diff --git a/src/Pure/drule.ML b/src/Pure/drule.ML --- a/src/Pure/drule.ML +++ b/src/Pure/drule.ML @@ -1,845 +1,842 @@ (* Title: Pure/drule.ML Author: Lawrence C Paulson, Cambridge University Computer Laboratory Derived rules and other operations on theorems. *) infix 0 RL RLN MRS OF COMP INCR_COMP COMP_INCR; signature BASIC_DRULE = sig val mk_implies: cterm * cterm -> cterm val list_implies: cterm list * cterm -> cterm val strip_imp_prems: cterm -> cterm list val strip_imp_concl: cterm -> cterm val cprems_of: thm -> cterm list val forall_intr_list: cterm list -> thm -> thm val forall_intr_vars: thm -> thm val forall_elim_list: cterm list -> thm -> thm val lift_all: Proof.context -> cterm -> thm -> thm val implies_elim_list: thm -> thm list -> thm val implies_intr_list: cterm list -> thm -> thm val instantiate_normalize: ((indexname * sort) * ctyp) list * ((indexname * typ) * cterm) list -> thm -> thm val instantiate'_normalize: ctyp option list -> cterm option list -> thm -> thm val infer_instantiate_types: Proof.context -> ((indexname * typ) * cterm) list -> thm -> thm val infer_instantiate: Proof.context -> (indexname * cterm) list -> thm -> thm val infer_instantiate': Proof.context -> cterm option list -> thm -> thm val zero_var_indexes_list: thm list -> thm list val zero_var_indexes: thm -> thm val implies_intr_hyps: thm -> thm val rotate_prems: int -> thm -> thm val rearrange_prems: int list -> thm -> thm val RLN: thm list * (int * thm list) -> thm list val RL: thm list * thm list -> thm list val MRS: thm list * thm -> thm val OF: thm * thm list -> thm val COMP: thm * thm -> thm val INCR_COMP: thm * thm -> thm val COMP_INCR: thm * thm -> thm val size_of_thm: thm -> int val reflexive_thm: thm val symmetric_thm: thm val transitive_thm: thm val extensional: thm -> thm val asm_rl: thm val cut_rl: thm val revcut_rl: thm val thin_rl: thm end; signature DRULE = sig include BASIC_DRULE val outer_params: term -> (string * typ) list val generalize: Symtab.set * Symtab.set -> thm -> thm val list_comb: cterm * cterm list -> cterm val strip_comb: cterm -> cterm * cterm list val beta_conv: cterm -> cterm -> cterm val flexflex_unique: Proof.context option -> thm -> thm val export_without_context: thm -> thm val export_without_context_open: thm -> thm val store_thm: binding -> thm -> thm val store_standard_thm: binding -> thm -> thm val store_thm_open: binding -> thm -> thm val store_standard_thm_open: binding -> thm -> thm val multi_resolve: Proof.context option -> thm list -> thm -> thm Seq.seq val multi_resolves: Proof.context option -> thm list -> thm list -> thm Seq.seq val compose: thm * int * thm -> thm val equals_cong: thm val imp_cong: thm val swap_prems_eq: thm val imp_cong_rule: thm -> thm -> thm val arg_cong_rule: cterm -> thm -> thm val binop_cong_rule: cterm -> thm -> thm -> thm val fun_cong_rule: thm -> cterm -> thm val beta_eta_conversion: cterm -> thm val eta_contraction_rule: thm -> thm val norm_hhf_eq: thm val norm_hhf_eqs: thm list val is_norm_hhf: term -> bool val norm_hhf: theory -> term -> term val norm_hhf_cterm: Proof.context -> cterm -> cterm val protect: cterm -> cterm val protectI: thm val protectD: thm val protect_cong: thm val implies_intr_protected: cterm list -> thm -> thm val termI: thm val mk_term: cterm -> thm val dest_term: thm -> cterm val cterm_rule: (thm -> thm) -> cterm -> cterm val cterm_frees_of: cterm -> cterm list val dummy_thm: thm val free_dummy_thm: thm val is_sort_constraint: term -> bool val sort_constraintI: thm val sort_constraint_eq: thm val with_subgoal: int -> (thm -> thm) -> thm -> thm val comp_no_flatten: thm * int -> int -> thm -> thm val rename_bvars: (string * string) list -> thm -> thm val rename_bvars': string option list -> thm -> thm val incr_indexes: thm -> thm -> thm val incr_indexes2: thm -> thm -> thm -> thm val triv_forall_equality: thm val distinct_prems_rl: thm val equal_intr_rule: thm val equal_elim_rule1: thm val equal_elim_rule2: thm val remdups_rl: thm val abs_def: thm -> thm end; structure Drule: DRULE = struct (** some cterm->cterm operations: faster than calling cterm_of! **) (* A1\...An\B goes to [A1,...,An], where B is not an implication *) fun strip_imp_prems ct = let val (cA, cB) = Thm.dest_implies ct in cA :: strip_imp_prems cB end handle TERM _ => []; (* A1\...An\B goes to B, where B is not an implication *) fun strip_imp_concl ct = (case Thm.term_of ct of Const ("Pure.imp", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct) | _ => ct); (*The premises of a theorem, as a cterm list*) val cprems_of = strip_imp_prems o Thm.cprop_of; fun certify t = Thm.global_cterm_of (Context.the_global_context ()) t; val implies = certify Logic.implies; fun mk_implies (A, B) = Thm.apply (Thm.apply implies A) B; (*cterm version of list_implies: [A1,...,An], B goes to \A1;...;An\\B *) fun list_implies([], B) = B | list_implies(A::As, B) = mk_implies (A, list_implies(As,B)); (*cterm version of list_comb: maps (f, [t1,...,tn]) to f(t1,...,tn) *) fun list_comb (f, []) = f | list_comb (f, t::ts) = list_comb (Thm.apply f t, ts); (*cterm version of strip_comb: maps f(t1,...,tn) to (f, [t1,...,tn]) *) fun strip_comb ct = let fun stripc (p as (ct, cts)) = let val (ct1, ct2) = Thm.dest_comb ct in stripc (ct1, ct2 :: cts) end handle CTERM _ => p in stripc (ct, []) end; (*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs of the meta-equality returned by the beta_conversion rule.*) fun beta_conv x y = Thm.dest_arg (Thm.cprop_of (Thm.beta_conversion false (Thm.apply x y))); (** Standardization of rules **) (*Generalization over a list of variables*) val forall_intr_list = fold_rev Thm.forall_intr; (*Generalization over Vars -- canonical order*) fun forall_intr_vars th = - let - val vs = - build (th |> Thm.fold_atomic_cterms {hyps = false} (fn a => - is_Var (Thm.term_of a) ? insert (op aconvc) a)); + let val vs = build (th |> Thm.fold_atomic_cterms {hyps = false} Term.is_Var (insert (op aconvc))) in fold Thm.forall_intr vs th end; fun outer_params t = let val vs = Term.strip_all_vars t in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end; (*lift vars wrt. outermost goal parameters -- reverses the effect of gen_all modulo higher-order unification*) fun lift_all ctxt raw_goal raw_th = let val thy = Proof_Context.theory_of ctxt; val goal = Thm.transfer_cterm thy raw_goal; val th = Thm.transfer thy raw_th; val maxidx = Thm.maxidx_of th; val ps = outer_params (Thm.term_of goal) |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T)); val Ts = map Term.fastype_of ps; val inst = Term_Subst.Vars.build (th |> (Thm.fold_terms {hyps = false} o Term.fold_aterms) (fn t => fn inst => (case t of Var (xi, T) => if Term_Subst.Vars.defined inst (xi, T) then inst else let val ct = Thm.cterm_of ctxt (Term.list_comb (Var (xi, Ts ---> T), ps)) in Term_Subst.Vars.update ((xi, T), ct) inst end | _ => inst))); in th |> Thm.instantiate ([], Term_Subst.Vars.dest inst) |> fold_rev (Thm.forall_intr o Thm.cterm_of ctxt) ps end; (*direct generalization*) fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th; (*specialization over a list of cterms*) val forall_elim_list = fold Thm.forall_elim; (*maps A1,...,An |- B to \A1;...;An\ \ B*) val implies_intr_list = fold_rev Thm.implies_intr; (*maps \A1;...;An\ \ B and [A1,...,An] to B*) fun implies_elim_list impth ths = fold Thm.elim_implies ths impth; (*Reset Var indexes to zero, renaming to preserve distinctness*) fun zero_var_indexes_list [] = [] | zero_var_indexes_list ths = let val (instT, inst) = Term_Subst.zero_var_indexes_inst Name.context (map Thm.full_prop_of ths); val tvars = fold Thm.add_tvars ths Term_Subst.TVars.empty; val the_tvar = the o Term_Subst.TVars.lookup tvars; val instT' = build (instT |> Term_Subst.TVars.fold (fn (v, TVar (b, _)) => cons (v, Thm.rename_tvar b (the_tvar v)))); val vars = fold (Thm.add_vars o Thm.instantiate (instT', [])) ths Term_Subst.Vars.empty; val the_var = the o Term_Subst.Vars.lookup vars; val inst' = build (inst |> Term_Subst.Vars.fold (fn (v, Var (b, _)) => cons (v, Thm.var (b, Thm.ctyp_of_cterm (the_var v))))); in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate (instT', inst')) ths end; val zero_var_indexes = singleton zero_var_indexes_list; (** Standard form of object-rule: no hypotheses, flexflex constraints, Frees, or outer quantifiers; all generality expressed by Vars of index 0.**) (*Discharge all hypotheses.*) fun implies_intr_hyps th = fold Thm.implies_intr (Thm.chyps_of th) th; (*Squash a theorem's flexflex constraints provided it can be done uniquely. This step can lose information.*) fun flexflex_unique opt_ctxt th = if null (Thm.tpairs_of th) then th else (case distinct Thm.eq_thm (Seq.list_of (Thm.flexflex_rule opt_ctxt th)) of [th] => th | [] => raise THM ("flexflex_unique: impossible constraints", 0, [th]) | _ => raise THM ("flexflex_unique: multiple unifiers", 0, [th])); (* old-style export without context *) val export_without_context_open = implies_intr_hyps #> Thm.forall_intr_frees #> `Thm.maxidx_of #-> (fn maxidx => Thm.forall_elim_vars (maxidx + 1) #> Thm.strip_shyps #> zero_var_indexes #> Thm.varifyT_global); val export_without_context = flexflex_unique NONE #> export_without_context_open #> Thm.close_derivation \<^here>; (*Rotates a rule's premises to the left by k*) fun rotate_prems 0 = I | rotate_prems k = Thm.permute_prems 0 k; fun with_subgoal i f = rotate_prems (i - 1) #> f #> rotate_prems (1 - i); (*Permute prems, where the i-th position in the argument list (counting from 0) gives the position within the original thm to be transferred to position i. Any remaining trailing positions are left unchanged.*) val rearrange_prems = let fun rearr new [] thm = thm | rearr new (p :: ps) thm = rearr (new + 1) (map (fn q => if new <= q andalso q < p then q + 1 else q) ps) (Thm.permute_prems (new + 1) (new - p) (Thm.permute_prems new (p - new) thm)) in rearr 0 end; (*Resolution: multiple arguments, multiple results*) local fun res opt_ctxt th i rule = (Thm.biresolution opt_ctxt false [(false, th)] i rule handle THM _ => Seq.empty) |> Seq.map Thm.solve_constraints; fun multi_res _ _ [] rule = Seq.single rule | multi_res opt_ctxt i (th :: ths) rule = Seq.maps (res opt_ctxt th i) (multi_res opt_ctxt (i + 1) ths rule); in fun multi_resolve opt_ctxt = multi_res opt_ctxt 1; fun multi_resolves opt_ctxt facts rules = Seq.maps (multi_resolve opt_ctxt facts) (Seq.of_list rules); end; (*For joining lists of rules*) fun thas RLN (i, thbs) = let val resolve = Thm.biresolution NONE false (map (pair false) thas) i fun resb thb = Seq.list_of (resolve thb) handle THM _ => [] in maps resb thbs |> map Thm.solve_constraints end; fun thas RL thbs = thas RLN (1, thbs); (*Isar-style multi-resolution*) fun bottom_rl OF rls = (case Seq.chop 2 (multi_resolve NONE rls bottom_rl) of ([th], _) => Thm.solve_constraints th | ([], _) => raise THM ("OF: no unifiers", 0, bottom_rl :: rls) | _ => raise THM ("OF: multiple unifiers", 0, bottom_rl :: rls)); (*Resolve a list of rules against bottom_rl from right to left; makes proof trees*) fun rls MRS bottom_rl = bottom_rl OF rls; (*compose Q and \...,Qi,Q(i+1),...\ \ R to \...,Q(i+1),...\ \ R with no lifting or renaming! Q may contain \ or meta-quantifiers ALWAYS deletes premise i *) fun compose (tha, i, thb) = Thm.bicompose NONE {flatten = true, match = false, incremented = false} (false, tha, 0) i thb |> Seq.list_of |> distinct Thm.eq_thm |> (fn [th] => Thm.solve_constraints th | _ => raise THM ("compose: unique result expected", i, [tha, thb])); (** theorem equality **) (*Useful "distance" function for BEST_FIRST*) val size_of_thm = size_of_term o Thm.full_prop_of; (*** Meta-Rewriting Rules ***) val read_prop = certify o Simple_Syntax.read_prop; fun store_thm name th = Context.>>> (Context.map_theory_result (Global_Theory.store_thm (name, th))); fun store_thm_open name th = Context.>>> (Context.map_theory_result (Global_Theory.store_thm_open (name, th))); fun store_standard_thm name th = store_thm name (export_without_context th); fun store_standard_thm_open name th = store_thm_open name (export_without_context_open th); val reflexive_thm = let val cx = certify (Var(("x",0),TVar(("'a",0),[]))) in store_standard_thm_open (Binding.make ("reflexive", \<^here>)) (Thm.reflexive cx) end; val symmetric_thm = let val xy = read_prop "x::'a \ y::'a"; val thm = Thm.implies_intr xy (Thm.symmetric (Thm.assume xy)); in store_standard_thm_open (Binding.make ("symmetric", \<^here>)) thm end; val transitive_thm = let val xy = read_prop "x::'a \ y::'a"; val yz = read_prop "y::'a \ z::'a"; val xythm = Thm.assume xy; val yzthm = Thm.assume yz; val thm = Thm.implies_intr yz (Thm.transitive xythm yzthm); in store_standard_thm_open (Binding.make ("transitive", \<^here>)) thm end; fun extensional eq = let val eq' = Thm.abstract_rule "x" (Thm.dest_arg (fst (Thm.dest_equals (Thm.cprop_of eq)))) eq in Thm.equal_elim (Thm.eta_conversion (Thm.cprop_of eq')) eq' end; val equals_cong = store_standard_thm_open (Binding.make ("equals_cong", \<^here>)) (Thm.reflexive (read_prop "x::'a \ y::'a")); val imp_cong = let val ABC = read_prop "A \ B::prop \ C::prop" val AB = read_prop "A \ B" val AC = read_prop "A \ C" val A = read_prop "A" in store_standard_thm_open (Binding.make ("imp_cong", \<^here>)) (Thm.implies_intr ABC (Thm.equal_intr (Thm.implies_intr AB (Thm.implies_intr A (Thm.equal_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)) (Thm.implies_elim (Thm.assume AB) (Thm.assume A))))) (Thm.implies_intr AC (Thm.implies_intr A (Thm.equal_elim (Thm.symmetric (Thm.implies_elim (Thm.assume ABC) (Thm.assume A))) (Thm.implies_elim (Thm.assume AC) (Thm.assume A))))))) end; val swap_prems_eq = let val ABC = read_prop "A \ B \ C" val BAC = read_prop "B \ A \ C" val A = read_prop "A" val B = read_prop "B" in store_standard_thm_open (Binding.make ("swap_prems_eq", \<^here>)) (Thm.equal_intr (Thm.implies_intr ABC (Thm.implies_intr B (Thm.implies_intr A (Thm.implies_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)) (Thm.assume B))))) (Thm.implies_intr BAC (Thm.implies_intr A (Thm.implies_intr B (Thm.implies_elim (Thm.implies_elim (Thm.assume BAC) (Thm.assume B)) (Thm.assume A)))))) end; val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies); fun arg_cong_rule ct th = Thm.combination (Thm.reflexive ct) th; (*AP_TERM in LCF/HOL*) fun fun_cong_rule th ct = Thm.combination th (Thm.reflexive ct); (*AP_THM in LCF/HOL*) fun binop_cong_rule ct th1 th2 = Thm.combination (arg_cong_rule ct th1) th2; fun beta_eta_conversion ct = let val thm = Thm.beta_conversion true ct in Thm.transitive thm (Thm.eta_conversion (Thm.rhs_of thm)) end; (*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*) fun eta_contraction_rule th = Thm.equal_elim (Thm.eta_conversion (Thm.cprop_of th)) th; (* abs_def *) (* f ?x1 ... ?xn \ u -------------------- f \ \x1 ... xn. u *) local fun contract_lhs th = Thm.transitive (Thm.symmetric (beta_eta_conversion (#1 (Thm.dest_equals (Thm.cprop_of th))))) th; fun var_args ct = (case try Thm.dest_comb ct of SOME (f, arg) => (case Thm.term_of arg of Var ((x, _), _) => update (eq_snd (op aconvc)) (x, arg) (var_args f) | _ => []) | NONE => []); in fun abs_def th = let val th' = contract_lhs th; val args = var_args (Thm.lhs_of th'); in contract_lhs (fold (uncurry Thm.abstract_rule) args th') end; end; (*** Some useful meta-theorems ***) (*The rule V/V, obtains assumption solving for eresolve_tac*) val asm_rl = store_standard_thm_open (Binding.make ("asm_rl", \<^here>)) (Thm.trivial (read_prop "?psi")); (*Meta-level cut rule: \V \ W; V\ \ W *) val cut_rl = store_standard_thm_open (Binding.make ("cut_rl", \<^here>)) (Thm.trivial (read_prop "?psi \ ?theta")); (*Generalized elim rule for one conclusion; cut_rl with reversed premises: \PROP V; PROP V \ PROP W\ \ PROP W *) val revcut_rl = let val V = read_prop "V"; val VW = read_prop "V \ W"; in store_standard_thm_open (Binding.make ("revcut_rl", \<^here>)) (Thm.implies_intr V (Thm.implies_intr VW (Thm.implies_elim (Thm.assume VW) (Thm.assume V)))) end; (*for deleting an unwanted assumption*) val thin_rl = let val V = read_prop "V"; val W = read_prop "W"; val thm = Thm.implies_intr V (Thm.implies_intr W (Thm.assume W)); in store_standard_thm_open (Binding.make ("thin_rl", \<^here>)) thm end; (* (\x. PROP ?V) \ PROP ?V Allows removal of redundant parameters*) val triv_forall_equality = let val V = read_prop "V"; val QV = read_prop "\x::'a. V"; val x = certify (Free ("x", Term.aT [])); in store_standard_thm_open (Binding.make ("triv_forall_equality", \<^here>)) (Thm.equal_intr (Thm.implies_intr QV (Thm.forall_elim x (Thm.assume QV))) (Thm.implies_intr V (Thm.forall_intr x (Thm.assume V)))) end; (* (PROP ?Phi \ PROP ?Phi \ PROP ?Psi) \ (PROP ?Phi \ PROP ?Psi) *) val distinct_prems_rl = let val AAB = read_prop "Phi \ Phi \ Psi"; val A = read_prop "Phi"; in store_standard_thm_open (Binding.make ("distinct_prems_rl", \<^here>)) (implies_intr_list [AAB, A] (implies_elim_list (Thm.assume AAB) [Thm.assume A, Thm.assume A])) end; (* \PROP ?phi \ PROP ?psi; PROP ?psi \ PROP ?phi\ \ PROP ?phi \ PROP ?psi Introduction rule for \ as a meta-theorem. *) val equal_intr_rule = let val PQ = read_prop "phi \ psi"; val QP = read_prop "psi \ phi"; in store_standard_thm_open (Binding.make ("equal_intr_rule", \<^here>)) (Thm.implies_intr PQ (Thm.implies_intr QP (Thm.equal_intr (Thm.assume PQ) (Thm.assume QP)))) end; (* PROP ?phi \ PROP ?psi \ PROP ?phi \ PROP ?psi *) val equal_elim_rule1 = let val eq = read_prop "phi::prop \ psi::prop"; val P = read_prop "phi"; in store_standard_thm_open (Binding.make ("equal_elim_rule1", \<^here>)) (Thm.equal_elim (Thm.assume eq) (Thm.assume P) |> implies_intr_list [eq, P]) end; (* PROP ?psi \ PROP ?phi \ PROP ?phi \ PROP ?psi *) val equal_elim_rule2 = store_standard_thm_open (Binding.make ("equal_elim_rule2", \<^here>)) (symmetric_thm RS equal_elim_rule1); (* PROP ?phi \ PROP ?phi \ PROP ?psi \ PROP ?psi *) val remdups_rl = let val P = read_prop "phi"; val Q = read_prop "psi"; val thm = implies_intr_list [P, P, Q] (Thm.assume Q); in store_standard_thm_open (Binding.make ("remdups_rl", \<^here>)) thm end; (** embedded terms and types **) local val A = certify (Free ("A", propT)); val axiom = Thm.unvarify_axiom (Context.the_global_context ()); val prop_def = axiom "Pure.prop_def"; val term_def = axiom "Pure.term_def"; val sort_constraint_def = axiom "Pure.sort_constraint_def"; val C = Thm.lhs_of sort_constraint_def; val T = Thm.dest_arg C; val CA = mk_implies (C, A); in (* protect *) val protect = Thm.apply (certify Logic.protectC); val protectI = store_standard_thm (Binding.concealed (Binding.make ("protectI", \<^here>))) (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A)); val protectD = store_standard_thm (Binding.concealed (Binding.make ("protectD", \<^here>))) (Thm.equal_elim prop_def (Thm.assume (protect A))); val protect_cong = store_standard_thm_open (Binding.make ("protect_cong", \<^here>)) (Thm.reflexive (protect A)); fun implies_intr_protected asms th = let val asms' = map protect asms in implies_elim_list (implies_intr_list asms th) (map (fn asm' => Thm.assume asm' RS protectD) asms') |> implies_intr_list asms' end; (* term *) val termI = store_standard_thm (Binding.concealed (Binding.make ("termI", \<^here>))) (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A))); fun mk_term ct = let val cT = Thm.ctyp_of_cterm ct; val T = Thm.typ_of cT; in Thm.instantiate ([((("'a", 0), []), cT)], [((("x", 0), T), ct)]) termI end; fun dest_term th = let val cprop = strip_imp_concl (Thm.cprop_of th) in if can Logic.dest_term (Thm.term_of cprop) then Thm.dest_arg cprop else raise THM ("dest_term", 0, [th]) end; fun cterm_rule f = dest_term o f o mk_term; val cterm_frees_of = Thm.frees_of o mk_term; val dummy_thm = mk_term (certify Term.dummy_prop); val free_dummy_thm = Thm.tag_free_dummy dummy_thm; (* sort_constraint *) fun is_sort_constraint (Const ("Pure.sort_constraint", _) $ Const ("Pure.type", _)) = true | is_sort_constraint _ = false; val sort_constraintI = store_standard_thm (Binding.concealed (Binding.make ("sort_constraintI", \<^here>))) (Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T)); val sort_constraint_eq = store_standard_thm (Binding.concealed (Binding.make ("sort_constraint_eq", \<^here>))) (Thm.equal_intr (Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA) (Thm.unvarify_global (Context.the_global_context ()) sort_constraintI))) (implies_intr_list [A, C] (Thm.assume A))); end; (* HHF normalization *) (* (PROP ?phi \ (\x. PROP ?psi x)) \ (\x. PROP ?phi \ PROP ?psi x) *) val norm_hhf_eq = let val aT = TFree ("'a", []); val x = Free ("x", aT); val phi = Free ("phi", propT); val psi = Free ("psi", aT --> propT); val cx = certify x; val cphi = certify phi; val lhs = certify (Logic.mk_implies (phi, Logic.all x (psi $ x))); val rhs = certify (Logic.all x (Logic.mk_implies (phi, psi $ x))); in Thm.equal_intr (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi) |> Thm.forall_elim cx |> Thm.implies_intr cphi |> Thm.forall_intr cx |> Thm.implies_intr lhs) (Thm.implies_elim (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi) |> Thm.forall_intr cx |> Thm.implies_intr cphi |> Thm.implies_intr rhs) |> store_standard_thm_open (Binding.make ("norm_hhf_eq", \<^here>)) end; val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq); val norm_hhf_eqs = [norm_hhf_eq, sort_constraint_eq]; fun is_norm_hhf (Const ("Pure.sort_constraint", _)) = false | is_norm_hhf (Const ("Pure.imp", _) $ _ $ (Const ("Pure.all", _) $ _)) = false | is_norm_hhf (Abs _ $ _) = false | is_norm_hhf (t $ u) = is_norm_hhf t andalso is_norm_hhf u | is_norm_hhf (Abs (_, _, t)) = is_norm_hhf t | is_norm_hhf _ = true; fun norm_hhf thy t = if is_norm_hhf t then t else Pattern.rewrite_term thy [norm_hhf_prop] [] t; fun norm_hhf_cterm ctxt raw_ct = let val thy = Proof_Context.theory_of ctxt; val ct = Thm.transfer_cterm thy raw_ct; val t = Thm.term_of ct; in if is_norm_hhf t then ct else Thm.cterm_of ctxt (norm_hhf thy t) end; (* var indexes *) fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1); fun incr_indexes2 th1 th2 = Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1); local (*compose Q and \Q1,Q2,...,Qk\ \ R to \Q2,...,Qk\ \ R getting unique result*) fun comp incremented th1 th2 = Thm.bicompose NONE {flatten = true, match = false, incremented = incremented} (false, th1, 0) 1 th2 |> Seq.list_of |> distinct Thm.eq_thm |> (fn [th] => Thm.solve_constraints th | _ => raise THM ("COMP", 1, [th1, th2])); in fun th1 COMP th2 = comp false th1 th2; fun th1 INCR_COMP th2 = comp true (incr_indexes th2 th1) th2; fun th1 COMP_INCR th2 = comp true th1 (incr_indexes th1 th2); end; fun comp_no_flatten (th, n) i rule = (case distinct Thm.eq_thm (Seq.list_of (Thm.bicompose NONE {flatten = false, match = false, incremented = true} (false, th, n) i (incr_indexes th rule))) of [th'] => Thm.solve_constraints th' | [] => raise THM ("comp_no_flatten", i, [th, rule]) | _ => raise THM ("comp_no_flatten: unique result expected", i, [th, rule])); (** variations on Thm.instantiate **) fun instantiate_normalize instpair th = Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl); fun instantiate'_normalize Ts ts th = Thm.adjust_maxidx_thm ~1 (Thm.instantiate' Ts ts th COMP_INCR asm_rl); (*instantiation with type-inference for variables*) fun infer_instantiate_types _ [] th = th | infer_instantiate_types ctxt args raw_th = let val thy = Proof_Context.theory_of ctxt; val th = Thm.transfer thy raw_th; fun infer ((xi, T), cu) (tyenv, maxidx) = let val _ = Thm.ctyp_of ctxt T; val _ = Thm.transfer_cterm thy cu; val U = Thm.typ_of_cterm cu; val maxidx' = maxidx |> Integer.max (#2 xi) |> Term.maxidx_typ T |> Integer.max (Thm.maxidx_of_cterm cu); val (tyenv', maxidx'') = Sign.typ_unify thy (T, U) (tyenv, maxidx') handle Type.TUNIFY => let val t = Var (xi, T); val u = Thm.term_of cu; in raise THM ("infer_instantiate_types: type " ^ Syntax.string_of_typ ctxt (Envir.norm_type tyenv T) ^ " of variable " ^ Syntax.string_of_term ctxt (Term.map_types (Envir.norm_type tyenv) t) ^ "\ncannot be unified with type " ^ Syntax.string_of_typ ctxt (Envir.norm_type tyenv U) ^ " of term " ^ Syntax.string_of_term ctxt (Term.map_types (Envir.norm_type tyenv) u), 0, [th]) end; in (tyenv', maxidx'') end; val (tyenv, _) = fold infer args (Vartab.empty, 0); val instT = Vartab.fold (fn (xi, (S, T)) => cons ((xi, S), Thm.ctyp_of ctxt (Envir.norm_type tyenv T))) tyenv []; val inst = args |> map (fn ((xi, T), cu) => ((xi, Envir.norm_type tyenv T), Thm.instantiate_cterm (instT, []) (Thm.transfer_cterm thy cu))); in instantiate_normalize (instT, inst) th end handle CTERM (msg, _) => raise THM (msg, 0, [raw_th]) | TERM (msg, _) => raise THM (msg, 0, [raw_th]) | TYPE (msg, _, _) => raise THM (msg, 0, [raw_th]); fun infer_instantiate _ [] th = th | infer_instantiate ctxt args th = let val vars = Term.add_vars (Thm.full_prop_of th) []; val dups = duplicates (eq_fst op =) vars; val _ = null dups orelse raise THM ("infer_instantiate: inconsistent types for variables " ^ commas_quote (map (Syntax.string_of_term (Config.put show_types true ctxt) o Var) dups), 0, [th]); val args' = args |> map_filter (fn (xi, cu) => AList.lookup (op =) vars xi |> Option.map (fn T => ((xi, T), cu))); in infer_instantiate_types ctxt args' th end; fun infer_instantiate' ctxt args th = let val vars = build_rev (Term.add_vars (Thm.full_prop_of th)); val args' = zip_options vars args handle ListPair.UnequalLengths => raise THM ("infer_instantiate': more instantiations than variables in thm", 0, [th]); in infer_instantiate_types ctxt args' th end; (** renaming of bound variables **) (* replace bound variables x_i in thm by y_i *) (* where vs = [(x_1, y_1), ..., (x_n, y_n)] *) fun rename_bvars [] thm = thm | rename_bvars vs thm = let fun rename (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, rename t) | rename (t $ u) = rename t $ rename u | rename a = a; in Thm.renamed_prop (rename (Thm.prop_of thm)) thm end; (* renaming in left-to-right order *) fun rename_bvars' xs thm = let fun rename [] t = ([], t) | rename (x' :: xs) (Abs (x, T, t)) = let val (xs', t') = rename xs t in (xs', Abs (the_default x x', T, t')) end | rename xs (t $ u) = let val (xs', t') = rename xs t; val (xs'', u') = rename xs' u; in (xs'', t' $ u') end | rename xs a = (xs, a); in (case rename xs (Thm.prop_of thm) of ([], prop') => Thm.renamed_prop prop' thm | _ => error "More names than abstractions in theorem") end; end; structure Basic_Drule: BASIC_DRULE = Drule; open Basic_Drule; diff --git a/src/Pure/more_thm.ML b/src/Pure/more_thm.ML --- a/src/Pure/more_thm.ML +++ b/src/Pure/more_thm.ML @@ -1,790 +1,781 @@ (* Title: Pure/more_thm.ML Author: Makarius Further operations on type ctyp/cterm/thm, outside the inference kernel. *) infix aconvc; signature BASIC_THM = sig include BASIC_THM val show_consts: bool Config.T val show_hyps: bool Config.T val show_tags: bool Config.T structure Ctermtab: TABLE structure Thmtab: TABLE val aconvc: cterm * cterm -> bool type attribute = Context.generic * thm -> Context.generic option * thm option end; signature THM = sig include THM structure Ctermtab: TABLE structure Thmtab: TABLE val eq_ctyp: ctyp * ctyp -> bool val aconvc: cterm * cterm -> bool val add_tvars: thm -> ctyp Term_Subst.TVars.table -> ctyp Term_Subst.TVars.table val add_vars: thm -> cterm Term_Subst.Vars.table -> cterm Term_Subst.Vars.table val frees_of: thm -> cterm list val dest_funT: ctyp -> ctyp * ctyp val strip_type: ctyp -> ctyp list * ctyp val all_name: Proof.context -> string * cterm -> cterm -> cterm val all: Proof.context -> cterm -> cterm -> cterm val mk_binop: cterm -> cterm -> cterm -> cterm val dest_binop: cterm -> cterm * cterm val dest_implies: cterm -> cterm * cterm val dest_equals: cterm -> cterm * cterm val dest_equals_lhs: cterm -> cterm val dest_equals_rhs: cterm -> cterm val lhs_of: thm -> cterm val rhs_of: thm -> cterm val fast_term_ord: cterm ord val term_ord: cterm ord val thm_ord: thm ord val cterm_cache: (cterm -> 'a) -> cterm -> 'a val thm_cache: (thm -> 'a) -> thm -> 'a val is_reflexive: thm -> bool val eq_thm: thm * thm -> bool val eq_thm_prop: thm * thm -> bool val eq_thm_strict: thm * thm -> bool val equiv_thm: theory -> thm * thm -> bool val class_triv: theory -> class -> thm val of_sort: ctyp * sort -> thm list val is_dummy: thm -> bool val add_thm: thm -> thm list -> thm list val del_thm: thm -> thm list -> thm list val merge_thms: thm list * thm list -> thm list val item_net: thm Item_Net.T val item_net_intro: thm Item_Net.T val item_net_elim: thm Item_Net.T val declare_hyps: cterm -> Proof.context -> Proof.context val assume_hyps: cterm -> Proof.context -> thm * Proof.context val unchecked_hyps: Proof.context -> Proof.context val restore_hyps: Proof.context -> Proof.context -> Proof.context val undeclared_hyps: Context.generic -> thm -> term list val check_hyps: Context.generic -> thm -> thm val declare_term_sorts: term -> Proof.context -> Proof.context val extra_shyps': Proof.context -> thm -> sort list val check_shyps: Proof.context -> thm -> thm val weaken_sorts': Proof.context -> cterm -> cterm val elim_implies: thm -> thm -> thm val forall_intr_name: string * cterm -> thm -> thm val forall_elim_var: int -> thm -> thm val forall_elim_vars: int -> thm -> thm val instantiate_frees: ((string * sort) * ctyp) list * ((string * typ) * cterm) list -> thm -> thm val instantiate': ctyp option list -> cterm option list -> thm -> thm val forall_intr_frees: thm -> thm val unvarify_global: theory -> thm -> thm val unvarify_axiom: theory -> string -> thm val rename_params_rule: string list * int -> thm -> thm val rename_boundvars: term -> term -> thm -> thm val add_axiom: Proof.context -> binding * term -> theory -> (string * thm) * theory val add_axiom_global: binding * term -> theory -> (string * thm) * theory val add_def: Defs.context -> bool -> bool -> binding * term -> theory -> (string * thm) * theory val add_def_global: bool -> bool -> binding * term -> theory -> (string * thm) * theory type attribute = Context.generic * thm -> Context.generic option * thm option type binding = binding * attribute list val tag_rule: string * string -> thm -> thm val untag_rule: string -> thm -> thm val is_free_dummy: thm -> bool val tag_free_dummy: thm -> thm val def_name: string -> string val def_name_optional: string -> string -> string val def_binding: Binding.binding -> Binding.binding val def_binding_optional: Binding.binding -> Binding.binding -> Binding.binding val make_def_binding: bool -> Binding.binding -> Binding.binding val has_name_hint: thm -> bool val get_name_hint: thm -> string val put_name_hint: string -> thm -> thm val theoremK: string val legacy_get_kind: thm -> string val kind_rule: string -> thm -> thm val rule_attribute: thm list -> (Context.generic -> thm -> thm) -> attribute val declaration_attribute: (thm -> Context.generic -> Context.generic) -> attribute val mixed_attribute: (Context.generic * thm -> Context.generic * thm) -> attribute val apply_attribute: attribute -> thm -> Context.generic -> thm * Context.generic val attribute_declaration: attribute -> thm -> Context.generic -> Context.generic val theory_attributes: attribute list -> thm -> theory -> thm * theory val proof_attributes: attribute list -> thm -> Proof.context -> thm * Proof.context val no_attributes: 'a -> 'a * 'b list val simple_fact: 'a -> ('a * 'b list) list val tag: string * string -> attribute val untag: string -> attribute val kind: string -> attribute val register_proofs: thm list lazy -> theory -> theory val consolidate_theory: theory -> unit val expose_theory: theory -> unit val show_consts: bool Config.T val show_hyps: bool Config.T val show_tags: bool Config.T val pretty_thm_raw: Proof.context -> {quote: bool, show_hyps: bool} -> thm -> Pretty.T val pretty_thm: Proof.context -> thm -> Pretty.T val pretty_thm_item: Proof.context -> thm -> Pretty.T val pretty_thm_global: theory -> thm -> Pretty.T val string_of_thm: Proof.context -> thm -> string val string_of_thm_global: theory -> thm -> string end; structure Thm: THM = struct (** basic operations **) (* collecting ctyps and cterms *) val eq_ctyp = op = o apply2 Thm.typ_of; val op aconvc = op aconv o apply2 Thm.term_of; val add_tvars = - Thm.fold_atomic_ctyps {hyps = false} (fn cT => fn tab => - (case Thm.typ_of cT of - TVar v => - if not (Term_Subst.TVars.defined tab v) - then Term_Subst.TVars.update (v, cT) tab - else tab - | _ => tab)); + Thm.fold_atomic_ctyps {hyps = false} Term.is_TVar (fn cT => fn tab => + let val v = Term.dest_TVar (Thm.typ_of cT) + in tab |> not (Term_Subst.TVars.defined tab v) ? Term_Subst.TVars.update (v, cT) end); val add_vars = - Thm.fold_atomic_cterms {hyps = false} (fn ct => fn tab => - (case Thm.term_of ct of - Var v => - if not (Term_Subst.Vars.defined tab v) - then Term_Subst.Vars.update (v, ct) tab - else tab - | _ => tab)); + Thm.fold_atomic_cterms {hyps = false} Term.is_Var (fn ct => fn tab => + let val v = Term.dest_Var (Thm.term_of ct) + in tab |> not (Term_Subst.Vars.defined tab v) ? Term_Subst.Vars.update (v, ct) end); fun frees_of th = - (th, (Term_Subst.Frees.empty, [])) |-> Thm.fold_atomic_cterms {hyps = true} - (fn a => fn (set, list) => - (case Thm.term_of a of - Free v => - if not (Term_Subst.Frees.defined set v) - then (Term_Subst.Frees.add (v, ()) set, a :: list) - else (set, list) - | _ => (set, list))) + (th, (Term_Subst.Frees.empty, [])) |-> Thm.fold_atomic_cterms {hyps = true} Term.is_Free + (fn ct => fn (set, list) => + let val v = Term.dest_Free (Thm.term_of ct) in + if not (Term_Subst.Frees.defined set v) + then (Term_Subst.Frees.add (v, ()) set, ct :: list) + else (set, list) + end) |> #2; (* ctyp operations *) fun dest_funT cT = (case Thm.typ_of cT of Type ("fun", _) => let val [A, B] = Thm.dest_ctyp cT in (A, B) end | T => raise TYPE ("dest_funT", [T], [])); (* ctyp version of strip_type: maps [T1,...,Tn]--->T to ([T1,T2,...,Tn], T) *) fun strip_type cT = (case Thm.typ_of cT of Type ("fun", _) => let val (cT1, cT2) = dest_funT cT; val (cTs, cT') = strip_type cT2 in (cT1 :: cTs, cT') end | _ => ([], cT)); (* cterm operations *) fun all_name ctxt (x, t) A = let val T = Thm.typ_of_cterm t; val all_const = Thm.cterm_of ctxt (Const ("Pure.all", (T --> propT) --> propT)); in Thm.apply all_const (Thm.lambda_name (x, t) A) end; fun all ctxt t A = all_name ctxt ("", t) A; fun mk_binop c a b = Thm.apply (Thm.apply c a) b; fun dest_binop ct = (Thm.dest_arg1 ct, Thm.dest_arg ct); fun dest_implies ct = (case Thm.term_of ct of Const ("Pure.imp", _) $ _ $ _ => dest_binop ct | _ => raise TERM ("dest_implies", [Thm.term_of ct])); fun dest_equals ct = (case Thm.term_of ct of Const ("Pure.eq", _) $ _ $ _ => dest_binop ct | _ => raise TERM ("dest_equals", [Thm.term_of ct])); fun dest_equals_lhs ct = (case Thm.term_of ct of Const ("Pure.eq", _) $ _ $ _ => Thm.dest_arg1 ct | _ => raise TERM ("dest_equals_lhs", [Thm.term_of ct])); fun dest_equals_rhs ct = (case Thm.term_of ct of Const ("Pure.eq", _) $ _ $ _ => Thm.dest_arg ct | _ => raise TERM ("dest_equals_rhs", [Thm.term_of ct])); val lhs_of = dest_equals_lhs o Thm.cprop_of; val rhs_of = dest_equals_rhs o Thm.cprop_of; (* certified term order *) val fast_term_ord = Term_Ord.fast_term_ord o apply2 Thm.term_of; val term_ord = Term_Ord.term_ord o apply2 Thm.term_of; (* thm order: ignores theory context! *) val thm_ord = Term_Ord.fast_term_ord o apply2 Thm.prop_of ||| list_ord (prod_ord Term_Ord.fast_term_ord Term_Ord.fast_term_ord) o apply2 Thm.tpairs_of ||| list_ord Term_Ord.fast_term_ord o apply2 Thm.hyps_of ||| list_ord Term_Ord.sort_ord o apply2 Thm.shyps_of; (* tables and caches *) structure Ctermtab = Table(type key = cterm val ord = fast_term_ord); structure Thmtab = Table(type key = thm val ord = thm_ord); fun cterm_cache f = Cache.create Ctermtab.empty Ctermtab.lookup Ctermtab.update f; fun thm_cache f = Cache.create Thmtab.empty Thmtab.lookup Thmtab.update f; (* equality *) fun is_reflexive th = op aconv (Logic.dest_equals (Thm.prop_of th)) handle TERM _ => false; val eq_thm = is_equal o thm_ord; val eq_thm_prop = op aconv o apply2 Thm.full_prop_of; fun eq_thm_strict ths = eq_thm ths andalso Context.eq_thy_id (apply2 Thm.theory_id ths) andalso op = (apply2 Thm.maxidx_of ths) andalso op = (apply2 Thm.get_tags ths); (* pattern equivalence *) fun equiv_thm thy ths = Pattern.equiv thy (apply2 (Thm.full_prop_of o Thm.transfer thy) ths); (* type classes and sorts *) fun class_triv thy c = Thm.of_class (Thm.global_ctyp_of thy (TVar ((Name.aT, 0), [c])), c); fun of_sort (T, S) = map (fn c => Thm.of_class (T, c)) S; (* misc operations *) fun is_dummy thm = (case try Logic.dest_term (Thm.concl_of thm) of NONE => false | SOME t => Term.is_dummy_pattern (Term.head_of t)); (* collections of theorems in canonical order *) val add_thm = update eq_thm_prop; val del_thm = remove eq_thm_prop; val merge_thms = merge eq_thm_prop; val item_net = Item_Net.init eq_thm_prop (single o Thm.full_prop_of); val item_net_intro = Item_Net.init eq_thm_prop (single o Thm.concl_of); val item_net_elim = Item_Net.init eq_thm_prop (single o Thm.major_prem_of); (** declared hyps and sort hyps **) structure Hyps = Proof_Data ( type T = {checked_hyps: bool, hyps: Termtab.set, shyps: sort Ord_List.T}; fun init _ : T = {checked_hyps = true, hyps = Termtab.empty, shyps = []}; ); fun map_hyps f = Hyps.map (fn {checked_hyps, hyps, shyps} => let val (checked_hyps', hyps', shyps') = f (checked_hyps, hyps, shyps) in {checked_hyps = checked_hyps', hyps = hyps', shyps = shyps'} end); (* hyps *) fun declare_hyps raw_ct ctxt = ctxt |> map_hyps (fn (checked_hyps, hyps, shyps) => let val ct = Thm.transfer_cterm (Proof_Context.theory_of ctxt) raw_ct; val hyps' = Termtab.update (Thm.term_of ct, ()) hyps; in (checked_hyps, hyps', shyps) end); fun assume_hyps ct ctxt = (Thm.assume ct, declare_hyps ct ctxt); val unchecked_hyps = map_hyps (fn (_, hyps, shyps) => (false, hyps, shyps)); fun restore_hyps ctxt = map_hyps (fn (_, hyps, shyps) => (#checked_hyps (Hyps.get ctxt), hyps, shyps)); fun undeclared_hyps context th = Thm.hyps_of th |> filter_out (case context of Context.Theory _ => K false | Context.Proof ctxt => (case Hyps.get ctxt of {checked_hyps = false, ...} => K true | {hyps, ...} => Termtab.defined hyps)); fun check_hyps context th = (case undeclared_hyps context th of [] => th | undeclared => error (Pretty.string_of (Pretty.big_list "Undeclared hyps:" (map (Pretty.item o single o Syntax.pretty_term (Syntax.init_pretty context)) undeclared)))); (* shyps *) fun declare_term_sorts t = map_hyps (fn (checked_hyps, hyps, shyps) => (checked_hyps, hyps, Sorts.insert_term t shyps)); fun extra_shyps' ctxt th = Sorts.subtract (#shyps (Hyps.get ctxt)) (Thm.extra_shyps th); fun check_shyps ctxt raw_th = let val th = Thm.strip_shyps raw_th; val extra_shyps = extra_shyps' ctxt th; in if null extra_shyps then th else error (Pretty.string_of (Pretty.block (Pretty.str "Pending sort hypotheses:" :: Pretty.brk 1 :: Pretty.commas (map (Syntax.pretty_sort ctxt) extra_shyps)))) end; val weaken_sorts' = Thm.weaken_sorts o #shyps o Hyps.get; (** basic derived rules **) (*Elimination of implication A A \ B ------------ B *) fun elim_implies thA thAB = Thm.implies_elim thAB thA; (* forall_intr_name *) fun forall_intr_name (a, x) th = let val th' = Thm.forall_intr x th; val prop' = (case Thm.prop_of th' of all $ Abs (_, T, b) => all $ Abs (a, T, b)); in Thm.renamed_prop prop' th' end; (* forall_elim_var(s) *) local fun dest_all ct = (case Thm.term_of ct of Const ("Pure.all", _) $ Abs (a, _, _) => let val (x, ct') = Thm.dest_abs NONE (Thm.dest_arg ct) in SOME ((a, Thm.ctyp_of_cterm x), ct') end | _ => NONE); fun dest_all_list ct = (case dest_all ct of NONE => [] | SOME (v, ct') => v :: dest_all_list ct'); fun forall_elim_vars_list vars i th = let val used = (Thm.fold_terms {hyps = false} o Term.fold_aterms) (fn Var ((x, j), _) => if i = j then insert (op =) x else I | _ => I) th []; val vars' = (Name.variant_list used (map #1 vars), vars) |> ListPair.map (fn (x, (_, T)) => Thm.var ((x, i), T)); in fold Thm.forall_elim vars' th end; in fun forall_elim_vars i th = forall_elim_vars_list (dest_all_list (Thm.cprop_of th)) i th; fun forall_elim_var i th = let val vars = (case dest_all (Thm.cprop_of th) of SOME (v, _) => [v] | NONE => raise THM ("forall_elim_var", i, [th])); in forall_elim_vars_list vars i th end; end; (* instantiate frees *) fun instantiate_frees ([], []) th = th | instantiate_frees (instT, inst) th = let val idx = Thm.maxidx_of th + 1; fun index ((a, A), b) = (((a, idx), A), b); val insts = (map index instT, map index inst); val tfrees = Symtab.build (fold (Symtab.insert_set o #1 o #1) instT); val frees = Symtab.build (fold (Symtab.insert_set o #1 o #1) inst); val hyps = Thm.chyps_of th; val inst_cterm = Thm.generalize_cterm (tfrees, frees) idx #> Thm.instantiate_cterm insts; in th |> fold_rev Thm.implies_intr hyps |> Thm.generalize (tfrees, frees) idx |> Thm.instantiate insts |> fold (elim_implies o Thm.assume o inst_cterm) hyps end; (* instantiate by left-to-right occurrence of variables *) fun instantiate' cTs cts thm = let fun err msg = raise TYPE ("instantiate': " ^ msg, map_filter (Option.map Thm.typ_of) cTs, map_filter (Option.map Thm.term_of) cts); fun zip_vars xs ys = zip_options xs ys handle ListPair.UnequalLengths => err "more instantiations than variables in thm"; val instT = zip_vars (build_rev (Thm.fold_terms {hyps = false} Term.add_tvars thm)) cTs; val thm' = Thm.instantiate (instT, []) thm; val inst = zip_vars (build_rev (Thm.fold_terms {hyps = false} Term.add_vars thm')) cts; in Thm.instantiate ([], inst) thm' end; (* forall_intr_frees: generalization over all suitable Free variables *) fun forall_intr_frees th = let val fixed0 = Term_Subst.Frees.build (fold Term_Subst.add_frees (Thm.terms_of_tpairs (Thm.tpairs_of th)) #> fold Term_Subst.add_frees (Thm.hyps_of th)); val (_, frees) = - (th, (fixed0, [])) |-> Thm.fold_atomic_cterms {hyps = false} (fn a => fn (fixed, frees) => - (case Thm.term_of a of - Free v => + (th, (fixed0, [])) |-> Thm.fold_atomic_cterms {hyps = false} Term.is_Free + (fn ct => fn (fixed, frees) => + let val v = Term.dest_Free (Thm.term_of ct) in if not (Term_Subst.Frees.defined fixed v) - then (Term_Subst.Frees.add (v, ()) fixed, a :: frees) + then (Term_Subst.Frees.add (v, ()) fixed, ct :: frees) else (fixed, frees) - | _ => (fixed, frees))); + end); in fold Thm.forall_intr frees th end; (* unvarify_global: global schematic variables *) fun unvarify_global thy th = let val prop = Thm.full_prop_of th; val _ = map Logic.unvarify_global (prop :: Thm.hyps_of th) handle TERM (msg, _) => raise THM (msg, 0, [th]); val cert = Thm.global_cterm_of thy; val certT = Thm.global_ctyp_of thy; val instT = Term_Subst.TVars.build (prop |> (Term.fold_types o Term.fold_atyps) (fn T => fn instT => (case T of TVar (v as ((a, _), S)) => if Term_Subst.TVars.defined instT v then instT else Term_Subst.TVars.update (v, TFree (a, S)) instT | _ => instT))); val cinstT = Term_Subst.TVars.map (K certT) instT; val cinst = Term_Subst.Vars.build (prop |> Term.fold_aterms (fn t => fn inst => (case t of Var ((x, i), T) => let val T' = Term_Subst.instantiateT instT T in Term_Subst.Vars.update (((x, i), T'), cert (Free ((x, T')))) inst end | _ => inst))); in Thm.instantiate (Term_Subst.TVars.dest cinstT, Term_Subst.Vars.dest cinst) th end; fun unvarify_axiom thy = unvarify_global thy o Thm.axiom thy; (* user renaming of parameters in a subgoal *) (*The names, if distinct, are used for the innermost parameters of subgoal i; preceding parameters may be renamed to make all parameters distinct.*) fun rename_params_rule (names, i) st = let val (_, Bs, Bi, C) = Thm.dest_state (st, i); val params = map #1 (Logic.strip_params Bi); val short = length params - length names; val names' = if short < 0 then error "More names than parameters in subgoal!" else Name.variant_list names (take short params) @ names; val free_names = Term.fold_aterms (fn Free (x, _) => insert (op =) x | _ => I) Bi []; val Bi' = Logic.list_rename_params names' Bi; in (case duplicates (op =) names of a :: _ => (warning ("Can't rename. Bound variables not distinct: " ^ a); st) | [] => (case inter (op =) names free_names of a :: _ => (warning ("Can't rename. Bound/Free variable clash: " ^ a); st) | [] => Thm.renamed_prop (Logic.list_implies (Bs @ [Bi'], C)) st)) end; (* preservation of bound variable names *) fun rename_boundvars pat obj th = (case Term.rename_abs pat obj (Thm.prop_of th) of NONE => th | SOME prop' => Thm.renamed_prop prop' th); (** specification primitives **) (* rules *) fun stripped_sorts thy t = let val tfrees = build_rev (Term.add_tfrees t); val tfrees' = map (fn a => (a, [])) (Name.variant_list [] (map #1 tfrees)); val recover = map2 (fn (a', S') => fn (a, S) => (((a', 0), S'), Thm.global_ctyp_of thy (TVar ((a, 0), S)))) tfrees' tfrees; val strip = map (apply2 TFree) (tfrees ~~ tfrees'); val t' = Term.map_types (Term.map_atyps (perhaps (AList.lookup (op =) strip))) t; in (strip, recover, t') end; fun add_axiom ctxt (b, prop) thy = let val _ = Sign.no_vars ctxt prop; val (strip, recover, prop') = stripped_sorts thy prop; val constraints = map (fn (TFree (_, S), T) => (T, S)) strip; val of_sorts = maps (fn (T as TFree (_, S), _) => of_sort (Thm.ctyp_of ctxt T, S)) strip; val thy' = thy |> Theory.add_axiom ctxt (b, Logic.list_implies (maps Logic.mk_of_sort constraints, prop')); val axm_name = Sign.full_name thy' b; val axm' = Thm.axiom thy' axm_name; val thm = Thm.instantiate (recover, []) axm' |> unvarify_global thy' |> fold elim_implies of_sorts; in ((axm_name, thm), thy') end; fun add_axiom_global arg thy = add_axiom (Syntax.init_pretty_global thy) arg thy; fun add_def (context as (ctxt, _)) unchecked overloaded (b, prop) thy = let val _ = Sign.no_vars ctxt prop; val prems = map (Thm.cterm_of ctxt) (Logic.strip_imp_prems prop); val (_, recover, concl') = stripped_sorts thy (Logic.strip_imp_concl prop); val thy' = Theory.add_def context unchecked overloaded (b, concl') thy; val axm_name = Sign.full_name thy' b; val axm' = Thm.axiom thy' axm_name; val thm = Thm.instantiate (recover, []) axm' |> unvarify_global thy' |> fold_rev Thm.implies_intr prems; in ((axm_name, thm), thy') end; fun add_def_global unchecked overloaded arg thy = add_def (Defs.global_context thy) unchecked overloaded arg thy; (** theorem tags **) (* add / delete tags *) fun tag_rule tg = Thm.map_tags (insert (op =) tg); fun untag_rule s = Thm.map_tags (filter_out (fn (s', _) => s = s')); (* free dummy thm -- for abstract closure *) val free_dummyN = "free_dummy"; fun is_free_dummy thm = Properties.defined (Thm.get_tags thm) free_dummyN; val tag_free_dummy = tag_rule (free_dummyN, ""); (* def_name *) fun def_name c = c ^ "_def"; fun def_name_optional c "" = def_name c | def_name_optional _ name = name; val def_binding = Binding.map_name def_name #> Binding.reset_pos; fun def_binding_optional b name = if Binding.is_empty name then def_binding b else name; fun make_def_binding cond b = if cond then def_binding b else Binding.empty; (* unofficial theorem names *) fun has_name_hint thm = AList.defined (op =) (Thm.get_tags thm) Markup.nameN; fun the_name_hint thm = the (AList.lookup (op =) (Thm.get_tags thm) Markup.nameN); fun get_name_hint thm = if has_name_hint thm then the_name_hint thm else "??.unknown"; fun put_name_hint name = untag_rule Markup.nameN #> tag_rule (Markup.nameN, name); (* theorem kinds *) val theoremK = "theorem"; fun legacy_get_kind thm = the_default "" (Properties.get (Thm.get_tags thm) Markup.kindN); fun kind_rule k = tag_rule (Markup.kindN, k) o untag_rule Markup.kindN; (** attributes **) (*attributes subsume any kind of rules or context modifiers*) type attribute = Context.generic * thm -> Context.generic option * thm option; type binding = binding * attribute list; fun rule_attribute ths f (x, th) = (NONE, (case find_first is_free_dummy (th :: ths) of SOME th' => SOME th' | NONE => SOME (f x th))); fun declaration_attribute f (x, th) = (if is_free_dummy th then NONE else SOME (f th x), NONE); fun mixed_attribute f (x, th) = let val (x', th') = f (x, th) in (SOME x', SOME th') end; fun apply_attribute (att: attribute) th x = let val (x', th') = att (x, check_hyps x (Thm.transfer'' x th)) in (the_default th th', the_default x x') end; fun attribute_declaration att th x = #2 (apply_attribute att th x); fun apply_attributes mk dest = let fun app [] th x = (th, x) | app (att :: atts) th x = apply_attribute att th (mk x) ||> dest |-> app atts; in app end; val theory_attributes = apply_attributes Context.Theory Context.the_theory; val proof_attributes = apply_attributes Context.Proof Context.the_proof; fun no_attributes x = (x, []); fun simple_fact x = [(x, [])]; fun tag tg = rule_attribute [] (K (tag_rule tg)); fun untag s = rule_attribute [] (K (untag_rule s)); fun kind k = rule_attribute [] (K (k <> "" ? kind_rule k)); (** forked proofs **) structure Proofs = Theory_Data ( type T = thm list lazy Inttab.table; val empty = Inttab.empty; val extend = I; val merge = Inttab.merge (K true); ); fun reset_proofs thy = if Inttab.is_empty (Proofs.get thy) then NONE else SOME (Proofs.put Inttab.empty thy); val _ = Theory.setup (Theory.at_begin reset_proofs); fun register_proofs ths thy = let val entry = (serial (), Lazy.map_finished (map Thm.trim_context) ths) in (Proofs.map o Inttab.update) entry thy end; fun force_proofs thy = Proofs.get thy |> Inttab.dest |> maps (map (Thm.transfer thy) o Lazy.force o #2); val consolidate_theory = Thm.consolidate o force_proofs; fun expose_theory thy = if Proofterm.export_enabled () then Thm.expose_proofs thy (force_proofs thy) else (); (** print theorems **) (* options *) val show_consts = Config.declare_option_bool ("show_consts", \<^here>); val show_hyps = Config.declare_bool ("show_hyps", \<^here>) (K false); val show_tags = Config.declare_bool ("show_tags", \<^here>) (K false); (* pretty_thm etc. *) fun pretty_tag (name, arg) = Pretty.strs [name, quote arg]; val pretty_tags = Pretty.list "[" "]" o map pretty_tag; fun pretty_thm_raw ctxt {quote, show_hyps = show_hyps'} raw_th = let val show_tags = Config.get ctxt show_tags; val show_hyps = Config.get ctxt show_hyps; val th = raw_th |> perhaps (try (Thm.transfer' ctxt)) |> perhaps (try Thm.strip_shyps); val hyps = if show_hyps then Thm.hyps_of th else undeclared_hyps (Context.Proof ctxt) th; val extra_shyps = extra_shyps' ctxt th; val tags = Thm.get_tags th; val tpairs = Thm.tpairs_of th; val q = if quote then Pretty.quote else I; val prt_term = q o Syntax.pretty_term ctxt; val hlen = length extra_shyps + length hyps + length tpairs; val hsymbs = if hlen = 0 then [] else if show_hyps orelse show_hyps' then [Pretty.brk 2, Pretty.list "[" "]" (map (q o Syntax.pretty_flexpair ctxt) tpairs @ map prt_term hyps @ map (Syntax.pretty_sort ctxt) extra_shyps)] else [Pretty.brk 2, Pretty.str ("[" ^ replicate_string hlen "." ^ "]")]; val tsymbs = if null tags orelse not show_tags then [] else [Pretty.brk 1, pretty_tags tags]; in Pretty.block (prt_term (Thm.prop_of th) :: (hsymbs @ tsymbs)) end; fun pretty_thm ctxt = pretty_thm_raw ctxt {quote = false, show_hyps = true}; fun pretty_thm_item ctxt th = Pretty.item [pretty_thm ctxt th]; fun pretty_thm_global thy = pretty_thm_raw (Syntax.init_pretty_global thy) {quote = false, show_hyps = false}; val string_of_thm = Pretty.string_of oo pretty_thm; val string_of_thm_global = Pretty.string_of oo pretty_thm_global; open Thm; end; structure Basic_Thm: BASIC_THM = Thm; open Basic_Thm; diff --git a/src/Pure/thm.ML b/src/Pure/thm.ML --- a/src/Pure/thm.ML +++ b/src/Pure/thm.ML @@ -1,2374 +1,2377 @@ (* Title: Pure/thm.ML Author: Lawrence C Paulson, Cambridge University Computer Laboratory Author: Makarius The very core of Isabelle's Meta Logic: certified types and terms, derivations, theorems, inference rules (including lifting and resolution), oracles. *) infix 0 RS RSN; signature BASIC_THM = sig type ctyp type cterm exception CTERM of string * cterm list type thm type conv = cterm -> thm exception THM of string * int * thm list val RSN: thm * (int * thm) -> thm val RS: thm * thm -> thm end; signature THM = sig include BASIC_THM (*certified types*) val typ_of: ctyp -> typ val global_ctyp_of: theory -> typ -> ctyp val ctyp_of: Proof.context -> typ -> ctyp val dest_ctyp: ctyp -> ctyp list val dest_ctypN: int -> ctyp -> ctyp val dest_ctyp0: ctyp -> ctyp val dest_ctyp1: ctyp -> ctyp val make_ctyp: ctyp -> ctyp list -> ctyp (*certified terms*) val term_of: cterm -> term val typ_of_cterm: cterm -> typ val ctyp_of_cterm: cterm -> ctyp val maxidx_of_cterm: cterm -> int val global_cterm_of: theory -> term -> cterm val cterm_of: Proof.context -> term -> cterm val renamed_term: term -> cterm -> cterm val dest_comb: cterm -> cterm * cterm val dest_fun: cterm -> cterm val dest_arg: cterm -> cterm val dest_fun2: cterm -> cterm val dest_arg1: cterm -> cterm val dest_abs: string option -> cterm -> cterm * cterm val rename_tvar: indexname -> ctyp -> ctyp val var: indexname * ctyp -> cterm val apply: cterm -> cterm -> cterm val lambda_name: string * cterm -> cterm -> cterm val lambda: cterm -> cterm -> cterm val adjust_maxidx_cterm: int -> cterm -> cterm val incr_indexes_cterm: int -> cterm -> cterm val match: cterm * cterm -> ((indexname * sort) * ctyp) list * ((indexname * typ) * cterm) list val first_order_match: cterm * cterm -> ((indexname * sort) * ctyp) list * ((indexname * typ) * cterm) list (*theorems*) val fold_terms: {hyps: bool} -> (term -> 'a -> 'a) -> thm -> 'a -> 'a - val fold_atomic_ctyps: {hyps: bool} -> (ctyp -> 'a -> 'a) -> thm -> 'a -> 'a - val fold_atomic_cterms: {hyps: bool} -> (cterm -> 'a -> 'a) -> thm -> 'a -> 'a + val fold_atomic_ctyps: {hyps: bool} -> (typ -> bool) -> (ctyp -> 'a -> 'a) -> thm -> 'a -> 'a + val fold_atomic_cterms: {hyps: bool} -> (term -> bool) -> (cterm -> 'a -> 'a) -> thm -> 'a -> 'a val terms_of_tpairs: (term * term) list -> term list val full_prop_of: thm -> term val theory_id: thm -> Context.theory_id val theory_name: thm -> string val maxidx_of: thm -> int val maxidx_thm: thm -> int -> int val shyps_of: thm -> sort Ord_List.T val hyps_of: thm -> term list val prop_of: thm -> term val tpairs_of: thm -> (term * term) list val concl_of: thm -> term val prems_of: thm -> term list val nprems_of: thm -> int val no_prems: thm -> bool val major_prem_of: thm -> term val cprop_of: thm -> cterm val cprem_of: thm -> int -> cterm val cconcl_of: thm -> cterm val cprems_of: thm -> cterm list val chyps_of: thm -> cterm list exception CONTEXT of string * ctyp list * cterm list * thm list * Context.generic option val theory_of_cterm: cterm -> theory val theory_of_thm: thm -> theory val trim_context_ctyp: ctyp -> ctyp val trim_context_cterm: cterm -> cterm val transfer_ctyp: theory -> ctyp -> ctyp val transfer_cterm: theory -> cterm -> cterm val transfer: theory -> thm -> thm val transfer': Proof.context -> thm -> thm val transfer'': Context.generic -> thm -> thm val join_transfer: theory -> thm -> thm val join_transfer_context: Proof.context * thm -> Proof.context * thm val renamed_prop: term -> thm -> thm val weaken: cterm -> thm -> thm val weaken_sorts: sort list -> cterm -> cterm val proof_bodies_of: thm list -> proof_body list val proof_body_of: thm -> proof_body val proof_of: thm -> proof val reconstruct_proof_of: thm -> Proofterm.proof val consolidate: thm list -> unit val expose_proofs: theory -> thm list -> unit val expose_proof: theory -> thm -> unit val future: thm future -> cterm -> thm val thm_deps: thm -> Proofterm.thm Ord_List.T val extra_shyps: thm -> sort list val strip_shyps: thm -> thm val derivation_closed: thm -> bool val derivation_name: thm -> string val derivation_id: thm -> Proofterm.thm_id option val raw_derivation_name: thm -> string val expand_name: thm -> Proofterm.thm_header -> string option val name_derivation: string * Position.T -> thm -> thm val close_derivation: Position.T -> thm -> thm val trim_context: thm -> thm val axiom: theory -> string -> thm val all_axioms_of: theory -> (string * thm) list val get_tags: thm -> Properties.T val map_tags: (Properties.T -> Properties.T) -> thm -> thm val norm_proof: thm -> thm val adjust_maxidx_thm: int -> thm -> thm (*type classes*) val the_classrel: theory -> class * class -> thm val the_arity: theory -> string * sort list * class -> thm val classrel_proof: theory -> class * class -> proof val arity_proof: theory -> string * sort list * class -> proof (*oracles*) val add_oracle: binding * ('a -> cterm) -> theory -> (string * ('a -> thm)) * theory val oracle_space: theory -> Name_Space.T val pretty_oracle: Proof.context -> string -> Pretty.T val extern_oracles: bool -> Proof.context -> (Markup.T * xstring) list val check_oracle: Proof.context -> xstring * Position.T -> string (*inference rules*) val assume: cterm -> thm val implies_intr: cterm -> thm -> thm val implies_elim: thm -> thm -> thm val forall_intr: cterm -> thm -> thm val forall_elim: cterm -> thm -> thm val reflexive: cterm -> thm val symmetric: thm -> thm val transitive: thm -> thm -> thm val beta_conversion: bool -> conv val eta_conversion: conv val eta_long_conversion: conv val abstract_rule: string -> cterm -> thm -> thm val combination: thm -> thm -> thm val equal_intr: thm -> thm -> thm val equal_elim: thm -> thm -> thm val solve_constraints: thm -> thm val flexflex_rule: Proof.context option -> thm -> thm Seq.seq val generalize: Symtab.set * Symtab.set -> int -> thm -> thm val generalize_cterm: Symtab.set * Symtab.set -> int -> cterm -> cterm val generalize_ctyp: Symtab.set -> int -> ctyp -> ctyp val instantiate: ((indexname * sort) * ctyp) list * ((indexname * typ) * cterm) list -> thm -> thm val instantiate_cterm: ((indexname * sort) * ctyp) list * ((indexname * typ) * cterm) list -> cterm -> cterm val trivial: cterm -> thm val of_class: ctyp * class -> thm val unconstrainT: thm -> thm val varifyT_global': Term_Subst.TFrees.set -> thm -> ((string * sort) * indexname) list * thm val varifyT_global: thm -> thm val legacy_freezeT: thm -> thm val plain_prop_of: thm -> term val dest_state: thm * int -> (term * term) list * term list * term * term val lift_rule: cterm -> thm -> thm val incr_indexes: int -> thm -> thm val assumption: Proof.context option -> int -> thm -> thm Seq.seq val eq_assumption: int -> thm -> thm val rotate_rule: int -> int -> thm -> thm val permute_prems: int -> int -> thm -> thm val bicompose: Proof.context option -> {flatten: bool, match: bool, incremented: bool} -> bool * thm * int -> int -> thm -> thm Seq.seq val biresolution: Proof.context option -> bool -> (bool * thm) list -> int -> thm -> thm Seq.seq val thynames_of_arity: theory -> string * class -> string list val add_classrel: thm -> theory -> theory val add_arity: thm -> theory -> theory end; structure Thm: THM = struct (*** Certified terms and types ***) (** certified types **) datatype ctyp = Ctyp of {cert: Context.certificate, T: typ, maxidx: int, sorts: sort Ord_List.T}; fun typ_of (Ctyp {T, ...}) = T; fun global_ctyp_of thy raw_T = let val T = Sign.certify_typ thy raw_T; val maxidx = Term.maxidx_of_typ T; val sorts = Sorts.insert_typ T []; in Ctyp {cert = Context.Certificate thy, T = T, maxidx = maxidx, sorts = sorts} end; val ctyp_of = global_ctyp_of o Proof_Context.theory_of; fun dest_ctyp (Ctyp {cert, T = Type (_, Ts), maxidx, sorts}) = map (fn T => Ctyp {cert = cert, T = T, maxidx = maxidx, sorts = sorts}) Ts | dest_ctyp cT = raise TYPE ("dest_ctyp", [typ_of cT], []); fun dest_ctypN n (Ctyp {cert, T, maxidx, sorts}) = let fun err () = raise TYPE ("dest_ctypN", [T], []) in (case T of Type (_, Ts) => Ctyp {cert = cert, T = nth Ts n handle General.Subscript => err (), maxidx = maxidx, sorts = sorts} | _ => err ()) end; val dest_ctyp0 = dest_ctypN 0; val dest_ctyp1 = dest_ctypN 1; fun join_certificate_ctyp (Ctyp {cert, ...}) cert0 = Context.join_certificate (cert0, cert); fun union_sorts_ctyp (Ctyp {sorts, ...}) sorts0 = Sorts.union sorts0 sorts; fun maxidx_ctyp (Ctyp {maxidx, ...}) maxidx0 = Int.max (maxidx0, maxidx); fun make_ctyp (Ctyp {cert, T, maxidx = _, sorts = _}) cargs = let val As = map typ_of cargs; fun err () = raise TYPE ("make_ctyp", T :: As, []); in (case T of Type (a, args) => Ctyp { cert = fold join_certificate_ctyp cargs cert, maxidx = fold maxidx_ctyp cargs ~1, sorts = fold union_sorts_ctyp cargs [], T = if length args = length cargs then Type (a, As) else err ()} | _ => err ()) end; (** certified terms **) (*certified terms with checked typ, maxidx, and sorts*) datatype cterm = Cterm of {cert: Context.certificate, t: term, T: typ, maxidx: int, sorts: sort Ord_List.T}; exception CTERM of string * cterm list; fun term_of (Cterm {t, ...}) = t; fun typ_of_cterm (Cterm {T, ...}) = T; fun ctyp_of_cterm (Cterm {cert, T, maxidx, sorts, ...}) = Ctyp {cert = cert, T = T, maxidx = maxidx, sorts = sorts}; fun maxidx_of_cterm (Cterm {maxidx, ...}) = maxidx; fun global_cterm_of thy tm = let val (t, T, maxidx) = Sign.certify_term thy tm; val sorts = Sorts.insert_term t []; in Cterm {cert = Context.Certificate thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end; val cterm_of = global_cterm_of o Proof_Context.theory_of; fun join_certificate0 (Cterm {cert = cert1, ...}, Cterm {cert = cert2, ...}) = Context.join_certificate (cert1, cert2); fun renamed_term t' (Cterm {cert, t, T, maxidx, sorts}) = if t aconv t' then Cterm {cert = cert, t = t', T = T, maxidx = maxidx, sorts = sorts} else raise TERM ("renamed_term: terms disagree", [t, t']); (* destructors *) fun dest_comb (Cterm {t = c $ a, T, cert, maxidx, sorts}) = let val A = Term.argument_type_of c 0 in (Cterm {t = c, T = A --> T, cert = cert, maxidx = maxidx, sorts = sorts}, Cterm {t = a, T = A, cert = cert, maxidx = maxidx, sorts = sorts}) end | dest_comb ct = raise CTERM ("dest_comb", [ct]); fun dest_fun (Cterm {t = c $ _, T, cert, maxidx, sorts}) = let val A = Term.argument_type_of c 0 in Cterm {t = c, T = A --> T, cert = cert, maxidx = maxidx, sorts = sorts} end | dest_fun ct = raise CTERM ("dest_fun", [ct]); fun dest_arg (Cterm {t = c $ a, T = _, cert, maxidx, sorts}) = let val A = Term.argument_type_of c 0 in Cterm {t = a, T = A, cert = cert, maxidx = maxidx, sorts = sorts} end | dest_arg ct = raise CTERM ("dest_arg", [ct]); fun dest_fun2 (Cterm {t = c $ _ $ _, T, cert, maxidx, sorts}) = let val A = Term.argument_type_of c 0; val B = Term.argument_type_of c 1; in Cterm {t = c, T = A --> B --> T, cert = cert, maxidx = maxidx, sorts = sorts} end | dest_fun2 ct = raise CTERM ("dest_fun2", [ct]); fun dest_arg1 (Cterm {t = c $ a $ _, T = _, cert, maxidx, sorts}) = let val A = Term.argument_type_of c 0 in Cterm {t = a, T = A, cert = cert, maxidx = maxidx, sorts = sorts} end | dest_arg1 ct = raise CTERM ("dest_arg1", [ct]); fun dest_abs a (Cterm {t = Abs (x, T, t), T = Type ("fun", [_, U]), cert, maxidx, sorts}) = let val (y', t') = Term.dest_abs (the_default x a, T, t) in (Cterm {t = Free (y', T), T = T, cert = cert, maxidx = maxidx, sorts = sorts}, Cterm {t = t', T = U, cert = cert, maxidx = maxidx, sorts = sorts}) end | dest_abs _ ct = raise CTERM ("dest_abs", [ct]); (* constructors *) fun rename_tvar (a, i) (Ctyp {cert, T, maxidx, sorts}) = let val S = (case T of TFree (_, S) => S | TVar (_, S) => S | _ => raise TYPE ("rename_tvar: no variable", [T], [])); val _ = if i < 0 then raise TYPE ("rename_tvar: bad index", [TVar ((a, i), S)], []) else (); in Ctyp {cert = cert, T = TVar ((a, i), S), maxidx = Int.max (i, maxidx), sorts = sorts} end; fun var ((x, i), Ctyp {cert, T, maxidx, sorts}) = if i < 0 then raise TERM ("var: bad index", [Var ((x, i), T)]) else Cterm {cert = cert, t = Var ((x, i), T), T = T, maxidx = Int.max (i, maxidx), sorts = sorts}; fun apply (cf as Cterm {t = f, T = Type ("fun", [dty, rty]), maxidx = maxidx1, sorts = sorts1, ...}) (cx as Cterm {t = x, T, maxidx = maxidx2, sorts = sorts2, ...}) = if T = dty then Cterm {cert = join_certificate0 (cf, cx), t = f $ x, T = rty, maxidx = Int.max (maxidx1, maxidx2), sorts = Sorts.union sorts1 sorts2} else raise CTERM ("apply: types don't agree", [cf, cx]) | apply cf cx = raise CTERM ("apply: first arg is not a function", [cf, cx]); fun lambda_name (x, ct1 as Cterm {t = t1, T = T1, maxidx = maxidx1, sorts = sorts1, ...}) (ct2 as Cterm {t = t2, T = T2, maxidx = maxidx2, sorts = sorts2, ...}) = let val t = Term.lambda_name (x, t1) t2 in Cterm {cert = join_certificate0 (ct1, ct2), t = t, T = T1 --> T2, maxidx = Int.max (maxidx1, maxidx2), sorts = Sorts.union sorts1 sorts2} end; fun lambda t u = lambda_name ("", t) u; (* indexes *) fun adjust_maxidx_cterm i (ct as Cterm {cert, t, T, maxidx, sorts}) = if maxidx = i then ct else if maxidx < i then Cterm {maxidx = i, cert = cert, t = t, T = T, sorts = sorts} else Cterm {maxidx = Int.max (maxidx_of_term t, i), cert = cert, t = t, T = T, sorts = sorts}; fun incr_indexes_cterm i (ct as Cterm {cert, t, T, maxidx, sorts}) = if i < 0 then raise CTERM ("negative increment", [ct]) else if i = 0 then ct else Cterm {cert = cert, t = Logic.incr_indexes ([], [], i) t, T = Logic.incr_tvar i T, maxidx = maxidx + i, sorts = sorts}; (*** Derivations and Theorems ***) (* sort constraints *) type constraint = {theory: theory, typ: typ, sort: sort}; local val constraint_ord : constraint ord = Context.theory_id_ord o apply2 (Context.theory_id o #theory) ||| Term_Ord.typ_ord o apply2 #typ ||| Term_Ord.sort_ord o apply2 #sort; val smash_atyps = map_atyps (fn TVar (_, S) => Term.aT S | TFree (_, S) => Term.aT S | T => T); in val union_constraints = Ord_List.union constraint_ord; fun insert_constraints thy (T, S) = let val ignored = S = [] orelse (case T of TFree (_, S') => S = S' | TVar (_, S') => S = S' | _ => false); in if ignored then I else Ord_List.insert constraint_ord {theory = thy, typ = smash_atyps T, sort = S} end; fun insert_constraints_env thy env = let val tyenv = Envir.type_env env; fun insert ([], _) = I | insert (S, T) = insert_constraints thy (Envir.norm_type tyenv T, S); in tyenv |> Vartab.fold (insert o #2) end; end; (* datatype thm *) datatype thm = Thm of deriv * (*derivation*) {cert: Context.certificate, (*background theory certificate*) tags: Properties.T, (*additional annotations/comments*) maxidx: int, (*maximum index of any Var or TVar*) constraints: constraint Ord_List.T, (*implicit proof obligations for sort constraints*) shyps: sort Ord_List.T, (*sort hypotheses*) hyps: term Ord_List.T, (*hypotheses*) tpairs: (term * term) list, (*flex-flex pairs*) prop: term} (*conclusion*) and deriv = Deriv of {promises: (serial * thm future) Ord_List.T, body: Proofterm.proof_body}; type conv = cterm -> thm; (*errors involving theorems*) exception THM of string * int * thm list; fun rep_thm (Thm (_, args)) = args; fun fold_terms h f (Thm (_, {tpairs, prop, hyps, ...})) = fold (fn (t, u) => f t #> f u) tpairs #> f prop #> #hyps h ? fold f hyps; -fun fold_atomic_ctyps h f (th as Thm (_, {cert, maxidx, shyps, ...})) = +fun fold_atomic_ctyps h g f (th as Thm (_, {cert, maxidx, shyps, ...})) = let fun ctyp T = Ctyp {cert = cert, T = T, maxidx = maxidx, sorts = shyps} - in (fold_terms h o fold_types o fold_atyps) (f o ctyp) th end; + in (fold_terms h o fold_types o fold_atyps) (fn T => if g T then f (ctyp T) else I) th end; -fun fold_atomic_cterms h f (th as Thm (_, {cert, maxidx, shyps, ...})) = - let fun cterm t T = Cterm {cert = cert, t = t, T = T, maxidx = maxidx, sorts = shyps} in +fun fold_atomic_cterms h g f (th as Thm (_, {cert, maxidx, shyps, ...})) = + let + fun cterm t T = Cterm {cert = cert, t = t, T = T, maxidx = maxidx, sorts = shyps}; + fun apply t T = if g t then f (cterm t T) else I; + in (fold_terms h o fold_aterms) - (fn t as Const (_, T) => f (cterm t T) - | t as Free (_, T) => f (cterm t T) - | t as Var (_, T) => f (cterm t T) + (fn t as Const (_, T) => apply t T + | t as Free (_, T) => apply t T + | t as Var (_, T) => apply t T | _ => I) th end; fun terms_of_tpairs tpairs = fold_rev (fn (t, u) => cons t o cons u) tpairs []; fun eq_tpairs ((t, u), (t', u')) = t aconv t' andalso u aconv u'; fun union_tpairs ts us = Library.merge eq_tpairs (ts, us); val maxidx_tpairs = fold (fn (t, u) => Term.maxidx_term t #> Term.maxidx_term u); fun attach_tpairs tpairs prop = Logic.list_implies (map Logic.mk_equals tpairs, prop); fun full_prop_of (Thm (_, {tpairs, prop, ...})) = attach_tpairs tpairs prop; val union_hyps = Ord_List.union Term_Ord.fast_term_ord; val insert_hyps = Ord_List.insert Term_Ord.fast_term_ord; val remove_hyps = Ord_List.remove Term_Ord.fast_term_ord; fun join_certificate1 (Cterm {cert = cert1, ...}, Thm (_, {cert = cert2, ...})) = Context.join_certificate (cert1, cert2); fun join_certificate2 (Thm (_, {cert = cert1, ...}), Thm (_, {cert = cert2, ...})) = Context.join_certificate (cert1, cert2); (* basic components *) val cert_of = #cert o rep_thm; val theory_id = Context.certificate_theory_id o cert_of; val theory_name = Context.theory_id_name o theory_id; val maxidx_of = #maxidx o rep_thm; fun maxidx_thm th i = Int.max (maxidx_of th, i); val shyps_of = #shyps o rep_thm; val hyps_of = #hyps o rep_thm; val prop_of = #prop o rep_thm; val tpairs_of = #tpairs o rep_thm; val concl_of = Logic.strip_imp_concl o prop_of; val prems_of = Logic.strip_imp_prems o prop_of; val nprems_of = Logic.count_prems o prop_of; fun no_prems th = nprems_of th = 0; fun major_prem_of th = (case prems_of th of prem :: _ => Logic.strip_assums_concl prem | [] => raise THM ("major_prem_of: rule with no premises", 0, [th])); fun cprop_of (Thm (_, {cert, maxidx, shyps, prop, ...})) = Cterm {cert = cert, maxidx = maxidx, T = propT, t = prop, sorts = shyps}; fun cprem_of (th as Thm (_, {cert, maxidx, shyps, prop, ...})) i = Cterm {cert = cert, maxidx = maxidx, T = propT, sorts = shyps, t = Logic.nth_prem (i, prop) handle TERM _ => raise THM ("cprem_of", i, [th])}; fun cconcl_of (th as Thm (_, {cert, maxidx, shyps, ...})) = Cterm {cert = cert, maxidx = maxidx, T = propT, sorts = shyps, t = concl_of th}; fun cprems_of (th as Thm (_, {cert, maxidx, shyps, ...})) = map (fn t => Cterm {cert = cert, maxidx = maxidx, T = propT, sorts = shyps, t = t}) (prems_of th); fun chyps_of (Thm (_, {cert, shyps, hyps, ...})) = map (fn t => Cterm {cert = cert, maxidx = ~1, T = propT, sorts = shyps, t = t}) hyps; (* implicit theory context *) exception CONTEXT of string * ctyp list * cterm list * thm list * Context.generic option; fun theory_of_cterm (ct as Cterm {cert, ...}) = Context.certificate_theory cert handle ERROR msg => raise CONTEXT (msg, [], [ct], [], NONE); fun theory_of_thm th = Context.certificate_theory (cert_of th) handle ERROR msg => raise CONTEXT (msg, [], [], [th], NONE); fun trim_context_ctyp cT = (case cT of Ctyp {cert = Context.Certificate_Id _, ...} => cT | Ctyp {cert = Context.Certificate thy, T, maxidx, sorts} => Ctyp {cert = Context.Certificate_Id (Context.theory_id thy), T = T, maxidx = maxidx, sorts = sorts}); fun trim_context_cterm ct = (case ct of Cterm {cert = Context.Certificate_Id _, ...} => ct | Cterm {cert = Context.Certificate thy, t, T, maxidx, sorts} => Cterm {cert = Context.Certificate_Id (Context.theory_id thy), t = t, T = T, maxidx = maxidx, sorts = sorts}); fun trim_context_thm th = (case th of Thm (_, {constraints = _ :: _, ...}) => raise THM ("trim_context: pending sort constraints", 0, [th]) | Thm (_, {cert = Context.Certificate_Id _, ...}) => th | Thm (der, {cert = Context.Certificate thy, tags, maxidx, constraints = [], shyps, hyps, tpairs, prop}) => Thm (der, {cert = Context.Certificate_Id (Context.theory_id thy), tags = tags, maxidx = maxidx, constraints = [], shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop})); fun transfer_ctyp thy' cT = let val Ctyp {cert, T, maxidx, sorts} = cT; val _ = Context.subthy_id (Context.certificate_theory_id cert, Context.theory_id thy') orelse raise CONTEXT ("Cannot transfer: not a super theory", [cT], [], [], SOME (Context.Theory thy')); val cert' = Context.join_certificate (Context.Certificate thy', cert); in if Context.eq_certificate (cert, cert') then cT else Ctyp {cert = cert', T = T, maxidx = maxidx, sorts = sorts} end; fun transfer_cterm thy' ct = let val Cterm {cert, t, T, maxidx, sorts} = ct; val _ = Context.subthy_id (Context.certificate_theory_id cert, Context.theory_id thy') orelse raise CONTEXT ("Cannot transfer: not a super theory", [], [ct], [], SOME (Context.Theory thy')); val cert' = Context.join_certificate (Context.Certificate thy', cert); in if Context.eq_certificate (cert, cert') then ct else Cterm {cert = cert', t = t, T = T, maxidx = maxidx, sorts = sorts} end; fun transfer thy' th = let val Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop}) = th; val _ = Context.subthy_id (Context.certificate_theory_id cert, Context.theory_id thy') orelse raise CONTEXT ("Cannot transfer: not a super theory", [], [], [th], SOME (Context.Theory thy')); val cert' = Context.join_certificate (Context.Certificate thy', cert); in if Context.eq_certificate (cert, cert') then th else Thm (der, {cert = cert', tags = tags, maxidx = maxidx, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop}) end; val transfer' = transfer o Proof_Context.theory_of; val transfer'' = transfer o Context.theory_of; fun join_transfer thy th = (Context.subthy_id (theory_id th, Context.theory_id thy) ? transfer thy) th; fun join_transfer_context (ctxt, th) = if Context.subthy_id (theory_id th, Context.theory_id (Proof_Context.theory_of ctxt)) then (ctxt, transfer' ctxt th) else (Context.raw_transfer (theory_of_thm th) ctxt, th); (* matching *) local fun gen_match match (ct1 as Cterm {t = t1, sorts = sorts1, ...}, ct2 as Cterm {t = t2, sorts = sorts2, maxidx = maxidx2, ...}) = let val cert = join_certificate0 (ct1, ct2); val thy = Context.certificate_theory cert handle ERROR msg => raise CONTEXT (msg, [], [ct1, ct2], [], NONE); val (Tinsts, tinsts) = match thy (t1, t2) (Vartab.empty, Vartab.empty); val sorts = Sorts.union sorts1 sorts2; fun mk_cTinst ((a, i), (S, T)) = (((a, i), S), Ctyp {T = T, cert = cert, maxidx = maxidx2, sorts = sorts}); fun mk_ctinst ((x, i), (U, t)) = let val T = Envir.subst_type Tinsts U in (((x, i), T), Cterm {t = t, T = T, cert = cert, maxidx = maxidx2, sorts = sorts}) end; in (Vartab.fold (cons o mk_cTinst) Tinsts [], Vartab.fold (cons o mk_ctinst) tinsts []) end; in val match = gen_match Pattern.match; val first_order_match = gen_match Pattern.first_order_match; end; (*implicit alpha-conversion*) fun renamed_prop prop' (Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop})) = if prop aconv prop' then Thm (der, {cert = cert, tags = tags, maxidx = maxidx, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop'}) else raise TERM ("renamed_prop: props disagree", [prop, prop']); fun make_context ths NONE cert = (Context.Theory (Context.certificate_theory cert) handle ERROR msg => raise CONTEXT (msg, [], [], ths, NONE)) | make_context ths (SOME ctxt) cert = let val thy_id = Context.certificate_theory_id cert; val thy_id' = Context.theory_id (Proof_Context.theory_of ctxt); in if Context.subthy_id (thy_id, thy_id') then Context.Proof ctxt else raise CONTEXT ("Bad context", [], [], ths, SOME (Context.Proof ctxt)) end; fun make_context_certificate ths opt_ctxt cert = let val context = make_context ths opt_ctxt cert; val cert' = Context.Certificate (Context.theory_of context); in (context, cert') end; (*explicit weakening: maps |- B to A |- B*) fun weaken raw_ct th = let val ct as Cterm {t = A, T, sorts, maxidx = maxidxA, ...} = adjust_maxidx_cterm ~1 raw_ct; val Thm (der, {tags, maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = th; in if T <> propT then raise THM ("weaken: assumptions must have type prop", 0, []) else if maxidxA <> ~1 then raise THM ("weaken: assumptions may not contain schematic variables", maxidxA, []) else Thm (der, {cert = join_certificate1 (ct, th), tags = tags, maxidx = maxidx, constraints = constraints, shyps = Sorts.union sorts shyps, hyps = insert_hyps A hyps, tpairs = tpairs, prop = prop}) end; fun weaken_sorts raw_sorts ct = let val Cterm {cert, t, T, maxidx, sorts} = ct; val thy = theory_of_cterm ct; val more_sorts = Sorts.make (map (Sign.certify_sort thy) raw_sorts); val sorts' = Sorts.union sorts more_sorts; in Cterm {cert = cert, t = t, T = T, maxidx = maxidx, sorts = sorts'} end; (** derivations and promised proofs **) fun make_deriv promises oracles thms proof = Deriv {promises = promises, body = PBody {oracles = oracles, thms = thms, proof = proof}}; val empty_deriv = make_deriv [] [] [] MinProof; (* inference rules *) val promise_ord: (serial * thm future) ord = fn ((i, _), (j, _)) => int_ord (j, i); fun bad_proofs i = error ("Illegal level of detail for proof objects: " ^ string_of_int i); fun deriv_rule2 f (Deriv {promises = ps1, body = PBody {oracles = oracles1, thms = thms1, proof = prf1}}) (Deriv {promises = ps2, body = PBody {oracles = oracles2, thms = thms2, proof = prf2}}) = let val ps = Ord_List.union promise_ord ps1 ps2; val oracles = Proofterm.unions_oracles [oracles1, oracles2]; val thms = Proofterm.unions_thms [thms1, thms2]; val prf = (case ! Proofterm.proofs of 2 => f prf1 prf2 | 1 => MinProof | 0 => MinProof | i => bad_proofs i); in make_deriv ps oracles thms prf end; fun deriv_rule1 f = deriv_rule2 (K f) empty_deriv; fun deriv_rule0 make_prf = if ! Proofterm.proofs <= 1 then empty_deriv else deriv_rule1 I (make_deriv [] [] [] (make_prf ())); fun deriv_rule_unconditional f (Deriv {promises, body = PBody {oracles, thms, proof}}) = make_deriv promises oracles thms (f proof); (* fulfilled proofs *) fun raw_promises_of (Thm (Deriv {promises, ...}, _)) = promises; fun join_promises [] = () | join_promises promises = join_promises_of (Future.joins (map snd promises)) and join_promises_of thms = join_promises (Ord_List.make promise_ord (maps raw_promises_of thms)); fun fulfill_body (th as Thm (Deriv {promises, body}, _)) = let val fulfilled_promises = map #1 promises ~~ map fulfill_body (Future.joins (map #2 promises)) in Proofterm.fulfill_norm_proof (theory_of_thm th) fulfilled_promises body end; fun proof_bodies_of thms = (join_promises_of thms; map fulfill_body thms); val proof_body_of = singleton proof_bodies_of; val proof_of = Proofterm.proof_of o proof_body_of; fun reconstruct_proof_of thm = Proofterm.reconstruct_proof (theory_of_thm thm) (prop_of thm) (proof_of thm); val consolidate = ignore o proof_bodies_of; fun expose_proofs thy thms = if Proofterm.export_proof_boxes_required thy then Proofterm.export_proof_boxes (proof_bodies_of (map (transfer thy) thms)) else (); fun expose_proof thy = expose_proofs thy o single; (* future rule *) fun future_result i orig_cert orig_shyps orig_prop thm = let fun err msg = raise THM ("future_result: " ^ msg, 0, [thm]); val Thm (Deriv {promises, ...}, {cert, constraints, shyps, hyps, tpairs, prop, ...}) = thm; val _ = Context.eq_certificate (cert, orig_cert) orelse err "bad theory"; val _ = prop aconv orig_prop orelse err "bad prop"; val _ = null constraints orelse err "bad sort constraints"; val _ = null tpairs orelse err "bad flex-flex constraints"; val _ = null hyps orelse err "bad hyps"; val _ = Sorts.subset (shyps, orig_shyps) orelse err "bad shyps"; val _ = forall (fn (j, _) => i <> j) promises orelse err "bad dependencies"; val _ = join_promises promises; in thm end; fun future future_thm ct = let val Cterm {cert = cert, t = prop, T, maxidx, sorts} = ct; val _ = T <> propT andalso raise CTERM ("future: prop expected", [ct]); val _ = if Proofterm.proofs_enabled () then raise CTERM ("future: proof terms enabled", [ct]) else (); val i = serial (); val future = future_thm |> Future.map (future_result i cert sorts prop); in Thm (make_deriv [(i, future)] [] [] MinProof, {cert = cert, tags = [], maxidx = maxidx, constraints = [], shyps = sorts, hyps = [], tpairs = [], prop = prop}) end; (** Axioms **) fun axiom thy name = (case Name_Space.lookup (Theory.axiom_table thy) name of SOME prop => let val der = deriv_rule0 (fn () => Proofterm.axm_proof name prop); val cert = Context.Certificate thy; val maxidx = maxidx_of_term prop; val shyps = Sorts.insert_term prop []; in Thm (der, {cert = cert, tags = [], maxidx = maxidx, constraints = [], shyps = shyps, hyps = [], tpairs = [], prop = prop}) end | NONE => raise THEORY ("No axiom " ^ quote name, [thy])); fun all_axioms_of thy = map (fn (name, _) => (name, axiom thy name)) (Theory.all_axioms_of thy); (* tags *) val get_tags = #tags o rep_thm; fun map_tags f (Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop})) = Thm (der, {cert = cert, tags = f tags, maxidx = maxidx, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop}); (* technical adjustments *) fun norm_proof (th as Thm (der, args)) = Thm (deriv_rule1 (Proofterm.rew_proof (theory_of_thm th)) der, args); fun adjust_maxidx_thm i (th as Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop})) = if maxidx = i then th else if maxidx < i then Thm (der, {maxidx = i, cert = cert, tags = tags, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop}) else Thm (der, {maxidx = Int.max (maxidx_tpairs tpairs (maxidx_of_term prop), i), cert = cert, tags = tags, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop}); (*** Theory data ***) (* type classes *) structure Aritytab = Table( type key = string * sort list * class; val ord = fast_string_ord o apply2 #1 ||| fast_string_ord o apply2 #3 ||| list_ord Term_Ord.sort_ord o apply2 #2; ); datatype classes = Classes of {classrels: thm Symreltab.table, arities: (thm * string * serial) Aritytab.table}; fun make_classes (classrels, arities) = Classes {classrels = classrels, arities = arities}; val empty_classes = make_classes (Symreltab.empty, Aritytab.empty); (*see Theory.at_begin hook for transitive closure of classrels and arity completion*) fun merge_classes (Classes {classrels = classrels1, arities = arities1}, Classes {classrels = classrels2, arities = arities2}) = let val classrels' = Symreltab.merge (K true) (classrels1, classrels2); val arities' = Aritytab.merge (K true) (arities1, arities2); in make_classes (classrels', arities') end; (* data *) structure Data = Theory_Data ( type T = unit Name_Space.table * (*oracles: authentic derivation names*) classes; (*type classes within the logic*) val empty : T = (Name_Space.empty_table Markup.oracleN, empty_classes); val extend = I; fun merge ((oracles1, sorts1), (oracles2, sorts2)) : T = (Name_Space.merge_tables (oracles1, oracles2), merge_classes (sorts1, sorts2)); ); val get_oracles = #1 o Data.get; val map_oracles = Data.map o apfst; val get_classes = (fn (_, Classes args) => args) o Data.get; val get_classrels = #classrels o get_classes; val get_arities = #arities o get_classes; fun map_classes f = (Data.map o apsnd) (fn Classes {classrels, arities} => make_classes (f (classrels, arities))); fun map_classrels f = map_classes (fn (classrels, arities) => (f classrels, arities)); fun map_arities f = map_classes (fn (classrels, arities) => (classrels, f arities)); (* type classes *) fun the_classrel thy (c1, c2) = (case Symreltab.lookup (get_classrels thy) (c1, c2) of SOME thm => transfer thy thm | NONE => error ("Unproven class relation " ^ Syntax.string_of_classrel (Proof_Context.init_global thy) [c1, c2])); fun the_arity thy (a, Ss, c) = (case Aritytab.lookup (get_arities thy) (a, Ss, c) of SOME (thm, _, _) => transfer thy thm | NONE => error ("Unproven type arity " ^ Syntax.string_of_arity (Proof_Context.init_global thy) (a, Ss, [c]))); val classrel_proof = proof_of oo the_classrel; val arity_proof = proof_of oo the_arity; (* solve sort constraints by pro-forma proof *) local fun union_digest (oracles1, thms1) (oracles2, thms2) = (Proofterm.unions_oracles [oracles1, oracles2], Proofterm.unions_thms [thms1, thms2]); fun thm_digest (Thm (Deriv {body = PBody {oracles, thms, ...}, ...}, _)) = (oracles, thms); fun constraint_digest ({theory = thy, typ, sort, ...}: constraint) = Sorts.of_sort_derivation (Sign.classes_of thy) {class_relation = fn _ => fn _ => fn (digest, c1) => fn c2 => if c1 = c2 then ([], []) else union_digest digest (thm_digest (the_classrel thy (c1, c2))), type_constructor = fn (a, _) => fn dom => fn c => let val arity_digest = thm_digest (the_arity thy (a, (map o map) #2 dom, c)) in (fold o fold) (union_digest o #1) dom arity_digest end, type_variable = fn T => map (pair ([], [])) (Type.sort_of_atyp T)} (typ, sort); in fun solve_constraints (thm as Thm (_, {constraints = [], ...})) = thm | solve_constraints (thm as Thm (der, args)) = let val {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop} = args; val thy = Context.certificate_theory cert; val bad_thys = constraints |> map_filter (fn {theory = thy', ...} => if Context.eq_thy (thy, thy') then NONE else SOME thy'); val () = if null bad_thys then () else raise THEORY ("solve_constraints: bad theories for theorem\n" ^ Syntax.string_of_term_global thy (prop_of thm), thy :: bad_thys); val Deriv {promises, body = PBody {oracles, thms, proof}} = der; val (oracles', thms') = (oracles, thms) |> fold (fold union_digest o constraint_digest) constraints; val body' = PBody {oracles = oracles', thms = thms', proof = proof}; in Thm (Deriv {promises = promises, body = body'}, {constraints = [], cert = cert, tags = tags, maxidx = maxidx, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop}) end; end; (*Dangling sort constraints of a thm*) fun extra_shyps (th as Thm (_, {shyps, ...})) = Sorts.subtract (fold_terms {hyps = true} Sorts.insert_term th []) shyps; (*Remove extra sorts that are witnessed by type signature information*) fun strip_shyps thm = (case thm of Thm (_, {shyps = [], ...}) => thm | Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop}) => let val thy = theory_of_thm thm; val algebra = Sign.classes_of thy; val minimize = Sorts.minimize_sort algebra; val le = Sorts.sort_le algebra; fun lt (S1, S2) = le (S1, S2) andalso not (le (S2, S1)); fun rel (S1, S2) = if S1 = S2 then [] else [(Term.aT S1, S2)]; val present = (fold_terms {hyps = true} o fold_types o fold_atyps_sorts) (insert (eq_fst op =)) thm []; val extra = fold (Sorts.remove_sort o #2) present shyps; val witnessed = Sign.witness_sorts thy present extra; val non_witnessed = fold (Sorts.remove_sort o #2) witnessed extra |> map (`minimize); val extra' = non_witnessed |> map_filter (fn (S, _) => if non_witnessed |> exists (fn (S', _) => lt (S', S)) then NONE else SOME S) |> Sorts.make; val constrs' = non_witnessed |> maps (fn (S1, S2) => let val S0 = the (find_first (fn S => le (S, S1)) extra') in rel (S0, S1) @ rel (S1, S2) end); val constraints' = fold (insert_constraints thy) (witnessed @ constrs') constraints; val shyps' = fold (Sorts.insert_sort o #2) present extra'; in Thm (deriv_rule_unconditional (Proofterm.strip_shyps_proof algebra present witnessed extra') der, {cert = cert, tags = tags, maxidx = maxidx, constraints = constraints', shyps = shyps', hyps = hyps, tpairs = tpairs, prop = prop}) end) |> solve_constraints; (*** Closed theorems with official name ***) (*non-deterministic, depends on unknown promises*) fun derivation_closed (Thm (Deriv {body, ...}, _)) = Proofterm.compact_proof (Proofterm.proof_of body); (*non-deterministic, depends on unknown promises*) fun raw_derivation_name (Thm (Deriv {body, ...}, {shyps, hyps, prop, ...})) = Proofterm.get_approximative_name shyps hyps prop (Proofterm.proof_of body); fun expand_name (Thm (Deriv {body, ...}, {shyps, hyps, prop, ...})) = let val self_id = (case Proofterm.get_identity shyps hyps prop (Proofterm.proof_of body) of NONE => K false | SOME {serial, ...} => fn (header: Proofterm.thm_header) => serial = #serial header); fun expand header = if self_id header orelse #name header = "" then SOME "" else NONE; in expand end; (*deterministic name of finished proof*) fun derivation_name (thm as Thm (_, {shyps, hyps, prop, ...})) = Proofterm.get_approximative_name shyps hyps prop (proof_of thm); (*identified PThm node*) fun derivation_id (thm as Thm (_, {shyps, hyps, prop, ...})) = Proofterm.get_id shyps hyps prop (proof_of thm); (*dependencies of PThm node*) fun thm_deps (thm as Thm (Deriv {promises = [], body = PBody {thms, ...}, ...}, _)) = (case (derivation_id thm, thms) of (SOME {serial = i, ...}, [(j, thm_node)]) => if i = j then Proofterm.thm_node_thms thm_node else thms | _ => thms) | thm_deps thm = raise THM ("thm_deps: bad promises", 0, [thm]); fun name_derivation name_pos = strip_shyps #> (fn thm as Thm (der, args) => let val thy = theory_of_thm thm; val Deriv {promises, body} = der; val {shyps, hyps, prop, tpairs, ...} = args; val _ = null tpairs orelse raise THM ("name_derivation: bad flex-flex constraints", 0, [thm]); val ps = map (apsnd (Future.map fulfill_body)) promises; val (pthm, proof) = Proofterm.thm_proof thy (classrel_proof thy) (arity_proof thy) name_pos shyps hyps prop ps body; val der' = make_deriv [] [] [pthm] proof; in Thm (der', args) end); fun close_derivation pos = solve_constraints #> (fn thm => if not (null (tpairs_of thm)) orelse derivation_closed thm then thm else name_derivation ("", pos) thm); val trim_context = solve_constraints #> trim_context_thm; (*** Oracles ***) fun add_oracle (b, oracle_fn) thy = let val (name, oracles') = Name_Space.define (Context.Theory thy) true (b, ()) (get_oracles thy); val thy' = map_oracles (K oracles') thy; fun invoke_oracle arg = let val Cterm {cert = cert2, t = prop, T, maxidx, sorts} = oracle_fn arg in if T <> propT then raise THM ("Oracle's result must have type prop: " ^ name, 0, []) else let val (oracle, prf) = (case ! Proofterm.proofs of 2 => (((name, Position.thread_data ()), SOME prop), Proofterm.oracle_proof name prop) | 1 => (((name, Position.thread_data ()), SOME prop), MinProof) | 0 => (((name, Position.none), NONE), MinProof) | i => bad_proofs i); in Thm (make_deriv [] [oracle] [] prf, {cert = Context.join_certificate (Context.Certificate thy', cert2), tags = [], maxidx = maxidx, constraints = [], shyps = sorts, hyps = [], tpairs = [], prop = prop}) end end; in ((name, invoke_oracle), thy') end; val oracle_space = Name_Space.space_of_table o get_oracles; fun pretty_oracle ctxt = Name_Space.pretty ctxt (oracle_space (Proof_Context.theory_of ctxt)); fun extern_oracles verbose ctxt = map #1 (Name_Space.markup_table verbose ctxt (get_oracles (Proof_Context.theory_of ctxt))); fun check_oracle ctxt = Name_Space.check (Context.Proof ctxt) (get_oracles (Proof_Context.theory_of ctxt)) #> #1; (*** Meta rules ***) (** primitive rules **) (*The assumption rule A |- A*) fun assume raw_ct = let val Cterm {cert, t = prop, T, maxidx, sorts} = adjust_maxidx_cterm ~1 raw_ct in if T <> propT then raise THM ("assume: prop", 0, []) else if maxidx <> ~1 then raise THM ("assume: variables", maxidx, []) else Thm (deriv_rule0 (fn () => Proofterm.Hyp prop), {cert = cert, tags = [], maxidx = ~1, constraints = [], shyps = sorts, hyps = [prop], tpairs = [], prop = prop}) end; (*Implication introduction [A] : B ------- A \ B *) fun implies_intr (ct as Cterm {t = A, T, maxidx = maxidx1, sorts, ...}) (th as Thm (der, {maxidx = maxidx2, hyps, constraints, shyps, tpairs, prop, ...})) = if T <> propT then raise THM ("implies_intr: assumptions must have type prop", 0, [th]) else Thm (deriv_rule1 (Proofterm.implies_intr_proof A) der, {cert = join_certificate1 (ct, th), tags = [], maxidx = Int.max (maxidx1, maxidx2), constraints = constraints, shyps = Sorts.union sorts shyps, hyps = remove_hyps A hyps, tpairs = tpairs, prop = Logic.mk_implies (A, prop)}); (*Implication elimination A \ B A ------------ B *) fun implies_elim thAB thA = let val Thm (derA, {maxidx = maxidx1, hyps = hypsA, constraints = constraintsA, shyps = shypsA, tpairs = tpairsA, prop = propA, ...}) = thA and Thm (der, {maxidx = maxidx2, hyps, constraints, shyps, tpairs, prop, ...}) = thAB; fun err () = raise THM ("implies_elim: major premise", 0, [thAB, thA]); in (case prop of Const ("Pure.imp", _) $ A $ B => if A aconv propA then Thm (deriv_rule2 (curry Proofterm.%%) der derA, {cert = join_certificate2 (thAB, thA), tags = [], maxidx = Int.max (maxidx1, maxidx2), constraints = union_constraints constraintsA constraints, shyps = Sorts.union shypsA shyps, hyps = union_hyps hypsA hyps, tpairs = union_tpairs tpairsA tpairs, prop = B}) else err () | _ => err ()) end; (*Forall introduction. The Free or Var x must not be free in the hypotheses. [x] : A ------ \x. A *) fun forall_intr (ct as Cterm {maxidx = maxidx1, t = x, T, sorts, ...}) (th as Thm (der, {maxidx = maxidx2, constraints, shyps, hyps, tpairs, prop, ...})) = let fun result a = Thm (deriv_rule1 (Proofterm.forall_intr_proof (a, x) NONE) der, {cert = join_certificate1 (ct, th), tags = [], maxidx = Int.max (maxidx1, maxidx2), constraints = constraints, shyps = Sorts.union sorts shyps, hyps = hyps, tpairs = tpairs, prop = Logic.all_const T $ Abs (a, T, abstract_over (x, prop))}); fun check_occs a x ts = if exists (fn t => Logic.occs (x, t)) ts then raise THM ("forall_intr: variable " ^ quote a ^ " free in assumptions", 0, [th]) else (); in (case x of Free (a, _) => (check_occs a x hyps; check_occs a x (terms_of_tpairs tpairs); result a) | Var ((a, _), _) => (check_occs a x (terms_of_tpairs tpairs); result a) | _ => raise THM ("forall_intr: not a variable", 0, [th])) end; (*Forall elimination \x. A ------ A[t/x] *) fun forall_elim (ct as Cterm {t, T, maxidx = maxidx1, sorts, ...}) (th as Thm (der, {maxidx = maxidx2, constraints, shyps, hyps, tpairs, prop, ...})) = (case prop of Const ("Pure.all", Type ("fun", [Type ("fun", [qary, _]), _])) $ A => if T <> qary then raise THM ("forall_elim: type mismatch", 0, [th]) else Thm (deriv_rule1 (Proofterm.% o rpair (SOME t)) der, {cert = join_certificate1 (ct, th), tags = [], maxidx = Int.max (maxidx1, maxidx2), constraints = constraints, shyps = Sorts.union sorts shyps, hyps = hyps, tpairs = tpairs, prop = Term.betapply (A, t)}) | _ => raise THM ("forall_elim: not quantified", 0, [th])); (* Equality *) (*Reflexivity t \ t *) fun reflexive (Cterm {cert, t, T = _, maxidx, sorts}) = Thm (deriv_rule0 (fn () => Proofterm.reflexive_proof), {cert = cert, tags = [], maxidx = maxidx, constraints = [], shyps = sorts, hyps = [], tpairs = [], prop = Logic.mk_equals (t, t)}); (*Symmetry t \ u ------ u \ t *) fun symmetric (th as Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...})) = (case prop of (eq as Const ("Pure.eq", _)) $ t $ u => Thm (deriv_rule1 Proofterm.symmetric_proof der, {cert = cert, tags = [], maxidx = maxidx, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = eq $ u $ t}) | _ => raise THM ("symmetric", 0, [th])); (*Transitivity t1 \ u u \ t2 ------------------ t1 \ t2 *) fun transitive th1 th2 = let val Thm (der1, {maxidx = maxidx1, hyps = hyps1, constraints = constraints1, shyps = shyps1, tpairs = tpairs1, prop = prop1, ...}) = th1 and Thm (der2, {maxidx = maxidx2, hyps = hyps2, constraints = constraints2, shyps = shyps2, tpairs = tpairs2, prop = prop2, ...}) = th2; fun err msg = raise THM ("transitive: " ^ msg, 0, [th1, th2]); in case (prop1, prop2) of ((eq as Const ("Pure.eq", Type (_, [U, _]))) $ t1 $ u, Const ("Pure.eq", _) $ u' $ t2) => if not (u aconv u') then err "middle term" else Thm (deriv_rule2 (Proofterm.transitive_proof U u) der1 der2, {cert = join_certificate2 (th1, th2), tags = [], maxidx = Int.max (maxidx1, maxidx2), constraints = union_constraints constraints1 constraints2, shyps = Sorts.union shyps1 shyps2, hyps = union_hyps hyps1 hyps2, tpairs = union_tpairs tpairs1 tpairs2, prop = eq $ t1 $ t2}) | _ => err "premises" end; (*Beta-conversion (\x. t) u \ t[u/x] fully beta-reduces the term if full = true *) fun beta_conversion full (Cterm {cert, t, T = _, maxidx, sorts}) = let val t' = if full then Envir.beta_norm t else (case t of Abs (_, _, bodt) $ u => subst_bound (u, bodt) | _ => raise THM ("beta_conversion: not a redex", 0, [])); in Thm (deriv_rule0 (fn () => Proofterm.reflexive_proof), {cert = cert, tags = [], maxidx = maxidx, constraints = [], shyps = sorts, hyps = [], tpairs = [], prop = Logic.mk_equals (t, t')}) end; fun eta_conversion (Cterm {cert, t, T = _, maxidx, sorts}) = Thm (deriv_rule0 (fn () => Proofterm.reflexive_proof), {cert = cert, tags = [], maxidx = maxidx, constraints = [], shyps = sorts, hyps = [], tpairs = [], prop = Logic.mk_equals (t, Envir.eta_contract t)}); fun eta_long_conversion (Cterm {cert, t, T = _, maxidx, sorts}) = Thm (deriv_rule0 (fn () => Proofterm.reflexive_proof), {cert = cert, tags = [], maxidx = maxidx, constraints = [], shyps = sorts, hyps = [], tpairs = [], prop = Logic.mk_equals (t, Envir.eta_long [] t)}); (*The abstraction rule. The Free or Var x must not be free in the hypotheses. The bound variable will be named "a" (since x will be something like x320) t \ u -------------- \x. t \ \x. u *) fun abstract_rule a (Cterm {t = x, T, sorts, ...}) (th as Thm (der, {cert, maxidx, hyps, constraints, shyps, tpairs, prop, ...})) = let val (t, u) = Logic.dest_equals prop handle TERM _ => raise THM ("abstract_rule: premise not an equality", 0, [th]); val result = Thm (deriv_rule1 (Proofterm.abstract_rule_proof (a, x)) der, {cert = cert, tags = [], maxidx = maxidx, constraints = constraints, shyps = Sorts.union sorts shyps, hyps = hyps, tpairs = tpairs, prop = Logic.mk_equals (Abs (a, T, abstract_over (x, t)), Abs (a, T, abstract_over (x, u)))}); fun check_occs a x ts = if exists (fn t => Logic.occs (x, t)) ts then raise THM ("abstract_rule: variable " ^ quote a ^ " free in assumptions", 0, [th]) else (); in (case x of Free (a, _) => (check_occs a x hyps; check_occs a x (terms_of_tpairs tpairs); result) | Var ((a, _), _) => (check_occs a x (terms_of_tpairs tpairs); result) | _ => raise THM ("abstract_rule: not a variable", 0, [th])) end; (*The combination rule f \ g t \ u ------------- f t \ g u *) fun combination th1 th2 = let val Thm (der1, {maxidx = maxidx1, constraints = constraints1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1, prop = prop1, ...}) = th1 and Thm (der2, {maxidx = maxidx2, constraints = constraints2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2, prop = prop2, ...}) = th2; fun chktypes fT tT = (case fT of Type ("fun", [T1, _]) => if T1 <> tT then raise THM ("combination: types", 0, [th1, th2]) else () | _ => raise THM ("combination: not function type", 0, [th1, th2])); in (case (prop1, prop2) of (Const ("Pure.eq", Type ("fun", [fT, _])) $ f $ g, Const ("Pure.eq", Type ("fun", [tT, _])) $ t $ u) => (chktypes fT tT; Thm (deriv_rule2 (Proofterm.combination_proof f g t u) der1 der2, {cert = join_certificate2 (th1, th2), tags = [], maxidx = Int.max (maxidx1, maxidx2), constraints = union_constraints constraints1 constraints2, shyps = Sorts.union shyps1 shyps2, hyps = union_hyps hyps1 hyps2, tpairs = union_tpairs tpairs1 tpairs2, prop = Logic.mk_equals (f $ t, g $ u)})) | _ => raise THM ("combination: premises", 0, [th1, th2])) end; (*Equality introduction A \ B B \ A ---------------- A \ B *) fun equal_intr th1 th2 = let val Thm (der1, {maxidx = maxidx1, constraints = constraints1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1, prop = prop1, ...}) = th1 and Thm (der2, {maxidx = maxidx2, constraints = constraints2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2, prop = prop2, ...}) = th2; fun err msg = raise THM ("equal_intr: " ^ msg, 0, [th1, th2]); in (case (prop1, prop2) of (Const("Pure.imp", _) $ A $ B, Const("Pure.imp", _) $ B' $ A') => if A aconv A' andalso B aconv B' then Thm (deriv_rule2 (Proofterm.equal_intr_proof A B) der1 der2, {cert = join_certificate2 (th1, th2), tags = [], maxidx = Int.max (maxidx1, maxidx2), constraints = union_constraints constraints1 constraints2, shyps = Sorts.union shyps1 shyps2, hyps = union_hyps hyps1 hyps2, tpairs = union_tpairs tpairs1 tpairs2, prop = Logic.mk_equals (A, B)}) else err "not equal" | _ => err "premises") end; (*The equal propositions rule A \ B A --------- B *) fun equal_elim th1 th2 = let val Thm (der1, {maxidx = maxidx1, constraints = constraints1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1, prop = prop1, ...}) = th1 and Thm (der2, {maxidx = maxidx2, constraints = constraints2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2, prop = prop2, ...}) = th2; fun err msg = raise THM ("equal_elim: " ^ msg, 0, [th1, th2]); in (case prop1 of Const ("Pure.eq", _) $ A $ B => if prop2 aconv A then Thm (deriv_rule2 (Proofterm.equal_elim_proof A B) der1 der2, {cert = join_certificate2 (th1, th2), tags = [], maxidx = Int.max (maxidx1, maxidx2), constraints = union_constraints constraints1 constraints2, shyps = Sorts.union shyps1 shyps2, hyps = union_hyps hyps1 hyps2, tpairs = union_tpairs tpairs1 tpairs2, prop = B}) else err "not equal" | _ => err "major premise") end; (**** Derived rules ****) (*Smash unifies the list of term pairs leaving no flex-flex pairs. Instantiates the theorem and deletes trivial tpairs. Resulting sequence may contain multiple elements if the tpairs are not all flex-flex.*) fun flexflex_rule opt_ctxt = solve_constraints #> (fn th => let val Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = th; val (context, cert') = make_context_certificate [th] opt_ctxt cert; in Unify.smash_unifiers context tpairs (Envir.empty maxidx) |> Seq.map (fn env => if Envir.is_empty env then th else let val tpairs' = tpairs |> map (apply2 (Envir.norm_term env)) (*remove trivial tpairs, of the form t \ t*) |> filter_out (op aconv); val der' = deriv_rule1 (Proofterm.norm_proof' env) der; val constraints' = insert_constraints_env (Context.certificate_theory cert') env constraints; val prop' = Envir.norm_term env prop; val maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop'); val shyps = Envir.insert_sorts env shyps; in Thm (der', {cert = cert', tags = [], maxidx = maxidx, constraints = constraints', shyps = shyps, hyps = hyps, tpairs = tpairs', prop = prop'}) end) end); (*Generalization of fixed variables A -------------------- A[?'a/'a, ?x/x, ...] *) fun generalize (tfrees, frees) idx th = if Symtab.is_empty tfrees andalso Symtab.is_empty frees then th else let val Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = th; val _ = idx <= maxidx andalso raise THM ("generalize: bad index", idx, [th]); val bad_type = if Symtab.is_empty tfrees then K false else Term.exists_subtype (fn TFree (a, _) => Symtab.defined tfrees a | _ => false); fun bad_term (Free (x, T)) = bad_type T orelse Symtab.defined frees x | bad_term (Var (_, T)) = bad_type T | bad_term (Const (_, T)) = bad_type T | bad_term (Abs (_, T, t)) = bad_type T orelse bad_term t | bad_term (t $ u) = bad_term t orelse bad_term u | bad_term (Bound _) = false; val _ = exists bad_term hyps andalso raise THM ("generalize: variable free in assumptions", 0, [th]); val generalize = Term_Subst.generalize (tfrees, frees) idx; val prop' = generalize prop; val tpairs' = map (apply2 generalize) tpairs; val maxidx' = maxidx_tpairs tpairs' (maxidx_of_term prop'); in Thm (deriv_rule1 (Proofterm.generalize_proof (tfrees, frees) idx prop) der, {cert = cert, tags = [], maxidx = maxidx', constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs', prop = prop'}) end; fun generalize_cterm (tfrees, frees) idx (ct as Cterm {cert, t, T, maxidx, sorts}) = if Symtab.is_empty tfrees andalso Symtab.is_empty frees then ct else if idx <= maxidx then raise CTERM ("generalize_cterm: bad index", [ct]) else Cterm {cert = cert, sorts = sorts, T = Term_Subst.generalizeT tfrees idx T, t = Term_Subst.generalize (tfrees, frees) idx t, maxidx = Int.max (maxidx, idx)}; fun generalize_ctyp tfrees idx (cT as Ctyp {cert, T, maxidx, sorts}) = if Symtab.is_empty tfrees then cT else if idx <= maxidx then raise CTERM ("generalize_ctyp: bad index", []) else Ctyp {cert = cert, sorts = sorts, T = Term_Subst.generalizeT tfrees idx T, maxidx = Int.max (maxidx, idx)}; (*Instantiation of schematic variables A -------------------- A[t1/v1, ..., tn/vn] *) local fun add_cert cert_of (_, c) cert = Context.join_certificate (cert, cert_of c); val add_instT_cert = add_cert (fn Ctyp {cert, ...} => cert); val add_inst_cert = add_cert (fn Cterm {cert, ...} => cert); fun add_sorts sorts_of (_, c) sorts = Sorts.union (sorts_of c) sorts; val add_instT_sorts = add_sorts (fn Ctyp {sorts, ...} => sorts); val add_inst_sorts = add_sorts (fn Cterm {sorts, ...} => sorts); fun add_instT thy (v as (_, S), Ctyp {T = U, maxidx, ...}) = if Sign.of_sort thy (U, S) then Term_Subst.TVars.add (v, (U, maxidx)) else raise TYPE ("Type not of sort " ^ Syntax.string_of_sort_global thy S, [U], []); fun add_inst thy (v as (_, T), Cterm {t = u, T = U, maxidx, ...}) = if T = U then Term_Subst.Vars.add (v, (u, maxidx)) else let fun pretty_typing t ty = Pretty.block [Syntax.pretty_term_global thy t, Pretty.str " ::", Pretty.brk 1, Syntax.pretty_typ_global thy ty]; val msg = Pretty.string_of (Pretty.block [Pretty.str "instantiate: type conflict", Pretty.fbrk, pretty_typing (Var v) T, Pretty.fbrk, pretty_typing u U]) in raise TYPE (msg, [T, U], [Var v, u]) end; fun prep_insts (instT, inst) (cert, sorts) = let val cert' = cert |> fold add_instT_cert instT |> fold add_inst_cert inst; val thy' = Context.certificate_theory cert' handle ERROR msg => raise CONTEXT (msg, map #2 instT, map #2 inst, [], NONE); val sorts' = sorts |> fold add_instT_sorts instT |> fold add_inst_sorts inst; val instT' = Term_Subst.TVars.build (fold (add_instT thy') instT); val inst' = Term_Subst.Vars.build (fold (add_inst thy') inst); in ((instT', inst'), (cert', sorts')) end; in (*Left-to-right replacements: ctpairs = [..., (vi, ti), ...]. Instantiates distinct Vars by terms of same type. Does NOT normalize the resulting theorem!*) fun instantiate ([], []) th = th | instantiate (instT, inst) th = let val Thm (der, {cert, hyps, constraints, shyps, tpairs, prop, ...}) = th; val ((instT', inst'), (cert', shyps')) = prep_insts (instT, inst) (cert, shyps) handle CONTEXT (msg, cTs, cts, ths, context) => raise CONTEXT (msg, cTs, cts, th :: ths, context); val subst = Term_Subst.instantiate_maxidx (instT', inst'); val (prop', maxidx1) = subst prop ~1; val (tpairs', maxidx') = fold_map (fn (t, u) => fn i => subst t i ||>> subst u) tpairs maxidx1; val thy' = Context.certificate_theory cert'; val constraints' = Term_Subst.TVars.fold (fn ((_, S), (T, _)) => insert_constraints thy' (T, S)) instT' constraints; in Thm (deriv_rule1 (fn d => Proofterm.instantiate (Term_Subst.TVars.map (K #1) instT', Term_Subst.Vars.map (K #1) inst') d) der, {cert = cert', tags = [], maxidx = maxidx', constraints = constraints', shyps = shyps', hyps = hyps, tpairs = tpairs', prop = prop'}) |> solve_constraints end handle TYPE (msg, _, _) => raise THM (msg, 0, [th]); fun instantiate_cterm ([], []) ct = ct | instantiate_cterm (instT, inst) ct = let val Cterm {cert, t, T, sorts, ...} = ct; val ((instT', inst'), (cert', sorts')) = prep_insts (instT, inst) (cert, sorts); val subst = Term_Subst.instantiate_maxidx (instT', inst'); val substT = Term_Subst.instantiateT_maxidx instT'; val (t', maxidx1) = subst t ~1; val (T', maxidx') = substT T maxidx1; in Cterm {cert = cert', t = t', T = T', sorts = sorts', maxidx = maxidx'} end handle TYPE (msg, _, _) => raise CTERM (msg, [ct]); end; (*The trivial implication A \ A, justified by assume and forall rules. A can contain Vars, not so for assume!*) fun trivial (Cterm {cert, t = A, T, maxidx, sorts}) = if T <> propT then raise THM ("trivial: the term must have type prop", 0, []) else Thm (deriv_rule0 (fn () => Proofterm.trivial_proof), {cert = cert, tags = [], maxidx = maxidx, constraints = [], shyps = sorts, hyps = [], tpairs = [], prop = Logic.mk_implies (A, A)}); (*Axiom-scheme reflecting signature contents T :: c ------------------- OFCLASS(T, c_class) *) fun of_class (cT, raw_c) = let val Ctyp {cert, T, ...} = cT; val thy = Context.certificate_theory cert handle ERROR msg => raise CONTEXT (msg, [cT], [], [], NONE); val c = Sign.certify_class thy raw_c; val Cterm {t = prop, maxidx, sorts, ...} = global_cterm_of thy (Logic.mk_of_class (T, c)); in if Sign.of_sort thy (T, [c]) then Thm (deriv_rule0 (fn () => Proofterm.PClass (T, c)), {cert = cert, tags = [], maxidx = maxidx, constraints = insert_constraints thy (T, [c]) [], shyps = sorts, hyps = [], tpairs = [], prop = prop}) else raise THM ("of_class: type not of class " ^ Syntax.string_of_sort_global thy [c], 0, []) end |> solve_constraints; (*Internalize sort constraints of type variables*) val unconstrainT = strip_shyps #> (fn thm as Thm (der, args) => let val Deriv {promises, body} = der; val {cert, shyps, hyps, tpairs, prop, ...} = args; val thy = theory_of_thm thm; fun err msg = raise THM ("unconstrainT: " ^ msg, 0, [thm]); val _ = null hyps orelse err "bad hyps"; val _ = null tpairs orelse err "bad flex-flex constraints"; val tfrees = build_rev (Term.add_tfree_names prop); val _ = null tfrees orelse err ("illegal free type variables " ^ commas_quote tfrees); val ps = map (apsnd (Future.map fulfill_body)) promises; val (pthm, proof) = Proofterm.unconstrain_thm_proof thy (classrel_proof thy) (arity_proof thy) shyps prop ps body; val der' = make_deriv [] [] [pthm] proof; val prop' = Proofterm.thm_node_prop (#2 pthm); in Thm (der', {cert = cert, tags = [], maxidx = maxidx_of_term prop', constraints = [], shyps = [[]], (*potentially redundant*) hyps = [], tpairs = [], prop = prop'}) end); (*Replace all TFrees not fixed or in the hyps by new TVars*) fun varifyT_global' fixed (Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...})) = let val tfrees = fold Term_Subst.add_tfrees hyps fixed; val prop1 = attach_tpairs tpairs prop; val (al, prop2) = Type.varify_global tfrees prop1; val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2); in (al, Thm (deriv_rule1 (Proofterm.varify_proof prop tfrees) der, {cert = cert, tags = [], maxidx = Int.max (0, maxidx), constraints = constraints, shyps = shyps, hyps = hyps, tpairs = rev (map Logic.dest_equals ts), prop = prop3})) end; val varifyT_global = #2 o varifyT_global' Term_Subst.TFrees.empty; (*Replace all TVars by TFrees that are often new*) fun legacy_freezeT (Thm (der, {cert, constraints, shyps, hyps, tpairs, prop, ...})) = let val prop1 = attach_tpairs tpairs prop; val prop2 = Type.legacy_freeze prop1; val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2); in Thm (deriv_rule1 (Proofterm.legacy_freezeT prop1) der, {cert = cert, tags = [], maxidx = maxidx_of_term prop2, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = rev (map Logic.dest_equals ts), prop = prop3}) end; fun plain_prop_of raw_thm = let val thm = strip_shyps raw_thm; fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]); in if not (null (hyps_of thm)) then err "theorem may not contain hypotheses" else if not (null (extra_shyps thm)) then err "theorem may not contain sort hypotheses" else if not (null (tpairs_of thm)) then err "theorem may not contain flex-flex pairs" else prop_of thm end; (*** Inference rules for tactics ***) (*Destruct proof state into constraints, other goals, goal(i), rest *) fun dest_state (state as Thm (_, {prop,tpairs,...}), i) = (case Logic.strip_prems(i, [], prop) of (B::rBs, C) => (tpairs, rev rBs, B, C) | _ => raise THM("dest_state", i, [state])) handle TERM _ => raise THM("dest_state", i, [state]); (*Prepare orule for resolution by lifting it over the parameters and assumptions of goal.*) fun lift_rule goal orule = let val Cterm {t = gprop, T, maxidx = gmax, sorts, ...} = goal; val inc = gmax + 1; val lift_abs = Logic.lift_abs inc gprop; val lift_all = Logic.lift_all inc gprop; val Thm (der, {maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = orule; val (As, B) = Logic.strip_horn prop; in if T <> propT then raise THM ("lift_rule: the term must have type prop", 0, []) else Thm (deriv_rule1 (Proofterm.lift_proof gprop inc prop) der, {cert = join_certificate1 (goal, orule), tags = [], maxidx = maxidx + inc, constraints = constraints, shyps = Sorts.union shyps sorts, (*sic!*) hyps = hyps, tpairs = map (apply2 lift_abs) tpairs, prop = Logic.list_implies (map lift_all As, lift_all B)}) end; fun incr_indexes i (thm as Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...})) = if i < 0 then raise THM ("negative increment", 0, [thm]) else if i = 0 then thm else Thm (deriv_rule1 (Proofterm.incr_indexes i) der, {cert = cert, tags = [], maxidx = maxidx + i, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = map (apply2 (Logic.incr_indexes ([], [], i))) tpairs, prop = Logic.incr_indexes ([], [], i) prop}); (*Solve subgoal Bi of proof state B1...Bn/C by assumption. *) fun assumption opt_ctxt i state = let val Thm (der, {cert, maxidx, constraints, shyps, hyps, ...}) = state; val (context, cert') = make_context_certificate [state] opt_ctxt cert; val (tpairs, Bs, Bi, C) = dest_state (state, i); fun newth n (env, tpairs) = let val normt = Envir.norm_term env; fun assumption_proof prf = Proofterm.assumption_proof (map normt Bs) (normt Bi) n prf; in Thm (deriv_rule1 (assumption_proof #> not (Envir.is_empty env) ? Proofterm.norm_proof' env) der, {tags = [], maxidx = Envir.maxidx_of env, constraints = insert_constraints_env (Context.certificate_theory cert') env constraints, shyps = Envir.insert_sorts env shyps, hyps = hyps, tpairs = if Envir.is_empty env then tpairs else map (apply2 normt) tpairs, prop = if Envir.is_empty env then Logic.list_implies (Bs, C) (*avoid wasted normalizations*) else normt (Logic.list_implies (Bs, C)) (*normalize the new rule fully*), cert = cert'}) end; val (close, asms, concl) = Logic.assum_problems (~1, Bi); val concl' = close concl; fun addprfs [] _ = Seq.empty | addprfs (asm :: rest) n = Seq.make (fn () => Seq.pull (Seq.mapp (newth n) (if Term.could_unify (asm, concl) then (Unify.unifiers (context, Envir.empty maxidx, (close asm, concl') :: tpairs)) else Seq.empty) (addprfs rest (n + 1)))) in addprfs asms 1 end; (*Solve subgoal Bi of proof state B1...Bn/C by assumption. Checks if Bi's conclusion is alpha/eta-convertible to one of its assumptions*) fun eq_assumption i state = let val Thm (der, {cert, maxidx, constraints, shyps, hyps, ...}) = state; val (tpairs, Bs, Bi, C) = dest_state (state, i); val (_, asms, concl) = Logic.assum_problems (~1, Bi); in (case find_index (fn asm => Envir.aeconv (asm, concl)) asms of ~1 => raise THM ("eq_assumption", 0, [state]) | n => Thm (deriv_rule1 (Proofterm.assumption_proof Bs Bi (n + 1)) der, {cert = cert, tags = [], maxidx = maxidx, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = Logic.list_implies (Bs, C)})) end; (*For rotate_tac: fast rotation of assumptions of subgoal i*) fun rotate_rule k i state = let val Thm (der, {cert, maxidx, constraints, shyps, hyps, ...}) = state; val (tpairs, Bs, Bi, C) = dest_state (state, i); val params = Term.strip_all_vars Bi; val rest = Term.strip_all_body Bi; val asms = Logic.strip_imp_prems rest val concl = Logic.strip_imp_concl rest; val n = length asms; val m = if k < 0 then n + k else k; val Bi' = if 0 = m orelse m = n then Bi else if 0 < m andalso m < n then let val (ps, qs) = chop m asms in Logic.list_all (params, Logic.list_implies (qs @ ps, concl)) end else raise THM ("rotate_rule", k, [state]); in Thm (deriv_rule1 (Proofterm.rotate_proof Bs Bi' params asms m) der, {cert = cert, tags = [], maxidx = maxidx, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = Logic.list_implies (Bs @ [Bi'], C)}) end; (*Rotates a rule's premises to the left by k, leaving the first j premises unchanged. Does nothing if k=0 or if k equals n-j, where n is the number of premises. Useful with eresolve_tac and underlies defer_tac*) fun permute_prems j k rl = let val Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = rl; val prems = Logic.strip_imp_prems prop and concl = Logic.strip_imp_concl prop; val moved_prems = List.drop (prems, j) and fixed_prems = List.take (prems, j) handle General.Subscript => raise THM ("permute_prems: j", j, [rl]); val n_j = length moved_prems; val m = if k < 0 then n_j + k else k; val (prems', prop') = if 0 = m orelse m = n_j then (prems, prop) else if 0 < m andalso m < n_j then let val (ps, qs) = chop m moved_prems; val prems' = fixed_prems @ qs @ ps; in (prems', Logic.list_implies (prems', concl)) end else raise THM ("permute_prems: k", k, [rl]); in Thm (deriv_rule1 (Proofterm.permute_prems_proof prems' j m) der, {cert = cert, tags = [], maxidx = maxidx, constraints = constraints, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop'}) end; (* strip_apply f B A strips off all assumptions/parameters from A introduced by lifting over B, and applies f to remaining part of A*) fun strip_apply f = let fun strip (Const ("Pure.imp", _) $ _ $ B1) (Const ("Pure.imp", _) $ A2 $ B2) = Logic.mk_implies (A2, strip B1 B2) | strip ((c as Const ("Pure.all", _)) $ Abs (_, _, t1)) ( Const ("Pure.all", _) $ Abs (a, T, t2)) = c $ Abs (a, T, strip t1 t2) | strip _ A = f A in strip end; fun strip_lifted (Const ("Pure.imp", _) $ _ $ B1) (Const ("Pure.imp", _) $ _ $ B2) = strip_lifted B1 B2 | strip_lifted (Const ("Pure.all", _) $ Abs (_, _, t1)) (Const ("Pure.all", _) $ Abs (_, _, t2)) = strip_lifted t1 t2 | strip_lifted _ A = A; (*Use the alist to rename all bound variables and some unknowns in a term dpairs = current disagreement pairs; tpairs = permanent ones (flexflex); Preserves unknowns in tpairs and on lhs of dpairs. *) fun rename_bvs [] _ _ _ _ = K I | rename_bvs al dpairs tpairs B As = let val add_var = fold_aterms (fn Var ((x, _), _) => insert (op =) x | _ => I); val vids = [] |> fold (add_var o fst) dpairs |> fold (add_var o fst) tpairs |> fold (add_var o snd) tpairs; val vids' = fold (add_var o strip_lifted B) As []; (*unknowns appearing elsewhere be preserved!*) val al' = distinct ((op =) o apply2 fst) (filter_out (fn (x, y) => not (member (op =) vids' x) orelse member (op =) vids x orelse member (op =) vids y) al); val unchanged = filter_out (AList.defined (op =) al') vids'; fun del_clashing clash xs _ [] qs = if clash then del_clashing false xs xs qs [] else qs | del_clashing clash xs ys ((p as (x, y)) :: ps) qs = if member (op =) ys y then del_clashing true (x :: xs) (x :: ys) ps qs else del_clashing clash xs (y :: ys) ps (p :: qs); val al'' = del_clashing false unchanged unchanged al' []; fun rename (t as Var ((x, i), T)) = (case AList.lookup (op =) al'' x of SOME y => Var ((y, i), T) | NONE => t) | rename (Abs (x, T, t)) = Abs (the_default x (AList.lookup (op =) al x), T, rename t) | rename (f $ t) = rename f $ rename t | rename t = t; fun strip_ren f Ai = f rename B Ai in strip_ren end; (*Function to rename bounds/unknowns in the argument, lifted over B*) fun rename_bvars dpairs = rename_bvs (fold_rev Term.match_bvars dpairs []) dpairs; (*** RESOLUTION ***) (** Lifting optimizations **) (*strip off pairs of assumptions/parameters in parallel -- they are identical because of lifting*) fun strip_assums2 (Const("Pure.imp", _) $ _ $ B1, Const("Pure.imp", _) $ _ $ B2) = strip_assums2 (B1,B2) | strip_assums2 (Const("Pure.all",_)$Abs(a,T,t1), Const("Pure.all",_)$Abs(_,_,t2)) = let val (B1,B2) = strip_assums2 (t1,t2) in (Abs(a,T,B1), Abs(a,T,B2)) end | strip_assums2 BB = BB; (*Faster normalization: skip assumptions that were lifted over*) fun norm_term_skip env 0 t = Envir.norm_term env t | norm_term_skip env n (Const ("Pure.all", _) $ Abs (a, T, t)) = let val T' = Envir.norm_type (Envir.type_env env) T (*Must instantiate types of parameters because they are flattened; this could be a NEW parameter*) in Logic.all_const T' $ Abs (a, T', norm_term_skip env n t) end | norm_term_skip env n (Const ("Pure.imp", _) $ A $ B) = Logic.mk_implies (A, norm_term_skip env (n - 1) B) | norm_term_skip _ _ _ = error "norm_term_skip: too few assumptions??"; (*unify types of schematic variables (non-lifted case)*) fun unify_var_types context (th1, th2) env = let fun unify_vars (T :: Us) = fold (fn U => Pattern.unify_types context (T, U)) Us | unify_vars _ = I; val add_vars = full_prop_of #> fold_aterms (fn Var v => Vartab.insert_list (op =) v | _ => I); val vars = Vartab.build (add_vars th1 #> add_vars th2); in SOME (Vartab.fold (unify_vars o #2) vars env) end handle Pattern.Unif => NONE; (*Composition of object rule r=(A1...Am/B) with proof state s=(B1...Bn/C) Unifies B with Bi, replacing subgoal i (1 <= i <= n) If match then forbid instantiations in proof state If lifted then shorten the dpair using strip_assums2. If eres_flg then simultaneously proves A1 by assumption. nsubgoal is the number of new subgoals (written m above). Curried so that resolution calls dest_state only once. *) local exception COMPOSE in fun bicompose_aux opt_ctxt {flatten, match, incremented} (state, (stpairs, Bs, Bi, C), lifted) (eres_flg, orule, nsubgoal) = let val Thm (sder, {maxidx=smax, constraints = constraints2, shyps = shyps2, hyps = hyps2, ...}) = state and Thm (rder, {maxidx=rmax, constraints = constraints1, shyps = shyps1, hyps = hyps1, tpairs=rtpairs, prop=rprop,...}) = orule (*How many hyps to skip over during normalization*) and nlift = Logic.count_prems (strip_all_body Bi) + (if eres_flg then ~1 else 0) val (context, cert) = make_context_certificate [state, orule] opt_ctxt (join_certificate2 (state, orule)); (*Add new theorem with prop = "\Bs; As\ \ C" to thq*) fun addth A (As, oldAs, rder', n) ((env, tpairs), thq) = let val normt = Envir.norm_term env; (*perform minimal copying here by examining env*) val (ntpairs, normp) = if Envir.is_empty env then (tpairs, (Bs @ As, C)) else let val ntps = map (apply2 normt) tpairs in if Envir.above env smax then (*no assignments in state; normalize the rule only*) if lifted then (ntps, (Bs @ map (norm_term_skip env nlift) As, C)) else (ntps, (Bs @ map normt As, C)) else if match then raise COMPOSE else (*normalize the new rule fully*) (ntps, (map normt (Bs @ As), normt C)) end val constraints' = union_constraints constraints1 constraints2 |> insert_constraints_env (Context.certificate_theory cert) env; fun bicompose_proof prf1 prf2 = Proofterm.bicompose_proof flatten (map normt Bs) (map normt As) A oldAs n (nlift+1) prf1 prf2 val th = Thm (deriv_rule2 (if Envir.is_empty env then bicompose_proof else if Envir.above env smax then bicompose_proof o Proofterm.norm_proof' env else Proofterm.norm_proof' env oo bicompose_proof) rder' sder, {tags = [], maxidx = Envir.maxidx_of env, constraints = constraints', shyps = Envir.insert_sorts env (Sorts.union shyps1 shyps2), hyps = union_hyps hyps1 hyps2, tpairs = ntpairs, prop = Logic.list_implies normp, cert = cert}) in Seq.cons th thq end handle COMPOSE => thq; val (rAs,B) = Logic.strip_prems(nsubgoal, [], rprop) handle TERM _ => raise THM("bicompose: rule", 0, [orule,state]); (*Modify assumptions, deleting n-th if n>0 for e-resolution*) fun newAs(As0, n, dpairs, tpairs) = let val (As1, rder') = if not lifted then (As0, rder) else let val rename = rename_bvars dpairs tpairs B As0 in (map (rename strip_apply) As0, deriv_rule1 (Proofterm.map_proof_terms (rename K) I) rder) end; in (map (if flatten then (Logic.flatten_params n) else I) As1, As1, rder', n) handle TERM _ => raise THM("bicompose: 1st premise", 0, [orule]) end; val BBi = if lifted then strip_assums2(B,Bi) else (B,Bi); val dpairs = BBi :: (rtpairs@stpairs); (*elim-resolution: try each assumption in turn*) fun eres _ [] = raise THM ("bicompose: no premises", 0, [orule, state]) | eres env (A1 :: As) = let val A = SOME A1; val (close, asms, concl) = Logic.assum_problems (nlift + 1, A1); val concl' = close concl; fun tryasms [] _ = Seq.empty | tryasms (asm :: rest) n = if Term.could_unify (asm, concl) then let val asm' = close asm in (case Seq.pull (Unify.unifiers (context, env, (asm', concl') :: dpairs)) of NONE => tryasms rest (n + 1) | cell as SOME ((_, tpairs), _) => Seq.it_right (addth A (newAs (As, n, [BBi, (concl', asm')], tpairs))) (Seq.make (fn () => cell), Seq.make (fn () => Seq.pull (tryasms rest (n + 1))))) end else tryasms rest (n + 1); in tryasms asms 1 end; (*ordinary resolution*) fun res env = (case Seq.pull (Unify.unifiers (context, env, dpairs)) of NONE => Seq.empty | cell as SOME ((_, tpairs), _) => Seq.it_right (addth NONE (newAs (rev rAs, 0, [BBi], tpairs))) (Seq.make (fn () => cell), Seq.empty)); val env0 = Envir.empty (Int.max (rmax, smax)); in (case if incremented then SOME env0 else unify_var_types context (state, orule) env0 of NONE => Seq.empty | SOME env => if eres_flg then eres env (rev rAs) else res env) end; end; fun bicompose opt_ctxt flags arg i state = bicompose_aux opt_ctxt flags (state, dest_state (state,i), false) arg; (*Quick test whether rule is resolvable with the subgoal with hyps Hs and conclusion B. If eres_flg then checks 1st premise of rule also*) fun could_bires (Hs, B, eres_flg, rule) = let fun could_reshyp (A1::_) = exists (fn H => Term.could_unify (A1, H)) Hs | could_reshyp [] = false; (*no premise -- illegal*) in Term.could_unify(concl_of rule, B) andalso (not eres_flg orelse could_reshyp (prems_of rule)) end; (*Bi-resolution of a state with a list of (flag,rule) pairs. Puts the rule above: rule/state. Renames vars in the rules. *) fun biresolution opt_ctxt match brules i state = let val (stpairs, Bs, Bi, C) = dest_state(state,i); val lift = lift_rule (cprem_of state i); val B = Logic.strip_assums_concl Bi; val Hs = Logic.strip_assums_hyp Bi; val compose = bicompose_aux opt_ctxt {flatten = true, match = match, incremented = true} (state, (stpairs, Bs, Bi, C), true); fun res [] = Seq.empty | res ((eres_flg, rule)::brules) = if Config.get_generic (make_context [state] opt_ctxt (cert_of state)) Pattern.unify_trace_failure orelse could_bires (Hs, B, eres_flg, rule) then Seq.make (*delay processing remainder till needed*) (fn()=> SOME(compose (eres_flg, lift rule, nprems_of rule), res brules)) else res brules in Seq.flat (res brules) end; (*Resolution: exactly one resolvent must be produced*) fun tha RSN (i, thb) = (case Seq.chop 2 (biresolution NONE false [(false, tha)] i thb) of ([th], _) => solve_constraints th | ([], _) => raise THM ("RSN: no unifiers", i, [tha, thb]) | _ => raise THM ("RSN: multiple unifiers", i, [tha, thb])); (*Resolution: P \ Q, Q \ R gives P \ R*) fun tha RS thb = tha RSN (1,thb); (**** Type classes ****) fun standard_tvars thm = let val thy = theory_of_thm thm; val tvars = build_rev (Term.add_tvars (prop_of thm)); val names = Name.invent Name.context Name.aT (length tvars); val tinst = map2 (fn (ai, S) => fn b => ((ai, S), global_ctyp_of thy (TVar ((b, 0), S)))) tvars names; in instantiate (tinst, []) thm end (* class relations *) val is_classrel = Symreltab.defined o get_classrels; fun complete_classrels thy = let fun complete (c, (_, (all_preds, all_succs))) (finished1, thy1) = let fun compl c1 c2 (finished2, thy2) = if is_classrel thy2 (c1, c2) then (finished2, thy2) else (false, thy2 |> (map_classrels o Symreltab.update) ((c1, c2), (the_classrel thy2 (c1, c) RS the_classrel thy2 (c, c2)) |> standard_tvars |> close_derivation \<^here> |> tap (expose_proof thy2) |> trim_context)); val proven = is_classrel thy1; val preds = Graph.Keys.fold (fn c1 => proven (c1, c) ? cons c1) all_preds []; val succs = Graph.Keys.fold (fn c2 => proven (c, c2) ? cons c2) all_succs []; in fold_product compl preds succs (finished1, thy1) end; in (case Graph.fold complete (Sorts.classes_of (Sign.classes_of thy)) (true, thy) of (true, _) => NONE | (_, thy') => SOME thy') end; (* type arities *) fun thynames_of_arity thy (a, c) = build (get_arities thy |> Aritytab.fold (fn ((a', _, c'), (_, name, ser)) => (a = a' andalso c = c') ? cons (name, ser))) |> sort (int_ord o apply2 #2) |> map #1; fun insert_arity_completions thy ((t, Ss, c), (th, thy_name, ser)) (finished, arities) = let val completions = Sign.super_classes thy c |> map_filter (fn c1 => if Aritytab.defined arities (t, Ss, c1) then NONE else let val th1 = (th RS the_classrel thy (c, c1)) |> standard_tvars |> close_derivation \<^here> |> tap (expose_proof thy) |> trim_context; in SOME ((t, Ss, c1), (th1, thy_name, ser)) end); val finished' = finished andalso null completions; val arities' = fold Aritytab.update completions arities; in (finished', arities') end; fun complete_arities thy = let val arities = get_arities thy; val (finished, arities') = Aritytab.fold (insert_arity_completions thy) arities (true, get_arities thy); in if finished then NONE else SOME (map_arities (K arities') thy) end; val _ = Theory.setup (Theory.at_begin complete_classrels #> Theory.at_begin complete_arities); (* primitive rules *) fun add_classrel raw_th thy = let val th = strip_shyps (transfer thy raw_th); val th' = th |> unconstrainT |> tap (expose_proof thy) |> trim_context; val prop = plain_prop_of th; val (c1, c2) = Logic.dest_classrel prop; in thy |> Sign.primitive_classrel (c1, c2) |> map_classrels (Symreltab.update ((c1, c2), th')) |> perhaps complete_classrels |> perhaps complete_arities end; fun add_arity raw_th thy = let val th = strip_shyps (transfer thy raw_th); val th' = th |> unconstrainT |> tap (expose_proof thy) |> trim_context; val prop = plain_prop_of th; val (t, Ss, c) = Logic.dest_arity prop; val ar = ((t, Ss, c), (th', Context.theory_name thy, serial ())); in thy |> Sign.primitive_arity (t, Ss, [c]) |> map_arities (Aritytab.update ar #> curry (insert_arity_completions thy ar) true #> #2) end; end; structure Basic_Thm: BASIC_THM = Thm; open Basic_Thm;