diff --git a/thys/Epistemic_Logic/Epistemic_Logic.thy b/thys/Epistemic_Logic/Epistemic_Logic.thy --- a/thys/Epistemic_Logic/Epistemic_Logic.thy +++ b/thys/Epistemic_Logic/Epistemic_Logic.thy @@ -1,1411 +1,1299 @@ (* File: Epistemic_Logic.thy Author: Asta Halkjær From This work is a formalization of epistemic logic with countably many agents. It includes proofs of soundness and completeness for the axiom system K. The completeness proof is based on the textbook "Reasoning About Knowledge" by Fagin, Halpern, Moses and Vardi (MIT Press 1995). The extensions of system K (T, KB, K4, S4, S5) and their completeness proofs are based on the textbook "Modal Logic" by Blackburn, de Rijke and Venema (Cambridge University Press 2001). *) theory Epistemic_Logic imports "HOL-Library.Countable" begin section \Syntax\ type_synonym id = string datatype 'i fm = FF ("\<^bold>\") | Pro id | Dis \'i fm\ \'i fm\ (infixr "\<^bold>\" 30) | Con \'i fm\ \'i fm\ (infixr "\<^bold>\" 35) | Imp \'i fm\ \'i fm\ (infixr "\<^bold>\" 25) | K 'i \'i fm\ abbreviation TT ("\<^bold>\") where \TT \ \<^bold>\ \<^bold>\ \<^bold>\\ abbreviation Neg ("\<^bold>\ _" [40] 40) where \Neg p \ p \<^bold>\ \<^bold>\\ abbreviation \L i p \ \<^bold>\ K i (\<^bold>\ p)\ section \Semantics\ datatype ('i, 'w) kripke = Kripke (\: \'w set\) (\: \'w \ id \ bool\) (\: \'i \ 'w \ 'w set\) primrec semantics :: \('i, 'w) kripke \ 'w \ 'i fm \ bool\ ("_, _ \ _" [50, 50] 50) where \(M, w \ \<^bold>\) = False\ | \(M, w \ Pro x) = \ M w x\ | \(M, w \ (p \<^bold>\ q)) = ((M, w \ p) \ (M, w \ q))\ | \(M, w \ (p \<^bold>\ q)) = ((M, w \ p) \ (M, w \ q))\ | \(M, w \ (p \<^bold>\ q)) = ((M, w \ p) \ (M, w \ q))\ | \(M, w \ K i p) = (\v \ \ M \ \ M i w. M, v \ p)\ section \S5 Axioms\ definition reflexive :: \('i, 'w) kripke \ bool\ where \reflexive M \ \i. \w \ \ M. w \ \ M i w\ definition symmetric :: \('i, 'w) kripke \ bool\ where \symmetric M \ \i. \v \ \ M. \w \ \ M. v \ \ M i w \ w \ \ M i v\ definition transitive :: \('i, 'w) kripke \ bool\ where \transitive M \ \i. \u \ \ M. \v \ \ M. \w \ \ M. w \ \ M i v \ u \ \ M i w \ u \ \ M i v\ +abbreviation refltrans :: \('i, 'w) kripke \ bool\ where + \refltrans M \ reflexive M \ transitive M\ + abbreviation equivalence :: \('i, 'w) kripke \ bool\ where \equivalence M \ reflexive M \ symmetric M \ transitive M\ lemma Imp_intro [intro]: \(M, w \ p \ M, w \ q) \ M, w \ (p \<^bold>\ q)\ by simp theorem distribution: \M, w \ (K i p \<^bold>\ K i (p \<^bold>\ q) \<^bold>\ K i q)\ proof assume \M, w \ (K i p \<^bold>\ K i (p \<^bold>\ q))\ then have \M, w \ K i p\ \M, w \ K i (p \<^bold>\ q)\ by simp_all then have \\v \ \ M \ \ M i w. M, v \ p\ \\v \ \ M \ \ M i w. M, v \ (p \<^bold>\ q)\ by simp_all then have \\v \ \ M \ \ M i w. M, v \ q\ by simp then show \M, w \ K i q\ by simp qed theorem generalization: assumes valid: \\(M :: ('i, 'w) kripke) w. M, w \ p\ shows \(M :: ('i, 'w) kripke), w \ K i p\ proof - have \\w' \ \ M i w. M, w' \ p\ using valid by blast then show \M, w \ K i p\ by simp qed theorem truth: assumes \reflexive M\ \w \ \ M\ shows \M, w \ (K i p \<^bold>\ p)\ proof assume \M, w \ K i p\ then have \\v \ \ M \ \ M i w. M, v \ p\ by simp moreover have \w \ \ M i w\ using \reflexive M\ \w \ \ M\ unfolding reflexive_def by blast ultimately show \M, w \ p\ using \w \ \ M\ by simp qed theorem pos_introspection: assumes \transitive M\ \w \ \ M\ shows \M, w \ (K i p \<^bold>\ K i (K i p))\ proof assume \M, w \ K i p\ then have \\v \ \ M \ \ M i w. M, v \ p\ by simp then have \\v \ \ M \ \ M i w. \u \ \ M \ \ M i v. M, u \ p\ using \transitive M\ \w \ \ M\ unfolding transitive_def by blast then have \\v \ \ M \ \ M i w. M, v \ K i p\ by simp then show \M, w \ K i (K i p)\ by simp qed theorem neg_introspection: assumes \symmetric M\ \transitive M\ \w \ \ M\ shows \M, w \ (\<^bold>\ K i p \<^bold>\ K i (\<^bold>\ K i p))\ proof assume \M, w \ \<^bold>\ (K i p)\ then obtain u where \u \ \ M i w\ \\ (M, u \ p)\ \u \ \ M\ by auto moreover have \\v \ \ M \ \ M i w. u \ \ M \ \ M i v\ using \u \ \ M i w\ \symmetric M\ \transitive M\ \u \ \ M\ \w \ \ M\ unfolding symmetric_def transitive_def by blast ultimately have \\v \ \ M \ \ M i w. M, v \ \<^bold>\ K i p\ by auto then show \M, w \ K i (\<^bold>\ K i p)\ by simp qed section \Normal Modal Logic\ primrec eval :: \(id \ bool) \ ('i fm \ bool) \ 'i fm \ bool\ where \eval _ _ \<^bold>\ = False\ | \eval g _ (Pro x) = g x\ | \eval g h (p \<^bold>\ q) = (eval g h p \ eval g h q)\ | \eval g h (p \<^bold>\ q) = (eval g h p \ eval g h q)\ | \eval g h (p \<^bold>\ q) = (eval g h p \ eval g h q)\ | \eval _ h (K i p) = h (K i p)\ abbreviation \tautology p \ \g h. eval g h p\ inductive AK :: \('i fm \ bool) \ 'i fm \ bool\ ("_ \ _" [50, 50] 50) for A :: \'i fm \ bool\ where A1: \tautology p \ A \ p\ | A2: \A \ (K i p \<^bold>\ K i (p \<^bold>\ q) \<^bold>\ K i q)\ | Ax: \A p \ A \ p\ | R1: \A \ p \ A \ (p \<^bold>\ q) \ A \ q\ | R2: \A \ p \ A \ K i p\ section \Soundness\ lemma eval_semantics: \eval (pi w) (\q. Kripke W pi r, w \ q) p = (Kripke W pi r, w \ p)\ by (induct p) simp_all lemma tautology: assumes \tautology p\ shows \M, w \ p\ proof - from assms have \eval (g w) (\q. Kripke W g r, w \ q) p\ for W g r by simp then have \Kripke W g r, w \ p\ for W g r using eval_semantics by fast then show \M, w \ p\ by (metis kripke.collapse) qed theorem soundness: fixes M :: \('i, 'w) kripke\ assumes \\(M :: ('i, 'w) kripke) w p. A p \ P M \ w \ \ M \ M, w \ p\ shows \A \ p \ P M \ w \ \ M \ M, w \ p\ by (induct p arbitrary: w rule: AK.induct) (auto simp: assms tautology) section \Derived rules\ lemma K_A2': \A \ (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ proof - have \A \ (K i p \<^bold>\ K i (p \<^bold>\ q) \<^bold>\ K i q)\ using A2 by fast moreover have \A \ ((P \<^bold>\ Q \<^bold>\ R) \<^bold>\ (Q \<^bold>\ P \<^bold>\ R))\ for P Q R by (simp add: A1) ultimately show ?thesis using R1 by fast qed lemma K_map: assumes \A \ (p \<^bold>\ q)\ shows \A \ (K i p \<^bold>\ K i q)\ proof - note \A \ (p \<^bold>\ q)\ then have \A \ K i (p \<^bold>\ q)\ using R2 by fast moreover have \A \ (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ using K_A2' by fast ultimately show ?thesis using R1 by fast qed lemma K_LK: \A \ (L i (\<^bold>\ p) \<^bold>\ \<^bold>\ K i p)\ proof - have \A \ (p \<^bold>\ \<^bold>\ \<^bold>\ p)\ by (simp add: A1) moreover have \A \ ((P \<^bold>\ Q) \<^bold>\ (\<^bold>\ Q \<^bold>\ \<^bold>\ P))\ for P Q using A1 by force ultimately show ?thesis using K_map R1 by fast qed primrec imply :: \'i fm list \ 'i fm \ 'i fm\ where \imply [] q = q\ | \imply (p # ps) q = (p \<^bold>\ imply ps q)\ lemma K_imply_head: \A \ imply (p # ps) p\ proof - have \tautology (imply (p # ps) p)\ by (induct ps) simp_all then show ?thesis using A1 by blast qed lemma K_imply_Cons: assumes \A \ imply ps q\ shows \A \ imply (p # ps) q\ proof - have \A \ (imply ps q \<^bold>\ imply (p # ps) q)\ by (simp add: A1) with R1 assms show ?thesis . qed lemma K_right_mp: assumes \A \ imply ps p\ \A \ imply ps (p \<^bold>\ q)\ shows \A \ imply ps q\ proof - have \tautology (imply ps p \<^bold>\ imply ps (p \<^bold>\ q) \<^bold>\ imply ps q)\ by (induct ps) simp_all with A1 have \A \ (imply ps p \<^bold>\ imply ps (p \<^bold>\ q) \<^bold>\ imply ps q)\ . then show ?thesis using assms R1 by blast qed lemma tautology_imply_superset: assumes \set ps \ set qs\ shows \tautology (imply ps r \<^bold>\ imply qs r)\ proof (rule ccontr) assume \\ tautology (imply ps r \<^bold>\ imply qs r)\ then obtain g h where \\ eval g h (imply ps r \<^bold>\ imply qs r)\ by blast then have \eval g h (imply ps r)\ \\ eval g h (imply qs r)\ by simp_all then consider (np) \\p \ set ps. \ eval g h p\ | (r) \\p \ set ps. eval g h p\ \eval g h r\ by (induct ps) auto then show False proof cases case np then have \\p \ set qs. \ eval g h p\ using \set ps \ set qs\ by blast then have \eval g h (imply qs r)\ by (induct qs) simp_all then show ?thesis using \\ eval g h (imply qs r)\ by blast next case r then have \eval g h (imply qs r)\ by (induct qs) simp_all then show ?thesis using \\ eval g h (imply qs r)\ by blast qed qed lemma K_imply_weaken: assumes \A \ imply ps q\ \set ps \ set ps'\ shows \A \ imply ps' q\ proof - have \tautology (imply ps q \<^bold>\ imply ps' q)\ using \set ps \ set ps'\ tautology_imply_superset by blast then have \A \ (imply ps q \<^bold>\ imply ps' q)\ using A1 by blast then show ?thesis using \A \ imply ps q\ R1 by blast qed lemma imply_append: \imply (ps @ ps') q = imply ps (imply ps' q)\ by (induct ps) simp_all lemma K_ImpI: assumes \A \ imply (p # G) q\ shows \A \ imply G (p \<^bold>\ q)\ proof - have \set (p # G) \ set (G @ [p])\ by simp then have \A \ imply (G @ [p]) q\ using assms K_imply_weaken by blast then have \A \ imply G (imply [p] q)\ using imply_append by metis then show ?thesis by simp qed lemma K_Boole: assumes \A \ imply ((\<^bold>\ p) # G) \<^bold>\\ shows \A \ imply G p\ proof - have \A \ imply G (\<^bold>\ \<^bold>\ p)\ using assms K_ImpI by blast moreover have \tautology (imply G (\<^bold>\ \<^bold>\ p) \<^bold>\ imply G p)\ by (induct G) simp_all then have \A \ (imply G (\<^bold>\ \<^bold>\ p) \<^bold>\ imply G p)\ using A1 by blast ultimately show ?thesis using R1 by blast qed lemma K_DisE: assumes \A \ imply (p # G) r\ \A \ imply (q # G) r\ \A \ imply G (p \<^bold>\ q)\ shows \A \ imply G r\ proof - have \tautology (imply (p # G) r \<^bold>\ imply (q # G) r \<^bold>\ imply G (p \<^bold>\ q) \<^bold>\ imply G r)\ by (induct G) auto then have \A \ (imply (p # G) r \<^bold>\ imply (q # G) r \<^bold>\ imply G (p \<^bold>\ q) \<^bold>\ imply G r)\ using A1 by blast then show ?thesis using assms R1 by blast qed lemma K_mp: \A \ imply (p # (p \<^bold>\ q) # G) q\ by (meson K_imply_head K_imply_weaken K_right_mp set_subset_Cons) lemma K_swap: assumes \A \ imply (p # q # G) r\ shows \A \ imply (q # p # G) r\ using assms K_ImpI by (metis imply.simps(1-2)) lemma K_DisL: assumes \A \ imply (p # ps) q\ \A \ imply (p' # ps) q\ shows \A \ imply ((p \<^bold>\ p') # ps) q\ proof - have \A \ imply (p # (p \<^bold>\ p') # ps) q\ \A \ imply (p' # (p \<^bold>\ p') # ps) q\ using assms K_swap K_imply_Cons by blast+ moreover have \A \ imply ((p \<^bold>\ p') # ps) (p \<^bold>\ p')\ using K_imply_head by blast ultimately show ?thesis using K_DisE by blast qed lemma K_distrib_K_imp: assumes \A \ K i (imply G q)\ shows \A \ imply (map (K i) G) (K i q)\ proof - have \A \ (K i (imply G q) \<^bold>\ imply (map (K i) G) (K i q))\ proof (induct G) case Nil then show ?case by (simp add: A1) next case (Cons a G) have \A \ (K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ K i (imply G q))\ by (simp add: A2) moreover have \A \ ((K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ K i (imply G q)) \<^bold>\ (K i (imply G q) \<^bold>\ imply (map (K i) G) (K i q)) \<^bold>\ (K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ imply (map (K i) G) (K i q)))\ by (simp add: A1) ultimately have \A \ (K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ imply (map (K i) G) (K i q))\ using Cons R1 by blast moreover have \A \ ((K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ imply (map (K i) G) (K i q)) \<^bold>\ (K i (imply (a # G) q) \<^bold>\ K i a \<^bold>\ imply (map (K i) G) (K i q)))\ by (simp add: A1) ultimately have \A \ (K i (imply (a # G) q) \<^bold>\ K i a \<^bold>\ imply (map (K i) G) (K i q))\ using R1 by blast then show ?case by simp qed then show ?thesis using assms R1 by blast qed section \Completeness\ subsection \Consistent sets\ definition consistent :: \('i fm \ bool) \ 'i fm set \ bool\ where \consistent A S \ \S'. set S' \ S \ A \ imply S' \<^bold>\\ lemma inconsistent_subset: assumes \consistent A V\ \\ consistent A ({p} \ V)\ obtains V' where \set V' \ V\ \A \ imply (p # V') \<^bold>\\ proof - obtain V' where V': \set V' \ ({p} \ V)\ \p \ set V'\ \A \ imply V' \<^bold>\\ using assms unfolding consistent_def by blast then have *: \A \ imply (p # V') \<^bold>\\ using K_imply_Cons by blast let ?S = \removeAll p V'\ have \set (p # V') \ set (p # ?S)\ by auto then have \A \ imply (p # ?S) \<^bold>\\ using * K_imply_weaken by blast moreover have \set ?S \ V\ using V'(1) by (metis Diff_subset_conv set_removeAll) ultimately show ?thesis using that by blast qed lemma consistent_deriv: assumes \consistent A V\ \A \ p\ shows \consistent A ({p} \ V)\ using assms by (metis R1 consistent_def imply.simps(2) inconsistent_subset) lemma consistent_consequent: assumes \consistent A V\ \p \ V\ \A \ (p \<^bold>\ q)\ shows \consistent A ({q} \ V)\ proof - have \\V'. set V' \ V \ \ A \ imply (p # V') \<^bold>\\ using \consistent A V\ \p \ V\ unfolding consistent_def by (metis insert_subset list.simps(15)) then have \\V'. set V' \ V \ \ A \ imply (q # V') \<^bold>\\ using \A \ (p \<^bold>\ q)\ K_imply_head K_right_mp by (metis imply.simps(1-2)) then show ?thesis using \consistent A V\ inconsistent_subset by metis qed lemma consistent_consequent': assumes \consistent A V\ \p \ V\ \tautology (p \<^bold>\ q)\ shows \consistent A ({q} \ V)\ using assms consistent_consequent A1 by blast lemma consistent_disjuncts: assumes \consistent A V\ \(p \<^bold>\ q) \ V\ shows \consistent A ({p} \ V) \ consistent A ({q} \ V)\ proof (rule ccontr) assume \\ ?thesis\ then have \\ consistent A ({p} \ V)\ \\ consistent A ({q} \ V)\ by blast+ then obtain S' T' where S': \set S' \ V\ \A \ imply (p # S') \<^bold>\\ and T': \set T' \ V\ \A \ imply (q # T') \<^bold>\\ using \consistent A V\ inconsistent_subset by metis from S' have p: \A \ imply (p # S' @ T') \<^bold>\\ by (metis K_imply_weaken Un_upper1 append_Cons set_append) moreover from T' have q: \A \ imply (q # S' @ T') \<^bold>\\ by (metis K_imply_head K_right_mp R1 imply.simps(2) imply_append) ultimately have \A \ imply ((p \<^bold>\ q) # S' @ T') \<^bold>\\ using K_DisL by blast then have \A \ imply (S' @ T') \<^bold>\\ using S'(1) T'(1) p q \consistent A V\ \(p \<^bold>\ q) \ V\ unfolding consistent_def by (metis Un_subset_iff insert_subset list.simps(15) set_append) moreover have \set (S' @ T') \ V\ by (simp add: S'(1) T'(1)) ultimately show False using \consistent A V\ unfolding consistent_def by blast qed lemma exists_finite_inconsistent: assumes \\ consistent A ({\<^bold>\ p} \ V)\ obtains W where \{\<^bold>\ p} \ W \ {\<^bold>\ p} \ V\ \(\<^bold>\ p) \ W\ \finite W\ \\ consistent A ({\<^bold>\ p} \ W)\ proof - obtain W' where W': \set W' \ {\<^bold>\ p} \ V\ \A \ imply W' \<^bold>\\ using assms unfolding consistent_def by blast let ?S = \removeAll (\<^bold>\ p) W'\ have \\ consistent A ({\<^bold>\ p} \ set ?S)\ unfolding consistent_def using W'(2) by auto moreover have \finite (set ?S)\ by blast moreover have \{\<^bold>\ p} \ set ?S \ {\<^bold>\ p} \ V\ using W'(1) by auto moreover have \(\<^bold>\ p) \ set ?S\ by simp ultimately show ?thesis by (meson that) qed lemma inconsistent_imply: assumes \\ consistent A ({\<^bold>\ p} \ set G)\ shows \A \ imply G p\ using assms K_Boole K_imply_weaken unfolding consistent_def by (metis insert_is_Un list.simps(15)) subsection \Maximal consistent sets\ definition maximal :: \('i fm \ bool) \ 'i fm set \ bool\ where \maximal A S \ \p. p \ S \ \ consistent A ({p} \ S)\ theorem deriv_in_maximal: assumes \consistent A V\ \maximal A V\ \A \ p\ shows \p \ V\ using assms R1 inconsistent_subset unfolding consistent_def maximal_def by (metis imply.simps(2)) theorem exactly_one_in_maximal: assumes \consistent A V\ \maximal A V\ shows \p \ V \ (\<^bold>\ p) \ V\ proof assume \p \ V\ then show \(\<^bold>\ p) \ V\ using assms K_mp unfolding consistent_def maximal_def by (metis empty_subsetI insert_subset list.set(1) list.simps(15)) next assume \(\<^bold>\ p) \ V\ have \A \ (p \<^bold>\ \<^bold>\ p)\ by (simp add: A1) then have \(p \<^bold>\ \<^bold>\ p) \ V\ using assms deriv_in_maximal by blast then have \consistent A ({p} \ V) \ consistent A ({\<^bold>\ p} \ V)\ using assms consistent_disjuncts by blast then show \p \ V\ using \maximal A V\ \(\<^bold>\ p) \ V\ unfolding maximal_def by blast qed theorem consequent_in_maximal: assumes \consistent A V\ \maximal A V\ \p \ V\ \(p \<^bold>\ q) \ V\ shows \q \ V\ proof - have \\V'. set V' \ V \ \ A \ imply (p # (p \<^bold>\ q) # V') \<^bold>\\ using \consistent A V\ \p \ V\ \(p \<^bold>\ q) \ V\ unfolding consistent_def by (metis insert_subset list.simps(15)) then have \\V'. set V' \ V \ \ A \ imply (q # V') \<^bold>\\ by (meson K_mp K_ImpI K_imply_weaken K_right_mp set_subset_Cons) then have \consistent A ({q} \ V)\ using \consistent A V\ inconsistent_subset by metis then show ?thesis using \maximal A V\ unfolding maximal_def by fast qed theorem ax_in_maximal: assumes \consistent A V\ \maximal A V\ \A p\ shows \p \ V\ using assms deriv_in_maximal Ax by blast theorem mcs_properties: assumes \consistent A V\ and \maximal A V\ shows \A \ p \ p \ V\ and \p \ V \ (\<^bold>\ p) \ V\ and \p \ V \ (p \<^bold>\ q) \ V \ q \ V\ using assms deriv_in_maximal exactly_one_in_maximal consequent_in_maximal by blast+ subsection \Lindenbaum extension\ instantiation fm :: (countable) countable begin instance by countable_datatype end primrec extend :: \('i fm \ bool) \ 'i fm set \ (nat \ 'i fm) \ nat \ 'i fm set\ where \extend A S f 0 = S\ | \extend A S f (Suc n) = (if consistent A ({f n} \ extend A S f n) then {f n} \ extend A S f n else extend A S f n)\ definition Extend :: \('i fm \ bool) \ 'i fm set \ (nat \ 'i fm) \ 'i fm set\ where \Extend A S f \ \n. extend A S f n\ lemma Extend_subset: \S \ Extend A S f\ unfolding Extend_def using Union_upper extend.simps(1) range_eqI by metis lemma extend_bound: \(\n \ m. extend A S f n) = extend A S f m\ by (induct m) (simp_all add: atMost_Suc) lemma consistent_extend: \consistent A S \ consistent A (extend A S f n)\ by (induct n) simp_all lemma UN_finite_bound: assumes \finite A\ \A \ (\n. f n)\ shows \\m :: nat. A \ (\n \ m. f n)\ using assms proof (induct rule: finite_induct) case (insert x A) then obtain m where \A \ (\n \ m. f n)\ by fast then have \A \ (\n \ (m + k). f n)\ for k by fastforce moreover obtain m' where \x \ f m'\ using insert(4) by blast ultimately have \{x} \ A \ (\n \ m + m'. f n)\ by auto then show ?case by blast qed simp lemma consistent_Extend: assumes \consistent A S\ shows \consistent A (Extend A S f)\ unfolding Extend_def proof (rule ccontr) assume \\ consistent A (\n. extend A S f n)\ then obtain S' where \A \ imply S' \<^bold>\\ \set S' \ (\n. extend A S f n)\ unfolding consistent_def by blast then obtain m where \set S' \ (\n \ m. extend A S f n)\ using UN_finite_bound by (metis List.finite_set) then have \set S' \ extend A S f m\ using extend_bound by blast moreover have \consistent A (extend A S f m)\ using assms consistent_extend by blast ultimately show False unfolding consistent_def using \A \ imply S' \<^bold>\\ by blast qed lemma maximal_Extend: assumes \surj f\ shows \maximal A (Extend A S f)\ proof (rule ccontr) assume \\ maximal A (Extend A S f)\ then obtain p where \p \ Extend A S f\ \consistent A ({p} \ Extend A S f)\ unfolding maximal_def using assms consistent_Extend by blast obtain k where n: \f k = p\ using \surj f\ unfolding surj_def by metis then have \p \ extend A S f (Suc k)\ using \p \ Extend A S f\ unfolding Extend_def by blast then have \\ consistent A ({p} \ extend A S f k)\ using n by fastforce moreover have \{p} \ extend A S f k \ {p} \ Extend A S f\ unfolding Extend_def by blast ultimately have \\ consistent A ({p} \ Extend A S f)\ unfolding consistent_def by fastforce then show False using \consistent A ({p} \ Extend A S f)\ by blast qed lemma maximal_extension: fixes V :: \('i :: countable) fm set\ assumes \consistent A V\ obtains W where \V \ W\ \consistent A W\ \maximal A W\ proof - let ?W = \Extend A V from_nat\ have \V \ ?W\ using Extend_subset by blast moreover have \consistent A ?W\ using assms consistent_Extend by blast moreover have \maximal A ?W\ using assms maximal_Extend surj_from_nat by blast ultimately show ?thesis using that by blast qed subsection \Canonical model\ abbreviation pi :: \'i fm set \ id \ bool\ where \pi V x \ Pro x \ V\ abbreviation known :: \'i fm set \ 'i \ 'i fm set\ where \known V i \ {p. K i p \ V}\ abbreviation reach :: \('i fm \ bool) \ 'i \ 'i fm set \ 'i fm set set\ where \reach A i V \ {W. known V i \ W}\ abbreviation mcss :: \('i fm \ bool) \ 'i fm set set\ where \mcss A \ {W. consistent A W \ maximal A W}\ +abbreviation canonical :: \('i fm \ bool) \ ('i, 'i fm set) kripke\ where + \canonical A \ Kripke (mcss A) pi (reach A)\ + lemma truth_lemma: fixes A and p :: \('i :: countable) fm\ - defines \M \ Kripke (mcss A) pi (reach A)\ + defines \M \ canonical A\ assumes \consistent A V\ and \maximal A V\ shows \(p \ V \ M, V \ p) \ ((\<^bold>\ p) \ V \ M, V \ \<^bold>\ p)\ using assms unfolding M_def proof (induct p arbitrary: V) case FF then show ?case proof (intro conjI impI iffI) assume \\<^bold>\ \ V\ then have False using \consistent A V\ K_imply_head unfolding consistent_def by (metis bot.extremum insert_subset list.set(1) list.simps(15)) - then show \Kripke (mcss A) pi (reach A), V \ \<^bold>\\ .. + then show \canonical A, V \ \<^bold>\\ .. next - assume \Kripke (mcss A) pi (reach A), V \ \<^bold>\ \<^bold>\\ + assume \canonical A, V \ \<^bold>\ \<^bold>\\ then show \(\<^bold>\ \<^bold>\) \ V\ using \consistent A V\ \maximal A V\ unfolding maximal_def by (meson K_Boole inconsistent_subset consistent_def) qed simp_all next case (Pro x) then show ?case proof (intro conjI impI iffI) assume \(\<^bold>\ Pro x) \ V\ - then show \Kripke (mcss A) pi (reach A), V \ \<^bold>\ Pro x\ + then show \canonical A, V \ \<^bold>\ Pro x\ using \consistent A V\ \maximal A V\ exactly_one_in_maximal by auto next - assume \Kripke (mcss A) pi (reach A), V \ \<^bold>\ Pro x\ + assume \canonical A, V \ \<^bold>\ Pro x\ then show \(\<^bold>\ Pro x) \ V\ using \consistent A V\ \maximal A V\ exactly_one_in_maximal by auto qed (simp_all add: \maximal A V\ maximal_def) next case (Dis p q) - have \(p \<^bold>\ q) \ V \ Kripke (mcss A) pi (reach A), V \ (p \<^bold>\ q)\ + have \(p \<^bold>\ q) \ V \ canonical A, V \ (p \<^bold>\ q)\ proof assume \(p \<^bold>\ q) \ V\ then have \consistent A ({p} \ V) \ consistent A ({q} \ V)\ using \consistent A V\ consistent_disjuncts by blast then have \p \ V \ q \ V\ using \maximal A V\ unfolding maximal_def by fast - then show \Kripke (mcss A) pi (reach A), V \ (p \<^bold>\ q)\ + then show \canonical A, V \ (p \<^bold>\ q)\ using Dis by simp qed - moreover have \(\<^bold>\ (p \<^bold>\ q)) \ V \ Kripke (mcss A) pi (reach A), V \ \<^bold>\ (p \<^bold>\ q)\ + moreover have \(\<^bold>\ (p \<^bold>\ q)) \ V \ canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ proof assume \(\<^bold>\ (p \<^bold>\ q)) \ V\ then have \consistent A ({\<^bold>\ q} \ V)\ \consistent A ({\<^bold>\ p} \ V)\ using \consistent A V\ consistent_consequent' by fastforce+ then have \(\<^bold>\ p) \ V\ \(\<^bold>\ q) \ V\ using \maximal A V\ unfolding maximal_def by fast+ - then show \Kripke (mcss A) pi (reach A), V \ \<^bold>\ (p \<^bold>\ q)\ + then show \canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ using Dis by simp qed ultimately show ?case using exactly_one_in_maximal Dis by auto next case (Con p q) - have \(p \<^bold>\ q) \ V \ Kripke (mcss A) pi (reach A), V \ (p \<^bold>\ q)\ + have \(p \<^bold>\ q) \ V \ canonical A, V \ (p \<^bold>\ q)\ proof assume \(p \<^bold>\ q) \ V\ then have \consistent A ({p} \ V)\ \consistent A ({q} \ V)\ using \consistent A V\ consistent_consequent' by fastforce+ then have \p \ V\ \q \ V\ using \maximal A V\ unfolding maximal_def by fast+ - then show \Kripke (mcss A) pi (reach A), V \ (p \<^bold>\ q)\ + then show \canonical A, V \ (p \<^bold>\ q)\ using Con by simp qed - moreover have \(\<^bold>\ (p \<^bold>\ q)) \ V \ Kripke (mcss A) pi (reach A), V \ \<^bold>\ (p \<^bold>\ q)\ + moreover have \(\<^bold>\ (p \<^bold>\ q)) \ V \ canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ proof assume \(\<^bold>\ (p \<^bold>\ q)) \ V\ then have \consistent A ({\<^bold>\ p \<^bold>\ \<^bold>\ q} \ V)\ using \consistent A V\ consistent_consequent' by fastforce then have \consistent A ({\<^bold>\ p} \ V) \ consistent A ({\<^bold>\ q} \ V)\ using \consistent A V\ \maximal A V\ consistent_disjuncts unfolding maximal_def by blast then have \(\<^bold>\ p) \ V \ (\<^bold>\ q) \ V\ using \maximal A V\ unfolding maximal_def by fast - then show \Kripke (mcss A) pi (reach A), V \ \<^bold>\ (p \<^bold>\ q)\ + then show \canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ using Con by simp qed ultimately show ?case using exactly_one_in_maximal Con by auto next case (Imp p q) - have \(p \<^bold>\ q) \ V \ Kripke (mcss A) pi (reach A), V \ (p \<^bold>\ q)\ + have \(p \<^bold>\ q) \ V \ canonical A, V \ (p \<^bold>\ q)\ proof assume \(p \<^bold>\ q) \ V\ then have \consistent A ({\<^bold>\ p \<^bold>\ q} \ V)\ using \consistent A V\ consistent_consequent' by fastforce then have \consistent A ({\<^bold>\ p} \ V) \ consistent A ({q} \ V)\ using \consistent A V\ \maximal A V\ consistent_disjuncts unfolding maximal_def by blast then have \(\<^bold>\ p) \ V \ q \ V\ using \maximal A V\ unfolding maximal_def by fast - then show \Kripke (mcss A) pi (reach A), V \ (p \<^bold>\ q)\ + then show \canonical A, V \ (p \<^bold>\ q)\ using Imp by simp qed - moreover have \(\<^bold>\ (p \<^bold>\ q)) \ V \ Kripke (mcss A) pi (reach A), V \ \<^bold>\ (p \<^bold>\ q)\ + moreover have \(\<^bold>\ (p \<^bold>\ q)) \ V \ canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ proof assume \(\<^bold>\ (p \<^bold>\ q)) \ V\ then have \consistent A ({p} \ V)\ \consistent A ({\<^bold>\ q} \ V)\ using \consistent A V\ consistent_consequent' by fastforce+ then have \p \ V\ \(\<^bold>\ q) \ V\ using \maximal A V\ unfolding maximal_def by fast+ - then show \Kripke (mcss A) pi (reach A), V \ \<^bold>\ (p \<^bold>\ q)\ + then show \canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ using Imp by simp qed ultimately show ?case using exactly_one_in_maximal Imp \consistent A V\ by auto next case (K i p) - then have \K i p \ V \ Kripke (mcss A) pi (reach A), V \ K i p\ + then have \K i p \ V \ canonical A, V \ K i p\ by auto - moreover have \(Kripke (mcss A) pi (reach A), V \ K i p) \ K i p \ V\ + moreover have \(canonical A, V \ K i p) \ K i p \ V\ proof (intro allI impI) - assume \Kripke (mcss A) pi (reach A), V \ K i p\ + assume \canonical A, V \ K i p\ have \\ consistent A ({\<^bold>\ p} \ known V i)\ proof assume \consistent A ({\<^bold>\ p} \ known V i)\ then obtain W where W: \{\<^bold>\ p} \ known V i \ W\ \consistent A W\ \maximal A W\ using \consistent A V\ maximal_extension by blast - then have \Kripke (mcss A) pi (reach A), W \ \<^bold>\ p\ + then have \canonical A, W \ \<^bold>\ p\ using K \consistent A V\ by blast moreover have \W \ reach A i V\ \W \ mcss A\ using W by simp_all - ultimately have \Kripke (mcss A) pi (reach A), V \ \<^bold>\ K i p\ + ultimately have \canonical A, V \ \<^bold>\ K i p\ by auto then show False - using \Kripke (mcss A) pi (reach A), V \ K i p\ by auto + using \canonical A, V \ K i p\ by auto qed then obtain W where W: \{\<^bold>\ p} \ W \ {\<^bold>\ p} \ known V i\ \(\<^bold>\ p) \ W\ \finite W\ \\ consistent A ({\<^bold>\ p} \ W)\ using exists_finite_inconsistent by metis obtain L where L: \set L = W\ using \finite W\ finite_list by blast then have \A \ imply L p\ using W(4) inconsistent_imply by blast then have \A \ K i (imply L p)\ using R2 by fast then have \A \ imply (map (K i) L) (K i p)\ using K_distrib_K_imp by fast then have \imply (map (K i) L) (K i p) \ V\ using deriv_in_maximal K.prems(1, 2) by blast then show \K i p \ V\ using L W(1-2) proof (induct L arbitrary: W) case (Cons a L) then have \K i a \ V\ by auto then have \imply (map (K i) L) (K i p) \ V\ using Cons(2) \consistent A V\ \maximal A V\ consequent_in_maximal by auto then show ?case using Cons by auto qed simp qed - moreover have \(Kripke (mcss A) pi (reach A), V \ \<^bold>\ K i p) \ (\<^bold>\ K i p) \ V\ + moreover have \(canonical A, V \ \<^bold>\ K i p) \ (\<^bold>\ K i p) \ V\ using \consistent A V\ \maximal A V\ exactly_one_in_maximal calculation(1) by (metis (no_types, lifting) semantics.simps(1, 5)) - moreover have \(\<^bold>\ K i p) \ V \ Kripke (mcss A) pi (reach A), V \ \<^bold>\ K i p\ + moreover have \(\<^bold>\ K i p) \ V \ canonical A, V \ \<^bold>\ K i p\ using \consistent A V\ \maximal A V\ calculation(2) exactly_one_in_maximal by auto ultimately show ?case by blast qed lemma canonical_model: assumes \consistent A S\ and \p \ S\ - defines \V \ Extend A S from_nat\ and \M \ Kripke (mcss A) pi (reach A)\ + defines \V \ Extend A S from_nat\ and \M \ canonical A\ shows \M, V \ p\ and \consistent A V\ and \maximal A V\ proof - have \consistent A V\ using \consistent A S\ unfolding V_def using consistent_Extend by blast have \maximal A V\ unfolding V_def using maximal_Extend surj_from_nat by blast { fix x assume \x \ S\ then have \x \ V\ unfolding V_def using Extend_subset by blast then have \M, V \ x\ unfolding M_def using truth_lemma \consistent A V\ \maximal A V\ by blast } then show \M, V \ p\ using \p \ S\ by blast+ show \consistent A V\ \maximal A V\ by fact+ qed subsection \Completeness\ lemma imply_completeness: - assumes valid: \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. - (\q \ G. M, w \ q) \ M, w \ p\ + fixes P :: \(('i :: countable, 'i fm set) kripke) \ bool\ + assumes \\M. \w \ \ M. P M \ (\q \ G. M, w \ q) \ M, w \ p\ + and \P (canonical A)\ shows \\qs. set qs \ G \ (A \ imply qs p)\ proof (rule ccontr) assume \\qs. set qs \ G \ A \ imply qs p\ then have *: \\qs. set qs \ G \ \ A \ imply ((\<^bold>\ p) # qs) \<^bold>\\ using K_Boole by blast let ?S = \{\<^bold>\ p} \ G\ let ?V = \Extend A ?S from_nat\ - let ?M = \Kripke (mcss A) pi (reach A)\ + let ?M = \canonical A\ have \consistent A ?S\ using * by (metis K_imply_Cons consistent_def inconsistent_subset) then have \?M, ?V \ (\<^bold>\ p)\ \\q \ G. ?M, ?V \ q\ using canonical_model by fastforce+ moreover have \?V \ mcss A\ using \consistent A ?S\ consistent_Extend maximal_Extend surj_from_nat by blast ultimately have \?M, ?V \ p\ - using valid by simp + using assms by simp then show False using \?M, ?V \ (\<^bold>\ p)\ by simp qed +abbreviation valid :: \(('i :: countable, 'i fm set) kripke \ bool) \ 'i fm \ bool\ where + \valid P p \ \M. \w \ \ M. P M \ M, w \ p\ + theorem completeness: - assumes \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. M, w \ p\ + assumes \valid P p\ and \P (canonical A)\ shows \A \ p\ - using assms imply_completeness[where G=\{}\] by auto + using assms imply_completeness[where G=\{}\] by simp + +corollary completeness\<^sub>K: + assumes \valid (\_. True) p\ + shows \A \ p\ + using assms completeness[where P=\\_. True\] by blast section \System K\ abbreviation SystemK :: \'i fm \ bool\ ("\\<^sub>K _" [50] 50) where \\\<^sub>K p \ (\_. False) \ p\ lemma soundness\<^sub>K: \\\<^sub>K p \ w \ \ M \ M, w \ p\ using soundness by metis -abbreviation \valid\<^sub>K p \ \(M :: (nat, nat fm set) kripke). \w \ \ M. M, w \ p\ +abbreviation \valid\<^sub>K \ valid (\_. True)\ + +corollary + assumes \valid\<^sub>K p\ + shows \\\<^sub>K p\ + using completeness\<^sub>K assms . theorem main\<^sub>K: \valid\<^sub>K p \ \\<^sub>K p\ proof assume \valid\<^sub>K p\ with completeness show \\\<^sub>K p\ by blast next assume \\\<^sub>K p\ with soundness\<^sub>K show \valid\<^sub>K p\ by fast qed corollary assumes \valid\<^sub>K p\ and \w \ \ M\ shows \M, w \ p\ proof - have \\\<^sub>K p\ using assms(1) unfolding main\<^sub>K . with soundness\<^sub>K assms(2) show \M, w \ p\ by fast qed section \System T\ text \Also known as System M\ inductive AxT :: \'i fm \ bool\ where \AxT (K i p \<^bold>\ p)\ abbreviation SystemT :: \'i fm \ bool\ ("\\<^sub>T _" [50] 50) where \\\<^sub>T p \ AxT \ p\ lemma soundness_AxT: \AxT p \ reflexive M \ w \ \ M \ M, w \ p\ by (induct p rule: AxT.induct) (meson truth) lemma soundness\<^sub>T: \\\<^sub>T p \ reflexive M \ w \ \ M \ M, w \ p\ using soundness soundness_AxT . lemma AxT_reflexive: - assumes \\p. AxT p \ A p\ and \consistent A V\ and \maximal A V\ + assumes \AxT \ A\ and \consistent A V\ and \maximal A V\ shows \V \ reach A i V\ proof - have \(K i p \<^bold>\ p) \ V\ for p - using assms ax_in_maximal AxT.intros by metis + using assms ax_in_maximal AxT.intros by fast then have \p \ V\ if \K i p \ V\ for p using that assms consequent_in_maximal by blast then show ?thesis using assms by blast qed lemma mcs\<^sub>T_reflexive: - assumes \\p. AxT p \ A p\ - shows \reflexive (Kripke (mcss A) pi (reach A))\ + assumes \AxT \ A\ + shows \reflexive (canonical A)\ unfolding reflexive_def proof safe fix i V - assume \V \ \ (Kripke (mcss A) pi (reach A))\ + assume \V \ \ (canonical A)\ then have \consistent A V\ \maximal A V\ by simp_all with AxT_reflexive assms have \V \ reach A i V\ . - then show \V \ \ (Kripke (mcss A) pi (reach A)) i V\ + then show \V \ \ (canonical A) i V\ by simp qed -lemma imply_completeness_T: - assumes valid: \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. - reflexive M \ (\q \ G. M, w \ q) \ M, w \ p\ - shows \\qs. set qs \ G \ (AxT \ imply qs p)\ -proof (rule ccontr) - assume \\qs. set qs \ G \ AxT \ imply qs p\ - then have *: \\qs. set qs \ G \ \ AxT \ imply ((\<^bold>\ p) # qs) \<^bold>\\ - using K_Boole by blast - - let ?S = \{\<^bold>\ p} \ G\ - let ?V = \Extend AxT ?S from_nat\ - let ?M = \Kripke (mcss AxT) pi (reach AxT)\ - - have \consistent AxT ?S\ - using * by (metis K_imply_Cons consistent_def inconsistent_subset) - then have \?M, ?V \ (\<^bold>\ p)\ \\q \ G. ?M, ?V \ q\ \consistent AxT ?V\ \maximal AxT ?V\ - using canonical_model unfolding list_all_def by fastforce+ - moreover have \reflexive ?M\ - using mcs\<^sub>T_reflexive by fast - ultimately have \?M, ?V \ p\ - using valid by auto - then show False - using \?M, ?V \ (\<^bold>\ p)\ by simp -qed +abbreviation \valid\<^sub>T \ valid reflexive\ lemma completeness\<^sub>T: - assumes \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. reflexive M \ M, w \ p\ + assumes \valid\<^sub>T p\ shows \\\<^sub>T p\ - using assms imply_completeness_T[where G=\{}\] by auto - -abbreviation \valid\<^sub>T p \ \(M :: (nat, nat fm set) kripke). \w \ \ M. reflexive M \ M, w \ p\ + using assms completeness mcs\<^sub>T_reflexive by blast theorem main\<^sub>T: \valid\<^sub>T p \ \\<^sub>T p\ using soundness\<^sub>T completeness\<^sub>T by fast corollary assumes \reflexive M\ \w \ \ M\ shows \valid\<^sub>T p \ M, w \ p\ using assms soundness\<^sub>T completeness\<^sub>T by fast section \System KB\ inductive AxB :: \'i fm \ bool\ where \AxB (p \<^bold>\ K i (L i p))\ abbreviation SystemKB :: \'i fm \ bool\ ("\\<^sub>K\<^sub>B _" [50] 50) where \\\<^sub>K\<^sub>B p \ AxB \ p\ lemma soundness_AxB: \AxB p \ symmetric M \ w \ \ M \ M, w \ p\ unfolding symmetric_def by (induct p rule: AxB.induct) auto lemma soundness\<^sub>K\<^sub>B: \\\<^sub>K\<^sub>B p \ symmetric M \ w \ \ M \ M, w \ p\ using soundness soundness_AxB . lemma AxB_symmetric': - assumes \\p. AxB p \ A p\ \consistent A V\ \maximal A V\ \consistent A W\ \maximal A W\ + assumes \AxB \ A\ \consistent A V\ \maximal A V\ \consistent A W\ \maximal A W\ and \W \ reach A i V\ shows \V \ reach A i W\ proof - have \\p. K i p \ W \ p \ V\ proof (intro allI impI, rule ccontr) fix p assume \K i p \ W\ \p \ V\ then have \(\<^bold>\ p) \ V\ using assms(2-3) exactly_one_in_maximal by fast then have \K i (L i (\<^bold>\ p)) \ V\ using assms(1-3) ax_in_maximal AxB.intros consequent_in_maximal by fast then have \L i (\<^bold>\ p) \ W\ using \W \ reach A i V\ by fast then have \(\<^bold>\ K i p) \ W\ using assms(4-5) by (meson K_LK consistent_consequent maximal_def) then show False using \K i p \ W\ assms(4-5) exactly_one_in_maximal by fast qed then have \known W i \ V\ by blast then show ?thesis using assms(2-3) by simp qed -lemma AxB_symmetric: - assumes \\p. AxB p \ A p\ \consistent A V\ \maximal A V\ \consistent A W\ \maximal A W\ - shows \W \ reach A i V \ V \ reach A i W\ - using assms AxB_symmetric'[where V=V and W=W] AxB_symmetric'[where V=W and W=V] - by (intro iffI) blast+ - lemma mcs\<^sub>K\<^sub>B_symmetric: - assumes \\p. AxB p \ A p\ - shows \symmetric (Kripke (mcss A) pi (reach A))\ + assumes \AxB \ A\ + shows \symmetric (canonical A)\ unfolding symmetric_def proof (intro allI ballI) fix i V W - assume \V \ \ (Kripke (mcss A) pi (reach A))\ \W \ \ (Kripke (mcss A) pi (reach A))\ + assume \V \ \ (canonical A)\ \W \ \ (canonical A)\ then have \consistent A V\ \maximal A V\ \consistent A W\ \maximal A W\ by simp_all - with AxB_symmetric assms have \W \ reach A i V \ V \ reach A i W\ . + with AxB_symmetric' assms have \W \ reach A i V \ V \ reach A i W\ + by metis then show - \(W \ \ (Kripke (mcss A) pi (reach A)) i V) = (V \ \ (Kripke (mcss A) pi (reach A)) i W)\ + \(W \ \ (canonical A) i V) = (V \ \ (canonical A) i W)\ by simp qed -lemma imply_completeness_KB: - assumes valid: \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. - symmetric M \ (\q \ G. M, w \ q) \ M, w \ p\ - shows \\qs. set qs \ G \ (AxB \ imply qs p)\ -proof (rule ccontr) - assume \\qs. set qs \ G \ AxB \ imply qs p\ - then have *: \\qs. set qs \ G \ \ AxB \ imply ((\<^bold>\ p) # qs) \<^bold>\\ - using K_Boole by blast - - let ?S = \{\<^bold>\ p} \ G\ - let ?V = \Extend AxB ?S from_nat\ - let ?M = \Kripke (mcss AxB) pi (reach AxB)\ - - have \consistent AxB ?S\ - using * by (metis K_imply_Cons consistent_def inconsistent_subset) - then have \?M, ?V \ (\<^bold>\ p)\ \\q \ G. ?M, ?V \ q\ \consistent AxB ?V\ \maximal AxB ?V\ - using canonical_model unfolding list_all_def by fastforce+ - moreover have \symmetric ?M\ - using mcs\<^sub>K\<^sub>B_symmetric by fast - ultimately have \?M, ?V \ p\ - using valid by auto - then show False - using \?M, ?V \ (\<^bold>\ p)\ by simp -qed +abbreviation \valid\<^sub>K\<^sub>B \ valid symmetric\ lemma completeness\<^sub>K\<^sub>B: - assumes \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. symmetric M \ M, w \ p\ + assumes \valid\<^sub>K\<^sub>B p\ shows \\\<^sub>K\<^sub>B p\ - using assms imply_completeness_KB[where G=\{}\] by auto - -abbreviation \valid\<^sub>K\<^sub>B p \ \(M :: (nat, nat fm set) kripke). \w \ \ M. symmetric M \ M, w \ p\ + using assms completeness mcs\<^sub>K\<^sub>B_symmetric by blast theorem main\<^sub>K\<^sub>B: \valid\<^sub>K\<^sub>B p \ \\<^sub>K\<^sub>B p\ using soundness\<^sub>K\<^sub>B completeness\<^sub>K\<^sub>B by fast corollary assumes \symmetric M\ \w \ \ M\ shows \valid\<^sub>K\<^sub>B p \ M, w \ p\ using assms soundness\<^sub>K\<^sub>B completeness\<^sub>K\<^sub>B by fast section \System K4\ inductive Ax4 :: \'i fm \ bool\ where \Ax4 (K i p \<^bold>\ K i (K i p))\ abbreviation SystemK4 :: \'i fm \ bool\ ("\\<^sub>K\<^sub>4 _" [50] 50) where \\\<^sub>K\<^sub>4 p \ Ax4 \ p\ lemma soundness_Ax4: \Ax4 p \ transitive M \ w \ \ M \ M, w \ p\ by (induct p rule: Ax4.induct) (meson pos_introspection) lemma soundness\<^sub>K\<^sub>4: \\\<^sub>K\<^sub>4 p \ transitive M \ w \ \ M \ M, w \ p\ using soundness soundness_Ax4 . lemma Ax4_transitive: - assumes \\p. Ax4 p \ A p\ \consistent A V\ \maximal A V\ + assumes \Ax4 \ A\ \consistent A V\ \maximal A V\ and \W \ reach A i V\ \U \ reach A i W\ shows \U \ reach A i V\ proof - have \(K i p \<^bold>\ K i (K i p)) \ V\ for p - using assms(1-3) ax_in_maximal Ax4.intros by metis + using assms(1-3) ax_in_maximal Ax4.intros by fast then have \K i (K i p) \ V\ if \K i p \ V\ for p using that assms(2-3) consequent_in_maximal by blast then show ?thesis using assms(4-5) by blast qed lemma mcs\<^sub>K\<^sub>4_transitive: - assumes \\p. Ax4 p \ A p\ - shows \transitive (Kripke (mcss A) pi (reach A))\ + assumes \Ax4 \ A\ + shows \transitive (canonical A)\ unfolding transitive_def proof safe fix i U V W - assume \V \ \ (Kripke (mcss A) pi (reach A))\ + assume \V \ \ (canonical A)\ then have \consistent A V\ \maximal A V\ by simp_all moreover assume - \W \ \ (Kripke (mcss A) pi (reach A)) i V\ - \U \ \ (Kripke (mcss A) pi (reach A)) i W\ + \W \ \ (canonical A) i V\ + \U \ \ (canonical A) i W\ ultimately have \U \ reach A i V\ - using Ax4_transitive[where V=V and W=W and U=U] assms by simp - then show \U \ \ (Kripke (mcss A) pi (reach A)) i V\ + using Ax4_transitive assms by simp + then show \U \ \ (canonical A) i V\ by simp qed -lemma imply_completeness_K4: - assumes valid: \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. - transitive M \ (\q \ G. M, w \ q) \ M, w \ p\ - shows \\qs. set qs \ G \ (Ax4 \ imply qs p)\ -proof (rule ccontr) - assume \\qs. set qs \ G \ Ax4 \ imply qs p\ - then have *: \\qs. set qs \ G \ \ Ax4 \ imply ((\<^bold>\ p) # qs) \<^bold>\\ - using K_Boole by blast - - let ?S = \{\<^bold>\ p} \ G\ - let ?V = \Extend Ax4 ?S from_nat\ - let ?M = \Kripke (mcss Ax4) pi (reach Ax4)\ - - have \consistent Ax4 ?S\ - using * by (metis K_imply_Cons consistent_def inconsistent_subset) - then have \?M, ?V \ (\<^bold>\ p)\ \\q \ G. ?M, ?V \ q\ \consistent Ax4 ?V\ \maximal Ax4 ?V\ - using canonical_model unfolding list_all_def by fastforce+ - moreover have \transitive ?M\ - using mcs\<^sub>K\<^sub>4_transitive by fast - ultimately have \?M, ?V \ p\ - using valid by auto - then show False - using \?M, ?V \ (\<^bold>\ p)\ by simp -qed +abbreviation \valid\<^sub>K\<^sub>4 \ valid transitive\ lemma completeness\<^sub>K\<^sub>4: - assumes \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. transitive M \ M, w \ p\ + assumes \valid\<^sub>K\<^sub>4 p\ shows \\\<^sub>K\<^sub>4 p\ - using assms imply_completeness_K4[where G=\{}\] by auto - -abbreviation \valid\<^sub>K\<^sub>4 p \ \(M :: (nat, nat fm set) kripke). \w \ \ M. transitive M \ M, w \ p\ + using assms completeness mcs\<^sub>K\<^sub>4_transitive by blast theorem main\<^sub>K\<^sub>4: \valid\<^sub>K\<^sub>4 p \ \\<^sub>K\<^sub>4 p\ using soundness\<^sub>K\<^sub>4 completeness\<^sub>K\<^sub>4 by fast corollary assumes \transitive M\ \w \ \ M\ shows \valid\<^sub>K\<^sub>4 p \ M, w \ p\ using assms soundness\<^sub>K\<^sub>4 completeness\<^sub>K\<^sub>4 by fast section \System S4\ abbreviation Or :: \('a \ bool) \ ('a \ bool) \ 'a \ bool\ (infixl \\\ 65) where \A \ A' \ \x. A x \ A' x\ abbreviation SystemS4 :: \'i fm \ bool\ ("\\<^sub>S\<^sub>4 _" [50] 50) where \\\<^sub>S\<^sub>4 p \ AxT \ Ax4 \ p\ lemma soundness_AxT4: \(AxT \ Ax4) p \ reflexive M \ transitive M \ w \ \ M \ M, w \ p\ using soundness_AxT soundness_Ax4 by fast lemma soundness\<^sub>S\<^sub>4: \\\<^sub>S\<^sub>4 p \ reflexive M \ transitive M \ w \ \ M \ M, w \ p\ using soundness soundness_AxT4 . -lemma imply_completeness_S4: - assumes valid: \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. - reflexive M \ transitive M \ (\q \ G. M, w \ q) \ M, w \ p\ - shows \\qs. set qs \ G \ (AxT \ Ax4 \ imply qs p)\ -proof (rule ccontr) - assume \\qs. set qs \ G \ AxT \ Ax4 \ imply qs p\ - then have *: \\qs. set qs \ G \ \ AxT \ Ax4 \ imply ((\<^bold>\ p) # qs) \<^bold>\\ - using K_Boole by blast - - let ?S = \{\<^bold>\ p} \ G\ - let ?V = \Extend (AxT \ Ax4) ?S from_nat\ - let ?M = \Kripke (mcss (AxT \ Ax4)) pi (reach (AxT \ Ax4))\ - - have \consistent (AxT \ Ax4) ?S\ - using * by (metis (no_types, lifting) K_imply_Cons consistent_def inconsistent_subset) - then have - \?M, ?V \ (\<^bold>\ p)\ \\q \ G. ?M, ?V \ q\ - \consistent (AxT \ Ax4) ?V\ \maximal (AxT \ Ax4) ?V\ - using canonical_model unfolding list_all_def by fastforce+ - moreover have \reflexive ?M\ \transitive ?M\ - by (simp_all add: mcs\<^sub>T_reflexive mcs\<^sub>K\<^sub>4_transitive) - ultimately have \?M, ?V \ p\ - using valid by auto - then show False - using \?M, ?V \ (\<^bold>\ p)\ by simp -qed +abbreviation \valid\<^sub>S\<^sub>4 \ valid refltrans\ lemma completeness\<^sub>S\<^sub>4: - assumes \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. - reflexive M \ transitive M \ M, w \ p\ + assumes \valid\<^sub>S\<^sub>4 p\ shows \\\<^sub>S\<^sub>4 p\ - using assms imply_completeness_S4[where G=\{}\] by auto - -abbreviation \valid\<^sub>S\<^sub>4 p \ \(M :: (nat, nat fm set) kripke). \w \ \ M. - reflexive M \ transitive M \ M, w \ p\ + using assms completeness[where P=refltrans] mcs\<^sub>T_reflexive[where A=\AxT \ Ax4\] + mcs\<^sub>K\<^sub>4_transitive[where A=\AxT \ Ax4\] + by blast theorem main\<^sub>S\<^sub>4: \valid\<^sub>S\<^sub>4 p \ \\<^sub>S\<^sub>4 p\ using soundness\<^sub>S\<^sub>4 completeness\<^sub>S\<^sub>4 by fast corollary assumes \reflexive M\ \transitive M\ \w \ \ M\ shows \valid\<^sub>S\<^sub>4 p \ M, w \ p\ using assms soundness\<^sub>S\<^sub>4 completeness\<^sub>S\<^sub>4 by fast section \System S5\ abbreviation SystemS5 :: \'i fm \ bool\ ("\\<^sub>S\<^sub>5 _" [50] 50) where \\\<^sub>S\<^sub>5 p \ AxT \ AxB \ Ax4 \ p\ abbreviation AxTB4 :: \'i fm \ bool\ where \AxTB4 \ AxT \ AxB \ Ax4\ lemma soundness_AxTB4: \AxTB4 p \ equivalence M \ w \ \ M \ M, w \ p\ using soundness_AxT soundness_AxB soundness_Ax4 by fast lemma soundness\<^sub>S\<^sub>5: \\\<^sub>S\<^sub>5 p \ equivalence M \ w \ \ M \ M, w \ p\ using soundness soundness_AxTB4 . -lemma imply_completeness_S5: - assumes valid: \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. - equivalence M \ (\q \ G. M, w \ q) \ M, w \ p\ - shows \\qs. set qs \ G \ (AxTB4 \ imply qs p)\ -proof (rule ccontr) - assume \\qs. set qs \ G \ AxTB4 \ imply qs p\ - then have *: \\qs. set qs \ G \ \ AxTB4 \ imply ((\<^bold>\ p) # qs) \<^bold>\\ - using K_Boole by blast - - let ?S = \{\<^bold>\ p} \ G\ - let ?V = \Extend AxTB4 ?S from_nat\ - let ?M = \Kripke (mcss AxTB4) pi (reach AxTB4)\ - - have \consistent AxTB4 ?S\ - using * by (metis (no_types, lifting) K_imply_Cons consistent_def inconsistent_subset) - then have - \?M, ?V \ (\<^bold>\ p)\ \\q \ G. ?M, ?V \ q\ - \consistent AxTB4 ?V\ \maximal AxTB4 ?V\ - using canonical_model unfolding list_all_def by fastforce+ - moreover have \equivalence ?M\ - by (simp add: mcs\<^sub>T_reflexive mcs\<^sub>K\<^sub>B_symmetric mcs\<^sub>K\<^sub>4_transitive) - ultimately have \?M, ?V \ p\ - using valid by auto - then show False - using \?M, ?V \ (\<^bold>\ p)\ by simp -qed +abbreviation \valid\<^sub>S\<^sub>5 \ valid equivalence\ lemma completeness\<^sub>S\<^sub>5: - assumes \\(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. equivalence M \ M, w \ p\ + assumes \valid\<^sub>S\<^sub>5 p\ shows \\\<^sub>S\<^sub>5 p\ - using assms imply_completeness_S5[where G=\{}\] by auto - -abbreviation \valid\<^sub>S\<^sub>5 p \ \(M :: (nat, nat fm set) kripke). \w \ \ M. equivalence M \ M, w \ p\ + using assms completeness[where P=equivalence] + mcs\<^sub>T_reflexive[where A=AxTB4] mcs\<^sub>K\<^sub>B_symmetric[where A=AxTB4] mcs\<^sub>K\<^sub>4_transitive[where A=AxTB4] + by blast theorem main\<^sub>S\<^sub>5: \valid\<^sub>S\<^sub>5 p \ \\<^sub>S\<^sub>5 p\ using soundness\<^sub>S\<^sub>5 completeness\<^sub>S\<^sub>5 by fast corollary assumes \equivalence M\ \w \ \ M\ shows \valid\<^sub>S\<^sub>5 p \ M, w \ p\ using assms soundness\<^sub>S\<^sub>5 completeness\<^sub>S\<^sub>5 by fast subsection \Traditional formulation\ inductive SystemS5' :: \'i fm \ bool\ ("\\<^sub>S\<^sub>5'' _" [50] 50) where A1': \tautology p \ \\<^sub>S\<^sub>5' p\ | A2': \\\<^sub>S\<^sub>5' (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ | AT': \\\<^sub>S\<^sub>5' (K i p \<^bold>\ p)\ | A5': \\\<^sub>S\<^sub>5' (\<^bold>\ K i p \<^bold>\ K i (\<^bold>\ K i p))\ | R1': \\\<^sub>S\<^sub>5' p \ \\<^sub>S\<^sub>5' (p \<^bold>\ q) \ \\<^sub>S\<^sub>5' q\ | R2': \\\<^sub>S\<^sub>5' p \ \\<^sub>S\<^sub>5' K i p\ lemma S5'_trans: \\\<^sub>S\<^sub>5' ((p \<^bold>\ q) \<^bold>\ (q \<^bold>\ r) \<^bold>\ p \<^bold>\ r)\ by (simp add: A1') lemma S5'_L: \\\<^sub>S\<^sub>5' (p \<^bold>\ L i p)\ proof - have \\\<^sub>S\<^sub>5' (K i (\<^bold>\ p) \<^bold>\ \<^bold>\ p)\ using AT' by fast moreover have \\\<^sub>S\<^sub>5' ((P \<^bold>\ \<^bold>\ Q) \<^bold>\ Q \<^bold>\ \<^bold>\ P)\ for P Q :: \'i fm\ using A1' by force ultimately show ?thesis using R1' by blast qed lemma S5'_B: \\\<^sub>S\<^sub>5' (p \<^bold>\ K i (L i p))\ using A5' S5'_L R1' S5'_trans by metis lemma S5'_KL: \\\<^sub>S\<^sub>5' (K i p \<^bold>\ L i p)\ by (meson AT' R1' S5'_L S5'_trans) lemma S5'_map_K: assumes \\\<^sub>S\<^sub>5' (p \<^bold>\ q)\ shows \\\<^sub>S\<^sub>5' (K i p \<^bold>\ K i q)\ proof - note \\\<^sub>S\<^sub>5' (p \<^bold>\ q)\ then have \\\<^sub>S\<^sub>5' K i (p \<^bold>\ q)\ using R2' by fast moreover have \\\<^sub>S\<^sub>5' (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ using A2' by fast ultimately show ?thesis using R1' by fast qed lemma S5'_map_L: assumes \\\<^sub>S\<^sub>5' (p \<^bold>\ q)\ shows \\\<^sub>S\<^sub>5' (L i p \<^bold>\ L i q)\ using assms by (metis R1' S5'_map_K S5'_trans) lemma S5'_L_dual: \\\<^sub>S\<^sub>5' (\<^bold>\ L i (\<^bold>\ p) \<^bold>\ K i p)\ proof - have \\\<^sub>S\<^sub>5' (K i p \<^bold>\ K i p)\ \\\<^sub>S\<^sub>5' (\<^bold>\ \<^bold>\ p \<^bold>\ p)\ by (simp_all add: A1') then have \\\<^sub>S\<^sub>5' (K i (\<^bold>\ \<^bold>\ p) \<^bold>\ K i p)\ by (simp add: S5'_map_K) moreover have \\\<^sub>S\<^sub>5' ((P \<^bold>\ Q) \<^bold>\ (\<^bold>\ \<^bold>\ P \<^bold>\ Q))\ for P Q :: \'i fm\ by (simp add: A1') ultimately show \\\<^sub>S\<^sub>5' (\<^bold>\ \<^bold>\ K i (\<^bold>\ \<^bold>\ p) \<^bold>\ K i p)\ using R1' by blast qed lemma S5'_4: \\\<^sub>S\<^sub>5' (K i p \<^bold>\ K i (K i p))\ proof - have \\\<^sub>S\<^sub>5' (L i (\<^bold>\ p) \<^bold>\ K i (L i (\<^bold>\ p)))\ using A5' by fast moreover have \\\<^sub>S\<^sub>5' ((P \<^bold>\ Q) \<^bold>\ \<^bold>\ Q \<^bold>\ \<^bold>\ P)\ for P Q :: \'i fm\ using A1' by force ultimately have \\\<^sub>S\<^sub>5' (\<^bold>\ K i (L i (\<^bold>\ p)) \<^bold>\ \<^bold>\ L i (\<^bold>\ p))\ using R1' by fast then have \\\<^sub>S\<^sub>5' (L i (K i (\<^bold>\ \<^bold>\ p)) \<^bold>\ \<^bold>\ L i (\<^bold>\ p))\ by blast moreover have \\\<^sub>S\<^sub>5' (p \<^bold>\ \<^bold>\ \<^bold>\ p)\ by (simp add: A1') ultimately have \\\<^sub>S\<^sub>5' (L i (K i p) \<^bold>\ \<^bold>\ L i (\<^bold>\ p))\ by (metis (no_types, opaque_lifting) R1' S5'_map_K S5'_trans) then have \\\<^sub>S\<^sub>5' (L i (K i p) \<^bold>\ K i p)\ by (meson S5'_L_dual R1' S5'_trans) then show ?thesis by (metis A2' R1' R2' S5'_B S5'_trans) qed lemma S5_S5': \\\<^sub>S\<^sub>5 p \ \\<^sub>S\<^sub>5' p\ proof (induct p rule: AK.induct) case (A2 i p q) have \\\<^sub>S\<^sub>5' (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ using A2' . moreover have \\\<^sub>S\<^sub>5' ((P \<^bold>\ Q \<^bold>\ R) \<^bold>\ (Q \<^bold>\ P \<^bold>\ R))\ for P Q R :: \'i fm\ by (simp add: A1') ultimately show ?case using R1' by blast next case (Ax p) then show ?case using AT' S5'_B S5'_4 by (metis Ax4.cases AxB.cases AxT.cases) qed (meson SystemS5'.intros)+ lemma S5'_S5: fixes p :: \('i :: countable) fm\ shows \\\<^sub>S\<^sub>5' p \ \\<^sub>S\<^sub>5 p\ proof (induct p rule: SystemS5'.induct) case (AT' i p) then show ?case by (simp add: Ax AxT.intros) next case (A5' i p) then show ?case using completeness\<^sub>S\<^sub>5 neg_introspection by fast qed (meson AK.intros K_A2')+ theorem main\<^sub>S\<^sub>5': \valid\<^sub>S\<^sub>5 p \ \\<^sub>S\<^sub>5' p\ using main\<^sub>S\<^sub>5 S5_S5' S5'_S5 by blast section \Acknowledgements\ text \ The formalization is inspired by Berghofer's formalization of Henkin-style completeness. \<^item> Stefan Berghofer: First-Order Logic According to Fitting. \<^url>\https://www.isa-afp.org/entries/FOL-Fitting.shtml\ \ end diff --git a/thys/Public_Announcement_Logic/PAL.thy b/thys/Public_Announcement_Logic/PAL.thy --- a/thys/Public_Announcement_Logic/PAL.thy +++ b/thys/Public_Announcement_Logic/PAL.thy @@ -1,739 +1,734 @@ (* File: PAL.thy Author: Asta Halkjær From This work is a formalization of public announcement logic with countably many agents. It includes proofs of soundness and completeness for a variant of the axiom system PA + DIST! + NEC!. The completeness proof builds on the Epistemic Logic theory. *) theory PAL imports "Epistemic_Logic.Epistemic_Logic" begin section \Syntax\ datatype 'i pfm = FF ("\<^bold>\\<^sub>!") | Pro' id ("Pro\<^sub>!") | Dis \'i pfm\ \'i pfm\ (infixr "\<^bold>\\<^sub>!" 30) | Con \'i pfm\ \'i pfm\ (infixr "\<^bold>\\<^sub>!" 35) | Imp \'i pfm\ \'i pfm\ (infixr "\<^bold>\\<^sub>!" 25) | K' 'i \'i pfm\ (\K\<^sub>!\) | Ann \'i pfm\ \'i pfm\ (\[_]\<^sub>! _\ [50, 50] 50) abbreviation PIff :: \'i pfm \ 'i pfm \ 'i pfm\ (infixr \\<^bold>\\<^sub>!\ 25) where \p \<^bold>\\<^sub>! q \ (p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (q \<^bold>\\<^sub>! p)\ abbreviation PNeg (\\<^bold>\\<^sub>! _\ [40] 40) where \\<^bold>\\<^sub>! p \ p \<^bold>\\<^sub>! \<^bold>\\<^sub>!\ abbreviation PL (\L\<^sub>!\) where \L\<^sub>! i p \ (\<^bold>\\<^sub>! (K\<^sub>! i (\<^bold>\\<^sub>! p)))\ section \Semantics\ fun psemantics :: \('i, 'w) kripke \ 'w \ 'i pfm \ bool\ ("_, _ \\<^sub>! _" [50, 50] 50) and restrict :: \('i, 'w) kripke \ 'i pfm \ ('i, 'w) kripke\ where \(M, w \\<^sub>! \<^bold>\\<^sub>!) = False\ | \(M, w \\<^sub>! Pro\<^sub>! x) = \ M w x\ | \(M, w \\<^sub>! (p \<^bold>\\<^sub>! q)) = ((M, w \\<^sub>! p) \ (M, w \\<^sub>! q))\ | \(M, w \\<^sub>! (p \<^bold>\\<^sub>! q)) = ((M, w \\<^sub>! p) \ (M, w \\<^sub>! q))\ | \(M, w \\<^sub>! (p \<^bold>\\<^sub>! q)) = ((M, w \\<^sub>! p) \ (M, w \\<^sub>! q))\ | \(M, w \\<^sub>! K\<^sub>! i p) = (\v \ \ M \ \ M i w. M, v \\<^sub>! p)\ | \(M, w \\<^sub>! [r]\<^sub>! p) = ((M, w \\<^sub>! r) \ (restrict M r, w \\<^sub>! p))\ | \restrict M p = Kripke {w. w \ \ M \ M, w \\<^sub>! p} (\ M) (\ M)\ primrec static :: \'i pfm \ bool\ where \static \<^bold>\\<^sub>! = True\ | \static (Pro\<^sub>! _) = True\ | \static (p \<^bold>\\<^sub>! q) = (static p \ static q)\ | \static (p \<^bold>\\<^sub>! q) = (static p \ static q)\ | \static (p \<^bold>\\<^sub>! q) = (static p \ static q)\ | \static (K\<^sub>! i p) = static p\ | \static ([r]\<^sub>! p) = False\ primrec lower :: \'i pfm \ 'i fm\ where \lower \<^bold>\\<^sub>! = \<^bold>\\ | \lower (Pro\<^sub>! x) = Pro x\ | \lower (p \<^bold>\\<^sub>! q) = (lower p \<^bold>\ lower q)\ | \lower (p \<^bold>\\<^sub>! q) = (lower p \<^bold>\ lower q)\ | \lower (p \<^bold>\\<^sub>! q) = (lower p \<^bold>\ lower q)\ | \lower (K\<^sub>! i p) = K i (lower p)\ | \lower ([r]\<^sub>! p) = undefined\ primrec lift :: \'i fm \ 'i pfm\ where \lift \<^bold>\ = \<^bold>\\<^sub>!\ | \lift (Pro x) = Pro\<^sub>! x\ | \lift (p \<^bold>\ q) = (lift p \<^bold>\\<^sub>! lift q)\ | \lift (p \<^bold>\ q) = (lift p \<^bold>\\<^sub>! lift q)\ | \lift (p \<^bold>\ q) = (lift p \<^bold>\\<^sub>! lift q)\ | \lift (K i p) = K\<^sub>! i (lift p)\ lemma lower_semantics: assumes \static p\ shows \(M, w \ lower p) \ (M, w \\<^sub>! p)\ using assms by (induct p arbitrary: w) simp_all lemma lift_semantics: \(M, w \ p) \ (M, w \\<^sub>! lift p)\ by (induct p arbitrary: w) simp_all lemma lower_lift: \lower (lift p) = p\ by (induct p) simp_all lemma lift_lower: \static p \ lift (lower p) = p\ by (induct p) simp_all section \Soundness of Reduction\ primrec reduce' :: \'i pfm \ 'i pfm \ 'i pfm\ where \reduce' r \<^bold>\\<^sub>! = (r \<^bold>\\<^sub>! \<^bold>\\<^sub>!)\ | \reduce' r (Pro\<^sub>! x) = (r \<^bold>\\<^sub>! Pro\<^sub>! x)\ | \reduce' r (p \<^bold>\\<^sub>! q) = (reduce' r p \<^bold>\\<^sub>! reduce' r q)\ | \reduce' r (p \<^bold>\\<^sub>! q) = (reduce' r p \<^bold>\\<^sub>! reduce' r q)\ | \reduce' r (p \<^bold>\\<^sub>! q) = (reduce' r p \<^bold>\\<^sub>! reduce' r q)\ | \reduce' r (K\<^sub>! i p) = (r \<^bold>\\<^sub>! K\<^sub>! i (reduce' r p))\ | \reduce' r ([p]\<^sub>! q) = undefined\ primrec reduce :: \'i pfm \ 'i pfm\ where \reduce \<^bold>\\<^sub>! = \<^bold>\\<^sub>!\ | \reduce (Pro\<^sub>! x) = Pro\<^sub>! x\ | \reduce (p \<^bold>\\<^sub>! q) = (reduce p \<^bold>\\<^sub>! reduce q)\ | \reduce (p \<^bold>\\<^sub>! q) = (reduce p \<^bold>\\<^sub>! reduce q)\ | \reduce (p \<^bold>\\<^sub>! q) = (reduce p \<^bold>\\<^sub>! reduce q)\ | \reduce (K\<^sub>! i p) = K\<^sub>! i (reduce p)\ | \reduce ([r]\<^sub>! p) = reduce' (reduce r) (reduce p)\ lemma static_reduce': \static p \ static r \ static (reduce' r p)\ by (induct p) simp_all lemma static_reduce: \static (reduce p)\ by (induct p) (simp_all add: static_reduce') lemma reduce'_semantics: assumes \static q\ shows \((M, w \\<^sub>! [p]\<^sub>! (q))) = (M, w \\<^sub>! reduce' p q)\ using assms by (induct q arbitrary: w) auto lemma reduce_semantics: \(M, w \\<^sub>! p) = (M, w \\<^sub>! reduce p)\ proof (induct p arbitrary: M w) case (Ann p q) then show ?case using reduce'_semantics static_reduce by fastforce qed simp_all section \Proof System\ primrec peval :: \(id \ bool) \ ('i pfm \ bool) \ 'i pfm \ bool\ where \peval _ _ \<^bold>\\<^sub>! = False\ | \peval g _ (Pro\<^sub>! x) = g x\ | \peval g h (p \<^bold>\\<^sub>! q) = (peval g h p \ peval g h q)\ | \peval g h (p \<^bold>\\<^sub>! q) = (peval g h p \ peval g h q)\ | \peval g h (p \<^bold>\\<^sub>! q) = (peval g h p \ peval g h q)\ | \peval _ h (K\<^sub>! i p) = h (K\<^sub>! i p)\ | \peval _ h ([r]\<^sub>! p) = h ([r]\<^sub>! p)\ abbreviation \ptautology p \ \g h. peval g h p\ inductive PAK :: \('i pfm \ bool) \ 'i pfm \ bool\ ("_ \\<^sub>! _" [50, 50] 50) for A :: \'i pfm \ bool\ where PA1: \ptautology p \ A \\<^sub>! p\ | PA2: \A \\<^sub>! (K\<^sub>! i p \<^bold>\\<^sub>! K\<^sub>! i (p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! K\<^sub>! i q)\ | PAx: \A p \ A \\<^sub>! p\ | PR1: \A \\<^sub>! p \ A \\<^sub>! (p \<^bold>\\<^sub>! q) \ A \\<^sub>! q\ | PR2: \A \\<^sub>! p \ A \\<^sub>! K\<^sub>! i p\ | PFF: \A \\<^sub>! ([r]\<^sub>! \<^bold>\\<^sub>! \<^bold>\\<^sub>! (r \<^bold>\\<^sub>! \<^bold>\\<^sub>!))\ | PPro: \A \\<^sub>! ([r]\<^sub>! Pro\<^sub>! x \<^bold>\\<^sub>! (r \<^bold>\\<^sub>! Pro\<^sub>! x))\ | PDis: \A \\<^sub>! ([r]\<^sub>! (p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! [r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q)\ | PCon: \A \\<^sub>! ([r]\<^sub>! (p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! [r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q)\ | PImp: \A \\<^sub>! (([r]\<^sub>! (p \<^bold>\\<^sub>! q)) \<^bold>\\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q))\ | PK: \A \\<^sub>! (([r]\<^sub>! K\<^sub>! i p) \<^bold>\\<^sub>! (r \<^bold>\\<^sub>! K\<^sub>! i ([r]\<^sub>! p)))\ | PAnn: \A \\<^sub>! p \ A \\<^sub>! [r]\<^sub>! p\ lemma eval_peval: \eval h (g o lift) p = peval h g (lift p)\ by (induct p) simp_all lemma tautology_ptautology: \tautology p \ ptautology (lift p)\ using eval_peval by blast lemma peval_eval: assumes \static p\ shows \eval h g (lower p) = peval h (g o lower) p\ using assms by (induct p) simp_all lemma ptautology_tautology: assumes \static p\ shows \ptautology p \ tautology (lower p)\ using assms peval_eval by blast theorem AK_PAK: \A o lift \ p \ A \\<^sub>! lift p\ by (induct p rule: AK.induct) (auto intro: PAK.intros(1-5) simp: tautology_ptautology) -abbreviation valid :: \(('i :: countable, 'i fm set) kripke \ bool) \ 'i fm \ bool\ where - \valid P p \ \(M :: ('i :: countable, 'i fm set) kripke). \w \ \ M. P M \ M, w \ p\ - abbreviation validP :: \(('i :: countable, 'i fm set) kripke \ bool) \ 'i pfm \ bool\ (\valid\<^sub>!\) where \valid\<^sub>! P p \ \M. \w \ \ M. P M \ M, w \\<^sub>! p\ theorem static_completeness: assumes \static p\ \valid\<^sub>! P p\ \valid P (lower p) \ A o lift \ lower p\ shows \A \\<^sub>! p\ proof - have \valid P (lower p)\ using assms by (simp add: lower_semantics) then have \A o lift \ lower p\ using assms(3) by fast then have \A \\<^sub>! lift (lower p)\ using AK_PAK by fast then show ?thesis using assms(1) lift_lower by metis qed corollary static_completeness\<^sub>P\<^sub>K: assumes \static p\ \valid\<^sub>! (\_. True) p\ shows \A \\<^sub>! p\ - using assms static_completeness[where P=\\_. True\] completeness by metis + using assms static_completeness[where P=\\_. True\] completeness\<^sub>K by metis section \Soundness\ lemma peval_semantics: \peval (val w) (\q. Kripke W val r, w \\<^sub>! q) p = (Kripke W val r, w \\<^sub>! p)\ by (induct p) simp_all lemma ptautology: assumes \ptautology p\ shows \M, w \\<^sub>! p\ proof - from assms have \peval (g w) (\q. Kripke W g r, w \\<^sub>! q) p\ for W g r by simp then have \Kripke W g r, w \\<^sub>! p\ for W g r using peval_semantics by fast then show \M, w \\<^sub>! p\ by (metis kripke.collapse) qed theorem soundness: fixes M :: \('i, 'w) kripke\ assumes \\(M :: ('i, 'w) kripke) p w. A p \ P M \ w \ \ M \ M, w \\<^sub>! p\ \\(M :: ('i, 'w) kripke) p. P M \ P (restrict M p)\ shows \A \\<^sub>! p \ P M \ w \ \ M \ M, w \\<^sub>! p\ proof (induct p arbitrary: M w rule: PAK.induct) case (PAnn p r) moreover have \P (restrict M r)\ using PAnn(3) assms(2) by simp ultimately show ?case by simp qed (simp_all add: assms ptautology) corollary \(\_. False) \\<^sub>! p \ w \ \ M \ M, w \\<^sub>! p\ using soundness[where P=\\_. True\] by metis section \Completeness\ lemma ConE: assumes \A \\<^sub>! (p \<^bold>\\<^sub>! q)\ shows \A \\<^sub>! p\ \A \\<^sub>! q\ using assms by (metis PA1 PR1 peval.simps(4-5))+ lemma Iff_Dis: assumes \A \\<^sub>! (p \<^bold>\\<^sub>! p')\ \A \\<^sub>! (q \<^bold>\\<^sub>! q')\ shows \A \\<^sub>! ((p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (p' \<^bold>\\<^sub>! q'))\ proof - have \A \\<^sub>! ((p \<^bold>\\<^sub>! p') \<^bold>\\<^sub>! (q \<^bold>\\<^sub>! q') \<^bold>\\<^sub>! ((p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (p' \<^bold>\\<^sub>! q')))\ by (simp add: PA1) then show ?thesis using assms PR1 by blast qed lemma Iff_Con: assumes \A \\<^sub>! (p \<^bold>\\<^sub>! p')\ \A \\<^sub>! (q \<^bold>\\<^sub>! q')\ shows \A \\<^sub>! ((p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (p' \<^bold>\\<^sub>! q'))\ proof - have \A \\<^sub>! ((p \<^bold>\\<^sub>! p') \<^bold>\\<^sub>! (q \<^bold>\\<^sub>! q') \<^bold>\\<^sub>! ((p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (p' \<^bold>\\<^sub>! q')))\ by (simp add: PA1) then show ?thesis using assms PR1 by blast qed lemma Iff_Imp: assumes \A \\<^sub>! (p \<^bold>\\<^sub>! p')\ \A \\<^sub>! (q \<^bold>\\<^sub>! q')\ shows \A \\<^sub>! ((p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (p' \<^bold>\\<^sub>! q'))\ proof - have \A \\<^sub>! ((p \<^bold>\\<^sub>! p') \<^bold>\\<^sub>! (q \<^bold>\\<^sub>! q') \<^bold>\\<^sub>! ((p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (p' \<^bold>\\<^sub>! q')))\ by (simp add: PA1) then show ?thesis using assms PR1 by blast qed lemma Iff_sym: \(A \\<^sub>! (p \<^bold>\\<^sub>! q)) = (A \\<^sub>! (q \<^bold>\\<^sub>! p))\ proof - have \A \\<^sub>! ((p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (q \<^bold>\\<^sub>! p))\ by (simp add: PA1) then show ?thesis using PR1 ConE by blast qed lemma Iff_Iff: assumes \A \\<^sub>! (p \<^bold>\\<^sub>! p')\ \A \\<^sub>! (p \<^bold>\\<^sub>! q)\ shows \A \\<^sub>! (p' \<^bold>\\<^sub>! q)\ proof - have \ptautology ((p \<^bold>\\<^sub>! p') \<^bold>\\<^sub>! (p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (p' \<^bold>\\<^sub>! q))\ by (metis peval.simps(4-5)) with PA1 have \A \\<^sub>! ((p \<^bold>\\<^sub>! p') \<^bold>\\<^sub>! (p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! (p' \<^bold>\\<^sub>! q))\ . then show ?thesis using assms PR1 by blast qed lemma K'_A2': \A \\<^sub>! (K\<^sub>! i (p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! K\<^sub>! i p \<^bold>\\<^sub>! K\<^sub>! i q)\ proof - have \A \\<^sub>! (K\<^sub>! i p \<^bold>\\<^sub>! K\<^sub>! i (p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! K\<^sub>! i q)\ using PA2 by fast moreover have \A \\<^sub>! ((P \<^bold>\\<^sub>! Q \<^bold>\\<^sub>! R) \<^bold>\\<^sub>! (Q \<^bold>\\<^sub>! P \<^bold>\\<^sub>! R))\ for P Q R by (simp add: PA1) ultimately show ?thesis using PR1 by fast qed lemma K'_map: assumes \A \\<^sub>! (p \<^bold>\\<^sub>! q)\ shows \A \\<^sub>! (K\<^sub>! i p \<^bold>\\<^sub>! K\<^sub>! i q)\ proof - note \A \\<^sub>! (p \<^bold>\\<^sub>! q)\ then have \A \\<^sub>! K\<^sub>! i (p \<^bold>\\<^sub>! q)\ using PR2 by fast moreover have \A \\<^sub>! (K\<^sub>! i (p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! K\<^sub>! i p \<^bold>\\<^sub>! K\<^sub>! i q)\ using K'_A2' by fast ultimately show ?thesis using PR1 by fast qed lemma ConI: assumes \A \\<^sub>! p\ \A \\<^sub>! q\ shows \A \\<^sub>! (p \<^bold>\\<^sub>! q)\ proof - have \A \\<^sub>! (p \<^bold>\\<^sub>! q \<^bold>\\<^sub>! p \<^bold>\\<^sub>! q)\ by (simp add: PA1) then show ?thesis using assms PR1 by blast qed lemma Iff_wk: assumes \A \\<^sub>! (p \<^bold>\\<^sub>! q)\ shows \A \\<^sub>! ((r \<^bold>\\<^sub>! p) \<^bold>\\<^sub>! (r \<^bold>\\<^sub>! q))\ proof - have \A \\<^sub>! ((p \<^bold>\\<^sub>! q) \<^bold>\\<^sub>! ((r \<^bold>\\<^sub>! p) \<^bold>\\<^sub>! (r \<^bold>\\<^sub>! q)))\ by (simp add: PA1) then show ?thesis using assms PR1 by blast qed lemma Iff_reduce': assumes \static p\ shows \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! reduce' r p)\ using assms proof (induct p rule: pfm.induct) case FF then show ?case by (simp add: PFF) next case (Pro' x) then show ?case by (simp add: PPro) next case (Dis p q) then have \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q \<^bold>\\<^sub>! reduce' r (p \<^bold>\\<^sub>! q))\ using Iff_Dis by force moreover have \A \\<^sub>! (([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q) \<^bold>\\<^sub>! ([r]\<^sub>! (p \<^bold>\\<^sub>! q)))\ using PDis Iff_sym by fastforce ultimately show ?case using PA1 PR1 Iff_Iff by blast next case (Con p q) then have \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q \<^bold>\\<^sub>! reduce' r (p \<^bold>\\<^sub>! q))\ using Iff_Con by force moreover have \A \\<^sub>! (([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q) \<^bold>\\<^sub>! ([r]\<^sub>! (p \<^bold>\\<^sub>! q)))\ using PCon Iff_sym by fastforce ultimately show ?case using PA1 PR1 Iff_Iff by blast next case (Imp p q) then have \A \\<^sub>! (([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q) \<^bold>\\<^sub>! reduce' r (p \<^bold>\\<^sub>! q))\ using Iff_Imp by force moreover have \A \\<^sub>! (([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q) \<^bold>\\<^sub>! ([r]\<^sub>! (p \<^bold>\\<^sub>! q)))\ using PImp Iff_sym by fastforce ultimately show ?case using PA1 PR1 Iff_Iff by blast next case (K' i p) then have \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! reduce' r p)\ by simp then have \A \\<^sub>! (K\<^sub>! i ([r]\<^sub>! p) \<^bold>\\<^sub>! K\<^sub>! i (reduce' r p))\ using K'_map ConE ConI by metis moreover have \A \\<^sub>! ([r]\<^sub>! K\<^sub>! i p \<^bold>\\<^sub>! r \<^bold>\\<^sub>! K\<^sub>! i ([r]\<^sub>! p))\ using PK . ultimately have \A \\<^sub>! ([r]\<^sub>! K\<^sub>! i p \<^bold>\\<^sub>! r \<^bold>\\<^sub>! K\<^sub>! i (reduce' r p))\ by (meson Iff_Iff Iff_sym Iff_wk) then show ?case by simp next case (Ann r p) then show ?case by simp qed lemma Iff_Ann1: assumes r: \A \\<^sub>! (r \<^bold>\\<^sub>! r')\ and \static p\ shows \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! [r']\<^sub>! p)\ using assms(2-) proof (induct p) case FF have \A \\<^sub>! ((r \<^bold>\\<^sub>! r') \<^bold>\\<^sub>! ((r \<^bold>\\<^sub>! \<^bold>\\<^sub>!) \<^bold>\\<^sub>! (r' \<^bold>\\<^sub>! \<^bold>\\<^sub>!)))\ by (auto intro: PA1) then have \A \\<^sub>! ((r \<^bold>\\<^sub>! \<^bold>\\<^sub>!) \<^bold>\\<^sub>! (r' \<^bold>\\<^sub>! \<^bold>\\<^sub>!))\ using r PR1 by blast then show ?case by (meson PFF Iff_Iff Iff_sym) next case (Pro' x) have \A \\<^sub>! ((r \<^bold>\\<^sub>! r') \<^bold>\\<^sub>! ((r \<^bold>\\<^sub>! Pro\<^sub>! x) \<^bold>\\<^sub>! (r' \<^bold>\\<^sub>! Pro\<^sub>! x)))\ by (auto intro: PA1) then have \A \\<^sub>! ((r \<^bold>\\<^sub>! Pro\<^sub>! x) \<^bold>\\<^sub>! (r' \<^bold>\\<^sub>! Pro\<^sub>! x))\ using r PR1 by blast then show ?case by (meson PPro Iff_Iff Iff_sym) next case (Dis p q) then have \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q \<^bold>\\<^sub>! [r']\<^sub>! p \<^bold>\\<^sub>! [r']\<^sub>! q)\ by (simp add: Iff_Dis) then show ?case by (meson PDis Iff_Iff Iff_sym) next case (Con p q) then have \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q \<^bold>\\<^sub>! [r']\<^sub>! p \<^bold>\\<^sub>! [r']\<^sub>! q)\ by (simp add: Iff_Con) then show ?case by (meson PCon Iff_Iff Iff_sym) next case (Imp p q) then have \A \\<^sub>! (([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! q) \<^bold>\\<^sub>! ([r']\<^sub>! p \<^bold>\\<^sub>! [r']\<^sub>! q))\ by (simp add: Iff_Imp) then show ?case by (meson PImp Iff_Iff Iff_sym) next case (K' i p) then have \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! [r']\<^sub>! p)\ by simp then have \A \\<^sub>! (K\<^sub>! i ([r]\<^sub>! p) \<^bold>\\<^sub>! K\<^sub>! i ([r']\<^sub>! p))\ using K'_map ConE ConI by metis then show ?case by (meson Iff_Iff Iff_Imp Iff_sym PK r) next case (Ann s p) then show ?case by simp qed lemma Iff_Ann2: assumes \A \\<^sub>! (p \<^bold>\\<^sub>! p')\ shows \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! [r]\<^sub>! p')\ using assms PAnn ConE ConI PImp PR1 by metis lemma Iff_reduce: \A \\<^sub>! (p \<^bold>\\<^sub>! reduce p)\ proof (induct p) case (Dis p q) then show ?case by (simp add: Iff_Dis) next case (Con p q) then show ?case by (simp add: Iff_Con) next case (Imp p q) then show ?case by (simp add: Iff_Imp) next case (K' i p) have \A \\<^sub>! (K\<^sub>! i p \<^bold>\\<^sub>! K\<^sub>! i (reduce p))\ \A \\<^sub>! (K\<^sub>! i (reduce p) \<^bold>\\<^sub>! K\<^sub>! i p)\ using K' K'_map ConE by fast+ then have \A \\<^sub>! (K\<^sub>! i p \<^bold>\\<^sub>! K\<^sub>! i (reduce p))\ using ConI by blast then show ?case by simp next case (Ann r p) have \A \\<^sub>! ([reduce r]\<^sub>! reduce p \<^bold>\\<^sub>! reduce' (reduce r) (reduce p))\ using Iff_reduce' static_reduce by blast moreover have \A \\<^sub>! ([r]\<^sub>! reduce p \<^bold>\\<^sub>! [reduce r]\<^sub>! reduce p)\ using Ann(1) Iff_Ann1 static_reduce by blast ultimately have \A \\<^sub>! ([r]\<^sub>! reduce p \<^bold>\\<^sub>! reduce' (reduce r) (reduce p))\ using Iff_Iff Iff_sym by blast moreover have \A \\<^sub>! ([r]\<^sub>! reduce p \<^bold>\\<^sub>! [r]\<^sub>! p)\ by (meson Ann(2) static_reduce Iff_Ann2 Iff_sym) ultimately have \A \\<^sub>! ([r]\<^sub>! p \<^bold>\\<^sub>! reduce' (reduce r) (reduce p))\ using Iff_Iff by blast then show ?case by simp qed (simp_all add: PA1) theorem completeness\<^sub>P: assumes \valid\<^sub>! P p\ \valid P (lower (reduce p)) \ A o lift \ lower (reduce p)\ shows \A \\<^sub>! p\ proof - have \valid\<^sub>! P (reduce p)\ using assms(1) reduce_semantics by fast moreover have \static (reduce p)\ using static_reduce by fast ultimately have \A \\<^sub>! reduce p\ using static_completeness assms(2) by blast moreover have \A \\<^sub>! (p \<^bold>\\<^sub>! reduce p)\ using Iff_reduce by blast ultimately show ?thesis using ConE(2) PR1 by blast qed -corollary +corollary completeness\<^sub>P\<^sub>K: assumes \valid\<^sub>! (\_. True) p\ shows \A \\<^sub>! p\ - using assms completeness\<^sub>P[where P=\\_. True\] completeness by metis + using assms completeness\<^sub>P[where P=\\_. True\] completeness\<^sub>K by metis section \System PK\ abbreviation SystemPK :: \'i pfm \ bool\ ("\\<^sub>!\<^sub>K _" [50] 50) where \\\<^sub>!\<^sub>K p \ (\_. False) \\<^sub>! p\ lemma soundness\<^sub>P\<^sub>K: \\\<^sub>!\<^sub>K p \ w \ \ M \ M, w \\<^sub>! p\ using soundness[where P=\\_. True\] by metis abbreviation validPK (\valid\<^sub>!\<^sub>K\) where \valid\<^sub>!\<^sub>K \ valid\<^sub>! (\_. True)\ -lemma completeness\<^sub>P\<^sub>K: +corollary assumes \valid\<^sub>!\<^sub>K p\ shows \\\<^sub>!\<^sub>K p\ - using assms completeness\<^sub>P[where P=\\_. True\] completeness by metis + using completeness\<^sub>P\<^sub>K assms . theorem main\<^sub>P\<^sub>K: \valid\<^sub>!\<^sub>K p \ \\<^sub>!\<^sub>K p\ using soundness\<^sub>P\<^sub>K completeness\<^sub>P\<^sub>K by fast corollary assumes \valid\<^sub>!\<^sub>K p\ and \w \ \ M\ shows \M, w \\<^sub>! p\ using assms soundness\<^sub>P\<^sub>K completeness\<^sub>P\<^sub>K by metis section \System PT\ text \Also known as System M\ inductive AxPT :: \'i pfm \ bool\ where \AxPT (K\<^sub>! i p \<^bold>\\<^sub>! p)\ abbreviation SystemPT :: \'i pfm \ bool\ ("\\<^sub>!\<^sub>T _" [50] 50) where \\\<^sub>!\<^sub>T p \ AxPT \\<^sub>! p\ lemma soundness_AxPT: \AxPT p \ reflexive M \ w \ \ M \ M, w \\<^sub>! p\ unfolding reflexive_def by (induct p rule: AxPT.induct) simp lemma reflexive_restrict: \reflexive M \ reflexive (restrict M p)\ unfolding reflexive_def by simp lemma soundness\<^sub>P\<^sub>T: \\\<^sub>!\<^sub>T p \ reflexive M \ w \ \ M \ M, w \\<^sub>! p\ using soundness[where A=AxPT and P=reflexive] soundness_AxPT reflexive_restrict by fastforce lemma AxT_AxPT: \AxT = AxPT o lift\ unfolding comp_apply using lower_lift by (metis AxPT.simps AxT.simps lift.simps(5-6) lower.simps(5-6)) abbreviation validPT (\valid\<^sub>!\<^sub>T\) where \valid\<^sub>!\<^sub>T \ valid\<^sub>! reflexive\ lemma completeness\<^sub>P\<^sub>T: assumes \valid\<^sub>!\<^sub>T p\ shows \\\<^sub>!\<^sub>T p\ using assms completeness\<^sub>P[where p=p] completeness\<^sub>T AxT_AxPT by metis theorem main\<^sub>P\<^sub>T: \valid\<^sub>!\<^sub>T p \ \\<^sub>!\<^sub>T p\ using soundness\<^sub>P\<^sub>T completeness\<^sub>P\<^sub>T by fast corollary assumes \reflexive M\ \w \ \ M\ shows \valid\<^sub>!\<^sub>T p \ M, w \\<^sub>! p\ using assms soundness\<^sub>P\<^sub>T completeness\<^sub>P\<^sub>T by fast section \System PKB\ inductive AxPB :: \'i pfm \ bool\ where \AxPB (p \<^bold>\\<^sub>! K\<^sub>! i (L\<^sub>! i p))\ abbreviation SystemPKB :: \'i pfm \ bool\ ("\\<^sub>!\<^sub>K\<^sub>B _" [50] 50) where \\\<^sub>!\<^sub>K\<^sub>B p \ AxPB \\<^sub>! p\ lemma soundness_AxPB: \AxPB p \ symmetric M \ w \ \ M \ M, w \\<^sub>! p\ unfolding symmetric_def by (induct p rule: AxPB.induct) auto lemma symmetric_restrict: \symmetric M \ symmetric (restrict M p)\ unfolding symmetric_def by simp lemma soundness\<^sub>P\<^sub>K\<^sub>B: \\\<^sub>!\<^sub>K\<^sub>B p \ symmetric M \ w \ \ M \ M, w \\<^sub>! p\ using soundness[where A=AxPB and P=symmetric] soundness_AxPB symmetric_restrict by fastforce lemma AxB_AxPB: \AxB = AxPB o lift\ proof fix p :: \'i fm\ show \AxB p = (AxPB \ lift) p\ unfolding comp_apply using lower_lift by (smt (verit, best) AxB.simps AxPB.simps lift.simps(1, 5-6) lower.simps(5-6)) qed abbreviation validPKB (\valid\<^sub>!\<^sub>K\<^sub>B\) where \valid\<^sub>!\<^sub>K\<^sub>B \ valid\<^sub>! symmetric\ lemma completeness\<^sub>P\<^sub>K\<^sub>B: assumes \valid\<^sub>!\<^sub>K\<^sub>B p\ shows \\\<^sub>!\<^sub>K\<^sub>B p\ using assms completeness\<^sub>P[where p=p] completeness\<^sub>K\<^sub>B AxB_AxPB by metis theorem main\<^sub>P\<^sub>K\<^sub>B: \valid\<^sub>!\<^sub>K\<^sub>B p \ \\<^sub>!\<^sub>K\<^sub>B p\ using soundness\<^sub>P\<^sub>K\<^sub>B completeness\<^sub>P\<^sub>K\<^sub>B by fast corollary assumes \symmetric M\ \w \ \ M\ shows \valid\<^sub>!\<^sub>K\<^sub>B p \ M, w \\<^sub>! p\ using assms soundness\<^sub>P\<^sub>K\<^sub>B completeness\<^sub>P\<^sub>K\<^sub>B by fast section \System PK4\ inductive AxP4 :: \'i pfm \ bool\ where \AxP4 (K\<^sub>! i p \<^bold>\\<^sub>! K\<^sub>! i (K\<^sub>! i p))\ abbreviation SystemPK4 :: \'i pfm \ bool\ ("\\<^sub>!\<^sub>K\<^sub>4 _" [50] 50) where \\\<^sub>!\<^sub>K\<^sub>4 p \ AxP4 \\<^sub>! p\ lemma pos_introspection: assumes \transitive M\ \w \ \ M\ shows \M, w \\<^sub>! (K\<^sub>! i p \<^bold>\\<^sub>! K\<^sub>! i (K\<^sub>! i p))\ proof - { assume \M, w \\<^sub>! K\<^sub>! i p\ then have \\v \ \ M \ \ M i w. M, v \\<^sub>! p\ by simp then have \\v \ \ M \ \ M i w. \u \ \ M \ \ M i v. M, u \\<^sub>! p\ using \transitive M\ \w \ \ M\ unfolding transitive_def by blast then have \\v \ \ M \ \ M i w. M, v \\<^sub>! K\<^sub>! i p\ by simp then have \M, w \\<^sub>! K\<^sub>! i (K\<^sub>! i p)\ by simp } then show ?thesis by fastforce qed lemma soundness_AxP4: \AxP4 p \ transitive M \ w \ \ M \ M, w \\<^sub>! p\ by (induct p rule: AxP4.induct) (metis pos_introspection) lemma transitive_restrict: \transitive M \ transitive (restrict M p)\ unfolding transitive_def by (metis (no_types, lifting) kripke.exhaust_sel kripke.inject mem_Collect_eq restrict.elims) lemma soundness\<^sub>P\<^sub>K\<^sub>4: \\\<^sub>!\<^sub>K\<^sub>4 p \ transitive M \ w \ \ M \ M, w \\<^sub>! p\ using soundness[where A=AxP4 and P=transitive] soundness_AxP4 transitive_restrict by fastforce lemma Ax4_AxP4: \Ax4 = AxP4 o lift\ proof fix p :: \'i fm\ show \Ax4 p = (AxP4 \ lift) p\ unfolding comp_apply using lower_lift by (smt (verit, best) Ax4.simps AxP4.simps lift.simps(1, 5-6) lower.simps(5-6)) qed abbreviation validPK4 (\valid\<^sub>!\<^sub>K\<^sub>4\) where \valid\<^sub>!\<^sub>K\<^sub>4 \ valid\<^sub>! transitive\ lemma completeness\<^sub>P\<^sub>K\<^sub>4: assumes \valid\<^sub>!\<^sub>K\<^sub>4 p\ shows \\\<^sub>!\<^sub>K\<^sub>4 p\ using assms completeness\<^sub>P[where p=p] completeness\<^sub>K\<^sub>4 Ax4_AxP4 by metis theorem main\<^sub>P\<^sub>K\<^sub>4: \valid\<^sub>!\<^sub>K\<^sub>4 p \ \\<^sub>!\<^sub>K\<^sub>4 p\ using soundness\<^sub>P\<^sub>K\<^sub>4 completeness\<^sub>P\<^sub>K\<^sub>4 by fast corollary assumes \transitive M\ \w \ \ M\ shows \valid\<^sub>!\<^sub>K\<^sub>4 p \ M, w \\<^sub>! p\ using assms soundness\<^sub>P\<^sub>K\<^sub>4 completeness\<^sub>P\<^sub>K\<^sub>4 by fast section \System PS4\ abbreviation SystemPS4 :: \'i pfm \ bool\ ("\\<^sub>!\<^sub>S\<^sub>4 _" [50] 50) where \\\<^sub>!\<^sub>S\<^sub>4 p \ AxPT \ AxP4 \\<^sub>! p\ -abbreviation \refltrans M \ reflexive M \ transitive M\ - lemma soundness_AxPT4: \(AxPT \ AxP4) p \ refltrans M \ w \ \ M \ M, w \\<^sub>! p\ using soundness_AxPT soundness_AxP4 by fast lemma refltrans_restrict: \refltrans M \ refltrans (restrict M p)\ using reflexive_restrict transitive_restrict by blast lemma soundness\<^sub>P\<^sub>S\<^sub>4: \\\<^sub>!\<^sub>S\<^sub>4 p \ reflexive M \ transitive M \ w \ \ M \ M, w \\<^sub>! p\ using soundness[where A=\AxPT \ AxP4\ and P=refltrans] soundness_AxPT4 refltrans_restrict by fastforce lemma AxT4_AxPT4: \(AxT \ Ax4) = (AxPT \ AxP4) o lift\ using AxT_AxPT Ax4_AxP4 unfolding comp_apply by metis abbreviation validPS4 (\valid\<^sub>!\<^sub>S\<^sub>4\) where \valid\<^sub>!\<^sub>S\<^sub>4 \ valid\<^sub>! refltrans\ lemma completeness\<^sub>P\<^sub>S\<^sub>4: assumes \valid\<^sub>!\<^sub>S\<^sub>4 p\ shows \\\<^sub>!\<^sub>S\<^sub>4 p\ using assms completeness\<^sub>P[where P=refltrans and p=p] completeness\<^sub>S\<^sub>4 AxT4_AxPT4 by (metis (mono_tags, lifting)) theorem main\<^sub>P\<^sub>S\<^sub>4: \valid\<^sub>!\<^sub>S\<^sub>4 p \ \\<^sub>!\<^sub>S\<^sub>4 p\ using soundness\<^sub>P\<^sub>S\<^sub>4 completeness\<^sub>P\<^sub>S\<^sub>4 by fast corollary assumes \reflexive M\ \transitive M\ \w \ \ M\ shows \valid\<^sub>!\<^sub>S\<^sub>4 p \ M, w \\<^sub>! p\ using assms soundness\<^sub>P\<^sub>S\<^sub>4 completeness\<^sub>P\<^sub>S\<^sub>4 by fast section \System PS5\ abbreviation SystemPS5 :: \'i pfm \ bool\ ("\\<^sub>!\<^sub>S\<^sub>5 _" [50] 50) where \\\<^sub>!\<^sub>S\<^sub>5 p \ AxPT \ AxPB \ AxP4 \\<^sub>! p\ abbreviation AxPTB4 :: \'i pfm \ bool\ where \AxPTB4 \ AxPT \ AxPB \ AxP4\ lemma soundness_AxPTB4: \AxPTB4 p \ equivalence M \ w \ \ M \ M, w \\<^sub>! p\ using soundness_AxPT soundness_AxPB soundness_AxP4 by fast lemma equivalence_restrict: \equivalence M \ equivalence (restrict M p)\ using reflexive_restrict symmetric_restrict transitive_restrict by blast lemma soundness\<^sub>P\<^sub>S\<^sub>5: \\\<^sub>!\<^sub>S\<^sub>5 p \ equivalence M \ w \ \ M \ M, w \\<^sub>! p\ using soundness[where A=AxPTB4 and P=equivalence and M=M and w=w] soundness_AxPTB4 equivalence_restrict by fast lemma AxTB4_AxPTB4: \AxTB4 = AxPTB4 o lift\ using AxT_AxPT AxB_AxPB Ax4_AxP4 unfolding comp_apply by metis abbreviation validPS5 (\valid\<^sub>!\<^sub>S\<^sub>5\) where \valid\<^sub>!\<^sub>S\<^sub>5 \ valid\<^sub>! equivalence\ lemma completeness\<^sub>P\<^sub>S\<^sub>5: assumes \valid\<^sub>!\<^sub>S\<^sub>5 p\ shows \\\<^sub>!\<^sub>S\<^sub>5 p\ using assms completeness\<^sub>P[where P=equivalence and p=p] completeness\<^sub>S\<^sub>5 AxTB4_AxPTB4 by (metis (mono_tags, lifting)) theorem main\<^sub>P\<^sub>S\<^sub>5: \valid\<^sub>!\<^sub>S\<^sub>5 p \ \\<^sub>!\<^sub>S\<^sub>5 p\ using soundness\<^sub>P\<^sub>S\<^sub>5 completeness\<^sub>P\<^sub>S\<^sub>5 by fast corollary assumes \reflexive M\ \symmetric M\ \transitive M\ \w \ \ M\ shows \valid\<^sub>!\<^sub>S\<^sub>5 p \ M, w \\<^sub>! p\ using assms soundness\<^sub>P\<^sub>S\<^sub>5 completeness\<^sub>P\<^sub>S\<^sub>5 by fast end