diff --git a/thys/Epistemic_Logic/Epistemic_Logic.thy b/thys/Epistemic_Logic/Epistemic_Logic.thy --- a/thys/Epistemic_Logic/Epistemic_Logic.thy +++ b/thys/Epistemic_Logic/Epistemic_Logic.thy @@ -1,1299 +1,1299 @@ (* File: Epistemic_Logic.thy Author: Asta Halkjær From This work is a formalization of epistemic logic with countably many agents. It includes proofs of soundness and completeness for the axiom system K. The completeness proof is based on the textbook "Reasoning About Knowledge" by Fagin, Halpern, Moses and Vardi (MIT Press 1995). The extensions of system K (T, KB, K4, S4, S5) and their completeness proofs are based on the textbook "Modal Logic" by Blackburn, de Rijke and Venema (Cambridge University Press 2001). *) theory Epistemic_Logic imports "HOL-Library.Countable" begin section \Syntax\ type_synonym id = string datatype 'i fm = FF ("\<^bold>\") | Pro id | Dis \'i fm\ \'i fm\ (infixr "\<^bold>\" 30) | Con \'i fm\ \'i fm\ (infixr "\<^bold>\" 35) | Imp \'i fm\ \'i fm\ (infixr "\<^bold>\" 25) | K 'i \'i fm\ abbreviation TT ("\<^bold>\") where \TT \ \<^bold>\ \<^bold>\ \<^bold>\\ abbreviation Neg ("\<^bold>\ _" [40] 40) where \Neg p \ p \<^bold>\ \<^bold>\\ abbreviation \L i p \ \<^bold>\ K i (\<^bold>\ p)\ section \Semantics\ datatype ('i, 'w) kripke = Kripke (\: \'w set\) (\: \'w \ id \ bool\) (\: \'i \ 'w \ 'w set\) primrec semantics :: \('i, 'w) kripke \ 'w \ 'i fm \ bool\ ("_, _ \ _" [50, 50] 50) where \(M, w \ \<^bold>\) = False\ | \(M, w \ Pro x) = \ M w x\ | \(M, w \ (p \<^bold>\ q)) = ((M, w \ p) \ (M, w \ q))\ | \(M, w \ (p \<^bold>\ q)) = ((M, w \ p) \ (M, w \ q))\ | \(M, w \ (p \<^bold>\ q)) = ((M, w \ p) \ (M, w \ q))\ | \(M, w \ K i p) = (\v \ \ M \ \ M i w. M, v \ p)\ section \S5 Axioms\ definition reflexive :: \('i, 'w) kripke \ bool\ where \reflexive M \ \i. \w \ \ M. w \ \ M i w\ definition symmetric :: \('i, 'w) kripke \ bool\ where \symmetric M \ \i. \v \ \ M. \w \ \ M. v \ \ M i w \ w \ \ M i v\ definition transitive :: \('i, 'w) kripke \ bool\ where \transitive M \ \i. \u \ \ M. \v \ \ M. \w \ \ M. w \ \ M i v \ u \ \ M i w \ u \ \ M i v\ abbreviation refltrans :: \('i, 'w) kripke \ bool\ where \refltrans M \ reflexive M \ transitive M\ abbreviation equivalence :: \('i, 'w) kripke \ bool\ where \equivalence M \ reflexive M \ symmetric M \ transitive M\ lemma Imp_intro [intro]: \(M, w \ p \ M, w \ q) \ M, w \ (p \<^bold>\ q)\ by simp theorem distribution: \M, w \ (K i p \<^bold>\ K i (p \<^bold>\ q) \<^bold>\ K i q)\ proof assume \M, w \ (K i p \<^bold>\ K i (p \<^bold>\ q))\ then have \M, w \ K i p\ \M, w \ K i (p \<^bold>\ q)\ by simp_all then have \\v \ \ M \ \ M i w. M, v \ p\ \\v \ \ M \ \ M i w. M, v \ (p \<^bold>\ q)\ by simp_all then have \\v \ \ M \ \ M i w. M, v \ q\ by simp then show \M, w \ K i q\ by simp qed theorem generalization: assumes valid: \\(M :: ('i, 'w) kripke) w. M, w \ p\ shows \(M :: ('i, 'w) kripke), w \ K i p\ proof - have \\w' \ \ M i w. M, w' \ p\ using valid by blast then show \M, w \ K i p\ by simp qed theorem truth: assumes \reflexive M\ \w \ \ M\ shows \M, w \ (K i p \<^bold>\ p)\ proof assume \M, w \ K i p\ then have \\v \ \ M \ \ M i w. M, v \ p\ by simp moreover have \w \ \ M i w\ using \reflexive M\ \w \ \ M\ unfolding reflexive_def by blast ultimately show \M, w \ p\ using \w \ \ M\ by simp qed theorem pos_introspection: assumes \transitive M\ \w \ \ M\ shows \M, w \ (K i p \<^bold>\ K i (K i p))\ proof assume \M, w \ K i p\ then have \\v \ \ M \ \ M i w. M, v \ p\ by simp then have \\v \ \ M \ \ M i w. \u \ \ M \ \ M i v. M, u \ p\ using \transitive M\ \w \ \ M\ unfolding transitive_def by blast then have \\v \ \ M \ \ M i w. M, v \ K i p\ by simp then show \M, w \ K i (K i p)\ by simp qed theorem neg_introspection: assumes \symmetric M\ \transitive M\ \w \ \ M\ shows \M, w \ (\<^bold>\ K i p \<^bold>\ K i (\<^bold>\ K i p))\ proof assume \M, w \ \<^bold>\ (K i p)\ then obtain u where \u \ \ M i w\ \\ (M, u \ p)\ \u \ \ M\ by auto moreover have \\v \ \ M \ \ M i w. u \ \ M \ \ M i v\ using \u \ \ M i w\ \symmetric M\ \transitive M\ \u \ \ M\ \w \ \ M\ unfolding symmetric_def transitive_def by blast ultimately have \\v \ \ M \ \ M i w. M, v \ \<^bold>\ K i p\ by auto then show \M, w \ K i (\<^bold>\ K i p)\ by simp qed section \Normal Modal Logic\ primrec eval :: \(id \ bool) \ ('i fm \ bool) \ 'i fm \ bool\ where \eval _ _ \<^bold>\ = False\ | \eval g _ (Pro x) = g x\ | \eval g h (p \<^bold>\ q) = (eval g h p \ eval g h q)\ | \eval g h (p \<^bold>\ q) = (eval g h p \ eval g h q)\ | \eval g h (p \<^bold>\ q) = (eval g h p \ eval g h q)\ | \eval _ h (K i p) = h (K i p)\ abbreviation \tautology p \ \g h. eval g h p\ -inductive AK :: \('i fm \ bool) \ 'i fm \ bool\ ("_ \ _" [50, 50] 50) +inductive AK :: \('i fm \ bool) \ 'i fm \ bool\ ("_ \ _" [20, 20] 20) for A :: \'i fm \ bool\ where A1: \tautology p \ A \ p\ - | A2: \A \ (K i p \<^bold>\ K i (p \<^bold>\ q) \<^bold>\ K i q)\ + | A2: \A \ K i p \<^bold>\ K i (p \<^bold>\ q) \<^bold>\ K i q\ | Ax: \A p \ A \ p\ - | R1: \A \ p \ A \ (p \<^bold>\ q) \ A \ q\ + | R1: \A \ p \ A \ p \<^bold>\ q \ A \ q\ | R2: \A \ p \ A \ K i p\ section \Soundness\ lemma eval_semantics: \eval (pi w) (\q. Kripke W pi r, w \ q) p = (Kripke W pi r, w \ p)\ by (induct p) simp_all lemma tautology: assumes \tautology p\ shows \M, w \ p\ proof - from assms have \eval (g w) (\q. Kripke W g r, w \ q) p\ for W g r by simp then have \Kripke W g r, w \ p\ for W g r using eval_semantics by fast then show \M, w \ p\ by (metis kripke.collapse) qed theorem soundness: fixes M :: \('i, 'w) kripke\ assumes \\(M :: ('i, 'w) kripke) w p. A p \ P M \ w \ \ M \ M, w \ p\ shows \A \ p \ P M \ w \ \ M \ M, w \ p\ by (induct p arbitrary: w rule: AK.induct) (auto simp: assms tautology) section \Derived rules\ -lemma K_A2': \A \ (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ +lemma K_A2': \A \ K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q\ proof - - have \A \ (K i p \<^bold>\ K i (p \<^bold>\ q) \<^bold>\ K i q)\ + have \A \ K i p \<^bold>\ K i (p \<^bold>\ q) \<^bold>\ K i q\ using A2 by fast - moreover have \A \ ((P \<^bold>\ Q \<^bold>\ R) \<^bold>\ (Q \<^bold>\ P \<^bold>\ R))\ for P Q R + moreover have \A \ (P \<^bold>\ Q \<^bold>\ R) \<^bold>\ (Q \<^bold>\ P \<^bold>\ R)\ for P Q R by (simp add: A1) ultimately show ?thesis using R1 by fast qed lemma K_map: - assumes \A \ (p \<^bold>\ q)\ - shows \A \ (K i p \<^bold>\ K i q)\ + assumes \A \ p \<^bold>\ q\ + shows \A \ K i p \<^bold>\ K i q\ proof - - note \A \ (p \<^bold>\ q)\ + note \A \ p \<^bold>\ q\ then have \A \ K i (p \<^bold>\ q)\ using R2 by fast - moreover have \A \ (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ + moreover have \A \ K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q\ using K_A2' by fast ultimately show ?thesis using R1 by fast qed lemma K_LK: \A \ (L i (\<^bold>\ p) \<^bold>\ \<^bold>\ K i p)\ proof - have \A \ (p \<^bold>\ \<^bold>\ \<^bold>\ p)\ by (simp add: A1) moreover have \A \ ((P \<^bold>\ Q) \<^bold>\ (\<^bold>\ Q \<^bold>\ \<^bold>\ P))\ for P Q using A1 by force ultimately show ?thesis using K_map R1 by fast qed -primrec imply :: \'i fm list \ 'i fm \ 'i fm\ where +primrec imply :: \'i fm list \ 'i fm \ 'i fm\ (infixr \\<^bold>\\ 26) where \imply [] q = q\ -| \imply (p # ps) q = (p \<^bold>\ imply ps q)\ +| \imply (p # ps) q = (p \<^bold>\ ps \<^bold>\ q)\ -lemma K_imply_head: \A \ imply (p # ps) p\ +lemma K_imply_head: \A \ (p # ps \<^bold>\ p)\ proof - - have \tautology (imply (p # ps) p)\ + have \tautology (p # ps \<^bold>\ p)\ by (induct ps) simp_all then show ?thesis using A1 by blast qed lemma K_imply_Cons: - assumes \A \ imply ps q\ - shows \A \ imply (p # ps) q\ + assumes \A \ ps \<^bold>\ q\ + shows \A \ p # ps \<^bold>\ q\ proof - - have \A \ (imply ps q \<^bold>\ imply (p # ps) q)\ + have \A \ (ps \<^bold>\ q \<^bold>\ p # ps \<^bold>\ q)\ by (simp add: A1) with R1 assms show ?thesis . qed lemma K_right_mp: - assumes \A \ imply ps p\ \A \ imply ps (p \<^bold>\ q)\ - shows \A \ imply ps q\ + assumes \A \ ps \<^bold>\ p\ \A \ ps \<^bold>\ (p \<^bold>\ q)\ + shows \A \ ps \<^bold>\ q\ proof - - have \tautology (imply ps p \<^bold>\ imply ps (p \<^bold>\ q) \<^bold>\ imply ps q)\ + have \tautology (ps \<^bold>\ p \<^bold>\ ps \<^bold>\ (p \<^bold>\ q) \<^bold>\ ps \<^bold>\ q)\ by (induct ps) simp_all - with A1 have \A \ (imply ps p \<^bold>\ imply ps (p \<^bold>\ q) \<^bold>\ imply ps q)\ . + with A1 have \A \ ps \<^bold>\ p \<^bold>\ ps \<^bold>\ (p \<^bold>\ q) \<^bold>\ ps \<^bold>\ q\ . then show ?thesis using assms R1 by blast qed lemma tautology_imply_superset: assumes \set ps \ set qs\ - shows \tautology (imply ps r \<^bold>\ imply qs r)\ + shows \tautology (ps \<^bold>\ r \<^bold>\ qs \<^bold>\ r)\ proof (rule ccontr) - assume \\ tautology (imply ps r \<^bold>\ imply qs r)\ - then obtain g h where \\ eval g h (imply ps r \<^bold>\ imply qs r)\ + assume \\ tautology (ps \<^bold>\ r \<^bold>\ qs \<^bold>\ r)\ + then obtain g h where \\ eval g h (ps \<^bold>\ r \<^bold>\ qs \<^bold>\ r)\ by blast - then have \eval g h (imply ps r)\ \\ eval g h (imply qs r)\ + then have \eval g h (ps \<^bold>\ r)\ \\ eval g h (qs \<^bold>\ r)\ by simp_all then consider (np) \\p \ set ps. \ eval g h p\ | (r) \\p \ set ps. eval g h p\ \eval g h r\ by (induct ps) auto then show False proof cases case np then have \\p \ set qs. \ eval g h p\ using \set ps \ set qs\ by blast - then have \eval g h (imply qs r)\ + then have \eval g h (qs \<^bold>\ r)\ by (induct qs) simp_all then show ?thesis - using \\ eval g h (imply qs r)\ by blast + using \\ eval g h (qs \<^bold>\ r)\ by blast next case r - then have \eval g h (imply qs r)\ + then have \eval g h (qs \<^bold>\ r)\ by (induct qs) simp_all then show ?thesis - using \\ eval g h (imply qs r)\ by blast + using \\ eval g h (qs \<^bold>\ r)\ by blast qed qed lemma K_imply_weaken: - assumes \A \ imply ps q\ \set ps \ set ps'\ - shows \A \ imply ps' q\ + assumes \A \ ps \<^bold>\ q\ \set ps \ set ps'\ + shows \A \ ps' \<^bold>\ q\ proof - - have \tautology (imply ps q \<^bold>\ imply ps' q)\ + have \tautology (ps \<^bold>\ q \<^bold>\ ps' \<^bold>\ q)\ using \set ps \ set ps'\ tautology_imply_superset by blast - then have \A \ (imply ps q \<^bold>\ imply ps' q)\ + then have \A \ (ps \<^bold>\ q \<^bold>\ ps' \<^bold>\ q)\ using A1 by blast then show ?thesis - using \A \ imply ps q\ R1 by blast + using \A \ ps \<^bold>\ q\ R1 by blast qed -lemma imply_append: \imply (ps @ ps') q = imply ps (imply ps' q)\ +lemma imply_append: \(ps @ ps' \<^bold>\ q) = (ps \<^bold>\ ps' \<^bold>\ q)\ by (induct ps) simp_all lemma K_ImpI: - assumes \A \ imply (p # G) q\ - shows \A \ imply G (p \<^bold>\ q)\ + assumes \A \ p # G \<^bold>\ q\ + shows \A \ G \<^bold>\ (p \<^bold>\ q)\ proof - have \set (p # G) \ set (G @ [p])\ by simp - then have \A \ imply (G @ [p]) q\ + then have \A \ G @ [p] \<^bold>\ q\ using assms K_imply_weaken by blast - then have \A \ imply G (imply [p] q)\ + then have \A \ G \<^bold>\ [p] \<^bold>\ q\ using imply_append by metis then show ?thesis by simp qed lemma K_Boole: - assumes \A \ imply ((\<^bold>\ p) # G) \<^bold>\\ - shows \A \ imply G p\ + assumes \A \ (\<^bold>\ p) # G \<^bold>\ \<^bold>\\ + shows \A \ G \<^bold>\ p\ proof - - have \A \ imply G (\<^bold>\ \<^bold>\ p)\ + have \A \ G \<^bold>\ \<^bold>\ \<^bold>\ p\ using assms K_ImpI by blast - moreover have \tautology (imply G (\<^bold>\ \<^bold>\ p) \<^bold>\ imply G p)\ + moreover have \tautology (G \<^bold>\ \<^bold>\ \<^bold>\ p \<^bold>\ G \<^bold>\ p)\ by (induct G) simp_all - then have \A \ (imply G (\<^bold>\ \<^bold>\ p) \<^bold>\ imply G p)\ + then have \A \ (G \<^bold>\ \<^bold>\ \<^bold>\ p \<^bold>\ G \<^bold>\ p)\ using A1 by blast ultimately show ?thesis using R1 by blast qed lemma K_DisE: - assumes \A \ imply (p # G) r\ \A \ imply (q # G) r\ \A \ imply G (p \<^bold>\ q)\ - shows \A \ imply G r\ + assumes \A \ p # G \<^bold>\ r\ \A \ q # G \<^bold>\ r\ \A \ G \<^bold>\ p \<^bold>\ q\ + shows \A \ G \<^bold>\ r\ proof - - have \tautology (imply (p # G) r \<^bold>\ imply (q # G) r \<^bold>\ imply G (p \<^bold>\ q) \<^bold>\ imply G r)\ + have \tautology (p # G \<^bold>\ r \<^bold>\ q # G \<^bold>\ r \<^bold>\ G \<^bold>\ p \<^bold>\ q \<^bold>\ G \<^bold>\ r)\ by (induct G) auto - then have \A \ (imply (p # G) r \<^bold>\ imply (q # G) r \<^bold>\ imply G (p \<^bold>\ q) \<^bold>\ imply G r)\ + then have \A \ p # G \<^bold>\ r \<^bold>\ q # G \<^bold>\ r \<^bold>\ G \<^bold>\ p \<^bold>\ q \<^bold>\ G \<^bold>\ r\ using A1 by blast then show ?thesis using assms R1 by blast qed -lemma K_mp: \A \ imply (p # (p \<^bold>\ q) # G) q\ +lemma K_mp: \A \ p # (p \<^bold>\ q) # G \<^bold>\ q\ by (meson K_imply_head K_imply_weaken K_right_mp set_subset_Cons) lemma K_swap: - assumes \A \ imply (p # q # G) r\ - shows \A \ imply (q # p # G) r\ + assumes \A \ p # q # G \<^bold>\ r\ + shows \A \ q # p # G \<^bold>\ r\ using assms K_ImpI by (metis imply.simps(1-2)) lemma K_DisL: - assumes \A \ imply (p # ps) q\ \A \ imply (p' # ps) q\ - shows \A \ imply ((p \<^bold>\ p') # ps) q\ + assumes \A \ p # ps \<^bold>\ q\ \A \ p' # ps \<^bold>\ q\ + shows \A \ (p \<^bold>\ p') # ps \<^bold>\ q\ proof - - have \A \ imply (p # (p \<^bold>\ p') # ps) q\ \A \ imply (p' # (p \<^bold>\ p') # ps) q\ + have \A \ p # (p \<^bold>\ p') # ps \<^bold>\ q\ \A \ p' # (p \<^bold>\ p') # ps \<^bold>\ q\ using assms K_swap K_imply_Cons by blast+ - moreover have \A \ imply ((p \<^bold>\ p') # ps) (p \<^bold>\ p')\ + moreover have \A \ (p \<^bold>\ p') # ps \<^bold>\ p \<^bold>\ p'\ using K_imply_head by blast ultimately show ?thesis using K_DisE by blast qed lemma K_distrib_K_imp: - assumes \A \ K i (imply G q)\ - shows \A \ imply (map (K i) G) (K i q)\ + assumes \A \ K i (G \<^bold>\ q)\ + shows \A \ map (K i) G \<^bold>\ K i q\ proof - - have \A \ (K i (imply G q) \<^bold>\ imply (map (K i) G) (K i q))\ + have \A \ (K i (G \<^bold>\ q) \<^bold>\ map (K i) G \<^bold>\ K i q)\ proof (induct G) case Nil then show ?case by (simp add: A1) next case (Cons a G) - have \A \ (K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ K i (imply G q))\ + have \A \ K i a \<^bold>\ K i (a # G \<^bold>\ q) \<^bold>\ K i (G \<^bold>\ q)\ by (simp add: A2) moreover have - \A \ ((K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ K i (imply G q)) \<^bold>\ - (K i (imply G q) \<^bold>\ imply (map (K i) G) (K i q)) \<^bold>\ - (K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ imply (map (K i) G) (K i q)))\ + \A \ ((K i a \<^bold>\ K i (a # G \<^bold>\ q) \<^bold>\ K i (G \<^bold>\ q)) \<^bold>\ + (K i (G \<^bold>\ q) \<^bold>\ map (K i) G \<^bold>\ K i q) \<^bold>\ + (K i a \<^bold>\ K i (a # G \<^bold>\ q) \<^bold>\ map (K i) G \<^bold>\ K i q))\ by (simp add: A1) - ultimately have \A \ (K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ imply (map (K i) G) (K i q))\ + ultimately have \A \ K i a \<^bold>\ K i (a # G \<^bold>\ q) \<^bold>\ map (K i) G \<^bold>\ K i q\ using Cons R1 by blast moreover have - \A \ ((K i a \<^bold>\ K i (imply (a # G) q) \<^bold>\ imply (map (K i) G) (K i q)) \<^bold>\ - (K i (imply (a # G) q) \<^bold>\ K i a \<^bold>\ imply (map (K i) G) (K i q)))\ + \A \ ((K i a \<^bold>\ K i (a # G \<^bold>\ q) \<^bold>\ map (K i) G \<^bold>\ K i q) \<^bold>\ + (K i (a # G \<^bold>\ q) \<^bold>\ K i a \<^bold>\ map (K i) G \<^bold>\ K i q))\ by (simp add: A1) - ultimately have \A \ (K i (imply (a # G) q) \<^bold>\ K i a \<^bold>\ imply (map (K i) G) (K i q))\ + ultimately have \A \ (K i (a # G \<^bold>\ q) \<^bold>\ K i a \<^bold>\ map (K i) G \<^bold>\ K i q)\ using R1 by blast then show ?case by simp qed then show ?thesis using assms R1 by blast qed section \Completeness\ subsection \Consistent sets\ definition consistent :: \('i fm \ bool) \ 'i fm set \ bool\ where - \consistent A S \ \S'. set S' \ S \ A \ imply S' \<^bold>\\ + \consistent A S \ \S'. set S' \ S \ (A \ S' \<^bold>\ \<^bold>\)\ lemma inconsistent_subset: assumes \consistent A V\ \\ consistent A ({p} \ V)\ - obtains V' where \set V' \ V\ \A \ imply (p # V') \<^bold>\\ + obtains V' where \set V' \ V\ \A \ p # V' \<^bold>\ \<^bold>\\ proof - - obtain V' where V': \set V' \ ({p} \ V)\ \p \ set V'\ \A \ imply V' \<^bold>\\ + obtain V' where V': \set V' \ ({p} \ V)\ \p \ set V'\ \A \ V' \<^bold>\ \<^bold>\\ using assms unfolding consistent_def by blast - then have *: \A \ imply (p # V') \<^bold>\\ + then have *: \A \ p # V' \<^bold>\ \<^bold>\\ using K_imply_Cons by blast let ?S = \removeAll p V'\ have \set (p # V') \ set (p # ?S)\ by auto - then have \A \ imply (p # ?S) \<^bold>\\ + then have \A \ p # ?S \<^bold>\ \<^bold>\\ using * K_imply_weaken by blast moreover have \set ?S \ V\ using V'(1) by (metis Diff_subset_conv set_removeAll) ultimately show ?thesis using that by blast qed lemma consistent_deriv: assumes \consistent A V\ \A \ p\ shows \consistent A ({p} \ V)\ using assms by (metis R1 consistent_def imply.simps(2) inconsistent_subset) lemma consistent_consequent: - assumes \consistent A V\ \p \ V\ \A \ (p \<^bold>\ q)\ + assumes \consistent A V\ \p \ V\ \A \ p \<^bold>\ q\ shows \consistent A ({q} \ V)\ proof - - have \\V'. set V' \ V \ \ A \ imply (p # V') \<^bold>\\ + have \\V'. set V' \ V \ \ (A \ p # V' \<^bold>\ \<^bold>\)\ using \consistent A V\ \p \ V\ unfolding consistent_def by (metis insert_subset list.simps(15)) - then have \\V'. set V' \ V \ \ A \ imply (q # V') \<^bold>\\ + then have \\V'. set V' \ V \ \ (A \ q # V' \<^bold>\ \<^bold>\)\ using \A \ (p \<^bold>\ q)\ K_imply_head K_right_mp by (metis imply.simps(1-2)) then show ?thesis using \consistent A V\ inconsistent_subset by metis qed lemma consistent_consequent': assumes \consistent A V\ \p \ V\ \tautology (p \<^bold>\ q)\ shows \consistent A ({q} \ V)\ using assms consistent_consequent A1 by blast lemma consistent_disjuncts: assumes \consistent A V\ \(p \<^bold>\ q) \ V\ shows \consistent A ({p} \ V) \ consistent A ({q} \ V)\ proof (rule ccontr) assume \\ ?thesis\ then have \\ consistent A ({p} \ V)\ \\ consistent A ({q} \ V)\ by blast+ then obtain S' T' where - S': \set S' \ V\ \A \ imply (p # S') \<^bold>\\ and - T': \set T' \ V\ \A \ imply (q # T') \<^bold>\\ + S': \set S' \ V\ \A \ p # S' \<^bold>\ \<^bold>\\ and + T': \set T' \ V\ \A \ q # T' \<^bold>\ \<^bold>\\ using \consistent A V\ inconsistent_subset by metis - from S' have p: \A \ imply (p # S' @ T') \<^bold>\\ + from S' have p: \A \ p # S' @ T' \<^bold>\ \<^bold>\\ by (metis K_imply_weaken Un_upper1 append_Cons set_append) - moreover from T' have q: \A \ imply (q # S' @ T') \<^bold>\\ + moreover from T' have q: \A \ q # S' @ T' \<^bold>\ \<^bold>\\ by (metis K_imply_head K_right_mp R1 imply.simps(2) imply_append) - ultimately have \A \ imply ((p \<^bold>\ q) # S' @ T') \<^bold>\\ + ultimately have \A \ (p \<^bold>\ q) # S' @ T' \<^bold>\ \<^bold>\\ using K_DisL by blast - then have \A \ imply (S' @ T') \<^bold>\\ + then have \A \ S' @ T' \<^bold>\ \<^bold>\\ using S'(1) T'(1) p q \consistent A V\ \(p \<^bold>\ q) \ V\ unfolding consistent_def by (metis Un_subset_iff insert_subset list.simps(15) set_append) moreover have \set (S' @ T') \ V\ by (simp add: S'(1) T'(1)) ultimately show False using \consistent A V\ unfolding consistent_def by blast qed lemma exists_finite_inconsistent: assumes \\ consistent A ({\<^bold>\ p} \ V)\ obtains W where \{\<^bold>\ p} \ W \ {\<^bold>\ p} \ V\ \(\<^bold>\ p) \ W\ \finite W\ \\ consistent A ({\<^bold>\ p} \ W)\ proof - - obtain W' where W': \set W' \ {\<^bold>\ p} \ V\ \A \ imply W' \<^bold>\\ + obtain W' where W': \set W' \ {\<^bold>\ p} \ V\ \A \ W' \<^bold>\ \<^bold>\\ using assms unfolding consistent_def by blast let ?S = \removeAll (\<^bold>\ p) W'\ have \\ consistent A ({\<^bold>\ p} \ set ?S)\ unfolding consistent_def using W'(2) by auto moreover have \finite (set ?S)\ by blast moreover have \{\<^bold>\ p} \ set ?S \ {\<^bold>\ p} \ V\ using W'(1) by auto moreover have \(\<^bold>\ p) \ set ?S\ by simp ultimately show ?thesis by (meson that) qed lemma inconsistent_imply: assumes \\ consistent A ({\<^bold>\ p} \ set G)\ - shows \A \ imply G p\ + shows \A \ G \<^bold>\ p\ using assms K_Boole K_imply_weaken unfolding consistent_def by (metis insert_is_Un list.simps(15)) subsection \Maximal consistent sets\ definition maximal :: \('i fm \ bool) \ 'i fm set \ bool\ where \maximal A S \ \p. p \ S \ \ consistent A ({p} \ S)\ theorem deriv_in_maximal: assumes \consistent A V\ \maximal A V\ \A \ p\ shows \p \ V\ using assms R1 inconsistent_subset unfolding consistent_def maximal_def by (metis imply.simps(2)) theorem exactly_one_in_maximal: assumes \consistent A V\ \maximal A V\ shows \p \ V \ (\<^bold>\ p) \ V\ proof assume \p \ V\ then show \(\<^bold>\ p) \ V\ using assms K_mp unfolding consistent_def maximal_def by (metis empty_subsetI insert_subset list.set(1) list.simps(15)) next assume \(\<^bold>\ p) \ V\ have \A \ (p \<^bold>\ \<^bold>\ p)\ by (simp add: A1) then have \(p \<^bold>\ \<^bold>\ p) \ V\ using assms deriv_in_maximal by blast then have \consistent A ({p} \ V) \ consistent A ({\<^bold>\ p} \ V)\ using assms consistent_disjuncts by blast then show \p \ V\ using \maximal A V\ \(\<^bold>\ p) \ V\ unfolding maximal_def by blast qed theorem consequent_in_maximal: assumes \consistent A V\ \maximal A V\ \p \ V\ \(p \<^bold>\ q) \ V\ shows \q \ V\ proof - - have \\V'. set V' \ V \ \ A \ imply (p # (p \<^bold>\ q) # V') \<^bold>\\ + have \\V'. set V' \ V \ \ (A \ p # (p \<^bold>\ q) # V' \<^bold>\ \<^bold>\)\ using \consistent A V\ \p \ V\ \(p \<^bold>\ q) \ V\ unfolding consistent_def by (metis insert_subset list.simps(15)) - then have \\V'. set V' \ V \ \ A \ imply (q # V') \<^bold>\\ + then have \\V'. set V' \ V \ \ (A \ q # V' \<^bold>\ \<^bold>\)\ by (meson K_mp K_ImpI K_imply_weaken K_right_mp set_subset_Cons) then have \consistent A ({q} \ V)\ using \consistent A V\ inconsistent_subset by metis then show ?thesis using \maximal A V\ unfolding maximal_def by fast qed theorem ax_in_maximal: assumes \consistent A V\ \maximal A V\ \A p\ shows \p \ V\ using assms deriv_in_maximal Ax by blast theorem mcs_properties: assumes \consistent A V\ and \maximal A V\ shows \A \ p \ p \ V\ and \p \ V \ (\<^bold>\ p) \ V\ and \p \ V \ (p \<^bold>\ q) \ V \ q \ V\ using assms deriv_in_maximal exactly_one_in_maximal consequent_in_maximal by blast+ subsection \Lindenbaum extension\ instantiation fm :: (countable) countable begin instance by countable_datatype end primrec extend :: \('i fm \ bool) \ 'i fm set \ (nat \ 'i fm) \ nat \ 'i fm set\ where - \extend A S f 0 = S\ | - \extend A S f (Suc n) = + \extend A S f 0 = S\ +| \extend A S f (Suc n) = (if consistent A ({f n} \ extend A S f n) then {f n} \ extend A S f n else extend A S f n)\ definition Extend :: \('i fm \ bool) \ 'i fm set \ (nat \ 'i fm) \ 'i fm set\ where \Extend A S f \ \n. extend A S f n\ lemma Extend_subset: \S \ Extend A S f\ unfolding Extend_def using Union_upper extend.simps(1) range_eqI by metis lemma extend_bound: \(\n \ m. extend A S f n) = extend A S f m\ by (induct m) (simp_all add: atMost_Suc) lemma consistent_extend: \consistent A S \ consistent A (extend A S f n)\ by (induct n) simp_all lemma UN_finite_bound: assumes \finite A\ \A \ (\n. f n)\ shows \\m :: nat. A \ (\n \ m. f n)\ using assms proof (induct rule: finite_induct) case (insert x A) then obtain m where \A \ (\n \ m. f n)\ by fast then have \A \ (\n \ (m + k). f n)\ for k by fastforce moreover obtain m' where \x \ f m'\ using insert(4) by blast ultimately have \{x} \ A \ (\n \ m + m'. f n)\ by auto then show ?case by blast qed simp lemma consistent_Extend: assumes \consistent A S\ shows \consistent A (Extend A S f)\ unfolding Extend_def proof (rule ccontr) assume \\ consistent A (\n. extend A S f n)\ - then obtain S' where \A \ imply S' \<^bold>\\ \set S' \ (\n. extend A S f n)\ + then obtain S' where \A \ S' \<^bold>\ \<^bold>\\ \set S' \ (\n. extend A S f n)\ unfolding consistent_def by blast then obtain m where \set S' \ (\n \ m. extend A S f n)\ using UN_finite_bound by (metis List.finite_set) then have \set S' \ extend A S f m\ using extend_bound by blast moreover have \consistent A (extend A S f m)\ using assms consistent_extend by blast ultimately show False - unfolding consistent_def using \A \ imply S' \<^bold>\\ by blast + unfolding consistent_def using \A \ S' \<^bold>\ \<^bold>\\ by blast qed lemma maximal_Extend: assumes \surj f\ shows \maximal A (Extend A S f)\ proof (rule ccontr) assume \\ maximal A (Extend A S f)\ then obtain p where \p \ Extend A S f\ \consistent A ({p} \ Extend A S f)\ unfolding maximal_def using assms consistent_Extend by blast obtain k where n: \f k = p\ using \surj f\ unfolding surj_def by metis then have \p \ extend A S f (Suc k)\ using \p \ Extend A S f\ unfolding Extend_def by blast then have \\ consistent A ({p} \ extend A S f k)\ using n by fastforce moreover have \{p} \ extend A S f k \ {p} \ Extend A S f\ unfolding Extend_def by blast ultimately have \\ consistent A ({p} \ Extend A S f)\ unfolding consistent_def by fastforce then show False using \consistent A ({p} \ Extend A S f)\ by blast qed lemma maximal_extension: fixes V :: \('i :: countable) fm set\ assumes \consistent A V\ obtains W where \V \ W\ \consistent A W\ \maximal A W\ proof - let ?W = \Extend A V from_nat\ have \V \ ?W\ using Extend_subset by blast moreover have \consistent A ?W\ using assms consistent_Extend by blast moreover have \maximal A ?W\ using assms maximal_Extend surj_from_nat by blast ultimately show ?thesis using that by blast qed subsection \Canonical model\ abbreviation pi :: \'i fm set \ id \ bool\ where \pi V x \ Pro x \ V\ abbreviation known :: \'i fm set \ 'i \ 'i fm set\ where \known V i \ {p. K i p \ V}\ abbreviation reach :: \('i fm \ bool) \ 'i \ 'i fm set \ 'i fm set set\ where \reach A i V \ {W. known V i \ W}\ abbreviation mcss :: \('i fm \ bool) \ 'i fm set set\ where \mcss A \ {W. consistent A W \ maximal A W}\ abbreviation canonical :: \('i fm \ bool) \ ('i, 'i fm set) kripke\ where \canonical A \ Kripke (mcss A) pi (reach A)\ lemma truth_lemma: fixes A and p :: \('i :: countable) fm\ defines \M \ canonical A\ assumes \consistent A V\ and \maximal A V\ shows \(p \ V \ M, V \ p) \ ((\<^bold>\ p) \ V \ M, V \ \<^bold>\ p)\ using assms unfolding M_def proof (induct p arbitrary: V) case FF then show ?case proof (intro conjI impI iffI) assume \\<^bold>\ \ V\ then have False using \consistent A V\ K_imply_head unfolding consistent_def by (metis bot.extremum insert_subset list.set(1) list.simps(15)) then show \canonical A, V \ \<^bold>\\ .. next assume \canonical A, V \ \<^bold>\ \<^bold>\\ then show \(\<^bold>\ \<^bold>\) \ V\ using \consistent A V\ \maximal A V\ unfolding maximal_def by (meson K_Boole inconsistent_subset consistent_def) qed simp_all next case (Pro x) then show ?case proof (intro conjI impI iffI) assume \(\<^bold>\ Pro x) \ V\ then show \canonical A, V \ \<^bold>\ Pro x\ using \consistent A V\ \maximal A V\ exactly_one_in_maximal by auto next assume \canonical A, V \ \<^bold>\ Pro x\ then show \(\<^bold>\ Pro x) \ V\ using \consistent A V\ \maximal A V\ exactly_one_in_maximal by auto qed (simp_all add: \maximal A V\ maximal_def) next case (Dis p q) have \(p \<^bold>\ q) \ V \ canonical A, V \ (p \<^bold>\ q)\ proof assume \(p \<^bold>\ q) \ V\ then have \consistent A ({p} \ V) \ consistent A ({q} \ V)\ using \consistent A V\ consistent_disjuncts by blast then have \p \ V \ q \ V\ using \maximal A V\ unfolding maximal_def by fast then show \canonical A, V \ (p \<^bold>\ q)\ using Dis by simp qed moreover have \(\<^bold>\ (p \<^bold>\ q)) \ V \ canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ proof assume \(\<^bold>\ (p \<^bold>\ q)) \ V\ then have \consistent A ({\<^bold>\ q} \ V)\ \consistent A ({\<^bold>\ p} \ V)\ using \consistent A V\ consistent_consequent' by fastforce+ then have \(\<^bold>\ p) \ V\ \(\<^bold>\ q) \ V\ using \maximal A V\ unfolding maximal_def by fast+ then show \canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ using Dis by simp qed ultimately show ?case using exactly_one_in_maximal Dis by auto next case (Con p q) have \(p \<^bold>\ q) \ V \ canonical A, V \ (p \<^bold>\ q)\ proof assume \(p \<^bold>\ q) \ V\ then have \consistent A ({p} \ V)\ \consistent A ({q} \ V)\ using \consistent A V\ consistent_consequent' by fastforce+ then have \p \ V\ \q \ V\ using \maximal A V\ unfolding maximal_def by fast+ then show \canonical A, V \ (p \<^bold>\ q)\ using Con by simp qed moreover have \(\<^bold>\ (p \<^bold>\ q)) \ V \ canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ proof assume \(\<^bold>\ (p \<^bold>\ q)) \ V\ then have \consistent A ({\<^bold>\ p \<^bold>\ \<^bold>\ q} \ V)\ using \consistent A V\ consistent_consequent' by fastforce then have \consistent A ({\<^bold>\ p} \ V) \ consistent A ({\<^bold>\ q} \ V)\ using \consistent A V\ \maximal A V\ consistent_disjuncts unfolding maximal_def by blast then have \(\<^bold>\ p) \ V \ (\<^bold>\ q) \ V\ using \maximal A V\ unfolding maximal_def by fast then show \canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ using Con by simp qed ultimately show ?case using exactly_one_in_maximal Con by auto next case (Imp p q) have \(p \<^bold>\ q) \ V \ canonical A, V \ (p \<^bold>\ q)\ proof assume \(p \<^bold>\ q) \ V\ then have \consistent A ({\<^bold>\ p \<^bold>\ q} \ V)\ using \consistent A V\ consistent_consequent' by fastforce then have \consistent A ({\<^bold>\ p} \ V) \ consistent A ({q} \ V)\ using \consistent A V\ \maximal A V\ consistent_disjuncts unfolding maximal_def by blast then have \(\<^bold>\ p) \ V \ q \ V\ using \maximal A V\ unfolding maximal_def by fast then show \canonical A, V \ (p \<^bold>\ q)\ using Imp by simp qed moreover have \(\<^bold>\ (p \<^bold>\ q)) \ V \ canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ proof assume \(\<^bold>\ (p \<^bold>\ q)) \ V\ then have \consistent A ({p} \ V)\ \consistent A ({\<^bold>\ q} \ V)\ using \consistent A V\ consistent_consequent' by fastforce+ then have \p \ V\ \(\<^bold>\ q) \ V\ using \maximal A V\ unfolding maximal_def by fast+ then show \canonical A, V \ \<^bold>\ (p \<^bold>\ q)\ using Imp by simp qed ultimately show ?case using exactly_one_in_maximal Imp \consistent A V\ by auto next case (K i p) then have \K i p \ V \ canonical A, V \ K i p\ by auto moreover have \(canonical A, V \ K i p) \ K i p \ V\ proof (intro allI impI) assume \canonical A, V \ K i p\ have \\ consistent A ({\<^bold>\ p} \ known V i)\ proof assume \consistent A ({\<^bold>\ p} \ known V i)\ then obtain W where W: \{\<^bold>\ p} \ known V i \ W\ \consistent A W\ \maximal A W\ using \consistent A V\ maximal_extension by blast then have \canonical A, W \ \<^bold>\ p\ using K \consistent A V\ by blast moreover have \W \ reach A i V\ \W \ mcss A\ using W by simp_all ultimately have \canonical A, V \ \<^bold>\ K i p\ by auto then show False using \canonical A, V \ K i p\ by auto qed then obtain W where W: \{\<^bold>\ p} \ W \ {\<^bold>\ p} \ known V i\ \(\<^bold>\ p) \ W\ \finite W\ \\ consistent A ({\<^bold>\ p} \ W)\ using exists_finite_inconsistent by metis obtain L where L: \set L = W\ using \finite W\ finite_list by blast - then have \A \ imply L p\ + then have \A \ L \<^bold>\ p\ using W(4) inconsistent_imply by blast - then have \A \ K i (imply L p)\ + then have \A \ K i (L \<^bold>\ p)\ using R2 by fast - then have \A \ imply (map (K i) L) (K i p)\ + then have \A \ map (K i) L \<^bold>\ K i p\ using K_distrib_K_imp by fast - then have \imply (map (K i) L) (K i p) \ V\ + then have \(map (K i) L \<^bold>\ K i p) \ V\ using deriv_in_maximal K.prems(1, 2) by blast then show \K i p \ V\ using L W(1-2) proof (induct L arbitrary: W) case (Cons a L) then have \K i a \ V\ by auto - then have \imply (map (K i) L) (K i p) \ V\ + then have \(map (K i) L \<^bold>\ K i p) \ V\ using Cons(2) \consistent A V\ \maximal A V\ consequent_in_maximal by auto then show ?case using Cons by auto qed simp qed moreover have \(canonical A, V \ \<^bold>\ K i p) \ (\<^bold>\ K i p) \ V\ using \consistent A V\ \maximal A V\ exactly_one_in_maximal calculation(1) by (metis (no_types, lifting) semantics.simps(1, 5)) moreover have \(\<^bold>\ K i p) \ V \ canonical A, V \ \<^bold>\ K i p\ using \consistent A V\ \maximal A V\ calculation(2) exactly_one_in_maximal by auto ultimately show ?case by blast qed lemma canonical_model: assumes \consistent A S\ and \p \ S\ defines \V \ Extend A S from_nat\ and \M \ canonical A\ shows \M, V \ p\ and \consistent A V\ and \maximal A V\ proof - have \consistent A V\ using \consistent A S\ unfolding V_def using consistent_Extend by blast have \maximal A V\ unfolding V_def using maximal_Extend surj_from_nat by blast { fix x assume \x \ S\ then have \x \ V\ unfolding V_def using Extend_subset by blast then have \M, V \ x\ unfolding M_def using truth_lemma \consistent A V\ \maximal A V\ by blast } then show \M, V \ p\ using \p \ S\ by blast+ show \consistent A V\ \maximal A V\ by fact+ qed subsection \Completeness\ lemma imply_completeness: fixes P :: \(('i :: countable, 'i fm set) kripke) \ bool\ assumes \\M. \w \ \ M. P M \ (\q \ G. M, w \ q) \ M, w \ p\ and \P (canonical A)\ - shows \\qs. set qs \ G \ (A \ imply qs p)\ + shows \\qs. set qs \ G \ (A \ qs \<^bold>\ p)\ proof (rule ccontr) - assume \\qs. set qs \ G \ A \ imply qs p\ - then have *: \\qs. set qs \ G \ \ A \ imply ((\<^bold>\ p) # qs) \<^bold>\\ + assume \\qs. set qs \ G \ (A \ qs \<^bold>\ p)\ + then have *: \\qs. set qs \ G \ \ (A \ (\<^bold>\ p) # qs \<^bold>\ \<^bold>\)\ using K_Boole by blast let ?S = \{\<^bold>\ p} \ G\ let ?V = \Extend A ?S from_nat\ let ?M = \canonical A\ have \consistent A ?S\ using * by (metis K_imply_Cons consistent_def inconsistent_subset) then have \?M, ?V \ (\<^bold>\ p)\ \\q \ G. ?M, ?V \ q\ using canonical_model by fastforce+ moreover have \?V \ mcss A\ using \consistent A ?S\ consistent_Extend maximal_Extend surj_from_nat by blast ultimately have \?M, ?V \ p\ using assms by simp then show False using \?M, ?V \ (\<^bold>\ p)\ by simp qed abbreviation valid :: \(('i :: countable, 'i fm set) kripke \ bool) \ 'i fm \ bool\ where \valid P p \ \M. \w \ \ M. P M \ M, w \ p\ theorem completeness: assumes \valid P p\ and \P (canonical A)\ shows \A \ p\ using assms imply_completeness[where G=\{}\] by simp corollary completeness\<^sub>K: assumes \valid (\_. True) p\ shows \A \ p\ using assms completeness[where P=\\_. True\] by blast section \System K\ abbreviation SystemK :: \'i fm \ bool\ ("\\<^sub>K _" [50] 50) where \\\<^sub>K p \ (\_. False) \ p\ lemma soundness\<^sub>K: \\\<^sub>K p \ w \ \ M \ M, w \ p\ using soundness by metis abbreviation \valid\<^sub>K \ valid (\_. True)\ corollary assumes \valid\<^sub>K p\ shows \\\<^sub>K p\ using completeness\<^sub>K assms . theorem main\<^sub>K: \valid\<^sub>K p \ \\<^sub>K p\ proof assume \valid\<^sub>K p\ with completeness show \\\<^sub>K p\ by blast next assume \\\<^sub>K p\ with soundness\<^sub>K show \valid\<^sub>K p\ by fast qed corollary assumes \valid\<^sub>K p\ and \w \ \ M\ shows \M, w \ p\ proof - have \\\<^sub>K p\ using assms(1) unfolding main\<^sub>K . with soundness\<^sub>K assms(2) show \M, w \ p\ by fast qed section \System T\ text \Also known as System M\ inductive AxT :: \'i fm \ bool\ where \AxT (K i p \<^bold>\ p)\ abbreviation SystemT :: \'i fm \ bool\ ("\\<^sub>T _" [50] 50) where \\\<^sub>T p \ AxT \ p\ lemma soundness_AxT: \AxT p \ reflexive M \ w \ \ M \ M, w \ p\ by (induct p rule: AxT.induct) (meson truth) lemma soundness\<^sub>T: \\\<^sub>T p \ reflexive M \ w \ \ M \ M, w \ p\ using soundness soundness_AxT . lemma AxT_reflexive: assumes \AxT \ A\ and \consistent A V\ and \maximal A V\ shows \V \ reach A i V\ proof - have \(K i p \<^bold>\ p) \ V\ for p using assms ax_in_maximal AxT.intros by fast then have \p \ V\ if \K i p \ V\ for p using that assms consequent_in_maximal by blast then show ?thesis using assms by blast qed lemma mcs\<^sub>T_reflexive: assumes \AxT \ A\ shows \reflexive (canonical A)\ unfolding reflexive_def proof safe fix i V assume \V \ \ (canonical A)\ then have \consistent A V\ \maximal A V\ by simp_all with AxT_reflexive assms have \V \ reach A i V\ . then show \V \ \ (canonical A) i V\ by simp qed abbreviation \valid\<^sub>T \ valid reflexive\ lemma completeness\<^sub>T: assumes \valid\<^sub>T p\ shows \\\<^sub>T p\ using assms completeness mcs\<^sub>T_reflexive by blast theorem main\<^sub>T: \valid\<^sub>T p \ \\<^sub>T p\ using soundness\<^sub>T completeness\<^sub>T by fast corollary assumes \reflexive M\ \w \ \ M\ shows \valid\<^sub>T p \ M, w \ p\ using assms soundness\<^sub>T completeness\<^sub>T by fast section \System KB\ inductive AxB :: \'i fm \ bool\ where \AxB (p \<^bold>\ K i (L i p))\ abbreviation SystemKB :: \'i fm \ bool\ ("\\<^sub>K\<^sub>B _" [50] 50) where \\\<^sub>K\<^sub>B p \ AxB \ p\ lemma soundness_AxB: \AxB p \ symmetric M \ w \ \ M \ M, w \ p\ unfolding symmetric_def by (induct p rule: AxB.induct) auto lemma soundness\<^sub>K\<^sub>B: \\\<^sub>K\<^sub>B p \ symmetric M \ w \ \ M \ M, w \ p\ using soundness soundness_AxB . lemma AxB_symmetric': assumes \AxB \ A\ \consistent A V\ \maximal A V\ \consistent A W\ \maximal A W\ and \W \ reach A i V\ shows \V \ reach A i W\ proof - have \\p. K i p \ W \ p \ V\ proof (intro allI impI, rule ccontr) fix p assume \K i p \ W\ \p \ V\ then have \(\<^bold>\ p) \ V\ using assms(2-3) exactly_one_in_maximal by fast then have \K i (L i (\<^bold>\ p)) \ V\ using assms(1-3) ax_in_maximal AxB.intros consequent_in_maximal by fast then have \L i (\<^bold>\ p) \ W\ using \W \ reach A i V\ by fast then have \(\<^bold>\ K i p) \ W\ using assms(4-5) by (meson K_LK consistent_consequent maximal_def) then show False using \K i p \ W\ assms(4-5) exactly_one_in_maximal by fast qed then have \known W i \ V\ by blast then show ?thesis using assms(2-3) by simp qed lemma mcs\<^sub>K\<^sub>B_symmetric: assumes \AxB \ A\ shows \symmetric (canonical A)\ unfolding symmetric_def proof (intro allI ballI) fix i V W assume \V \ \ (canonical A)\ \W \ \ (canonical A)\ then have \consistent A V\ \maximal A V\ \consistent A W\ \maximal A W\ by simp_all with AxB_symmetric' assms have \W \ reach A i V \ V \ reach A i W\ by metis then show \(W \ \ (canonical A) i V) = (V \ \ (canonical A) i W)\ by simp qed abbreviation \valid\<^sub>K\<^sub>B \ valid symmetric\ lemma completeness\<^sub>K\<^sub>B: assumes \valid\<^sub>K\<^sub>B p\ shows \\\<^sub>K\<^sub>B p\ using assms completeness mcs\<^sub>K\<^sub>B_symmetric by blast theorem main\<^sub>K\<^sub>B: \valid\<^sub>K\<^sub>B p \ \\<^sub>K\<^sub>B p\ using soundness\<^sub>K\<^sub>B completeness\<^sub>K\<^sub>B by fast corollary assumes \symmetric M\ \w \ \ M\ shows \valid\<^sub>K\<^sub>B p \ M, w \ p\ using assms soundness\<^sub>K\<^sub>B completeness\<^sub>K\<^sub>B by fast section \System K4\ inductive Ax4 :: \'i fm \ bool\ where \Ax4 (K i p \<^bold>\ K i (K i p))\ abbreviation SystemK4 :: \'i fm \ bool\ ("\\<^sub>K\<^sub>4 _" [50] 50) where \\\<^sub>K\<^sub>4 p \ Ax4 \ p\ lemma soundness_Ax4: \Ax4 p \ transitive M \ w \ \ M \ M, w \ p\ by (induct p rule: Ax4.induct) (meson pos_introspection) lemma soundness\<^sub>K\<^sub>4: \\\<^sub>K\<^sub>4 p \ transitive M \ w \ \ M \ M, w \ p\ using soundness soundness_Ax4 . lemma Ax4_transitive: assumes \Ax4 \ A\ \consistent A V\ \maximal A V\ and \W \ reach A i V\ \U \ reach A i W\ shows \U \ reach A i V\ proof - have \(K i p \<^bold>\ K i (K i p)) \ V\ for p using assms(1-3) ax_in_maximal Ax4.intros by fast then have \K i (K i p) \ V\ if \K i p \ V\ for p using that assms(2-3) consequent_in_maximal by blast then show ?thesis using assms(4-5) by blast qed lemma mcs\<^sub>K\<^sub>4_transitive: assumes \Ax4 \ A\ shows \transitive (canonical A)\ unfolding transitive_def proof safe fix i U V W assume \V \ \ (canonical A)\ then have \consistent A V\ \maximal A V\ by simp_all moreover assume \W \ \ (canonical A) i V\ \U \ \ (canonical A) i W\ ultimately have \U \ reach A i V\ using Ax4_transitive assms by simp then show \U \ \ (canonical A) i V\ by simp qed abbreviation \valid\<^sub>K\<^sub>4 \ valid transitive\ lemma completeness\<^sub>K\<^sub>4: assumes \valid\<^sub>K\<^sub>4 p\ shows \\\<^sub>K\<^sub>4 p\ using assms completeness mcs\<^sub>K\<^sub>4_transitive by blast theorem main\<^sub>K\<^sub>4: \valid\<^sub>K\<^sub>4 p \ \\<^sub>K\<^sub>4 p\ using soundness\<^sub>K\<^sub>4 completeness\<^sub>K\<^sub>4 by fast corollary assumes \transitive M\ \w \ \ M\ shows \valid\<^sub>K\<^sub>4 p \ M, w \ p\ using assms soundness\<^sub>K\<^sub>4 completeness\<^sub>K\<^sub>4 by fast section \System S4\ abbreviation Or :: \('a \ bool) \ ('a \ bool) \ 'a \ bool\ (infixl \\\ 65) where \A \ A' \ \x. A x \ A' x\ abbreviation SystemS4 :: \'i fm \ bool\ ("\\<^sub>S\<^sub>4 _" [50] 50) where \\\<^sub>S\<^sub>4 p \ AxT \ Ax4 \ p\ lemma soundness_AxT4: \(AxT \ Ax4) p \ reflexive M \ transitive M \ w \ \ M \ M, w \ p\ using soundness_AxT soundness_Ax4 by fast lemma soundness\<^sub>S\<^sub>4: \\\<^sub>S\<^sub>4 p \ reflexive M \ transitive M \ w \ \ M \ M, w \ p\ using soundness soundness_AxT4 . abbreviation \valid\<^sub>S\<^sub>4 \ valid refltrans\ lemma completeness\<^sub>S\<^sub>4: assumes \valid\<^sub>S\<^sub>4 p\ shows \\\<^sub>S\<^sub>4 p\ using assms completeness[where P=refltrans] mcs\<^sub>T_reflexive[where A=\AxT \ Ax4\] mcs\<^sub>K\<^sub>4_transitive[where A=\AxT \ Ax4\] by blast theorem main\<^sub>S\<^sub>4: \valid\<^sub>S\<^sub>4 p \ \\<^sub>S\<^sub>4 p\ using soundness\<^sub>S\<^sub>4 completeness\<^sub>S\<^sub>4 by fast corollary assumes \reflexive M\ \transitive M\ \w \ \ M\ shows \valid\<^sub>S\<^sub>4 p \ M, w \ p\ using assms soundness\<^sub>S\<^sub>4 completeness\<^sub>S\<^sub>4 by fast section \System S5\ abbreviation SystemS5 :: \'i fm \ bool\ ("\\<^sub>S\<^sub>5 _" [50] 50) where \\\<^sub>S\<^sub>5 p \ AxT \ AxB \ Ax4 \ p\ abbreviation AxTB4 :: \'i fm \ bool\ where \AxTB4 \ AxT \ AxB \ Ax4\ lemma soundness_AxTB4: \AxTB4 p \ equivalence M \ w \ \ M \ M, w \ p\ using soundness_AxT soundness_AxB soundness_Ax4 by fast lemma soundness\<^sub>S\<^sub>5: \\\<^sub>S\<^sub>5 p \ equivalence M \ w \ \ M \ M, w \ p\ using soundness soundness_AxTB4 . abbreviation \valid\<^sub>S\<^sub>5 \ valid equivalence\ lemma completeness\<^sub>S\<^sub>5: assumes \valid\<^sub>S\<^sub>5 p\ shows \\\<^sub>S\<^sub>5 p\ using assms completeness[where P=equivalence] mcs\<^sub>T_reflexive[where A=AxTB4] mcs\<^sub>K\<^sub>B_symmetric[where A=AxTB4] mcs\<^sub>K\<^sub>4_transitive[where A=AxTB4] by blast theorem main\<^sub>S\<^sub>5: \valid\<^sub>S\<^sub>5 p \ \\<^sub>S\<^sub>5 p\ using soundness\<^sub>S\<^sub>5 completeness\<^sub>S\<^sub>5 by fast corollary assumes \equivalence M\ \w \ \ M\ shows \valid\<^sub>S\<^sub>5 p \ M, w \ p\ using assms soundness\<^sub>S\<^sub>5 completeness\<^sub>S\<^sub>5 by fast subsection \Traditional formulation\ inductive SystemS5' :: \'i fm \ bool\ ("\\<^sub>S\<^sub>5'' _" [50] 50) where A1': \tautology p \ \\<^sub>S\<^sub>5' p\ | A2': \\\<^sub>S\<^sub>5' (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ | AT': \\\<^sub>S\<^sub>5' (K i p \<^bold>\ p)\ | A5': \\\<^sub>S\<^sub>5' (\<^bold>\ K i p \<^bold>\ K i (\<^bold>\ K i p))\ | R1': \\\<^sub>S\<^sub>5' p \ \\<^sub>S\<^sub>5' (p \<^bold>\ q) \ \\<^sub>S\<^sub>5' q\ | R2': \\\<^sub>S\<^sub>5' p \ \\<^sub>S\<^sub>5' K i p\ lemma S5'_trans: \\\<^sub>S\<^sub>5' ((p \<^bold>\ q) \<^bold>\ (q \<^bold>\ r) \<^bold>\ p \<^bold>\ r)\ by (simp add: A1') lemma S5'_L: \\\<^sub>S\<^sub>5' (p \<^bold>\ L i p)\ proof - have \\\<^sub>S\<^sub>5' (K i (\<^bold>\ p) \<^bold>\ \<^bold>\ p)\ using AT' by fast moreover have \\\<^sub>S\<^sub>5' ((P \<^bold>\ \<^bold>\ Q) \<^bold>\ Q \<^bold>\ \<^bold>\ P)\ for P Q :: \'i fm\ using A1' by force ultimately show ?thesis using R1' by blast qed lemma S5'_B: \\\<^sub>S\<^sub>5' (p \<^bold>\ K i (L i p))\ using A5' S5'_L R1' S5'_trans by metis lemma S5'_KL: \\\<^sub>S\<^sub>5' (K i p \<^bold>\ L i p)\ by (meson AT' R1' S5'_L S5'_trans) lemma S5'_map_K: assumes \\\<^sub>S\<^sub>5' (p \<^bold>\ q)\ shows \\\<^sub>S\<^sub>5' (K i p \<^bold>\ K i q)\ proof - note \\\<^sub>S\<^sub>5' (p \<^bold>\ q)\ then have \\\<^sub>S\<^sub>5' K i (p \<^bold>\ q)\ using R2' by fast moreover have \\\<^sub>S\<^sub>5' (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ using A2' by fast ultimately show ?thesis using R1' by fast qed lemma S5'_map_L: assumes \\\<^sub>S\<^sub>5' (p \<^bold>\ q)\ shows \\\<^sub>S\<^sub>5' (L i p \<^bold>\ L i q)\ using assms by (metis R1' S5'_map_K S5'_trans) lemma S5'_L_dual: \\\<^sub>S\<^sub>5' (\<^bold>\ L i (\<^bold>\ p) \<^bold>\ K i p)\ proof - have \\\<^sub>S\<^sub>5' (K i p \<^bold>\ K i p)\ \\\<^sub>S\<^sub>5' (\<^bold>\ \<^bold>\ p \<^bold>\ p)\ by (simp_all add: A1') then have \\\<^sub>S\<^sub>5' (K i (\<^bold>\ \<^bold>\ p) \<^bold>\ K i p)\ by (simp add: S5'_map_K) moreover have \\\<^sub>S\<^sub>5' ((P \<^bold>\ Q) \<^bold>\ (\<^bold>\ \<^bold>\ P \<^bold>\ Q))\ for P Q :: \'i fm\ by (simp add: A1') ultimately show \\\<^sub>S\<^sub>5' (\<^bold>\ \<^bold>\ K i (\<^bold>\ \<^bold>\ p) \<^bold>\ K i p)\ using R1' by blast qed lemma S5'_4: \\\<^sub>S\<^sub>5' (K i p \<^bold>\ K i (K i p))\ proof - have \\\<^sub>S\<^sub>5' (L i (\<^bold>\ p) \<^bold>\ K i (L i (\<^bold>\ p)))\ using A5' by fast moreover have \\\<^sub>S\<^sub>5' ((P \<^bold>\ Q) \<^bold>\ \<^bold>\ Q \<^bold>\ \<^bold>\ P)\ for P Q :: \'i fm\ using A1' by force ultimately have \\\<^sub>S\<^sub>5' (\<^bold>\ K i (L i (\<^bold>\ p)) \<^bold>\ \<^bold>\ L i (\<^bold>\ p))\ using R1' by fast then have \\\<^sub>S\<^sub>5' (L i (K i (\<^bold>\ \<^bold>\ p)) \<^bold>\ \<^bold>\ L i (\<^bold>\ p))\ by blast moreover have \\\<^sub>S\<^sub>5' (p \<^bold>\ \<^bold>\ \<^bold>\ p)\ by (simp add: A1') ultimately have \\\<^sub>S\<^sub>5' (L i (K i p) \<^bold>\ \<^bold>\ L i (\<^bold>\ p))\ by (metis (no_types, opaque_lifting) R1' S5'_map_K S5'_trans) then have \\\<^sub>S\<^sub>5' (L i (K i p) \<^bold>\ K i p)\ by (meson S5'_L_dual R1' S5'_trans) then show ?thesis by (metis A2' R1' R2' S5'_B S5'_trans) qed lemma S5_S5': \\\<^sub>S\<^sub>5 p \ \\<^sub>S\<^sub>5' p\ proof (induct p rule: AK.induct) case (A2 i p q) have \\\<^sub>S\<^sub>5' (K i (p \<^bold>\ q) \<^bold>\ K i p \<^bold>\ K i q)\ using A2' . moreover have \\\<^sub>S\<^sub>5' ((P \<^bold>\ Q \<^bold>\ R) \<^bold>\ (Q \<^bold>\ P \<^bold>\ R))\ for P Q R :: \'i fm\ by (simp add: A1') ultimately show ?case using R1' by blast next case (Ax p) then show ?case using AT' S5'_B S5'_4 by (metis Ax4.cases AxB.cases AxT.cases) qed (meson SystemS5'.intros)+ lemma S5'_S5: fixes p :: \('i :: countable) fm\ shows \\\<^sub>S\<^sub>5' p \ \\<^sub>S\<^sub>5 p\ proof (induct p rule: SystemS5'.induct) case (AT' i p) then show ?case by (simp add: Ax AxT.intros) next case (A5' i p) then show ?case using completeness\<^sub>S\<^sub>5 neg_introspection by fast qed (meson AK.intros K_A2')+ theorem main\<^sub>S\<^sub>5': \valid\<^sub>S\<^sub>5 p \ \\<^sub>S\<^sub>5' p\ using main\<^sub>S\<^sub>5 S5_S5' S5'_S5 by blast section \Acknowledgements\ text \ The formalization is inspired by Berghofer's formalization of Henkin-style completeness. \<^item> Stefan Berghofer: First-Order Logic According to Fitting. \<^url>\https://www.isa-afp.org/entries/FOL-Fitting.shtml\ \ end