diff --git a/src/HOL/Tools/Lifting/lifting_info.ML b/src/HOL/Tools/Lifting/lifting_info.ML --- a/src/HOL/Tools/Lifting/lifting_info.ML +++ b/src/HOL/Tools/Lifting/lifting_info.ML @@ -1,576 +1,577 @@ (* Title: HOL/Tools/Lifting/lifting_info.ML Author: Ondrej Kuncar Context data for the lifting package. *) signature LIFTING_INFO = sig type quot_map = {rel_quot_thm: thm} val lookup_quot_maps: Proof.context -> string -> quot_map option val print_quot_maps: Proof.context -> unit type pcr = {pcrel_def: thm, pcr_cr_eq: thm} type quotient = {quot_thm: thm, pcr_info: pcr option} val pcr_eq: pcr * pcr -> bool val quotient_eq: quotient * quotient -> bool val transform_quotient: morphism -> quotient -> quotient val lookup_quotients: Proof.context -> string -> quotient option val lookup_quot_thm_quotients: Proof.context -> thm -> quotient option val update_quotients: string -> quotient -> Context.generic -> Context.generic val delete_quotients: thm -> Context.generic -> Context.generic val print_quotients: Proof.context -> unit type restore_data = {quotient : quotient, transfer_rules: thm Item_Net.T} val lookup_restore_data: Proof.context -> string -> restore_data option val init_restore_data: string -> quotient -> Context.generic -> Context.generic val add_transfer_rules_in_restore_data: string -> thm Item_Net.T -> Context.generic -> Context.generic val get_relator_eq_onp_rules: Proof.context -> thm list val get_reflexivity_rules: Proof.context -> thm list val add_reflexivity_rule_attribute: attribute type relator_distr_data = {pos_mono_rule: thm, neg_mono_rule: thm, pos_distr_rules: thm list, neg_distr_rules: thm list} val lookup_relator_distr_data: Proof.context -> string -> relator_distr_data option val add_no_code_type: string -> Context.generic -> Context.generic val is_no_code_type: Proof.context -> string -> bool val get_quot_maps : Proof.context -> quot_map Symtab.table val get_quotients : Proof.context -> quotient Symtab.table val get_relator_distr_data : Proof.context -> relator_distr_data Symtab.table val get_restore_data : Proof.context -> restore_data Symtab.table val get_no_code_types : Proof.context -> Symset.T end structure Lifting_Info: LIFTING_INFO = struct open Lifting_Util (* context data *) type quot_map = {rel_quot_thm: thm} type pcr = {pcrel_def: thm, pcr_cr_eq: thm} type quotient = {quot_thm: thm, pcr_info: pcr option} type relator_distr_data = {pos_mono_rule: thm, neg_mono_rule: thm, pos_distr_rules: thm list, neg_distr_rules: thm list} type restore_data = {quotient : quotient, transfer_rules: thm Item_Net.T} fun pcr_eq ({pcrel_def = pcrel_def1, pcr_cr_eq = pcr_cr_eq1}, {pcrel_def = pcrel_def2, pcr_cr_eq = pcr_cr_eq2}) = Thm.eq_thm (pcrel_def1, pcrel_def2) andalso Thm.eq_thm (pcr_cr_eq1, pcr_cr_eq2) fun quotient_eq ({quot_thm = quot_thm1, pcr_info = pcr_info1}, {quot_thm = quot_thm2, pcr_info = pcr_info2}) = Thm.eq_thm (quot_thm1, quot_thm2) andalso eq_option pcr_eq (pcr_info1, pcr_info2) fun join_restore_data key (rd1:restore_data, rd2) = if pointer_eq (rd1, rd2) then raise Symtab.SAME else if not (quotient_eq (#quotient rd1, #quotient rd2)) then raise Symtab.DUP key else { quotient = #quotient rd1, transfer_rules = Item_Net.merge (#transfer_rules rd1, #transfer_rules rd2)} structure Data = Generic_Data ( type T = { quot_maps : quot_map Symtab.table, quotients : quotient Symtab.table, reflexivity_rules : thm Item_Net.T, relator_distr_data : relator_distr_data Symtab.table, restore_data : restore_data Symtab.table, no_code_types : Symset.T } val empty = { quot_maps = Symtab.empty, quotients = Symtab.empty, reflexivity_rules = Thm.item_net, relator_distr_data = Symtab.empty, restore_data = Symtab.empty, no_code_types = Symset.empty } fun merge ( { quot_maps = qm1, quotients = q1, reflexivity_rules = rr1, relator_distr_data = rdd1, restore_data = rd1, no_code_types = nct1 }, { quot_maps = qm2, quotients = q2, reflexivity_rules = rr2, relator_distr_data = rdd2, restore_data = rd2, no_code_types = nct2 } ) = { quot_maps = Symtab.merge (K true) (qm1, qm2), quotients = Symtab.merge (K true) (q1, q2), reflexivity_rules = Item_Net.merge (rr1, rr2), relator_distr_data = Symtab.merge (K true) (rdd1, rdd2), restore_data = Symtab.join join_restore_data (rd1, rd2), no_code_types = Symset.merge (nct1, nct2) } ) fun map_data f1 f2 f3 f4 f5 f6 { quot_maps, quotients, reflexivity_rules, relator_distr_data, restore_data, no_code_types } = { quot_maps = f1 quot_maps, quotients = f2 quotients, reflexivity_rules = f3 reflexivity_rules, relator_distr_data = f4 relator_distr_data, restore_data = f5 restore_data, no_code_types = f6 no_code_types } fun map_quot_maps f = map_data f I I I I I fun map_quotients f = map_data I f I I I I fun map_reflexivity_rules f = map_data I I f I I I fun map_relator_distr_data f = map_data I I I f I I fun map_restore_data f = map_data I I I I f I fun map_no_code_types f = map_data I I I I I f val get_quot_maps' = #quot_maps o Data.get val get_quotients' = #quotients o Data.get val get_reflexivity_rules' = #reflexivity_rules o Data.get val get_relator_distr_data' = #relator_distr_data o Data.get val get_restore_data' = #restore_data o Data.get val get_no_code_types' = #no_code_types o Data.get val get_quot_maps = get_quot_maps' o Context.Proof val get_quotients = get_quotients' o Context.Proof val get_relator_distr_data = get_relator_distr_data' o Context.Proof val get_restore_data = get_restore_data' o Context.Proof val get_no_code_types = get_no_code_types' o Context.Proof (* info about Quotient map theorems *) val lookup_quot_maps = Symtab.lookup o get_quot_maps fun quot_map_thm_sanity_check rel_quot_thm ctxt = let fun quot_term_absT ctxt quot_term = let - val (_, abs, _, _) = (dest_Quotient o HOLogic.dest_Trueprop) quot_term + val (_, abs, _, _) = dest_Quotient (HOLogic.dest_Trueprop quot_term) handle TERM (_, [t]) => error (Pretty.string_of (Pretty.block [Pretty.str "The Quotient map theorem is not in the right form.", Pretty.brk 1, Pretty.str "The following term is not the Quotient predicate:", Pretty.brk 1, Syntax.pretty_term ctxt t])) in fastype_of abs end val ((_, [rel_quot_thm_fixed]), ctxt') = Variable.importT [rel_quot_thm] ctxt val rel_quot_thm_prop = Thm.prop_of rel_quot_thm_fixed val rel_quot_thm_concl = Logic.strip_imp_concl rel_quot_thm_prop val rel_quot_thm_prems = Logic.strip_imp_prems rel_quot_thm_prop; val concl_absT = quot_term_absT ctxt' rel_quot_thm_concl val concl_tfrees = Term.add_tfree_namesT (concl_absT) [] val prems_tfrees = fold (fn typ => fn list => Term.add_tfree_namesT (quot_term_absT ctxt' typ) list) rel_quot_thm_prems [] val extra_prem_tfrees = case subtract (op =) concl_tfrees prems_tfrees of [] => [] - | extras => [Pretty.block ([Pretty.str "Extra type variables in the premises:", - Pretty.brk 1] @ - ((Pretty.commas o map (Pretty.str o quote)) extras) @ - [Pretty.str "."])] + | extras => + [Pretty.block ([Pretty.str "Extra type variables in the premises:", + Pretty.brk 1] @ + Pretty.commas (map (Pretty.str o quote) extras) @ + [Pretty.str "."])] val errs = extra_prem_tfrees in if null errs then () else error (cat_lines (["Sanity check of the quotient map theorem failed:",""] @ (map Pretty.string_of errs))) end fun add_quot_map rel_quot_thm context = let val _ = Context.cases (K ()) (quot_map_thm_sanity_check rel_quot_thm) context - val rel_quot_thm_concl = (Logic.strip_imp_concl o Thm.prop_of) rel_quot_thm - val (_, abs, _, _) = (dest_Quotient o HOLogic.dest_Trueprop) rel_quot_thm_concl - val relatorT_name = (fst o dest_Type o fst o dest_funT o fastype_of) abs + val rel_quot_thm_concl = Logic.strip_imp_concl (Thm.prop_of rel_quot_thm) + val (_, abs, _, _) = dest_Quotient (HOLogic.dest_Trueprop rel_quot_thm_concl) + val relatorT_name = fst (dest_Type (fst (dest_funT (fastype_of abs)))) val minfo = {rel_quot_thm = Thm.trim_context rel_quot_thm} - in - Data.map (map_quot_maps (Symtab.update (relatorT_name, minfo))) context - end + in (Data.map o map_quot_maps) (Symtab.update (relatorT_name, minfo)) context end val _ = Theory.setup (Attrib.setup \<^binding>\quot_map\ (Scan.succeed (Thm.declaration_attribute add_quot_map)) "declaration of the Quotient map theorem") fun print_quot_maps ctxt = let fun prt_map (ty_name, {rel_quot_thm}) = Pretty.block (separate (Pretty.brk 2) [Pretty.str "type:", Pretty.str ty_name, Pretty.str "quot. theorem:", Syntax.pretty_term ctxt (Thm.prop_of rel_quot_thm)]) in map prt_map (Symtab.dest (get_quot_maps ctxt)) |> Pretty.big_list "maps for type constructors:" |> Pretty.writeln end (* info about quotient types *) fun transform_pcr_info phi {pcrel_def, pcr_cr_eq} = {pcrel_def = Morphism.thm phi pcrel_def, pcr_cr_eq = Morphism.thm phi pcr_cr_eq} fun transform_quotient phi {quot_thm, pcr_info} = {quot_thm = Morphism.thm phi quot_thm, pcr_info = Option.map (transform_pcr_info phi) pcr_info} fun lookup_quotients ctxt type_name = Symtab.lookup (get_quotients ctxt) type_name |> Option.map (transform_quotient (Morphism.transfer_morphism' ctxt)) fun lookup_quot_thm_quotients ctxt quot_thm = let val (_, qtyp) = quot_thm_rty_qty quot_thm - val qty_full_name = (fst o dest_Type) qtyp + val qty_full_name = fst (dest_Type qtyp) fun compare_data (data:quotient) = Thm.eq_thm_prop (#quot_thm data, quot_thm) in case lookup_quotients ctxt qty_full_name of SOME quotient => if compare_data quotient then SOME quotient else NONE | NONE => NONE end fun update_quotients type_name qinfo context = let val qinfo' = transform_quotient Morphism.trim_context_morphism qinfo - in Data.map (map_quotients (Symtab.update (type_name, qinfo'))) context end + in (Data.map o map_quotients) (Symtab.update (type_name, qinfo')) context end fun delete_quotients quot_thm context = let val (_, qtyp) = quot_thm_rty_qty quot_thm - val qty_full_name = (fst o dest_Type) qtyp + val qty_full_name = fst (dest_Type qtyp) in if is_some (lookup_quot_thm_quotients (Context.proof_of context) quot_thm) - then Data.map (map_quotients (Symtab.delete qty_full_name)) context + then (Data.map o map_quotients) (Symtab.delete qty_full_name) context else context end fun print_quotients ctxt = let fun prt_quot (qty_name, {quot_thm, pcr_info}: quotient) = Pretty.block (separate (Pretty.brk 2) ([Pretty.str "type:", Pretty.str qty_name, Pretty.str "quot thm:", Thm.pretty_thm ctxt quot_thm] @ (case pcr_info of NONE => [] | SOME {pcrel_def, pcr_cr_eq, ...} => [Pretty.str "pcrel_def thm:", Thm.pretty_thm ctxt pcrel_def, Pretty.str "pcr_cr_eq thm:", Thm.pretty_thm ctxt pcr_cr_eq]))) in map prt_quot (Symtab.dest (get_quotients ctxt)) |> Pretty.big_list "quotients:" |> Pretty.writeln end val _ = Theory.setup (Attrib.setup \<^binding>\quot_del\ (Scan.succeed (Thm.declaration_attribute delete_quotients)) "deletes the Quotient theorem") (* data for restoring Transfer/Lifting context *) fun lookup_restore_data ctxt bundle_name = Symtab.lookup (get_restore_data ctxt) bundle_name fun update_restore_data bundle_name restore_data context = - Data.map (map_restore_data (Symtab.update (bundle_name, restore_data))) context + (Data.map o map_restore_data) (Symtab.update (bundle_name, restore_data)) context fun init_restore_data bundle_name qinfo context = update_restore_data bundle_name { quotient = qinfo, transfer_rules = Thm.item_net } context fun add_transfer_rules_in_restore_data bundle_name transfer_rules context = (case Symtab.lookup (get_restore_data' context) bundle_name of SOME restore_data => update_restore_data bundle_name { quotient = #quotient restore_data, transfer_rules = Item_Net.merge ((#transfer_rules restore_data), transfer_rules) } context | NONE => error ("The restore data " ^ quote bundle_name ^ " is not defined.")) (* theorems that a relator of an eq_onp is an eq_onp of the corresponding predicate *) fun get_relator_eq_onp_rules ctxt = map safe_mk_meta_eq (rev (Named_Theorems.get ctxt \<^named_theorems>\relator_eq_onp\)) (* info about reflexivity rules *) fun get_reflexivity_rules ctxt = Item_Net.content (get_reflexivity_rules' (Context.Proof ctxt)) |> map (Thm.transfer' ctxt) fun add_reflexivity_rule thm = - Data.map (map_reflexivity_rules (Item_Net.update (Thm.trim_context thm))) + (Data.map o map_reflexivity_rules) (Item_Net.update (Thm.trim_context thm)) val add_reflexivity_rule_attribute = Thm.declaration_attribute add_reflexivity_rule (* info about relator distributivity theorems *) fun map_relator_distr_data' f1 f2 f3 f4 {pos_mono_rule, neg_mono_rule, pos_distr_rules, neg_distr_rules} = {pos_mono_rule = f1 pos_mono_rule, neg_mono_rule = f2 neg_mono_rule, pos_distr_rules = f3 pos_distr_rules, neg_distr_rules = f4 neg_distr_rules} fun map_pos_mono_rule f = map_relator_distr_data' f I I I fun map_neg_mono_rule f = map_relator_distr_data' I f I I fun map_pos_distr_rules f = map_relator_distr_data' I I f I fun map_neg_distr_rules f = map_relator_distr_data' I I I f fun introduce_polarities rule = let val dest_less_eq = HOLogic.dest_bin \<^const_name>\less_eq\ dummyT val prems_pairs = map (dest_less_eq o HOLogic.dest_Trueprop) (Thm.prems_of rule) val equal_prems = filter op= prems_pairs val _ = if null equal_prems then () else error "The rule contains reflexive assumptions." val concl_pairs = rule |> Thm.concl_of |> HOLogic.dest_Trueprop |> dest_less_eq |> apply2 (snd o strip_comb) |> op ~~ |> filter_out op = val _ = if has_duplicates op= concl_pairs then error "The rule contains duplicated variables in the conlusion." else () fun rewrite_prem prem_pair = if member op= concl_pairs prem_pair then HOLogic.Trueprop_conv (Conv.rewr_conv (Thm.symmetric @{thm POS_def})) else if member op= concl_pairs (swap prem_pair) then HOLogic.Trueprop_conv (Conv.rewr_conv (Thm.symmetric @{thm NEG_def})) else error "The rule contains a non-relevant assumption." fun rewrite_prems [] = Conv.all_conv | rewrite_prems (x::xs) = Conv.implies_conv (rewrite_prem x) (rewrite_prems xs) val rewrite_prems_conv = rewrite_prems prems_pairs val rewrite_concl_conv = Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.rewr_conv (Thm.symmetric @{thm POS_def}))) in (Conv.fconv_rule (rewrite_prems_conv then_conv rewrite_concl_conv)) rule end handle TERM _ => error "The rule has a wrong format." | CTERM _ => error "The rule has a wrong format." fun negate_mono_rule mono_rule = let val rewr_conv = HOLogic.Trueprop_conv (Conv.rewrs_conv [@{thm POS_NEG}, @{thm NEG_POS}]) in Conv.fconv_rule (Conv.prems_conv ~1 rewr_conv then_conv Conv.concl_conv ~1 rewr_conv) mono_rule end; fun add_reflexivity_rules mono_rule context = let val ctxt = Context.proof_of context val thy = Context.theory_of context fun find_eq_rule thm = let - val concl_rhs = (hd o get_args 1 o HOLogic.dest_Trueprop o Thm.concl_of) thm + val concl_rhs = hd (get_args 1 (HOLogic.dest_Trueprop (Thm.concl_of thm))) val rules = Transfer.retrieve_relator_eq ctxt concl_rhs in find_first (fn th => Pattern.matches thy (concl_rhs, - (fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.concl_of) th)) rules + fst (HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.concl_of th))))) rules end val eq_rule = find_eq_rule mono_rule; val eq_rule = if is_some eq_rule then the eq_rule else error "No corresponding rule that the relator preserves equality was found." in context |> add_reflexivity_rule (Drule.zero_var_indexes (@{thm ord_le_eq_trans} OF [mono_rule, eq_rule])) |> add_reflexivity_rule (Drule.zero_var_indexes (@{thm ord_eq_le_trans} OF [sym OF [eq_rule], mono_rule])) end fun add_mono_rule mono_rule context = let val pol_mono_rule = introduce_polarities mono_rule - val mono_ruleT_name = (fst o dest_Type o fst o relation_types o fst o relation_types o snd o - dest_Const o head_of o HOLogic.dest_Trueprop o Thm.concl_of) pol_mono_rule + val mono_ruleT_name = + fst (dest_Type (fst (relation_types (fst (relation_types + (snd (dest_Const (head_of (HOLogic.dest_Trueprop (Thm.concl_of pol_mono_rule)))))))))) in if Symtab.defined (get_relator_distr_data' context) mono_ruleT_name then (if Context_Position.is_visible_generic context then warning ("Monotonicity rule for type " ^ quote mono_ruleT_name ^ " is already_defined.") else (); context) else let val neg_mono_rule = negate_mono_rule pol_mono_rule val relator_distr_data = {pos_mono_rule = pol_mono_rule, neg_mono_rule = neg_mono_rule, pos_distr_rules = [], neg_distr_rules = []} in context - |> Data.map (map_relator_distr_data (Symtab.update (mono_ruleT_name, relator_distr_data))) + |> (Data.map o map_relator_distr_data) (Symtab.update (mono_ruleT_name, relator_distr_data)) |> add_reflexivity_rules mono_rule end end; local fun add_distr_rule update_entry distr_rule context = let - val distr_ruleT_name = (fst o dest_Type o fst o relation_types o fst o relation_types o snd o - dest_Const o head_of o HOLogic.dest_Trueprop o Thm.concl_of) distr_rule + val distr_ruleT_name = + fst (dest_Type (fst (relation_types (fst (relation_types + (snd (dest_Const (head_of (HOLogic.dest_Trueprop (Thm.concl_of distr_rule)))))))))) in if Symtab.defined (get_relator_distr_data' context) distr_ruleT_name then - Data.map (map_relator_distr_data (Symtab.map_entry distr_ruleT_name (update_entry distr_rule))) - context + (Data.map o map_relator_distr_data) + (Symtab.map_entry distr_ruleT_name (update_entry distr_rule)) context else error "The monotonicity rule is not defined." end fun rewrite_concl_conv thm ctm = Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.rewr_conv (Thm.symmetric thm))) ctm handle CTERM _ => error "The rule has a wrong format." in fun add_pos_distr_rule distr_rule context = let - val distr_rule = Conv.fconv_rule (rewrite_concl_conv @{thm POS_def}) distr_rule + val distr_rule' = Conv.fconv_rule (rewrite_concl_conv @{thm POS_def}) distr_rule fun update_entry distr_rule data = map_pos_distr_rules (cons (@{thm POS_trans} OF [distr_rule, #pos_mono_rule data])) data in - add_distr_rule update_entry distr_rule context + add_distr_rule update_entry distr_rule' context end handle THM _ => error "Combining of the distr. rule and the monotonicity rule together has failed." fun add_neg_distr_rule distr_rule context = let - val distr_rule = Conv.fconv_rule (rewrite_concl_conv @{thm NEG_def}) distr_rule + val distr_rule' = Conv.fconv_rule (rewrite_concl_conv @{thm NEG_def}) distr_rule fun update_entry distr_rule data = map_neg_distr_rules (cons (@{thm NEG_trans} OF [distr_rule, #neg_mono_rule data])) data in - add_distr_rule update_entry distr_rule context + add_distr_rule update_entry distr_rule' context end handle THM _ => error "Combining of the distr. rule and the monotonicity rule together has failed." end local val eq_refl2 = sym RS @{thm eq_refl} in fun add_eq_distr_rule distr_rule context = let val pos_distr_rule = @{thm eq_refl} OF [distr_rule] val neg_distr_rule = eq_refl2 OF [distr_rule] in context |> add_pos_distr_rule pos_distr_rule |> add_neg_distr_rule neg_distr_rule end end; local fun sanity_check rule = let val assms = map (perhaps (try HOLogic.dest_Trueprop)) (Thm.prems_of rule) - val concl = (perhaps (try HOLogic.dest_Trueprop)) (Thm.concl_of rule); + val concl = perhaps (try HOLogic.dest_Trueprop) (Thm.concl_of rule); val (lhs, rhs) = (case concl of Const (\<^const_name>\less_eq\, _) $ (lhs as Const (\<^const_name>\relcompp\,_) $ _ $ _) $ rhs => (lhs, rhs) | Const (\<^const_name>\less_eq\, _) $ rhs $ (lhs as Const (\<^const_name>\relcompp\,_) $ _ $ _) => (lhs, rhs) | Const (\<^const_name>\HOL.eq\, _) $ (lhs as Const (\<^const_name>\relcompp\,_) $ _ $ _) $ rhs => (lhs, rhs) | _ => error "The rule has a wrong format.") val lhs_vars = Term.add_vars lhs [] val rhs_vars = Term.add_vars rhs [] val assms_vars = fold Term.add_vars assms []; val _ = if has_duplicates op= lhs_vars then error "Left-hand side has variable duplicates" else () val _ = if subset op= (rhs_vars, lhs_vars) then () else error "Extra variables in the right-hand side of the rule" val _ = if subset op= (assms_vars, lhs_vars) then () else error "Extra variables in the assumptions of the rule" val rhs_args = (snd o strip_comb) rhs; fun check_comp t = (case t of Const (\<^const_name>\relcompp\, _) $ Var _ $ Var _ => () | _ => error "There is an argument on the rhs that is not a composition.") val _ = map check_comp rhs_args in () end in fun add_distr_rule distr_rule context = let val _ = sanity_check distr_rule - val concl = (perhaps (try HOLogic.dest_Trueprop)) (Thm.concl_of distr_rule) + val concl = perhaps (try HOLogic.dest_Trueprop) (Thm.concl_of distr_rule) in (case concl of Const (\<^const_name>\less_eq\, _) $ (Const (\<^const_name>\relcompp\,_) $ _ $ _) $ _ => add_pos_distr_rule distr_rule context | Const (\<^const_name>\less_eq\, _) $ _ $ (Const (\<^const_name>\relcompp\,_) $ _ $ _) => add_neg_distr_rule distr_rule context | Const (\<^const_name>\HOL.eq\, _) $ (Const (\<^const_name>\relcompp\,_) $ _ $ _) $ _ => add_eq_distr_rule distr_rule context) end end fun get_distr_rules_raw context = Symtab.fold (fn (_, {pos_distr_rules, neg_distr_rules, ...}) => fn rules => pos_distr_rules @ neg_distr_rules @ rules) (get_relator_distr_data' context) [] |> map (Thm.transfer'' context) fun get_mono_rules_raw context = Symtab.fold (fn (_, {pos_mono_rule, neg_mono_rule, ...}) => fn rules => [pos_mono_rule, neg_mono_rule] @ rules) (get_relator_distr_data' context) [] |> map (Thm.transfer'' context) val lookup_relator_distr_data = Symtab.lookup o get_relator_distr_data val _ = Theory.setup (Attrib.setup \<^binding>\relator_mono\ (Scan.succeed (Thm.declaration_attribute add_mono_rule)) "declaration of relator's monotonicity" #> Attrib.setup \<^binding>\relator_distr\ (Scan.succeed (Thm.declaration_attribute add_distr_rule)) "declaration of relator's distributivity over OO" #> Global_Theory.add_thms_dynamic (\<^binding>\relator_distr_raw\, get_distr_rules_raw) #> Global_Theory.add_thms_dynamic (\<^binding>\relator_mono_raw\, get_mono_rules_raw)) (* no_code types *) fun add_no_code_type type_name context = Data.map (map_no_code_types (Symset.insert type_name)) context; -fun is_no_code_type context type_name = (Symset.member o get_no_code_types) context type_name +val is_no_code_type = Symset.member o get_no_code_types; (* setup fixed eq_onp rules *) val _ = Context.>> (fold (Named_Theorems.add_thm \<^named_theorems>\relator_eq_onp\ o Transfer.prep_transfer_domain_thm \<^context>) @{thms composed_equiv_rel_eq_onp composed_equiv_rel_eq_eq_onp}) (* setup fixed reflexivity rules *) val _ = Context.>> (fold add_reflexivity_rule @{thms order_refl[of "(=)"] eq_onp_le_eq Quotient_composition_le_eq Quotient_composition_ge_eq bi_unique_OO bi_total_OO right_unique_OO right_total_OO left_unique_OO left_total_OO}) (* outer syntax commands *) val _ = Outer_Syntax.command \<^command_keyword>\print_quot_maps\ "print quotient map functions" (Scan.succeed (Toplevel.keep (print_quot_maps o Toplevel.context_of))) val _ = Outer_Syntax.command \<^command_keyword>\print_quotients\ "print quotients" (Scan.succeed (Toplevel.keep (print_quotients o Toplevel.context_of))) end