diff --git a/src/HOL/Tools/Meson/meson_clausify.ML b/src/HOL/Tools/Meson/meson_clausify.ML --- a/src/HOL/Tools/Meson/meson_clausify.ML +++ b/src/HOL/Tools/Meson/meson_clausify.ML @@ -1,385 +1,385 @@ (* Title: HOL/Tools/Meson/meson_clausify.ML Author: Jia Meng, Cambridge University Computer Laboratory and NICTA Author: Jasmin Blanchette, TU Muenchen Transformation of HOL theorems into CNF forms. *) signature MESON_CLAUSIFY = sig val new_skolem_var_prefix : string val new_nonskolem_var_prefix : string val is_zapped_var_name : string -> bool val is_quasi_lambda_free : term -> bool val introduce_combinators_in_cterm : Proof.context -> cterm -> thm val introduce_combinators_in_theorem : Proof.context -> thm -> thm val cluster_of_zapped_var_name : string -> (int * (int * int)) * bool val ss_only : thm list -> Proof.context -> Proof.context val cnf_axiom : Meson.simp_options -> Proof.context -> bool -> bool -> int -> thm -> (thm * term) option * thm list end; structure Meson_Clausify : MESON_CLAUSIFY = struct (* the extra "Meson" helps prevent clashes (FIXME) *) val new_skolem_var_prefix = "MesonSK" val new_nonskolem_var_prefix = "MesonV" fun is_zapped_var_name s = exists (fn prefix => String.isPrefix prefix s) [new_skolem_var_prefix, new_nonskolem_var_prefix] (**** Transformation of Elimination Rules into First-Order Formulas****) val cfalse = Thm.cterm_of \<^theory_context>\HOL\ \<^term>\False\; val ctp_false = Thm.cterm_of \<^theory_context>\HOL\ (HOLogic.mk_Trueprop \<^term>\False\); (* Converts an elim-rule into an equivalent theorem that does not have the predicate variable. Leaves other theorems unchanged. We simply instantiate the conclusion variable to False. (Cf. "transform_elim_prop" in "Sledgehammer_Util".) *) fun transform_elim_theorem th = (case Thm.concl_of th of (*conclusion variable*) \<^Const_>\Trueprop for \Var (v as (_, \<^Type>\bool\))\\ => Thm.instantiate (TVars.empty, Vars.make [(v, cfalse)]) th | Var (v as (_, \<^Type>\prop\)) => Thm.instantiate (TVars.empty, Vars.make [(v, ctp_false)]) th | _ => th) (**** SKOLEMIZATION BY INFERENCE (lcp) ****) fun mk_old_skolem_term_wrapper t = let val T = fastype_of t in \<^Const>\Meson.skolem T for t\ end fun beta_eta_in_abs_body (Abs (s, T, t')) = Abs (s, T, beta_eta_in_abs_body t') | beta_eta_in_abs_body t = Envir.beta_eta_contract t (*Traverse a theorem, accumulating Skolem function definitions.*) fun old_skolem_defs th = let fun dec_sko \<^Const_>\Ex _ for \body as Abs (_, T, p)\\ rhss = (*Existential: declare a Skolem function, then insert into body and continue*) let val args = Misc_Legacy.term_frees body (* Forms a lambda-abstraction over the formal parameters *) val rhs = fold_rev (absfree o dest_Free) args (HOLogic.choice_const T $ beta_eta_in_abs_body body) |> mk_old_skolem_term_wrapper val comb = list_comb (rhs, args) in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end | dec_sko \<^Const_>\All _ for \Abs abs\\ rhss = dec_sko (#2 (Term.dest_abs abs)) rhss | dec_sko \<^Const_>\conj for p q\ rhss = rhss |> dec_sko p |> dec_sko q | dec_sko \<^Const_>\disj for p q\ rhss = rhss |> dec_sko p |> dec_sko q | dec_sko \<^Const_>\Trueprop for p\ rhss = dec_sko p rhss | dec_sko _ rhss = rhss in dec_sko (Thm.prop_of th) [] end; (**** REPLACING ABSTRACTIONS BY COMBINATORS ****) fun is_quasi_lambda_free \<^Const_>\Meson.skolem _ for _\ = true | is_quasi_lambda_free (t1 $ t2) = is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2 | is_quasi_lambda_free (Abs _) = false | is_quasi_lambda_free _ = true fun abstract ctxt ct = let val Abs (_, _, body) = Thm.term_of ct val (x, cbody) = Thm.dest_abs ct val (A, cbodyT) = Thm.dest_funT (Thm.ctyp_of_cterm ct) fun makeK () = Thm.instantiate' [SOME A, SOME cbodyT] [SOME cbody] @{thm abs_K} in case body of Const _ => makeK() | Free _ => makeK() | Var _ => makeK() (*though Var isn't expected*) | Bound 0 => Thm.instantiate' [SOME A] [] @{thm abs_I} (*identity: I*) | rator$rand => if Term.is_dependent rator then (*C or S*) if Term.is_dependent rand then (*S*) let val crator = Thm.lambda x (Thm.dest_fun cbody) val crand = Thm.lambda x (Thm.dest_arg cbody) val (C, B) = Thm.dest_funT (Thm.dest_ctyp1 (Thm.ctyp_of_cterm crator)) val abs_S' = @{thm abs_S} |> instantiate'_normalize [SOME A, SOME B, SOME C] [SOME crator, SOME crand] val (_,rhs) = Thm.dest_equals (Thm.cprop_of abs_S') in Thm.transitive abs_S' (Conv.binop_conv (abstract ctxt) rhs) end else (*C*) let val crator = Thm.lambda x (Thm.dest_fun cbody) val crand = Thm.dest_arg cbody val (C, B) = Thm.dest_funT (Thm.dest_ctyp1 (Thm.ctyp_of_cterm crator)) val abs_C' = @{thm abs_C} |> instantiate'_normalize [SOME A, SOME B, SOME C] [SOME crator, SOME crand] val (_,rhs) = Thm.dest_equals (Thm.cprop_of abs_C') in Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv (abstract ctxt)) rhs) end else if Term.is_dependent rand then (*B or eta*) if rand = Bound 0 then Thm.eta_conversion ct else (*B*) let val crator = Thm.dest_fun cbody val crand = Thm.lambda x (Thm.dest_arg cbody) val (C, B) = Thm.dest_funT (Thm.ctyp_of_cterm crator) val abs_B' = @{thm abs_B} |> instantiate'_normalize [SOME A, SOME B, SOME C] [SOME crator, SOME crand] val (_,rhs) = Thm.dest_equals (Thm.cprop_of abs_B') in Thm.transitive abs_B' (Conv.arg_conv (abstract ctxt) rhs) end else makeK () | _ => raise Fail "abstract: Bad term" end; -(* Traverse a theorem, remplacing lambda-abstractions with combinators. *) +(* Traverse a theorem, replacing lambda-abstractions with combinators. *) fun introduce_combinators_in_cterm ctxt ct = if is_quasi_lambda_free (Thm.term_of ct) then Thm.reflexive ct else case Thm.term_of ct of Abs _ => let val (cv, cta) = Thm.dest_abs ct val (v, _) = dest_Free (Thm.term_of cv) val u_th = introduce_combinators_in_cterm ctxt cta val cu = Thm.rhs_of u_th val comb_eq = abstract ctxt (Thm.lambda cv cu) in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end | _ $ _ => let val (ct1, ct2) = Thm.dest_comb ct in Thm.combination (introduce_combinators_in_cterm ctxt ct1) (introduce_combinators_in_cterm ctxt ct2) end fun introduce_combinators_in_theorem ctxt th = if is_quasi_lambda_free (Thm.prop_of th) then th else let val th = Drule.eta_contraction_rule th val eqth = introduce_combinators_in_cterm ctxt (Thm.cprop_of th) in Thm.equal_elim eqth th end handle THM (msg, _, _) => (warning ("Error in the combinator translation of " ^ Thm.string_of_thm ctxt th ^ "\nException message: " ^ msg); (* A type variable of sort "{}" will make "abstraction" fail. *) TrueI) (*cterms are used throughout for efficiency*) val cTrueprop = Thm.cterm_of \<^theory_context>\HOL\ HOLogic.Trueprop; (*Given an abstraction over n variables, replace the bound variables by free ones. Return the body, along with the list of free variables.*) fun c_variant_abs_multi (ct0, vars) = let val (cv,ct) = Thm.dest_abs ct0 in c_variant_abs_multi (ct, cv::vars) end handle CTERM _ => (ct0, rev vars); (* Given the definition of a Skolem function, return a theorem to replace an existential formula by a use of that function. Example: "\x. x \ A \ x \ B \ sko A B \ A \ sko A B \ B" *) fun old_skolem_theorem_of_def ctxt rhs0 = let val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> Thm.cterm_of ctxt val rhs' = rhs |> Thm.dest_comb |> snd val (ch, frees) = c_variant_abs_multi (rhs', []) val (hilbert, cabs) = ch |> Thm.dest_comb |>> Thm.term_of val T = case hilbert of Const (_, Type (\<^type_name>\fun\, [_, T])) => T | _ => raise TERM ("old_skolem_theorem_of_def: expected \"Eps\"", [hilbert]) val cex = Thm.cterm_of ctxt (HOLogic.exists_const T) val ex_tm = Thm.apply cTrueprop (Thm.apply cex cabs) val conc = Drule.list_comb (rhs, frees) |> Drule.beta_conv cabs |> Thm.apply cTrueprop fun tacf [prem] = rewrite_goals_tac ctxt @{thms skolem_def [abs_def]} THEN resolve_tac ctxt [(prem |> rewrite_rule ctxt @{thms skolem_def [abs_def]}) RS Global_Theory.get_thm (Proof_Context.theory_of ctxt) "Hilbert_Choice.someI_ex"] 1 in Goal.prove_internal ctxt [ex_tm] conc tacf |> forall_intr_list frees |> Thm.forall_elim_vars 0 (*Introduce Vars, but don't discharge defs.*) |> Thm.varifyT_global end fun to_definitional_cnf_with_quantifiers ctxt th = let val eqth = CNF.make_cnfx_thm ctxt (HOLogic.dest_Trueprop (Thm.prop_of th)) val eqth = eqth RS @{thm eq_reflection} val eqth = eqth RS @{thm TruepropI} in Thm.equal_elim eqth th end fun zapped_var_name ((ax_no, cluster_no), skolem) index_no s = (if skolem then new_skolem_var_prefix else new_nonskolem_var_prefix) ^ "_" ^ string_of_int ax_no ^ "_" ^ string_of_int cluster_no ^ "_" ^ string_of_int index_no ^ "_" ^ Name.desymbolize (SOME false) s fun cluster_of_zapped_var_name s = let val get_int = the o Int.fromString o nth (space_explode "_" s) in ((get_int 1, (get_int 2, get_int 3)), String.isPrefix new_skolem_var_prefix s) end fun rename_bound_vars_to_be_zapped ax_no = let fun aux (cluster as (cluster_no, cluster_skolem)) index_no pos t = case t of (t1 as Const (s, _)) $ Abs (s', T, t') => if s = \<^const_name>\Pure.all\ orelse s = \<^const_name>\All\ orelse s = \<^const_name>\Ex\ then let val skolem = (pos = (s = \<^const_name>\Ex\)) val (cluster, index_no) = if skolem = cluster_skolem then (cluster, index_no) else ((cluster_no ||> cluster_skolem ? Integer.add 1, skolem), 0) val s' = zapped_var_name cluster index_no s' in t1 $ Abs (s', T, aux cluster (index_no + 1) pos t') end else t | (t1 as Const (s, _)) $ t2 $ t3 => if s = \<^const_name>\Pure.imp\ orelse s = \<^const_name>\HOL.implies\ then t1 $ aux cluster index_no (not pos) t2 $ aux cluster index_no pos t3 else if s = \<^const_name>\HOL.conj\ orelse s = \<^const_name>\HOL.disj\ then t1 $ aux cluster index_no pos t2 $ aux cluster index_no pos t3 else t | (t1 as Const (s, _)) $ t2 => if s = \<^const_name>\Trueprop\ then t1 $ aux cluster index_no pos t2 else if s = \<^const_name>\Not\ then t1 $ aux cluster index_no (not pos) t2 else t | _ => t in aux ((ax_no, 0), true) 0 true end fun zap pos ct = ct |> (case Thm.term_of ct of Const (s, _) $ Abs (s', _, _) => if s = \<^const_name>\Pure.all\ orelse s = \<^const_name>\All\ orelse s = \<^const_name>\Ex\ then Thm.dest_comb #> snd #> Thm.dest_abs_name s' #> snd #> zap pos else Conv.all_conv | Const (s, _) $ _ $ _ => if s = \<^const_name>\Pure.imp\ orelse s = \<^const_name>\implies\ then Conv.combination_conv (Conv.arg_conv (zap (not pos))) (zap pos) else if s = \<^const_name>\conj\ orelse s = \<^const_name>\disj\ then Conv.combination_conv (Conv.arg_conv (zap pos)) (zap pos) else Conv.all_conv | Const (s, _) $ _ => if s = \<^const_name>\Trueprop\ then Conv.arg_conv (zap pos) else if s = \<^const_name>\Not\ then Conv.arg_conv (zap (not pos)) else Conv.all_conv | _ => Conv.all_conv) fun ss_only ths ctxt = clear_simpset (put_simpset HOL_basic_ss ctxt) addsimps ths val cheat_choice = \<^prop>\\x. \y. Q x y \ \f. \x. Q x (f x)\ |> Logic.varify_global |> Skip_Proof.make_thm \<^theory> (* Converts an Isabelle theorem into NNF. *) fun nnf_axiom simp_options choice_ths new_skolem ax_no th ctxt = let val thy = Proof_Context.theory_of ctxt val th = th |> transform_elim_theorem |> zero_var_indexes |> new_skolem ? Thm.forall_intr_vars val (th, ctxt) = Variable.import true [th] ctxt |>> snd |>> the_single val th = th |> Conv.fconv_rule (Object_Logic.atomize ctxt) |> Meson.cong_extensionalize_thm ctxt |> Meson.abs_extensionalize_thm ctxt |> Meson.make_nnf simp_options ctxt in if new_skolem then let fun skolemize choice_ths = Meson.skolemize_with_choice_theorems simp_options ctxt choice_ths #> simplify (ss_only @{thms all_simps[symmetric]} ctxt) val no_choice = null choice_ths val pull_out = if no_choice then simplify (ss_only @{thms all_simps[symmetric] ex_simps[symmetric]} ctxt) else skolemize choice_ths val discharger_th = th |> pull_out val discharger_th = discharger_th |> Meson.has_too_many_clauses ctxt (Thm.concl_of discharger_th) ? (to_definitional_cnf_with_quantifiers ctxt #> pull_out) val zapped_th = discharger_th |> Thm.prop_of |> rename_bound_vars_to_be_zapped ax_no |> (if no_choice then Skip_Proof.make_thm thy #> skolemize [cheat_choice] #> Thm.cprop_of else Thm.cterm_of ctxt) |> zap true val fixes = [] |> Term.add_free_names (Thm.prop_of zapped_th) |> filter is_zapped_var_name val ctxt' = ctxt |> Variable.add_fixes_direct fixes val fully_skolemized_t = zapped_th |> singleton (Variable.export ctxt' ctxt) |> Thm.cprop_of |> Thm.dest_equals |> snd |> Thm.term_of in if exists_subterm (fn Var ((s, _), _) => String.isPrefix new_skolem_var_prefix s | _ => false) fully_skolemized_t then let val (fully_skolemized_ct, ctxt) = yield_singleton (Variable.import_terms true) fully_skolemized_t ctxt |>> Thm.cterm_of ctxt in (SOME (discharger_th, fully_skolemized_ct), (Thm.assume fully_skolemized_ct, ctxt)) end else (NONE, (th, ctxt)) end else (NONE, (th |> Meson.has_too_many_clauses ctxt (Thm.concl_of th) ? to_definitional_cnf_with_quantifiers ctxt, ctxt)) end (* Convert a theorem to CNF, with additional premises due to skolemization. *) fun cnf_axiom simp_options ctxt0 new_skolem combinators ax_no th = let val choice_ths = Meson.choice_theorems (Proof_Context.theory_of ctxt0) val (opt, (nnf_th, ctxt1)) = nnf_axiom simp_options choice_ths new_skolem ax_no th ctxt0 fun clausify th = Meson.make_cnf (if new_skolem orelse null choice_ths then [] else map (old_skolem_theorem_of_def ctxt1) (old_skolem_defs th)) th ctxt1 val (cnf_ths, ctxt2) = clausify nnf_th fun intr_imp ct th = Thm.instantiate (TVars.empty, Vars.make [(\<^var>\?i::nat\, Thm.cterm_of ctxt2 (HOLogic.mk_nat ax_no))]) (zero_var_indexes @{thm skolem_COMBK_D}) RS Thm.implies_intr ct th in (opt |> Option.map (I #>> singleton (Variable.export ctxt2 ctxt0) ##> (Thm.term_of #> HOLogic.dest_Trueprop #> singleton (Variable.export_terms ctxt2 ctxt0))), cnf_ths |> map (combinators ? introduce_combinators_in_theorem ctxt2 #> (case opt of SOME (_, ct) => intr_imp ct | NONE => I)) |> Variable.export ctxt2 ctxt0 |> Meson.finish_cnf |> map (Thm.close_derivation \<^here>)) end handle THM _ => (NONE, []) end;