diff --git a/src/Pure/library.ML b/src/Pure/library.ML --- a/src/Pure/library.ML +++ b/src/Pure/library.ML @@ -1,1098 +1,1101 @@ (* Title: Pure/library.ML Author: Lawrence C Paulson, Cambridge University Computer Laboratory Author: Markus Wenzel, TU Muenchen Basic library: functions, pairs, booleans, lists, integers, strings, lists as sets, orders, current directory, misc. See also General/basics.ML for the most fundamental concepts. *) infixr 0 ||| infix 2 ? infix 3 o oo ooo oooo infix 4 ~~ upto downto infix orf andf signature BASIC_LIBRARY = sig (*functions*) val undefined: 'a -> 'b val I: 'a -> 'a val K: 'a -> 'b -> 'a val curry: ('a * 'b -> 'c) -> 'a -> 'b -> 'c val uncurry: ('a -> 'b -> 'c) -> 'a * 'b -> 'c val ? : bool * ('a -> 'a) -> 'a -> 'a val oo: ('a -> 'b) * ('c -> 'd -> 'a) -> 'c -> 'd -> 'b val ooo: ('a -> 'b) * ('c -> 'd -> 'e -> 'a) -> 'c -> 'd -> 'e -> 'b val oooo: ('a -> 'b) * ('c -> 'd -> 'e -> 'f -> 'a) -> 'c -> 'd -> 'e -> 'f -> 'b val funpow: int -> ('a -> 'a) -> 'a -> 'a val funpow_yield: int -> ('a -> 'b * 'a) -> 'a -> 'b list * 'a (*pairs*) val pair: 'a -> 'b -> 'a * 'b val rpair: 'a -> 'b -> 'b * 'a val fst: 'a * 'b -> 'a val snd: 'a * 'b -> 'b val eq_fst: ('a * 'c -> bool) -> ('a * 'b) * ('c * 'd) -> bool val eq_snd: ('b * 'd -> bool) -> ('a * 'b) * ('c * 'd) -> bool val eq_pair: ('a * 'c -> bool) -> ('b * 'd -> bool) -> ('a * 'b) * ('c * 'd) -> bool val swap: 'a * 'b -> 'b * 'a val apfst: ('a -> 'b) -> 'a * 'c -> 'b * 'c val apsnd: ('a -> 'b) -> 'c * 'a -> 'c * 'b val apply2: ('a -> 'b) -> 'a * 'a -> 'b * 'b (*booleans*) val equal: ''a -> ''a -> bool val not_equal: ''a -> ''a -> bool val orf: ('a -> bool) * ('a -> bool) -> 'a -> bool val andf: ('a -> bool) * ('a -> bool) -> 'a -> bool val exists: ('a -> bool) -> 'a list -> bool val forall: ('a -> bool) -> 'a list -> bool (*lists*) val single: 'a -> 'a list val the_single: 'a list -> 'a val singleton: ('a list -> 'b list) -> 'a -> 'b val yield_singleton: ('a list -> 'c -> 'b list * 'c) -> 'a -> 'c -> 'b * 'c val perhaps_apply: ('a -> 'a option) list -> 'a -> 'a option val perhaps_loop: ('a -> 'a option) -> 'a -> 'a option val foldl1: ('a * 'a -> 'a) -> 'a list -> 'a val foldr1: ('a * 'a -> 'a) -> 'a list -> 'a val eq_list: ('a * 'a -> bool) -> 'a list * 'a list -> bool val maps: ('a -> 'b list) -> 'a list -> 'b list val filter: ('a -> bool) -> 'a list -> 'a list val filter_out: ('a -> bool) -> 'a list -> 'a list val map_filter: ('a -> 'b option) -> 'a list -> 'b list val take: int -> 'a list -> 'a list val drop: int -> 'a list -> 'a list val chop: int -> 'a list -> 'a list * 'a list val chop_groups: int -> 'a list -> 'a list list val nth: 'a list -> int -> 'a val nth_list: 'a list list -> int -> 'a list val nth_map: int -> ('a -> 'a) -> 'a list -> 'a list val nth_drop: int -> 'a list -> 'a list val map_index: (int * 'a -> 'b) -> 'a list -> 'b list val fold_index: (int * 'a -> 'b -> 'b) -> 'a list -> 'b -> 'b val map_range: (int -> 'a) -> int -> 'a list val fold_range: (int -> 'a -> 'a) -> int -> 'a -> 'a val split_last: 'a list -> 'a list * 'a val find_first: ('a -> bool) -> 'a list -> 'a option val find_index: ('a -> bool) -> 'a list -> int val get_first: ('a -> 'b option) -> 'a list -> 'b option val get_index: ('a -> 'b option) -> 'a list -> (int * 'b) option val flat: 'a list list -> 'a list val unflat: 'a list list -> 'b list -> 'b list list val grouped: int -> (('a list -> 'b list) -> 'c list list -> 'd list list) -> ('a -> 'b) -> 'c list -> 'd list val burrow: ('a list -> 'b list) -> 'a list list -> 'b list list val burrow_options: ('a list -> 'b list) -> 'a option list -> 'b option list val fold_burrow: ('a list -> 'c -> 'b list * 'd) -> 'a list list -> 'c -> 'b list list * 'd val separate: 'a -> 'a list -> 'a list val surround: 'a -> 'a list -> 'a list val replicate: int -> 'a -> 'a list val map_product: ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list val fold_product: ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c val map2: ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list val fold2: ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c val map_split: ('a -> 'b * 'c) -> 'a list -> 'b list * 'c list val zip_options: 'a list -> 'b option list -> ('a * 'b) list val ~~ : 'a list * 'b list -> ('a * 'b) list val split_list: ('a * 'b) list -> 'a list * 'b list val burrow_fst: ('a list -> 'b list) -> ('a * 'c) list -> ('b * 'c) list val take_prefix: ('a -> bool) -> 'a list -> 'a list val drop_prefix: ('a -> bool) -> 'a list -> 'a list val chop_prefix: ('a -> bool) -> 'a list -> 'a list * 'a list val take_suffix: ('a -> bool) -> 'a list -> 'a list val drop_suffix: ('a -> bool) -> 'a list -> 'a list val chop_suffix: ('a -> bool) -> 'a list -> 'a list * 'a list val is_prefix: ('a * 'a -> bool) -> 'a list -> 'a list -> bool val chop_common_prefix: ('a * 'b -> bool) -> 'a list * 'b list -> 'a list * ('a list * 'b list) val prefixes1: 'a list -> 'a list list val prefixes: 'a list -> 'a list list val suffixes1: 'a list -> 'a list list val suffixes: 'a list -> 'a list list val trim: ('a -> bool) -> 'a list -> 'a list (*integers*) val upto: int * int -> int list val downto: int * int -> int list val hex_digit: int -> string val radixpand: int * int -> int list val radixstring: int * string * int -> string val string_of_int: int -> string val signed_string_of_int: int -> string val string_of_indexname: string * int -> string val read_radix_int: int -> string list -> int * string list val read_int: string list -> int * string list val oct_char: string -> string (*strings*) val nth_string: string -> int -> string val fold_string: (string -> 'a -> 'a) -> string -> 'a -> 'a val exists_string: (string -> bool) -> string -> bool val forall_string: (string -> bool) -> string -> bool val member_string: string -> string -> bool val first_field: string -> string -> (string * string) option val enclose: string -> string -> string -> string val unenclose: string -> string val quote: string -> string val cartouche: string -> string val space_implode: string -> string list -> string val commas: string list -> string val commas_quote: string list -> string val cat_lines: string list -> string val space_explode: string -> string -> string list val split_lines: string -> string list val plain_words: string -> string val prefix_lines: string -> string -> string val prefix: string -> string -> string val suffix: string -> string -> string val unprefix: string -> string -> string val unsuffix: string -> string -> string val trim_line: string -> string val trim_split_lines: string -> string list val normalize_lines: string -> string val replicate_string: int -> string -> string val translate_string: (string -> string) -> string -> string val encode_lines: string -> string val decode_lines: string -> string val align_right: string -> int -> string -> string val match_string: string -> string -> bool (*reals*) val string_of_real: real -> string val signed_string_of_real: real -> string (*lists as sets -- see also Pure/General/ord_list.ML*) val member: ('b * 'a -> bool) -> 'a list -> 'b -> bool val insert: ('a * 'a -> bool) -> 'a -> 'a list -> 'a list val remove: ('b * 'a -> bool) -> 'b -> 'a list -> 'a list val update: ('a * 'a -> bool) -> 'a -> 'a list -> 'a list val union: ('a * 'a -> bool) -> 'a list -> 'a list -> 'a list val subtract: ('b * 'a -> bool) -> 'b list -> 'a list -> 'a list val inter: ('a * 'b -> bool) -> 'b list -> 'a list -> 'a list val merge: ('a * 'a -> bool) -> 'a list * 'a list -> 'a list val subset: ('a * 'b -> bool) -> 'a list * 'b list -> bool val eq_set: ('a * 'a -> bool) -> 'a list * 'a list -> bool val distinct: ('a * 'a -> bool) -> 'a list -> 'a list val duplicates: ('a * 'a -> bool) -> 'a list -> 'a list val has_duplicates: ('a * 'a -> bool) -> 'a list -> bool val map_transpose: ('a list -> 'b) -> 'a list list -> 'b list (*lists as multisets*) val remove1: ('b * 'a -> bool) -> 'b -> 'a list -> 'a list val combine: ('a * 'a -> bool) -> 'a list -> 'a list -> 'a list val submultiset: ('a * 'b -> bool) -> 'a list * 'b list -> bool (*orders*) type 'a ord = 'a * 'a -> order val is_equal: order -> bool val is_less: order -> bool val is_less_equal: order -> bool val is_greater: order -> bool val is_greater_equal: order -> bool val rev_order: order -> order val make_ord: ('a * 'a -> bool) -> 'a ord val pointer_eq_ord: ('a * 'a -> order) -> 'a * 'a -> order val bool_ord: bool ord val int_ord: int ord val string_ord: string ord + val size_ord: string ord val fast_string_ord: string ord val option_ord: ('a * 'b -> order) -> 'a option * 'b option -> order val ||| : ('a -> order) * ('a -> order) -> 'a -> order val prod_ord: ('a * 'b -> order) -> ('c * 'd -> order) -> ('a * 'c) * ('b * 'd) -> order val dict_ord: ('a * 'b -> order) -> 'a list * 'b list -> order + val length_ord: 'a list * 'b list -> order val list_ord: ('a * 'b -> order) -> 'a list * 'b list -> order val sort: 'a ord -> 'a list -> 'a list val sort_distinct: 'a ord -> 'a list -> 'a list val sort_strings: string list -> string list val sort_by: ('a -> string) -> 'a list -> 'a list val tag_list: int -> 'a list -> (int * 'a) list val untag_list: (int * 'a) list -> 'a list val order_list: (int * 'a) list -> 'a list (*misc*) val divide_and_conquer: ('a -> 'a list * ('b list -> 'b)) -> 'a -> 'b val divide_and_conquer': ('a -> 'b -> ('a list * ('c list * 'b -> 'c * 'b)) * 'b) -> 'a -> 'b -> 'c * 'b val partition_eq: ('a * 'a -> bool) -> 'a list -> 'a list list val partition_list: (int -> 'a -> bool) -> int -> int -> 'a list -> 'a list list type serial = int val serial: unit -> serial val serial_string: unit -> string eqtype stamp val stamp: unit -> stamp structure Any: sig type T = exn end val getenv: string -> string val getenv_strict: string -> string end; signature LIBRARY = sig include BASIC_LIBRARY val foldl: ('a * 'b -> 'a) -> 'a * 'b list -> 'a val foldr: ('a * 'b -> 'b) -> 'a list * 'b -> 'b end; structure Library: LIBRARY = struct (* functions *) fun undefined _ = raise Match; fun I x = x; fun K x = fn _ => x; fun curry f x y = f (x, y); fun uncurry f (x, y) = f x y; (*conditional application*) fun b ? f = fn x => if b then f x else x; (*composition with multiple args*) fun (f oo g) x y = f (g x y); fun (f ooo g) x y z = f (g x y z); fun (f oooo g) x y z w = f (g x y z w); (*function exponentiation: f (... (f x) ...) with n applications of f*) fun funpow (0: int) _ x = x | funpow n f x = funpow (n - 1) f (f x); fun funpow_yield (0 : int) _ x = ([], x) | funpow_yield n f x = x |> f ||>> funpow_yield (n - 1) f |>> op ::; (* pairs *) fun pair x y = (x, y); fun rpair x y = (y, x); fun fst (x, y) = x; fun snd (x, y) = y; fun eq_fst eq ((x1, _), (x2, _)) = eq (x1, x2); fun eq_snd eq ((_, y1), (_, y2)) = eq (y1, y2); fun eq_pair eqx eqy ((x1, y1), (x2, y2)) = eqx (x1, x2) andalso eqy (y1, y2); fun swap (x, y) = (y, x); fun apfst f (x, y) = (f x, y); fun apsnd f (x, y) = (x, f y); fun apply2 f (x, y) = (f x, f y); (* booleans *) (*polymorphic equality*) fun equal x y = x = y; fun not_equal x y = x <> y; (*combining predicates*) fun p orf q = fn x => p x orelse q x; fun p andf q = fn x => p x andalso q x; val exists = List.exists; val forall = List.all; (** lists **) fun single x = [x]; fun the_single [x] = x | the_single _ = raise List.Empty; fun singleton f x = the_single (f [x]); fun yield_singleton f x = f [x] #>> the_single; fun perhaps_apply funs arg = let fun app [] res = res | app (f :: fs) (changed, x) = (case f x of NONE => app fs (changed, x) | SOME x' => app fs (true, x')); in (case app funs (false, arg) of (false, _) => NONE | (true, arg') => SOME arg') end; fun perhaps_loop f arg = let fun loop (changed, x) = (case f x of NONE => (changed, x) | SOME x' => loop (true, x')); in (case loop (false, arg) of (false, _) => NONE | (true, arg') => SOME arg') end; (* fold -- old versions *) (*the following versions of fold are designed to fit nicely with infixes*) (* (op @) (e, [x1, ..., xn]) ===> ((e @ x1) @ x2) ... @ xn for operators that associate to the left (TAIL RECURSIVE)*) fun foldl (f: 'a * 'b -> 'a) : 'a * 'b list -> 'a = let fun itl (e, []) = e | itl (e, a::l) = itl (f(e, a), l) in itl end; (* (op @) ([x1, ..., xn], e) ===> x1 @ (x2 ... @ (xn @ e)) for operators that associate to the right (not tail recursive)*) fun foldr f (l, e) = let fun itr [] = e | itr (a::l) = f(a, itr l) in itr l end; (* (op @) [x1, ..., xn] ===> ((x1 @ x2) @ x3) ... @ xn for operators that associate to the left (TAIL RECURSIVE)*) fun foldl1 f [] = raise List.Empty | foldl1 f (x :: xs) = foldl f (x, xs); (* (op @) [x1, ..., xn] ===> x1 @ (x2 ... @ (x[n-1] @ xn)) for n > 0, operators that associate to the right (not tail recursive)*) fun foldr1 f [] = raise List.Empty | foldr1 f l = let fun itr [x] = x | itr (x::l) = f(x, itr l) in itr l end; (* basic list functions *) fun eq_list eq (list1, list2) = pointer_eq (list1, list2) orelse let fun eq_lst (x :: xs, y :: ys) = eq (x, y) andalso eq_lst (xs, ys) | eq_lst _ = true; in length list1 = length list2 andalso eq_lst (list1, list2) end; fun maps f [] = [] | maps f (x :: xs) = f x @ maps f xs; val filter = List.filter; fun filter_out f = filter (not o f); val map_filter = List.mapPartial; fun take (0: int) xs = [] | take _ [] = [] | take n (x :: xs) = x :: take (n - 1) xs; fun drop (0: int) xs = xs | drop _ [] = [] | drop n (x :: xs) = drop (n - 1) xs; fun chop (0: int) xs = ([], xs) | chop _ [] = ([], []) | chop n (x :: xs) = chop (n - 1) xs |>> cons x; fun chop_groups n list = (case chop (Int.max (n, 1)) list of ([], _) => [] | (g, rest) => g :: chop_groups n rest); (*return nth element of a list, where 0 designates the first element; raise Subscript if list too short*) fun nth xs i = List.nth (xs, i); fun nth_list xss i = nth xss i handle General.Subscript => []; fun nth_map 0 f (x :: xs) = f x :: xs | nth_map n f (x :: xs) = x :: nth_map (n - 1) f xs | nth_map (_: int) _ [] = raise Subscript; fun nth_drop n xs = List.take (xs, n) @ List.drop (xs, n + 1); fun map_index f = let fun map_aux (_: int) [] = [] | map_aux i (x :: xs) = f (i, x) :: map_aux (i + 1) xs in map_aux 0 end; fun fold_index f = let fun fold_aux (_: int) [] y = y | fold_aux i (x :: xs) y = fold_aux (i + 1) xs (f (i, x) y) in fold_aux 0 end; fun map_range f i = let fun map_aux (k: int) = if k < i then f k :: map_aux (k + 1) else [] in map_aux 0 end; fun fold_range f i = let fun fold_aux (k: int) y = if k < i then fold_aux (k + 1) (f k y) else y in fold_aux 0 end; (*rear decomposition*) fun split_last [] = raise List.Empty | split_last [x] = ([], x) | split_last (x :: xs) = apfst (cons x) (split_last xs); (*find first element satisfying predicate*) val find_first = List.find; (*find position of first element satisfying a predicate*) fun find_index pred = let fun find (_: int) [] = ~1 | find n (x :: xs) = if pred x then n else find (n + 1) xs; in find 0 end; (*get first element by lookup function*) fun get_first _ [] = NONE | get_first f (x :: xs) = (case f x of NONE => get_first f xs | some => some); fun get_index f = let fun get_aux (_: int) [] = NONE | get_aux i (x :: xs) = (case f x of NONE => get_aux (i + 1) xs | SOME y => SOME (i, y)) in get_aux 0 end; val flat = List.concat; fun unflat (xs :: xss) ys = let val (ps, qs) = chop (length xs) ys in ps :: unflat xss qs end | unflat [] [] = [] | unflat _ _ = raise ListPair.UnequalLengths; fun grouped n comb f = chop_groups n #> comb (map f) #> flat; fun burrow f xss = unflat xss (f (flat xss)); fun burrow_options f os = map (try hd) (burrow f (map the_list os)); fun fold_burrow f xss s = apfst (unflat xss) (f (flat xss) s); (*separate s [x1, x2, ..., xn] ===> [x1, s, x2, s, ..., s, xn]*) fun separate s (x :: (xs as _ :: _)) = x :: s :: separate s xs | separate _ xs = xs; fun surround s (x :: xs) = s :: x :: surround s xs | surround s [] = [s]; (*make the list [x, x, ..., x] of length n*) fun replicate (n: int) x = let fun rep (0, xs) = xs | rep (n, xs) = rep (n - 1, x :: xs) in if n < 0 then raise Subscript else rep (n, []) end; (* direct product *) fun map_product f _ [] = [] | map_product f [] _ = [] | map_product f (x :: xs) ys = map (f x) ys @ map_product f xs ys; fun fold_product f _ [] z = z | fold_product f [] _ z = z | fold_product f (x :: xs) ys z = z |> fold (f x) ys |> fold_product f xs ys; (* lists of pairs *) fun map2 _ [] [] = [] | map2 f (x :: xs) (y :: ys) = f x y :: map2 f xs ys | map2 _ _ _ = raise ListPair.UnequalLengths; fun fold2 _ [] [] z = z | fold2 f (x :: xs) (y :: ys) z = fold2 f xs ys (f x y z) | fold2 _ _ _ _ = raise ListPair.UnequalLengths; fun map_split _ [] = ([], []) | map_split f (x :: xs) = let val (y, w) = f x; val (ys, ws) = map_split f xs; in (y :: ys, w :: ws) end; fun zip_options (x :: xs) (SOME y :: ys) = (x, y) :: zip_options xs ys | zip_options (_ :: xs) (NONE :: ys) = zip_options xs ys | zip_options _ [] = [] | zip_options [] _ = raise ListPair.UnequalLengths; (*combine two lists forming a list of pairs: [x1, ..., xn] ~~ [y1, ..., yn] ===> [(x1, y1), ..., (xn, yn)]*) fun [] ~~ [] = [] | (x :: xs) ~~ (y :: ys) = (x, y) :: (xs ~~ ys) | _ ~~ _ = raise ListPair.UnequalLengths; (*inverse of ~~; the old 'split': [(x1, y1), ..., (xn, yn)] ===> ([x1, ..., xn], [y1, ..., yn])*) val split_list = ListPair.unzip; fun burrow_fst f xs = split_list xs |>> f |> op ~~; (* take, drop, chop, trim according to predicate *) fun take_prefix pred list = let fun take res (x :: xs) = if pred x then take (x :: res) xs else rev res | take res [] = rev res; in take [] list end; fun drop_prefix pred list = let fun drop (x :: xs) = if pred x then drop xs else x :: xs | drop [] = []; in drop list end; fun chop_prefix pred list = let val prfx = take_prefix pred list; val sffx = drop (length prfx) list; in (prfx, sffx) end; fun take_suffix pred list = let fun take res (x :: xs) = if pred x then take (x :: res) xs else res | take res [] = res; in take [] (rev list) end; fun drop_suffix pred list = let fun drop (x :: xs) = if pred x then drop xs else rev (x :: xs) | drop [] = []; in drop (rev list) end; fun chop_suffix pred list = let val prfx = drop_suffix pred list; val sffx = drop (length prfx) list; in (prfx, sffx) end; fun trim pred = drop_prefix pred #> drop_suffix pred; (* prefixes, suffixes *) fun is_prefix _ [] _ = true | is_prefix eq (x :: xs) (y :: ys) = eq (x, y) andalso is_prefix eq xs ys | is_prefix eq _ _ = false; fun chop_common_prefix eq ([], ys) = ([], ([], ys)) | chop_common_prefix eq (xs, []) = ([], (xs, [])) | chop_common_prefix eq (xs as x :: xs', ys as y :: ys') = if eq (x, y) then let val (ps', xys'') = chop_common_prefix eq (xs', ys') in (x :: ps', xys'') end else ([], (xs, ys)); fun prefixes1 [] = [] | prefixes1 (x :: xs) = map (cons x) ([] :: prefixes1 xs); fun prefixes xs = [] :: prefixes1 xs; fun suffixes1 xs = map rev (prefixes1 (rev xs)); fun suffixes xs = [] :: suffixes1 xs; (** integers **) (* lists of integers *) (*make the list [from, from + 1, ..., to]*) fun ((i: int) upto j) = if i > j then [] else i :: (i + 1 upto j); (*make the list [from, from - 1, ..., to]*) fun ((i: int) downto j) = if i < j then [] else i :: (i - 1 downto j); (* convert integers to strings *) (*hexadecimal*) fun hex_digit i = if i < 10 then chr (Char.ord #"0" + i) else chr (Char.ord #"a" + i - 10); (*expand the number in the given base; example: radixpand (2, 8) gives [1, 0, 0, 0]*) fun radixpand (base, num) : int list = let fun radix (n, tail) = if n < base then n :: tail else radix (n div base, (n mod base) :: tail) in radix (num, []) end; (*expands a number into a string of characters starting from "zerochar"; example: radixstring (2, "0", 8) gives "1000"*) fun radixstring (base, zerochar, num) = let val offset = ord zerochar; fun chrof n = chr (offset + n) in implode (map chrof (radixpand (base, num))) end; local val zero = Char.ord #"0"; val small_int = 10000: int; val small_int_table = Vector.tabulate (small_int, Int.toString); in fun string_of_int i = if i < 0 then Int.toString i else if i < 10 then chr (zero + i) else if i < small_int then Vector.sub (small_int_table, i) else Int.toString i; end; fun signed_string_of_int i = if i < 0 then "-" ^ string_of_int (~ i) else string_of_int i; fun string_of_indexname (a, 0) = a | string_of_indexname (a, i) = a ^ "_" ^ string_of_int i; (* read integers *) fun read_radix_int radix cs = let val zero = Char.ord #"0"; val limit = zero + radix; fun scan (num, []) = (num, []) | scan (num, c :: cs) = if zero <= ord c andalso ord c < limit then scan (radix * num + (ord c - zero), cs) else (num, c :: cs); in scan (0, cs) end; val read_int = read_radix_int 10; fun oct_char s = chr (#1 (read_radix_int 8 (raw_explode s))); (** strings **) (* functions tuned for strings, avoiding explode *) fun nth_string str i = (case try String.substring (str, i, 1) of SOME s => s | NONE => raise Subscript); fun fold_string f str x0 = let val n = size str; fun iter (x, i) = if i < n then iter (f (String.substring (str, i, 1)) x, i + 1) else x; in iter (x0, 0) end; fun exists_string pred str = let val n = size str; fun ex i = i < n andalso (pred (String.substring (str, i, 1)) orelse ex (i + 1)); in ex 0 end; fun forall_string pred = not o exists_string (not o pred); fun member_string str s = exists_string (fn s' => s = s') str; fun first_field sep str = let val n = size sep; val len = size str; fun find i = if i + n > len then NONE else if String.substring (str, i, n) = sep then SOME i else find (i + 1); in (case find 0 of NONE => NONE | SOME i => SOME (String.substring (str, 0, i), String.extract (str, i + n, NONE))) end; (*enclose in brackets*) fun enclose lpar rpar str = lpar ^ str ^ rpar; fun unenclose str = String.substring (str, 1, size str - 2); (*simple quoting (does not escape special chars)*) val quote = enclose "\"" "\""; val cartouche = enclose "\" "\"; val space_implode = String.concatWith; val commas = space_implode ", "; val commas_quote = commas o map quote; val cat_lines = space_implode "\n"; (*space_explode "." "h.e..l.lo" = ["h", "e", "", "l", "lo"]*) fun space_explode _ "" = [] | space_explode sep s = String.fields (fn c => str c = sep) s; val split_lines = space_explode "\n"; fun plain_words s = space_explode "_" s |> space_implode " "; fun prefix_lines "" txt = txt | prefix_lines prfx txt = txt |> split_lines |> map (fn s => prfx ^ s) |> cat_lines; fun prefix prfx s = prfx ^ s; fun suffix sffx s = s ^ sffx; fun unprefix prfx s = if String.isPrefix prfx s then String.substring (s, size prfx, size s - size prfx) else raise Fail "unprefix"; fun unsuffix sffx s = if String.isSuffix sffx s then String.substring (s, 0, size s - size sffx) else raise Fail "unsuffix"; fun trim_line s = if String.isSuffix "\r\n" s then String.substring (s, 0, size s - 2) else if String.isSuffix "\r" s orelse String.isSuffix "\n" s then String.substring (s, 0, size s - 1) else s; val trim_split_lines = trim_line #> split_lines #> map trim_line; fun normalize_lines str = if exists_string (fn s => s = "\r") str then split_lines str |> map trim_line |> cat_lines else str; fun replicate_string (0: int) _ = "" | replicate_string 1 a = a | replicate_string k a = if k mod 2 = 0 then replicate_string (k div 2) (a ^ a) else replicate_string (k div 2) (a ^ a) ^ a; fun translate_string f = String.translate (f o String.str); val encode_lines = translate_string (fn "\n" => "\v" | c => c); val decode_lines = translate_string (fn "\v" => "\n" | c => c); fun align_right c k s = let val _ = if size c <> 1 orelse size s > k then raise Fail "align_right" else () in replicate_string (k - size s) c ^ s end; (*crude matching of str against simple glob pat*) fun match_string pat str = let fun match [] _ = true | match (p :: ps) s = size p <= size s andalso (case try (unprefix p) s of SOME s' => match ps s' | NONE => match (p :: ps) (String.substring (s, 1, size s - 1))); in match (space_explode "*" pat) str end; (** reals **) val string_of_real = Real.fmt (StringCvt.GEN NONE); fun signed_string_of_real x = if x < 0.0 then "-" ^ string_of_real (~ x) else string_of_real x; (** lists as sets -- see also Pure/General/ord_list.ML **) (* canonical operations *) fun member eq list x = let fun memb [] = false | memb (y :: ys) = eq (x, y) orelse memb ys; in memb list end; fun insert eq x xs = if member eq xs x then xs else x :: xs; fun remove eq x xs = if member eq xs x then filter_out (fn y => eq (x, y)) xs else xs; fun update eq x xs = cons x (remove eq x xs); fun inter eq xs = filter (member eq xs); fun union eq = fold (insert eq); fun subtract eq = fold (remove eq); fun merge eq (xs, ys) = if pointer_eq (xs, ys) then xs else if null xs then ys else fold_rev (insert eq) ys xs; (* subset and set equality *) fun subset eq (xs, ys) = forall (member eq ys) xs; fun eq_set eq (xs, ys) = eq_list eq (xs, ys) orelse (subset eq (xs, ys) andalso subset (eq o swap) (ys, xs)); (*makes a list of the distinct members of the input; preserves order, takes first of equal elements*) fun distinct eq lst = let fun dist (rev_seen, []) = rev rev_seen | dist (rev_seen, x :: xs) = if member eq rev_seen x then dist (rev_seen, xs) else dist (x :: rev_seen, xs); in dist ([], lst) end; (*returns a list containing all repeated elements exactly once; preserves order, takes first of equal elements*) fun duplicates eq lst = let fun dups (rev_dups, []) = rev rev_dups | dups (rev_dups, x :: xs) = if member eq rev_dups x orelse not (member eq xs x) then dups (rev_dups, xs) else dups (x :: rev_dups, xs); in dups ([], lst) end; fun has_duplicates eq = let fun dups [] = false | dups (x :: xs) = member eq xs x orelse dups xs; in dups end; (* matrices *) fun map_transpose f xss = let val n = (case distinct (op =) (map length xss) of [] => 0 | [n] => n | _ => raise ListPair.UnequalLengths); in map_range (fn m => f (map (fn xs => nth xs m) xss)) n end; (** lists as multisets **) fun remove1 eq x [] = [] | remove1 eq x (y :: ys) = if eq (x, y) then ys else y :: remove1 eq x ys; fun combine eq xs ys = fold (remove1 eq) ys xs @ ys; fun submultiset _ ([], _) = true | submultiset eq (x :: xs, ys) = member eq ys x andalso submultiset eq (xs, remove1 eq x ys); (** orders **) type 'a ord = 'a * 'a -> order; fun is_equal ord = ord = EQUAL; fun is_less ord = ord = LESS; fun is_less_equal ord = ord = LESS orelse ord = EQUAL; fun is_greater ord = ord = GREATER; fun is_greater_equal ord = ord = GREATER orelse ord = EQUAL; fun rev_order LESS = GREATER | rev_order EQUAL = EQUAL | rev_order GREATER = LESS; (*compose orders*) fun (a_ord ||| b_ord) p = (case a_ord p of EQUAL => b_ord p | ord => ord); (*assume rel is a linear strict order*) fun make_ord rel (x, y) = if rel (x, y) then LESS else if rel (y, x) then GREATER else EQUAL; fun pointer_eq_ord ord (x, y) = if pointer_eq (x, y) then EQUAL else ord (x, y); fun bool_ord (false, true) = LESS | bool_ord (true, false) = GREATER | bool_ord _ = EQUAL; val int_ord = Int.compare; val string_ord = String.compare; -val fast_string_ord = pointer_eq_ord (int_ord o apply2 size ||| string_ord); +val size_ord = int_ord o apply2 size; +val fast_string_ord = pointer_eq_ord (size_ord ||| string_ord); fun option_ord ord (SOME x, SOME y) = ord (x, y) | option_ord _ (NONE, NONE) = EQUAL | option_ord _ (NONE, SOME _) = LESS | option_ord _ (SOME _, NONE) = GREATER; (*lexicographic product*) fun prod_ord a_ord b_ord ((x, y), (x', y')) = (case a_ord (x, x') of EQUAL => b_ord (y, y') | ord => ord); (*dictionary order -- in general NOT well-founded!*) fun dict_ord elem_ord (x :: xs, y :: ys) = (case elem_ord (x, y) of EQUAL => dict_ord elem_ord (xs, ys) | ord => ord) | dict_ord _ ([], []) = EQUAL | dict_ord _ ([], _ :: _) = LESS | dict_ord _ (_ :: _, []) = GREATER; (*lexicographic product of lists*) fun length_ord (xs, ys) = int_ord (length xs, length ys); fun list_ord elem_ord = length_ord ||| dict_ord elem_ord; (* sorting *) (*stable mergesort -- preserves order of equal elements*) fun mergesort unique ord = let fun merge (xs as x :: xs') (ys as y :: ys') = (case ord (x, y) of LESS => x :: merge xs' ys | EQUAL => if unique then merge xs ys' else x :: merge xs' ys | GREATER => y :: merge xs ys') | merge [] ys = ys | merge xs [] = xs; fun merge_all [xs] = xs | merge_all xss = merge_all (merge_pairs xss) and merge_pairs (xs :: ys :: xss) = merge xs ys :: merge_pairs xss | merge_pairs xss = xss; fun runs (x :: y :: xs) = (case ord (x, y) of LESS => ascending y [x] xs | EQUAL => if unique then runs (x :: xs) else ascending y [x] xs | GREATER => descending y [x] xs) | runs xs = [xs] and ascending x xs (zs as y :: ys) = (case ord (x, y) of LESS => ascending y (x :: xs) ys | EQUAL => if unique then ascending x xs ys else ascending y (x :: xs) ys | GREATER => rev (x :: xs) :: runs zs) | ascending x xs [] = [rev (x :: xs)] and descending x xs (zs as y :: ys) = (case ord (x, y) of GREATER => descending y (x :: xs) ys | EQUAL => if unique then descending x xs ys else (x :: xs) :: runs zs | LESS => (x :: xs) :: runs zs) | descending x xs [] = [x :: xs]; in merge_all o runs end; fun sort ord = mergesort false ord; fun sort_distinct ord = mergesort true ord; val sort_strings = sort string_ord; fun sort_by key xs = sort (string_ord o apply2 key) xs; (* items tagged by integer index *) (*insert tags*) fun tag_list k [] = [] | tag_list k (x :: xs) = (k:int, x) :: tag_list (k + 1) xs; (*remove tags and suppress duplicates -- list is assumed sorted!*) fun untag_list [] = [] | untag_list [(k: int, x)] = [x] | untag_list ((k, x) :: (rest as (k', x') :: _)) = if k = k' then untag_list rest else x :: untag_list rest; (*return list elements in original order*) fun order_list list = untag_list (sort (int_ord o apply2 fst) list); (** misc **) fun divide_and_conquer decomp x = let val (ys, recomb) = decomp x in recomb (map (divide_and_conquer decomp) ys) end; fun divide_and_conquer' decomp x s = let val ((ys, recomb), s') = decomp x s in recomb (fold_map (divide_and_conquer' decomp) ys s') end; (*Partition a list into buckets [ bi, b(i+1), ..., bj ] putting x in bk if p(k)(x) holds. Preserve order of elements if possible.*) fun partition_list p i j = let fun part (k: int) xs = if k > j then (case xs of [] => [] | _ => raise Fail "partition_list") else let val (ns, rest) = List.partition (p k) xs in ns :: part (k + 1) rest end; in part (i: int) end; fun partition_eq (eq: 'a * 'a -> bool) = let fun part [] = [] | part (x :: ys) = let val (xs, xs') = List.partition (fn y => eq (x, y)) ys in (x :: xs) :: part xs' end; in part end; (* serial numbers and abstract stamps *) type serial = int; val serial = Counter.make (); val serial_string = string_of_int o serial; datatype stamp = Stamp of serial; fun stamp () = Stamp (serial ()); (* values of any type *) (*note that the builtin exception datatype may be extended by new constructors at any time*) structure Any = struct type T = exn end; (* getenv *) fun getenv x = (case OS.Process.getEnv x of NONE => "" | SOME y => y); fun getenv_strict x = (case getenv x of "" => error ("Undefined Isabelle environment variable: " ^ quote x) | y => y); end; structure Basic_Library: BASIC_LIBRARY = Library; open Basic_Library;