diff --git a/src/Pure/Isar/specification.ML b/src/Pure/Isar/specification.ML --- a/src/Pure/Isar/specification.ML +++ b/src/Pure/Isar/specification.ML @@ -1,478 +1,473 @@ (* Title: Pure/Isar/specification.ML Author: Makarius Derived local theory specifications --- with type-inference and toplevel polymorphism. *) signature SPECIFICATION = sig val read_props: string list -> (binding * string option * mixfix) list -> Proof.context -> term list * Proof.context val check_spec_open: (binding * typ option * mixfix) list -> (binding * typ option * mixfix) list -> term list -> term -> Proof.context -> ((binding * typ option * mixfix) list * string list * (string -> Position.T list) * term) * Proof.context val read_spec_open: (binding * string option * mixfix) list -> (binding * string option * mixfix) list -> string list -> string -> Proof.context -> ((binding * typ option * mixfix) list * string list * (string -> Position.T list) * term) * Proof.context type multi_specs = ((Attrib.binding * term) * term list * (binding * typ option * mixfix) list) list type multi_specs_cmd = ((Attrib.binding * string) * string list * (binding * string option * mixfix) list) list val check_multi_specs: (binding * typ option * mixfix) list -> multi_specs -> Proof.context -> (((binding * typ) * mixfix) list * (Attrib.binding * term) list) * Proof.context val read_multi_specs: (binding * string option * mixfix) list -> multi_specs_cmd -> Proof.context -> (((binding * typ) * mixfix) list * (Attrib.binding * term) list) * Proof.context val axiomatization: (binding * typ option * mixfix) list -> (binding * typ option * mixfix) list -> term list -> (Attrib.binding * term) list -> theory -> (term list * thm list) * theory val axiomatization_cmd: (binding * string option * mixfix) list -> (binding * string option * mixfix) list -> string list -> (Attrib.binding * string) list -> theory -> (term list * thm list) * theory val axiom: Attrib.binding * term -> theory -> thm * theory val definition: (binding * typ option * mixfix) option -> (binding * typ option * mixfix) list -> term list -> Attrib.binding * term -> local_theory -> (term * (string * thm)) * local_theory - val definition': (binding * typ option * mixfix) option -> - (binding * typ option * mixfix) list -> term list -> Attrib.binding * term -> - bool -> local_theory -> (term * (string * thm)) * local_theory val definition_cmd: (binding * string option * mixfix) option -> (binding * string option * mixfix) list -> string list -> Attrib.binding * string -> bool -> local_theory -> (term * (string * thm)) * local_theory val abbreviation: Syntax.mode -> (binding * typ option * mixfix) option -> (binding * typ option * mixfix) list -> term -> bool -> local_theory -> local_theory val abbreviation_cmd: Syntax.mode -> (binding * string option * mixfix) option -> (binding * string option * mixfix) list -> string -> bool -> local_theory -> local_theory val alias: binding * string -> local_theory -> local_theory val alias_cmd: binding * (xstring * Position.T) -> local_theory -> local_theory val type_alias: binding * string -> local_theory -> local_theory val type_alias_cmd: binding * (xstring * Position.T) -> local_theory -> local_theory val type_notation: bool -> Syntax.mode -> (typ * mixfix) list -> local_theory -> local_theory val type_notation_cmd: bool -> Syntax.mode -> (string * mixfix) list -> local_theory -> local_theory val notation: bool -> Syntax.mode -> (term * mixfix) list -> local_theory -> local_theory val notation_cmd: bool -> Syntax.mode -> (string * mixfix) list -> local_theory -> local_theory val theorems: string -> (Attrib.binding * Attrib.thms) list -> (binding * typ option * mixfix) list -> bool -> local_theory -> (string * thm list) list * local_theory val theorems_cmd: string -> (Attrib.binding * (Facts.ref * Token.src list) list) list -> (binding * string option * mixfix) list -> bool -> local_theory -> (string * thm list) list * local_theory val theorem: bool -> string -> Method.text option -> (thm list list -> local_theory -> local_theory) -> Attrib.binding -> string list -> Element.context_i list -> Element.statement_i -> bool -> local_theory -> Proof.state val theorem_cmd: bool -> string -> Method.text option -> (thm list list -> local_theory -> local_theory) -> Attrib.binding -> (xstring * Position.T) list -> Element.context list -> Element.statement -> bool -> local_theory -> Proof.state val schematic_theorem: bool -> string -> Method.text option -> (thm list list -> local_theory -> local_theory) -> Attrib.binding -> string list -> Element.context_i list -> Element.statement_i -> bool -> local_theory -> Proof.state val schematic_theorem_cmd: bool -> string -> Method.text option -> (thm list list -> local_theory -> local_theory) -> Attrib.binding -> (xstring * Position.T) list -> Element.context list -> Element.statement -> bool -> local_theory -> Proof.state end; structure Specification: SPECIFICATION = struct (* prepare propositions *) fun read_props raw_props raw_fixes ctxt = let val (_, ctxt1) = ctxt |> Proof_Context.add_fixes_cmd raw_fixes; val props1 = map (Syntax.parse_prop ctxt1) raw_props; val (props2, ctxt2) = ctxt1 |> fold_map Variable.fix_dummy_patterns props1; val props3 = Syntax.check_props ctxt2 props2; val ctxt3 = ctxt2 |> fold Variable.declare_term props3; in (props3, ctxt3) end; (* prepare specification *) fun get_positions ctxt x = let fun get Cs (Const ("_type_constraint_", C) $ t) = get (C :: Cs) t | get Cs (Free (y, T)) = if x = y then map_filter Term_Position.decode_positionT (T :: map (Type.constraint_type ctxt) Cs) else [] | get _ (t $ u) = get [] t @ get [] u | get _ (Abs (_, _, t)) = get [] t | get _ _ = []; in get [] end; local fun prep_decls prep_var raw_vars ctxt = let val (vars, ctxt') = fold_map prep_var raw_vars ctxt; val (xs, ctxt'') = ctxt' |> Context_Position.set_visible false |> Proof_Context.add_fixes vars ||> Context_Position.restore_visible ctxt'; val _ = Context_Position.reports ctxt'' (map (Binding.pos_of o #1) vars ~~ map (Variable.markup_entity_def ctxt'' ##> Properties.remove Markup.kindN) xs); in ((vars, xs), ctxt'') end; fun close_form ctxt ys prems concl = let val xs = rev (fold (Variable.add_free_names ctxt) (prems @ [concl]) (rev ys)); val pos_props = Logic.strip_imp_concl concl :: Logic.strip_imp_prems concl @ prems; fun get_pos x = maps (get_positions ctxt x) pos_props; val _ = Context_Position.reports ctxt (maps (Syntax_Phases.reports_of_scope o get_pos) xs); in Logic.close_prop_constraint (Variable.default_type ctxt) (xs ~~ xs) prems concl end; fun dummy_frees ctxt xs tss = let val names = Variable.names_of ((fold o fold) Variable.declare_term tss ctxt) |> fold Name.declare xs; val (tss', _) = (fold_map o fold_map) Term.free_dummy_patterns tss names; in tss' end; fun prep_spec_open prep_var parse_prop raw_vars raw_params raw_prems raw_concl ctxt = let val ((vars, xs), vars_ctxt) = prep_decls prep_var raw_vars ctxt; val (ys, params_ctxt) = vars_ctxt |> fold_map prep_var raw_params |-> Proof_Context.add_fixes; val props = map (parse_prop params_ctxt) (raw_concl :: raw_prems) |> singleton (dummy_frees params_ctxt (xs @ ys)); val concl :: prems = Syntax.check_props params_ctxt props; val spec = Logic.list_implies (prems, concl); val spec_ctxt = Variable.declare_term spec params_ctxt; fun get_pos x = maps (get_positions spec_ctxt x) props; in ((vars, xs, get_pos, spec), spec_ctxt) end; fun prep_specs prep_var parse_prop prep_att raw_vars raw_specss ctxt = let val ((vars, xs), vars_ctxt) = prep_decls prep_var raw_vars ctxt; val propss0 = raw_specss |> map (fn ((_, raw_concl), raw_prems, raw_params) => let val (ys, ctxt') = vars_ctxt |> fold_map prep_var raw_params |-> Proof_Context.add_fixes in (ys, map (pair ctxt') (raw_concl :: raw_prems)) end); val props = burrow (grouped 10 Par_List.map_independent (uncurry parse_prop)) (map #2 propss0) |> dummy_frees vars_ctxt xs |> map2 (fn (ys, _) => fn concl :: prems => close_form vars_ctxt ys prems concl) propss0; val specs = Syntax.check_props vars_ctxt props; val specs_ctxt = vars_ctxt |> fold Variable.declare_term specs; val ps = specs_ctxt |> fold_map Proof_Context.inferred_param xs |> fst; val params = map2 (fn (b, _, mx) => fn (_, T) => ((b, T), mx)) vars ps; val name_atts: Attrib.binding list = map (fn ((name, atts), _) => (name, map (prep_att ctxt) atts)) (map #1 raw_specss); in ((params, name_atts ~~ specs), specs_ctxt) end; in val check_spec_open = prep_spec_open Proof_Context.cert_var (K I); val read_spec_open = prep_spec_open Proof_Context.read_var Syntax.parse_prop; type multi_specs = ((Attrib.binding * term) * term list * (binding * typ option * mixfix) list) list; type multi_specs_cmd = ((Attrib.binding * string) * string list * (binding * string option * mixfix) list) list; fun check_multi_specs xs specs = prep_specs Proof_Context.cert_var (K I) (K I) xs specs; fun read_multi_specs xs specs = prep_specs Proof_Context.read_var Syntax.parse_prop Attrib.check_src xs specs; end; (* axiomatization -- within global theory *) fun gen_axioms prep_stmt prep_att raw_decls raw_fixes raw_prems raw_concls thy = let (*specification*) val ({vars, propss = [prems, concls], ...}, vars_ctxt) = Proof_Context.init_global thy |> prep_stmt (raw_decls @ raw_fixes) ((map o map) (rpair []) [raw_prems, map snd raw_concls]); val (decls, fixes) = chop (length raw_decls) vars; val frees = rev ((fold o fold) (Variable.add_frees vars_ctxt) [prems, concls] []) |> map (fn (x, T) => (x, Free (x, T))); val close = Logic.close_prop (map #2 fixes @ frees) prems; val specs = map ((apsnd o map) (prep_att vars_ctxt) o fst) raw_concls ~~ map close concls; val spec_name = Binding.conglomerate (if null decls then map (#1 o #1) specs else map (#1 o #1) decls); (*consts*) val (consts, consts_thy) = thy |> fold_map (fn ((b, _, mx), (_, t)) => Theory.specify_const ((b, Term.type_of t), mx)) decls; val subst = Term.subst_atomic (map (#2 o #2) decls ~~ consts); (*axioms*) val (axioms, axioms_thy) = (specs, consts_thy) |-> fold_map (fn ((b, atts), prop) => Thm.add_axiom_global (b, subst prop) #>> (fn (_, th) => ((b, atts), [([th], [])]))); (*facts*) val (facts, facts_lthy) = axioms_thy |> Named_Target.theory_init |> Spec_Rules.add spec_name Spec_Rules.Unknown consts (maps (maps #1 o #2) axioms) |> Local_Theory.notes axioms; in ((consts, map (the_single o #2) facts), Local_Theory.exit_global facts_lthy) end; val axiomatization = gen_axioms Proof_Context.cert_stmt (K I); val axiomatization_cmd = gen_axioms Proof_Context.read_stmt Attrib.check_src; fun axiom (b, ax) = axiomatization [] [] [] [(b, ax)] #>> (hd o snd); (* definition *) fun gen_def prep_spec prep_att raw_var raw_params raw_prems ((a, raw_atts), raw_spec) int lthy = let val atts = map (prep_att lthy) raw_atts; val ((vars, xs, get_pos, spec), _) = lthy |> prep_spec (the_list raw_var) raw_params raw_prems raw_spec; val (((x, T), rhs), prove) = Local_Defs.derived_def lthy get_pos {conditional = true} spec; val _ = Name.reject_internal (x, []); val (b, mx) = (case (vars, xs) of ([], []) => (Binding.make (x, (case get_pos x of [] => Position.none | p :: _ => p)), NoSyn) | ([(b, _, mx)], [y]) => if x = y then (b, mx) else error ("Head of definition " ^ quote x ^ " differs from declaration " ^ quote y ^ Position.here (Binding.pos_of b))); - val const_name = Local_Theory.full_name lthy b; val name = Thm.def_binding_optional b a; val ((lhs, (_, raw_th)), lthy2) = lthy |> Local_Theory.define_internal ((b, mx), ((Binding.suffix_name "_raw" name, []), rhs)); val th = prove lthy2 raw_th; val lthy3 = lthy2 |> Spec_Rules.add name Spec_Rules.equational [lhs] [th]; val ([(def_name, [th'])], lthy4) = lthy3 |> Local_Theory.notes [((name, atts), [([th], [])])]; val lthy5 = lthy4 |> Code.declare_default_eqns [(th', true)]; val lhs' = Morphism.term (Local_Theory.target_morphism lthy5) lhs; val _ = Proof_Display.print_consts int (Position.thread_data ()) lthy5 (Frees.defined (Frees.build (Frees.add_frees lhs'))) [(x, T)]; in ((lhs, (def_name, th')), lthy5) end; -val definition' = gen_def check_spec_open (K I); -fun definition xs ys As B = definition' xs ys As B false; +fun definition xs ys As B = gen_def check_spec_open (K I) xs ys As B false; val definition_cmd = gen_def read_spec_open Attrib.check_src; (* abbreviation *) fun gen_abbrev prep_spec mode raw_var raw_params raw_spec int lthy = let val lthy1 = lthy |> Proof_Context.set_syntax_mode mode; val ((vars, xs, get_pos, spec), _) = lthy |> Proof_Context.set_mode Proof_Context.mode_abbrev |> prep_spec (the_list raw_var) raw_params [] raw_spec; val ((x, T), rhs) = Local_Defs.abs_def (#2 (Local_Defs.cert_def lthy1 get_pos spec)); val _ = Name.reject_internal (x, []); val (b, mx) = (case (vars, xs) of ([], []) => (Binding.make (x, (case get_pos x of [] => Position.none | p :: _ => p)), NoSyn) | ([(b, _, mx)], [y]) => if x = y then (b, mx) else error ("Head of abbreviation " ^ quote x ^ " differs from declaration " ^ quote y ^ Position.here (Binding.pos_of b))); val lthy2 = lthy1 |> Local_Theory.abbrev mode ((b, mx), rhs) |> snd |> Proof_Context.restore_syntax_mode lthy; val _ = Proof_Display.print_consts int (Position.thread_data ()) lthy2 (K false) [(x, T)]; in lthy2 end; val abbreviation = gen_abbrev check_spec_open; val abbreviation_cmd = gen_abbrev read_spec_open; (* alias *) fun gen_alias decl check (b, arg) lthy = let val (c, reports) = check {proper = true, strict = false} lthy arg; val _ = Context_Position.reports lthy reports; in decl b c lthy end; val alias = gen_alias Local_Theory.const_alias (K (K (fn c => (c, [])))); val alias_cmd = gen_alias Local_Theory.const_alias (fn flags => fn ctxt => fn (c, pos) => apfst (#1 o dest_Const) (Proof_Context.check_const flags ctxt (c, [pos]))); val type_alias = gen_alias Local_Theory.type_alias (K (K (fn c => (c, [])))); val type_alias_cmd = gen_alias Local_Theory.type_alias (apfst (#1 o dest_Type) ooo Proof_Context.check_type_name); (* notation *) local fun gen_type_notation prep_type add mode args lthy = lthy |> Local_Theory.type_notation add mode (map (apfst (prep_type lthy)) args); fun gen_notation prep_const add mode args lthy = lthy |> Local_Theory.notation add mode (map (apfst (prep_const lthy)) args); in val type_notation = gen_type_notation (K I); val type_notation_cmd = gen_type_notation (Proof_Context.read_type_name {proper = true, strict = false}); val notation = gen_notation (K I); val notation_cmd = gen_notation (Proof_Context.read_const {proper = false, strict = false}); end; (* fact statements *) local fun gen_theorems prep_fact prep_att add_fixes kind raw_facts raw_fixes int lthy = let val facts = raw_facts |> map (fn ((name, atts), bs) => ((name, map (prep_att lthy) atts), bs |> map (fn (b, more_atts) => (prep_fact lthy b, map (prep_att lthy) more_atts)))); val (_, ctxt') = add_fixes raw_fixes lthy; val facts' = facts |> Attrib.partial_evaluation ctxt' |> Attrib.transform_facts (Proof_Context.export_morphism ctxt' lthy); val (res, lthy') = lthy |> Local_Theory.notes_kind kind facts'; val _ = Proof_Display.print_results int (Position.thread_data ()) lthy' ((kind, ""), res); in (res, lthy') end; in val theorems = gen_theorems (K I) (K I) Proof_Context.add_fixes; val theorems_cmd = gen_theorems Proof_Context.get_fact Attrib.check_src Proof_Context.add_fixes_cmd; end; (* complex goal statements *) local fun prep_statement prep_att prep_stmt raw_elems raw_stmt ctxt = let val (stmt, elems_ctxt) = prep_stmt raw_elems raw_stmt ctxt; val prems = Assumption.local_prems_of elems_ctxt ctxt; val stmt_ctxt = fold (fold (Proof_Context.augment o fst) o snd) stmt elems_ctxt; in (case raw_stmt of Element.Shows _ => let val stmt' = Attrib.map_specs (map prep_att) stmt in (([], prems, stmt', NONE), stmt_ctxt) end | Element.Obtains raw_obtains => let val asms_ctxt = stmt_ctxt |> fold (fn ((name, _), asm) => snd o Proof_Context.add_assms Assumption.assume_export [((name, [Context_Rules.intro_query NONE]), asm)]) stmt; val that = Assumption.local_prems_of asms_ctxt stmt_ctxt; val ([(_, that')], that_ctxt) = asms_ctxt |> Proof_Context.set_stmt true |> Proof_Context.note_thmss "" [((Binding.name Auto_Bind.thatN, []), [(that, [])])] ||> Proof_Context.restore_stmt asms_ctxt; val stmt' = [(Binding.empty_atts, [(#2 (#1 (Obtain.obtain_thesis ctxt)), [])])]; in ((Obtain.obtains_attribs raw_obtains, prems, stmt', SOME that'), that_ctxt) end) end; fun gen_theorem schematic bundle_includes prep_att prep_stmt long kind before_qed after_qed (name, raw_atts) raw_includes raw_elems raw_concl int lthy = let val _ = Local_Theory.assert lthy; val elems = raw_elems |> map (Element.map_ctxt_attrib (prep_att lthy)); val ((more_atts, prems, stmt, facts), goal_ctxt) = lthy |> bundle_includes raw_includes |> prep_statement (prep_att lthy) prep_stmt elems raw_concl; val atts = more_atts @ map (prep_att lthy) raw_atts; val pos = Position.thread_data (); fun after_qed' results goal_ctxt' = let val results' = burrow (map (Goal.norm_result lthy) o Proof_Context.export goal_ctxt' lthy) results; val (res, lthy') = if forall (Binding.is_empty_atts o fst) stmt then (map (pair "") results', lthy) else Local_Theory.notes_kind kind (map2 (fn (b, _) => fn ths => (b, [(ths, [])])) stmt results') lthy; val lthy'' = if Binding.is_empty_atts (name, atts) then (Proof_Display.print_results int pos lthy' ((kind, ""), res); lthy') else let val ([(res_name, _)], lthy'') = Local_Theory.notes_kind kind [((name, atts), [(maps #2 res, [])])] lthy'; val _ = Proof_Display.print_results int pos lthy' ((kind, res_name), res); in lthy'' end; in after_qed results' lthy'' end; val prems_name = if long then Auto_Bind.assmsN else Auto_Bind.thatN; in goal_ctxt |> not (null prems) ? (Proof_Context.note_thmss "" [((Binding.name prems_name, []), [(prems, [])])] #> snd) |> Proof.theorem before_qed after_qed' (map snd stmt) |> (case facts of NONE => I | SOME ths => Proof.refine_insert ths) |> tap (fn state => not schematic andalso Proof.schematic_goal state andalso error "Illegal schematic goal statement") end; in val theorem = gen_theorem false Bundle.includes (K I) Expression.cert_statement; val theorem_cmd = gen_theorem false Bundle.includes_cmd Attrib.check_src Expression.read_statement; val schematic_theorem = gen_theorem true Bundle.includes (K I) Expression.cert_statement; val schematic_theorem_cmd = gen_theorem true Bundle.includes_cmd Attrib.check_src Expression.read_statement; end; end;