diff --git a/src/Pure/Thy/export_theory.ML b/src/Pure/Thy/export_theory.ML --- a/src/Pure/Thy/export_theory.ML +++ b/src/Pure/Thy/export_theory.ML @@ -1,491 +1,481 @@ (* Title: Pure/Thy/export_theory.ML Author: Makarius Export foundational theory content and locale/class structure. *) signature EXPORT_THEORY = sig val other_name_space: (theory -> Name_Space.T) -> theory -> theory val export_enabled: Thy_Info.presentation_context -> bool val export_body: theory -> string -> XML.body -> unit end; structure Export_Theory: EXPORT_THEORY = struct (* other name spaces *) fun err_dup_kind kind = error ("Duplicate name space kind " ^ quote kind); structure Data = Theory_Data ( - type T = ((theory -> Name_Space.T) * serial) Symtab.table; - val empty = Symtab.empty; + type T = (theory -> Name_Space.T) Inttab.table; + val empty = Inttab.empty; val extend = I; - fun merge data = - Symtab.merge (eq_snd op =) data - handle Symtab.DUP dup => err_dup_kind dup; + val merge = Inttab.merge (K true); ); -val other_name_spaces = map (#1 o #2) o Symtab.dest o Data.get; - -fun other_name_space get_space thy = - let - val kind = Name_Space.kind_of (get_space thy); - val entry = (get_space, serial ()); - in - Data.map (Symtab.update_new (kind, entry)) thy - handle Symtab.DUP dup => err_dup_kind dup - end; +val other_name_spaces = map #2 o Inttab.dest o Data.get; +fun other_name_space get_space thy = Data.map (Inttab.update (serial (), get_space)) thy; val _ = Theory.setup (other_name_space Thm.oracle_space #> other_name_space Global_Theory.fact_space #> other_name_space (Bundle.bundle_space o Context.Theory) #> other_name_space (Attrib.attribute_space o Context.Theory) #> other_name_space (Method.method_space o Context.Theory)); (* approximative syntax *) val get_syntax = Syntax.get_approx o Proof_Context.syn_of; fun get_syntax_type ctxt = get_syntax ctxt o Lexicon.mark_type; fun get_syntax_const ctxt = get_syntax ctxt o Lexicon.mark_const; fun get_syntax_fixed ctxt = get_syntax ctxt o Lexicon.mark_fixed; fun get_syntax_param ctxt loc x = let val thy = Proof_Context.theory_of ctxt in if Class.is_class thy loc then (case AList.lookup (op =) (Class.these_params thy [loc]) x of NONE => NONE | SOME (_, (c, _)) => get_syntax_const ctxt c) else get_syntax_fixed ctxt x end; val encode_syntax = XML.Encode.variant [fn NONE => ([], []), fn SOME (Syntax.Prefix delim) => ([delim], []), fn SOME (Syntax.Infix {assoc, delim, pri}) => let val ass = (case assoc of Printer.No_Assoc => 0 | Printer.Left_Assoc => 1 | Printer.Right_Assoc => 2); open XML.Encode Term_XML.Encode; in ([], triple int string int (ass, delim, pri)) end]; (* free variables: not declared in the context *) val is_free = not oo Name.is_declared; fun add_frees used = fold_aterms (fn Free (x, T) => is_free used x ? insert (op =) (x, T) | _ => I); fun add_tfrees used = (fold_types o fold_atyps) (fn TFree (a, S) => is_free used a ? insert (op =) (a, S) | _ => I); (* locales *) fun locale_content thy loc = let val ctxt = Locale.init loc thy; val args = Locale.params_of thy loc |> map (fn ((x, T), _) => ((x, T), get_syntax_param ctxt loc x)); val axioms = let val (asm, defs) = Locale.specification_of thy loc; val cprops = map (Thm.cterm_of ctxt) (the_list asm @ defs); val (intro1, intro2) = Locale.intros_of thy loc; val intros_tac = Method.try_intros_tac ctxt (the_list intro1 @ the_list intro2) []; val res = Goal.init (Conjunction.mk_conjunction_balanced cprops) |> (ALLGOALS Goal.conjunction_tac THEN intros_tac) |> try Seq.hd; in (case res of SOME goal => Thm.prems_of goal | NONE => raise Fail ("Cannot unfold locale " ^ quote loc)) end; val typargs = build_rev (fold Term.add_tfrees (map (Free o #1) args @ axioms)); in {typargs = typargs, args = args, axioms = axioms} end; fun get_locales thy = Locale.get_locales thy |> map_filter (fn loc => if Experiment.is_experiment thy loc then NONE else SOME (loc, ())); fun get_dependencies prev_thys thy = Locale.dest_dependencies prev_thys thy |> map_filter (fn dep => if Experiment.is_experiment thy (#source dep) orelse Experiment.is_experiment thy (#target dep) then NONE else let val (type_params, params) = Locale.parameters_of thy (#source dep); val typargs = fold (Term.add_tfreesT o #2 o #1) params type_params; val substT = typargs |> map_filter (fn v => let val T = TFree v; val T' = Morphism.typ (#morphism dep) T; in if T = T' then NONE else SOME (v, T') end); val subst = params |> map_filter (fn (v, _) => let val t = Free v; val t' = Morphism.term (#morphism dep) t; in if t aconv t' then NONE else SOME (v, t') end); in SOME (dep, (substT, subst)) end); (* presentation *) fun export_enabled (context: Thy_Info.presentation_context) = Options.bool (#options context) "export_theory"; fun export_body thy name body = if XML.is_empty_body body then () else Export.export thy (Path.binding0 (Path.make ("theory" :: space_explode "/" name))) body; val _ = (Theory.setup o Thy_Info.add_presentation) (fn context => fn thy => let val rep_tsig = Type.rep_tsig (Sign.tsig_of thy); val consts = Sign.consts_of thy; val thy_ctxt = Proof_Context.init_global thy; val pos_properties = Thy_Info.adjust_pos_properties context; val enabled = export_enabled context; (* strict parents *) val parents = Theory.parents_of thy; val _ = Export.export thy \<^path_binding>\theory/parents\ (XML.Encode.string (cat_lines (map Context.theory_long_name parents))); (* spec rules *) fun spec_rule_content {pos, name, rough_classification, terms, rules} = let val spec = terms @ map Thm.plain_prop_of rules |> Term_Subst.zero_var_indexes_list |> map Logic.unvarify_global; in {props = pos_properties pos, name = name, rough_classification = rough_classification, typargs = build_rev (fold Term.add_tfrees spec), args = build_rev (fold Term.add_frees spec), terms = map (fn t => (t, Term.type_of t)) (take (length terms) spec), rules = drop (length terms) spec} end; (* entities *) fun make_entity_markup name xname pos serial = let val props = pos_properties pos @ Markup.serial_properties serial; in (Markup.entityN, (Markup.nameN, name) :: (Markup.xnameN, xname) :: props) end; fun entity_markup space name = let val xname = Name_Space.extern_shortest thy_ctxt space name; val {serial, pos, ...} = Name_Space.the_entry space name; in make_entity_markup name xname pos serial end; fun export_entities export_name get_space decls export = let val parent_spaces = map get_space parents; val space = get_space thy; in build (decls |> fold (fn (name, decl) => if exists (fn space => Name_Space.declared space name) parent_spaces then I else (case export name decl of NONE => I | SOME make_body => let val i = #serial (Name_Space.the_entry space name); val body = if enabled then make_body () else []; in cons (i, XML.Elem (entity_markup space name, body)) end))) |> sort (int_ord o apply2 #1) |> map #2 |> export_body thy export_name end; (* types *) val encode_type = let open XML.Encode Term_XML.Encode in triple encode_syntax (list string) (option typ) end; val _ = export_entities "types" Sign.type_space (Name_Space.dest_table (#types rep_tsig)) (fn c => (fn Type.LogicalType n => SOME (fn () => encode_type (get_syntax_type thy_ctxt c, Name.invent Name.context Name.aT n, NONE)) | Type.Abbreviation (args, U, false) => SOME (fn () => encode_type (get_syntax_type thy_ctxt c, args, SOME U)) | _ => NONE)); (* consts *) val encode_term = Term_XML.Encode.term consts; val encode_const = let open XML.Encode Term_XML.Encode in pair encode_syntax (pair (list string) (pair typ (pair (option encode_term) bool))) end; val _ = export_entities "consts" Sign.const_space (#constants (Consts.dest consts)) (fn c => fn (T, abbrev) => SOME (fn () => let val syntax = get_syntax_const thy_ctxt c; val U = Logic.unvarifyT_global T; val U0 = Type.strip_sorts U; val trim_abbrev = Proofterm.standard_vars_term Name.context #> map_types Type.strip_sorts; val abbrev' = Option.map trim_abbrev abbrev; val args = map (#1 o dest_TFree) (Consts.typargs consts (c, U0)); val propositional = Object_Logic.is_propositional thy_ctxt (Term.body_type U0); in encode_const (syntax, (args, (U0, (abbrev', propositional)))) end)); (* axioms *) fun standard_prop used extra_shyps raw_prop raw_proof = let val (prop, proof) = Proofterm.standard_vars used (raw_prop, raw_proof); val args = rev (add_frees used prop []); val typargs = rev (add_tfrees used prop []); val used_typargs = fold (Name.declare o #1) typargs used; val sorts = Name.invent used_typargs Name.aT (length extra_shyps) ~~ extra_shyps; in ((sorts @ typargs, args, prop), proof) end; fun standard_prop_of thm = standard_prop Name.context (Thm.extra_shyps thm) (Thm.full_prop_of thm); val encode_prop = let open XML.Encode Term_XML.Encode in triple (list (pair string sort)) (list (pair string typ)) encode_term end; fun encode_axiom used prop = encode_prop (#1 (standard_prop used [] prop NONE)); val _ = export_entities "axioms" Theory.axiom_space (Theory.all_axioms_of thy) (fn _ => fn prop => SOME (fn () => encode_axiom Name.context prop)); (* theorems and proof terms *) val clean_thm = Thm.check_hyps (Context.Theory thy) #> Thm.strip_shyps; val prep_thm = clean_thm #> Thm.unconstrainT #> Thm.strip_shyps; val lookup_thm_id = Global_Theory.lookup_thm_id thy; fun expand_name thm_id (header: Proofterm.thm_header) = if #serial header = #serial thm_id then "" else (case lookup_thm_id (Proofterm.thm_header_id header) of NONE => "" | SOME thm_name => Thm_Name.print thm_name); fun entity_markup_thm (serial, (name, i)) = let val space = Global_Theory.fact_space thy; val xname = Name_Space.extern_shortest thy_ctxt space name; val {pos, ...} = Name_Space.the_entry space name; in make_entity_markup (Thm_Name.print (name, i)) (Thm_Name.print (xname, i)) pos serial end; fun encode_thm thm_id raw_thm = let val deps = map (Thm_Name.print o #2) (Thm_Deps.thm_deps thy [raw_thm]); val thm = prep_thm raw_thm; val proof0 = if Proofterm.export_standard_enabled () then Proof_Syntax.standard_proof_of {full = true, expand_name = SOME o expand_name thm_id} thm else if Proofterm.export_enabled () then Thm.reconstruct_proof_of thm else MinProof; val (prop, SOME proof) = standard_prop_of thm (SOME proof0); val _ = Thm.expose_proofs thy [thm]; in (prop, deps, proof) |> let open XML.Encode Term_XML.Encode; val encode_proof = Proofterm.encode_standard_proof consts; in triple encode_prop (list string) encode_proof end end; fun export_thm (thm_id, thm_name) = let val markup = entity_markup_thm (#serial thm_id, thm_name); val body = if enabled then Global_Theory.get_thm_name thy (thm_name, Position.none) |> encode_thm thm_id else []; in XML.Elem (markup, body) end; val _ = export_body thy "thms" (map export_thm (Global_Theory.dest_thm_names thy)); (* type classes *) val encode_class = let open XML.Encode Term_XML.Encode in pair (list (pair string typ)) (list (encode_axiom Name.context)) end; val _ = export_entities "classes" Sign.class_space (map (rpair ()) (Graph.keys (Sorts.classes_of (#2 (#classes rep_tsig))))) (fn name => fn () => SOME (fn () => (case try (Axclass.get_info thy) name of NONE => ([], []) | SOME {params, axioms, ...} => (params, map (Thm.plain_prop_of o clean_thm) axioms)) |> encode_class)); (* sort algebra *) val _ = if enabled then let val prop = encode_axiom Name.context o Logic.varify_global; val encode_classrel = let open XML.Encode in list (pair prop (pair string string)) end; val encode_arities = let open XML.Encode Term_XML.Encode in list (pair prop (triple string (list sort) string)) end; val export_classrel = maps (fn (c, cs) => map (pair c) cs) #> map (`Logic.mk_classrel) #> encode_classrel; val export_arities = map (`Logic.mk_arity) #> encode_arities; val {classrel, arities} = Sorts.dest_algebra (map (#2 o #classes o Type.rep_tsig o Sign.tsig_of) parents) (#2 (#classes rep_tsig)); in if null classrel then () else export_body thy "classrel" (export_classrel classrel); if null arities then () else export_body thy "arities" (export_arities arities) end else (); (* locales *) fun encode_locale used = let open XML.Encode Term_XML.Encode in triple (list (pair string sort)) (list (pair (pair string typ) encode_syntax)) (list (encode_axiom used)) end; val _ = export_entities "locales" Locale.locale_space (get_locales thy) (fn loc => fn () => SOME (fn () => let val {typargs, args, axioms} = locale_content thy loc; val used = fold Name.declare (map #1 typargs @ map (#1 o #1) args) Name.context; in encode_locale used (typargs, args, axioms) end handle ERROR msg => cat_error msg ("The error(s) above occurred in locale " ^ quote (Locale.markup_name thy_ctxt loc)))); (* locale dependencies *) fun encode_locale_dependency (dep: Locale.locale_dependency, subst) = (#source dep, (#target dep, (#prefix dep, subst))) |> let open XML.Encode Term_XML.Encode; val encode_subst = pair (list (pair (pair string sort) typ)) (list (pair (pair string typ) (term consts))); in pair string (pair string (pair (list (pair string bool)) encode_subst)) end; val _ = if enabled then get_dependencies parents thy |> map_index (fn (i, dep) => let val xname = string_of_int (i + 1); val name = Long_Name.implode [Context.theory_name thy, xname]; val markup = make_entity_markup name xname (#pos (#1 dep)) (#serial (#1 dep)); val body = encode_locale_dependency dep; in XML.Elem (markup, body) end) |> export_body thy "locale_dependencies" else (); (* constdefs *) val _ = if enabled then let val constdefs = Defs.dest_constdefs (map Theory.defs_of (Theory.parents_of thy)) (Theory.defs_of thy) |> sort_by #1; val encode = let open XML.Encode in list (pair string string) end; in if null constdefs then () else export_body thy "constdefs" (encode constdefs) end else (); (* spec rules *) val encode_specs = let open XML.Encode Term_XML.Encode in list (fn {props, name, rough_classification, typargs, args, terms, rules} => pair properties (pair string (pair Spec_Rules.encode_rough_classification (pair (list (pair string sort)) (pair (list (pair string typ)) (pair (list (pair encode_term typ)) (list encode_term)))))) (props, (name, (rough_classification, (typargs, (args, (terms, rules))))))) end; val _ = if enabled then (case Spec_Rules.dest_theory thy of [] => () | spec_rules => export_body thy "spec_rules" (encode_specs (map spec_rule_content spec_rules))) else (); (* other entities *) fun export_other get_space = let val space = get_space thy; val export_name = "other/" ^ Name_Space.kind_of space; val decls = Name_Space.get_names space |> map (rpair ()); in export_entities export_name get_space decls (fn _ => fn () => SOME (K [])) end; val other_spaces = other_name_spaces thy; val other_kinds = map (fn get_space => Name_Space.kind_of (get_space thy)) other_spaces; val _ = if null other_kinds then () else Export.export thy \<^path_binding>\theory/other_kinds\ (XML.Encode.string (cat_lines other_kinds)); val _ = List.app export_other other_spaces; in () end); end;