partial_Order.chain (fun_ord (\)) M; \f\M. mcont lub ord Sup (\) f \ \ mcont lub (\) Sup (\) (fun_lub Sup M)" by(simp add: mcont_def cont_fun_lub_Sup mono_lub) lemma iterates_mcont: assumes f: "f \ ccpo.iterates (fun_lub Sup) (fun_ord (\)) F" and mono: "\f. mcont lub (\) Sup (\) f \ mcont lub (\) Sup (\) (F f)" shows "mcont lub (\) Sup (\) f" using f by(induction rule: ccpo.iterates.induct[OF ccpo_fun, consumes 1, case_names step Sup])(blast intro: mono mcont_fun_lub_Sup)+ lemma fixp_preserves_mcont: assumes mono: "\x. monotone (fun_ord (\)) (\) (\f. F f x)" and mcont: "\f. mcont lub (\) Sup (\) f \ mcont lub (\) Sup (\) (F f)" shows "mcont lub (\) Sup (\) (ccpo.fixp (fun_lub Sup) (fun_ord (\)) F)" (is "mcont _ _ _ _ ?fixp") unfolding mcont_def proof(intro conjI monotoneI contI) have mono: "monotone (fun_ord (\)) (fun_ord (\)) F" by(rule monotoneI)(auto simp add: fun_ord_def intro: monotoneD[OF mono]) let ?iter = "ccpo.iterates (fun_lub Sup) (fun_ord (\)) F" have chain: "\x. Complete_Partial_Order.chain (\) ((\f. f x) ` ?iter)" by(rule chain_imageI[OF ccpo.chain_iterates[OF ccpo_fun mono]])(simp add: fun_ord_def) { fix x y assume "x \ y" show "?fixp x \ ?fixp y" apply (simp only: ccpo.fixp_def[OF ccpo_fun] fun_lub_apply) using chain proof(rule ccpo_Sup_least) fix x' assume "x' \ (\f. f x) ` ?iter" then obtain f where "f \ ?iter" "x' = f x" by blast note this(2) also from _ \x \ y\ have "f x \ f y" by(rule mcont_monoD[OF iterates_mcont[OF \f \ ?iter\ mcont]]) also have "f y \ \((\f. f y) ` ?iter)" using chain by(rule ccpo_Sup_upper)(simp add: \f \ ?iter\) finally show "x' \ \" . qed next fix Y assume chain: "Complete_Partial_Order.chain (\) Y" and Y: "Y \ {}" { fix f assume "f \ ?iter" hence "f (\Y) = \(f ` Y)" using mcont chain Y by(rule mcont_contD[OF iterates_mcont]) } moreover have "\((\f. \(f ` Y)) ` ?iter) = \((\x. \((\f. f x) ` ?iter)) ` Y)" using chain ccpo.chain_iterates[OF ccpo_fun mono] by(rule swap_Sup)(rule mcont_mono[OF iterates_mcont[OF _ mcont]]) ultimately show "?fixp (\Y) = \(?fixp ` Y)" unfolding ccpo.fixp_def[OF ccpo_fun] by(simp add: fun_lub_apply cong: image_cong) } qed end context fixes F :: "'c \ 'c" and U :: "'c \ 'b \ 'a" and C :: "('b \ 'a) \ 'c" and f assumes mono: "\x. monotone (fun_ord (\)) (\) (\f. U (F (C f)) x)" and eq: "f \ C (ccpo.fixp (fun_lub Sup) (fun_ord (\)) (\f. U (F (C f))))" and inverse: "\f. U (C f) = f" begin lemma fixp_preserves_mono_uc: assumes mono2: "\f. monotone ord (\) (U f) \ monotone ord (\) (U (F f))" shows "monotone ord (\) (U f)" using fixp_preserves_mono[OF mono mono2] by(subst eq)(simp add: inverse) lemma fixp_preserves_mcont_uc: assumes mcont: "\f. mcont lubb ordb Sup (\) (U f) \ mcont lubb ordb Sup (\) (U (F f))" shows "mcont lubb ordb Sup (\) (U f)" using fixp_preserves_mcont[OF mono mcont] by(subst eq)(simp add: inverse) end lemmas fixp_preserves_mono1 = fixp_preserves_mono_uc[of "\x. x" _ "\x. x", OF _ _ refl] lemmas fixp_preserves_mono2 = fixp_preserves_mono_uc[of "case_prod" _ "curry", unfolded case_prod_curry curry_case_prod, OF _ _ refl] lemmas fixp_preserves_mono3 = fixp_preserves_mono_uc[of "\f. case_prod (case_prod f)" _ "\f. curry (curry f)", unfolded case_prod_curry curry_case_prod, OF _ _ refl] lemmas fixp_preserves_mono4 = fixp_preserves_mono_uc[of "\f. case_prod (case_prod (case_prod f))" _ "\f. curry (curry (curry f))", unfolded case_prod_curry curry_case_prod, OF _ _ refl] lemmas fixp_preserves_mcont1 = fixp_preserves_mcont_uc[of "\x. x" _ "\x. x", OF _ _ refl] lemmas fixp_preserves_mcont2 = fixp_preserves_mcont_uc[of "case_prod" _ "curry", unfolded case_prod_curry curry_case_prod, OF _ _ refl] lemmas fixp_preserves_mcont3 = fixp_preserves_mcont_uc[of "\f. case_prod (case_prod f)" _ "\f. curry (curry f)", unfolded case_prod_curry curry_case_prod, OF _ _ refl] lemmas fixp_preserves_mcont4 = fixp_preserves_mcont_uc[of "\f. case_prod (case_prod (case_prod f))" _ "\f. curry (curry (curry f))", unfolded case_prod_curry curry_case_prod, OF _ _ refl] end lemma (in preorder) monotone_if_bot: fixes bot assumes mono: "\x y. \ x \ y; \ (x \ bound) \ \ ord (f x) (f y)" and bot: "\x. \ x \ bound \ ord bot (f x)" "ord bot bot" shows "monotone (\) ord (\x. if x \ bound then bot else f x)" by(rule monotoneI)(auto intro: bot intro: mono order_trans) lemma (in ccpo) mcont_if_bot: fixes bot and lub ("\") and ord (infix "\" 60) assumes ccpo: "class.ccpo lub (\) lt" and mono: "\x y. \ x \ y; \ x \ bound \ \ f x \ f y" and cont: "\Y. \ Complete_Partial_Order.chain (\) Y; Y \ {}; \x. x \ Y \ \ x \ bound \ \ f (\Y) = \(f ` Y)" and bot: "\x. \ x \ bound \ bot \ f x" shows "mcont Sup (\) lub (\) (\x. if x \ bound then bot else f x)" (is "mcont _ _ _ _ ?g") proof(intro mcontI contI) interpret c: ccpo lub "(\)" lt by(fact ccpo) show "monotone (\) (\) ?g" by(rule monotone_if_bot)(simp_all add: mono bot) fix Y assume chain: "Complete_Partial_Order.chain (\) Y" and Y: "Y \ {}" show "?g (\Y) = \(?g ` Y)" proof(cases "Y \ {x. x \ bound}") case True hence "\Y \ bound" using chain by(auto intro: ccpo_Sup_least) moreover have "Y \ {x. \ x \ bound} = {}" using True by auto ultimately show ?thesis using True Y by (auto simp add: image_constant_conv cong del: c.SUP_cong_simp) next case False let ?Y = "Y \ {x. \ x \ bound}" have chain': "Complete_Partial_Order.chain (\) ?Y" using chain by(rule chain_subset) simp from False obtain y where ybound: "\ y \ bound" and y: "y \ Y" by blast hence "\ \Y \ bound" by (metis ccpo_Sup_upper chain order.trans) hence "?g (\Y) = f (\Y)" by simp also have "\Y \ \?Y" using chain proof(rule ccpo_Sup_least) fix x assume x: "x \ Y" show "x \ \?Y" proof(cases "x \ bound") case True with chainD[OF chain x y] have "x \ y" using ybound by(auto intro: order_trans) thus ?thesis by(rule order_trans)(auto intro: ccpo_Sup_upper[OF chain'] simp add: y ybound) qed(auto intro: ccpo_Sup_upper[OF chain'] simp add: x) qed hence "\Y = \?Y" by(rule order.antisym)(blast intro: ccpo_Sup_least[OF chain'] ccpo_Sup_upper[OF chain]) hence "f (\Y) = f (\?Y)" by simp also have "f (\?Y) = \(f ` ?Y)" using chain' by(rule cont)(insert y ybound, auto) also have "\(f ` ?Y) = \(?g ` Y)" proof(cases "Y \ {x. x \ bound} = {}") case True hence "f ` ?Y = ?g ` Y" by auto thus ?thesis by(rule arg_cong) next case False have chain'': "Complete_Partial_Order.chain (\) (insert bot (f ` ?Y))" using chain by(auto intro!: chainI bot dest: chainD intro: mono) hence chain''': "Complete_Partial_Order.chain (\) (f ` ?Y)" by(rule chain_subset) blast have "bot \ \(f ` ?Y)" using y ybound by(blast intro: c.order_trans[OF bot] c.ccpo_Sup_upper[OF chain''']) hence "\(insert bot (f ` ?Y)) \ \(f ` ?Y)" using chain'' by(auto intro: c.ccpo_Sup_least c.ccpo_Sup_upper[OF chain''']) with _ have "\ = \(insert bot (f ` ?Y))" by(rule c.order.antisym)(blast intro: c.ccpo_Sup_least[OF chain'''] c.ccpo_Sup_upper[OF chain'']) also have "insert bot (f ` ?Y) = ?g ` Y" using False by auto finally show ?thesis . qed finally show ?thesis . qed qed context partial_function_definitions begin lemma mcont_const [cont_intro, simp]: "mcont luba orda lub leq (\x. c)" by(rule ccpo.mcont_const)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms]) lemmas [cont_intro, simp] = ccpo.cont_const[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemma mono2mono: assumes "monotone ordb leq (\y. f y)" "monotone orda ordb (\x. t x)" shows "monotone orda leq (\x. f (t x))" using assms by(rule monotone2monotone) simp_all lemmas mcont2mcont' = ccpo.mcont2mcont'[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemmas mcont2mcont = ccpo.mcont2mcont[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemmas fixp_preserves_mono1 = ccpo.fixp_preserves_mono1[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemmas fixp_preserves_mono2 = ccpo.fixp_preserves_mono2[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemmas fixp_preserves_mono3 = ccpo.fixp_preserves_mono3[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemmas fixp_preserves_mono4 = ccpo.fixp_preserves_mono4[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemmas fixp_preserves_mcont1 = ccpo.fixp_preserves_mcont1[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemmas fixp_preserves_mcont2 = ccpo.fixp_preserves_mcont2[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemmas fixp_preserves_mcont3 = ccpo.fixp_preserves_mcont3[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemmas fixp_preserves_mcont4 = ccpo.fixp_preserves_mcont4[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] lemma monotone_if_bot: fixes bot assumes g: "\x. g x = (if leq x bound then bot else f x)" and mono: "\x y. \ leq x y; \ leq x bound \ \ ord (f x) (f y)" and bot: "\x. \ leq x bound \ ord bot (f x)" "ord bot bot" shows "monotone leq ord g" unfolding g[abs_def] using preorder mono bot by(rule preorder.monotone_if_bot) lemma mcont_if_bot: fixes bot assumes ccpo: "class.ccpo lub' ord (mk_less ord)" and bot: "\x. \ leq x bound \ ord bot (f x)" and g: "\x. g x = (if leq x bound then bot else f x)" and mono: "\x y. \ leq x y; \ leq x bound \ \ ord (f x) (f y)" and cont: "\Y. \ Complete_Partial_Order.chain leq Y; Y \ {}; \x. x \ Y \ \ leq x bound \ \ f (lub Y) = lub' (f ` Y)" shows "mcont lub leq lub' ord g" unfolding g[abs_def] using ccpo mono cont bot by(rule ccpo.mcont_if_bot[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]) end subsection \Admissibility\ lemma admissible_subst: assumes adm: "ccpo.admissible luba orda (\x. P x)" and mcont: "mcont lubb ordb luba orda f" shows "ccpo.admissible lubb ordb (\x. P (f x))" apply(rule ccpo.admissibleI) apply(frule (1) mcont_contD[OF mcont]) apply(auto intro: ccpo.admissibleD[OF adm] chain_imageI dest: mcont_monoD[OF mcont]) done lemmas [simp, cont_intro] = admissible_all admissible_ball admissible_const admissible_conj lemma admissible_disj' [simp, cont_intro]: "\ class.ccpo lub ord (mk_less ord); ccpo.admissible lub ord P; ccpo.admissible lub ord Q \ \ ccpo.admissible lub ord (\x. P x \ Q x)" by(rule ccpo.admissible_disj) lemma admissible_imp' [cont_intro]: "\ class.ccpo lub ord (mk_less ord); ccpo.admissible lub ord (\x. \ P x); ccpo.admissible lub ord (\x. Q x) \ \ ccpo.admissible lub ord (\x. P x \ Q x)" unfolding imp_conv_disj by(rule ccpo.admissible_disj) lemma admissible_imp [cont_intro]: "(Q \ ccpo.admissible lub ord (\x. P x)) \ ccpo.admissible lub ord (\x. Q \ P x)" by(rule ccpo.admissibleI)(auto dest: ccpo.admissibleD) lemma admissible_not_mem' [THEN admissible_subst, cont_intro, simp]: shows admissible_not_mem: "ccpo.admissible Union (\) (\A. x \ A)" by(rule ccpo.admissibleI) auto lemma admissible_eqI: assumes f: "cont luba orda lub ord (\x. f x)" and g: "cont luba orda lub ord (\x. g x)" shows "ccpo.admissible luba orda (\x. f x = g x)" apply(rule ccpo.admissibleI) apply(simp_all add: contD[OF f] contD[OF g] cong: image_cong) done corollary admissible_eq_mcontI [cont_intro]: "\ mcont luba orda lub ord (\x. f x); mcont luba orda lub ord (\x. g x) \ \ ccpo.admissible luba orda (\x. f x = g x)" by(rule admissible_eqI)(auto simp add: mcont_def) lemma admissible_iff [cont_intro, simp]: "\ ccpo.admissible lub ord (\x. P x \ Q x); ccpo.admissible lub ord (\x. Q x \ P x) \ \ ccpo.admissible lub ord (\x. P x \ Q x)" by(subst iff_conv_conj_imp)(rule admissible_conj) context ccpo begin lemma admissible_leI: assumes f: "mcont luba orda Sup (\) (\x. f x)" and g: "mcont luba orda Sup (\) (\x. g x)" shows "ccpo.admissible luba orda (\x. f x \ g x)" proof(rule ccpo.admissibleI) fix A assume chain: "Complete_Partial_Order.chain orda A" and le: "\x\A. f x \ g x" and False: "A \ {}" have "f (luba A) = \(f ` A)" by(simp add: mcont_contD[OF f] chain False) also have "\ \ \(g ` A)" proof(rule ccpo_Sup_least) from chain show "Complete_Partial_Order.chain (\) (f ` A)" by(rule chain_imageI)(rule mcont_monoD[OF f]) fix x assume "x \ f ` A" then obtain y where "y \ A" "x = f y" by blast note this(2) also have "f y \ g y" using le \y \ A\ by simp also have "Complete_Partial_Order.chain (\) (g ` A)" using chain by(rule chain_imageI)(rule mcont_monoD[OF g]) hence "g y \ \(g ` A)" by(rule ccpo_Sup_upper)(simp add: \y \ A\) finally show "x \ \" . qed also have "\ = g (luba A)" by(simp add: mcont_contD[OF g] chain False) finally show "f (luba A) \ g (luba A)" . qed end lemma admissible_leI: fixes ord (infix "\" 60) and lub ("\") assumes "class.ccpo lub (\) (mk_less (\))" and "mcont luba orda lub (\) (\x. f x)" and "mcont luba orda lub (\) (\x. g x)" shows "ccpo.admissible luba orda (\x. f x \ g x)" using assms by(rule ccpo.admissible_leI) declare ccpo_class.admissible_leI[cont_intro] context ccpo begin lemma admissible_not_below: "ccpo.admissible Sup (\) (\x. \ (\) x y)" by(rule ccpo.admissibleI)(simp add: ccpo_Sup_below_iff) end lemma (in preorder) preorder [cont_intro, simp]: "class.preorder (\) (mk_less (\))" by(unfold_locales)(auto simp add: mk_less_def intro: order_trans) context partial_function_definitions begin lemmas [cont_intro, simp] = admissible_leI[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] ccpo.admissible_not_below[THEN admissible_subst, OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] end setup \Sign.map_naming (Name_Space.mandatory_path "ccpo")\ inductive compact :: "('a set \ 'a) \ ('a \ 'a \ bool) \ 'a \ bool" for lub ord x where compact: "\ ccpo.admissible lub ord (\y. \ ord x y); ccpo.admissible lub ord (\y. x \ y) \ \ compact lub ord x" setup \Sign.map_naming Name_Space.parent_path\ context ccpo begin lemma compactI: assumes "ccpo.admissible Sup (\) (\y. \ x \ y)" shows "ccpo.compact Sup (\) x" using assms proof(rule ccpo.compact.intros) have neq: "(\y. x \ y) = (\y. \ x \ y \ \ y \ x)" by(auto) show "ccpo.admissible Sup (\) (\y. x \ y)" by(subst neq)(rule admissible_disj admissible_not_below assms)+ qed lemma compact_bot: assumes "x = Sup {}" shows "ccpo.compact Sup (\) x" proof(rule compactI) show "ccpo.admissible Sup (\) (\y. \ x \ y)" using assms by(auto intro!: ccpo.admissibleI intro: ccpo_Sup_least chain_empty) qed end lemma admissible_compact_neq' [THEN admissible_subst, cont_intro, simp]: shows admissible_compact_neq: "ccpo.compact lub ord k \ ccpo.admissible lub ord (\x. k \ x)" by(simp add: ccpo.compact.simps) lemma admissible_neq_compact' [THEN admissible_subst, cont_intro, simp]: shows admissible_neq_compact: "ccpo.compact lub ord k \ ccpo.admissible lub ord (\x. x \ k)" by(subst eq_commute)(rule admissible_compact_neq) context partial_function_definitions begin lemmas [cont_intro, simp] = ccpo.compact_bot[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]] end context ccpo begin lemma fixp_strong_induct: assumes [cont_intro]: "ccpo.admissible Sup (\) P" and mono: "monotone (\) (\) f" and bot: "P (\{})" and step: "\x. \ x \ ccpo_class.fixp f; P x \ \ P (f x)" shows "P (ccpo_class.fixp f)" proof(rule fixp_induct[where P="\x. x \ ccpo_class.fixp f \ P x", THEN conjunct2]) note [cont_intro] = admissible_leI show "ccpo.admissible Sup (\) (\x. x \ ccpo_class.fixp f \ P x)" by simp next show "\{} \ ccpo_class.fixp f \ P (\{})" by(auto simp add: bot intro: ccpo_Sup_least chain_empty) next fix x assume "x \ ccpo_class.fixp f \ P x" thus "f x \ ccpo_class.fixp f \ P (f x)" by(subst fixp_unfold[OF mono])(auto dest: monotoneD[OF mono] intro: step) qed(rule mono) end context partial_function_definitions begin lemma fixp_strong_induct_uc: fixes F :: "'c \ 'c" and U :: "'c \ 'b \ 'a" and C :: "('b \ 'a) \ 'c" and P :: "('b \ 'a) \ bool" assumes mono: "\x. mono_body (\f. U (F (C f)) x)" and eq: "f \ C (fixp_fun (\f. U (F (C f))))" and inverse: "\f. U (C f) = f" and adm: "ccpo.admissible lub_fun le_fun P" and bot: "P (\_. lub {})" and step: "\f'. \ P (U f'); le_fun (U f') (U f) \ \ P (U (F f'))" shows "P (U f)" unfolding eq inverse apply (rule ccpo.fixp_strong_induct[OF ccpo adm]) apply (insert mono, auto simp: monotone_def fun_ord_def bot fun_lub_def)[2] apply (rule_tac f'5="C x" in step) apply (simp_all add: inverse eq) done end subsection \\<^term>\(=)\ as order\ definition lub_singleton :: "('a set \ 'a) \ bool" where "lub_singleton lub \ (\a. lub {a} = a)" definition the_Sup :: "'a set \ 'a" where "the_Sup A = (THE a. a \ A)" lemma lub_singleton_the_Sup [cont_intro, simp]: "lub_singleton the_Sup" by(simp add: lub_singleton_def the_Sup_def) lemma (in ccpo) lub_singleton: "lub_singleton Sup" by(simp add: lub_singleton_def) lemma (in partial_function_definitions) lub_singleton [cont_intro, simp]: "lub_singleton lub" by(rule ccpo.lub_singleton)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms]) lemma preorder_eq [cont_intro, simp]: "class.preorder (=) (mk_less (=))" by(unfold_locales)(simp_all add: mk_less_def) lemma monotone_eqI [cont_intro]: assumes "class.preorder ord (mk_less ord)" shows "monotone (=) ord f" proof - interpret preorder ord "mk_less ord" by fact show ?thesis by(simp add: monotone_def) qed lemma cont_eqI [cont_intro]: fixes f :: "'a \ 'b" assumes "lub_singleton lub" shows "cont the_Sup (=) lub ord f" proof(rule contI) fix Y :: "'a set" assume "Complete_Partial_Order.chain (=) Y" "Y \ {}" then obtain a where "Y = {a}" by(auto simp add: chain_def) thus "f (the_Sup Y) = lub (f ` Y)" using assms by(simp add: the_Sup_def lub_singleton_def) qed lemma mcont_eqI [cont_intro, simp]: "\ class.preorder ord (mk_less ord); lub_singleton lub \ \ mcont the_Sup (=) lub ord f" by(simp add: mcont_def cont_eqI monotone_eqI) subsection \ccpo for products\ definition prod_lub :: "('a set \ 'a) \ ('b set \ 'b) \ ('a \ 'b) set \ 'a \ 'b" where "prod_lub Sup_a Sup_b Y = (Sup_a (fst ` Y), Sup_b (snd ` Y))" lemma lub_singleton_prod_lub [cont_intro, simp]: "\ lub_singleton luba; lub_singleton lubb \ \ lub_singleton (prod_lub luba lubb)" by(simp add: lub_singleton_def prod_lub_def) lemma prod_lub_empty [simp]: "prod_lub luba lubb {} = (luba {}, lubb {})" by(simp add: prod_lub_def) lemma preorder_rel_prodI [cont_intro, simp]: assumes "class.preorder orda (mk_less orda)" and "class.preorder ordb (mk_less ordb)" shows "class.preorder (rel_prod orda ordb) (mk_less (rel_prod orda ordb))" proof - interpret a: preorder orda "mk_less orda" by fact interpret b: preorder ordb "mk_less ordb" by fact show ?thesis by(unfold_locales)(auto simp add: mk_less_def intro: a.order_trans b.order_trans) qed lemma order_rel_prodI: assumes a: "class.order orda (mk_less orda)" and b: "class.order ordb (mk_less ordb)" shows "class.order (rel_prod orda ordb) (mk_less (rel_prod orda ordb))" (is "class.order ?ord ?ord'") proof(intro class.order.intro class.order_axioms.intro) interpret a: order orda "mk_less orda" by(fact a) interpret b: order ordb "mk_less ordb" by(fact b) show "class.preorder ?ord ?ord'" by(rule preorder_rel_prodI) unfold_locales fix x y assume "?ord x y" "?ord y x" thus "x = y" by(cases x y rule: prod.exhaust[case_product prod.exhaust]) auto qed lemma monotone_rel_prodI: assumes mono2: "\a. monotone ordb ordc (\b. f (a, b))" and mono1: "\b. monotone orda ordc (\a. f (a, b))" and a: "class.preorder orda (mk_less orda)" and b: "class.preorder ordb (mk_less ordb)" and c: "class.preorder ordc (mk_less ordc)" shows "monotone (rel_prod orda ordb) ordc f" proof - interpret a: preorder orda "mk_less orda" by(rule a) interpret b: preorder ordb "mk_less ordb" by(rule b) interpret c: preorder ordc "mk_less ordc" by(rule c) show ?thesis using mono2 mono1 by(auto 7 2 simp add: monotone_def intro: c.order_trans) qed lemma monotone_rel_prodD1: assumes mono: "monotone (rel_prod orda ordb) ordc f" and preorder: "class.preorder ordb (mk_less ordb)" shows "monotone orda ordc (\a. f (a, b))" proof - interpret preorder ordb "mk_less ordb" by(rule preorder) show ?thesis using mono by(simp add: monotone_def) qed lemma monotone_rel_prodD2: assumes mono: "monotone (rel_prod orda ordb) ordc f" and preorder: "class.preorder orda (mk_less orda)" shows "monotone ordb ordc (\b. f (a, b))" proof - interpret preorder orda "mk_less orda" by(rule preorder) show ?thesis using mono by(simp add: monotone_def) qed lemma monotone_case_prodI: "\ \a. monotone ordb ordc (f a); \b. monotone orda ordc (\a. f a b); class.preorder orda (mk_less orda); class.preorder ordb (mk_less ordb); class.preorder ordc (mk_less ordc) \ \ monotone (rel_prod orda ordb) ordc (case_prod f)" by(rule monotone_rel_prodI) simp_all lemma monotone_case_prodD1: assumes mono: "monotone (rel_prod orda ordb) ordc (case_prod f)" and preorder: "class.preorder ordb (mk_less ordb)" shows "monotone orda ordc (\a. f a b)" using monotone_rel_prodD1[OF assms] by simp lemma monotone_case_prodD2: assumes mono: "monotone (rel_prod orda ordb) ordc (case_prod f)" and preorder: "class.preorder orda (mk_less orda)" shows "monotone ordb ordc (f a)" using monotone_rel_prodD2[OF assms] by simp context fixes orda ordb ordc assumes a: "class.preorder orda (mk_less orda)" and b: "class.preorder ordb (mk_less ordb)" and c: "class.preorder ordc (mk_less ordc)" begin lemma monotone_rel_prod_iff: "monotone (rel_prod orda ordb) ordc f \ (\a. monotone ordb ordc (\b. f (a, b))) \ (\b. monotone orda ordc (\a. f (a, b)))" using a b c by(blast intro: monotone_rel_prodI dest: monotone_rel_prodD1 monotone_rel_prodD2) lemma monotone_case_prod_iff [simp]: "monotone (rel_prod orda ordb) ordc (case_prod f) \ (\a. monotone ordb ordc (f a)) \ (\b. monotone orda ordc (\a. f a b))" by(simp add: monotone_rel_prod_iff) end lemma monotone_case_prod_apply_iff: "monotone orda ordb (\x. (case_prod f x) y) \ monotone orda ordb (case_prod (\a b. f a b y))" by(simp add: monotone_def) lemma monotone_case_prod_applyD: "monotone orda ordb (\x. (case_prod f x) y) \ monotone orda ordb (case_prod (\a b. f a b y))" by(simp add: monotone_case_prod_apply_iff) lemma monotone_case_prod_applyI: "monotone orda ordb (case_prod (\a b. f a b y)) \ monotone orda ordb (\x. (case_prod f x) y)" by(simp add: monotone_case_prod_apply_iff) lemma cont_case_prod_apply_iff: "cont luba orda lubb ordb (\x. (case_prod f x) y) \ cont luba orda lubb ordb (case_prod (\a b. f a b y))" by(simp add: cont_def split_def) lemma cont_case_prod_applyI: "cont luba orda lubb ordb (case_prod (\a b. f a b y)) \ cont luba orda lubb ordb (\x. (case_prod f x) y)" by(simp add: cont_case_prod_apply_iff) lemma cont_case_prod_applyD: "cont luba orda lubb ordb (\x. (case_prod f x) y) \ cont luba orda lubb ordb (case_prod (\a b. f a b y))" by(simp add: cont_case_prod_apply_iff) lemma mcont_case_prod_apply_iff [simp]: "mcont luba orda lubb ordb (\x. (case_prod f x) y) \ mcont luba orda lubb ordb (case_prod (\a b. f a b y))" by(simp add: mcont_def monotone_case_prod_apply_iff cont_case_prod_apply_iff) lemma cont_prodD1: assumes cont: "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc f" and "class.preorder orda (mk_less orda)" and luba: "lub_singleton luba" shows "cont lubb ordb lubc ordc (\y. f (x, y))" proof(rule contI) interpret preorder orda "mk_less orda" by fact fix Y :: "'b set" let ?Y = "{x} \ Y" assume "Complete_Partial_Order.chain ordb Y" "Y \ {}" hence "Complete_Partial_Order.chain (rel_prod orda ordb) ?Y" "?Y \ {}" by(simp_all add: chain_def) with cont have "f (prod_lub luba lubb ?Y) = lubc (f ` ?Y)" by(rule contD) moreover have "f ` ?Y = (\y. f (x, y)) ` Y" by auto ultimately show "f (x, lubb Y) = lubc ((\y. f (x, y)) ` Y)" using luba by(simp add: prod_lub_def \Y \ {}\ lub_singleton_def) qed lemma cont_prodD2: assumes cont: "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc f" and "class.preorder ordb (mk_less ordb)" and lubb: "lub_singleton lubb" shows "cont luba orda lubc ordc (\x. f (x, y))" proof(rule contI) interpret preorder ordb "mk_less ordb" by fact fix Y assume Y: "Complete_Partial_Order.chain orda Y" "Y \ {}" let ?Y = "Y \ {y}" have "f (luba Y, y) = f (prod_lub luba lubb ?Y)" using lubb by(simp add: prod_lub_def Y lub_singleton_def) also from Y have "Complete_Partial_Order.chain (rel_prod orda ordb) ?Y" "?Y \ {}" by(simp_all add: chain_def) with cont have "f (prod_lub luba lubb ?Y) = lubc (f ` ?Y)" by(rule contD) also have "f ` ?Y = (\x. f (x, y)) ` Y" by auto finally show "f (luba Y, y) = lubc \" . qed lemma cont_case_prodD1: assumes "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc (case_prod f)" and "class.preorder orda (mk_less orda)" and "lub_singleton luba" shows "cont lubb ordb lubc ordc (f x)" using cont_prodD1[OF assms] by simp lemma cont_case_prodD2: assumes "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc (case_prod f)" and "class.preorder ordb (mk_less ordb)" and "lub_singleton lubb" shows "cont luba orda lubc ordc (\x. f x y)" using cont_prodD2[OF assms] by simp context ccpo begin lemma cont_prodI: assumes mono: "monotone (rel_prod orda ordb) (\) f" and cont1: "\x. cont lubb ordb Sup (\) (\y. f (x, y))" and cont2: "\y. cont luba orda Sup (\) (\x. f (x, y))" and "class.preorder orda (mk_less orda)" and "class.preorder ordb (mk_less ordb)" shows "cont (prod_lub luba lubb) (rel_prod orda ordb) Sup (\) f" proof(rule contI) interpret a: preorder orda "mk_less orda" by fact interpret b: preorder ordb "mk_less ordb" by fact fix Y assume chain: "Complete_Partial_Order.chain (rel_prod orda ordb) Y" and "Y \ {}" have "f (prod_lub luba lubb Y) = f (luba (fst ` Y), lubb (snd ` Y))" by(simp add: prod_lub_def) also from cont2 have "f (luba (fst ` Y), lubb (snd ` Y)) = \((\x. f (x, lubb (snd ` Y))) ` fst ` Y)" by(rule contD)(simp_all add: chain_rel_prodD1[OF chain] \Y \ {}\) also from cont1 have "\x. f (x, lubb (snd ` Y)) = \((\y. f (x, y)) ` snd ` Y)" by(rule contD)(simp_all add: chain_rel_prodD2[OF chain] \Y \ {}\) hence "\((\x. f (x, lubb (snd ` Y))) ` fst ` Y) = \((\x. \ x) ` fst ` Y)" by simp also have "\ = \((\x. f (fst x, snd x)) ` Y)" unfolding image_image split_def using chain apply(rule diag_Sup) using monotoneD[OF mono] by(auto intro: monotoneI) finally show "f (prod_lub luba lubb Y) = \(f ` Y)" by simp qed lemma cont_case_prodI: assumes "monotone (rel_prod orda ordb) (\) (case_prod f)" and "\x. cont lubb ordb Sup (\) (\y. f x y)" and "\y. cont luba orda Sup (\) (\x. f x y)" and "class.preorder orda (mk_less orda)" and "class.preorder ordb (mk_less ordb)" shows "cont (prod_lub luba lubb) (rel_prod orda ordb) Sup (\) (case_prod f)" by(rule cont_prodI)(simp_all add: assms) lemma cont_case_prod_iff: "\ monotone (rel_prod orda ordb) (\) (case_prod f); class.preorder orda (mk_less orda); lub_singleton luba; class.preorder ordb (mk_less ordb); lub_singleton lubb \ \ cont (prod_lub luba lubb) (rel_prod orda ordb) Sup (\) (case_prod f) \ (\x. cont lubb ordb Sup (\) (\y. f x y)) \ (\y. cont luba orda Sup (\) (\x. f x y))" by(blast dest: cont_case_prodD1 cont_case_prodD2 intro: cont_case_prodI) end context partial_function_definitions begin lemma mono2mono2: assumes f: "monotone (rel_prod ordb ordc) leq (\(x, y). f x y)" and t: "monotone orda ordb (\x. t x)" and t': "monotone orda ordc (\x. t' x)" shows "monotone orda leq (\x. f (t x) (t' x))" proof(rule monotoneI) fix x y assume "orda x y" hence "rel_prod ordb ordc (t x, t' x) (t y, t' y)" using t t' by(auto dest: monotoneD) from monotoneD[OF f this] show "leq (f (t x) (t' x)) (f (t y) (t' y))" by simp qed lemma cont_case_prodI [cont_intro]: "\ monotone (rel_prod orda ordb) leq (case_prod f); \x. cont lubb ordb lub leq (\y. f x y); \y. cont luba orda lub leq (\x. f x y); class.preorder orda (mk_less orda); class.preorder ordb (mk_less ordb) \ \ cont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f)" by(rule ccpo.cont_case_prodI)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms]) lemma cont_case_prod_iff: "\ monotone (rel_prod orda ordb) leq (case_prod f); class.preorder orda (mk_less orda); lub_singleton luba; class.preorder ordb (mk_less ordb); lub_singleton lubb \ \ cont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f) \ (\x. cont lubb ordb lub leq (\y. f x y)) \ (\y. cont luba orda lub leq (\x. f x y))" by(blast dest: cont_case_prodD1 cont_case_prodD2 intro: cont_case_prodI) lemma mcont_case_prod_iff [simp]: "\ class.preorder orda (mk_less orda); lub_singleton luba; class.preorder ordb (mk_less ordb); lub_singleton lubb \ \ mcont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f) \ (\x. mcont lubb ordb lub leq (\y. f x y)) \ (\y. mcont luba orda lub leq (\x. f x y))" unfolding mcont_def by(auto simp add: cont_case_prod_iff) end lemma mono2mono_case_prod [cont_intro]: assumes "\x y. monotone orda ordb (\f. pair f x y)" shows "monotone orda ordb (\f. case_prod (pair f) x)" by(rule monotoneI)(auto split: prod.split dest: monotoneD[OF assms]) subsection \Complete lattices as ccpo\ context complete_lattice begin lemma complete_lattice_ccpo: "class.ccpo Sup (\) (<)" by(unfold_locales)(fast intro: Sup_upper Sup_least)+ lemma complete_lattice_ccpo': "class.ccpo Sup (\) (mk_less (\))" by(unfold_locales)(auto simp add: mk_less_def intro: Sup_upper Sup_least) lemma complete_lattice_partial_function_definitions: "partial_function_definitions (\) Sup" by(unfold_locales)(auto intro: Sup_least Sup_upper) lemma complete_lattice_partial_function_definitions_dual: "partial_function_definitions (\) Inf" by(unfold_locales)(auto intro: Inf_lower Inf_greatest) lemmas [cont_intro, simp] = Partial_Function.ccpo[OF complete_lattice_partial_function_definitions] Partial_Function.ccpo[OF complete_lattice_partial_function_definitions_dual] lemma mono2mono_inf: assumes f: "monotone ord (\) (\x. f x)" and g: "monotone ord (\) (\x. g x)" shows "monotone ord (\) (\x. f x \ g x)" by(auto 4 3 dest: monotoneD[OF f] monotoneD[OF g] intro: le_infI1 le_infI2 intro!: monotoneI) lemma mcont_const [simp]: "mcont lub ord Sup (\) (\_. c)" by(rule ccpo.mcont_const[OF complete_lattice_ccpo]) lemma mono2mono_sup: assumes f: "monotone ord (\) (\x. f x)" and g: "monotone ord (\) (\x. g x)" shows "monotone ord (\) (\x. f x \ g x)" by(auto 4 3 intro!: monotoneI intro: sup.coboundedI1 sup.coboundedI2 dest: monotoneD[OF f] monotoneD[OF g]) lemma Sup_image_sup: assumes "Y \ {}" shows "\((\) x ` Y) = x \ \Y" proof(rule Sup_eqI) fix y assume "y \ (\) x ` Y" then obtain z where "y = x \ z" and "z \ Y" by blast from \z \ Y\ have "z \ \Y" by(rule Sup_upper) with _ show "y \ x \ \Y" unfolding \y = x \ z\ by(rule sup_mono) simp next fix y assume upper: "\z. z \ (\) x ` Y \ z \ y" show "x \ \Y \ y" unfolding Sup_insert[symmetric] proof(rule Sup_least) fix z assume "z \ insert x Y" from assms obtain z' where "z' \ Y" by blast let ?z = "if z \ Y then x \ z else x \ z'" have "z \ x \ ?z" using \z' \ Y\ \z \ insert x Y\ by auto also have "\ \ y" by(rule upper)(auto split: if_split_asm intro: \z' \ Y\) finally show "z \ y" . qed qed lemma mcont_sup1: "mcont Sup (\) Sup (\) (\y. x \ y)" by(auto 4 3 simp add: mcont_def sup.coboundedI1 sup.coboundedI2 intro!: monotoneI contI intro: Sup_image_sup[symmetric]) lemma mcont_sup2: "mcont Sup (\) Sup (\) (\x. x \ y)" by(subst sup_commute)(rule mcont_sup1) lemma mcont2mcont_sup [cont_intro, simp]: "\ mcont lub ord Sup (\) (\x. f x); mcont lub ord Sup (\) (\x. g x) \ \ mcont lub ord Sup (\) (\x. f x \ g x)" by(best intro: ccpo.mcont2mcont'[OF complete_lattice_ccpo] mcont_sup1 mcont_sup2 ccpo.mcont_const[OF complete_lattice_ccpo]) end lemmas [cont_intro] = admissible_leI[OF complete_lattice_ccpo'] context complete_distrib_lattice begin lemma mcont_inf1: "mcont Sup (\) Sup (\) (\y. x \ y)" by(auto intro: monotoneI contI simp add: le_infI2 inf_Sup mcont_def) lemma mcont_inf2: "mcont Sup (\) Sup (\) (\x. x \ y)" by(auto intro: monotoneI contI simp add: le_infI1 Sup_inf mcont_def) lemma mcont2mcont_inf [cont_intro, simp]: "\ mcont lub ord Sup (\) (\x. f x); mcont lub ord Sup (\) (\x. g x) \ \ mcont lub ord Sup (\) (\x. f x \ g x)" by(best intro: ccpo.mcont2mcont'[OF complete_lattice_ccpo] mcont_inf1 mcont_inf2 ccpo.mcont_const[OF complete_lattice_ccpo]) end interpretation lfp: partial_function_definitions "(\) :: _ :: complete_lattice \ _" Sup by(rule complete_lattice_partial_function_definitions) declaration \Partial_Function.init "lfp" \<^term>\lfp.fixp_fun\ \<^term>\lfp.mono_body\ @{thm lfp.fixp_rule_uc} @{thm lfp.fixp_induct_uc} NONE\ interpretation gfp: partial_function_definitions "(\) :: _ :: complete_lattice \ _" Inf by(rule complete_lattice_partial_function_definitions_dual) declaration \Partial_Function.init "gfp" \<^term>\gfp.fixp_fun\ \<^term>\gfp.mono_body\ @{thm gfp.fixp_rule_uc} @{thm gfp.fixp_induct_uc} NONE\ lemma insert_mono [partial_function_mono]: "monotone (fun_ord (\)) (\) A \ monotone (fun_ord (\)) (\) (\y. insert x (A y))" by(rule monotoneI)(auto simp add: fun_ord_def dest: monotoneD) lemma mono2mono_insert [THEN lfp.mono2mono, cont_intro, simp]: shows monotone_insert: "monotone (\) (\) (insert x)" by(rule monotoneI) blast lemma mcont2mcont_insert[THEN lfp.mcont2mcont, cont_intro, simp]: shows mcont_insert: "mcont Union (\) Union (\) (insert x)" by(blast intro: mcontI contI monotone_insert) lemma mono2mono_image [THEN lfp.mono2mono, cont_intro, simp]: shows monotone_image: "monotone (\) (\) ((`) f)" by(rule monotoneI) blast lemma cont_image: "cont Union (\) Union (\) ((`) f)" by(rule contI)(auto) lemma mcont2mcont_image [THEN lfp.mcont2mcont, cont_intro, simp]: shows mcont_image: "mcont Union (\) Union (\) ((`) f)" by(blast intro: mcontI monotone_image cont_image) context complete_lattice begin lemma monotone_Sup [cont_intro, simp]: "monotone ord (\) f \ monotone ord (\) (\x. \f x)" by(blast intro: monotoneI Sup_least Sup_upper dest: monotoneD) lemma cont_Sup: assumes "cont lub ord Union (\) f" shows "cont lub ord Sup (\) (\x. \f x)" apply(rule contI) apply(simp add: contD[OF assms]) apply(blast intro: Sup_least Sup_upper order_trans order.antisym) done lemma mcont_Sup: "mcont lub ord Union (\) f \ mcont lub ord Sup (\) (\x. \f x)" unfolding mcont_def by(blast intro: monotone_Sup cont_Sup) lemma monotone_SUP: "\ monotone ord (\) f; \y. monotone ord (\) (\x. g x y) \ \ monotone ord (\) (\x. \y\f x. g x y)" by(rule monotoneI)(blast dest: monotoneD intro: Sup_upper order_trans intro!: Sup_least) lemma monotone_SUP2: "(\y. y \ A \ monotone ord (\) (\x. g x y)) \ monotone ord (\) (\x. \y\A. g x y)" by(rule monotoneI)(blast intro: Sup_upper order_trans dest: monotoneD intro!: Sup_least) lemma cont_SUP: assumes f: "mcont lub ord Union (\) f" and g: "\y. mcont lub ord Sup (\) (\x. g x y)" shows "cont lub ord Sup (\) (\x. \y\f x. g x y)" proof(rule contI) fix Y assume chain: "Complete_Partial_Order.chain ord Y" and Y: "Y \ {}" show "\(g (lub Y) ` f (lub Y)) = \((\x. \(g x ` f x)) ` Y)" (is "?lhs = ?rhs") proof(rule order.antisym) show "?lhs \ ?rhs" proof(rule Sup_least) fix x assume "x \ g (lub Y) ` f (lub Y)" with mcont_contD[OF f chain Y] mcont_contD[OF g chain Y] obtain y z where "y \ Y" "z \ f y" and x: "x = \((\x. g x z) ` Y)" by auto show "x \ ?rhs" unfolding x proof(rule Sup_least) fix u assume "u \ (\x. g x z) ` Y" then obtain y' where "u = g y' z" "y' \ Y" by auto from chain \y \ Y\ \y' \ Y\ have "ord y y' \ ord y' y" by(rule chainD) thus "u \ ?rhs" proof note \u = g y' z\ also assume "ord y y'" with f have "f y \ f y'" by(rule mcont_monoD) with \z \ f y\ have "g y' z \ \(g y' ` f y')" by(auto intro: Sup_upper) also have "\ \ ?rhs" using \y' \ Y\ by(auto intro: Sup_upper) finally show ?thesis . next note \u = g y' z\ also assume "ord y' y" with g have "g y' z \ g y z" by(rule mcont_monoD) also have "\ \ \(g y ` f y)" using \z \ f y\ by(auto intro: Sup_upper) also have "\ \ ?rhs" using \y \ Y\ by(auto intro: Sup_upper) finally show ?thesis . qed qed qed next show "?rhs \ ?lhs" proof(rule Sup_least) fix x assume "x \ (\x. \(g x ` f x)) ` Y" then obtain y where x: "x = \(g y ` f y)" and "y \ Y" by auto show "x \ ?lhs" unfolding x proof(rule Sup_least) fix u assume "u \ g y ` f y" then obtain z where "u = g y z" "z \ f y" by auto note \u = g y z\ also have "g y z \ \((\x. g x z) ` Y)" using \y \ Y\ by(auto intro: Sup_upper) also have "\ = g (lub Y) z" by(simp add: mcont_contD[OF g chain Y]) also have "\ \ ?lhs" using \z \ f y\ \y \ Y\ by(auto intro: Sup_upper simp add: mcont_contD[OF f chain Y]) finally show "u \ ?lhs" . qed qed qed qed lemma mcont_SUP [cont_intro, simp]: "\ mcont lub ord Union (\) f; \y. mcont lub ord Sup (\) (\x. g x y) \ \ mcont lub ord Sup (\) (\x. \y\f x. g x y)" by(blast intro: mcontI cont_SUP monotone_SUP mcont_mono) end lemma admissible_Ball [cont_intro, simp]: "\ \x. ccpo.admissible lub ord (\A. P A x); mcont lub ord Union (\) f; class.ccpo lub ord (mk_less ord) \ \ ccpo.admissible lub ord (\A. \x\f A. P A x)" unfolding Ball_def by simp lemma admissible_Bex'[THEN admissible_subst, cont_intro, simp]: shows admissible_Bex: "ccpo.admissible Union (\) (\A. \x\A. P x)" by(rule ccpo.admissibleI)(auto) subsection \Parallel fixpoint induction\ context fixes luba :: "'a set \ 'a" and orda :: "'a \ 'a \ bool" and lubb :: "'b set \ 'b" and ordb :: "'b \ 'b \ bool" assumes a: "class.ccpo luba orda (mk_less orda)" and b: "class.ccpo lubb ordb (mk_less ordb)" begin interpretation a: ccpo luba orda "mk_less orda" by(rule a) interpretation b: ccpo lubb ordb "mk_less ordb" by(rule b) lemma ccpo_rel_prodI: "class.ccpo (prod_lub luba lubb) (rel_prod orda ordb) (mk_less (rel_prod orda ordb))" (is "class.ccpo ?lub ?ord ?ord'") proof(intro class.ccpo.intro class.ccpo_axioms.intro) show "class.order ?ord ?ord'" by(rule order_rel_prodI) intro_locales qed(auto 4 4 simp add: prod_lub_def intro: a.ccpo_Sup_upper b.ccpo_Sup_upper a.ccpo_Sup_least b.ccpo_Sup_least rev_image_eqI dest: chain_rel_prodD1 chain_rel_prodD2) interpretation ab: ccpo "prod_lub luba lubb" "rel_prod orda ordb" "mk_less (rel_prod orda ordb)" by(rule ccpo_rel_prodI) lemma monotone_map_prod [simp]: "monotone (rel_prod orda ordb) (rel_prod ordc ordd) (map_prod f g) \ monotone orda ordc f \ monotone ordb ordd g" by(auto simp add: monotone_def) lemma parallel_fixp_induct: assumes adm: "ccpo.admissible (prod_lub luba lubb) (rel_prod orda ordb) (\x. P (fst x) (snd x))" and f: "monotone orda orda f" and g: "monotone ordb ordb g" and bot: "P (luba {}) (lubb {})" and step: "\x y. P x y \ P (f x) (g y)" shows "P (ccpo.fixp luba orda f) (ccpo.fixp lubb ordb g)" proof - let ?lub = "prod_lub luba lubb" and ?ord = "rel_prod orda ordb" and ?P = "\(x, y). P x y" from adm have adm': "ccpo.admissible ?lub ?ord ?P" by(simp add: split_def) hence "?P (ccpo.fixp (prod_lub luba lubb) (rel_prod orda ordb) (map_prod f g))" by(rule ab.fixp_induct)(auto simp add: f g step bot) also have "ccpo.fixp (prod_lub luba lubb) (rel_prod orda ordb) (map_prod f g) = (ccpo.fixp luba orda f, ccpo.fixp lubb ordb g)" (is "?lhs = (?rhs1, ?rhs2)") proof(rule ab.order.antisym) have "ccpo.admissible ?lub ?ord (\xy. ?ord xy (?rhs1, ?rhs2))" by(rule admissible_leI[OF ccpo_rel_prodI])(auto simp add: prod_lub_def chain_empty intro: a.ccpo_Sup_least b.ccpo_Sup_least) thus "?ord ?lhs (?rhs1, ?rhs2)" by(rule ab.fixp_induct)(auto 4 3 dest: monotoneD[OF f] monotoneD[OF g] simp add: b.fixp_unfold[OF g, symmetric] a.fixp_unfold[OF f, symmetric] f g intro: a.ccpo_Sup_least b.ccpo_Sup_least chain_empty) next have "ccpo.admissible luba orda (\x. orda x (fst ?lhs))" by(rule admissible_leI[OF a])(auto intro: a.ccpo_Sup_least simp add: chain_empty) hence "orda ?rhs1 (fst ?lhs)" using f proof(rule a.fixp_induct) fix x assume "orda x (fst ?lhs)" thus "orda (f x) (fst ?lhs)" by(subst ab.fixp_unfold)(auto simp add: f g dest: monotoneD[OF f]) qed(auto intro: a.ccpo_Sup_least chain_empty) moreover have "ccpo.admissible lubb ordb (\y. ordb y (snd ?lhs))" by(rule admissible_leI[OF b])(auto intro: b.ccpo_Sup_least simp add: chain_empty) hence "ordb ?rhs2 (snd ?lhs)" using g proof(rule b.fixp_induct) fix y assume "ordb y (snd ?lhs)" thus "ordb (g y) (snd ?lhs)" by(subst ab.fixp_unfold)(auto simp add: f g dest: monotoneD[OF g]) qed(auto intro: b.ccpo_Sup_least chain_empty) ultimately show "?ord (?rhs1, ?rhs2) ?lhs" by(simp add: rel_prod_conv split_beta) qed finally show ?thesis by simp qed end lemma parallel_fixp_induct_uc: assumes a: "partial_function_definitions orda luba" and b: "partial_function_definitions ordb lubb" and F: "\x. monotone (fun_ord orda) orda (\f. U1 (F (C1 f)) x)" and G: "\y. monotone (fun_ord ordb) ordb (\g. U2 (G (C2 g)) y)" and eq1: "f \ C1 (ccpo.fixp (fun_lub luba) (fun_ord orda) (\f. U1 (F (C1 f))))" and eq2: "g \ C2 (ccpo.fixp (fun_lub lubb) (fun_ord ordb) (\g. U2 (G (C2 g))))" and inverse: "\f. U1 (C1 f) = f" and inverse2: "\g. U2 (C2 g) = g" and adm: "ccpo.admissible (prod_lub (fun_lub luba) (fun_lub lubb)) (rel_prod (fun_ord orda) (fun_ord ordb)) (\x. P (fst x) (snd x))" and bot: "P (\_. luba {}) (\_. lubb {})" and step: "\f g. P (U1 f) (U2 g) \ P (U1 (F f)) (U2 (G g))" shows "P (U1 f) (U2 g)" apply(unfold eq1 eq2 inverse inverse2) apply(rule parallel_fixp_induct[OF partial_function_definitions.ccpo[OF a] partial_function_definitions.ccpo[OF b] adm]) using F apply(simp add: monotone_def fun_ord_def) using G apply(simp add: monotone_def fun_ord_def) apply(simp add: fun_lub_def bot) apply(rule step, simp add: inverse inverse2) done lemmas parallel_fixp_induct_1_1 = parallel_fixp_induct_uc[ of _ _ _ _ "\x. x" _ "\x. x" "\x. x" _ "\x. x", OF _ _ _ _ _ _ refl refl] lemmas parallel_fixp_induct_2_2 = parallel_fixp_induct_uc[ of _ _ _ _ "case_prod" _ "curry" "case_prod" _ "curry", where P="\f g. P (curry f) (curry g)", unfolded case_prod_curry curry_case_prod curry_K, OF _ _ _ _ _ _ refl refl] for P lemma monotone_fst: "monotone (rel_prod orda ordb) orda fst" by(auto intro: monotoneI) lemma mcont_fst: "mcont (prod_lub luba lubb) (rel_prod orda ordb) luba orda fst" by(auto intro!: mcontI monotoneI contI simp add: prod_lub_def) lemma mcont2mcont_fst [cont_intro, simp]: "mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) t \ mcont lub ord luba orda (\x. fst (t x))" by(auto intro!: mcontI monotoneI contI dest: mcont_monoD mcont_contD simp add: rel_prod_sel split_beta prod_lub_def image_image) lemma monotone_snd: "monotone (rel_prod orda ordb) ordb snd" by(auto intro: monotoneI) lemma mcont_snd: "mcont (prod_lub luba lubb) (rel_prod orda ordb) lubb ordb snd" by(auto intro!: mcontI monotoneI contI simp add: prod_lub_def) lemma mcont2mcont_snd [cont_intro, simp]: "mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) t \ mcont lub ord lubb ordb (\x. snd (t x))" by(auto intro!: mcontI monotoneI contI dest: mcont_monoD mcont_contD simp add: rel_prod_sel split_beta prod_lub_def image_image) lemma monotone_Pair: "\ monotone ord orda f; monotone ord ordb g \ \ monotone ord (rel_prod orda ordb) (\x. (f x, g x))" by(simp add: monotone_def) lemma cont_Pair: "\ cont lub ord luba orda f; cont lub ord lubb ordb g \ \ cont lub ord (prod_lub luba lubb) (rel_prod orda ordb) (\x. (f x, g x))" by(rule contI)(auto simp add: prod_lub_def image_image dest!: contD) lemma mcont_Pair: "\ mcont lub ord luba orda f; mcont lub ord lubb ordb g \ \ mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) (\x. (f x, g x))" by(rule mcontI)(simp_all add: monotone_Pair mcont_mono cont_Pair) context partial_function_definitions begin text \Specialised versions of @{thm [source] mcont_call} for admissibility proofs for parallel fixpoint inductions\ lemmas mcont_call_fst [cont_intro] = mcont_call[THEN mcont2mcont, OF mcont_fst] lemmas mcont_call_snd [cont_intro] = mcont_call[THEN mcont2mcont, OF mcont_snd] end lemma map_option_mono [partial_function_mono]: "mono_option B \ mono_option (\f. map_option g (B f))" unfolding map_conv_bind_option by(rule bind_mono) simp_all lemma compact_flat_lub [cont_intro]: "ccpo.compact (flat_lub x) (flat_ord x) y" using flat_interpretation[THEN ccpo] proof(rule ccpo.compactI[OF _ ccpo.admissibleI]) fix A assume chain: "Complete_Partial_Order.chain (flat_ord x) A" and A: "A \ {}" and *: "\z\A. \ flat_ord x y z" from A obtain z where "z \ A" by blast with * have z: "\ flat_ord x y z" .. hence y: "x \ y" "y \ z" by(auto simp add: flat_ord_def) { assume "\ A \ {x}" then obtain z' where "z' \ A" "z' \ x" by auto then have "(THE z. z \ A - {x}) = z'" by(intro the_equality)(auto dest: chainD[OF chain] simp add: flat_ord_def) moreover have "z' \ y" using \z' \ A\ * by(auto simp add: flat_ord_def) ultimately have "y \ (THE z. z \ A - {x})" by simp } with z show "\ flat_ord x y (flat_lub x A)" by(simp add: flat_ord_def flat_lub_def) qed end