diff --git a/thys/Case_Labeling/Examples/Hoare/Labeled_Hoare.thy b/thys/Case_Labeling/Examples/Hoare/Labeled_Hoare.thy --- a/thys/Case_Labeling/Examples/Hoare/Labeled_Hoare.thy +++ b/thys/Case_Labeling/Examples/Hoare/Labeled_Hoare.thy @@ -1,83 +1,83 @@ theory Labeled_Hoare imports "../../Case_Labeling" "HOL-Hoare.Hoare_Logic" begin subsection \A labeling VCG for HOL/Hoare\ context begin interpretation Labeling_Syntax . lemma LSeqRule: - assumes "C\IC,CT,OC1: Valid P c1 Q\" - and "C\Suc OC1,CT,OC: Valid Q c2 R\" - shows "C\IC,CT,OC: Valid P (Seq c1 c2) R\" + assumes "C\IC,CT,OC1: Valid P c1 a1 Q\" + and "C\Suc OC1,CT,OC: Valid Q c2 a2 R\" + shows "C\IC,CT,OC: Valid P (Seq c1 c2) (Aseq a1 a2) R\" using assms unfolding LABEL_simps by (rule SeqRule) lemma LSkipRule: assumes "V\(''weaken'', IC, []),CT: p \ q\" - shows "C\IC,CT,IC: Valid p SKIP q\" + shows "C\IC,CT,IC: Valid p SKIP a q\" using assms unfolding LABEL_simps by (rule SkipRule) lemmas LAbortRule = LSkipRule \ \dummy version\ lemma LBasicRule: assumes "V\(''basic'', IC, []),CT: p \ {s. f s \ q}\" - shows "C\IC,CT,IC: Valid p (Basic f) q\" + shows "C\IC,CT,IC: Valid p (Basic f) a q\" using assms unfolding LABEL_simps by (rule BasicRule) lemma LCondRule: fixes IC CT defines "CT' \ (''cond'', IC, []) # CT " assumes "V\(''vc'', IC, []),(''cond'', IC, []) # CT: p \ {s. (s \ b \ s \ w) \ (s \ b \ s \ w')}\" - and "C\Suc IC,(''then'', IC, []) # (''cond'', IC, []) # CT,OC1: Valid w c1 q\" - and "C\Suc OC1,(''else'', Suc OC1, []) # (''cond'', IC, []) # CT,OC: Valid w' c2 q\" - shows "C\IC,CT,OC: Valid p (Cond b c1 c2) q\" + and "C\Suc IC,(''then'', IC, []) # (''cond'', IC, []) # CT,OC1: Valid w c1 a1 q\" + and "C\Suc OC1,(''else'', Suc OC1, []) # (''cond'', IC, []) # CT,OC: Valid w' c2 a2 q\" + shows "C\IC,CT,OC: Valid p (Cond b c1 c2) (Acond a1 a2) q\" using assms(2-) unfolding LABEL_simps by (rule CondRule) lemma LWhileRule: fixes IC CT defines "CT' \ (''while'', IC, []) # CT" assumes "V\(''precondition'', IC, []),(''while'', IC, []) # CT: p \ i\" - and "C\Suc IC,(''invariant'', Suc IC, []) # (''while'', IC, []) # CT,OC: Valid (i \ b) c i\" + and "C\Suc IC,(''invariant'', Suc IC, []) # (''while'', IC, []) # CT,OC: Valid (i \ b) c (A 0) i\" and "V\(''postcondition'', IC, []),(''while'', IC, []) # CT: i \ - b \ q\" - shows "C\IC,CT,OC: Valid p (While b i v c) q\" + shows "C\IC,CT,OC: Valid p (While b c) (Awhile i v A) q\" using assms(2-) unfolding LABEL_simps by (rule WhileRule) lemma LABELs_to_prems: "(C\IC, CT, OC: True\ \ P) \ C\IC, CT, OC: P\" "(V\x, ct: True\ \ P) \ V\x, ct: P\" unfolding LABEL_simps by simp_all lemma LABELs_to_concl: "C\IC, CT, OC: True\ \ C\IC, CT, OC: P\ \ P" "V\x, ct: True\ \ V\x, ct: P\ \ P" unfolding LABEL_simps . end ML_file \labeled_hoare_tac.ML\ method_setup labeled_vcg = \ Scan.succeed (fn ctxt => SIMPLE_METHOD' (Labeled_Hoare.hoare_tac ctxt (K all_tac)))\ "verification condition generator" method_setup labeled_vcg_simp = \ Scan.succeed (fn ctxt => SIMPLE_METHOD' (Labeled_Hoare.hoare_tac ctxt (asm_full_simp_tac ctxt)))\ "verification condition generator" method_setup casified_vcg = \ Scan.lift (Casify.casify_options casify_defs) >> (fn opt => fn ctxt => Util.SIMPLE_METHOD_CASES ( HEADGOAL (Labeled_Hoare.hoare_tac ctxt (K all_tac)) THEN_CONTEXT Casify.casify_tac opt)) \ method_setup casified_vcg_simp = \ Scan.lift (Casify.casify_options casify_defs) >> (fn opt => fn ctxt => Util.SIMPLE_METHOD_CASES ( HEADGOAL (Labeled_Hoare.hoare_tac ctxt (asm_full_simp_tac ctxt)) THEN_CONTEXT Casify.casify_tac opt)) \ end diff --git a/thys/Case_Labeling/Examples/Hoare/labeled_hoare_tac.ML b/thys/Case_Labeling/Examples/Hoare/labeled_hoare_tac.ML --- a/thys/Case_Labeling/Examples/Hoare/labeled_hoare_tac.ML +++ b/thys/Case_Labeling/Examples/Hoare/labeled_hoare_tac.ML @@ -1,222 +1,222 @@ (* Title: labeled_hoare_tac.ML Author: Leonor Prensa Nieto & Tobias Nipkow & Lars Noschinski Derivation of the proof rules and, most importantly, the VCG tactic. *) signature LABELED_HOARE = sig val wrap_label_tac: Proof.context -> (int -> tactic) -> (int -> tactic) val hoare_rule_tac: Proof.context -> term list * thm -> (int -> tactic) -> bool -> int -> tactic val hoare_tac: Proof.context -> (int -> tactic) -> int -> tactic end; structure Labeled_Hoare: LABELED_HOARE = struct (*** The tactics ***) val to_prems_ths = @{thms LABELs_to_prems} val to_concl_ths = @{thms LABELs_to_concl} infix 0 THEN_ELSE'; fun (tac THEN_ELSE' (tac1, tac2)) x = tac x THEN_ELSE (tac1 x, tac2 x) fun wrap_label_tac ctxt tac = let fun wrap_tac i st = (resolve_tac ctxt to_prems_ths THEN_ELSE' (wrap_tac THEN_ALL_NEW eresolve_tac ctxt to_concl_ths, tac) ) i st in wrap_tac end (*****************************************************************************) (** The function Mset makes the theorem **) (** "?Mset <= {(x1,...,xn). ?P (x1,...,xn)} ==> ?Mset <= {s. ?P s}", **) (** where (x1,...,xn) are the variables of the particular program we are **) (** working on at the moment of the call **) (*****************************************************************************) local (** maps (%x1 ... xn. t) to [x1,...,xn] **) fun abs2list (Const (@{const_name case_prod}, _) $ Abs (x, T, t)) = Free (x, T) :: abs2list t | abs2list (Abs (x, T, _)) = [Free (x, T)] | abs2list _ = []; (** maps {(x1,...,xn). t} to [x1,...,xn] **) fun mk_vars (Const (@{const_name Collect},_) $ T) = abs2list T | mk_vars _ = []; (** abstraction of body over a tuple formed from a list of free variables. Types are also built **) fun mk_abstupleC [] body = absfree ("x", HOLogic.unitT) body | mk_abstupleC [v] body = absfree (dest_Free v) body | mk_abstupleC (v :: w) body = let val (x, T) = dest_Free v; val z = mk_abstupleC w body; val T2 = (case z of Abs (_, T, _) => T | Const (_, Type (_, [_, Type (_, [T, _])])) $ _ => T); in Const (@{const_name case_prod}, (T --> T2 --> HOLogic.boolT) --> HOLogic.mk_prodT (T, T2) --> HOLogic.boolT) $ absfree (x, T) z end; (** maps [x1,...,xn] to (x1,...,xn) and types**) fun mk_bodyC [] = HOLogic.unit | mk_bodyC [x] = x | mk_bodyC (x :: xs) = let val (_, T) = dest_Free x; val z = mk_bodyC xs; val T2 = (case z of Free (_, T) => T | Const (@{const_name Pair}, Type ("fun", [_, Type ("fun", [_, T])])) $ _ $ _ => T); in Const (@{const_name Pair}, [T, T2] ---> HOLogic.mk_prodT (T, T2)) $ x $ z end; (** maps a subgoal of the form: VARS x1 ... xn {._.} _ {._.} or to [x1,...,xn] **) fun get_vars c = let val d = Logic.strip_assums_concl c; - val Const _ $ pre $ _ $ _ = HOLogic.dest_Trueprop d; + val Const _ $ pre $ _ $ _ $ _ = HOLogic.dest_Trueprop d; in mk_vars pre end; fun mk_CollectC tm = let val T as Type ("fun",[t,_]) = fastype_of tm; in HOLogic.Collect_const t $ tm end; fun inclt ty = Const (@{const_name Orderings.less_eq}, [ty,ty] ---> HOLogic.boolT); in fun Mset ctxt prop = let val [(Mset, _), (P, _)] = Variable.variant_frees ctxt [] [("Mset", ()), ("P", ())]; val vars = get_vars prop; val varsT = fastype_of (mk_bodyC vars); val big_Collect = mk_CollectC (mk_abstupleC vars (Free (P, varsT --> HOLogic.boolT) $ mk_bodyC vars)); val small_Collect = mk_CollectC (Abs ("x", varsT, Free (P, varsT --> HOLogic.boolT) $ Bound 0)); val MsetT = fastype_of big_Collect; fun Mset_incl t = HOLogic.mk_Trueprop (inclt MsetT $ Free (Mset, MsetT) $ t); val impl = Logic.mk_implies (Mset_incl big_Collect, Mset_incl small_Collect); val th = Goal.prove ctxt [Mset, P] [] impl (fn _ => blast_tac ctxt 1); in (vars, th) end; end; (*****************************************************************************) (** Simplifying: **) (** Some useful lemmata, lists and simplification tactics to control which **) (** theorems are used to simplify at each moment, so that the original **) (** input does not suffer any unexpected transformation **) (*****************************************************************************) (**Simp_tacs**) fun before_set2pred_simp_tac ctxt = simp_tac (put_simpset HOL_basic_ss ctxt addsimps [Collect_conj_eq RS sym, @{thm Compl_Collect}]); fun split_simp_tac ctxt = simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm split_conv}]); (*****************************************************************************) (** set_to_pred_tac transforms sets inclusion into predicates implication, **) (** maintaining the original variable names. **) (** Ex. "{x. x=0} <= {x. x <= 1}" -set2pred-> "x=0 --> x <= 1" **) (** Subgoals containing intersections (A Int B) or complement sets (-A) **) (** are first simplified by "before_set2pred_simp_tac", that returns only **) (** subgoals of the form "{x. P x} <= {x. Q x}", which are easily **) (** transformed. **) (** This transformation may solve very easy subgoals due to a ligth **) (** simplification done by (split_all_tac) **) (*****************************************************************************) fun set_to_pred_tac ctxt var_names = SUBGOAL (fn (_, i) => before_set2pred_simp_tac ctxt i THEN_MAYBE EVERY [ resolve_tac ctxt [subsetI] i, resolve_tac ctxt [CollectI] i, dresolve_tac ctxt [CollectD] i, TRY (split_all_tac ctxt i) THEN_MAYBE (rename_tac var_names i THEN full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm split_conv}]) i)]); (*******************************************************************************) (** basic_simp_tac is called to simplify all verification conditions. It does **) (** a light simplification by applying "mem_Collect_eq", then it calls **) (** max_simp_tac, which solves subgoals of the form "A <= A", **) (** and transforms any other into predicates, applying then **) (** the tactic chosen by the user, which may solve the subgoal completely. **) (*******************************************************************************) fun max_simp_tac ctxt var_names tac = FIRST' [resolve_tac ctxt [subset_refl], set_to_pred_tac ctxt var_names THEN_MAYBE' tac]; fun basic_simp_tac ctxt var_names tac = wrap_label_tac ctxt ( simp_tac (put_simpset HOL_basic_ss ctxt addsimps [mem_Collect_eq, @{thm split_conv}] addsimprocs [Record.simproc]) THEN_MAYBE' max_simp_tac ctxt var_names tac ); (** hoare_rule_tac **) fun hoare_rule_tac ctxt (vars, Mlem) tac = let val var_names = map (fst o dest_Free) vars; fun wlp_tac i = resolve_tac ctxt @{thms LSeqRule} i THEN rule_tac false (i + 1) and rule_tac pre_cond i st = st |> (*abstraction over st prevents looping*) ((wlp_tac i THEN rule_tac pre_cond i) ORELSE TRY (FIRST [ resolve_tac ctxt @{thms LSkipRule} i, resolve_tac ctxt @{thms LAbortRule} i, EVERY [ resolve_tac ctxt @{thms LBasicRule} i, wrap_label_tac ctxt (resolve_tac ctxt [Mlem]) i, split_simp_tac ctxt i], EVERY [ resolve_tac ctxt @{thms LCondRule} i, rule_tac false (i + 2), rule_tac false (i + 1)], EVERY [ resolve_tac ctxt @{thms LWhileRule} i, basic_simp_tac ctxt var_names tac (i + 2), rule_tac true (i + 1)]] THEN (if pre_cond then basic_simp_tac ctxt var_names tac i else wrap_label_tac ctxt (resolve_tac ctxt [subset_refl]) i) ) ); in rule_tac end; (** tac is the tactic the user chooses to solve or simplify **) (** the final verification conditions **) fun hoare_tac ctxt tac = SUBGOAL (fn (goal, i) => let val mset = Mset ctxt goal in SELECT_GOAL (resolve_tac ctxt @{thms Initial_Label} 1 THEN hoare_rule_tac ctxt mset tac true 1) i end); end; diff --git a/thys/Relational_Disjoint_Set_Forests/Disjoint_Set_Forests.thy b/thys/Relational_Disjoint_Set_Forests/Disjoint_Set_Forests.thy --- a/thys/Relational_Disjoint_Set_Forests/Disjoint_Set_Forests.thy +++ b/thys/Relational_Disjoint_Set_Forests/Disjoint_Set_Forests.thy @@ -1,2312 +1,2312 @@ (* Title: Disjoint-Set Forests Author: Walter Guttmann Maintainer: Walter Guttmann *) theory Disjoint_Set_Forests imports "HOL-Hoare.Hoare_Logic" Stone_Kleene_Relation_Algebras.Kleene_Relation_Algebras begin no_notation trancl ("(_\<^sup>+)" [1000] 999) text \ An arc in a Stone relation algebra corresponds to an atom in a relation algebra and represents a single edge in a graph. A point represents a set of nodes. A rectangle represents the Cartesian product of two sets of nodes \cite{BerghammerStruth2010}. \ context times_top begin abbreviation rectangle :: "'a \ bool" where "rectangle x \ x * top * x = x" end context stone_relation_algebra begin lemma arc_rectangle: "arc x \ rectangle x" using arc_top_arc by blast section \Relation-Algebraic Semantics of Associative Array Access\ text \ The following two operations model updating array $x$ at index $y$ to value $z$, and reading the content of array $x$ at index $y$, respectively. The read operation uses double brackets to avoid ambiguity with list syntax. The remainder of this section shows basic properties of these operations. \ abbreviation rel_update :: "'a \ 'a \ 'a \ 'a" ("(_[_\_])" [70, 65, 65] 61) where "x[y\z] \ (y \ z\<^sup>T) \ (-y \ x)" abbreviation rel_access :: "'a \ 'a \ 'a" ("(2_[[_]])" [70, 65] 65) where "x[[y]] \ x\<^sup>T * y" text \Theorem 1.1\ lemma update_univalent: assumes "univalent x" and "vector y" and "injective z" shows "univalent (x[y\z])" proof - have 1: "univalent (y \ z\<^sup>T)" using assms(3) inf_commute univalent_inf_closed by force have "(y \ z\<^sup>T)\<^sup>T * (-y \ x) = (y\<^sup>T \ z) * (-y \ x)" by (simp add: conv_dist_inf) also have "... = z * (y \ -y \ x)" by (metis assms(2) covector_inf_comp_3 inf.sup_monoid.add_assoc inf.sup_monoid.add_commute) finally have 2: "(y \ z\<^sup>T)\<^sup>T * (-y \ x) = bot" by simp have 3: "vector (-y)" using assms(2) vector_complement_closed by simp have "(-y \ x)\<^sup>T * (y \ z\<^sup>T) = (-y\<^sup>T \ x\<^sup>T) * (y \ z\<^sup>T)" by (simp add: conv_complement conv_dist_inf) also have "... = x\<^sup>T * (-y \ y \ z\<^sup>T)" using 3 by (metis (mono_tags, opaque_lifting) conv_complement covector_inf_comp_3 inf.sup_monoid.add_assoc inf.sup_monoid.add_commute) finally have 4: "(-y \ x)\<^sup>T * (y \ z\<^sup>T) = bot" by simp have 5: "univalent (-y \ x)" using assms(1) inf_commute univalent_inf_closed by fastforce have "(x[y\z])\<^sup>T * (x[y\z]) = (y \ z\<^sup>T)\<^sup>T * (x[y\z]) \ (-y \ x)\<^sup>T * (x[y\z])" by (simp add: conv_dist_sup mult_right_dist_sup) also have "... = (y \ z\<^sup>T)\<^sup>T * (y \ z\<^sup>T) \ (y \ z\<^sup>T)\<^sup>T * (-y \ x) \ (-y \ x)\<^sup>T * (y \ z\<^sup>T) \ (-y \ x)\<^sup>T * (-y \ x)" by (simp add: mult_left_dist_sup sup_assoc) finally show ?thesis using 1 2 4 5 by simp qed text \Theorem 1.2\ lemma update_total: assumes "total x" and "vector y" and "regular y" and "surjective z" shows "total (x[y\z])" proof - have "(x[y\z]) * top = x*top[y\top*z]" by (simp add: assms(2) semiring.distrib_right vector_complement_closed vector_inf_comp conv_dist_comp) also have "... = top[y\top]" using assms(1) assms(4) by simp also have "... = top" using assms(3) regular_complement_top by auto finally show ?thesis by simp qed text \Theorem 1.3\ lemma update_mapping: assumes "mapping x" and "vector y" and "regular y" and "bijective z" shows "mapping (x[y\z])" using assms update_univalent update_total by simp text \Theorem 1.4\ lemma read_injective: assumes "injective y" and "univalent x" shows "injective (x[[y]])" using assms injective_mult_closed univalent_conv_injective by blast text \Theorem 1.5\ lemma read_surjective: assumes "surjective y" and "total x" shows "surjective (x[[y]])" using assms surjective_mult_closed total_conv_surjective by blast text \Theorem 1.6\ lemma read_bijective: assumes "bijective y" and "mapping x" shows "bijective (x[[y]])" by (simp add: assms read_injective read_surjective) text \Theorem 1.7\ lemma read_point: assumes "point p" and "mapping x" shows "point (x[[p]])" using assms comp_associative read_injective read_surjective by auto text \Theorem 1.8\ lemma update_postcondition: assumes "point x" "point y" shows "x \ p = x * y\<^sup>T \ p[[x]] = y" apply (rule iffI) subgoal by (metis assms comp_associative conv_dist_comp conv_involutive covector_inf_comp_3 equivalence_top_closed vector_covector) subgoal apply (rule order.antisym) subgoal by (metis assms conv_dist_comp conv_involutive inf.boundedI inf.cobounded1 vector_covector vector_restrict_comp_conv) subgoal by (smt assms comp_associative conv_dist_comp conv_involutive covector_restrict_comp_conv dense_conv_closed equivalence_top_closed inf.boundedI shunt_mapping vector_covector preorder_idempotent) done done text \Back and von Wright's array independence requirements \cite{BackWright1998}, later also lens laws \cite{FosterGreenwaldMoorePierceSchmitt2007}\ text \Theorem 2.1\ lemma put_get: assumes "vector y" "surjective y" "vector z" shows "(x[y\z])[[y]] = z" proof - have "(x[y\z])[[y]] = (y\<^sup>T \ z) * y \ (-y\<^sup>T \ x\<^sup>T) * y" by (simp add: conv_complement conv_dist_inf conv_dist_sup mult_right_dist_sup) also have "... = z * y" proof - have "(-y\<^sup>T \ x\<^sup>T) * y = bot" by (metis assms(1) covector_inf_comp_3 inf_commute conv_complement mult_right_zero p_inf vector_complement_closed) thus ?thesis by (simp add: assms covector_inf_comp_3 inf_commute) qed also have "... = z" by (metis assms(2,3) mult_assoc) finally show ?thesis . qed text \Theorem 2.3\ lemma put_put: "(x[y\z])[y\w] = x[y\w]" by (metis inf_absorb2 inf_commute inf_le1 inf_sup_distrib1 maddux_3_13 sup_inf_absorb) text \Theorem 2.5\ lemma get_put: assumes "point y" shows "x[y\x[[y]]] = x" proof - have "x[y\x[[y]]] = (y \ y\<^sup>T * x) \ (-y \ x)" by (simp add: conv_dist_comp) also have "... = (y \ x) \ (-y \ x)" proof - have "y \ y\<^sup>T * x = y \ x" proof (rule order.antisym) have "y \ y\<^sup>T * x = (y \ y\<^sup>T) * x" by (simp add: assms vector_inf_comp) also have "(y \ y\<^sup>T) * x = y * y\<^sup>T * x" by (simp add: assms vector_covector) also have "... \ x" using assms comp_isotone by fastforce finally show "y \ y\<^sup>T * x \ y \ x" by simp have "y \ x \ y\<^sup>T * x" by (simp add: assms vector_restrict_comp_conv) thus "y \ x \ y \ y\<^sup>T * x" by simp qed thus ?thesis by simp qed also have "... = x" proof - have "regular y" using assms bijective_regular by blast thus ?thesis by (metis inf.sup_monoid.add_commute maddux_3_11_pp) qed finally show ?thesis . qed lemma update_inf: "u \ y \ (x[y\z]) \ u = z\<^sup>T \ u" by (smt comp_inf.mult_right_dist_sup comp_inf.semiring.mult_zero_right inf.left_commute inf.sup_monoid.add_assoc inf_absorb2 p_inf sup_bot_right inf.sup_monoid.add_commute) lemma update_inf_same: "(x[y\z]) \ y = z\<^sup>T \ y" by (simp add: update_inf) lemma update_inf_different: "u \ -y \ (x[y\z]) \ u = x \ u" by (smt inf.right_idem inf.sup_monoid.add_commute inf.sup_relative_same_increasing inf_import_p maddux_3_13 sup.cobounded2 update_inf_same) end section \Relation-Algebraic Semantics of Disjoint-Set Forests\ text \ A disjoint-set forest represents a partition of a set into equivalence classes. We take the represented equivalence relation as the semantics of a forest. It is obtained by operation \fc\ below. Additionally, operation \wcc\ giving the weakly connected components of a graph will be used for the semantics of the union of two disjoint sets. Finally, operation \root\ yields the root of a component tree, that is, the representative of a set containing a given element. This section defines these operations and derives their properties. \ context stone_kleene_relation_algebra begin text \Theorem 5.2\ lemma omit_redundant_points: assumes "point p" shows "p \ x\<^sup>\ = (p \ 1) \ (p \ x) * (-p \ x)\<^sup>\" proof (rule order.antisym) let ?p = "p \ 1" have "?p * x * (-p \ x)\<^sup>\ * ?p \ ?p * top * ?p" by (metis comp_associative mult_left_isotone mult_right_isotone top.extremum) also have "... \ ?p" by (simp add: assms injective_codomain vector_inf_one_comp) finally have "?p * x * (-p \ x)\<^sup>\ * ?p * x \ ?p * x" using mult_left_isotone by blast hence "?p * x * (-p \ x)\<^sup>\ * (p \ x) \ ?p * x" by (simp add: assms comp_associative vector_inf_one_comp) also have 1: "... \ ?p * x * (-p \ x)\<^sup>\" using mult_right_isotone star.circ_reflexive by fastforce finally have "?p * x * (-p \ x)\<^sup>\ * (p \ x) \ ?p * x * (-p \ x)\<^sup>\ * (-p \ x) \ ?p * x * (-p \ x)\<^sup>\" by (simp add: mult_right_isotone star.circ_plus_same star.left_plus_below_circ mult_assoc) hence "?p * x * (-p \ x)\<^sup>\ * ((p \ -p) \ x) \ ?p * x * (-p \ x)\<^sup>\" by (simp add: comp_inf.mult_right_dist_sup mult_left_dist_sup) hence "?p * x * (-p \ x)\<^sup>\ * x \ ?p * x * (-p \ x)\<^sup>\" by (metis assms bijective_regular inf.absorb2 inf.cobounded1 inf.sup_monoid.add_commute shunting_p) hence "?p * x * (-p \ x)\<^sup>\ * x \ ?p * x \ ?p * x * (-p \ x)\<^sup>\" using 1 by simp hence "?p * (1 \ x * (-p \ x)\<^sup>\) * x \ ?p * x * (-p \ x)\<^sup>\" by (simp add: comp_associative mult_left_dist_sup mult_right_dist_sup) also have "... \ ?p * (1 \ x * (-p \ x)\<^sup>\)" by (simp add: comp_associative mult_right_isotone) finally have "?p * x\<^sup>\ \ ?p * (1 \ x * (-p \ x)\<^sup>\)" using star_right_induct by (meson dual_order.trans le_supI mult_left_sub_dist_sup_left mult_sub_right_one) also have "... = ?p \ ?p * x * (-p \ x)\<^sup>\" by (simp add: comp_associative semiring.distrib_left) finally show "p \ x\<^sup>\ \ ?p \ (p \ x) * (-p \ x)\<^sup>\" by (simp add: assms vector_inf_one_comp) show "?p \ (p \ x) * (-p \ x)\<^sup>\ \ p \ x\<^sup>\" by (metis assms comp_isotone inf.boundedI inf.cobounded1 inf.coboundedI2 inf.sup_monoid.add_commute le_supI star.circ_increasing star.circ_transitive_equal star_isotone star_left_unfold_equal sup.cobounded1 vector_export_comp) qed text \Weakly connected components\ abbreviation "wcc x \ (x \ x\<^sup>T)\<^sup>\" text \Theorem 7.1\ lemma wcc_equivalence: "equivalence (wcc x)" apply (intro conjI) subgoal by (simp add: star.circ_reflexive) subgoal by (simp add: star.circ_transitive_equal) subgoal by (simp add: conv_dist_sup conv_star_commute sup_commute) done text \Theorem 7.2\ lemma wcc_increasing: "x \ wcc x" by (simp add: star.circ_sub_dist_1) lemma wcc_isotone: "x \ y \ wcc x \ wcc y" using conv_isotone star_isotone sup_mono by blast lemma wcc_idempotent: "wcc (wcc x) = wcc x" using star_involutive wcc_equivalence by auto text \Theorem 7.3\ lemma wcc_below_wcc: "x \ wcc y \ wcc x \ wcc y" using wcc_idempotent wcc_isotone by fastforce text \Theorem 7.4\ lemma wcc_bot: "wcc bot = 1" by (simp add: star.circ_zero) lemma wcc_one: "wcc 1 = 1" by (simp add: star_one) text \Theorem 7.5\ lemma wcc_top: "wcc top = top" by (simp add: star.circ_top) text \Theorem 7.6\ lemma wcc_with_loops: "wcc x = wcc (x \ 1)" by (metis conv_dist_sup star_decompose_1 star_sup_one sup_commute symmetric_one_closed) lemma wcc_without_loops: "wcc x = wcc (x \ -1)" by (metis conv_star_commute star_sum reachable_without_loops) lemma forest_components_wcc: "injective x \ wcc x = forest_components x" by (simp add: cancel_separate_1) text \Theorem 7.8\ lemma wcc_sup_wcc: "wcc (x \ y) = wcc (x \ wcc y)" - by (smt (verit, del_insts) le_sup_iff order.antisym sup_right_divisibility wcc_below_wcc wcc_increasing wcc_isotone) + by (smt (verit, ccfv_SIG) le_sup_iff order.antisym sup_right_divisibility wcc_below_wcc wcc_increasing) text \Components of a forest, which is represented using edges directed towards the roots\ abbreviation "fc x \ x\<^sup>\ * x\<^sup>T\<^sup>\" text \Theorem 3.1\ lemma fc_equivalence: "univalent x \ equivalence (fc x)" apply (intro conjI) subgoal by (simp add: reflexive_mult_closed star.circ_reflexive) subgoal by (metis cancel_separate_1 order.eq_iff star.circ_transitive_equal) subgoal by (simp add: conv_dist_comp conv_star_commute) done text \Theorem 3.2\ lemma fc_increasing: "x \ fc x" by (metis le_supE mult_left_isotone star.circ_back_loop_fixpoint star.circ_increasing) text \Theorem 3.3\ lemma fc_isotone: "x \ y \ fc x \ fc y" by (simp add: comp_isotone conv_isotone star_isotone) text \Theorem 3.4\ lemma fc_idempotent: "univalent x \ fc (fc x) = fc x" by (metis fc_equivalence cancel_separate_1 star.circ_transitive_equal star_involutive) text \Theorem 3.5\ lemma fc_star: "univalent x \ (fc x)\<^sup>\ = fc x" using fc_equivalence fc_idempotent star.circ_transitive_equal by simp lemma fc_plus: "univalent x \ (fc x)\<^sup>+ = fc x" by (metis fc_star star.circ_decompose_9) text \Theorem 3.6\ lemma fc_bot: "fc bot = 1" by (simp add: star.circ_zero) lemma fc_one: "fc 1 = 1" by (simp add: star_one) text \Theorem 3.7\ lemma fc_top: "fc top = top" by (simp add: star.circ_top) text \Theorem 7.7\ lemma fc_wcc: "univalent x \ wcc x = fc x" by (simp add: fc_star star_decompose_1) lemma fc_via_root: assumes "total (p\<^sup>\ * (p \ 1))" shows "fc p = p\<^sup>\ * (p \ 1) * p\<^sup>T\<^sup>\" proof (rule order.antisym) have "1 \ p\<^sup>\ * (p \ 1) * p\<^sup>T\<^sup>\" by (smt assms comp_associative conv_dist_comp conv_star_commute coreflexive_idempotent coreflexive_symmetric inf.cobounded2 total_var) hence "fc p \ p\<^sup>\ * p\<^sup>\ * (p \ 1) * p\<^sup>T\<^sup>\ * p\<^sup>T\<^sup>\" by (metis comp_right_one mult_left_isotone mult_right_isotone mult_assoc) thus "fc p \ p\<^sup>\ * (p \ 1) * p\<^sup>T\<^sup>\" by (simp add: star.circ_transitive_equal mult_assoc) show "p\<^sup>\ * (p \ 1) * p\<^sup>T\<^sup>\ \ fc p" by (metis comp_isotone inf.cobounded2 mult_1_right order.refl) qed text \Theorem 5.1\ lemma update_acyclic_1: assumes "acyclic (p \ -1)" and "point y" and "vector w" and "w \ p\<^sup>\ * y" shows "acyclic ((p[w\y]) \ -1)" proof - let ?p = "p[w\y]" have "w * y\<^sup>T \ p\<^sup>\" using assms(2,4) shunt_bijective by blast hence "w * y\<^sup>T \ (p \ -1)\<^sup>\" using reachable_without_loops by auto hence "w * y\<^sup>T \ -1 \ (p \ -1)\<^sup>\ \ -1" by (simp add: inf.coboundedI2 inf.sup_monoid.add_commute) also have "... \ (p \ -1)\<^sup>+" by (simp add: star_plus_without_loops) finally have 1: "w \ y\<^sup>T \ -1 \ (p \ -1)\<^sup>+" using assms(2,3) vector_covector by auto have "?p \ -1 = (w \ y\<^sup>T \ -1) \ (-w \ p \ -1)" by (simp add: inf_sup_distrib2) also have "... \ (p \ -1)\<^sup>+ \ (-w \ p \ -1)" using 1 sup_left_isotone by blast also have "... \ (p \ -1)\<^sup>+ \ (p \ -1)" using comp_inf.mult_semi_associative sup_right_isotone by auto also have "... = (p \ -1)\<^sup>+" by (metis star.circ_back_loop_fixpoint sup.right_idem) finally have "(?p \ -1)\<^sup>+ \ (p \ -1)\<^sup>+" by (metis comp_associative comp_isotone star.circ_transitive_equal star.left_plus_circ star_isotone) also have "... \ -1" using assms(1) by blast finally show ?thesis by simp qed lemma update_acyclic_2: assumes "acyclic (p \ -1)" and "point y" and "point x" and "y \ p\<^sup>T\<^sup>\ * x" and "univalent p" and "p\<^sup>T * y \ y" shows "acyclic ((p[p\<^sup>T\<^sup>\*x\y]) \ -1)" proof - have "p\<^sup>T * p\<^sup>\ * y = p\<^sup>T * p * p\<^sup>\ * y \ p\<^sup>T * y" by (metis comp_associative mult_left_dist_sup star.circ_loop_fixpoint) also have "... \ p\<^sup>\ * y" by (metis assms(5,6) comp_right_one le_supI le_supI2 mult_left_isotone star.circ_loop_fixpoint star.circ_transitive_equal) finally have "p\<^sup>T\<^sup>\ * x \ p\<^sup>\ * y" by (simp add: assms(2-4) bijective_reverse conv_star_commute comp_associative star_left_induct) thus ?thesis by (simp add: assms(1-3) vector_mult_closed update_acyclic_1) qed lemma update_acyclic_3: assumes "acyclic (p \ -1)" and "point y" and "point w" and "y \ p\<^sup>T\<^sup>\ * w" shows "acyclic ((p[w\y]) \ -1)" by (simp add: assms bijective_reverse conv_star_commute update_acyclic_1) lemma rectangle_star_rectangle: "rectangle a \ a * x\<^sup>\ * a \ a" by (metis mult_left_isotone mult_right_isotone top.extremum) lemma arc_star_arc: "arc a \ a * x\<^sup>\ * a \ a" using arc_top_arc rectangle_star_rectangle by blast lemma star_rectangle_decompose: assumes "rectangle a" shows "(a \ x)\<^sup>\ = x\<^sup>\ \ x\<^sup>\ * a * x\<^sup>\" proof (rule order.antisym) have 1: "1 \ x\<^sup>\ \ x\<^sup>\ * a * x\<^sup>\" by (simp add: star.circ_reflexive sup.coboundedI1) have "(a \ x) * (x\<^sup>\ \ x\<^sup>\ * a * x\<^sup>\) = a * x\<^sup>\ \ a * x\<^sup>\ * a * x\<^sup>\ \ x\<^sup>+ \ x\<^sup>+ * a * x\<^sup>\" by (metis comp_associative semiring.combine_common_factor semiring.distrib_left sup_commute) also have "... = a * x\<^sup>\ \ x\<^sup>+ \ x\<^sup>+ * a * x\<^sup>\" using assms rectangle_star_rectangle by (simp add: mult_left_isotone sup_absorb1) also have "... = x\<^sup>+ \ x\<^sup>\ * a * x\<^sup>\" by (metis comp_associative star.circ_loop_fixpoint sup_assoc sup_commute) also have "... \ x\<^sup>\ \ x\<^sup>\ * a * x\<^sup>\" using star.left_plus_below_circ sup_left_isotone by auto finally show "(a \ x)\<^sup>\ \ x\<^sup>\ \ x\<^sup>\ * a * x\<^sup>\" using 1 by (metis comp_right_one le_supI star_left_induct) next show "x\<^sup>\ \ x\<^sup>\ * a * x\<^sup>\ \ (a \ x)\<^sup>\" by (metis comp_isotone le_supE le_supI star.circ_increasing star.circ_transitive_equal star_isotone sup_ge2) qed lemma star_arc_decompose: "arc a \ (a \ x)\<^sup>\ = x\<^sup>\ \ x\<^sup>\ * a * x\<^sup>\" using arc_top_arc star_rectangle_decompose by blast lemma plus_rectangle_decompose: assumes "rectangle a" shows "(a \ x)\<^sup>+ = x\<^sup>+ \ x\<^sup>\ * a * x\<^sup>\" proof - have "(a \ x)\<^sup>+ = (a \ x) * (x\<^sup>\ \ x\<^sup>\ * a * x\<^sup>\)" by (simp add: assms star_rectangle_decompose) also have "... = a * x\<^sup>\ \ a * x\<^sup>\ * a * x\<^sup>\ \ x\<^sup>+ \ x\<^sup>+ * a * x\<^sup>\" by (metis comp_associative semiring.combine_common_factor semiring.distrib_left sup_commute) also have "... = a * x\<^sup>\ \ x\<^sup>+ \ x\<^sup>+ * a * x\<^sup>\" using assms rectangle_star_rectangle by (simp add: mult_left_isotone sup_absorb1) also have "... = x\<^sup>+ \ x\<^sup>\ * a * x\<^sup>\" by (metis comp_associative star.circ_loop_fixpoint sup_assoc sup_commute) finally show ?thesis by simp qed text \Theorem 8.1\ lemma plus_arc_decompose: "arc a \ (a \ x)\<^sup>+ = x\<^sup>+ \ x\<^sup>\ * a * x\<^sup>\" using arc_top_arc plus_rectangle_decompose by blast text \Theorem 8.2\ lemma update_acyclic_4: assumes "acyclic (p \ -1)" and "point y" and "point w" and "y \ p\<^sup>\ * w = bot" shows "acyclic ((p[w\y]) \ -1)" proof - let ?p = "p[w\y]" have "y\<^sup>T * p\<^sup>\ * w \ -1" using assms(4) comp_associative pseudo_complement schroeder_3_p by auto hence 1: "p\<^sup>\ * w * y\<^sup>T * p\<^sup>\ \ -1" by (metis comp_associative comp_commute_below_diversity star.circ_transitive_equal) have "?p \ -1 \ (w \ y\<^sup>T) \ (p \ -1)" by (metis comp_inf.mult_right_dist_sup dual_order.trans inf.cobounded1 inf.coboundedI2 inf.sup_monoid.add_assoc le_supI sup.cobounded1 sup_ge2) also have "... = w * y\<^sup>T \ (p \ -1)" using assms(2,3) by (simp add: vector_covector) finally have "(?p \ -1)\<^sup>+ \ (w * y\<^sup>T \ (p \ -1))\<^sup>+" by (simp add: comp_isotone star_isotone) also have "... = (p \ -1)\<^sup>+ \ (p \ -1)\<^sup>\ * w * y\<^sup>T * (p \ -1)\<^sup>\" using assms(2,3) plus_arc_decompose points_arc by (simp add: comp_associative) also have "... \ (p \ -1)\<^sup>+ \ p\<^sup>\ * w * y\<^sup>T * p\<^sup>\" using reachable_without_loops by auto also have "... \ -1" using 1 assms(1) by simp finally show ?thesis by simp qed text \Theorem 8.3\ lemma update_acyclic_5: assumes "acyclic (p \ -1)" and "point w" shows "acyclic ((p[w\w]) \ -1)" proof - let ?p = "p[w\w]" have "?p \ -1 \ (w \ w\<^sup>T \ -1) \ (p \ -1)" by (metis comp_inf.mult_right_dist_sup inf.cobounded2 inf.sup_monoid.add_assoc sup_right_isotone) also have "... = p \ -1" using assms(2) by (metis comp_inf.covector_complement_closed equivalence_top_closed inf_top.right_neutral maddux_3_13 pseudo_complement regular_closed_top regular_one_closed vector_covector vector_top_closed) finally show ?thesis using assms(1) acyclic_down_closed by blast qed text \Root of the tree containing point $x$ in the disjoint-set forest $p$\ abbreviation "root p x \ p\<^sup>T\<^sup>\ * x \ (p \ 1) * top" text \Theorem 4.1\ lemma root_var: "root p x = (p \ 1) * p\<^sup>T\<^sup>\ * x" by (simp add: coreflexive_comp_top_inf inf_commute mult_assoc) text \Theorem 4.2\ lemma root_successor_loop: "univalent p \ root p x = p[[root p x]]" by (metis root_var injective_codomain comp_associative conv_dist_inf coreflexive_symmetric equivalence_one_closed inf.cobounded2 univalent_conv_injective) lemma root_transitive_successor_loop: "univalent p \ root p x = p\<^sup>T\<^sup>\ * (root p x)" by (metis mult_1_right star_one star_simulation_right_equal root_successor_loop) text \The root of a tree of a node belongs to the same component as the node.\ lemma root_same_component: "injective x \ root p x * x\<^sup>T \ fc p" by (metis comp_associative coreflexive_comp_top_inf eq_refl inf.sup_left_divisibility inf.sup_monoid.add_commute mult_isotone star.circ_circ_mult star.circ_right_top star.circ_transitive_equal star_one star_outer_increasing test_preserves_equation top_greatest) lemma root_vector: "vector x \ vector (root p x)" by (simp add: vector_mult_closed root_var) lemma root_vector_inf: "vector x \ root p x * x\<^sup>T = root p x \ x\<^sup>T" by (simp add: vector_covector root_vector) lemma root_same_component_vector: "injective x \ vector x \ root p x \ x\<^sup>T \ fc p" using root_same_component root_vector_inf by fastforce lemma univalent_root_successors: assumes "univalent p" shows "(p \ 1) * p\<^sup>\ = p \ 1" proof (rule order.antisym) have "(p \ 1) * p \ p \ 1" by (smt assms(1) comp_inf.mult_semi_associative conv_dist_comp conv_dist_inf conv_order equivalence_one_closed inf.absorb1 inf.sup_monoid.add_assoc injective_codomain) thus "(p \ 1) * p\<^sup>\ \ p \ 1" using star_right_induct_mult by blast show "p \ 1 \ (p \ 1) * p\<^sup>\" by (metis coreflexive_idempotent inf_le1 inf_le2 mult_right_isotone order_trans star.circ_increasing) qed lemma same_component_same_root_sub: assumes "univalent p" and "bijective y" and "x * y\<^sup>T \ fc p" shows "root p x \ root p y" proof - have "root p x * y\<^sup>T \ (p \ 1) * p\<^sup>T\<^sup>\" by (smt assms(1,3) mult_isotone mult_assoc root_var fc_plus fc_star order.eq_iff univalent_root_successors) thus ?thesis by (simp add: assms(2) shunt_bijective root_var) qed lemma same_component_same_root: assumes "univalent p" and "bijective x" and "bijective y" and "x * y\<^sup>T \ fc p" shows "root p x = root p y" proof (rule order.antisym) show "root p x \ root p y" using assms(1,3,4) same_component_same_root_sub by blast have "y * x\<^sup>T \ fc p" using assms(1,4) fc_equivalence conv_dist_comp conv_isotone by fastforce thus "root p y \ root p x" using assms(1,2) same_component_same_root_sub by blast qed lemma same_roots_sub: assumes "univalent q" and "p \ 1 \ q \ 1" and "fc p \ fc q" shows "p\<^sup>\ * (p \ 1) \ q\<^sup>\ * (q \ 1)" proof - have "p\<^sup>\ * (p \ 1) \ p\<^sup>\ * (q \ 1)" using assms(2) mult_right_isotone by auto also have "... \ fc p * (q \ 1)" using mult_left_isotone mult_right_isotone star.circ_reflexive by fastforce also have "... \ fc q * (q \ 1)" by (simp add: assms(3) mult_left_isotone) also have "... = q\<^sup>\ * (q \ 1)" by (metis assms(1) conv_dist_comp conv_dist_inf conv_star_commute inf_commute one_inf_conv symmetric_one_closed mult_assoc univalent_root_successors) finally show ?thesis . qed lemma same_roots: assumes "univalent p" and "univalent q" and "p \ 1 = q \ 1" and "fc p = fc q" shows "p\<^sup>\ * (p \ 1) = q\<^sup>\ * (q \ 1)" by (smt assms conv_dist_comp conv_dist_inf conv_involutive conv_star_commute inf_commute one_inf_conv symmetric_one_closed root_var univalent_root_successors) lemma same_root: assumes "univalent p" and "univalent q" and "p \ 1 = q \ 1" and "fc p = fc q" shows "root p x = root q x" by (metis assms mult_assoc root_var univalent_root_successors) lemma loop_root: assumes "injective x" and "x = p[[x]]" shows "x = root p x" proof (rule order.antisym) have "x \ p * x" by (metis assms comp_associative comp_right_one conv_order equivalence_one_closed ex231c inf.orderE inf.sup_monoid.add_commute mult_left_isotone mult_right_isotone one_inf_conv) hence "x = (p \ 1) * x" by (simp add: assms(1) inf_absorb2 injective_comp_right_dist_inf) thus "x \ root p x" by (metis assms(2) coreflexive_comp_top_inf inf.boundedI inf.cobounded1 inf.cobounded2 mult_isotone star.circ_increasing) next show "root p x \ x" using assms(2) le_infI1 star_left_induct_mult by auto qed lemma one_loop: assumes "acyclic (p \ -1)" and "univalent p" shows "(p \ 1) * (p\<^sup>T \ -1)\<^sup>+ * (p \ 1) = bot" proof - have "p\<^sup>T\<^sup>+ \ (p \ 1) * top * (p \ 1) = (p \ 1) * p\<^sup>T\<^sup>+ * (p \ 1)" by (simp add: test_comp_test_top) also have "... \ p\<^sup>T\<^sup>\ * (p \ 1)" by (simp add: inf.coboundedI2 mult_left_isotone star.circ_mult_upper_bound star.circ_reflexive star.left_plus_below_circ) also have "... = p \ 1" by (metis assms(2) conv_dist_comp conv_dist_inf conv_star_commute inf_commute one_inf_conv symmetric_one_closed univalent_root_successors) also have "... \ 1" by simp finally have "(p \ 1) * top * (p \ 1) \ -(p\<^sup>T\<^sup>+ \ -1)" using p_antitone p_antitone_iff p_shunting_swap by blast hence "(p \ 1)\<^sup>T * (p\<^sup>T\<^sup>+ \ -1) * (p \ 1)\<^sup>T \ bot" using triple_schroeder_p p_top by blast hence "(p \ 1) * (p\<^sup>T\<^sup>+ \ -1) * (p \ 1) = bot" by (simp add: coreflexive_symmetric le_bot) thus ?thesis by (smt assms(1) conv_complement conv_dist_comp conv_dist_inf conv_star_commute inf_absorb1 star.circ_plus_same symmetric_one_closed reachable_without_loops star_plus_without_loops) qed lemma root_root: "root p x = root p (root p x)" by (smt comp_associative comp_inf.mult_right_sub_dist_sup_right dual_order.eq_iff inf.cobounded1 inf.cobounded2 inf.orderE mult_right_isotone star.circ_loop_fixpoint star.circ_transitive_equal root_var) lemma loop_root_2: assumes "acyclic (p \ -1)" and "univalent p" and "injective x" and "x \ p\<^sup>T\<^sup>+ * x" shows "x = root p x" proof (rule order.antisym) have 1: "x = x \ -(-1 * x)" by (metis assms(3) comp_injective_below_complement inf.orderE mult_1_left regular_one_closed) have "x \ (p\<^sup>T \ -1)\<^sup>+ * x \ (p \ 1) * x" by (metis assms(4) inf_commute mult_right_dist_sup one_inf_conv plus_reachable_without_loops) also have "... \ -1 * x \ (p \ 1) * x" by (metis assms(1) conv_complement conv_dist_inf conv_isotone conv_plus_commute mult_left_isotone semiring.add_right_mono symmetric_one_closed) also have "... \ -1 * x \ root p x" using comp_isotone inf.coboundedI2 star.circ_reflexive sup_right_isotone by auto finally have "x \ (-1 * x \ root p x) \ -(-1 * x)" using 1 inf.boundedI inf.order_iff by blast also have "... \ root p x" using inf.sup_left_divisibility by auto finally show 2: "x \ root p x" . have "root p x = (p \ 1) * x \ (p \ 1) * (p\<^sup>T \ -1)\<^sup>+ * x" by (metis comp_associative mult_left_dist_sup star.circ_loop_fixpoint sup_commute reachable_without_loops root_var) also have "... \ x \ (p \ 1) * (p\<^sup>T \ -1)\<^sup>+ * root p x" using 2 by (metis coreflexive_comp_top_inf inf.cobounded2 mult_right_isotone semiring.add_mono) also have "... = x" by (metis assms(1,2) one_loop root_var mult_assoc semiring.mult_not_zero sup_bot_right) finally show "root p x \ x" . qed lemma path_compression_invariant_simplify: assumes "point w" and "p\<^sup>T\<^sup>+ * w \ -w" and "w \ y" shows "p[[w]] \ w" proof assume "p[[w]] = w" hence "w \ p\<^sup>T\<^sup>+ * w" by (metis comp_isotone eq_refl star.circ_mult_increasing) also have "... \ -w" by (simp add: assms(2)) finally have "w = bot" using inf.orderE by fastforce thus False using assms(1,3) le_bot by force qed end context stone_relation_algebra_tarski begin text \Theorem 5.4 \distinct_points\ has been moved to theory \Relation_Algebras\ in entry \Stone_Relation_Algebras\\ text \Back and von Wright's array independence requirements \cite{BackWright1998}\ text \Theorem 2.2\ lemma put_get_different_vector: assumes "vector y" "w \ -y" shows "(x[y\z])[[w]] = x[[w]]" proof - have "(x[y\z])[[w]] = (y\<^sup>T \ z) * w \ (-y\<^sup>T \ x\<^sup>T) * w" by (simp add: conv_complement conv_dist_inf conv_dist_sup mult_right_dist_sup) also have "... = z * (w \ y) \ x\<^sup>T * (w \ -y)" by (metis assms(1) conv_complement covector_inf_comp_3 inf_commute vector_complement_closed) also have "... = z * (w \ y) \ x\<^sup>T * w" by (simp add: assms(2) inf.absorb1) also have "... = z * bot \ x\<^sup>T * w" by (metis assms(2) comp_inf.semiring.mult_zero_right inf.absorb1 inf.sup_monoid.add_assoc p_inf) also have "... = x\<^sup>T * w" by simp finally show ?thesis . qed lemma put_get_different: assumes "point y" "point w" "w \ y" shows "(x[y\z])[[w]] = x[[w]]" proof - have "w \ y = bot" using assms distinct_points by simp hence "w \ -y" using pseudo_complement by simp thus ?thesis by (simp add: assms(1) assms(2) put_get_different_vector) qed text \Theorem 2.4\ lemma put_put_different_vector: assumes "vector y" "vector v" "v \ y = bot" shows "(x[y\z])[v\w] = (x[v\w])[y\z]" proof - have "(x[y\z])[v\w] = (v \ w\<^sup>T) \ (-v \ y \ z\<^sup>T) \ (-v \ -y \ x)" by (simp add: comp_inf.semiring.distrib_left inf_assoc sup_assoc) also have "... = (v \ w\<^sup>T) \ (y \ z\<^sup>T) \ (-v \ -y \ x)" by (metis assms(3) inf_commute inf_import_p p_inf selection_closed_id) also have "... = (y \ z\<^sup>T) \ (v \ w\<^sup>T) \ (-y \ -v \ x)" by (simp add: inf_commute sup_commute) also have "... = (y \ z\<^sup>T) \ (-y \ v \ w\<^sup>T) \ (-y \ -v \ x)" using assms distinct_points pseudo_complement inf.absorb2 by simp also have "... = (x[v\w])[y\z]" by (simp add: comp_inf.semiring.distrib_left inf_assoc sup_assoc) finally show ?thesis . qed lemma put_put_different: assumes "point y" "point v" "v \ y" shows "(x[y\z])[v\w] = (x[v\w])[y\z]" using assms distinct_points put_put_different_vector by blast end section \Verifying Operations on Disjoint-Set Forests\ text \ In this section we verify the make-set, find-set and union-sets operations of disjoint-set forests. We start by introducing syntax for updating arrays in programs. Updating the value at a given array index means updating the whole array. \ syntax "_rel_update" :: "idt \ 'a \ 'a \ 'b com" ("(2_[_] :=/ _)" [70, 65, 65] 61) translations "x[y] := z" => "(x := (y \ z\<^sup>T) \ (CONST uminus y \ x))" text \ The finiteness requirement in the following class is used for proving that the operations terminate. \ class finite_regular_p_algebra = p_algebra + assumes finite_regular: "finite { x . regular x }" class stone_kleene_relation_algebra_tarski_finite_regular = stone_kleene_relation_algebra_tarski + finite_regular_p_algebra begin subsection \Make-Set\ text \ We prove two correctness results about make-set. The first shows that the forest changes only to the extent of making one node the root of a tree. The second result adds that only singleton sets are created. \ definition "make_set_postcondition p x p0 \ x \ p = x * x\<^sup>T \ -x \ p = -x \ p0" theorem make_set: "VARS p [ point x \ p0 = p ] p[x] := x [ make_set_postcondition p x p0 ]" apply vcg_tc_simp by (simp add: make_set_postcondition_def inf_sup_distrib1 inf_assoc[THEN sym] vector_covector[THEN sym]) theorem make_set_2: "VARS p [ point x \ p0 = p \ p \ 1 ] p[x] := x [ make_set_postcondition p x p0 \ p \ 1 ]" proof vcg_tc fix p assume 1: "point x \ p0 = p \ p \ 1" show "make_set_postcondition (p[x\x]) x p0 \ p[x\x] \ 1" proof (rule conjI) show "make_set_postcondition (p[x\x]) x p0" using 1 by (simp add: make_set_postcondition_def inf_sup_distrib1 inf_assoc[THEN sym] vector_covector[THEN sym]) show "p[x\x] \ 1" using 1 by (metis coreflexive_sup_closed dual_order.trans inf.cobounded2 vector_covector) qed qed text \ The above total-correctness proof allows us to extract a function, which can be used in other implementations below. This is a technique of \cite{Guttmann2018c}. \ lemma make_set_exists: "point x \ \p' . make_set_postcondition p' x p" using tc_extract_function make_set by blast definition "make_set p x \ (SOME p' . make_set_postcondition p' x p)" lemma make_set_function: assumes "point x" and "p' = make_set p x" shows "make_set_postcondition p' x p" proof - let ?P = "\p' . make_set_postcondition p' x p" have "?P (SOME z . ?P z)" using assms(1) make_set_exists by (meson someI) thus ?thesis using assms(2) make_set_def by auto qed end subsection \Find-Set\ text \ Disjoint-set forests are represented by their parent mapping. It is a forest except each root of a component tree points to itself. We prove that find-set returns the root of the component tree of the given node. \ context pd_kleene_allegory begin abbreviation "disjoint_set_forest p \ mapping p \ acyclic (p \ -1)" end context stone_kleene_relation_algebra_tarski_finite_regular begin definition "find_set_precondition p x \ disjoint_set_forest p \ point x" definition "find_set_invariant p x y \ find_set_precondition p x \ point y \ y \ p\<^sup>T\<^sup>\ * x" definition "find_set_postcondition p x y \ point y \ y = root p x" lemma find_set_1: "find_set_precondition p x \ find_set_invariant p x x" apply (unfold find_set_invariant_def) using mult_left_isotone star.circ_reflexive find_set_precondition_def by fastforce lemma find_set_2: "find_set_invariant p x y \ y \ p[[y]] \ find_set_invariant p x (p[[y]]) \ card { z . regular z \ z \ p\<^sup>T\<^sup>\ * (p[[y]]) } < card { z . regular z \ z \ p\<^sup>T\<^sup>\ * y }" proof - let ?s = "{ z . regular z \ z \ p\<^sup>T\<^sup>\ * y }" let ?t = "{ z . regular z \ z \ p\<^sup>T\<^sup>\ * (p[[y]]) }" assume 1: "find_set_invariant p x y \ y \ p[[y]]" have 2: "point (p[[y]])" using 1 read_point find_set_invariant_def find_set_precondition_def by simp show "find_set_invariant p x (p[[y]]) \ card ?t < card ?s" proof (unfold find_set_invariant_def, intro conjI) show "find_set_precondition p x" using 1 find_set_invariant_def by simp show "vector (p[[y]])" using 2 by simp show "injective (p[[y]])" using 2 by simp show "surjective (p[[y]])" using 2 by simp show "p[[y]] \ p\<^sup>T\<^sup>\ * x" using 1 by (metis (opaque_lifting) find_set_invariant_def comp_associative comp_isotone star.circ_increasing star.circ_transitive_equal) show "card ?t < card ?s" proof - have 3: "(p\<^sup>T \ -1) * (p\<^sup>T \ -1)\<^sup>+ * y \ (p\<^sup>T \ -1)\<^sup>+ * y" by (simp add: mult_left_isotone mult_right_isotone star.left_plus_below_circ) have "p[[y]] = (p\<^sup>T \ 1) * y \ (p\<^sup>T \ -1) * y" by (metis maddux_3_11_pp mult_right_dist_sup regular_one_closed) also have "... \ ((p[[y]]) \ y) \ (p\<^sup>T \ -1) * y" by (metis comp_left_subdist_inf mult_1_left semiring.add_right_mono) also have "... = (p\<^sup>T \ -1) * y" using 1 2 find_set_invariant_def distinct_points by auto finally have 4: "(p\<^sup>T \ -1)\<^sup>\ * (p[[y]]) \ (p\<^sup>T \ -1)\<^sup>+ * y" using 3 by (metis inf.antisym_conv inf.eq_refl inf_le1 mult_left_isotone star_plus mult_assoc) hence "p\<^sup>T\<^sup>\ * (p[[y]]) \ p\<^sup>T\<^sup>\ * y" by (metis mult_isotone order_refl star.left_plus_below_circ star_plus mult_assoc) hence 5: "?t \ ?s" using order_trans by auto have 6: "y \ ?s" using 1 find_set_invariant_def bijective_regular mult_left_isotone star.circ_reflexive by fastforce have 7: "\ y \ ?t" proof assume "y \ ?t" hence "y \ (p\<^sup>T \ -1)\<^sup>+ * y" using 4 by (metis reachable_without_loops mem_Collect_eq order_trans) hence "y * y\<^sup>T \ (p\<^sup>T \ -1)\<^sup>+" using 1 find_set_invariant_def shunt_bijective by simp also have "... \ -1" using 1 by (metis (mono_tags, lifting) find_set_invariant_def find_set_precondition_def conv_dist_comp conv_dist_inf conv_isotone conv_star_commute equivalence_one_closed star.circ_plus_same symmetric_complement_closed) finally have "y \ -y" using schroeder_4_p by auto thus False using 1 by (metis find_set_invariant_def comp_inf.coreflexive_idempotent conv_complement covector_vector_comp inf.absorb1 inf.sup_monoid.add_commute pseudo_complement surjective_conv_total top.extremum vector_top_closed regular_closed_top) qed show "card ?t < card ?s" apply (rule psubset_card_mono) subgoal using finite_regular by simp subgoal using 5 6 7 by auto done qed qed qed lemma find_set_3: "find_set_invariant p x y \ y = p[[y]] \ find_set_postcondition p x y" proof - assume 1: "find_set_invariant p x y \ y = p[[y]]" show "find_set_postcondition p x y" proof (unfold find_set_postcondition_def, rule conjI) show "point y" using 1 find_set_invariant_def by simp show "y = root p x" proof (rule order.antisym) have "y * y\<^sup>T \ p" using 1 by (metis find_set_invariant_def find_set_precondition_def shunt_bijective shunt_mapping top_right_mult_increasing) hence "y * y\<^sup>T \ p \ 1" using 1 find_set_invariant_def le_infI by blast hence "y \ (p \ 1) * top" using 1 by (metis find_set_invariant_def order_lesseq_imp shunt_bijective top_right_mult_increasing mult_assoc) thus "y \ root p x" using 1 find_set_invariant_def by simp next have 2: "x \ p\<^sup>\ * y" using 1 find_set_invariant_def find_set_precondition_def bijective_reverse conv_star_commute by auto have "p\<^sup>T * p\<^sup>\ * y = p\<^sup>T * p * p\<^sup>\ * y \ (p[[y]])" by (metis comp_associative mult_left_dist_sup star.circ_loop_fixpoint) also have "... \ p\<^sup>\ * y \ y" using 1 by (metis find_set_invariant_def find_set_precondition_def comp_isotone mult_left_sub_dist_sup semiring.add_right_mono star.circ_back_loop_fixpoint star.circ_circ_mult star.circ_top star.circ_transitive_equal star_involutive star_one) also have "... = p\<^sup>\ * y" by (metis star.circ_loop_fixpoint sup.left_idem sup_commute) finally have 3: "p\<^sup>T\<^sup>\ * x \ p\<^sup>\ * y" using 2 by (simp add: comp_associative star_left_induct) have "p * y \ (p \ 1) * top = (p \ 1) * p * y" using comp_associative coreflexive_comp_top_inf inf_commute by auto also have "... \ p\<^sup>T * p * y" by (metis inf.cobounded2 inf.sup_monoid.add_commute mult_left_isotone one_inf_conv) also have "... \ y" using 1 find_set_invariant_def find_set_precondition_def mult_left_isotone by fastforce finally have 4: "p * y \ y \ -((p \ 1) * top)" using 1 by (metis find_set_invariant_def shunting_p bijective_regular) have "p\<^sup>T * (p \ 1) \ p\<^sup>T \ 1" using 1 by (metis find_set_invariant_def find_set_precondition_def N_top comp_isotone coreflexive_idempotent inf.cobounded2 inf.sup_monoid.add_commute inf_assoc one_inf_conv shunt_mapping) hence "p\<^sup>T * (p \ 1) * top \ (p \ 1) * top" using inf_commute mult_isotone one_inf_conv by auto hence "p * -((p \ 1) * top) \ -((p \ 1) * top)" by (metis comp_associative inf.sup_monoid.add_commute p_antitone p_antitone_iff schroeder_3_p) hence "p * y \ p * -((p \ 1) * top) \ y \ -((p \ 1) * top)" using 4 dual_order.trans le_supI sup_ge2 by blast hence "p * (y \ -((p \ 1) * top)) \ y \ -((p \ 1) * top)" by (simp add: mult_left_dist_sup) hence "p\<^sup>\ * y \ y \ -((p \ 1) * top)" by (simp add: star_left_induct) hence "p\<^sup>T\<^sup>\ * x \ y \ -((p \ 1) * top)" using 3 dual_order.trans by blast thus "root p x \ y" using 1 by (metis find_set_invariant_def shunting_p bijective_regular) qed qed qed theorem find_set: "VARS y [ find_set_precondition p x ] y := x; WHILE y \ p[[y]] INV { find_set_invariant p x y } VAR { card { z . regular z \ z \ p\<^sup>T\<^sup>\ * y } } DO y := p[[y]] OD [ find_set_postcondition p x y ]" apply vcg_tc_simp apply (fact find_set_1) apply (fact find_set_2) by (fact find_set_3) lemma find_set_exists: "find_set_precondition p x \ \y . find_set_postcondition p x y" using tc_extract_function find_set by blast text \ The root of a component tree is a point, that is, represents a singleton set of nodes. This could be proved from the definitions using Kleene-relation algebraic calculations. But they can be avoided because the property directly follows from the postcondition of the previous correctness proof. The corresponding algorithm shows how to obtain the root. We therefore have an essentially constructive proof of the following result. \ text \Theorem 4.3\ lemma root_point: "disjoint_set_forest p \ point x \ point (root p x)" using find_set_exists find_set_precondition_def find_set_postcondition_def by simp definition "find_set p x \ (SOME y . find_set_postcondition p x y)" lemma find_set_function: assumes "find_set_precondition p x" and "y = find_set p x" shows "find_set_postcondition p x y" by (metis assms find_set_def find_set_exists someI) subsection \Path Compression\ text \ The path-compression technique is frequently implemented in recursive implementations of find-set modifying the tree on the way out from recursive calls. Here we implement it using a second while-loop, which iterates over the same path to the root and changes edges to point to the root of the component, which is known after the while-loop in find-set completes. We prove that path compression preserves the equivalence-relational semantics of the disjoint-set forest and also preserves the roots of the component trees. Additionally we prove the exact effect of path compression. \ definition "path_compression_precondition p x y \ disjoint_set_forest p \ point x \ point y \ y = root p x" definition "path_compression_invariant p x y p0 w \ path_compression_precondition p x y \ point w \ y \ p\<^sup>T\<^sup>\ * w \ (w \ x \ p[[x]] = y \ y \ x \ p\<^sup>T\<^sup>+ * w \ -x) \ p \ 1 = p0 \ 1 \ fc p = fc p0 \ root p w = y \ (w \ y \ p\<^sup>T\<^sup>+ * w \ -w) \ p[[w]] = p0[[w]] \ p0[p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)\y] = p \ disjoint_set_forest p0 \ y = root p0 x \ w \ p0\<^sup>T\<^sup>\ * x" definition "path_compression_postcondition p x y p0 \ path_compression_precondition p x y \ p \ 1 = p0 \ 1 \ fc p = fc p0 \ p0[p0\<^sup>T\<^sup>\ * x\y] = p" text \ We first consider a variant that achieves the effect as a single update. The parents of all nodes reachable from x are simultaneously updated to the root of the component of x. \ lemma path_compression_exact: assumes "path_compression_precondition p0 x y" and "p0[p0\<^sup>T\<^sup>\ * x\y] = p" shows "p \ 1 = p0 \ 1" "fc p = fc p0" proof - have a1: "disjoint_set_forest p0" and a2: "point x" and a3: "point y" and a4: "y = root p0 x" using path_compression_precondition_def assms(1) by auto have 1: "regular (p0\<^sup>T\<^sup>\ * x)" using a1 a2 bijective_regular mapping_regular regular_closed_star regular_conv_closed regular_mult_closed by auto have "p \ 1 = (p0\<^sup>T\<^sup>\ * x \ y\<^sup>T \ 1) \ (-(p0\<^sup>T\<^sup>\ * x) \ p0 \ 1)" using assms(2) inf_sup_distrib2 by auto also have "... = (p0\<^sup>T\<^sup>\ * x \ p0 \ 1) \ (-(p0\<^sup>T\<^sup>\ * x) \ p0 \ 1)" proof - have "p0\<^sup>T\<^sup>\ * x \ y\<^sup>T \ 1 = p0\<^sup>T\<^sup>\ * x \ p0 \ 1" proof (rule order.antisym) have "(p0 \ 1) * p0\<^sup>T\<^sup>\ * x \ 1 \ p0" by (smt coreflexive_comp_top_inf_one inf.absorb_iff2 inf.cobounded2 inf.sup_monoid.add_assoc root_var) hence "p0\<^sup>T\<^sup>\ * x \ y\<^sup>T \ 1 \ p0" by (metis inf_le1 a4 conv_dist_inf coreflexive_symmetric inf.absorb2 inf.cobounded2 inf.sup_monoid.add_assoc root_var symmetric_one_closed) thus "p0\<^sup>T\<^sup>\ * x \ y\<^sup>T \ 1 \ p0\<^sup>T\<^sup>\ * x \ p0 \ 1" by (meson inf.le_sup_iff order.refl) have "p0\<^sup>T\<^sup>\ * x \ p0 \ 1 \ y" by (metis a4 coreflexive_comp_top_inf_one inf.cobounded1 inf_assoc inf_le2) thus "p0\<^sup>T\<^sup>\ * x \ p0 \ 1 \ p0\<^sup>T\<^sup>\ * x \ y\<^sup>T \ 1" by (smt conv_dist_inf coreflexive_symmetric inf.absorb_iff2 inf.cobounded2 inf.sup_monoid.add_assoc) qed thus ?thesis by simp qed also have "... = p0 \ 1" using 1 by (metis inf.sup_monoid.add_commute inf_sup_distrib1 maddux_3_11_pp) finally show "p \ 1 = p0 \ 1" . show "fc p = fc p0" proof (rule order.antisym) have 2: "univalent (p0[p0\<^sup>T\<^sup>\ * x\y])" by (simp add: a1 a2 a3 update_univalent mult_assoc) have 3: "-(p0\<^sup>T\<^sup>\ * x) \ p0 \ (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>\ * (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>T\<^sup>\" using fc_increasing inf.order_trans sup.cobounded2 by blast have "p0\<^sup>T\<^sup>\ * x \ p0 \ (p0\<^sup>T\<^sup>\ \ p0 * x\<^sup>T) * (x \ p0\<^sup>\ * p0)" by (metis conv_involutive conv_star_commute dedekind) also have "... \ p0\<^sup>T\<^sup>\ * x \ p0 * x\<^sup>T * p0\<^sup>\ * p0" by (metis comp_associative inf.boundedI inf.cobounded2 inf_le1 mult_isotone) also have "... \ p0\<^sup>T\<^sup>\ * x \ top * x\<^sup>T * p0\<^sup>\" using comp_associative comp_inf.mult_right_isotone mult_isotone star.right_plus_below_circ by auto also have "... = p0\<^sup>T\<^sup>\ * x * x\<^sup>T * p0\<^sup>\" by (metis a2 symmetric_top_closed vector_covector vector_inf_comp vector_mult_closed) also have "... \ (p0\<^sup>T\<^sup>\ * x * y\<^sup>T) * (y * x\<^sup>T * p0\<^sup>\)" by (metis a3 order.antisym comp_inf.top_right_mult_increasing conv_involutive dedekind_1 inf.sup_left_divisibility inf.sup_monoid.add_commute mult_right_isotone surjective_conv_total mult_assoc) also have "... = (p0\<^sup>T\<^sup>\ * x \ y\<^sup>T) * (y \ x\<^sup>T * p0\<^sup>\)" by (metis a2 a3 vector_covector vector_inf_comp vector_mult_closed) also have "... = (p0\<^sup>T\<^sup>\ * x \ y\<^sup>T) * (p0\<^sup>T\<^sup>\ * x \ y\<^sup>T)\<^sup>T" by (simp add: conv_dist_comp conv_dist_inf conv_star_commute inf_commute) also have "... \ (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>\ * (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>T\<^sup>\" by (meson conv_isotone dual_order.trans mult_isotone star.circ_increasing sup.cobounded1) finally have "p0\<^sup>T\<^sup>\ * x \ p0 \ (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>\ * (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>T\<^sup>\" . hence "(p0\<^sup>T\<^sup>\ * x \ p0) \ (-(p0\<^sup>T\<^sup>\ * x) \ p0) \ (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>\ * (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>T\<^sup>\" using 3 le_supI by blast hence "p0 \ (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>\ * (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>T\<^sup>\" using 1 by (metis inf_commute maddux_3_11_pp) hence "fc p0 \ (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>\ * (p0[p0\<^sup>T\<^sup>\ * x\y])\<^sup>T\<^sup>\" using 2 fc_idempotent fc_isotone by fastforce thus "fc p0 \ fc p" by (simp add: assms(2)) have "((p0\<^sup>T\<^sup>\ * x \ y\<^sup>T) \ (-(p0\<^sup>T\<^sup>\ * x) \ p0))\<^sup>\ = (-(p0\<^sup>T\<^sup>\ * x) \ p0)\<^sup>\ * ((p0\<^sup>T\<^sup>\ * x \ y\<^sup>T) \ 1)" proof (rule star_sup_2) have 4: "transitive (p0\<^sup>T\<^sup>\ * x)" using a2 comp_associative mult_right_isotone rectangle_star_rectangle by auto have "transitive (y\<^sup>T)" by (metis a3 conv_dist_comp inf.eq_refl mult_assoc) thus "transitive (p0\<^sup>T\<^sup>\ * x \ y\<^sup>T)" using 4 transitive_inf_closed by auto have 5: "p0\<^sup>T\<^sup>\ * x * (-(p0\<^sup>T\<^sup>\ * x) \ p0) \ p0\<^sup>T\<^sup>\ * x" by (metis a2 mult_right_isotone top_greatest mult_assoc) have "(-(p0\<^sup>T\<^sup>\ * x) \ p0)\<^sup>T * y \ p0\<^sup>T * y" by (simp add: conv_dist_inf mult_left_isotone) also have "... \ y" using a1 a4 root_successor_loop by auto finally have "y\<^sup>T * (-(p0\<^sup>T\<^sup>\ * x) \ p0) \ y\<^sup>T" using conv_dist_comp conv_isotone by fastforce thus "(p0\<^sup>T\<^sup>\ * x \ y\<^sup>T) * (-(p0\<^sup>T\<^sup>\ * x) \ p0) \ p0\<^sup>T\<^sup>\ * x \ y\<^sup>T" using 5 comp_left_subdist_inf inf_mono order_trans by blast qed hence "p\<^sup>\ = (-(p0\<^sup>T\<^sup>\ * x) \ p0)\<^sup>\ * ((p0\<^sup>T\<^sup>\ * x \ y\<^sup>T) \ 1)" by (simp add: assms(2)) also have "... \ p0\<^sup>\ * ((p0\<^sup>T\<^sup>\ * x \ y\<^sup>T) \ 1)" by (simp add: mult_left_isotone star_isotone) also have "... = p0\<^sup>\ * (p0\<^sup>T\<^sup>\ * x * y\<^sup>T \ 1)" by (simp add: a2 a3 vector_covector vector_mult_closed) also have "... = p0\<^sup>\ * (p0\<^sup>T\<^sup>\ * (x * x\<^sup>T) * p0\<^sup>\ * (p0 \ 1) \ 1)" by (metis a4 coreflexive_symmetric inf.cobounded2 root_var comp_associative conv_dist_comp conv_involutive conv_star_commute) also have "... \ p0\<^sup>\ * (p0\<^sup>T\<^sup>\ * 1 * p0\<^sup>\ * (p0 \ 1) \ 1)" by (metis a2 mult_left_isotone mult_right_isotone semiring.add_left_mono sup_commute) also have "... = p0\<^sup>\ * (p0\<^sup>T\<^sup>\ * (p0 \ 1) \ p0\<^sup>\ * (p0 \ 1) \ 1)" by (simp add: a1 cancel_separate_eq mult_right_dist_sup) also have "... = p0\<^sup>\ * ((p0 \ 1) \ p0\<^sup>\ * (p0 \ 1) \ 1)" by (smt univalent_root_successors a1 conv_dist_comp conv_dist_inf coreflexive_idempotent coreflexive_symmetric inf.cobounded2 injective_codomain loop_root root_transitive_successor_loop symmetric_one_closed) also have "... = p0\<^sup>\ * (p0\<^sup>\ * (p0 \ 1) \ 1)" by (metis inf.sup_left_divisibility inf_commute sup.left_idem sup_commute sup_relative_same_increasing) also have "... \ p0\<^sup>\ * p0\<^sup>\" by (metis inf.cobounded2 inf_commute order.refl order_lesseq_imp star.circ_mult_upper_bound star.circ_reflexive star.circ_transitive_equal sup.boundedI sup_monoid.add_commute) also have "... = p0\<^sup>\" by (simp add: star.circ_transitive_equal) finally show "fc p \ fc p0" by (metis conv_order conv_star_commute mult_isotone) qed qed lemma update_acyclic_6: assumes "disjoint_set_forest p" and "point x" shows "acyclic ((p[p\<^sup>T\<^sup>\*x\root p x]) \ -1)" using assms root_point root_successor_loop update_acyclic_2 by auto theorem path_compression_assign: "VARS p [ path_compression_precondition p x y \ p0 = p ] p[p\<^sup>T\<^sup>\ * x] := y [ path_compression_postcondition p x y p0 ]" apply vcg_tc_simp apply (unfold path_compression_precondition_def path_compression_postcondition_def) apply (intro conjI) subgoal using update_univalent mult_assoc by auto subgoal using bijective_regular mapping_regular regular_closed_star regular_conv_closed regular_mult_closed update_mapping mult_assoc by auto subgoal using update_acyclic_6 by blast subgoal by blast subgoal by blast subgoal by blast subgoal by blast subgoal by blast subgoal by blast subgoal by (smt same_root path_compression_exact path_compression_precondition_def update_univalent vector_mult_closed) subgoal using path_compression_exact(1) path_compression_precondition_def by blast subgoal using path_compression_exact(2) path_compression_precondition_def by blast by blast text \ We next look at implementing these updates using a loop. \ lemma path_compression_1a: assumes "point x" and "disjoint_set_forest p" and "x \ root p x" shows "p\<^sup>T\<^sup>+ * x \ - x" by (meson assms bijective_regular mapping_regular regular_closed_star regular_conv_closed regular_mult_closed vector_mult_closed point_in_vector_or_complement_2 loop_root_2) lemma path_compression_1b: "x \ p\<^sup>T\<^sup>\ * x" using mult_left_isotone star.circ_reflexive by fastforce lemma path_compression_1: "path_compression_precondition p x y \ path_compression_invariant p x y p x" using path_compression_invariant_def path_compression_precondition_def loop_root path_compression_1a path_compression_1b by auto lemma path_compression_2: "path_compression_invariant p x y p0 w \ y \ p[[w]] \ path_compression_invariant (p[w\y]) x y p0 (p[[w]]) \ card { z . regular z \ z \ (p[w\y])\<^sup>T\<^sup>\ * (p[[w]]) } < card { z . regular z \ z \ p\<^sup>T\<^sup>\ * w }" proof - let ?p = "p[w\y]" let ?s = "{ z . regular z \ z \ p\<^sup>T\<^sup>\ * w }" let ?t = "{ z . regular z \ z \ ?p\<^sup>T\<^sup>\ * (p[[w]]) }" assume 1: "path_compression_invariant p x y p0 w \ y \ p[[w]]" have i1: "disjoint_set_forest p" and i2: "point x" and i3: "point y" and i4: "y = root p x" using 1 path_compression_invariant_def path_compression_precondition_def by meson+ have i5: "point w" and i6: "y \ p\<^sup>T\<^sup>\ * w" and i7: "w \ x \ p[[x]] = y \ y \ x \ p\<^sup>T\<^sup>+ * w \ -x" and i8: "p \ 1 = p0 \ 1" and i9: "fc p = fc p0" and i10: "root p w = y" and i11: "p[[w]] = p0[[w]]" and i12: "p0[p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)\y] = p" using 1 path_compression_invariant_def by blast+ have i13: "disjoint_set_forest p0" and i14: "y = root p0 x" and i15: "w \ p0\<^sup>T\<^sup>\ * x" using 1 path_compression_invariant_def by auto have 2: "point (p[[w]])" using i1 i5 read_point by blast show "path_compression_invariant ?p x y p0 (p[[w]]) \ card ?t < card ?s" proof (unfold path_compression_invariant_def, intro conjI) have 3: "mapping ?p" by (simp add: i1 i3 i5 bijective_regular update_total update_univalent) have 4: "w \ y" using 1 i1 i4 root_successor_loop by blast hence 5: "w \ y = bot" by (simp add: i3 i5 distinct_points) hence "y * w\<^sup>T \ -1" using pseudo_complement schroeder_4_p by auto hence "y * w\<^sup>T \ p\<^sup>T\<^sup>\ \ -1" using i5 i6 shunt_bijective by auto also have "... \ p\<^sup>T\<^sup>+" by (simp add: star_plus_without_loops) finally have 6: "y \ p\<^sup>T\<^sup>+ * w" using i5 shunt_bijective by auto have 7: "w * w\<^sup>T \ -p\<^sup>T\<^sup>+" proof (rule ccontr) assume "\ w * w\<^sup>T \ -p\<^sup>T\<^sup>+" hence "w * w\<^sup>T \ --p\<^sup>T\<^sup>+" using i5 point_arc arc_in_partition by blast hence "w * w\<^sup>T \ p\<^sup>T\<^sup>+ \ 1" using i1 i5 mapping_regular regular_conv_closed regular_closed_star regular_mult_closed by simp also have "... = ((p\<^sup>T \ 1) * p\<^sup>T\<^sup>\ \ 1) \ ((p\<^sup>T \ -1) * p\<^sup>T\<^sup>\ \ 1)" by (metis comp_inf.mult_right_dist_sup maddux_3_11_pp mult_right_dist_sup regular_one_closed) also have "... = ((p\<^sup>T \ 1) * p\<^sup>T\<^sup>\ \ 1) \ ((p \ -1)\<^sup>+ \ 1)\<^sup>T" by (metis conv_complement conv_dist_inf conv_plus_commute equivalence_one_closed reachable_without_loops) also have "... \ ((p\<^sup>T \ 1) * p\<^sup>T\<^sup>\ \ 1) \ (-1 \ 1)\<^sup>T" by (metis (no_types, opaque_lifting) i1 sup_right_isotone inf.sup_left_isotone conv_isotone) also have "... = (p\<^sup>T \ 1) * p\<^sup>T\<^sup>\ \ 1" by simp also have "... \ (p\<^sup>T \ 1) * top \ 1" by (metis comp_inf.comp_isotone coreflexive_comp_top_inf equivalence_one_closed inf.cobounded1 inf.cobounded2) also have "... \ p\<^sup>T" by (simp add: coreflexive_comp_top_inf_one) finally have "w * w\<^sup>T \ p\<^sup>T" by simp hence "w \ p[[w]]" using i5 shunt_bijective by blast hence "w = p[[w]]" using 2 by (metis i5 epm_3 mult_semi_associative) thus False using 2 4 i10 loop_root by auto qed hence 8: "w \ p\<^sup>T\<^sup>+ * w = bot" using p_antitone_iff pseudo_complement schroeder_4_p by blast show "y \ ?p\<^sup>T\<^sup>\ * (p[[w]])" proof - have "(w \ y\<^sup>T)\<^sup>T * (-w \ p)\<^sup>T\<^sup>\ * p\<^sup>T * w \ w\<^sup>T * (-w \ p)\<^sup>T\<^sup>\ * p\<^sup>T * w" by (simp add: conv_isotone mult_left_isotone) also have "... \ w\<^sup>T * p\<^sup>T\<^sup>\ * p\<^sup>T * w" by (simp add: conv_isotone mult_left_isotone star_isotone mult_right_isotone) also have "... = w\<^sup>T * p\<^sup>T\<^sup>+ * w" by (simp add: star_plus mult_assoc) also have "... = bot" using 8 by (smt i5 covector_inf_comp_3 mult_assoc conv_dist_comp conv_star_commute covector_bot_closed equivalence_top_closed inf.le_iff_sup mult_left_isotone) finally have "((w \ y\<^sup>T)\<^sup>T \ (-w \ p)\<^sup>T) * (-w \ p)\<^sup>T\<^sup>\ * p\<^sup>T * w \ (-w \ p)\<^sup>T * (-w \ p)\<^sup>T\<^sup>\ * p\<^sup>T * w" by (simp add: bot_unique mult_right_dist_sup) also have "... \ (-w \ p)\<^sup>T\<^sup>\ * p\<^sup>T * w" by (simp add: mult_left_isotone star.left_plus_below_circ) finally have "?p\<^sup>T * (-w \ p)\<^sup>T\<^sup>\ * p\<^sup>T * w \ (-w \ p)\<^sup>T\<^sup>\ * p\<^sup>T * w" by (simp add: conv_dist_sup) hence "?p\<^sup>T\<^sup>\ * p\<^sup>T * w \ (-w \ p)\<^sup>T\<^sup>\ * p\<^sup>T * w" by (metis comp_associative star.circ_loop_fixpoint star_left_induct sup_commute sup_least sup_left_divisibility) hence "w \ ?p\<^sup>T\<^sup>\ * p\<^sup>T * w \ w \ (-w \ p)\<^sup>T\<^sup>\ * p\<^sup>T * w" using inf.sup_right_isotone by blast also have "... \ w \ p\<^sup>T\<^sup>\ * p\<^sup>T * w" using conv_isotone mult_left_isotone star_isotone inf.sup_right_isotone by simp also have "... = bot" using 8 by (simp add: star_plus) finally have 9: "w\<^sup>T * ?p\<^sup>T\<^sup>\ * p\<^sup>T * w = bot" by (smt i5 covector_inf_comp_3 mult_assoc conv_dist_comp covector_bot_closed equivalence_top_closed inf.le_iff_sup mult_left_isotone bot_least inf.absorb1) have "p\<^sup>T * ?p\<^sup>T\<^sup>\ * p\<^sup>T * w = ((w \ p)\<^sup>T \ (-w \ p)\<^sup>T) * ?p\<^sup>T\<^sup>\ * p\<^sup>T * w" by (metis i5 bijective_regular conv_dist_sup inf.sup_monoid.add_commute maddux_3_11_pp) also have "... = (w \ p)\<^sup>T * ?p\<^sup>T\<^sup>\ * p\<^sup>T * w \ (-w \ p)\<^sup>T * ?p\<^sup>T\<^sup>\ * p\<^sup>T * w" by (simp add: mult_right_dist_sup) also have "... \ w\<^sup>T * ?p\<^sup>T\<^sup>\ * p\<^sup>T * w \ (-w \ p)\<^sup>T * ?p\<^sup>T\<^sup>\ * p\<^sup>T * w" using semiring.add_right_mono comp_isotone conv_isotone by auto also have "... = (-w \ p)\<^sup>T * ?p\<^sup>T\<^sup>\ * p\<^sup>T * w" using 9 by simp also have "... \ ?p\<^sup>T\<^sup>+ * p\<^sup>T * w" by (simp add: conv_isotone mult_left_isotone) also have "... \ ?p\<^sup>T\<^sup>\ * p\<^sup>T * w" by (simp add: comp_isotone star.left_plus_below_circ) finally have "p\<^sup>T\<^sup>\ * p\<^sup>T * w \ ?p\<^sup>T\<^sup>\ * p\<^sup>T * w" by (metis comp_associative star.circ_loop_fixpoint star_left_induct sup_commute sup_least sup_left_divisibility) thus "y \ ?p\<^sup>T\<^sup>\ * (p[[w]])" using 6 by (simp add: star_simulation_right_equal mult_assoc) qed have 10: "acyclic (?p \ -1)" using i1 i10 i3 i5 inf_le1 update_acyclic_3 by blast have "?p[[p\<^sup>T\<^sup>+ * w]] \ p\<^sup>T\<^sup>+ * w" proof - have "(w\<^sup>T \ y) * p\<^sup>T\<^sup>+ * w = y \ w\<^sup>T * p\<^sup>T\<^sup>+ * w" by (metis i3 inf_vector_comp vector_inf_comp) hence "?p[[p\<^sup>T\<^sup>+ * w]] = (y \ w\<^sup>T * p\<^sup>T\<^sup>+ * w) \ (-w\<^sup>T \ p\<^sup>T) * p\<^sup>T\<^sup>+ * w" by (simp add: comp_associative conv_complement conv_dist_inf conv_dist_sup mult_right_dist_sup) also have "... \ y \ (-w\<^sup>T \ p\<^sup>T) * p\<^sup>T\<^sup>+ * w" using sup_left_isotone by auto also have "... \ y \ p\<^sup>T * p\<^sup>T\<^sup>+ * w" using mult_left_isotone sup_right_isotone by auto also have "... \ y \ p\<^sup>T\<^sup>+ * w" using semiring.add_left_mono mult_left_isotone mult_right_isotone star.left_plus_below_circ by auto also have "... = p\<^sup>T\<^sup>+ * w" using 6 by (simp add: sup_absorb2) finally show ?thesis by simp qed hence 11: "?p\<^sup>T\<^sup>\ * (p[[w]]) \ p\<^sup>T\<^sup>+ * w" using star_left_induct by (simp add: mult_left_isotone star.circ_mult_increasing) hence 12: "?p\<^sup>T\<^sup>+ * (p[[w]]) \ p\<^sup>T\<^sup>+ * w" using dual_order.trans mult_left_isotone star.left_plus_below_circ by blast have 13: "?p[[x]] = y \ y \ x \ ?p\<^sup>T\<^sup>+ * (p[[w]]) \ -x" proof (cases "w = x") case True hence "?p[[x]] = (w\<^sup>T \ y) * w \ (-w\<^sup>T \ p\<^sup>T) * w" by (simp add: conv_complement conv_dist_inf conv_dist_sup mult_right_dist_sup) also have "... = (w\<^sup>T \ y) * w \ p\<^sup>T * (-w \ w)" by (metis i5 conv_complement covector_inf_comp_3 inf.sup_monoid.add_commute vector_complement_closed) also have "... = (w\<^sup>T \ y) * w" by simp also have "... = y * w" by (simp add: i5 covector_inf_comp_3 inf.sup_monoid.add_commute) also have "... = y" by (metis i3 i5 comp_associative) finally show ?thesis using 4 8 12 True pseudo_complement inf.sup_monoid.add_commute order.trans by blast next case False have "?p[[x]] = (w\<^sup>T \ y) * x \ (-w\<^sup>T \ p\<^sup>T) * x" by (simp add: conv_complement conv_dist_inf conv_dist_sup mult_right_dist_sup) also have "... = y * (w \ x) \ p\<^sup>T * (-w \ x)" by (metis i5 conv_complement covector_inf_comp_3 inf_commute vector_complement_closed) also have "... = p\<^sup>T * (-w \ x)" using i2 i5 False distinct_points by auto also have "... = y" using i2 i5 i7 False distinct_points inf.absorb2 pseudo_complement by auto finally show ?thesis using 12 False i7 dual_order.trans by blast qed thus "p[[w]] \ x \ ?p[[x]] = y \ y \ x \ ?p\<^sup>T\<^sup>+ * (p[[w]]) \ -x" by simp have 14: "?p\<^sup>T\<^sup>\ * x = x \ y" proof (rule order.antisym) have "?p\<^sup>T * (x \ y) = y \ ?p\<^sup>T * y" using 13 by (simp add: mult_left_dist_sup) also have "... = y \ (w\<^sup>T \ y) * y \ (-w\<^sup>T \ p\<^sup>T) * y" by (simp add: conv_complement conv_dist_inf conv_dist_sup mult_right_dist_sup sup_assoc) also have "... \ y \ (w\<^sup>T \ y) * y \ p\<^sup>T * y" using mult_left_isotone sup_right_isotone by auto also have "... = y \ (w\<^sup>T \ y) * y" using i1 i10 root_successor_loop sup_commute by auto also have "... \ y \ y * y" using mult_left_isotone sup_right_isotone by auto also have "... = y" by (metis i3 comp_associative sup.idem) also have "... \ x \ y" by simp finally show "?p\<^sup>T\<^sup>\ * x \ x \ y" by (simp add: star_left_induct) next show "x \ y \ ?p\<^sup>T\<^sup>\ * x" using 13 by (metis mult_left_isotone star.circ_increasing star.circ_loop_fixpoint sup.boundedI sup_ge2) qed have 15: "y = root ?p x" proof - have "(p \ 1) * y = (p \ 1) * (p \ 1) * p\<^sup>T\<^sup>\ * x" by (simp add: i4 comp_associative root_var) also have "... = (p \ 1) * p\<^sup>T\<^sup>\ * x" using coreflexive_idempotent by auto finally have 16: "(p \ 1) * y = y" by (simp add: i4 root_var) have 17: "(p \ 1) * x \ y" by (metis (no_types, lifting) i4 comp_right_one mult_left_isotone mult_right_isotone star.circ_reflexive root_var) have "root ?p x = (?p \ 1) * (x \ y)" using 14 by (metis mult_assoc root_var) also have "... = (w \ y\<^sup>T \ 1) * (x \ y) \ (-w \ p \ 1) * (x \ y)" by (simp add: inf_sup_distrib2 semiring.distrib_right) also have "... = (w \ 1 \ y\<^sup>T) * (x \ y) \ (-w \ p \ 1) * (x \ y)" by (simp add: inf.left_commute inf.sup_monoid.add_commute) also have "... = (w \ 1) * (y \ (x \ y)) \ (-w \ p \ 1) * (x \ y)" by (simp add: i3 covector_inf_comp_3) also have "... = (w \ 1) * y \ (-w \ p \ 1) * (x \ y)" by (simp add: inf.absorb1) also have "... = (w \ 1 * y) \ (-w \ (p \ 1) * (x \ y))" by (simp add: i5 inf_assoc vector_complement_closed vector_inf_comp) also have "... = (w \ y) \ (-w \ ((p \ 1) * x \ y))" using 16 by (simp add: mult_left_dist_sup) also have "... = (w \ y) \ (-w \ y)" using 17 by (simp add: sup.absorb2) also have "... = y" using 5 inf.sup_monoid.add_commute le_iff_inf pseudo_complement sup_monoid.add_0_left by fastforce finally show ?thesis by simp qed show "path_compression_precondition ?p x y" using 3 10 15 i2 i3 path_compression_precondition_def by blast show "vector (p[[w]])" using 2 by simp show "injective (p[[w]])" using 2 by simp show "surjective (p[[w]])" using 2 by simp have "w \ p \ 1 \ w \ w\<^sup>T \ p" by (metis inf.boundedE inf.boundedI inf.cobounded1 inf.cobounded2 one_inf_conv) also have "... = w * w\<^sup>T \ p" by (simp add: i5 vector_covector) also have "... \ -p\<^sup>T\<^sup>+ \ p" using 7 by (simp add: inf.coboundedI2 inf.sup_monoid.add_commute) finally have "w \ p \ 1 = bot" by (metis (no_types, opaque_lifting) conv_dist_inf coreflexive_symmetric inf.absorb1 inf.boundedE inf.cobounded2 pseudo_complement star.circ_mult_increasing) also have "w \ y\<^sup>T \ 1 = bot" using 5 antisymmetric_bot_closed asymmetric_bot_closed comp_inf.schroeder_2 inf.absorb1 one_inf_conv by fastforce finally have "w \ p \ 1 = w \ y\<^sup>T \ 1" by simp thus 18: "?p \ 1 = p0 \ 1" by (metis i5 i8 bijective_regular inf.sup_monoid.add_commute inf_sup_distrib2 maddux_3_11_pp) show 19: "fc ?p = fc p0" proof - have "p[[w]] = p\<^sup>T * (w \ p\<^sup>\ * y)" by (metis i3 i5 i6 bijective_reverse conv_star_commute inf.absorb1) also have "... = p\<^sup>T * (w \ p\<^sup>\) * y" by (simp add: i5 vector_inf_comp mult_assoc) also have "... = p\<^sup>T * ((w \ 1) \ (w \ p) * (-w \ p)\<^sup>\) * y" by (simp add: i5 omit_redundant_points) also have "... = p\<^sup>T * (w \ 1) * y \ p\<^sup>T * (w \ p) * (-w \ p)\<^sup>\ * y" by (simp add: comp_associative mult_left_dist_sup mult_right_dist_sup) also have "... \ p\<^sup>T * y \ p\<^sup>T * (w \ p) * (-w \ p)\<^sup>\ * y" by (metis semiring.add_right_mono comp_isotone order.eq_iff inf.cobounded1 inf.sup_monoid.add_commute mult_1_right) also have "... = y \ p\<^sup>T * (w \ p) * (-w \ p)\<^sup>\ * y" using i1 i4 root_successor_loop by auto also have "... \ y \ p\<^sup>T * p * (-w \ p)\<^sup>\ * y" using comp_isotone sup_right_isotone by auto also have "... \ y \ (-w \ p)\<^sup>\ * y" by (metis i1 comp_associative eq_refl shunt_mapping sup_right_isotone) also have "... = (-w \ p)\<^sup>\ * y" by (metis star.circ_loop_fixpoint sup.left_idem sup_commute) finally have 20: "p[[w]] \ (-w \ p)\<^sup>\ * y" by simp have "p\<^sup>T * (-w \ p)\<^sup>\ * y = p\<^sup>T * y \ p\<^sup>T * (-w \ p) * (-w \ p)\<^sup>\ * y" by (metis comp_associative mult_left_dist_sup star.circ_loop_fixpoint sup_commute) also have "... = y \ p\<^sup>T * (-w \ p) * (-w \ p)\<^sup>\ * y" using i1 i4 root_successor_loop by auto also have "... \ y \ p\<^sup>T * p * (-w \ p)\<^sup>\ * y" using comp_isotone sup_right_isotone by auto also have "... \ y \ (-w \ p)\<^sup>\ * y" by (metis i1 comp_associative eq_refl shunt_mapping sup_right_isotone) also have "... = (-w \ p)\<^sup>\ * y" by (metis star.circ_loop_fixpoint sup.left_idem sup_commute) finally have 21: "p\<^sup>T\<^sup>\ * p\<^sup>T * w \ (-w \ p)\<^sup>\ * y" using 20 by (simp add: comp_associative star_left_induct) have "w\<^sup>T \ p\<^sup>T = p\<^sup>T * (w\<^sup>T \ 1)" by (metis i5 comp_right_one covector_inf_comp_3 inf.sup_monoid.add_commute one_inf_conv) also have "... \ p[[w]]" by (metis comp_right_subdist_inf inf.boundedE inf.sup_monoid.add_commute one_inf_conv) also have "... \ p\<^sup>T\<^sup>\ * p\<^sup>T * w" by (simp add: mult_left_isotone star.circ_mult_increasing_2) also have "... \ (-w \ p)\<^sup>\ * y" using 21 by simp finally have "w \ p \ y\<^sup>T * (-w \ p)\<^sup>T\<^sup>\" by (metis conv_dist_comp conv_dist_inf conv_involutive conv_isotone conv_star_commute) hence "w \ p \ (w \ y\<^sup>T) * (-w \ p)\<^sup>T\<^sup>\" by (simp add: i5 vector_inf_comp) also have "... \ (w \ y\<^sup>T) * ?p\<^sup>T\<^sup>\" by (simp add: conv_isotone mult_right_isotone star_isotone) also have "... \ ?p * ?p\<^sup>T\<^sup>\" by (simp add: mult_left_isotone) also have "... \ fc ?p" by (simp add: mult_left_isotone star.circ_increasing) finally have 22: "w \ p \ fc ?p" by simp have "-w \ p \ ?p" by simp also have "... \ fc ?p" by (simp add: fc_increasing) finally have "(w \ -w) \ p \ fc ?p" using 22 by (simp add: comp_inf.semiring.distrib_left inf.sup_monoid.add_commute) hence "p \ fc ?p" by (metis i5 bijective_regular inf.sup_monoid.add_commute inf_sup_distrib1 maddux_3_11_pp) hence 23: "fc p \ fc ?p" using 3 fc_idempotent fc_isotone by fastforce have "?p \ (w \ y\<^sup>T) \ p" using sup_right_isotone by auto also have "... = w * y\<^sup>T \ p" by (simp add: i3 i5 vector_covector) also have "... \ p\<^sup>\ \ p" by (smt i5 i6 conv_dist_comp conv_involutive conv_isotone conv_star_commute le_supI shunt_bijective star.circ_increasing sup_absorb1) also have "... \ fc p" using fc_increasing star.circ_back_loop_prefixpoint by auto finally have "fc ?p \ fc p" using i1 fc_idempotent fc_isotone by fastforce thus ?thesis using 23 i9 by auto qed show "?p[[p[[w]]]] = p0[[p[[w]]]]" proof - have "?p[[p[[w]]]] = p[[p[[w]]]]" using 2 4 by (metis i5 i10 loop_root put_get_different) also have "... = p[[p0[[w]]]]" by (simp add: i11) also have "... = (p0[p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)\y])[[p0[[w]]]]" using i12 by auto also have "... = p0[[p0[[w]]]]" proof - have "p0[[w]] \ -(p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w))" by (meson inf.coboundedI2 mult_left_isotone p_antitone p_antitone_iff star.circ_increasing) thus ?thesis by (meson i2 i5 put_get_different_vector vector_complement_closed vector_inf_closed vector_mult_closed) qed also have "... = p0[[p[[w]]]]" by (simp add: i11) finally show ?thesis . qed have 24: "root ?p (p[[w]]) = root p0 (p[[w]])" using 3 18 19 i13 same_root by blast also have "... = root p0 (p0[[w]])" by (simp add: i11) also have 25: "... = root p0 w" by (metis i5 i13 conv_involutive forest_components_increasing mult_left_isotone shunt_bijective injective_mult_closed read_surjective same_component_same_root) finally show 26: "root ?p (p[[w]]) = y" by (metis i1 i10 i13 i8 i9 same_root) thus "p[[w]] \ y \ ?p\<^sup>T\<^sup>+ * (p[[w]]) \ -(p[[w]])" using 2 3 10 by (simp add: path_compression_1a) show "univalent p0" "total p0" "acyclic (p0 \ -1)" by (simp_all add: i13) show "y = root p0 x" by (simp add: i14) show "p[[w]] \ p0\<^sup>T\<^sup>\ * x" by (metis i11 i15 mult_isotone star.circ_increasing star.circ_transitive_equal mult_assoc) let ?q = "p0[p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * (p[[w]]))\y]" show "?q = ?p" proof - have 27: "w \ p0\<^sup>T\<^sup>+ * w = p0\<^sup>T\<^sup>\ * w" using comp_associative star.circ_loop_fixpoint sup_commute by auto hence 28: "p0\<^sup>T\<^sup>+ * w = p0\<^sup>T\<^sup>\ * w \ -w" using 4 24 25 26 by (metis i11 i13 i5 inf.orderE maddux_3_13 path_compression_1a) hence "p0\<^sup>T\<^sup>\ * (p[[w]]) \ -w" by (metis i11 inf_le2 star_plus mult.assoc) hence "w \ -(p0\<^sup>T\<^sup>\ * (p[[w]]))" by (simp add: p_antitone_iff) hence "w \ p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * (p[[w]]))" by (simp add: i15) hence 29: "?q \ w = ?p \ w" by (metis update_inf update_inf_same) have 30: "?q \ p0\<^sup>T\<^sup>+ * w = ?p \ p0\<^sup>T\<^sup>+ * w" proof - have "?q \ p0\<^sup>T\<^sup>+ * w = p0 \ p0\<^sup>T\<^sup>+ * w" by (metis i11 comp_associative inf.cobounded2 p_antitone_iff star.circ_plus_same update_inf_different) also have "... = p \ p0\<^sup>T\<^sup>+ * w" using 28 by (metis i12 inf.cobounded2 inf.sup_monoid.add_assoc p_antitone_iff update_inf_different) also have "... = ?p \ p0\<^sup>T\<^sup>+ * w" using 28 by (simp add: update_inf_different) finally show ?thesis . qed have 31: "?q \ p0\<^sup>T\<^sup>\ * w = ?p \ p0\<^sup>T\<^sup>\ * w" using 27 29 30 by (metis inf_sup_distrib1) have 32: "?q \ (p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)) = ?p \ (p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w))" proof - have "p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w) \ p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * (p[[w]]))" using 28 by (metis i11 inf.sup_right_isotone mult.semigroup_axioms p_antitone_inf star_plus semigroup.assoc) hence "?q \ (p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)) = y\<^sup>T \ p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)" by (metis inf_assoc update_inf) also have "... = p \ (p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w))" by (metis i12 inf_assoc update_inf_same) also have "... = ?p \ (p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w))" by (simp add: inf.coboundedI2 p_antitone path_compression_1b inf_assoc update_inf_different) finally show ?thesis . qed have "p0\<^sup>T\<^sup>\ * w \ (p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)) = p0\<^sup>T\<^sup>\ * x" proof - have 33: "regular (p0\<^sup>T\<^sup>\ * w)" using i13 i5 bijective_regular mapping_regular regular_closed_star regular_conv_closed regular_mult_closed by auto have "p0\<^sup>T\<^sup>\ * w \ p0\<^sup>T\<^sup>\ * x" by (metis i15 comp_associative mult_right_isotone star.circ_transitive_equal) hence "p0\<^sup>T\<^sup>\ * w \ (p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)) = p0\<^sup>T\<^sup>\ * x \ (p0\<^sup>T\<^sup>\ * w \ -(p0\<^sup>T\<^sup>\ * w))" by (simp add: comp_inf.semiring.distrib_left inf.absorb2) also have "... = p0\<^sup>T\<^sup>\ * x" using 33 by (metis inf_sup_distrib1 maddux_3_11_pp) finally show ?thesis . qed hence 34: "?q \ p0\<^sup>T\<^sup>\ * x = ?p \ p0\<^sup>T\<^sup>\ * x" using 31 32 by (metis inf_sup_distrib1) have 35: "regular (p0\<^sup>T\<^sup>\ * x)" using i13 i2 bijective_regular mapping_regular regular_closed_star regular_conv_closed regular_mult_closed by auto have "-(p0\<^sup>T\<^sup>\ * x) \ -w" by (simp add: i15 p_antitone) hence "?q \ -(p0\<^sup>T\<^sup>\ * x) = ?p \ -(p0\<^sup>T\<^sup>\ * x)" by (metis i12 p_antitone_inf update_inf_different) thus ?thesis using 34 35 by (metis maddux_3_11_pp) qed show "card ?t < card ?s" proof - have "?p\<^sup>T * p\<^sup>T\<^sup>\ * w = (w\<^sup>T \ y) * p\<^sup>T\<^sup>\ * w \ (-w\<^sup>T \ p\<^sup>T) * p\<^sup>T\<^sup>\ * w" by (simp add: conv_complement conv_dist_inf conv_dist_sup mult_right_dist_sup) also have "... \ (w\<^sup>T \ y) * p\<^sup>T\<^sup>\ * w \ p\<^sup>T * p\<^sup>T\<^sup>\ * w" using mult_left_isotone sup_right_isotone by auto also have "... \ (w\<^sup>T \ y) * p\<^sup>T\<^sup>\ * w \ p\<^sup>T\<^sup>\ * w" using mult_left_isotone star.left_plus_below_circ sup_right_isotone by blast also have "... \ y * p\<^sup>T\<^sup>\ * w \ p\<^sup>T\<^sup>\ * w" using semiring.add_right_mono mult_left_isotone by auto also have "... \ y * top \ p\<^sup>T\<^sup>\ * w" by (simp add: comp_associative le_supI1 mult_right_isotone) also have "... = p\<^sup>T\<^sup>\ * w" by (simp add: i3 i6 sup_absorb2) finally have "?p\<^sup>T\<^sup>\ * p\<^sup>T * w \ p\<^sup>T\<^sup>\ * w" using 11 by (metis dual_order.trans star.circ_loop_fixpoint sup_commute sup_ge2 mult_assoc) hence 36: "?t \ ?s" using order_lesseq_imp mult_assoc by auto have 37: "w \ ?s" by (simp add: i5 bijective_regular path_compression_1b) have 38: "\ w \ ?t" proof assume "w \ ?t" hence 39: "w \ (?p\<^sup>T \ -1)\<^sup>\ * (p[[w]])" using reachable_without_loops by auto hence "p[[w]] \ (?p \ -1)\<^sup>\ * w" using 2 by (smt i5 bijective_reverse conv_star_commute reachable_without_loops) also have "... \ p\<^sup>\ * w" proof - have "p\<^sup>T\<^sup>\ * y = y" using i1 i4 root_transitive_successor_loop by auto hence "y\<^sup>T * p\<^sup>\ * w = y\<^sup>T * w" by (metis conv_dist_comp conv_involutive conv_star_commute) also have "... = bot" using 5 by (metis i5 inf.idem inf.sup_monoid.add_commute mult_left_zero schroeder_1 vector_inf_comp) finally have 40: "y\<^sup>T * p\<^sup>\ * w = bot" by simp have "(?p \ -1) * p\<^sup>\ * w = (w \ y\<^sup>T \ -1) * p\<^sup>\ * w \ (-w \ p \ -1) * p\<^sup>\ * w" by (simp add: comp_inf.mult_right_dist_sup mult_right_dist_sup) also have "... \ (w \ y\<^sup>T \ -1) * p\<^sup>\ * w \ p * p\<^sup>\ * w" by (meson inf_le1 inf_le2 mult_left_isotone order_trans sup_right_isotone) also have "... \ (w \ y\<^sup>T \ -1) * p\<^sup>\ * w \ p\<^sup>\ * w" using mult_left_isotone star.left_plus_below_circ sup_right_isotone by blast also have "... \ y\<^sup>T * p\<^sup>\ * w \ p\<^sup>\ * w" by (meson inf_le1 inf_le2 mult_left_isotone order_trans sup_left_isotone) also have "... = p\<^sup>\ * w" using 40 by simp finally show ?thesis by (metis comp_associative le_supI star.circ_loop_fixpoint sup_ge2 star_left_induct) qed finally have "w \ p\<^sup>T\<^sup>\ * p\<^sup>T * w" using 11 39 reachable_without_loops star_plus by auto thus False using 4 i1 i10 i5 loop_root_2 star.circ_plus_same by auto qed show "card ?t < card ?s" apply (rule psubset_card_mono) subgoal using finite_regular by simp subgoal using 36 37 38 by auto done qed qed qed lemma path_compression_3a: assumes "path_compression_invariant p x (p[[w]]) p0 w" shows "p0[p0\<^sup>T\<^sup>\ * x\p[[w]]] = p" proof - let ?y = "p[[w]]" let ?p = "p0[p0\<^sup>T\<^sup>\ * x\?y]" have i1: "disjoint_set_forest p" and i2: "point x" and i3: "point ?y" and i4: "?y = root p x" using assms path_compression_invariant_def path_compression_precondition_def by meson+ have i5: "point w" and i6: "?y \ p\<^sup>T\<^sup>\ * w" and i7: "w \ x \ p[[x]] = ?y \ ?y \ x \ p\<^sup>T\<^sup>+ * w \ -x" and i8: "p \ 1 = p0 \ 1" and i9: "fc p = fc p0" and i10: "root p w = ?y" and i11: "p[[w]] = p0[[w]]" and i12: "p0[p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)\?y] = p" and i13: "disjoint_set_forest p0" and i14: "?y = root p0 x" and i15: "w \ p0\<^sup>T\<^sup>\ * x" using assms path_compression_invariant_def by blast+ have 1: "?p \ ?y = p \ ?y" by (metis i1 i14 i3 i4 get_put inf_le1 root_successor_loop update_inf update_inf_same) have 2: "?p \ w = p \ w" by (metis i5 i11 i15 get_put update_inf update_inf_same) have "?y = root p0 w" by (metis i1 i10 i13 i8 i9 same_root) hence "p0\<^sup>T\<^sup>\ * w = w \ ?y" by (metis i11 i13 root_transitive_successor_loop star.circ_loop_fixpoint star_plus sup_monoid.add_commute mult_assoc) hence 3: "?p \ p0\<^sup>T\<^sup>\ * w = p \ p0\<^sup>T\<^sup>\ * w" using 1 2 by (simp add: inf_sup_distrib1) have "p0\<^sup>T\<^sup>\ * w \ p0\<^sup>T\<^sup>\ * x" by (metis i15 comp_associative mult_right_isotone star.circ_transitive_equal) hence 4: "?p \ (p0\<^sup>T\<^sup>\ * x \ p0\<^sup>T\<^sup>\ * w) = p \ (p0\<^sup>T\<^sup>\ * x \ p0\<^sup>T\<^sup>\ * w)" using 3 by (simp add: inf.absorb2) have 5: "?p \ (p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w)) = p \ (p0\<^sup>T\<^sup>\ * x \ -(p0\<^sup>T\<^sup>\ * w))" by (metis i12 inf_le1 update_inf update_inf_same) have "regular (p0\<^sup>T\<^sup>\ * w)" using i13 i5 bijective_regular mapping_regular regular_closed_star regular_conv_closed regular_mult_closed by auto hence 6: "?p \ p0\<^sup>T\<^sup>\ * x = p \ p0\<^sup>T\<^sup>\ * x" using 4 5 by (smt inf_sup_distrib1 maddux_3_11_pp) have 7: "?p \ -(p0\<^sup>T\<^sup>\ * x) = p \ -(p0\<^sup>T\<^sup>\ * x)" by (smt i12 inf.sup_monoid.add_commute inf_import_p inf_sup_absorb le_iff_inf p_dist_inf update_inf_different inf.idem p_antitone_inf) have "regular (p0\<^sup>T\<^sup>\ * x)" using i13 i2 bijective_regular mapping_regular regular_closed_star regular_conv_closed regular_mult_closed by auto thus "?p = p" using 6 7 by (smt inf_sup_distrib1 maddux_3_11_pp) qed lemma path_compression_3: "path_compression_invariant p x (p[[w]]) p0 w \ path_compression_postcondition p x (p[[w]]) p0" using path_compression_invariant_def path_compression_postcondition_def path_compression_precondition_def path_compression_3a by blast theorem path_compression: "VARS p t w [ path_compression_precondition p x y \ p0 = p ] w := x; WHILE y \ p[[w]] INV { path_compression_invariant p x y p0 w } VAR { card { z . regular z \ z \ p\<^sup>T\<^sup>\ * w } } DO t := w; w := p[[w]]; p[t] := y OD [ path_compression_postcondition p x y p0 ]" apply vcg_tc_simp apply (fact path_compression_1) apply (fact path_compression_2) using path_compression_3 by auto lemma path_compression_exists: "path_compression_precondition p x y \ \p' . path_compression_postcondition p' x y p" using tc_extract_function path_compression by blast definition "path_compression p x y \ (SOME p' . path_compression_postcondition p' x y p)" lemma path_compression_function: assumes "path_compression_precondition p x y" and "p' = path_compression p x y" shows "path_compression_postcondition p' x y p" by (metis assms path_compression_def path_compression_exists someI) subsection \Find-Set with Path Compression\ text \ We sequentially combine find-set and path compression. We consider implementations which use the previously derived functions and implementations which unfold their definitions. \ theorem find_set_path_compression: "VARS p y [ find_set_precondition p x \ p0 = p ] y := find_set p x; p := path_compression p x y [ path_compression_postcondition p x y p0 ]" apply vcg_tc_simp using find_set_function find_set_postcondition_def find_set_precondition_def path_compression_function path_compression_precondition_def by fastforce theorem find_set_path_compression_1: "VARS p t w y [ find_set_precondition p x \ p0 = p ] y := find_set p x; w := x; WHILE y \ p[[w]] INV { path_compression_invariant p x y p0 w } VAR { card { z . regular z \ z \ p\<^sup>T\<^sup>\ * w } } DO t := w; w := p[[w]]; p[t] := y OD [ path_compression_postcondition p x y p0 ]" apply vcg_tc_simp using find_set_function find_set_postcondition_def find_set_precondition_def path_compression_1 path_compression_precondition_def apply fastforce apply (fact path_compression_2) by (fact path_compression_3) theorem find_set_path_compression_2: "VARS p y [ find_set_precondition p x \ p0 = p ] y := x; WHILE y \ p[[y]] INV { find_set_invariant p x y \ p0 = p } VAR { card { z . regular z \ z \ p\<^sup>T\<^sup>\ * y } } DO y := p[[y]] OD; p := path_compression p x y [ path_compression_postcondition p x y p0 ]" apply vcg_tc_simp apply (fact find_set_1) apply (fact find_set_2) by (smt find_set_3 find_set_invariant_def find_set_postcondition_def find_set_precondition_def path_compression_function path_compression_precondition_def) theorem find_set_path_compression_3: "VARS p t w y [ find_set_precondition p x \ p0 = p ] y := x; WHILE y \ p[[y]] INV { find_set_invariant p x y \ p0 = p } VAR { card { z . regular z \ z \ p\<^sup>T\<^sup>\ * y } } DO y := p[[y]] OD; w := x; WHILE y \ p[[w]] INV { path_compression_invariant p x y p0 w } VAR { card { z . regular z \ z \ p\<^sup>T\<^sup>\ * w } } DO t := w; w := p[[w]]; p[t] := y OD [ path_compression_postcondition p x y p0 ]" apply vcg_tc_simp apply (simp add: find_set_1) apply (fact find_set_2) using find_set_3 find_set_invariant_def find_set_postcondition_def find_set_precondition_def path_compression_1 path_compression_precondition_def apply blast apply (fact path_compression_2) by (fact path_compression_3) text \ Find-set with path compression returns two results: the representative of the tree and the modified disjoint-set forest. \ lemma find_set_path_compression_exists: "find_set_precondition p x \ \p' y . path_compression_postcondition p' x y p" using tc_extract_function find_set_path_compression by blast definition "find_set_path_compression p x \ (SOME (p',y) . path_compression_postcondition p' x y p)" lemma find_set_path_compression_function: assumes "find_set_precondition p x" and "(p',y) = find_set_path_compression p x" shows "path_compression_postcondition p' x y p" proof - let ?P = "\(p',y) . path_compression_postcondition p' x y p" have "?P (SOME z . ?P z)" apply (unfold some_eq_ex) using assms(1) find_set_path_compression_exists by simp thus ?thesis using assms(2) find_set_path_compression_def by auto qed text \ We prove that \find_set_path_compression\ returns the same representative as \find_set\. \ lemma find_set_path_compression_find_set: assumes "find_set_precondition p x" shows "find_set p x = snd (find_set_path_compression p x)" proof - let ?r = "find_set p x" let ?p = "fst (find_set_path_compression p x)" let ?y = "snd (find_set_path_compression p x)" have 1: "find_set_postcondition p x ?r" by (simp add: assms find_set_function) have "path_compression_postcondition ?p x ?y p" using assms find_set_path_compression_function prod.collapse by blast thus "?r = ?y" using 1 by (smt assms same_root find_set_precondition_def find_set_postcondition_def path_compression_precondition_def path_compression_postcondition_def) qed text \ A weaker postcondition suffices to prove that the two forests have the same semantics; that is, they describe the same disjoint sets and have the same roots. \ lemma find_set_path_compression_path_compression_semantics: assumes "find_set_precondition p x" shows "fc (path_compression p x (find_set p x)) = fc (fst (find_set_path_compression p x))" and "path_compression p x (find_set p x) \ 1 = fst (find_set_path_compression p x) \ 1" proof - let ?r = "find_set p x" let ?q = "path_compression p x ?r" let ?p = "fst (find_set_path_compression p x)" let ?y = "snd (find_set_path_compression p x)" have 1: "path_compression_postcondition (path_compression p x ?r) x ?r p" using assms find_set_function find_set_postcondition_def find_set_precondition_def path_compression_function path_compression_precondition_def by auto have 2: "path_compression_postcondition ?p x ?y p" using assms find_set_path_compression_function prod.collapse by blast show "fc ?q = fc ?p" using 1 2 by (simp add: path_compression_postcondition_def) show "?q \ 1 = ?p \ 1" using 1 2 by (simp add: path_compression_postcondition_def) qed text \ With the current, stronger postcondition of path compression describing the precise effect of how links change, we can prove that the two forests are actually equal. \ lemma find_set_path_compression_find_set_pathcompression: assumes "find_set_precondition p x" shows "path_compression p x (find_set p x) = fst (find_set_path_compression p x)" proof - let ?r = "find_set p x" let ?q = "path_compression p x ?r" let ?p = "fst (find_set_path_compression p x)" let ?y = "snd (find_set_path_compression p x)" have 1: "path_compression_postcondition (path_compression p x ?r) x ?r p" using assms find_set_function find_set_postcondition_def find_set_precondition_def path_compression_function path_compression_precondition_def by auto have 2: "path_compression_postcondition ?p x ?y p" using assms find_set_path_compression_function prod.collapse by blast have "?r = ?y" by (simp add: assms find_set_path_compression_find_set) thus "?q = ?p" using 1 2 by (simp add: path_compression_postcondition_def) qed subsection \Union-Sets\ text \ We only consider a naive union-sets operation (without ranks). The semantics is the equivalence closure obtained after adding the link between the two given nodes, which requires those two elements to be in the same set. The implementation uses temporary variable \t\ to store the two results returned by find-set with path compression. The disjoint-set forest, which keeps being updated, is threaded through the sequence of operations. \ definition "union_sets_precondition p x y \ disjoint_set_forest p \ point x \ point y" definition "union_sets_postcondition p x y p0 \ union_sets_precondition p x y \ fc p = wcc (p0 \ x * y\<^sup>T)" lemma union_sets_1: assumes "union_sets_precondition p0 x y" and "path_compression_postcondition p1 x r p0" and "path_compression_postcondition p2 y s p1" shows "union_sets_postcondition (p2[r\s]) x y p0" proof (unfold union_sets_postcondition_def union_sets_precondition_def, intro conjI) let ?p = "p2[r\s]" have 1: "disjoint_set_forest p1 \ point r \ r = root p1 x \ p1 \ 1 = p0 \ 1 \ fc p1 = fc p0" using assms(2) path_compression_precondition_def path_compression_postcondition_def by auto have 2: "disjoint_set_forest p2 \ point s \ s = root p2 y \ p2 \ 1 = p1 \ 1 \ fc p2 = fc p1" using assms(3) path_compression_precondition_def path_compression_postcondition_def by auto hence 3: "fc p2 = fc p0" using 1 by simp show 4: "univalent ?p" using 1 2 update_univalent by blast show "total ?p" using 1 2 bijective_regular update_total by blast show "acyclic (?p \ -1)" proof (cases "r = s") case True thus ?thesis using 2 update_acyclic_5 by fastforce next case False hence "bot = r \ s" using 1 2 distinct_points by blast also have "... = r \ p2\<^sup>T\<^sup>\ * s" using 2 by (smt root_transitive_successor_loop) finally have "s \ p2\<^sup>\ * r = bot" using schroeder_1 conv_star_commute inf.sup_monoid.add_commute by fastforce thus ?thesis using 1 2 update_acyclic_4 by blast qed show "vector x" using assms(1) by (simp add: union_sets_precondition_def) show "injective x" using assms(1) by (simp add: union_sets_precondition_def) show "surjective x" using assms(1) by (simp add: union_sets_precondition_def) show "vector y" using assms(1) by (simp add: union_sets_precondition_def) show "injective y" using assms(1) by (simp add: union_sets_precondition_def) show "surjective y" using assms(1) by (simp add: union_sets_precondition_def) show "fc ?p = wcc (p0 \ x * y\<^sup>T)" proof (rule order.antisym) have "r = p1[[r]]" using 1 by (metis root_successor_loop) hence "r * r\<^sup>T \ p1\<^sup>T" using 1 eq_refl shunt_bijective by blast hence "r * r\<^sup>T \ p1" using 1 conv_order coreflexive_symmetric by fastforce hence "r * r\<^sup>T \ p1 \ 1" using 1 inf.boundedI by blast also have "... = p2 \ 1" using 2 by simp finally have "r * r\<^sup>T \ p2" by simp hence "r \ p2 * r" using 1 shunt_bijective by blast hence 5: "p2[[r]] \ r" using 2 shunt_mapping by blast have "r \ p2 \ r * (top \ r\<^sup>T * p2)" using 1 by (metis dedekind_1) also have "... = r * r\<^sup>T * p2" by (simp add: mult_assoc) also have "... \ r * r\<^sup>T" using 5 by (metis comp_associative conv_dist_comp conv_involutive conv_order mult_right_isotone) also have "... \ 1" using 1 by blast finally have 6: "r \ p2 \ 1" by simp have "p0 \ wcc p0" by (simp add: star.circ_sub_dist_1) also have "... = wcc p2" using 3 by (simp add: star_decompose_1) also have 7: "... \ wcc ?p" proof - have "wcc p2 = wcc ((-r \ p2) \ (r \ p2))" using 1 by (metis bijective_regular inf.sup_monoid.add_commute maddux_3_11_pp) also have "... \ wcc ((-r \ p2) \ 1)" using 6 wcc_isotone sup_right_isotone by simp also have "... = wcc (-r \ p2)" using wcc_with_loops by simp also have "... \ wcc ?p" using wcc_isotone sup_ge2 by blast finally show ?thesis by simp qed finally have 8: "p0 \ wcc ?p" by force have "r \ p1\<^sup>T\<^sup>\ * x" using 1 by (metis inf_le1) hence 9: "r * x\<^sup>T \ p1\<^sup>T\<^sup>\" using assms(1) shunt_bijective union_sets_precondition_def by blast hence "x * r\<^sup>T \ p1\<^sup>\" using conv_dist_comp conv_order conv_star_commute by force also have "... \ wcc p1" by (simp add: star.circ_sub_dist) also have "... = wcc p2" using 1 2 by (simp add: fc_wcc) also have "... \ wcc ?p" using 7 by simp finally have 10: "x * r\<^sup>T \ wcc ?p" by simp have 11: "r * s\<^sup>T \ wcc ?p" using 1 2 star.circ_sub_dist_1 sup_assoc vector_covector by auto have "s \ p2\<^sup>T\<^sup>\ * y" using 2 by (metis inf_le1) hence 12: "s * y\<^sup>T \ p2\<^sup>T\<^sup>\" using assms(1) shunt_bijective union_sets_precondition_def by blast also have "... \ wcc p2" using star_isotone sup_ge2 by blast also have "... \ wcc ?p" using 7 by simp finally have 13: "s * y\<^sup>T \ wcc ?p" by simp have "x \ x * r\<^sup>T * r \ y \ y * s\<^sup>T * s" using 1 2 shunt_bijective by blast hence "x * y\<^sup>T \ x * r\<^sup>T * r * (y * s\<^sup>T * s)\<^sup>T" using comp_isotone conv_isotone by blast also have "... = x * r\<^sup>T * r * s\<^sup>T * s * y\<^sup>T" by (simp add: comp_associative conv_dist_comp) also have "... \ wcc ?p * (r * s\<^sup>T) * (s * y\<^sup>T)" using 10 by (metis mult_left_isotone mult_assoc) also have "... \ wcc ?p * wcc ?p * (s * y\<^sup>T)" using 11 by (metis mult_left_isotone mult_right_isotone) also have "... \ wcc ?p * wcc ?p * wcc ?p" using 13 by (metis mult_right_isotone) also have "... = wcc ?p" by (simp add: star.circ_transitive_equal) finally have "p0 \ x * y\<^sup>T \ wcc ?p" using 8 by simp hence "wcc (p0 \ x * y\<^sup>T) \ wcc ?p" using wcc_below_wcc by simp thus "wcc (p0 \ x * y\<^sup>T) \ fc ?p" using 4 fc_wcc by simp have "-r \ p2 \ wcc p2" by (simp add: inf.coboundedI2 star.circ_sub_dist_1) also have "... = wcc p0" using 3 by (simp add: star_decompose_1) also have "... \ wcc (p0 \ x * y\<^sup>T)" by (simp add: wcc_isotone) finally have 14: "-r \ p2 \ wcc (p0 \ x * y\<^sup>T)" by simp have "r * x\<^sup>T \ wcc p1" using 9 inf.order_trans star.circ_sub_dist sup_commute by fastforce also have "... = wcc p0" using 1 by (simp add: star_decompose_1) also have "... \ wcc (p0 \ x * y\<^sup>T)" by (simp add: wcc_isotone) finally have 15: "r * x\<^sup>T \ wcc (p0 \ x * y\<^sup>T)" by simp have 16: "x * y\<^sup>T \ wcc (p0 \ x * y\<^sup>T)" using le_supE star.circ_sub_dist_1 by blast have "y * s\<^sup>T \ p2\<^sup>\" using 12 conv_dist_comp conv_order conv_star_commute by fastforce also have "... \ wcc p2" using star.circ_sub_dist sup_commute by fastforce also have "... = wcc p0" using 3 by (simp add: star_decompose_1) also have "... \ wcc (p0 \ x * y\<^sup>T)" by (simp add: wcc_isotone) finally have 17: "y * s\<^sup>T \ wcc (p0 \ x * y\<^sup>T)" by simp have "r \ r * x\<^sup>T * x \ s \ s * y\<^sup>T * y" using assms(1) shunt_bijective union_sets_precondition_def by blast hence "r * s\<^sup>T \ r * x\<^sup>T * x * (s * y\<^sup>T * y)\<^sup>T" using comp_isotone conv_isotone by blast also have "... = r * x\<^sup>T * x * y\<^sup>T * y * s\<^sup>T" by (simp add: comp_associative conv_dist_comp) also have "... \ wcc (p0 \ x * y\<^sup>T) * (x * y\<^sup>T) * (y * s\<^sup>T)" using 15 by (metis mult_left_isotone mult_assoc) also have "... \ wcc (p0 \ x * y\<^sup>T) * wcc (p0 \ x * y\<^sup>T) * (y * s\<^sup>T)" using 16 by (metis mult_left_isotone mult_right_isotone) also have "... \ wcc (p0 \ x * y\<^sup>T) * wcc (p0 \ x * y\<^sup>T) * wcc (p0 \ x * y\<^sup>T)" using 17 by (metis mult_right_isotone) also have "... = wcc (p0 \ x * y\<^sup>T)" by (simp add: star.circ_transitive_equal) finally have "?p \ wcc (p0 \ x * y\<^sup>T)" using 1 2 14 vector_covector by auto hence "wcc ?p \ wcc (p0 \ x * y\<^sup>T)" using wcc_below_wcc by blast thus "fc ?p \ wcc (p0 \ x * y\<^sup>T)" using 4 fc_wcc by simp qed qed theorem union_sets: "VARS p r s t [ union_sets_precondition p x y \ p0 = p ] t := find_set_path_compression p x; p := fst t; r := snd t; t := find_set_path_compression p y; p := fst t; s := snd t; p[r] := s [ union_sets_postcondition p x y p0 ]" proof vcg_tc_simp let ?t1 = "find_set_path_compression p0 x" let ?p1 = "fst ?t1" let ?r = "snd ?t1" let ?t2 = "find_set_path_compression ?p1 y" let ?p2 = "fst ?t2" let ?s = "snd ?t2" let ?p = "?p2[?r\?s]" assume 1: "union_sets_precondition p0 x y" hence 2: "path_compression_postcondition ?p1 x ?r p0" by (simp add: find_set_precondition_def union_sets_precondition_def find_set_path_compression_function) hence "path_compression_postcondition ?p2 y ?s ?p1" using 1 by (meson find_set_precondition_def union_sets_precondition_def find_set_path_compression_function path_compression_postcondition_def path_compression_precondition_def prod.collapse) thus "union_sets_postcondition (?p2[?r\?s]) x y p0" using 1 2 by (simp add: union_sets_1) qed lemma union_sets_exists: "union_sets_precondition p x y \ \p' . union_sets_postcondition p' x y p" using tc_extract_function union_sets by blast definition "union_sets p x y \ (SOME p' . union_sets_postcondition p' x y p)" lemma union_sets_function: assumes "union_sets_precondition p x y" and "p' = union_sets p x y" shows "union_sets_postcondition p' x y p" by (metis assms union_sets_def union_sets_exists someI) theorem union_sets_2: "VARS p r s [ union_sets_precondition p x y \ p0 = p ] r := find_set p x; p := path_compression p x r; s := find_set p y; p := path_compression p y s; p[r] := s [ union_sets_postcondition p x y p0 ]" proof vcg_tc_simp let ?r = "find_set p0 x" let ?p1 = "path_compression p0 x ?r" let ?s = "find_set ?p1 y" let ?p2 = "path_compression ?p1 y ?s" assume 1: "union_sets_precondition p0 x y" hence 2: "path_compression_postcondition ?p1 x ?r p0" using find_set_function find_set_postcondition_def find_set_precondition_def path_compression_function path_compression_precondition_def union_sets_precondition_def by auto hence "path_compression_postcondition ?p2 y ?s ?p1" using 1 find_set_function find_set_postcondition_def find_set_precondition_def path_compression_function path_compression_precondition_def union_sets_precondition_def path_compression_postcondition_def by meson thus "union_sets_postcondition (?p2[?r\?s]) x y p0" using 1 2 by (simp add: union_sets_1) qed end end