diff --git a/thys/Saturation_Framework/Calculus.thy b/thys/Saturation_Framework/Calculus.thy --- a/thys/Saturation_Framework/Calculus.thy +++ b/thys/Saturation_Framework/Calculus.thy @@ -1,409 +1,409 @@ (* Title: Calculi Based on a Redundancy Criterion * Author: Sophie Tourret , 2018-2020 *) section \Calculi Based on a Redundancy Criterion\ text \This section introduces the most basic notions upon which the framework is built: consequence relations and inference systems. It also defines the notion of a family of consequence relations and of redundancy criteria. This corresponds to sections 2.1 and 2.2 of the report.\ theory Calculus imports Ordered_Resolution_Prover.Lazy_List_Liminf Ordered_Resolution_Prover.Lazy_List_Chain begin subsection \Consequence Relations\ locale consequence_relation = fixes Bot :: "'f set" and entails :: "'f set \ 'f set \ bool" (infix "\" 50) assumes bot_not_empty: "Bot \ {}" and bot_entails_all: "B \ Bot \ {B} \ N1" and subset_entailed: "N2 \ N1 \ N1 \ N2" and all_formulas_entailed: "(\C \ N2. N1 \ {C}) \ N1 \ N2" and entails_trans[trans]: "N1 \ N2 \ N2 \ N3 \ N1 \ N3" begin lemma entail_set_all_formulas: "N1 \ N2 \ (\C \ N2. N1 \ {C})" by (meson all_formulas_entailed empty_subsetI insert_subset subset_entailed entails_trans) lemma entail_union: "N \ N1 \ N \ N2 \ N \ N1 \ N2" using entail_set_all_formulas[of N N1] entail_set_all_formulas[of N N2] entail_set_all_formulas[of N "N1 \ N2"] by blast lemma entail_unions: "(\i \ I. N \ Ni i) \ N \ \ (Ni ` I)" using entail_set_all_formulas[of N "\ (Ni ` I)"] entail_set_all_formulas[of N] Complete_Lattices.UN_ball_bex_simps(2)[of Ni I "\C. N \ {C}", symmetric] by meson lemma entail_all_bot: "(\B \ Bot. N \ {B}) \ (\B' \ Bot. N \ {B'})" using bot_entails_all entails_trans by blast lemma entails_trans_strong: "N1 \ N2 \ N1 \ N2 \ N3 \ N1 \ N3" by (meson entail_union entails_trans order_refl subset_entailed) end subsection \Families of Consequence Relations\ locale consequence_relation_family = fixes Bot :: "'f set" and Q :: "'q set" and entails_q :: "'q \ ('f set \ 'f set \ bool)" assumes Q_nonempty: "Q \ {}" and q_cons_rel: "\q \ Q. consequence_relation Bot (entails_q q)" begin lemma bot_not_empty: "Bot \ {}" using Q_nonempty consequence_relation.bot_not_empty consequence_relation_family.q_cons_rel consequence_relation_family_axioms by blast definition entails :: "'f set \ 'f set \ bool" (infix "\Q" 50) where "N1 \Q N2 \ (\q \ Q. entails_q q N1 N2)" (* lem:intersection-of-conseq-rel *) lemma intersect_cons_rel_family: "consequence_relation Bot entails" unfolding consequence_relation_def entails_def by (intro conjI bot_not_empty) (metis consequence_relation_def q_cons_rel)+ end subsection \Inference Systems\ datatype 'f inference = Infer (prems_of: "'f list") (concl_of: "'f") locale inference_system = fixes Inf :: \'f inference set\ begin definition Inf_from :: "'f set \ 'f inference set" where "Inf_from N = {\ \ Inf. set (prems_of \) \ N}" definition Inf_between :: "'f set \ 'f set \ 'f inference set" where "Inf_between N M = Inf_from (N \ M) - Inf_from (N - M)" lemma Inf_if_Inf_from: "\ \ Inf_from N \ \ \ Inf" unfolding Inf_from_def by simp lemma Inf_if_Inf_between: "\ \ Inf_between N M \ \ \ Inf" unfolding Inf_between_def Inf_from_def by simp lemma Inf_between_alt: "Inf_between N M = {\ \ Inf. \ \ Inf_from (N \ M) \ set (prems_of \) \ M \ {}}" unfolding Inf_from_def Inf_between_def by auto lemma Inf_from_mono: "N \ N' \ Inf_from N \ Inf_from N'" unfolding Inf_from_def by auto lemma Inf_between_mono: "N \ N' \ M \ M' \ Inf_between N M \ Inf_between N' M'" unfolding Inf_between_alt using Inf_from_mono[of "N \ M" "N' \ M'"] by auto end subsection \Families of Inference Systems\ locale inference_system_family = fixes Q :: "'q set" and Inf_q :: "'q \ 'f inference set" assumes Q_nonempty: "Q \ {}" begin definition Inf_from_q :: "'q \ 'f set \ 'f inference set" where "Inf_from_q q = inference_system.Inf_from (Inf_q q)" definition Inf_between_q :: "'q \ 'f set \ 'f set \ 'f inference set" where "Inf_between_q q = inference_system.Inf_between (Inf_q q)" lemma Inf_between_q_alt: "Inf_between_q q N M = {\ \ Inf_q q. \ \ Inf_from_q q (N \ M) \ set (prems_of \) \ M \ {}}" unfolding Inf_from_q_def Inf_between_q_def inference_system.Inf_between_alt by auto end subsection \Calculi Based on a Single Redundancy Criterion\ locale calculus = inference_system Inf + consequence_relation Bot entails for Bot :: "'f set" and Inf :: \'f inference set\ and entails :: "'f set \ 'f set \ bool" (infix "\" 50) + fixes Red_I :: "'f set \ 'f inference set" and Red_F :: "'f set \ 'f set" assumes Red_I_to_Inf: "Red_I N \ Inf" and Red_F_Bot: "B \ Bot \ N \ {B} \ N - Red_F N \ {B}" and Red_F_of_subset: "N \ N' \ Red_F N \ Red_F N'" and Red_I_of_subset: "N \ N' \ Red_I N \ Red_I N'" and Red_F_of_Red_F_subset: "N' \ Red_F N \ Red_F N \ Red_F (N - N')" and Red_I_of_Red_F_subset: "N' \ Red_F N \ Red_I N \ Red_I (N - N')" and Red_I_of_Inf_to_N: "\ \ Inf \ concl_of \ \ N \ \ \ Red_I N" begin lemma Red_I_of_Inf_to_N_subset: "{\ \ Inf. concl_of \ \ N} \ Red_I N" using Red_I_of_Inf_to_N by blast (* lem:red-concl-implies-red-inf *) lemma red_concl_to_red_inf: assumes i_in: "\ \ Inf" and concl: "concl_of \ \ Red_F N" shows "\ \ Red_I N" proof - have "\ \ Red_I (Red_F N)" by (simp add: Red_I_of_Inf_to_N i_in concl) then have i_in_Red: "\ \ Red_I (N \ Red_F N)" by (simp add: Red_I_of_Inf_to_N concl i_in) have red_n_subs: "Red_F N \ Red_F (N \ Red_F N)" by (simp add: Red_F_of_subset) then have "\ \ Red_I ((N \ Red_F N) - (Red_F N - N))" using Red_I_of_Red_F_subset i_in_Red by (meson Diff_subset subsetCE subset_trans) then show ?thesis by (metis Diff_cancel Diff_subset Un_Diff Un_Diff_cancel contra_subsetD calculus.Red_I_of_subset calculus_axioms sup_bot.right_neutral) qed definition saturated :: "'f set \ bool" where "saturated N \ Inf_from N \ Red_I N" definition reduc_saturated :: "'f set \ bool" where "reduc_saturated N \ Inf_from (N - Red_F N) \ Red_I N" lemma Red_I_without_red_F: "Red_I (N - Red_F N) = Red_I N" using Red_I_of_subset [of "N - Red_F N" N] and Red_I_of_Red_F_subset [of "Red_F N" N] by blast lemma saturated_without_red_F: assumes saturated: "saturated N" shows "saturated (N - Red_F N)" proof - have "Inf_from (N - Red_F N) \ Inf_from N" unfolding Inf_from_def by auto also have "Inf_from N \ Red_I N" using saturated unfolding saturated_def by auto also have "Red_I N \ Red_I (N - Red_F N)" using Red_I_of_Red_F_subset by auto finally have "Inf_from (N - Red_F N) \ Red_I (N - Red_F N)" by auto then show ?thesis unfolding saturated_def by auto qed definition fair :: "'f set llist \ bool" where "fair Ns \ Inf_from (Liminf_llist Ns) \ Sup_llist (lmap Red_I Ns)" inductive "derive" :: "'f set \ 'f set \ bool" (infix "\Red" 50) where derive: "M - N \ Red_F N \ M \Red N" lemma gt_Max_notin: \finite A \ A \ {} \ x > Max A \ x \ A\ by auto lemma equiv_Sup_Liminf: assumes in_Sup: "C \ Sup_llist Ns" and not_in_Liminf: "C \ Liminf_llist Ns" shows "\i \ {i. enat (Suc i) < llength Ns}. C \ lnth Ns i - lnth Ns (Suc i)" proof - obtain i where C_D_i: "C \ Sup_upto_llist Ns (enat i)" and "enat i < llength Ns" using elem_Sup_llist_imp_Sup_upto_llist in_Sup by fast then obtain j where j: "j \ i \ enat j < llength Ns \ C \ lnth Ns j" using not_in_Liminf unfolding Sup_upto_llist_def chain_def Liminf_llist_def by auto obtain k where k: "C \ lnth Ns k" "enat k < llength Ns" "k \ i" using C_D_i unfolding Sup_upto_llist_def by auto let ?S = "{i. i < j \ i \ k \ C \ lnth Ns i}" define l where "l = Max ?S" have \k \ {i. i < j \ k \ i \ C \ lnth Ns i}\ using k j by (auto simp: order.order_iff_strict) then have nempty: "{i. i < j \ k \ i \ C \ lnth Ns i} \ {}" by auto then have l_prop: "l < j \ l \ k \ C \ lnth Ns l" using Max_in[of ?S, OF _ nempty] unfolding l_def by auto then have "C \ lnth Ns l - lnth Ns (Suc l)" using j gt_Max_notin[OF _ nempty, of "Suc l"] unfolding l_def[symmetric] by (auto intro: Suc_lessI) then show ?thesis proof (rule bexI[of _ l]) show "l \ {i. enat (Suc i) < llength Ns}" using l_prop j by (clarify, metis Suc_leI dual_order.order_iff_strict enat_ord_simps(2) less_trans) qed qed (* lem:nonpersistent-is-redundant *) lemma Red_in_Sup: assumes deriv: "chain (\Red) Ns" shows "Sup_llist Ns - Liminf_llist Ns \ Red_F (Sup_llist Ns)" proof fix C assume C_in_subset: "C \ Sup_llist Ns - Liminf_llist Ns" { fix C i assume in_ith_elem: "C \ lnth Ns i - lnth Ns (Suc i)" and i: "enat (Suc i) < llength Ns" have "lnth Ns i \Red lnth Ns (Suc i)" using i deriv in_ith_elem chain_lnth_rel by auto then have "C \ Red_F (lnth Ns (Suc i))" using in_ith_elem derive.cases by blast then have "C \ Red_F (Sup_llist Ns)" using Red_F_of_subset by (meson contra_subsetD i lnth_subset_Sup_llist) } then show "C \ Red_F (Sup_llist Ns)" using equiv_Sup_Liminf[of C] C_in_subset by fast qed (* lem:redundant-remains-redundant-during-run 1/2 *) lemma Red_I_subset_Liminf: assumes deriv: \chain (\Red) Ns\ and i: \enat i < llength Ns\ shows \Red_I (lnth Ns i) \ Red_I (Liminf_llist Ns)\ proof - have Sup_in_diff: \Red_I (Sup_llist Ns) \ Red_I (Sup_llist Ns - (Sup_llist Ns - Liminf_llist Ns))\ using Red_I_of_Red_F_subset[OF Red_in_Sup] deriv by auto also have \Sup_llist Ns - (Sup_llist Ns - Liminf_llist Ns) = Liminf_llist Ns\ by (simp add: Liminf_llist_subset_Sup_llist double_diff) then have Red_I_Sup_in_Liminf: \Red_I (Sup_llist Ns) \ Red_I (Liminf_llist Ns)\ using Sup_in_diff by auto have \lnth Ns i \ Sup_llist Ns\ unfolding Sup_llist_def using i by blast then have "Red_I (lnth Ns i) \ Red_I (Sup_llist Ns)" using Red_I_of_subset unfolding Sup_llist_def by auto then show ?thesis using Red_I_Sup_in_Liminf by auto qed (* lem:redundant-remains-redundant-during-run 2/2 *) lemma Red_F_subset_Liminf: assumes deriv: \chain (\Red) Ns\ and i: \enat i < llength Ns\ shows \Red_F (lnth Ns i) \ Red_F (Liminf_llist Ns)\ proof - have Sup_in_diff: \Red_F (Sup_llist Ns) \ Red_F (Sup_llist Ns - (Sup_llist Ns - Liminf_llist Ns))\ using Red_F_of_Red_F_subset[OF Red_in_Sup] deriv by auto also have \Sup_llist Ns - (Sup_llist Ns - Liminf_llist Ns) = Liminf_llist Ns\ by (simp add: Liminf_llist_subset_Sup_llist double_diff) then have Red_F_Sup_in_Liminf: \Red_F (Sup_llist Ns) \ Red_F (Liminf_llist Ns)\ using Sup_in_diff by auto have \lnth Ns i \ Sup_llist Ns\ unfolding Sup_llist_def using i by blast then have "Red_F (lnth Ns i) \ Red_F (Sup_llist Ns)" using Red_F_of_subset unfolding Sup_llist_def by auto then show ?thesis using Red_F_Sup_in_Liminf by auto qed (* lem:N-i-is-persistent-or-redundant *) lemma i_in_Liminf_or_Red_F: assumes deriv: \chain (\Red) Ns\ and i: \enat i < llength Ns\ shows \lnth Ns i \ Red_F (Liminf_llist Ns) \ Liminf_llist Ns\ proof (rule,rule) fix C assume C: \C \ lnth Ns i\ and C_not_Liminf: \C \ Liminf_llist Ns\ have \C \ Sup_llist Ns\ unfolding Sup_llist_def using C i by auto then obtain j where j: \C \ lnth Ns j - lnth Ns (Suc j)\ \enat (Suc j) < llength Ns\ using equiv_Sup_Liminf[of C Ns] C_not_Liminf by auto then have \C \ Red_F (lnth Ns (Suc j))\ using deriv by (meson chain_lnth_rel contra_subsetD derive.cases) then show \C \ Red_F (Liminf_llist Ns)\ using Red_F_subset_Liminf[of Ns "Suc j"] deriv j(2) by blast qed (* lem:fairness-implies-saturation *) lemma fair_implies_Liminf_saturated: assumes deriv: \chain (\Red) Ns\ and fair: \fair Ns\ shows \saturated (Liminf_llist Ns)\ unfolding saturated_def proof fix \ assume \: \\ \ Inf_from (Liminf_llist Ns)\ have \\ \ Sup_llist (lmap Red_I Ns)\ using fair \ unfolding fair_def by auto then obtain i where i: \enat i < llength Ns\ \\ \ Red_I (lnth Ns i)\ unfolding Sup_llist_def by auto then show \\ \ Red_I (Liminf_llist Ns)\ using deriv i_in_Liminf_or_Red_F[of Ns i] Red_I_subset_Liminf by blast qed end locale statically_complete_calculus = calculus + assumes statically_complete: "B \ Bot \ saturated N \ N \ {B} \ \B'\Bot. B' \ N" begin lemma dynamically_complete_Liminf: fixes B Ns assumes bot_elem: \B \ Bot\ and deriv: \chain (\Red) Ns\ and fair: \fair Ns\ and unsat: \lhd Ns \ {B}\ shows \\B'\Bot. B' \ Liminf_llist Ns\ proof - note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have non_empty: \\ lnull Ns\ using chain_not_lnull[OF deriv] . have subs: \lhd Ns \ Sup_llist Ns\ using lhd_subset_Sup_llist[of Ns] non_empty by (simp add: lhd_conv_lnth) have \Sup_llist Ns \ {B}\ using unsat subset_entailed[OF subs] entails_trans[of "Sup_llist Ns" "lhd Ns"] by auto then have Sup_no_Red: \Sup_llist Ns - Red_F (Sup_llist Ns) \ {B}\ using bot_elem Red_F_Bot by auto have Sup_no_Red_in_Liminf: \Sup_llist Ns - Red_F (Sup_llist Ns) \ Liminf_llist Ns\ using deriv Red_in_Sup by auto have Liminf_entails_Bot: \Liminf_llist Ns \ {B}\ using Sup_no_Red subset_entailed[OF Sup_no_Red_in_Liminf] entails_trans by blast have \saturated (Liminf_llist Ns)\ using deriv fair fair_implies_Liminf_saturated unfolding saturated_def by auto then show ?thesis using bot_elem statically_complete Liminf_entails_Bot by auto qed end locale dynamically_complete_calculus = calculus + assumes dynamically_complete: "B \ Bot \ chain (\Red) Ns \ fair Ns \ lhd Ns \ {B} \ \i \ {i. enat i < llength Ns}. \B'\Bot. B' \ lnth Ns i" begin (* lem:dynamic-ref-compl-implies-static *) sublocale statically_complete_calculus proof fix B N assume bot_elem: \B \ Bot\ and saturated_N: "saturated N" and refut_N: "N \ {B}" define Ns where "Ns = LCons N LNil" have[simp]: \\ lnull Ns\ by (auto simp: Ns_def) - have deriv_D: \chain (\Red) Ns\ by (simp add: chain.chain_singleton Ns_def) + have deriv_Ns: \chain (\Red) Ns\ by (simp add: chain.chain_singleton Ns_def) have liminf_is_N: "Liminf_llist Ns = N" by (simp add: Ns_def Liminf_llist_LCons) - have head_D: "N = lhd Ns" by (simp add: Ns_def) + have head_Ns: "N = lhd Ns" by (simp add: Ns_def) have "Sup_llist (lmap Red_I Ns) = Red_I N" by (simp add: Ns_def) - then have fair_D: "fair Ns" using saturated_N by (simp add: fair_def saturated_def liminf_is_N) + then have fair_Ns: "fair Ns" using saturated_N by (simp add: fair_def saturated_def liminf_is_N) obtain i B' where B'_is_bot: \B' \ Bot\ and B'_in: "B' \ lnth Ns i" and \i < llength Ns\ - using dynamically_complete[of B Ns] bot_elem fair_D head_D saturated_N deriv_D refut_N + using dynamically_complete[of B Ns] bot_elem fair_Ns head_Ns saturated_N deriv_Ns refut_N by auto then have "i = 0" by (auto simp: Ns_def enat_0_iff) show \\B'\Bot. B' \ N\ - using B'_is_bot B'_in unfolding \i = 0\ head_D[symmetric] Ns_def by auto + using B'_is_bot B'_in unfolding \i = 0\ head_Ns[symmetric] Ns_def by auto qed end (* lem:static-ref-compl-implies-dynamic *) sublocale statically_complete_calculus \ dynamically_complete_calculus proof fix B Ns assume \B \ Bot\ and \chain (\Red) Ns\ and \fair Ns\ and \lhd Ns \ {B}\ then have \\B'\Bot. B' \ Liminf_llist Ns\ by (rule dynamically_complete_Liminf) then show \\i\{i. enat i < llength Ns}. \B'\Bot. B' \ lnth Ns i\ unfolding Liminf_llist_def by auto qed end diff --git a/thys/Saturation_Framework/Given_Clause_Architectures.thy b/thys/Saturation_Framework/Given_Clause_Architectures.thy --- a/thys/Saturation_Framework/Given_Clause_Architectures.thy +++ b/thys/Saturation_Framework/Given_Clause_Architectures.thy @@ -1,1174 +1,1178 @@ (* Title: Given Clause Prover Architectures * Author: Sophie Tourret , 2019-2020 *) section \Given Clause Prover Architectures\ text \This section covers all the results presented in the section 4 of the report. This is where abstract architectures of provers are defined and proven dynamically refutationally complete.\ theory Given_Clause_Architectures imports Lambda_Free_RPOs.Lambda_Free_Util Labeled_Lifting_to_Non_Ground_Calculi begin subsection \Basis of the Given Clause Prover Architectures\ locale given_clause_basis = std?: labeled_lifting_intersection Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_I_q Red_F_q \_F_q \_I_q Inf_FL for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: \'q \ 'g inference set\ and Red_I_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_I_q :: "'q \ 'f inference \ 'g inference set option" and Inf_FL :: \('f \ 'l) inference set\ + fixes Equiv_F :: "'f \ 'f \ bool" (infix "\" 50) and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_l :: "'l \ 'l \ bool" (infix "\l" 50) and active :: "'l" assumes equiv_equiv_F: "equivp (\)" and wf_prec_F: "minimal_element (\\) UNIV" and wf_prec_l: "minimal_element (\l) UNIV" and compat_equiv_prec: "C1 \ D1 \ C2 \ D2 \ C1 \\ C2 \ D1 \\ D2" and equiv_F_grounding: "q \ Q \ C1 \ C2 \ \_F_q q C1 \ \_F_q q C2" and prec_F_grounding: "q \ Q \ C2 \\ C1 \ \_F_q q C1 \ \_F_q q C2" and active_minimal: "l2 \ active \ active \l l2" and at_least_two_labels: "\l2. active \l l2" and inf_never_active: "\ \ Inf_FL \ snd (concl_of \) \ active" and static_ref_comp: "statically_complete_calculus Bot_F Inf_F (\\\) no_labels.Red_I_\ no_labels.Red_F_\_empty" begin abbreviation Prec_eq_F :: "'f \ 'f \ bool" (infix "\\" 50) where "C \\ D \ C \ D \ C \\ D" definition Prec_FL :: "('f \ 'l) \ ('f \ 'l) \ bool" (infix "\" 50) where "Cl1 \ Cl2 \ fst Cl1 \\ fst Cl2 \ (fst Cl1 \ fst Cl2 \ snd Cl1 \l snd Cl2)" lemma irrefl_prec_F: "\ C \\ C" by (simp add: minimal_element.po[OF wf_prec_F, unfolded po_on_def irreflp_on_def]) lemma trans_prec_F: "C1 \\ C2 \ C2 \\ C3 \ C1 \\ C3" by (auto intro: minimal_element.po[OF wf_prec_F, unfolded po_on_def transp_on_def, THEN conjunct2, simplified, rule_format]) lemma wf_prec_FL: "minimal_element (\) UNIV" proof show "po_on (\) UNIV" unfolding po_on_def proof show "irreflp_on (\) UNIV" unfolding irreflp_on_def Prec_FL_def proof fix Cl assume a_in: "Cl \ (UNIV::('f \ 'l) set)" have "\ (fst Cl \\ fst Cl)" using wf_prec_F minimal_element.min_elt_ex by force moreover have "\ (snd Cl \l snd Cl)" using wf_prec_l minimal_element.min_elt_ex by force ultimately show "\ (fst Cl \\ fst Cl \ fst Cl \ fst Cl \ snd Cl \l snd Cl)" by blast qed next show "transp_on (\) UNIV" unfolding transp_on_def Prec_FL_def proof (simp, intro allI impI) fix C1 l1 C2 l2 C3 l3 assume trans_hyp: "(C1 \\ C2 \ C1 \ C2 \ l1 \l l2) \ (C2 \\ C3 \ C2 \ C3 \ l2 \l l3)" have "C1 \\ C2 \ C2 \ C3 \ C1 \\ C3" using compat_equiv_prec by (metis equiv_equiv_F equivp_def) moreover have "C1 \ C2 \ C2 \\ C3 \ C1 \\ C3" using compat_equiv_prec by (metis equiv_equiv_F equivp_def) moreover have "l1 \l l2 \ l2 \l l3 \ l1 \l l3" using wf_prec_l unfolding minimal_element_def po_on_def transp_on_def by (meson UNIV_I) moreover have "C1 \ C2 \ C2 \ C3 \ C1 \ C3" using equiv_equiv_F by (meson equivp_transp) ultimately show "C1 \\ C3 \ C1 \ C3 \ l1 \l l3" using trans_hyp using trans_prec_F by blast qed qed next show "wfp_on (\) UNIV" unfolding wfp_on_def proof assume contra: "\f. \i. f i \ UNIV \ f (Suc i) \ f i" then obtain f where f_suc: "\i. f (Suc i) \ f i" by blast define R :: "(('f \ 'l) \ ('f \ 'l)) set" where "R = {(Cl1, Cl2). fst Cl1 \\ fst Cl2}" define S :: "(('f \ 'l) \ ('f \ 'l)) set" where "S = {(Cl1, Cl2). fst Cl1 \ fst Cl2 \ snd Cl1 \l snd Cl2}" obtain k where f_chain: "\i. (f (Suc (i + k)), f (i + k)) \ S" proof (atomize_elim, rule wf_infinite_down_chain_compatible[of R f S]) show "wf R" unfolding R_def using wf_app[OF wf_prec_F[unfolded minimal_element_def, THEN conjunct2, unfolded wfp_on_UNIV wfP_def]] by force next show "\i. (f (Suc i), f i) \ R \ S" using f_suc unfolding R_def S_def Prec_FL_def by blast next show "R O S \ R" unfolding R_def S_def using compat_equiv_prec equiv_equiv_F equivp_reflp by fastforce qed define g where "\i. g i = f (i + k)" have g_chain: "\i. (g (Suc i), g i) \ S" unfolding g_def using f_chain by simp have wf_s: "wf S" unfolding S_def by (rule wf_subset[OF wf_app[OF wf_prec_l[unfolded minimal_element_def, THEN conjunct2, unfolded wfp_on_UNIV wfP_def], of snd]]) fast show False using g_chain[unfolded S_def] wf_s[unfolded S_def, folded wfP_def wfp_on_UNIV, unfolded wfp_on_def] by auto qed qed definition active_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "active_subset M = {CL \ M. snd CL = active}" definition passive_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "passive_subset M = {CL \ M. snd CL \ active}" lemma active_subset_insert[simp]: "active_subset (insert Cl N) = (if snd Cl = active then {Cl} else {}) \ active_subset N" unfolding active_subset_def by auto lemma active_subset_union[simp]: "active_subset (M \ N) = active_subset M \ active_subset N" unfolding active_subset_def by auto lemma passive_subset_insert[simp]: "passive_subset (insert Cl N) = (if snd Cl \ active then {Cl} else {}) \ passive_subset N" unfolding passive_subset_def by auto lemma passive_subset_union[simp]: "passive_subset (M \ N) = passive_subset M \ passive_subset N" unfolding passive_subset_def by auto sublocale std?: statically_complete_calculus Bot_FL Inf_FL "(\\\L)" Red_I Red_F using labeled_static_ref[OF static_ref_comp] . lemma labeled_tiebreaker_lifting: assumes q_in: "q \ Q" shows "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_I_q q) (Red_F_q q) (\_F_L_q q) (\_I_L_q q) (\g. Prec_FL)" proof - have "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_I_q q) (Red_F_q q) (\_F_L_q q) (\_I_L_q q) (\g Cl Cl'. False)" using ord_fam_lifted_q[OF q_in] . then have "standard_lifting Bot_FL Inf_FL Bot_G (Inf_G_q q) (entails_q q) (Red_I_q q) (Red_F_q q) (\_F_L_q q) (\_I_L_q q)" using lifted_q[OF q_in] by blast then show "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_I_q q) (Red_F_q q) (\_F_L_q q) (\_I_L_q q) (\g. Prec_FL)" using wf_prec_FL by (simp add: tiebreaker_lifting.intro tiebreaker_lifting_axioms.intro) qed sublocale lifting_intersection Inf_FL Bot_G Q Inf_G_q entails_q Red_I_q Red_F_q Bot_FL \_F_L_q \_I_L_q "\g. Prec_FL" using labeled_tiebreaker_lifting unfolding lifting_intersection_def by (simp add: lifting_intersection_axioms.intro no_labels.ground.consequence_relation_family_axioms no_labels.ground.inference_system_family_axioms) notation derive (infix "\RedL" 50) lemma std_Red_I_eq: "std.Red_I = Red_I_\" unfolding Red_I_\_q_def Red_I_\_L_q_def by simp lemma std_Red_F_eq: "std.Red_F = Red_F_\_empty" unfolding Red_F_\_empty_q_def Red_F_\_empty_L_q_def by simp sublocale statically_complete_calculus Bot_FL Inf_FL "(\\\L)" Red_I Red_F by unfold_locales (use statically_complete std_Red_I_eq in auto) (* lem:redundant-labeled-inferences *) lemma labeled_red_inf_eq_red_inf: assumes i_in: "\ \ Inf_FL" shows "\ \ Red_I N \ to_F \ \ no_labels.Red_I_\ (fst ` N)" proof assume i_in2: "\ \ Red_I N" then have "X \ Red_I_\_q ` Q \ \ \ X N" for X unfolding Red_I_def by blast obtain X0 where "X0 \ Red_I_\_q ` Q" using Q_nonempty by blast then obtain q0 where x0_is: "X0 N = Red_I_\_q q0 N" by blast then obtain Y0 where y0_is: "Y0 (fst ` N) = to_F ` (X0 N)" by auto have "Y0 (fst ` N) = no_labels.Red_I_\_q q0 (fst ` N)" unfolding y0_is proof show "to_F ` X0 N \ no_labels.Red_I_\_q q0 (fst ` N)" proof fix \0 assume i0_in: "\0 \ to_F ` X0 N" then have i0_in2: "\0 \ to_F ` Red_I_\_q q0 N" using x0_is by argo then obtain \0_FL where i0_FL_in: "\0_FL \ Inf_FL" and i0_to_i0_FL: "\0 = to_F \0_FL" and subs1: "((\_I_L_q q0 \0_FL) \ None \ the (\_I_L_q q0 \0_FL) \ Red_I_q q0 (\_set_q q0 N)) \ ((\_I_L_q q0 \0_FL = None) \ \_F_L_q q0 (concl_of \0_FL) \ \_set_q q0 N \ Red_F_q q0 (\_set_q q0 N))" unfolding Red_I_\_q_def by blast have concl_swap: "fst (concl_of \0_FL) = concl_of \0" unfolding concl_of_def i0_to_i0_FL to_F_def by simp have i0_in3: "\0 \ Inf_F" using i0_to_i0_FL Inf_FL_to_Inf_F[OF i0_FL_in] unfolding to_F_def by blast { assume not_none: "\_I_q q0 \0 \ None" and "the (\_I_q q0 \0) \ {}" then obtain \1 where i1_in: "\1 \ the (\_I_q q0 \0)" by blast have "the (\_I_q q0 \0) \ Red_I_q q0 (no_labels.\_set_q q0 (fst ` N))" using subs1 i0_to_i0_FL not_none by auto } moreover { assume is_none: "\_I_q q0 \0 = None" then have "\_F_q q0 (concl_of \0) \ no_labels.\_set_q q0 (fst ` N) \ Red_F_q q0 (no_labels.\_set_q q0 (fst ` N))" using subs1 i0_to_i0_FL concl_swap by simp } ultimately show "\0 \ no_labels.Red_I_\_q q0 (fst ` N)" unfolding no_labels.Red_I_\_q_def using i0_in3 by auto qed next show "no_labels.Red_I_\_q q0 (fst ` N) \ to_F ` X0 N" proof fix \0 assume i0_in: "\0 \ no_labels.Red_I_\_q q0 (fst ` N)" then have i0_in2: "\0 \ Inf_F" unfolding no_labels.Red_I_\_q_def by blast obtain \0_FL where i0_FL_in: "\0_FL \ Inf_FL" and i0_to_i0_FL: "\0 = to_F \0_FL" using Inf_F_to_Inf_FL[OF i0_in2] unfolding to_F_def by (metis Ex_list_of_length fst_conv inference.exhaust_sel inference.inject map_fst_zip) have concl_swap: "fst (concl_of \0_FL) = concl_of \0" unfolding concl_of_def i0_to_i0_FL to_F_def by simp have subs1: "((\_I_L_q q0 \0_FL) \ None \ the (\_I_L_q q0 \0_FL) \ Red_I_q q0 (\_set_q q0 N)) \ ((\_I_L_q q0 \0_FL = None) \ \_F_L_q q0 (concl_of \0_FL) \ (\_set_q q0 N \ Red_F_q q0 (\_set_q q0 N)))" using i0_in i0_to_i0_FL concl_swap unfolding no_labels.Red_I_\_q_def by simp then have "\0_FL \ Red_I_\_q q0 N" using i0_FL_in unfolding Red_I_\_q_def by simp then show "\0 \ to_F ` X0 N" using x0_is i0_to_i0_FL i0_in2 by blast qed qed then have "Y \ no_labels.Red_I_\_q ` Q \ to_F \ \ Y (fst ` N)" for Y using i_in2 no_labels.Red_I_def std_Red_I_eq red_inf_impl by force then show "to_F \ \ no_labels.Red_I_\ (fst ` N)" unfolding Red_I_def no_labels.Red_I_\_def by blast next assume to_F_in: "to_F \ \ no_labels.Red_I_\ (fst ` N)" have imp_to_F: "X \ no_labels.Red_I_\_q ` Q \ to_F \ \ X (fst ` N)" for X using to_F_in unfolding no_labels.Red_I_\_def by blast then have to_F_in2: "to_F \ \ no_labels.Red_I_\_q q (fst ` N)" if "q \ Q" for q using that by auto have "Red_I_\_q q N = {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q (fst ` N)}" for q proof show "Red_I_\_q q N \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q (fst ` N)}" proof fix q0 \1 assume i1_in: "\1 \ Red_I_\_q q0 N" have i1_in2: "\1 \ Inf_FL" using i1_in unfolding Red_I_\_q_def by blast then have to_F_i1_in: "to_F \1 \ Inf_F" using Inf_FL_to_Inf_F unfolding to_F_def by simp have concl_swap: "fst (concl_of \1) = concl_of (to_F \1)" unfolding concl_of_def to_F_def by simp then have i1_to_F_in: "to_F \1 \ no_labels.Red_I_\_q q0 (fst ` N)" using i1_in to_F_i1_in unfolding Red_I_\_q_def no_labels.Red_I_\_q_def by force show "\1 \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q0 (fst ` N)}" using i1_in2 i1_to_F_in by blast qed next show "{\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q (fst ` N)} \ Red_I_\_q q N" proof fix q0 \1 assume i1_in: "\1 \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q0 (fst ` N)}" then have i1_in2: "\1 \ Inf_FL" by blast then have to_F_i1_in: "to_F \1 \ Inf_F" using Inf_FL_to_Inf_F unfolding to_F_def by simp have concl_swap: "fst (concl_of \1) = concl_of (to_F \1)" unfolding concl_of_def to_F_def by simp then have "((\_I_L_q q0 \1) \ None \ the (\_I_L_q q0 \1) \ Red_I_q q0 (\_set_q q0 N)) \ (\_I_L_q q0 \1 = None \ \_F_L_q q0 (concl_of \1) \ \_set_q q0 N \ Red_F_q q0 (\_set_q q0 N))" using i1_in unfolding no_labels.Red_I_\_q_def by auto then show "\1 \ Red_I_\_q q0 N" using i1_in2 unfolding Red_I_\_q_def by blast qed qed then have "\ \ Red_I_\_q q N" if "q \ Q" for q using that to_F_in2 i_in unfolding Red_I_\_q_def no_labels.Red_I_\_q_def by auto then show "\ \ Red_I_\ N" unfolding Red_I_\_def by blast qed (* lem:redundant-labeled-formulas *) lemma red_labeled_clauses: assumes \C \ no_labels.Red_F_\_empty (fst ` N) \ (\C' \ fst ` N. C' \\ C) \ (\(C', L') \ N. L' \l L \ C' \\ C)\ shows \(C, L) \ Red_F N\ proof - note assms moreover have i: \C \ no_labels.Red_F_\_empty (fst ` N) \ (C, L) \ Red_F N\ proof - assume "C \ no_labels.Red_F_\_empty (fst ` N)" then have "C \ no_labels.Red_F_\_empty_q q (fst ` N)" if "q \ Q" for q unfolding no_labels.Red_F_\_empty_def using that by fast then have g_in_red: "\_F_q q C \ Red_F_q q (no_labels.\_set_q q (fst ` N))" if "q \ Q" for q unfolding no_labels.Red_F_\_empty_q_def using that by blast have "\_F_L_q q (C, L) \ Red_F_q q (\_set_q q N)" if "q \ Q" for q using that g_in_red by simp then show ?thesis unfolding Red_F_def Red_F_\_q_def by blast qed moreover have ii: \\C' \ fst ` N. C' \\ C \ (C, L) \ Red_F N\ proof - assume "\C' \ fst ` N. C' \\ C" then obtain C' where c'_in: "C' \ fst ` N" and c_prec_c': "C' \\ C" by blast obtain L' where c'_l'_in: "(C', L') \ N" using c'_in by auto have c'_l'_prec: "(C', L') \ (C, L)" using c_prec_c' unfolding Prec_FL_def by simp have c_in_c'_g: "\_F_q q C \ \_F_q q C'" if "q \ Q" for q using prec_F_grounding[OF that c_prec_c'] by presburger then have "\_F_L_q q (C, L) \ \_F_L_q q (C', L')" if "q \ Q" for q using that by auto then have "(C, L) \ Red_F_\_q q N" if "q \ Q" for q unfolding Red_F_\_q_def using that c'_l'_in c'_l'_prec by blast then show ?thesis unfolding Red_F_def by blast qed moreover have iii: \\(C', L') \ N. L' \l L \ C' \\ C \ (C, L) \ Red_F N\ proof - assume "\(C', L') \ N. L' \l L \ C' \\ C" then obtain C' L' where c'_l'_in: "(C', L') \ N" and l'_sub_l: "L' \l L" and c'_sub_c: "C' \\ C" by fast have "(C, L) \ Red_F N" if "C' \\ C" using that c'_l'_in ii by fastforce moreover { assume equiv_c_c': "C \ C'" then have equiv_c'_c: "C' \ C" using equiv_equiv_F by (simp add: equivp_symp) then have c'_l'_prec: "(C', L') \ (C, L)" using l'_sub_l unfolding Prec_FL_def by simp have "\_F_q q C = \_F_q q C'" if "q \ Q" for q using that equiv_F_grounding equiv_c_c' equiv_c'_c by (simp add: set_eq_subset) then have "\_F_L_q q (C, L) = \_F_L_q q (C', L')" if "q \ Q" for q using that by auto then have "(C, L) \ Red_F_\_q q N" if "q \ Q" for q unfolding Red_F_\_q_def using that c'_l'_in c'_l'_prec by blast then have ?thesis unfolding Red_F_def by blast } ultimately show ?thesis using c'_sub_c equiv_equiv_F equivp_symp by fastforce qed ultimately show ?thesis by blast qed end - + + +text "In the report and papers about the framework, the symbol \ is used to describe procedures + but this is confusing in Isabelle so we chose to use \ instead in the given_clause and + lazy_given_clause locales" subsection \Given Clause Procedure\ locale given_clause = given_clause_basis Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_I_q Red_F_q \_F_q \_I_q Inf_FL Equiv_F Prec_F Prec_l active for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: \'q \ 'g inference set\ and Red_I_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_I_q :: "'q \ 'f inference \ 'g inference set option" and Inf_FL :: \('f \ 'l) inference set\ and Equiv_F :: "'f \ 'f \ bool" (infix "\" 50) and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_l :: "'l \ 'l \ bool" (infix "\l" 50) and active :: 'l + assumes inf_have_prems: "\F \ Inf_F \ prems_of \F \ []" begin - + lemma labeled_inf_have_prems: "\ \ Inf_FL \ prems_of \ \ []" using inf_have_prems Inf_FL_to_Inf_F by fastforce inductive step :: "('f \ 'l) set \ ('f \ 'l) set \ bool" (infix "\GC" 50) where process: "N1 = N \ M \ N2 = N \ M' \ M \ Red_F (N \ M') \ active_subset M' = {} \ N1 \GC N2" | infer: "N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Inf_between (fst ` (active_subset N)) {C} \ no_labels.Red_I (fst ` (N \ {(C, active)} \ M)) \ N1 \GC N2" - + lemma one_step_equiv: "N1 \GC N2 \ N1 \RedL N2" proof (cases N1 N2 rule: step.cases) show "N1 \GC N2 \ N1 \GC N2" by blast next fix N M M' assume gc_step: "N1 \GC N2" and n1_is: "N1 = N \ M" and n2_is: "N2 = N \ M'" and m_red: "M \ Red_F (N \ M')" and active_empty: "active_subset M' = {}" have "N1 - N2 \ Red_F N2" using n1_is n2_is m_red by auto then show "N1 \RedL N2" unfolding derive.simps by blast next fix N C L M assume gc_step: "N1 \GC N2" and n1_is: "N1 = N \ {(C, L)}" and not_active: "L \ active" and n2_is: "N2 = N \ {(C, active)} \ M" and active_empty: "active_subset M = {}" have "(C, active) \ N2" using n2_is by auto moreover have "C \\ C" using equiv_equiv_F by (metis equivp_def) moreover have "active \l L" using active_minimal[OF not_active] . ultimately have "{(C, L)} \ Red_F N2" using red_labeled_clauses by blast moreover have "N1 - N2 = {} \ N1 - N2 = {(C, L)}" using n1_is n2_is by blast ultimately have "N1 - N2 \ Red_F N2" using std_Red_F_eq by blast then show "N1 \RedL N2" unfolding derive.simps by blast qed (* lem:gc-derivations-are-red-derivations *) lemma gc_to_red: "chain (\GC) Ns \ chain (\RedL) Ns" using one_step_equiv Lazy_List_Chain.chain_mono by blast lemma (in-) all_ex_finite_set: "(\(j::nat)\{0..(n::nat). P j n) \ (\n1 n2. \j\{0.. P j n2 \ n1 = n2) \ finite {n. \j \ {0.. nat \ bool" assume allj_exn: "\j\{0..n. P j n" and uniq_n: "\n1 n2. \j\{0.. P j n2 \ n1 = n2" have "{n. \j \ {0..((\j. {n. P j n}) ` {0..j\{0.. finite {n. \j \ {0..j. {n. P j n}"] by simp have "\j\{0..!n. P j n" using allj_exn uniq_n by blast then have "\j\{0..j \ {0..GC) Ns" and init_state: "active_subset (lhd Ns) = {}" and final_state: "passive_subset (Liminf_llist Ns) = {}" shows "fair Ns" unfolding fair_def proof fix \ assume i_in: "\ \ Inf_from (Liminf_llist Ns)" note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have i_in_inf_fl: "\ \ Inf_FL" using i_in unfolding Inf_from_def by blast have "Liminf_llist Ns = active_subset (Liminf_llist Ns)" using final_state unfolding passive_subset_def active_subset_def by blast then have i_in2: "\ \ Inf_from (active_subset (Liminf_llist Ns))" using i_in by simp define m where "m = length (prems_of \)" then have m_def_F: "m = length (prems_of (to_F \))" unfolding to_F_def by simp have i_in_F: "to_F \ \ Inf_F" using i_in Inf_FL_to_Inf_F unfolding Inf_from_def to_F_def by blast then have m_pos: "m > 0" using m_def_F using inf_have_prems by blast have exist_nj: "\j \ {0..nj. enat (Suc nj) < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns nj) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns k)))" proof clarify fix j assume j_in: "j \ {0.. ! j" using i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have "(C, active) \ Liminf_llist Ns" using j_in i_in unfolding m_def Inf_from_def by force then obtain nj where nj_is: "enat nj < llength Ns" and c_in2: "(C, active) \ \ (lnth Ns ` {k. nj \ k \ enat k < llength Ns})" unfolding Liminf_llist_def using init_state by blast then have c_in3: "\k. k \ nj \ enat k < llength Ns \ (C, active) \ lnth Ns k" by blast have nj_pos: "nj > 0" using init_state c_in2 nj_is unfolding active_subset_def lhd_is by force obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength Ns \ (C, active) \ \ (lnth Ns ` {k. nj \ k \ enat k < llength Ns}))" by blast then have in_allk: "\k. k \ nj_min \ enat k < llength Ns \ (C, active) \ (lnth Ns k)" using c_in3 nj_is c_in2 by (metis (mono_tags, lifting) INT_E LeastI_ex mem_Collect_eq) have njm_smaller_D: "enat nj_min < llength Ns" using nj_min_is by (smt LeastI_ex \\thesis. (\nj. \enat nj < llength Ns; (C, active) \ \ (lnth Ns ` {k. nj \ k \ enat k < llength Ns})\ \ thesis) \ thesis\) have "nj_min > 0" using nj_is c_in2 nj_pos nj_min_is lhd_is by (metis (mono_tags, lifting) Collect_empty_eq \(C, active) \ Liminf_llist Ns\ \Liminf_llist Ns = active_subset (Liminf_llist Ns)\ \\k\nj_min. enat k < llength Ns \ (C, active) \ lnth Ns k\ active_subset_def init_state linorder_not_less mem_Collect_eq zero_enat_def chain_length_pos[OF deriv]) then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto then have njm_prec_njm: "njm_prec < nj_min" by blast then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp have njm_prec_smaller_d: "njm_prec < llength Ns" using HOL.no_atp(15)[OF njm_smaller_D njm_prec_njm_enat] . have njm_prec_all_suc: "\k>njm_prec. enat k < llength Ns \ (C, active) \ lnth Ns k" using nj_prec_is in_allk by simp have notin_njm_prec: "(C, active) \ lnth Ns njm_prec" proof (rule ccontr) assume "\ (C, active) \ lnth Ns njm_prec" then have absurd_hyp: "(C, active) \ lnth Ns njm_prec" by simp have prec_smaller: "enat njm_prec < llength Ns" using nj_min_is nj_prec_is by (smt LeastI_ex Suc_leD \\thesis. (\nj. \enat nj < llength Ns; (C, active) \ \ (lnth Ns ` {k. nj \ k \ enat k < llength Ns})\ \ thesis) \ thesis\ enat_ord_simps(1) le_eq_less_or_eq le_less_trans) have "(C, active) \ \ (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns})" proof - { fix k assume k_in: "njm_prec \ k \ enat k < llength Ns" have "k = njm_prec \ (C, active) \ lnth Ns k" using absurd_hyp by simp moreover have "njm_prec < k \ (C, active) \ lnth Ns k" using nj_prec_is in_allk k_in by simp ultimately have "(C, active) \ lnth Ns k" using k_in by fastforce } then show "(C, active) \ \ (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns})" by blast qed then have "enat njm_prec < llength Ns \ (C, active) \ \ (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns})" using prec_smaller by blast then show False using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast qed then have notin_active_subs_njm_prec: "(C, active) \ active_subset (lnth Ns njm_prec)" unfolding active_subset_def by blast then show "\nj. enat (Suc nj) < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns nj) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns k))" using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting) active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv) qed define nj_set where "nj_set = {nj. (\j\{0.. prems_of \ ! j \ active_subset (lnth Ns nj) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns k)))}" then have nj_not_empty: "nj_set \ {}" proof - have zero_in: "0 \ {0.. ! 0 \ active_subset (lnth Ns n0)" and "\k>n0. enat k < llength Ns \ prems_of \ ! 0 \ active_subset (lnth Ns k)" using exist_nj by fast then have "n0 \ nj_set" unfolding nj_set_def using zero_in by blast then show "nj_set \ {}" by auto qed have nj_finite: "finite nj_set" using all_ex_finite_set[OF exist_nj] by (metis (no_types, lifting) Suc_ile_eq dual_order.strict_implies_order linorder_neqE_nat nj_set_def) (* the n below in the n-1 from the pen-and-paper proof *) have "\n \ nj_set. \nj \ nj_set. nj \ n" using nj_not_empty nj_finite using Max_ge Max_in by blast then obtain n where n_in: "n \ nj_set" and n_bigger: "\nj \ nj_set. nj \ n" by blast then obtain j0 where j0_in: "j0 \ {0.. ! j0 \ active_subset (lnth Ns n)" and j0_allin: "(\k. k > n \ enat k < llength Ns \ prems_of \ ! j0 \ active_subset (lnth Ns k))" unfolding nj_set_def by blast obtain C0 where C0_is: "prems_of \ ! j0 = (C0, active)" using j0_in using i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have C0_prems_i: "(C0, active) \ set (prems_of \)" using in_set_conv_nth j0_in m_def by force have C0_in: "(C0, active) \ (lnth Ns (Suc n))" using C0_is j0_allin suc_n_length by (simp add: active_subset_def) have C0_notin: "(C0, active) \ (lnth Ns n)" using C0_is j0_notin unfolding active_subset_def by simp have step_n: "lnth Ns n \GC lnth Ns (Suc n)" using deriv chain_lnth_rel n_in unfolding nj_set_def by blast have "\N C L M. (lnth Ns n = N \ {(C, L)} \ lnth Ns (Suc n) = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Inf_between (fst ` (active_subset N)) {C} \ no_labels.Red_I (fst ` (N \ {(C, active)} \ M)))" proof - have proc_or_infer: "(\N1 N M N2 M'. lnth Ns n = N1 \ lnth Ns (Suc n) = N2 \ N1 = N \ M \ N2 = N \ M' \ M \ Red_F (N \ M') \ active_subset M' = {}) \ (\N1 N C L N2 M. lnth Ns n = N1 \ lnth Ns (Suc n) = N2 \ N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Inf_between (fst ` (active_subset N)) {C} \ no_labels.Red_I (fst ` (N \ {(C, active)} \ M)))" using step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n by blast show ?thesis using C0_in C0_notin proc_or_infer j0_in C0_is by (smt Un_iff active_subset_def mem_Collect_eq snd_conv sup_bot.right_neutral) qed then obtain N M L where inf_from_subs: "no_labels.Inf_between (fst ` (active_subset N)) {C0} \ no_labels.Red_I (fst ` (N \ {(C0, active)} \ M))" and nth_d_is: "lnth Ns n = N \ {(C0, L)}" and suc_nth_d_is: "lnth Ns (Suc n) = N \ {(C0, active)} \ M" and l_not_active: "L \ active" using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce have "j \ {0.. prems_of \ ! j \ prems_of \ ! j0 \ prems_of \ ! j \ (active_subset N)" for j proof - fix j assume j_in: "j \ {0.. ! j \ prems_of \ ! j0" obtain nj where nj_len: "enat (Suc nj) < llength Ns" and nj_prems: "prems_of \ ! j \ active_subset (lnth Ns nj)" and nj_greater: "(\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns k))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast moreover have "nj \ n" proof (rule ccontr) assume "\ nj \ n" then have "prems_of \ ! j = (C0, active)" using C0_in C0_notin step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n by (smt Un_iff nth_d_is suc_nth_d_is l_not_active active_subset_def insertCI insertE lessI mem_Collect_eq nj_greater nj_prems snd_conv suc_n_length) then show False using j_not_j0 C0_is by simp qed ultimately have "nj < n" using n_bigger by force then have "prems_of \ ! j \ (active_subset (lnth Ns n))" using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order unfolding nj_set_def by blast then show "prems_of \ ! j \ (active_subset N)" using nth_d_is l_not_active unfolding active_subset_def by force qed then have "set (prems_of \) \ active_subset N \ {(C0, active)}" using C0_prems_i C0_is m_def by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI) moreover have "\ (set (prems_of \) \ active_subset N - {(C0, active)})" using C0_prems_i by blast ultimately have "\ \ Inf_between (active_subset N) {(C0, active)}" using i_in_inf_fl unfolding Inf_between_def Inf_from_def by blast then have "to_F \ \ no_labels.Inf_between (fst ` (active_subset N)) {C0}" unfolding to_F_def Inf_between_def Inf_from_def no_labels.Inf_between_def no_labels.Inf_from_def using Inf_FL_to_Inf_F by force then have "to_F \ \ no_labels.Red_I (fst ` (lnth Ns (Suc n)))" using suc_nth_d_is inf_from_subs by fastforce then have "\q \ Q. (\_I_q q (to_F \) \ None \ the (\_I_q q (to_F \)) \ Red_I_q q (\ (\_F_q q ` fst ` lnth Ns (Suc n)))) \ (\_I_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ \ (\_F_q q ` fst ` lnth Ns (Suc n)) \ Red_F_q q (\ (\_F_q q ` fst ` lnth Ns (Suc n))))" unfolding to_F_def no_labels.Red_I_def no_labels.Red_I_\_q_def by blast then have "\ \ Red_I_\ (lnth Ns (Suc n))" using i_in_inf_fl unfolding Red_I_\_def Red_I_\_q_def by (simp add: to_F_def) then show "\ \ Sup_llist (lmap Red_I_\ Ns)" unfolding Sup_llist_def using suc_n_length by auto qed theorem gc_complete_Liminf: assumes deriv: "chain (\GC) Ns" and init_state: "active_subset (lhd Ns) = {}" and final_state: "passive_subset (Liminf_llist Ns) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\ (fst ` lhd Ns) {B}" shows "\BL \ Bot_FL. BL \ Liminf_llist Ns" proof - note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have labeled_b_in: "(B, active) \ Bot_FL" using b_in by simp have labeled_bot_entailed: "entails_\_L (lhd Ns) {(B, active)}" using labeled_entailment_lifting bot_entailed lhd_is by fastforce have fair: "fair Ns" using gc_fair[OF deriv init_state final_state] . then show ?thesis using dynamically_complete_Liminf[OF labeled_b_in gc_to_red[OF deriv] fair labeled_bot_entailed] by blast qed (* thm:gc-completeness *) theorem gc_complete: assumes deriv: "chain (\GC) Ns" and init_state: "active_subset (lhd Ns) = {}" and final_state: "passive_subset (Liminf_llist Ns) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\ (fst ` lhd Ns) {B}" shows "\i. enat i < llength Ns \ (\BL \ Bot_FL. BL \ lnth Ns i)" proof - note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have "\BL\Bot_FL. BL \ Liminf_llist Ns" using assms by (rule gc_complete_Liminf) then show ?thesis unfolding Liminf_llist_def by auto qed end subsection \Lazy Given Clause Procedure\ locale lazy_given_clause = given_clause_basis Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_I_q Red_F_q \_F_q \_I_q Inf_FL Equiv_F Prec_F Prec_l active for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: \'q \ 'g inference set\ and Red_I_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_I_q :: "'q \ 'f inference \ 'g inference set option" and Inf_FL :: \('f \ 'l) inference set\ and Equiv_F :: "'f \ 'f \ bool" (infix "\" 50) and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_l :: "'l \ 'l \ bool" (infix "\l" 50) and active :: 'l begin inductive step :: "'f inference set \ ('f \ 'l) set \ 'f inference set \ ('f \ 'l) set \ bool" (infix "\LGC" 50) where process: "N1 = N \ M \ N2 = N \ M' \ M \ Red_F (N \ M') \ active_subset M' = {} \ (T, N1) \LGC (T, N2)" | schedule_infer: "T2 = T1 \ T' \ N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ L \ active \ T' = no_labels.Inf_between (fst ` (active_subset N)) {C} \ (T1, N1) \LGC (T2, N2)" | compute_infer: "T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I (fst ` (N1 \ M)) \ (T1, N1) \LGC (T2, N2)" | delete_orphans: "T1 = T2 \ T' \ T' \ no_labels.Inf_from (fst ` (active_subset N)) = {} \ (T1, N) \LGC (T2, N)" lemma premise_free_inf_always_from: "\ \ Inf_F \ prems_of \ = [] \ \ \ no_labels.Inf_from N" unfolding no_labels.Inf_from_def by simp lemma one_step_equiv: "(T1, N1) \LGC (T2, N2) \ N1 \RedL N2" proof (cases "(T1, N1)" "(T2, N2)" rule: step.cases) show "(T1, N1) \LGC (T2, N2) \ (T1, N1) \LGC (T2, N2)" by blast next fix N M M' assume n1_is: "N1 = N \ M" and n2_is: "N2 = N \ M'" and m_red: "M \ Red_F (N \ M')" have "N1 - N2 \ Red_F N2" using n1_is n2_is m_red by auto then show "N1 \RedL N2" unfolding derive.simps by blast next fix N C L M assume n1_is: "N1 = N \ {(C, L)}" and not_active: "L \ active" and n2_is: "N2 = N \ {(C, active)}" have "(C, active) \ N2" using n2_is by auto moreover have "C \\ C" by (metis equivp_def equiv_equiv_F) moreover have "active \l L" using active_minimal[OF not_active] . ultimately have "{(C, L)} \ Red_F N2" using red_labeled_clauses by blast then have "N1 - N2 \ Red_F N2" using std_Red_F_eq using n1_is n2_is by blast then show "N1 \RedL N2" unfolding derive.simps by blast next fix M assume n2_is: "N2 = N1 \ M" have "N1 - N2 \ Red_F N2" using n2_is by blast then show "N1 \RedL N2" unfolding derive.simps by blast next assume n2_is: "N2 = N1" have "N1 - N2 \ Red_F N2" using n2_is by blast then show "N1 \RedL N2" unfolding derive.simps by blast qed (* lem:lgc-derivations-are-red-derivations *) lemma lgc_to_red: "chain (\LGC) Ns \ chain (\RedL) (lmap snd Ns)" using one_step_equiv Lazy_List_Chain.chain_mono by (smt chain_lmap prod.collapse) (* lem:fair-lgc-derivations *) lemma lgc_fair: assumes deriv: "chain (\LGC) Ns" and init_state: "active_subset (snd (lhd Ns)) = {}" and final_state: "passive_subset (Liminf_llist (lmap snd Ns)) = {}" and no_prems_init_active: "\\ \ Inf_F. prems_of \ = [] \ \ \ fst (lhd Ns)" and final_schedule: "Liminf_llist (lmap fst Ns) = {}" shows "fair (lmap snd Ns)" unfolding fair_def proof fix \ assume i_in: "\ \ Inf_from (Liminf_llist (lmap snd Ns))" note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have i_in_inf_fl: "\ \ Inf_FL" using i_in unfolding Inf_from_def by blast have "Liminf_llist (lmap snd Ns) = active_subset (Liminf_llist (lmap snd Ns))" using final_state unfolding passive_subset_def active_subset_def by blast then have i_in2: "\ \ Inf_from (active_subset (Liminf_llist (lmap snd Ns)))" using i_in by simp define m where "m = length (prems_of \)" then have m_def_F: "m = length (prems_of (to_F \))" unfolding to_F_def by simp have i_in_F: "to_F \ \ Inf_F" using i_in Inf_FL_to_Inf_F unfolding Inf_from_def to_F_def by blast have exist_nj: "\j \ {0..nj. enat (Suc nj) < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns nj)) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k))))" proof clarify fix j assume j_in: "j \ {0.. ! j" using i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have "(C, active) \ Liminf_llist (lmap snd Ns)" using j_in i_in unfolding m_def Inf_from_def by force then obtain nj where nj_is: "enat nj < llength Ns" and c_in2: "(C, active) \ \ (snd ` (lnth Ns ` {k. nj \ k \ enat k < llength Ns}))" unfolding Liminf_llist_def using init_state by fastforce then have c_in3: "\k. k \ nj \ enat k < llength Ns \ (C, active) \ snd (lnth Ns k)" by blast have nj_pos: "nj > 0" using init_state c_in2 nj_is unfolding active_subset_def lhd_is by fastforce obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength Ns \ (C, active) \ \ (snd ` (lnth Ns ` {k. nj \ k \ enat k < llength Ns})))" by blast then have in_allk: "\k. k \ nj_min \ enat k < llength Ns \ (C, active) \ snd (lnth Ns k)" using c_in3 nj_is c_in2 INT_E LeastI_ex by (smt INT_iff INT_simps(10) c_is image_eqI mem_Collect_eq) have njm_smaller_D: "enat nj_min < llength Ns" using nj_min_is by (smt LeastI_ex \\thesis. (\nj. \enat nj < llength Ns; (C, active) \ \ (snd ` (lnth Ns ` {k. nj \ k \ enat k < llength Ns}))\ \ thesis) \ thesis\) have "nj_min > 0" using nj_is c_in2 nj_pos nj_min_is lhd_is by (metis (mono_tags, lifting) active_subset_def emptyE in_allk init_state mem_Collect_eq not_less snd_conv zero_enat_def chain_length_pos[OF deriv]) then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto then have njm_prec_njm: "njm_prec < nj_min" by blast then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp have njm_prec_smaller_d: "njm_prec < llength Ns" using HOL.no_atp(15)[OF njm_smaller_D njm_prec_njm_enat] . have njm_prec_all_suc: "\k>njm_prec. enat k < llength Ns \ (C, active) \ snd (lnth Ns k)" using nj_prec_is in_allk by simp have notin_njm_prec: "(C, active) \ snd (lnth Ns njm_prec)" proof (rule ccontr) assume "\ (C, active) \ snd (lnth Ns njm_prec)" then have absurd_hyp: "(C, active) \ snd (lnth Ns njm_prec)" by simp have prec_smaller: "enat njm_prec < llength Ns" using nj_min_is nj_prec_is by (smt LeastI_ex Suc_leD \\thesis. (\nj. \enat nj < llength Ns; (C, active) \ \ (snd ` (lnth Ns ` {k. nj \ k \ enat k < llength Ns}))\ \ thesis) \ thesis\ enat_ord_simps(1) le_eq_less_or_eq le_less_trans) have "(C, active) \ \ (snd ` (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns}))" proof - { fix k assume k_in: "njm_prec \ k \ enat k < llength Ns" have "k = njm_prec \ (C, active) \ snd (lnth Ns k)" using absurd_hyp by simp moreover have "njm_prec < k \ (C, active) \ snd (lnth Ns k)" using nj_prec_is in_allk k_in by simp ultimately have "(C, active) \ snd (lnth Ns k)" using k_in by fastforce } then show "(C, active) \ \ (snd ` (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns}))" by blast qed then have "enat njm_prec < llength Ns \ (C, active) \ \ (snd ` (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns}))" using prec_smaller by blast then show False using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast qed then have notin_active_subs_njm_prec: "(C, active) \ active_subset (snd (lnth Ns njm_prec))" unfolding active_subset_def by blast then show "\nj. enat (Suc nj) < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns nj)) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting) active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv) qed define nj_set where "nj_set = {nj. (\j\{0.. prems_of \ ! j \ active_subset (snd (lnth Ns nj)) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k))))}" { assume m_null: "m = 0" then have "enat 0 < llength Ns \ to_F \ \ fst (lhd Ns)" using no_prems_init_active i_in_F m_def_F zero_enat_def chain_length_pos[OF deriv] by auto then have "\n. enat n < llength Ns \ to_F \ \ fst (lnth Ns n)" unfolding lhd_is by blast } moreover { assume m_pos: "m > 0" have nj_not_empty: "nj_set \ {}" proof - have zero_in: "0 \ {0.. ! 0 \ active_subset (snd (lnth Ns n0))" and "\k>n0. enat k < llength Ns \ prems_of \ ! 0 \ active_subset (snd (lnth Ns k))" using exist_nj by fast then have "n0 \ nj_set" unfolding nj_set_def using zero_in by blast then show "nj_set \ {}" by auto qed have nj_finite: "finite nj_set" using all_ex_finite_set[OF exist_nj] by (metis (no_types, lifting) Suc_ile_eq dual_order.strict_implies_order linorder_neqE_nat nj_set_def) have "\n \ nj_set. \nj \ nj_set. nj \ n" using nj_not_empty nj_finite using Max_ge Max_in by blast then obtain n where n_in: "n \ nj_set" and n_bigger: "\nj \ nj_set. nj \ n" by blast then obtain j0 where j0_in: "j0 \ {0.. ! j0 \ active_subset (snd (lnth Ns n))" and j0_allin: "(\k. k > n \ enat k < llength Ns \ prems_of \ ! j0 \ active_subset (snd (lnth Ns k)))" unfolding nj_set_def by blast obtain C0 where C0_is: "prems_of \ ! j0 = (C0, active)" using j0_in i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have C0_prems_i: "(C0, active) \ set (prems_of \)" using in_set_conv_nth j0_in m_def by force have C0_in: "(C0, active) \ (snd (lnth Ns (Suc n)))" using C0_is j0_allin suc_n_length by (simp add: active_subset_def) have C0_notin: "(C0, active) \ (snd (lnth Ns n))" using C0_is j0_notin unfolding active_subset_def by simp have step_n: "lnth Ns n \LGC lnth Ns (Suc n)" using deriv chain_lnth_rel n_in unfolding nj_set_def by blast have is_scheduled: "\T2 T1 T' N1 N C L N2. lnth Ns n = (T1, N1) \ lnth Ns (Suc n) = (T2, N2) \ T2 = T1 \ T' \ N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ L \ active \ T' = no_labels.Inf_between (fst ` active_subset N) {C}" using step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n C0_in C0_notin unfolding active_subset_def by fastforce then obtain T2 T1 T' N1 N L N2 where nth_d_is: "lnth Ns n = (T1, N1)" and suc_nth_d_is: "lnth Ns (Suc n) = (T2, N2)" and t2_is: "T2 = T1 \ T'" and n1_is: "N1 = N \ {(C0, L)}" "N2 = N \ {(C0, active)}" and l_not_active: "L \ active" and tp_is: "T' = no_labels.Inf_between (fst ` active_subset N) {C0}" using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce have "j \ {0.. prems_of \ ! j \ prems_of \ ! j0 \ prems_of \ ! j \ (active_subset N)" for j proof - fix j assume j_in: "j \ {0.. ! j \ prems_of \ ! j0" obtain nj where nj_len: "enat (Suc nj) < llength Ns" and nj_prems: "prems_of \ ! j \ active_subset (snd (lnth Ns nj))" and nj_greater: "(\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast moreover have "nj \ n" proof (rule ccontr) assume "\ nj \ n" then have "prems_of \ ! j = (C0, active)" using C0_in C0_notin step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n active_subset_def is_scheduled nj_greater nj_prems suc_n_length by auto then show False using j_not_j0 C0_is by simp qed ultimately have "nj < n" using n_bigger by force then have "prems_of \ ! j \ (active_subset (snd (lnth Ns n)))" using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order unfolding nj_set_def by blast then show "prems_of \ ! j \ (active_subset N)" using nth_d_is l_not_active n1_is unfolding active_subset_def by force qed then have prems_i_active: "set (prems_of \) \ active_subset N \ {(C0, active)}" using C0_prems_i C0_is m_def by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI) moreover have "\ (set (prems_of \) \ active_subset N - {(C0, active)})" using C0_prems_i by blast ultimately have "\ \ Inf_between (active_subset N) {(C0, active)}" using i_in_inf_fl prems_i_active unfolding Inf_between_def Inf_from_def by blast then have "to_F \ \ no_labels.Inf_between (fst ` (active_subset N)) {C0}" unfolding to_F_def Inf_between_def Inf_from_def no_labels.Inf_between_def no_labels.Inf_from_def using Inf_FL_to_Inf_F by force then have i_in_t2: "to_F \ \ T2" using tp_is t2_is by simp have "j \ {0.. (\k. k > n \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" for j proof (cases "j = j0") case True assume "j = j0" then show "(\k. k > n \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using j0_allin by simp next case False assume j_in: "j \ {0.. j0" obtain nj where nj_len: "enat (Suc nj) < llength Ns" and nj_prems: "prems_of \ ! j \ active_subset (snd (lnth Ns nj))" and nj_greater: "(\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast then show "(\k. k > n \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using nj_greater n_bigger by auto qed then have allj_allk: "(\c\ set (prems_of \). (\k. k > n \ enat k < llength Ns \ c \ active_subset (snd (lnth Ns k))))" using m_def by (metis atLeast0LessThan in_set_conv_nth lessThan_iff) have "\c\ set (prems_of \). snd c = active" using prems_i_active unfolding active_subset_def by auto then have ex_n_i_in: "\n. enat (Suc n) < llength Ns \ to_F \ \ fst (lnth Ns (Suc n)) \ (\c\ set (prems_of \). snd c = active) \ (\c\ set (prems_of \). (\k. k > n \ enat k < llength Ns \ c \ active_subset (snd (lnth Ns k))))" using allj_allk i_in_t2 suc_nth_d_is fstI n_in nj_set_def by auto then have "\n. enat n < llength Ns \ to_F \ \ fst (lnth Ns n) \ (\c\ set (prems_of \). snd c = active) \ (\c\ set (prems_of \). (\k. k \ n \ enat k < llength Ns \ c \ active_subset (snd (lnth Ns k))))" by auto } ultimately obtain n T2 N2 where i_in_suc_n: "to_F \ \ fst (lnth Ns n)" and all_prems_active_after: "m > 0 \ (\c\ set (prems_of \). (\k. k \ n \ enat k < llength Ns \ c \ active_subset (snd (lnth Ns k))))" and suc_n_length: "enat n < llength Ns" and suc_nth_d_is: "lnth Ns n = (T2, N2)" by (metis less_antisym old.prod.exhaust zero_less_Suc) then have i_in_t2: "to_F \ \ T2" by simp have "\p\n. enat (Suc p) < llength Ns \ to_F \ \ (fst (lnth Ns p)) \ to_F \ \ (fst (lnth Ns (Suc p)))" proof (rule ccontr) assume contra: "\ (\p\n. enat (Suc p) < llength Ns \ to_F \ \ (fst (lnth Ns p)) \ to_F \ \ (fst (lnth Ns (Suc p))))" then have i_in_suc: "p0 \ n \ enat (Suc p0) < llength Ns \ to_F \ \ (fst (lnth Ns p0)) \ to_F \ \ (fst (lnth Ns (Suc p0)))" for p0 by blast have "p0 \ n \ enat p0 < llength Ns \ to_F \ \ (fst (lnth Ns p0))" for p0 proof (induction rule: nat_induct_at_least) case base then show ?case using i_in_t2 suc_nth_d_is by simp next case (Suc p0) assume p_bigger_n: "n \ p0" and induct_hyp: "enat p0 < llength Ns \ to_F \ \ fst (lnth Ns p0)" and sucsuc_smaller_d: "enat (Suc p0) < llength Ns" have suc_p_bigger_n: "n \ p0" using p_bigger_n by simp have suc_smaller_d: "enat p0 < llength Ns" using sucsuc_smaller_d Suc_ile_eq dual_order.strict_implies_order by blast then have "to_F \ \ fst (lnth Ns p0)" using induct_hyp by blast then show ?case using i_in_suc[OF suc_p_bigger_n sucsuc_smaller_d] by blast qed then have i_in_all_bigger_n: "\j. j \ n \ enat j < llength Ns \ to_F \ \ (fst (lnth Ns j))" by presburger have "llength (lmap fst Ns) = llength Ns" by force then have "to_F \ \ \ (lnth (lmap fst Ns) ` {j. n \ j \ enat j < llength (lmap fst Ns)})" using i_in_all_bigger_n using Suc_le_D by auto then have "to_F \ \ Liminf_llist (lmap fst Ns)" unfolding Liminf_llist_def using suc_n_length by auto then show False using final_schedule by fast qed then obtain p where p_greater_n: "p \ n" and p_smaller_d: "enat (Suc p) < llength Ns" and i_in_p: "to_F \ \ (fst (lnth Ns p))" and i_notin_suc_p: "to_F \ \ (fst (lnth Ns (Suc p)))" by blast have p_neq_n: "Suc p \ n" using i_notin_suc_p i_in_suc_n by blast have step_p: "lnth Ns p \LGC lnth Ns (Suc p)" using deriv p_smaller_d chain_lnth_rel by blast then have "\T1 T2 \ N2 N1 M. lnth Ns p = (T1, N1) \ lnth Ns (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I_\ (fst ` (N1 \ M))" proof - have ci_or_do: "(\T1 T2 \ N2 N1 M. lnth Ns p = (T1, N1) \ lnth Ns (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I_\ (fst ` (N1 \ M))) \ (\T1 T2 T' N. lnth Ns p = (T1, N) \ lnth Ns (Suc p) = (T2, N) \ T1 = T2 \ T' \ T' \ no_labels.Inf_from (fst ` active_subset N) = {})" using step.simps[of "lnth Ns p" "lnth Ns (Suc p)"] step_p i_in_p i_notin_suc_p by fastforce then have p_greater_n_strict: "n < Suc p" using suc_nth_d_is p_greater_n i_in_t2 i_notin_suc_p le_eq_less_or_eq by force have "m > 0 \ j \ {0.. prems_of (to_F \) ! j \ fst ` active_subset (snd (lnth Ns p))" for j proof - fix j assume m_pos: "m > 0" and j_in: "j \ {0.. ! j \ (active_subset (snd (lnth Ns p)))" using all_prems_active_after[OF m_pos] p_smaller_d m_def p_greater_n p_neq_n by (meson Suc_ile_eq atLeastLessThan_iff dual_order.strict_implies_order nth_mem p_greater_n_strict) then have "fst (prems_of \ ! j) \ fst ` active_subset (snd (lnth Ns p))" by blast then show "prems_of (to_F \) ! j \ fst ` active_subset (snd (lnth Ns p))" unfolding to_F_def using j_in m_def by simp qed then have prems_i_active_p: "m > 0 \ to_F \ \ no_labels.Inf_from (fst ` active_subset (snd (lnth Ns p)))" using i_in_F unfolding no_labels.Inf_from_def by (smt atLeast0LessThan in_set_conv_nth lessThan_iff m_def_F mem_Collect_eq subsetI) have "m = 0 \ (\T1 T2 \ N2 N1 M. lnth Ns p = (T1, N1) \ lnth Ns (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I_\ (fst ` (N1 \ M)))" using ci_or_do premise_free_inf_always_from[of "to_F \" "fst ` active_subset _", OF i_in_F] m_def i_in_p i_notin_suc_p m_def_F by auto then show "(\T1 T2 \ N2 N1 M. lnth Ns p = (T1, N1) \ lnth Ns (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I_\ (fst ` (N1 \ M)))" using ci_or_do i_in_p i_notin_suc_p prems_i_active_p unfolding active_subset_def by force qed then obtain T1p T2p N1p N2p Mp where "lnth Ns p = (T1p, N1p)" and suc_p_is: "lnth Ns (Suc p) = (T2p, N2p)" and "T1p = T2p \ {to_F \}" and "T2p \ {to_F \} = {}" and n2p_is: "N2p = N1p \ Mp"and "active_subset Mp = {}" and i_in_red_inf: "to_F \ \ no_labels.Red_I_\ (fst ` (N1p \ Mp))" using i_in_p i_notin_suc_p by fastforce have "to_F \ \ no_labels.Red_I (fst ` (snd (lnth Ns (Suc p))))" using i_in_red_inf suc_p_is n2p_is by fastforce then have "\q \ Q. (\_I_q q (to_F \) \ None \ the (\_I_q q (to_F \)) \ Red_I_q q (\ (\_F_q q ` fst ` snd (lnth Ns (Suc p))))) \ (\_I_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ \ (\_F_q q ` fst ` snd (lnth Ns (Suc p))) \ Red_F_q q (\ (\_F_q q ` fst ` snd (lnth Ns (Suc p)))))" unfolding to_F_def no_labels.Red_I_def no_labels.Red_I_\_q_def by blast then have "\ \ Red_I_\ (snd (lnth Ns (Suc p)))" using i_in_inf_fl unfolding Red_I_\_def Red_I_\_q_def by (simp add: to_F_def) then show "\ \ Sup_llist (lmap Red_I_\ (lmap snd Ns))" unfolding Sup_llist_def using suc_n_length p_smaller_d by auto qed theorem lgc_complete_Liminf: assumes deriv: "chain (\LGC) Ns" and init_state: "active_subset (snd (lhd Ns)) = {}" and final_state: "passive_subset (Liminf_llist (lmap snd Ns)) = {}" and no_prems_init_active: "\\ \ Inf_F. prems_of \ = [] \ \ \ fst (lhd Ns)" and final_schedule: "Liminf_llist (lmap fst Ns) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\ (fst ` snd (lhd Ns)) {B}" shows "\BL \ Bot_FL. BL \ Liminf_llist (lmap snd Ns)" proof - have labeled_b_in: "(B, active) \ Bot_FL" using b_in by simp have simp_snd_lmap: "lhd (lmap snd Ns) = snd (lhd Ns)" by (rule llist.map_sel(1)[OF chain_not_lnull[OF deriv]]) have labeled_bot_entailed: "entails_\_L (snd (lhd Ns)) {(B, active)}" using labeled_entailment_lifting bot_entailed by fastforce have "fair (lmap snd Ns)" using lgc_fair[OF deriv init_state final_state no_prems_init_active final_schedule] . then show ?thesis using dynamically_complete_Liminf labeled_b_in lgc_to_red[OF deriv] labeled_bot_entailed simp_snd_lmap std_Red_I_eq by presburger qed (* thm:lgc-completeness *) theorem lgc_complete: assumes deriv: "chain (\LGC) Ns" and init_state: "active_subset (snd (lhd Ns)) = {}" and final_state: "passive_subset (Liminf_llist (lmap snd Ns)) = {}" and no_prems_init_active: "\\ \ Inf_F. prems_of \ = [] \ \ \ fst (lhd Ns)" and final_schedule: "Liminf_llist (lmap fst Ns) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\ (fst ` snd (lhd Ns)) {B}" shows "\i. enat i < llength Ns \ (\BL \ Bot_FL. BL \ snd (lnth Ns i))" proof - have "\BL\Bot_FL. BL \ Liminf_llist (lmap snd Ns)" using assms by (rule lgc_complete_Liminf) then show ?thesis unfolding Liminf_llist_def by auto qed end end