diff --git a/src/HOL/Lattices_Big.thy b/src/HOL/Lattices_Big.thy --- a/src/HOL/Lattices_Big.thy +++ b/src/HOL/Lattices_Big.thy @@ -1,845 +1,874 @@ (* Title: HOL/Lattices_Big.thy Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel with contributions by Jeremy Avigad *) section \Big infimum (minimum) and supremum (maximum) over finite (non-empty) sets\ theory Lattices_Big imports Finite_Set Option begin subsection \Generic lattice operations over a set\ subsubsection \Without neutral element\ locale semilattice_set = semilattice begin interpretation comp_fun_idem f by standard (simp_all add: fun_eq_iff left_commute) definition F :: "'a set \ 'a" where eq_fold': "F A = the (Finite_Set.fold (\x y. Some (case y of None \ x | Some z \ f x z)) None A)" lemma eq_fold: assumes "finite A" shows "F (insert x A) = Finite_Set.fold f x A" proof (rule sym) let ?f = "\x y. Some (case y of None \ x | Some z \ f x z)" interpret comp_fun_idem "?f" by standard (simp_all add: fun_eq_iff commute left_commute split: option.split) from assms show "Finite_Set.fold f x A = F (insert x A)" proof induct case empty then show ?case by (simp add: eq_fold') next case (insert y B) then show ?case by (simp add: insert_commute [of x] eq_fold') qed qed lemma singleton [simp]: "F {x} = x" by (simp add: eq_fold) lemma insert_not_elem: assumes "finite A" and "x \ A" and "A \ {}" shows "F (insert x A) = x \<^bold>* F A" proof - from \A \ {}\ obtain b where "b \ A" by blast then obtain B where *: "A = insert b B" "b \ B" by (blast dest: mk_disjoint_insert) with \finite A\ and \x \ A\ have "finite (insert x B)" and "b \ insert x B" by auto then have "F (insert b (insert x B)) = x \<^bold>* F (insert b B)" by (simp add: eq_fold) then show ?thesis by (simp add: * insert_commute) qed lemma in_idem: assumes "finite A" and "x \ A" shows "x \<^bold>* F A = F A" proof - from assms have "A \ {}" by auto with \finite A\ show ?thesis using \x \ A\ by (induct A rule: finite_ne_induct) (auto simp add: ac_simps insert_not_elem) qed lemma insert [simp]: assumes "finite A" and "A \ {}" shows "F (insert x A) = x \<^bold>* F A" using assms by (cases "x \ A") (simp_all add: insert_absorb in_idem insert_not_elem) lemma union: assumes "finite A" "A \ {}" and "finite B" "B \ {}" shows "F (A \ B) = F A \<^bold>* F B" using assms by (induct A rule: finite_ne_induct) (simp_all add: ac_simps) lemma remove: assumes "finite A" and "x \ A" shows "F A = (if A - {x} = {} then x else x \<^bold>* F (A - {x}))" proof - from assms obtain B where "A = insert x B" and "x \ B" by (blast dest: mk_disjoint_insert) with assms show ?thesis by simp qed lemma insert_remove: assumes "finite A" shows "F (insert x A) = (if A - {x} = {} then x else x \<^bold>* F (A - {x}))" using assms by (cases "x \ A") (simp_all add: insert_absorb remove) lemma subset: assumes "finite A" "B \ {}" and "B \ A" shows "F B \<^bold>* F A = F A" proof - from assms have "A \ {}" and "finite B" by (auto dest: finite_subset) with assms show ?thesis by (simp add: union [symmetric] Un_absorb1) qed lemma closed: assumes "finite A" "A \ {}" and elem: "\x y. x \<^bold>* y \ {x, y}" shows "F A \ A" using \finite A\ \A \ {}\ proof (induct rule: finite_ne_induct) case singleton then show ?case by simp next case insert with elem show ?case by force qed lemma hom_commute: assumes hom: "\x y. h (x \<^bold>* y) = h x \<^bold>* h y" and N: "finite N" "N \ {}" shows "h (F N) = F (h ` N)" using N proof (induct rule: finite_ne_induct) case singleton thus ?case by simp next case (insert n N) then have "h (F (insert n N)) = h (n \<^bold>* F N)" by simp also have "\ = h n \<^bold>* h (F N)" by (rule hom) also have "h (F N) = F (h ` N)" by (rule insert) also have "h n \<^bold>* \ = F (insert (h n) (h ` N))" using insert by simp also have "insert (h n) (h ` N) = h ` insert n N" by simp finally show ?case . qed lemma infinite: "\ finite A \ F A = the None" unfolding eq_fold' by (cases "finite (UNIV::'a set)") (auto intro: finite_subset fold_infinite) end locale semilattice_order_set = binary?: semilattice_order + semilattice_set begin lemma bounded_iff: assumes "finite A" and "A \ {}" shows "x \<^bold>\ F A \ (\a\A. x \<^bold>\ a)" using assms by (induct rule: finite_ne_induct) (simp_all add: bounded_iff) lemma boundedI: assumes "finite A" assumes "A \ {}" assumes "\a. a \ A \ x \<^bold>\ a" shows "x \<^bold>\ F A" using assms by (simp add: bounded_iff) lemma boundedE: assumes "finite A" and "A \ {}" and "x \<^bold>\ F A" obtains "\a. a \ A \ x \<^bold>\ a" using assms by (simp add: bounded_iff) lemma coboundedI: assumes "finite A" and "a \ A" shows "F A \<^bold>\ a" proof - from assms have "A \ {}" by auto from \finite A\ \A \ {}\ \a \ A\ show ?thesis proof (induct rule: finite_ne_induct) case singleton thus ?case by (simp add: refl) next case (insert x B) from insert have "a = x \ a \ B" by simp then show ?case using insert by (auto intro: coboundedI2) qed qed lemma antimono: assumes "A \ B" and "A \ {}" and "finite B" shows "F B \<^bold>\ F A" proof (cases "A = B") case True then show ?thesis by (simp add: refl) next case False have B: "B = A \ (B - A)" using \A \ B\ by blast then have "F B = F (A \ (B - A))" by simp also have "\ = F A \<^bold>* F (B - A)" using False assms by (subst union) (auto intro: finite_subset) also have "\ \<^bold>\ F A" by simp finally show ?thesis . qed end subsubsection \With neutral element\ locale semilattice_neutr_set = semilattice_neutr begin interpretation comp_fun_idem f by standard (simp_all add: fun_eq_iff left_commute) definition F :: "'a set \ 'a" where eq_fold: "F A = Finite_Set.fold f \<^bold>1 A" lemma infinite [simp]: "\ finite A \ F A = \<^bold>1" by (simp add: eq_fold) lemma empty [simp]: "F {} = \<^bold>1" by (simp add: eq_fold) lemma insert [simp]: assumes "finite A" shows "F (insert x A) = x \<^bold>* F A" using assms by (simp add: eq_fold) lemma in_idem: assumes "finite A" and "x \ A" shows "x \<^bold>* F A = F A" proof - from assms have "A \ {}" by auto with \finite A\ show ?thesis using \x \ A\ by (induct A rule: finite_ne_induct) (auto simp add: ac_simps) qed lemma union: assumes "finite A" and "finite B" shows "F (A \ B) = F A \<^bold>* F B" using assms by (induct A) (simp_all add: ac_simps) lemma remove: assumes "finite A" and "x \ A" shows "F A = x \<^bold>* F (A - {x})" proof - from assms obtain B where "A = insert x B" and "x \ B" by (blast dest: mk_disjoint_insert) with assms show ?thesis by simp qed lemma insert_remove: assumes "finite A" shows "F (insert x A) = x \<^bold>* F (A - {x})" using assms by (cases "x \ A") (simp_all add: insert_absorb remove) lemma subset: assumes "finite A" and "B \ A" shows "F B \<^bold>* F A = F A" proof - from assms have "finite B" by (auto dest: finite_subset) with assms show ?thesis by (simp add: union [symmetric] Un_absorb1) qed lemma closed: assumes "finite A" "A \ {}" and elem: "\x y. x \<^bold>* y \ {x, y}" shows "F A \ A" using \finite A\ \A \ {}\ proof (induct rule: finite_ne_induct) case singleton then show ?case by simp next case insert with elem show ?case by force qed end locale semilattice_order_neutr_set = binary?: semilattice_neutr_order + semilattice_neutr_set begin lemma bounded_iff: assumes "finite A" shows "x \<^bold>\ F A \ (\a\A. x \<^bold>\ a)" using assms by (induct A) (simp_all add: bounded_iff) lemma boundedI: assumes "finite A" assumes "\a. a \ A \ x \<^bold>\ a" shows "x \<^bold>\ F A" using assms by (simp add: bounded_iff) lemma boundedE: assumes "finite A" and "x \<^bold>\ F A" obtains "\a. a \ A \ x \<^bold>\ a" using assms by (simp add: bounded_iff) lemma coboundedI: assumes "finite A" and "a \ A" shows "F A \<^bold>\ a" proof - from assms have "A \ {}" by auto from \finite A\ \A \ {}\ \a \ A\ show ?thesis proof (induct rule: finite_ne_induct) case singleton thus ?case by (simp add: refl) next case (insert x B) from insert have "a = x \ a \ B" by simp then show ?case using insert by (auto intro: coboundedI2) qed qed lemma antimono: assumes "A \ B" and "finite B" shows "F B \<^bold>\ F A" proof (cases "A = B") case True then show ?thesis by (simp add: refl) next case False have B: "B = A \ (B - A)" using \A \ B\ by blast then have "F B = F (A \ (B - A))" by simp also have "\ = F A \<^bold>* F (B - A)" using False assms by (subst union) (auto intro: finite_subset) also have "\ \<^bold>\ F A" by simp finally show ?thesis . qed end subsection \Lattice operations on finite sets\ context semilattice_inf begin sublocale Inf_fin: semilattice_order_set inf less_eq less defines Inf_fin ("\\<^sub>f\<^sub>i\<^sub>n_" [900] 900) = Inf_fin.F .. end context semilattice_sup begin sublocale Sup_fin: semilattice_order_set sup greater_eq greater defines Sup_fin ("\\<^sub>f\<^sub>i\<^sub>n_" [900] 900) = Sup_fin.F .. end subsection \Infimum and Supremum over non-empty sets\ context lattice begin lemma Inf_fin_le_Sup_fin [simp]: assumes "finite A" and "A \ {}" shows "\\<^sub>f\<^sub>i\<^sub>nA \ \\<^sub>f\<^sub>i\<^sub>nA" proof - from \A \ {}\ obtain a where "a \ A" by blast with \finite A\ have "\\<^sub>f\<^sub>i\<^sub>nA \ a" by (rule Inf_fin.coboundedI) moreover from \finite A\ \a \ A\ have "a \ \\<^sub>f\<^sub>i\<^sub>nA" by (rule Sup_fin.coboundedI) ultimately show ?thesis by (rule order_trans) qed lemma sup_Inf_absorb [simp]: "finite A \ a \ A \ \\<^sub>f\<^sub>i\<^sub>nA \ a = a" by (rule sup_absorb2) (rule Inf_fin.coboundedI) lemma inf_Sup_absorb [simp]: "finite A \ a \ A \ a \ \\<^sub>f\<^sub>i\<^sub>nA = a" by (rule inf_absorb1) (rule Sup_fin.coboundedI) end context distrib_lattice begin lemma sup_Inf1_distrib: assumes "finite A" and "A \ {}" shows "sup x (\\<^sub>f\<^sub>i\<^sub>nA) = \\<^sub>f\<^sub>i\<^sub>n{sup x a|a. a \ A}" using assms by (simp add: image_def Inf_fin.hom_commute [where h="sup x", OF sup_inf_distrib1]) (rule arg_cong [where f="Inf_fin"], blast) lemma sup_Inf2_distrib: assumes A: "finite A" "A \ {}" and B: "finite B" "B \ {}" shows "sup (\\<^sub>f\<^sub>i\<^sub>nA) (\\<^sub>f\<^sub>i\<^sub>nB) = \\<^sub>f\<^sub>i\<^sub>n{sup a b|a b. a \ A \ b \ B}" using A proof (induct rule: finite_ne_induct) case singleton then show ?case by (simp add: sup_Inf1_distrib [OF B]) next case (insert x A) have finB: "finite {sup x b |b. b \ B}" by (rule finite_surj [where f = "sup x", OF B(1)], auto) have finAB: "finite {sup a b |a b. a \ A \ b \ B}" proof - have "{sup a b |a b. a \ A \ b \ B} = (UN a:A. UN b:B. {sup a b})" by blast thus ?thesis by(simp add: insert(1) B(1)) qed have ne: "{sup a b |a b. a \ A \ b \ B} \ {}" using insert B by blast have "sup (\\<^sub>f\<^sub>i\<^sub>n(insert x A)) (\\<^sub>f\<^sub>i\<^sub>nB) = sup (inf x (\\<^sub>f\<^sub>i\<^sub>nA)) (\\<^sub>f\<^sub>i\<^sub>nB)" using insert by simp also have "\ = inf (sup x (\\<^sub>f\<^sub>i\<^sub>nB)) (sup (\\<^sub>f\<^sub>i\<^sub>nA) (\\<^sub>f\<^sub>i\<^sub>nB))" by(rule sup_inf_distrib2) also have "\ = inf (\\<^sub>f\<^sub>i\<^sub>n{sup x b|b. b \ B}) (\\<^sub>f\<^sub>i\<^sub>n{sup a b|a b. a \ A \ b \ B})" using insert by(simp add:sup_Inf1_distrib[OF B]) also have "\ = \\<^sub>f\<^sub>i\<^sub>n({sup x b |b. b \ B} \ {sup a b |a b. a \ A \ b \ B})" (is "_ = \\<^sub>f\<^sub>i\<^sub>n?M") using B insert by (simp add: Inf_fin.union [OF finB _ finAB ne]) also have "?M = {sup a b |a b. a \ insert x A \ b \ B}" by blast finally show ?case . qed lemma inf_Sup1_distrib: assumes "finite A" and "A \ {}" shows "inf x (\\<^sub>f\<^sub>i\<^sub>nA) = \\<^sub>f\<^sub>i\<^sub>n{inf x a|a. a \ A}" using assms by (simp add: image_def Sup_fin.hom_commute [where h="inf x", OF inf_sup_distrib1]) (rule arg_cong [where f="Sup_fin"], blast) lemma inf_Sup2_distrib: assumes A: "finite A" "A \ {}" and B: "finite B" "B \ {}" shows "inf (\\<^sub>f\<^sub>i\<^sub>nA) (\\<^sub>f\<^sub>i\<^sub>nB) = \\<^sub>f\<^sub>i\<^sub>n{inf a b|a b. a \ A \ b \ B}" using A proof (induct rule: finite_ne_induct) case singleton thus ?case by(simp add: inf_Sup1_distrib [OF B]) next case (insert x A) have finB: "finite {inf x b |b. b \ B}" by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto) have finAB: "finite {inf a b |a b. a \ A \ b \ B}" proof - have "{inf a b |a b. a \ A \ b \ B} = (UN a:A. UN b:B. {inf a b})" by blast thus ?thesis by(simp add: insert(1) B(1)) qed have ne: "{inf a b |a b. a \ A \ b \ B} \ {}" using insert B by blast have "inf (\\<^sub>f\<^sub>i\<^sub>n(insert x A)) (\\<^sub>f\<^sub>i\<^sub>nB) = inf (sup x (\\<^sub>f\<^sub>i\<^sub>nA)) (\\<^sub>f\<^sub>i\<^sub>nB)" using insert by simp also have "\ = sup (inf x (\\<^sub>f\<^sub>i\<^sub>nB)) (inf (\\<^sub>f\<^sub>i\<^sub>nA) (\\<^sub>f\<^sub>i\<^sub>nB))" by(rule inf_sup_distrib2) also have "\ = sup (\\<^sub>f\<^sub>i\<^sub>n{inf x b|b. b \ B}) (\\<^sub>f\<^sub>i\<^sub>n{inf a b|a b. a \ A \ b \ B})" using insert by(simp add:inf_Sup1_distrib[OF B]) also have "\ = \\<^sub>f\<^sub>i\<^sub>n({inf x b |b. b \ B} \ {inf a b |a b. a \ A \ b \ B})" (is "_ = \\<^sub>f\<^sub>i\<^sub>n?M") using B insert by (simp add: Sup_fin.union [OF finB _ finAB ne]) also have "?M = {inf a b |a b. a \ insert x A \ b \ B}" by blast finally show ?case . qed end context complete_lattice begin lemma Inf_fin_Inf: assumes "finite A" and "A \ {}" shows "\\<^sub>f\<^sub>i\<^sub>nA = \A" proof - from assms obtain b B where "A = insert b B" and "finite B" by auto then show ?thesis by (simp add: Inf_fin.eq_fold inf_Inf_fold_inf inf.commute [of b]) qed lemma Sup_fin_Sup: assumes "finite A" and "A \ {}" shows "\\<^sub>f\<^sub>i\<^sub>nA = \A" proof - from assms obtain b B where "A = insert b B" and "finite B" by auto then show ?thesis by (simp add: Sup_fin.eq_fold sup_Sup_fold_sup sup.commute [of b]) qed end subsection \Minimum and Maximum over non-empty sets\ context linorder begin sublocale Min: semilattice_order_set min less_eq less + Max: semilattice_order_set max greater_eq greater defines Min = Min.F and Max = Max.F .. end text \An aside: @{const Min}/@{const Max} on linear orders as special case of @{const Inf_fin}/@{const Sup_fin}\ lemma Inf_fin_Min: "Inf_fin = (Min :: 'a::{semilattice_inf, linorder} set \ 'a)" by (simp add: Inf_fin_def Min_def inf_min) lemma Sup_fin_Max: "Sup_fin = (Max :: 'a::{semilattice_sup, linorder} set \ 'a)" by (simp add: Sup_fin_def Max_def sup_max) context linorder begin lemma dual_min: "ord.min greater_eq = max" by (auto simp add: ord.min_def max_def fun_eq_iff) lemma dual_max: "ord.max greater_eq = min" by (auto simp add: ord.max_def min_def fun_eq_iff) lemma dual_Min: "linorder.Min greater_eq = Max" proof - interpret dual: linorder greater_eq greater by (fact dual_linorder) show ?thesis by (simp add: dual.Min_def dual_min Max_def) qed lemma dual_Max: "linorder.Max greater_eq = Min" proof - interpret dual: linorder greater_eq greater by (fact dual_linorder) show ?thesis by (simp add: dual.Max_def dual_max Min_def) qed lemmas Min_singleton = Min.singleton lemmas Max_singleton = Max.singleton lemmas Min_insert = Min.insert lemmas Max_insert = Max.insert lemmas Min_Un = Min.union lemmas Max_Un = Max.union lemmas hom_Min_commute = Min.hom_commute lemmas hom_Max_commute = Max.hom_commute lemma Min_in [simp]: assumes "finite A" and "A \ {}" shows "Min A \ A" using assms by (auto simp add: min_def Min.closed) lemma Max_in [simp]: assumes "finite A" and "A \ {}" shows "Max A \ A" using assms by (auto simp add: max_def Max.closed) lemma Min_insert2: assumes "finite A" and min: "\b. b \ A \ a \ b" shows "Min (insert a A) = a" proof (cases "A = {}") case True then show ?thesis by simp next case False with \finite A\ have "Min (insert a A) = min a (Min A)" by simp moreover from \finite A\ \A \ {}\ min have "a \ Min A" by simp ultimately show ?thesis by (simp add: min.absorb1) qed lemma Max_insert2: assumes "finite A" and max: "\b. b \ A \ b \ a" shows "Max (insert a A) = a" proof (cases "A = {}") case True then show ?thesis by simp next case False with \finite A\ have "Max (insert a A) = max a (Max A)" by simp moreover from \finite A\ \A \ {}\ max have "Max A \ a" by simp ultimately show ?thesis by (simp add: max.absorb1) qed lemma Min_le [simp]: assumes "finite A" and "x \ A" shows "Min A \ x" using assms by (fact Min.coboundedI) lemma Max_ge [simp]: assumes "finite A" and "x \ A" shows "x \ Max A" using assms by (fact Max.coboundedI) lemma Min_eqI: assumes "finite A" assumes "\y. y \ A \ y \ x" and "x \ A" shows "Min A = x" proof (rule antisym) from \x \ A\ have "A \ {}" by auto with assms show "Min A \ x" by simp next from assms show "x \ Min A" by simp qed lemma Max_eqI: assumes "finite A" assumes "\y. y \ A \ y \ x" and "x \ A" shows "Max A = x" proof (rule antisym) from \x \ A\ have "A \ {}" by auto with assms show "Max A \ x" by simp next from assms show "x \ Max A" by simp qed context fixes A :: "'a set" assumes fin_nonempty: "finite A" "A \ {}" begin lemma Min_ge_iff [simp]: "x \ Min A \ (\a\A. x \ a)" using fin_nonempty by (fact Min.bounded_iff) lemma Max_le_iff [simp]: "Max A \ x \ (\a\A. a \ x)" using fin_nonempty by (fact Max.bounded_iff) lemma Min_gr_iff [simp]: "x < Min A \ (\a\A. x < a)" using fin_nonempty by (induct rule: finite_ne_induct) simp_all lemma Max_less_iff [simp]: "Max A < x \ (\a\A. a < x)" using fin_nonempty by (induct rule: finite_ne_induct) simp_all lemma Min_le_iff: "Min A \ x \ (\a\A. a \ x)" using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: min_le_iff_disj) lemma Max_ge_iff: "x \ Max A \ (\a\A. x \ a)" using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: le_max_iff_disj) lemma Min_less_iff: "Min A < x \ (\a\A. a < x)" using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: min_less_iff_disj) lemma Max_gr_iff: "x < Max A \ (\a\A. x < a)" using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: less_max_iff_disj) end lemma Max_eq_if: assumes "finite A" "finite B" "\a\A. \b\B. a \ b" "\b\B. \a\A. b \ a" shows "Max A = Max B" proof cases assume "A = {}" thus ?thesis using assms by simp next assume "A \ {}" thus ?thesis using assms by(blast intro: antisym Max_in Max_ge_iff[THEN iffD2]) qed lemma Min_antimono: assumes "M \ N" and "M \ {}" and "finite N" shows "Min N \ Min M" using assms by (fact Min.antimono) lemma Max_mono: assumes "M \ N" and "M \ {}" and "finite N" shows "Max M \ Max N" using assms by (fact Max.antimono) end context linorder (* FIXME *) begin lemma mono_Min_commute: assumes "mono f" assumes "finite A" and "A \ {}" shows "f (Min A) = Min (f ` A)" proof (rule linorder_class.Min_eqI [symmetric]) from \finite A\ show "finite (f ` A)" by simp from assms show "f (Min A) \ f ` A" by simp fix x assume "x \ f ` A" then obtain y where "y \ A" and "x = f y" .. with assms have "Min A \ y" by auto with \mono f\ have "f (Min A) \ f y" by (rule monoE) with \x = f y\ show "f (Min A) \ x" by simp qed lemma mono_Max_commute: assumes "mono f" assumes "finite A" and "A \ {}" shows "f (Max A) = Max (f ` A)" proof (rule linorder_class.Max_eqI [symmetric]) from \finite A\ show "finite (f ` A)" by simp from assms show "f (Max A) \ f ` A" by simp fix x assume "x \ f ` A" then obtain y where "y \ A" and "x = f y" .. with assms have "y \ Max A" by auto with \mono f\ have "f y \ f (Max A)" by (rule monoE) with \x = f y\ show "x \ f (Max A)" by simp qed lemma finite_linorder_max_induct [consumes 1, case_names empty insert]: assumes fin: "finite A" and empty: "P {}" and insert: "\b A. finite A \ \a\A. a < b \ P A \ P (insert b A)" shows "P A" using fin empty insert proof (induct rule: finite_psubset_induct) case (psubset A) have IH: "\B. \B < A; P {}; (\A b. \finite A; \a\A. a \ P (insert b A))\ \ P B" by fact have fin: "finite A" by fact have empty: "P {}" by fact have step: "\b A. \finite A; \a\A. a < b; P A\ \ P (insert b A)" by fact show "P A" proof (cases "A = {}") assume "A = {}" then show "P A" using \P {}\ by simp next let ?B = "A - {Max A}" let ?A = "insert (Max A) ?B" have "finite ?B" using \finite A\ by simp assume "A \ {}" with \finite A\ have "Max A : A" by auto then have A: "?A = A" using insert_Diff_single insert_absorb by auto then have "P ?B" using \P {}\ step IH [of ?B] by blast moreover have "\a\?B. a < Max A" using Max_ge [OF \finite A\] by fastforce ultimately show "P A" using A insert_Diff_single step [OF \finite ?B\] by fastforce qed qed lemma finite_linorder_min_induct [consumes 1, case_names empty insert]: "\finite A; P {}; \b A. \finite A; \a\A. b < a; P A\ \ P (insert b A)\ \ P A" by (rule linorder.finite_linorder_max_induct [OF dual_linorder]) lemma Least_Min: assumes "finite {a. P a}" and "\a. P a" shows "(LEAST a. P a) = Min {a. P a}" proof - { fix A :: "'a set" assume A: "finite A" "A \ {}" have "(LEAST a. a \ A) = Min A" using A proof (induct A rule: finite_ne_induct) case singleton show ?case by (rule Least_equality) simp_all next case (insert a A) have "(LEAST b. b = a \ b \ A) = min a (LEAST a. a \ A)" by (auto intro!: Least_equality simp add: min_def not_le Min_le_iff insert.hyps dest!: less_imp_le) with insert show ?case by simp qed } from this [of "{a. P a}"] assms show ?thesis by simp qed lemma infinite_growing: assumes "X \ {}" assumes *: "\x. x \ X \ \y\X. y > x" shows "\ finite X" proof assume "finite X" with \X \ {}\ have "Max X \ X" "\x\X. x \ Max X" by auto with *[of "Max X"] show False by auto qed end context linordered_ab_semigroup_add begin lemma add_Min_commute: fixes k assumes "finite N" and "N \ {}" shows "k + Min N = Min {k + m | m. m \ N}" proof - have "\x y. k + min x y = min (k + x) (k + y)" by (simp add: min_def not_le) (blast intro: antisym less_imp_le add_left_mono) with assms show ?thesis using hom_Min_commute [of "plus k" N] by simp (blast intro: arg_cong [where f = Min]) qed lemma add_Max_commute: fixes k assumes "finite N" and "N \ {}" shows "k + Max N = Max {k + m | m. m \ N}" proof - have "\x y. k + max x y = max (k + x) (k + y)" by (simp add: max_def not_le) (blast intro: antisym less_imp_le add_left_mono) with assms show ?thesis using hom_Max_commute [of "plus k" N] by simp (blast intro: arg_cong [where f = Max]) qed end context linordered_ab_group_add begin lemma minus_Max_eq_Min [simp]: "finite S \ S \ {} \ - Max S = Min (uminus ` S)" by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min) lemma minus_Min_eq_Max [simp]: "finite S \ S \ {} \ - Min S = Max (uminus ` S)" by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max) end context complete_linorder begin lemma Min_Inf: assumes "finite A" and "A \ {}" shows "Min A = Inf A" proof - from assms obtain b B where "A = insert b B" and "finite B" by auto then show ?thesis by (simp add: Min.eq_fold complete_linorder_inf_min [symmetric] inf_Inf_fold_inf inf.commute [of b]) qed lemma Max_Sup: assumes "finite A" and "A \ {}" shows "Max A = Sup A" proof - from assms obtain b B where "A = insert b B" and "finite B" by auto then show ?thesis by (simp add: Max.eq_fold complete_linorder_sup_max [symmetric] sup_Sup_fold_sup sup.commute [of b]) qed end subsection \Arg Min\ -definition args_min :: "('a \ 'b::ord) \ 'a set \ 'a set" where -"args_min f S = {x \ S. \(\y \ S. f y < f x)}" +definition is_arg_min :: "('a \ 'b::ord) \ ('a \ bool) \ 'a \ bool" where +"is_arg_min f P x = (P x \ \(\y. P y \ f y < f x))" -definition arg_min :: "('a \ 'b::ord) \ 'a set \ 'a" where -"arg_min f S = (SOME x. x \ args_min f S)" +definition arg_min :: "('a \ 'b::ord) \ ('a \ bool) \ 'a" where +"arg_min f P = (SOME x. is_arg_min f P x)" -lemma args_min_linorder: fixes f :: "'a \ 'b :: linorder" -shows "args_min f S = {x \ S. \y \ S. f x \ f y}" -by(auto simp add: args_min_def) +abbreviation arg_min_on :: "('a \ 'b::ord) \ 'a set \ 'a" where +"arg_min_on f S \ arg_min f (\x. x \ S)" + +lemma is_arg_min_linorder: fixes f :: "'a \ 'b :: linorder" +shows "is_arg_min f P x = (P x \ (\y. P y \ f x \ f y))" +by(auto simp add: is_arg_min_def) + +lemma arg_min_nat_lemma: "P k \ P(arg_min m P) \ (\y. P y \ m (arg_min m P) \ m y)" + for m :: "'a \ nat" +apply (simp add: arg_min_def is_arg_min_linorder) +apply (rule someI_ex) +apply (erule ex_has_least_nat) +done + +lemmas arg_min_natI = arg_min_nat_lemma [THEN conjunct1] + +lemma arg_min_nat_le: "P x \ m (arg_min m P) \ m x" + for m :: "'a \ nat" +by (rule arg_min_nat_lemma [THEN conjunct2, THEN spec, THEN mp]) + +lemma ex_min_if_finite: + "\ finite S; S \ {} \ \ \m\S. \(\x\S. x < (m::'a::order))" +by(induction rule: finite.induct) (auto intro: order.strict_trans) + +lemma ex_is_arg_min_if_finite: fixes f :: "'a \ 'b :: order" +shows "\ finite S; S \ {} \ \ \x. is_arg_min f (\x. x : S) x" +unfolding is_arg_min_def +using ex_min_if_finite[of "f ` S"] +by auto lemma arg_min_SOME_Min: - "finite S \ arg_min f S = (SOME y. y \ S \ f y = Min(f ` S))" -unfolding arg_min_def args_min_linorder + "finite S \ arg_min_on f S = (SOME y. y \ S \ f y = Min(f ` S))" +unfolding arg_min_def is_arg_min_linorder apply(rule arg_cong[where f = Eps]) apply (auto simp: fun_eq_iff intro: Min_eqI[symmetric]) done -lemma arg_min_in: fixes f :: "'a \ 'b :: linorder" -shows "finite S \ S \ {} \ arg_min f S \ S" -by(simp add: arg_min_SOME_Min inv_into_def2[symmetric] inv_into_into) +lemma arg_min_if_finite: fixes f :: "'a \ 'b :: order" +assumes "finite S" "S \ {}" +shows "arg_min_on f S \ S" and "\(\x\S. f x < f (arg_min_on f S))" +using ex_is_arg_min_if_finite[OF assms, of f] +unfolding arg_min_def is_arg_min_def +by(auto dest!: someI_ex) lemma arg_min_least: fixes f :: "'a \ 'b :: linorder" -shows "\ finite S; S \ {}; y \ S \ \ f(arg_min f S) \ f y" +shows "\ finite S; S \ {}; y \ S \ \ f(arg_min_on f S) \ f y" by(simp add: arg_min_SOME_Min inv_into_def2[symmetric] f_inv_into_f) lemma arg_min_inj_eq: fixes f :: "'a \ 'b :: order" -shows "\ inj_on f S; a \ S; \y \ S. f a \ f y \ \ arg_min f S = a" -apply(simp add: arg_min_def args_min_def) +shows "\ inj_on f {x. P x}; P a; \y. P y \ f a \ f y \ \ arg_min f P = a" +apply(simp add: arg_min_def is_arg_min_def) apply(rule someI2[of _ a]) apply (simp add: less_le_not_le) -by (metis inj_on_eq_iff less_le) +by (metis inj_on_eq_iff less_le mem_Collect_eq) end