diff --git a/src/HOL/Analysis/normarith.ML b/src/HOL/Analysis/normarith.ML --- a/src/HOL/Analysis/normarith.ML +++ b/src/HOL/Analysis/normarith.ML @@ -1,414 +1,412 @@ (* Title: HOL/Analysis/normarith.ML Author: Amine Chaieb, University of Cambridge Simple decision procedure for linear problems in Euclidean space. *) signature NORM_ARITH = sig val norm_arith : Proof.context -> conv val norm_arith_tac : Proof.context -> int -> tactic end structure NormArith : NORM_ARITH = struct open Conv; val bool_eq = op = : bool *bool -> bool fun dest_ratconst t = case Thm.term_of t of - Const(\<^const_name>\divide\, _)$a$b => Rat.make(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd) - | Const(\<^const_name>\inverse\, _)$a => Rat.make(1, HOLogic.dest_number a |> snd) - | _ => Rat.of_int (HOLogic.dest_number (Thm.term_of t) |> snd) + \<^Const_>\divide _ for a b\ => Rat.make(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd) + | \<^Const_>\inverse _ for a\ => Rat.make(1, HOLogic.dest_number a |> snd) + | _ => Rat.of_int (HOLogic.dest_number (Thm.term_of t) |> snd) fun is_ratconst t = can dest_ratconst t fun augment_norm b t acc = case Thm.term_of t of - Const(\<^const_name>\norm\, _) $ _ => insert (eq_pair bool_eq (op aconvc)) (b,Thm.dest_arg t) acc + \<^Const_>\norm _ for _\ => insert (eq_pair bool_eq (op aconvc)) (b,Thm.dest_arg t) acc | _ => acc fun find_normedterms t acc = case Thm.term_of t of - \<^term>\(+) :: real => _\$_$_ => + \<^Const_>\plus \<^typ>\real\ for _ _\ => find_normedterms (Thm.dest_arg1 t) (find_normedterms (Thm.dest_arg t) acc) - | \<^term>\(*) :: real => _\$_$_ => + | \<^Const_>\times \<^typ>\real\ for _ _\ => if not (is_ratconst (Thm.dest_arg1 t)) then acc else augment_norm (dest_ratconst (Thm.dest_arg1 t) >= @0) (Thm.dest_arg t) acc - | _ => augment_norm true t acc + | _ => augment_norm true t acc val cterm_lincomb_neg = FuncUtil.Ctermfunc.map (K ~) fun cterm_lincomb_cmul c t = if c = @0 then FuncUtil.Ctermfunc.empty else FuncUtil.Ctermfunc.map (fn _ => fn x => x * c) t fun cterm_lincomb_add l r = FuncUtil.Ctermfunc.combine (curry op +) (fn x => x = @0) l r fun cterm_lincomb_sub l r = cterm_lincomb_add l (cterm_lincomb_neg r) fun cterm_lincomb_eq l r = FuncUtil.Ctermfunc.is_empty (cterm_lincomb_sub l r) (* val int_lincomb_neg = FuncUtil.Intfunc.map (K ~) *) fun int_lincomb_cmul c t = if c = @0 then FuncUtil.Intfunc.empty else FuncUtil.Intfunc.map (fn _ => fn x => x * c) t fun int_lincomb_add l r = FuncUtil.Intfunc.combine (curry op +) (fn x => x = @0) l r (* fun int_lincomb_sub l r = int_lincomb_add l (int_lincomb_neg r) fun int_lincomb_eq l r = FuncUtil.Intfunc.is_empty (int_lincomb_sub l r) *) fun vector_lincomb t = case Thm.term_of t of - Const(\<^const_name>\plus\, _) $ _ $ _ => + \<^Const_>\plus _ for _ _\ => cterm_lincomb_add (vector_lincomb (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t)) - | Const(\<^const_name>\minus\, _) $ _ $ _ => + | \<^Const_>\minus _ for _ _\ => cterm_lincomb_sub (vector_lincomb (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t)) - | Const(\<^const_name>\scaleR\, _)$_$_ => + | \<^Const_>\scaleR _ for _ _\ => cterm_lincomb_cmul (dest_ratconst (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t)) - | Const(\<^const_name>\uminus\, _)$_ => + | \<^Const_>\uminus _ for _\ => cterm_lincomb_neg (vector_lincomb (Thm.dest_arg t)) (* FIXME: how should we handle numerals? | Const(@ {const_name vec},_)$_ => let val b = ((snd o HOLogic.dest_number o term_of o Thm.dest_arg) t = 0 handle TERM _=> false) in if b then FuncUtil.Ctermfunc.onefunc (t,@1) else FuncUtil.Ctermfunc.empty end *) | _ => FuncUtil.Ctermfunc.onefunc (t,@1) fun vector_lincombs ts = fold_rev (fn t => fn fns => case AList.lookup (op aconvc) fns t of NONE => let val f = vector_lincomb t in case find_first (fn (_,f') => cterm_lincomb_eq f f') fns of SOME (_,f') => (t,f') :: fns | NONE => (t,f) :: fns end | SOME _ => fns) ts [] fun replacenegnorms cv t = case Thm.term_of t of - \<^term>\(+) :: real => _\$_$_ => binop_conv (replacenegnorms cv) t -| \<^term>\(*) :: real => _\$_$_ => + \<^Const_>\plus \<^typ>\real\ for _ _\ => binop_conv (replacenegnorms cv) t +| \<^Const_>\times \<^typ>\real\ for _ _\ => if dest_ratconst (Thm.dest_arg1 t) < @0 then arg_conv cv t else Thm.reflexive t | _ => Thm.reflexive t (* fun flip v eq = if FuncUtil.Ctermfunc.defined eq v then FuncUtil.Ctermfunc.update (v, ~ (FuncUtil.Ctermfunc.apply eq v)) eq else eq *) fun allsubsets s = case s of [] => [[]] |(a::t) => let val res = allsubsets t in map (cons a) res @ res end fun evaluate env lin = FuncUtil.Intfunc.fold (fn (x,c) => fn s => s + c * (FuncUtil.Intfunc.apply env x)) lin @0 fun solve (vs,eqs) = case (vs,eqs) of ([],[]) => SOME (FuncUtil.Intfunc.onefunc (0,@1)) |(_,eq::oeqs) => (case filter (member (op =) vs) (FuncUtil.Intfunc.dom eq) of (*FIXME use find_first here*) [] => NONE | v::_ => if FuncUtil.Intfunc.defined eq v then let val c = FuncUtil.Intfunc.apply eq v val vdef = int_lincomb_cmul (~ (Rat.inv c)) eq fun eliminate eqn = if not (FuncUtil.Intfunc.defined eqn v) then eqn else int_lincomb_add (int_lincomb_cmul (FuncUtil.Intfunc.apply eqn v) vdef) eqn in (case solve (remove (op =) v vs, map eliminate oeqs) of NONE => NONE | SOME soln => SOME (FuncUtil.Intfunc.update (v, evaluate soln (FuncUtil.Intfunc.delete_safe v vdef)) soln)) end else NONE) fun combinations k l = if k = 0 then [[]] else case l of [] => [] | h::t => map (cons h) (combinations (k - 1) t) @ combinations k t fun vertices vs eqs = let fun vertex cmb = case solve(vs,cmb) of NONE => NONE | SOME soln => SOME (map (fn v => FuncUtil.Intfunc.tryapplyd soln v @0) vs) val rawvs = map_filter vertex (combinations (length vs) eqs) val unset = filter (forall (fn c => c >= @0)) rawvs in fold_rev (insert (eq_list op =)) unset [] end val subsumes = eq_list (fn (x, y) => Rat.abs x <= Rat.abs y) fun subsume todo dun = case todo of [] => dun |v::ovs => let val dun' = if exists (fn w => subsumes (w, v)) dun then dun else v:: filter (fn w => not (subsumes (v, w))) dun in subsume ovs dun' end; fun match_mp PQ P = P RS PQ; fun cterm_of_rat x = let val (a, b) = Rat.dest x in - if b = 1 then Numeral.mk_cnumber \<^ctyp>\real\ a - else Thm.apply (Thm.apply \<^cterm>\(/) :: real => _\ - (Numeral.mk_cnumber \<^ctyp>\real\ a)) - (Numeral.mk_cnumber \<^ctyp>\real\ b) + if b = 1 then Numeral.mk_cnumber \<^ctyp>\real\ a + else + \<^instantiate>\ + a = \Numeral.mk_cnumber \<^ctyp>\real\ a\ and + b = \Numeral.mk_cnumber \<^ctyp>\real\ b\ + in cterm \a / b\ for a b :: real\ end; fun norm_cmul_rule c th = Thm.instantiate' [] [SOME (cterm_of_rat c)] (th RS @{thm norm_cmul_rule_thm}); fun norm_add_rule th1 th2 = [th1, th2] MRS @{thm norm_add_rule_thm}; (* I think here the static context should be sufficient!! *) fun inequality_canon_rule ctxt = let (* FIXME : Should be computed statically!! *) val real_poly_conv = Semiring_Normalizer.semiring_normalize_wrapper ctxt (the (Semiring_Normalizer.match ctxt \<^cterm>\(0::real) + 1\)) in fconv_rule (arg_conv ((rewr_conv @{thm ge_iff_diff_ge_0}) then_conv arg_conv (Numeral_Simprocs.field_comp_conv ctxt then_conv real_poly_conv))) end; val apply_pth1 = rewr_conv @{thm pth_1}; val apply_pth2 = rewr_conv @{thm pth_2}; val apply_pth3 = rewr_conv @{thm pth_3}; val apply_pth4 = rewrs_conv @{thms pth_4}; val apply_pth5 = rewr_conv @{thm pth_5}; val apply_pth6 = rewr_conv @{thm pth_6}; val apply_pth7 = rewrs_conv @{thms pth_7}; fun apply_pth8 ctxt = rewr_conv @{thm pth_8} then_conv arg1_conv (Numeral_Simprocs.field_comp_conv ctxt) then_conv (try_conv (rewr_conv (mk_meta_eq @{thm scaleR_zero_left}))); fun apply_pth9 ctxt = rewrs_conv @{thms pth_9} then_conv arg1_conv (arg1_conv (Numeral_Simprocs.field_comp_conv ctxt)); val apply_ptha = rewr_conv @{thm pth_a}; val apply_pthb = rewrs_conv @{thms pth_b}; val apply_pthc = rewrs_conv @{thms pth_c}; val apply_pthd = try_conv (rewr_conv @{thm pth_d}); fun headvector t = case t of - Const(\<^const_name>\plus\, _)$ - (Const(\<^const_name>\scaleR\, _)$_$v)$_ => v - | Const(\<^const_name>\scaleR\, _)$_$v => v + \<^Const_>\plus _ for \<^Const_>\scaleR _ for _ v\ _\ => v + | \<^Const_>\scaleR _ for _ v\ => v | _ => error "headvector: non-canonical term" fun vector_cmul_conv ctxt ct = ((apply_pth5 then_conv arg1_conv (Numeral_Simprocs.field_comp_conv ctxt)) else_conv (apply_pth6 then_conv binop_conv (vector_cmul_conv ctxt))) ct fun vector_add_conv ctxt ct = apply_pth7 ct handle CTERM _ => (apply_pth8 ctxt ct handle CTERM _ => (case Thm.term_of ct of - Const(\<^const_name>\plus\,_)$lt$rt => + \<^Const_>\plus _ for lt rt\ => let val l = headvector lt val r = headvector rt in (case Term_Ord.fast_term_ord (l,r) of LESS => (apply_pthb then_conv arg_conv (vector_add_conv ctxt) then_conv apply_pthd) ct | GREATER => (apply_pthc then_conv arg_conv (vector_add_conv ctxt) then_conv apply_pthd) ct | EQUAL => (apply_pth9 ctxt then_conv ((apply_ptha then_conv (vector_add_conv ctxt)) else_conv arg_conv (vector_add_conv ctxt) then_conv apply_pthd)) ct) end | _ => Thm.reflexive ct)) fun vector_canon_conv ctxt ct = case Thm.term_of ct of - Const(\<^const_name>\plus\,_)$_$_ => + \<^Const_>\plus _ for _ _\ => let val ((p,l),r) = Thm.dest_comb ct |>> Thm.dest_comb val lth = vector_canon_conv ctxt l val rth = vector_canon_conv ctxt r val th = Drule.binop_cong_rule p lth rth in fconv_rule (arg_conv (vector_add_conv ctxt)) th end -| Const(\<^const_name>\scaleR\, _)$_$_ => +| \<^Const_>\scaleR _ for _ _\ => let val (p,r) = Thm.dest_comb ct val rth = Drule.arg_cong_rule p (vector_canon_conv ctxt r) in fconv_rule (arg_conv (apply_pth4 else_conv (vector_cmul_conv ctxt))) rth end -| Const(\<^const_name>\minus\,_)$_$_ => (apply_pth2 then_conv (vector_canon_conv ctxt)) ct +| \<^Const_>\minus _ for _ _\ => (apply_pth2 then_conv (vector_canon_conv ctxt)) ct -| Const(\<^const_name>\uminus\,_)$_ => (apply_pth3 then_conv (vector_canon_conv ctxt)) ct +| \<^Const_>\uminus _ for _\ => (apply_pth3 then_conv (vector_canon_conv ctxt)) ct (* FIXME | Const(@{const_name vec},_)$n => let val n = Thm.dest_arg ct in if is_ratconst n andalso not (dest_ratconst n =/ @0) then Thm.reflexive ct else apply_pth1 ct end *) | _ => apply_pth1 ct fun norm_canon_conv ctxt ct = case Thm.term_of ct of - Const(\<^const_name>\norm\,_)$_ => arg_conv (vector_canon_conv ctxt) ct + \<^Const_>\norm _ for _\ => arg_conv (vector_canon_conv ctxt) ct | _ => raise CTERM ("norm_canon_conv", [ct]) fun int_flip v eq = if FuncUtil.Intfunc.defined eq v then FuncUtil.Intfunc.update (v, ~ (FuncUtil.Intfunc.apply eq v)) eq else eq; local val pth_zero = @{thm norm_zero} val tv_n = (dest_TVar o Thm.typ_of_cterm o Thm.dest_arg o Thm.dest_arg1 o Thm.dest_arg o Thm.cprop_of) pth_zero val concl = Thm.dest_arg o Thm.cprop_of fun real_vector_combo_prover ctxt translator (nubs,ges,gts) = let (* FIXME: Should be computed statically!!*) val real_poly_conv = Semiring_Normalizer.semiring_normalize_wrapper ctxt (the (Semiring_Normalizer.match ctxt \<^cterm>\(0::real) + 1\)) val sources = map (Thm.dest_arg o Thm.dest_arg1 o concl) nubs val rawdests = fold_rev (find_normedterms o Thm.dest_arg o concl) (ges @ gts) [] val _ = if not (forall fst rawdests) then error "real_vector_combo_prover: Sanity check" else () val dests = distinct (op aconvc) (map snd rawdests) val srcfuns = map vector_lincomb sources val destfuns = map vector_lincomb dests val vvs = fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom) (srcfuns @ destfuns) [] val n = length srcfuns val nvs = 1 upto n val srccombs = srcfuns ~~ nvs fun consider d = let fun coefficients x = let val inp = if FuncUtil.Ctermfunc.defined d x then FuncUtil.Intfunc.onefunc (0, ~ (FuncUtil.Ctermfunc.apply d x)) else FuncUtil.Intfunc.empty in fold_rev (fn (f,v) => fn g => if FuncUtil.Ctermfunc.defined f x then FuncUtil.Intfunc.update (v, FuncUtil.Ctermfunc.apply f x) g else g) srccombs inp end val equations = map coefficients vvs val inequalities = map (fn n => FuncUtil.Intfunc.onefunc (n,@1)) nvs fun plausiblevertices f = let val flippedequations = map (fold_rev int_flip f) equations val constraints = flippedequations @ inequalities val rawverts = vertices nvs constraints fun check_solution v = let val f = fold_rev FuncUtil.Intfunc.update (nvs ~~ v) (FuncUtil.Intfunc.onefunc (0, @1)) in forall (fn e => evaluate f e = @0) flippedequations end val goodverts = filter check_solution rawverts val signfixups = map (fn n => if member (op =) f n then ~1 else 1) nvs in map (map2 (fn s => fn c => Rat.of_int s * c) signfixups) goodverts end val allverts = fold_rev append (map plausiblevertices (allsubsets nvs)) [] in subsume allverts [] end fun compute_ineq v = let val ths = map_filter (fn (v,t) => if v = @0 then NONE else SOME(norm_cmul_rule v t)) (v ~~ nubs) fun end_itlist f xs = split_last xs |> uncurry (fold_rev f) in inequality_canon_rule ctxt (end_itlist norm_add_rule ths) end val ges' = map_filter (try compute_ineq) (fold_rev (append o consider) destfuns []) @ map (inequality_canon_rule ctxt) nubs @ ges val zerodests = filter (fn t => null (FuncUtil.Ctermfunc.dom (vector_lincomb t))) (map snd rawdests) in fst (RealArith.real_linear_prover translator (map (fn t => Drule.instantiate_normalize (TVars.make [(tv_n, Thm.ctyp_of_cterm t)], Vars.empty) pth_zero) zerodests, map (fconv_rule (try_conv (Conv.top_sweep_conv norm_canon_conv ctxt) then_conv arg_conv (arg_conv real_poly_conv))) ges', map (fconv_rule (try_conv (Conv.top_sweep_conv norm_canon_conv ctxt) then_conv arg_conv (arg_conv real_poly_conv))) gts)) end in val real_vector_combo_prover = real_vector_combo_prover end; local val pth = @{thm norm_imp_pos_and_ge} val norm_mp = match_mp pth val concl = Thm.dest_arg o Thm.cprop_of fun conjunct1 th = th RS @{thm conjunct1} fun conjunct2 th = th RS @{thm conjunct2} fun real_vector_ineq_prover ctxt translator (ges,gts) = let (* val _ = error "real_vector_ineq_prover: pause" *) val ntms = fold_rev find_normedterms (map (Thm.dest_arg o concl) (ges @ gts)) [] val lctab = vector_lincombs (map snd (filter (not o fst) ntms)) val (fxns, ctxt') = Variable.variant_fixes (replicate (length lctab) "x") ctxt - fun instantiate_cterm' ty tms = Drule.cterm_rule (Thm.instantiate' ty tms) fun mk_norm t = - let val T = Thm.typ_of_cterm t - in Thm.apply (Thm.cterm_of ctxt' (Const (\<^const_name>\norm\, T --> \<^typ>\real\))) t end + let val T = Thm.ctyp_of_cterm t + in \<^instantiate>\'a = T and t in cterm \norm t\\ end fun mk_equals l r = - let - val T = Thm.typ_of_cterm l - val eq = Thm.cterm_of ctxt (Const (\<^const_name>\Pure.eq\, T --> T --> propT)) - in Thm.apply (Thm.apply eq l) r end + let val T = Thm.ctyp_of_cterm l + in \<^instantiate>\'a = T and l and r in cterm \l \ r\\ end val asl = map2 (fn (t,_) => fn n => Thm.assume (mk_equals (mk_norm t) (Thm.cterm_of ctxt' (Free(n,\<^typ>\real\))))) lctab fxns val replace_conv = try_conv (rewrs_conv asl) val replace_rule = fconv_rule (funpow 2 arg_conv (replacenegnorms replace_conv)) val ges' = fold_rev (fn th => fn ths => conjunct1(norm_mp th)::ths) asl (map replace_rule ges) val gts' = map replace_rule gts val nubs = map (conjunct2 o norm_mp) asl val th1 = real_vector_combo_prover ctxt' translator (nubs,ges',gts') val shs = filter (member (fn (t,th) => t aconvc Thm.cprop_of th) asl) (Thm.chyps_of th1) val th11 = hd (Variable.export ctxt' ctxt [fold Thm.implies_intr shs th1]) val cps = map (swap o Thm.dest_equals) (cprems_of th11) val th12 = Drule.instantiate_normalize (TVars.empty, Vars.make (map (apfst (dest_Var o Thm.term_of)) cps)) th11 val th13 = fold Thm.elim_implies (map (Thm.reflexive o snd) cps) th12; in hd (Variable.export ctxt' ctxt [th13]) end in val real_vector_ineq_prover = real_vector_ineq_prover end; local val rawrule = fconv_rule (arg_conv (rewr_conv @{thm real_eq_0_iff_le_ge_0})) fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2}) (* FIXME: Lookup in the context every time!!! Fix this !!!*) fun splitequation ctxt th acc = let val real_poly_neg_conv = #neg (Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt (the (Semiring_Normalizer.match ctxt \<^cterm>\(0::real) + 1\)) Thm.term_ord) val (th1,th2) = conj_pair(rawrule th) in th1::fconv_rule (arg_conv (arg_conv (real_poly_neg_conv ctxt))) th2::acc end in fun real_vector_prover ctxt _ translator (eqs,ges,gts) = (real_vector_ineq_prover ctxt translator (fold_rev (splitequation ctxt) eqs ges,gts), RealArith.Trivial) end; fun init_conv ctxt = Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps ([(*@{thm vec_0}, @{thm vec_1},*) @{thm dist_norm}, @{thm right_minus}, @{thm diff_self}, @{thm norm_zero}] @ @{thms arithmetic_simps} @ @{thms norm_pths})) then_conv Numeral_Simprocs.field_comp_conv ctxt then_conv nnf_conv ctxt fun pure ctxt = fst o RealArith.gen_prover_real_arith ctxt (real_vector_prover ctxt); fun norm_arith ctxt ct = let val ctxt' = Variable.declare_term (Thm.term_of ct) ctxt val th = init_conv ctxt' ct in Thm.equal_elim (Drule.arg_cong_rule \<^cterm>\Trueprop\ (Thm.symmetric th)) (pure ctxt' (Thm.rhs_of th)) end fun norm_arith_tac ctxt = clarify_tac (put_claset HOL_cs ctxt) THEN' Object_Logic.full_atomize_tac ctxt THEN' CSUBGOAL ( fn (p,i) => resolve_tac ctxt [norm_arith ctxt (Thm.dest_arg p )] i); end;