diff --git a/src/HOL/Library/Function_Algebras.thy b/src/HOL/Library/Function_Algebras.thy --- a/src/HOL/Library/Function_Algebras.thy +++ b/src/HOL/Library/Function_Algebras.thy @@ -1,224 +1,232 @@ (* Title: HOL/Library/Function_Algebras.thy Author: Jeremy Avigad and Kevin Donnelly; Florian Haftmann, TUM *) section \Pointwise instantiation of functions to algebra type classes\ theory Function_Algebras imports Main begin text \Pointwise operations\ instantiation "fun" :: (type, plus) plus begin definition "f + g = (\x. f x + g x)" instance .. end lemma plus_fun_apply [simp]: "(f + g) x = f x + g x" by (simp add: plus_fun_def) instantiation "fun" :: (type, zero) zero begin definition "0 = (\x. 0)" instance .. end lemma zero_fun_apply [simp]: "0 x = 0" by (simp add: zero_fun_def) instantiation "fun" :: (type, times) times begin definition "f * g = (\x. f x * g x)" instance .. end lemma times_fun_apply [simp]: "(f * g) x = f x * g x" by (simp add: times_fun_def) instantiation "fun" :: (type, one) one begin definition "1 = (\x. 1)" instance .. end lemma one_fun_apply [simp]: "1 x = 1" by (simp add: one_fun_def) text \Additive structures\ instance "fun" :: (type, semigroup_add) semigroup_add by standard (simp add: fun_eq_iff add.assoc) instance "fun" :: (type, cancel_semigroup_add) cancel_semigroup_add by standard (simp_all add: fun_eq_iff) instance "fun" :: (type, ab_semigroup_add) ab_semigroup_add by standard (simp add: fun_eq_iff add.commute) instance "fun" :: (type, cancel_ab_semigroup_add) cancel_ab_semigroup_add by standard (simp_all add: fun_eq_iff diff_diff_eq) instance "fun" :: (type, monoid_add) monoid_add by standard (simp_all add: fun_eq_iff) instance "fun" :: (type, comm_monoid_add) comm_monoid_add by standard simp instance "fun" :: (type, cancel_comm_monoid_add) cancel_comm_monoid_add .. instance "fun" :: (type, group_add) group_add by standard (simp_all add: fun_eq_iff) instance "fun" :: (type, ab_group_add) ab_group_add by standard simp_all text \Multiplicative structures\ instance "fun" :: (type, semigroup_mult) semigroup_mult by standard (simp add: fun_eq_iff mult.assoc) instance "fun" :: (type, ab_semigroup_mult) ab_semigroup_mult by standard (simp add: fun_eq_iff mult.commute) instance "fun" :: (type, monoid_mult) monoid_mult by standard (simp_all add: fun_eq_iff) instance "fun" :: (type, comm_monoid_mult) comm_monoid_mult by standard simp text \Misc\ instance "fun" :: (type, "Rings.dvd") "Rings.dvd" .. instance "fun" :: (type, mult_zero) mult_zero by standard (simp_all add: fun_eq_iff) instance "fun" :: (type, zero_neq_one) zero_neq_one by standard (simp add: fun_eq_iff) text \Ring structures\ instance "fun" :: (type, semiring) semiring by standard (simp_all add: fun_eq_iff algebra_simps) instance "fun" :: (type, comm_semiring) comm_semiring by standard (simp add: fun_eq_iff algebra_simps) instance "fun" :: (type, semiring_0) semiring_0 .. instance "fun" :: (type, comm_semiring_0) comm_semiring_0 .. instance "fun" :: (type, semiring_0_cancel) semiring_0_cancel .. instance "fun" :: (type, comm_semiring_0_cancel) comm_semiring_0_cancel .. instance "fun" :: (type, semiring_1) semiring_1 .. +lemma numeral_fun: \<^marker>\contributor \Akihisa Yamada\\ + \numeral n = (\x::'a. numeral n)\ + by (induction n) (simp_all only: numeral.simps plus_fun_def, simp_all) + +lemma numeral_fun_apply [simp]: \<^marker>\contributor \Akihisa Yamada\\ + \numeral n x = numeral n\ + by (simp add: numeral_fun) + lemma of_nat_fun: "of_nat n = (\x::'a. of_nat n)" proof - have comp: "comp = (\f g x. f (g x))" by (rule ext)+ simp have plus_fun: "plus = (\f g x. f x + g x)" by (rule ext, rule ext) (fact plus_fun_def) have "of_nat n = (comp (plus (1::'b)) ^^ n) (\x::'a. 0)" by (simp add: of_nat_def plus_fun zero_fun_def one_fun_def comp) also have "... = comp ((plus 1) ^^ n) (\x::'a. 0)" by (simp only: comp_funpow) finally show ?thesis by (simp add: of_nat_def comp) qed lemma of_nat_fun_apply [simp]: "of_nat n x = of_nat n" by (simp add: of_nat_fun) instance "fun" :: (type, comm_semiring_1) comm_semiring_1 .. instance "fun" :: (type, semiring_1_cancel) semiring_1_cancel .. instance "fun" :: (type, comm_semiring_1_cancel) comm_semiring_1_cancel by standard (auto simp add: times_fun_def algebra_simps) instance "fun" :: (type, semiring_char_0) semiring_char_0 proof from inj_of_nat have "inj (\n (x::'a). of_nat n :: 'b)" by (rule inj_fun) then have "inj (\n. of_nat n :: 'a \ 'b)" by (simp add: of_nat_fun) then show "inj (of_nat :: nat \ 'a \ 'b)" . qed instance "fun" :: (type, ring) ring .. instance "fun" :: (type, comm_ring) comm_ring .. instance "fun" :: (type, ring_1) ring_1 .. instance "fun" :: (type, comm_ring_1) comm_ring_1 .. instance "fun" :: (type, ring_char_0) ring_char_0 .. text \Ordered structures\ instance "fun" :: (type, ordered_ab_semigroup_add) ordered_ab_semigroup_add by standard (auto simp add: le_fun_def intro: add_left_mono) instance "fun" :: (type, ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add .. instance "fun" :: (type, ordered_ab_semigroup_add_imp_le) ordered_ab_semigroup_add_imp_le by standard (simp add: le_fun_def) instance "fun" :: (type, ordered_comm_monoid_add) ordered_comm_monoid_add .. instance "fun" :: (type, ordered_cancel_comm_monoid_add) ordered_cancel_comm_monoid_add .. instance "fun" :: (type, ordered_ab_group_add) ordered_ab_group_add .. instance "fun" :: (type, ordered_semiring) ordered_semiring by standard (auto simp add: le_fun_def intro: mult_left_mono mult_right_mono) instance "fun" :: (type, dioid) dioid proof standard fix a b :: "'a \ 'b" show "a \ b \ (\c. b = a + c)" unfolding le_fun_def plus_fun_def fun_eq_iff choice_iff[symmetric, of "\x c. b x = a x + c"] by (intro arg_cong[where f=All] ext canonically_ordered_monoid_add_class.le_iff_add) qed instance "fun" :: (type, ordered_comm_semiring) ordered_comm_semiring by standard (fact mult_left_mono) instance "fun" :: (type, ordered_cancel_semiring) ordered_cancel_semiring .. instance "fun" :: (type, ordered_cancel_comm_semiring) ordered_cancel_comm_semiring .. instance "fun" :: (type, ordered_ring) ordered_ring .. instance "fun" :: (type, ordered_comm_ring) ordered_comm_ring .. lemmas func_plus = plus_fun_def lemmas func_zero = zero_fun_def lemmas func_times = times_fun_def lemmas func_one = one_fun_def end