diff --git a/thys/Saturation_Framework/Labeled_Lifting_to_Non_Ground_Calculi.thy b/thys/Saturation_Framework/Labeled_Lifting_to_Non_Ground_Calculi.thy --- a/thys/Saturation_Framework/Labeled_Lifting_to_Non_Ground_Calculi.thy +++ b/thys/Saturation_Framework/Labeled_Lifting_to_Non_Ground_Calculi.thy @@ -1,438 +1,436 @@ (* Title: Labeled Lifting to Non-Ground Calculi of the Saturation Framework * Author: Sophie Tourret , 2019-2020 *) section \Labeled Liftings\ text \This section formalizes the extension of the lifting results to labeled calculi. This corresponds to section 3.4 of the report.\ theory Labeled_Lifting_to_Non_Ground_Calculi imports Lifting_to_Non_Ground_Calculi begin subsection \Labeled Lifting with a Family of Well-founded Orderings\ locale labeled_lifting_w_wf_ord_family = lifting_with_wf_ordering_family Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F \_Inf Prec_F for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and entails_G :: "'g set \ 'g set \ bool" (infix "\G" 50) and Inf_G :: "'g inference set" and Red_Inf_G :: "'g set \ 'g inference set" and Red_F_G :: "'g set \ 'g set" and \_F :: "'f \ 'g set" and \_Inf :: "'f inference \ 'g inference set option" and Prec_F :: "'g \ 'f \ 'f \ bool" (infix "\" 50) + fixes - l :: \'l itself\ and Inf_FL :: \('f \ 'l) inference set\ assumes Inf_F_to_Inf_FL: \\\<^sub>F \ Inf_F \ length (Ll :: 'l list) = length (prems_of \\<^sub>F) \ \L0. Infer (zip (prems_of \\<^sub>F) Ll) (concl_of \\<^sub>F, L0) \ Inf_FL\ and Inf_FL_to_Inf_F: \\\<^sub>F\<^sub>L \ Inf_FL \ Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L)) \ Inf_F\ begin definition to_F :: \('f \ 'l) inference \ 'f inference\ where \to_F \\<^sub>F\<^sub>L = Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L))\ definition Bot_FL :: \('f \ 'l) set\ where \Bot_FL = Bot_F \ UNIV\ definition \_F_L :: \('f \ 'l) \ 'g set\ where \\_F_L CL = \_F (fst CL)\ definition \_Inf_L :: \('f \ 'l) inference \ 'g inference set option\ where \\_Inf_L \\<^sub>F\<^sub>L = \_Inf (to_F \\<^sub>F\<^sub>L)\ (* lem:labeled-grounding-function *) sublocale labeled_standard_lifting: standard_lifting where Bot_F = Bot_FL and Inf_F = Inf_FL and \_F = \_F_L and \_Inf = \_Inf_L proof show "Bot_FL \ {}" unfolding Bot_FL_def using Bot_F_not_empty by simp next show "B\Bot_FL \ \_F_L B \ {}" for B unfolding \_F_L_def Bot_FL_def using Bot_map_not_empty by auto next show "B\Bot_FL \ \_F_L B \ Bot_G" for B unfolding \_F_L_def Bot_FL_def using Bot_map by force next fix CL show "\_F_L CL \ Bot_G \ {} \ CL \ Bot_FL" unfolding \_F_L_def Bot_FL_def using Bot_cond by (metis SigmaE UNIV_I UNIV_Times_UNIV mem_Sigma_iff prod.sel(1)) next fix \ assume i_in: \\ \ Inf_FL\ and ground_not_none: \\_Inf_L \ \ None\ then show "the (\_Inf_L \) \ Red_Inf_G (\_F_L (concl_of \))" unfolding \_Inf_L_def \_F_L_def to_F_def using inf_map Inf_FL_to_Inf_F by fastforce qed abbreviation Labeled_Empty_Order :: \ ('f \ 'l) \ ('f \ 'l) \ bool\ where "Labeled_Empty_Order C1 C2 \ False" sublocale labeled_lifting_w_empty_ord_family : lifting_with_wf_ordering_family Bot_FL Inf_FL Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F_L \_Inf_L "\g. Labeled_Empty_Order" proof show "po_on Labeled_Empty_Order UNIV" unfolding po_on_def by (simp add: transp_onI wfp_on_imp_irreflp_on) show "wfp_on Labeled_Empty_Order UNIV" unfolding wfp_on_def by simp qed notation "labeled_standard_lifting.entails_\" (infix "\\L" 50) (* lem:labeled-consequence *) lemma labeled_entailment_lifting: "NL1 \\L NL2 \ fst ` NL1 \\ fst ` NL2" unfolding labeled_standard_lifting.entails_\_def \_F_L_def entails_\_def by auto lemma (in-) subset_fst: "A \ fst ` AB \ \x \ A. \y. (x,y) \ AB" by fastforce lemma red_inf_impl: "\ \ labeled_lifting_w_empty_ord_family.Red_Inf_\ NL \ to_F \ \ Red_Inf_\ (fst ` NL)" unfolding labeled_lifting_w_empty_ord_family.Red_Inf_\_def Red_Inf_\_def \_Inf_L_def \_F_L_def to_F_def using Inf_FL_to_Inf_F by auto (* lem:labeled-saturation *) lemma labeled_saturation_lifting: "labeled_lifting_w_empty_ord_family.lifted_calculus_with_red_crit.saturated NL \ empty_order_lifting.lifted_calculus_with_red_crit.saturated (fst ` NL)" unfolding labeled_lifting_w_empty_ord_family.lifted_calculus_with_red_crit.saturated_def empty_order_lifting.lifted_calculus_with_red_crit.saturated_def labeled_standard_lifting.Non_ground.Inf_from_def Non_ground.Inf_from_def proof clarify fix \ assume subs_Red_Inf: "{\ \ Inf_FL. set (prems_of \) \ NL} \ labeled_lifting_w_empty_ord_family.Red_Inf_\ NL" and i_in: "\ \ Inf_F" and i_prems: "set (prems_of \) \ fst ` NL" define Lli where "Lli i \ (SOME x. ((prems_of \)!i,x) \ NL)" for i have [simp]:"((prems_of \)!i,Lli i) \ NL" if "i < length (prems_of \)" for i using that subset_fst[OF i_prems] unfolding Lli_def by (meson nth_mem someI_ex) define Ll where "Ll \ map Lli [0..)]" have Ll_length: "length Ll = length (prems_of \)" unfolding Ll_def by auto have subs_NL: "set (zip (prems_of \) Ll) \ NL" unfolding Ll_def by (auto simp:in_set_zip) obtain L0 where L0: "Infer (zip (prems_of \) Ll) (concl_of \, L0) \ Inf_FL" using Inf_F_to_Inf_FL[OF i_in Ll_length] .. define \_FL where "\_FL = Infer (zip (prems_of \) Ll) (concl_of \, L0)" then have "set (prems_of \_FL) \ NL" using subs_NL by simp then have "\_FL \ {\ \ Inf_FL. set (prems_of \) \ NL}" unfolding \_FL_def using L0 by blast then have "\_FL \ labeled_lifting_w_empty_ord_family.Red_Inf_\ NL" using subs_Red_Inf by fast moreover have "\ = to_F \_FL" unfolding to_F_def \_FL_def using Ll_length by (cases \) auto ultimately show "\ \ Red_Inf_\ (fst ` NL)" by (auto intro:red_inf_impl) qed (* lem:labeled-static-ref-compl *) lemma stat_ref_comp_to_labeled_sta_ref_comp: "static_refutational_complete_calculus Bot_F Inf_F (\\) Red_Inf_\ Red_F_\ \ static_refutational_complete_calculus Bot_FL Inf_FL (\\L) labeled_lifting_w_empty_ord_family.Red_Inf_\ labeled_lifting_w_empty_ord_family.Red_F_\" unfolding static_refutational_complete_calculus_def proof (rule conjI impI; clarify) interpret calculus_with_red_crit Bot_FL Inf_FL labeled_standard_lifting.entails_\ labeled_lifting_w_empty_ord_family.Red_Inf_\ labeled_lifting_w_empty_ord_family.Red_F_\ by (simp add: labeled_lifting_w_empty_ord_family.lifted_calculus_with_red_crit.calculus_with_red_crit_axioms) show "calculus_with_red_crit Bot_FL Inf_FL (\\L) labeled_lifting_w_empty_ord_family.Red_Inf_\ labeled_lifting_w_empty_ord_family.Red_F_\" by standard next assume calc: "calculus_with_red_crit Bot_F Inf_F (\\) Red_Inf_\ Red_F_\" and static: "static_refutational_complete_calculus_axioms Bot_F Inf_F (\\) Red_Inf_\" show "static_refutational_complete_calculus_axioms Bot_FL Inf_FL (\\L) labeled_lifting_w_empty_ord_family.Red_Inf_\" unfolding static_refutational_complete_calculus_axioms_def proof (intro conjI impI allI) fix Bl :: \'f \ 'l\ and Nl :: \('f \ 'l) set\ assume Bl_in: \Bl \ Bot_FL\ and Nl_sat: \labeled_lifting_w_empty_ord_family.lifted_calculus_with_red_crit.saturated Nl\ and Nl_entails_Bl: \Nl \\L {Bl}\ have static_axioms: "B \ Bot_F \ empty_order_lifting.lifted_calculus_with_red_crit.saturated N \ N \\ {B} \ (\B'\Bot_F. B' \ N)" for B N using static[unfolded static_refutational_complete_calculus_axioms_def] by fast define B where "B = fst Bl" have B_in: "B \ Bot_F" using Bl_in Bot_FL_def B_def SigmaE by force define N where "N = fst ` Nl" have N_sat: "empty_order_lifting.lifted_calculus_with_red_crit.saturated N" using N_def Nl_sat labeled_saturation_lifting by blast have N_entails_B: "N \\ {B}" using Nl_entails_Bl unfolding labeled_entailment_lifting N_def B_def by force have "\B' \ Bot_F. B' \ N" using B_in N_sat N_entails_B static_axioms[of B N] by blast then obtain B' where in_Bot: "B' \ Bot_F" and in_N: "B' \ N" by force then have "B' \ fst ` Bot_FL" unfolding Bot_FL_def by fastforce obtain Bl' where in_Nl: "Bl' \ Nl" and fst_Bl': "fst Bl' = B'" using in_N unfolding N_def by blast have "Bl' \ Bot_FL" unfolding Bot_FL_def using fst_Bl' in_Bot vimage_fst by fastforce then show \\Bl'\Bot_FL. Bl' \ Nl\ using in_Nl by blast qed qed end subsection \Labeled Lifting with a Family of Redundancy Criteria\ locale labeled_lifting_with_red_crit_family = no_labels: standard_lifting_with_red_crit_family Inf_F Bot_G Inf_G Q entails_q Red_Inf_q Red_F_q Bot_F \_F_q \_Inf_q "\g. Empty_Order" for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G :: "'g inference set" and Red_Inf_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_Inf_q :: "'q \ 'f inference \ 'g inference set option" + fixes - l :: "'l itself" and Inf_FL :: \('f \ 'l) inference set\ assumes Inf_F_to_Inf_FL: \\\<^sub>F \ Inf_F \ length (Ll :: 'l list) = length (prems_of \\<^sub>F) \ \L0. Infer (zip (prems_of \\<^sub>F) Ll) (concl_of \\<^sub>F, L0) \ Inf_FL\ and Inf_FL_to_Inf_F: \\\<^sub>F\<^sub>L \ Inf_FL \ Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L)) \ Inf_F\ begin definition to_F :: \('f \ 'l) inference \ 'f inference\ where \to_F \\<^sub>F\<^sub>L = Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L))\ definition Bot_FL :: \('f \ 'l) set\ where \Bot_FL = Bot_F \ UNIV\ definition \_F_L_q :: \'q \ ('f \ 'l) \ 'g set\ where \\_F_L_q q CL = \_F_q q (fst CL)\ definition \_Inf_L_q :: \'q \ ('f \ 'l) inference \ 'g inference set option\ where \\_Inf_L_q q \\<^sub>F\<^sub>L = \_Inf_q q (to_F \\<^sub>F\<^sub>L)\ definition \_set_L_q :: "'q \ ('f \ 'l) set \ 'g set" where "\_set_L_q q N \ \ (\_F_L_q q ` N)" definition Red_Inf_\_L_q :: "'q \ ('f \ 'l) set \ ('f \ 'l) inference set" where "Red_Inf_\_L_q q N = {\ \ Inf_FL. ((\_Inf_L_q q \) \ None \ the (\_Inf_L_q q \) \ Red_Inf_q q (\_set_L_q q N)) \ ((\_Inf_L_q q \ = None) \ \_F_L_q q (concl_of \) \ (\_set_L_q q N \ Red_F_q q (\_set_L_q q N)))}" definition Red_Inf_\_L_Q :: "('f \ 'l) set \ ('f \ 'l) inference set" where "Red_Inf_\_L_Q N = \ {X N |X. X \ (Red_Inf_\_L_q ` Q)}" definition Labeled_Empty_Order :: \ ('f \ 'l) \ ('f \ 'l) \ bool\ where "Labeled_Empty_Order C1 C2 \ False" definition Red_F_\_empty_L_q :: "'q \ ('f \ 'l) set \ ('f \ 'l) set" where "Red_F_\_empty_L_q q N = {C. \D \ \_F_L_q q C. D \ Red_F_q q (\_set_L_q q N) \ (\E \ N. Labeled_Empty_Order E C \ D \ \_F_L_q q E)}" definition Red_F_\_empty_L :: "('f \ 'l) set \ ('f \ 'l) set" where "Red_F_\_empty_L N = \ {X N |X. X \ (Red_F_\_empty_L_q ` Q)}" definition entails_\_L_q :: "'q \ ('f \ 'l) set \ ('f \ 'l) set \ bool" where "entails_\_L_q q N1 N2 \ entails_q q (\_set_L_q q N1) (\_set_L_q q N2)" definition entails_\_L_Q :: "('f \ 'l) set \ ('f \ 'l) set \ bool" (infix "\\L" 50) where "entails_\_L_Q N1 N2 \ \q \ Q. entails_\_L_q q N1 N2" lemma lifting_q: assumes "q \ Q" shows "labeled_lifting_w_wf_ord_family Bot_F Inf_F Bot_G (entails_q q) Inf_G (Red_Inf_q q) (Red_F_q q) (\_F_q q) (\_Inf_q q) (\g. Empty_Order) Inf_FL" using assms no_labels.standard_lifting_family Inf_F_to_Inf_FL Inf_FL_to_Inf_F by (simp add: labeled_lifting_w_wf_ord_family_axioms_def labeled_lifting_w_wf_ord_family_def) lemma lifted_q: assumes q_in: "q \ Q" shows "standard_lifting Bot_FL Inf_FL Bot_G Inf_G (entails_q q) (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q)" proof - interpret q_lifting: labeled_lifting_w_wf_ord_family Bot_F Inf_F Bot_G "entails_q q" Inf_G - "Red_Inf_q q" "Red_F_q q" "\_F_q q" "\_Inf_q q" "\g. Empty_Order" l Inf_FL + "Red_Inf_q q" "Red_F_q q" "\_F_q q" "\_Inf_q q" "\g. Empty_Order" Inf_FL using lifting_q[OF q_in] . have "\_F_L_q q = q_lifting.\_F_L" unfolding \_F_L_q_def q_lifting.\_F_L_def by simp moreover have "\_Inf_L_q q = q_lifting.\_Inf_L" unfolding \_Inf_L_q_def q_lifting.\_Inf_L_def to_F_def q_lifting.to_F_def by simp moreover have "Bot_FL = q_lifting.Bot_FL" unfolding Bot_FL_def q_lifting.Bot_FL_def by simp ultimately show "standard_lifting Bot_FL Inf_FL Bot_G Inf_G (entails_q q) (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q)" using q_lifting.labeled_standard_lifting.standard_lifting_axioms by simp qed lemma ord_fam_lifted_q: assumes q_in: "q \ Q" shows "lifting_with_wf_ordering_family Bot_FL Inf_FL Bot_G (entails_q q) Inf_G (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q) (\g. Labeled_Empty_Order)" proof - interpret standard_q_lifting: standard_lifting Bot_FL Inf_FL Bot_G Inf_G "entails_q q" "Red_Inf_q q" "Red_F_q q" "\_F_L_q q" "\_Inf_L_q q" using lifted_q[OF q_in] . have "minimal_element Labeled_Empty_Order UNIV" unfolding Labeled_Empty_Order_def by (simp add: minimal_element.intro po_on_def transp_onI wfp_on_imp_irreflp_on) then show "lifting_with_wf_ordering_family Bot_FL Inf_FL Bot_G (entails_q q) Inf_G (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q) (\g. Labeled_Empty_Order)" using standard_q_lifting.standard_lifting_axioms by (simp add: lifting_with_wf_ordering_family_axioms.intro lifting_with_wf_ordering_family_def) qed lemma all_lifted_red_crit: assumes q_in: "q \ Q" shows "calculus_with_red_crit Bot_FL Inf_FL (entails_\_L_q q) (Red_Inf_\_L_q q) (Red_F_\_empty_L_q q)" proof - interpret ord_q_lifting: lifting_with_wf_ordering_family Bot_FL Inf_FL Bot_G "entails_q q" Inf_G "Red_Inf_q q" "Red_F_q q" "\_F_L_q q" "\_Inf_L_q q" "\g. Labeled_Empty_Order" using ord_fam_lifted_q[OF q_in] . have "entails_\_L_q q = ord_q_lifting.entails_\" unfolding entails_\_L_q_def \_set_L_q_def ord_q_lifting.entails_\_def by simp moreover have "Red_Inf_\_L_q q = ord_q_lifting.Red_Inf_\" unfolding Red_Inf_\_L_q_def ord_q_lifting.Red_Inf_\_def \_set_L_q_def by simp moreover have "Red_F_\_empty_L_q q = ord_q_lifting.Red_F_\" unfolding Red_F_\_empty_L_q_def ord_q_lifting.Red_F_\_def \_set_L_q_def by simp ultimately show "calculus_with_red_crit Bot_FL Inf_FL (entails_\_L_q q) (Red_Inf_\_L_q q) (Red_F_\_empty_L_q q)" using ord_q_lifting.lifted_calculus_with_red_crit.calculus_with_red_crit_axioms by argo qed lemma all_lifted_cons_rel: assumes q_in: "q \ Q" shows "consequence_relation Bot_FL (entails_\_L_q q)" proof - interpret q_red_crit: calculus_with_red_crit Bot_FL Inf_FL "entails_\_L_q q" "Red_Inf_\_L_q q" "Red_F_\_empty_L_q q" using all_lifted_red_crit[OF q_in] . show "consequence_relation Bot_FL (entails_\_L_q q)" using q_red_crit.consequence_relation_axioms . qed sublocale labeled_cons_rel_family: consequence_relation_family Bot_FL Q entails_\_L_q using all_lifted_cons_rel no_labels.lifted_calc_w_red_crit_family.bot_not_empty by (simp add: Bot_FL_def consequence_relation_family_def no_labels.lifted_calc_w_red_crit_family.Q_nonempty) sublocale with_labels: calculus_with_red_crit_family Bot_FL Inf_FL Q entails_\_L_q Red_Inf_\_L_q Red_F_\_empty_L_q using calculus_with_red_crit_family.intro[OF labeled_cons_rel_family.consequence_relation_family_axioms] all_lifted_cons_rel by (meson calculus_with_red_crit_family_axioms.intro labeled_lifting_with_red_crit_family.all_lifted_red_crit labeled_lifting_with_red_crit_family_axioms no_labels.lifted_calc_w_red_crit_family.Q_nonempty) notation no_labels.entails_\_Q (infix "\\" 50) (* lem:labeled-consequence-intersection *) lemma labeled_entailment_lifting: "NL1 \\L NL2 \ fst ` NL1 \\ fst ` NL2" unfolding no_labels.entails_\_Q_def no_labels.entails_\_q_def no_labels.\_set_q_def entails_\_L_Q_def entails_\_L_q_def \_set_L_q_def \_F_L_q_def by force lemma subset_fst: "A \ fst ` AB \ \x \ A. \y. (x,y) \ AB" by fastforce lemma red_inf_impl: "\ \ with_labels.Red_Inf_Q NL \ to_F \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` NL)" unfolding no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q_def with_labels.Red_Inf_Q_def proof clarify fix X Xa q assume q_in: "q \ Q" and i_in_inter: "\ \ \ {X NL |X. X \ Red_Inf_\_L_q ` Q}" have i_in_q: "\ \ Red_Inf_\_L_q q NL" using q_in i_in_inter image_eqI by blast then have i_in: "\ \ Inf_FL" unfolding Red_Inf_\_L_q_def by blast have to_F_in: "to_F \ \ Inf_F" unfolding to_F_def using Inf_FL_to_Inf_F[OF i_in] . have rephrase1: "(\CL\NL. \_F_q q (fst CL)) = (\ (\_F_q q ` fst ` NL))" by blast have rephrase2: "fst (concl_of \) = concl_of (to_F \)" unfolding concl_of_def to_F_def by simp have subs_red: "((\_Inf_L_q q \) \ None \ the (\_Inf_L_q q \) \ Red_Inf_q q (\_set_L_q q NL)) \ ((\_Inf_L_q q \ = None) \ \_F_L_q q (concl_of \) \ (\_set_L_q q NL \ Red_F_q q (\_set_L_q q NL)))" using i_in_q unfolding Red_Inf_\_L_q_def by blast then have to_F_subs_red: "(\_Inf_q q (to_F \) \ None \ the (\_Inf_q q (to_F \)) \ Red_Inf_q q (no_labels.\_set_q q (fst ` NL))) \ (\_Inf_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ (no_labels.\_set_q q (fst ` NL) \ Red_F_q q (no_labels.\_set_q q (fst ` NL))))" unfolding \_Inf_L_q_def \_set_L_q_def no_labels.\_set_q_def \_F_L_q_def using rephrase1 rephrase2 by metis then show "to_F \ \ no_labels.Red_Inf_\_q q (fst ` NL)" using to_F_in unfolding no_labels.Red_Inf_\_q_def by simp qed (* lem:labeled-saturation-intersection *) lemma labeled_family_saturation_lifting: "with_labels.inter_red_crit_calculus.saturated NL \ no_labels.lifted_calc_w_red_crit_family.inter_red_crit_calculus.saturated (fst ` NL)" unfolding with_labels.inter_red_crit_calculus.saturated_def no_labels.lifted_calc_w_red_crit_family.inter_red_crit_calculus.saturated_def with_labels.Inf_from_def no_labels.Non_ground.Inf_from_def proof clarify fix \F assume labeled_sat: "{\ \ Inf_FL. set (prems_of \) \ NL} \ with_labels.Red_Inf_Q NL" and iF_in: "\F \ Inf_F" and iF_prems: "set (prems_of \F) \ fst ` NL" define Lli where "Lli i \ (SOME x. ((prems_of \F)!i,x) \ NL)" for i have [simp]:"((prems_of \F)!i,Lli i) \ NL" if "i < length (prems_of \F)" for i using that subset_fst[OF iF_prems] nth_mem someI_ex unfolding Lli_def by metis define Ll where "Ll \ map Lli [0..F)]" have Ll_length: "length Ll = length (prems_of \F)" unfolding Ll_def by auto have subs_NL: "set (zip (prems_of \F) Ll) \ NL" unfolding Ll_def by (auto simp:in_set_zip) obtain L0 where L0: "Infer (zip (prems_of \F) Ll) (concl_of \F, L0) \ Inf_FL" using Inf_F_to_Inf_FL[OF iF_in Ll_length] .. define \FL where "\FL = Infer (zip (prems_of \F) Ll) (concl_of \F, L0)" then have "set (prems_of \FL) \ NL" using subs_NL by simp then have "\FL \ {\ \ Inf_FL. set (prems_of \) \ NL}" unfolding \FL_def using L0 by blast then have "\FL \ with_labels.Red_Inf_Q NL" using labeled_sat by fast moreover have "\F = to_F \FL" unfolding to_F_def \FL_def using Ll_length by (cases \F) auto ultimately show "\F \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` NL)" by (auto intro:red_inf_impl) qed (* thm:labeled-static-ref-compl-intersection *) theorem labeled_static_ref: "static_refutational_complete_calculus Bot_F Inf_F (\\) no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_F_Q \ static_refutational_complete_calculus Bot_FL Inf_FL (\\L) with_labels.Red_Inf_Q with_labels.Red_F_Q" unfolding static_refutational_complete_calculus_def proof (rule conjI impI; clarify) show "calculus_with_red_crit Bot_FL Inf_FL (\\L) with_labels.Red_Inf_Q with_labels.Red_F_Q" using with_labels.inter_red_crit_calculus.calculus_with_red_crit_axioms unfolding labeled_cons_rel_family.entails_Q_def entails_\_L_Q_def . next assume calc: "calculus_with_red_crit Bot_F Inf_F (\\) no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_F_Q" and static: "static_refutational_complete_calculus_axioms Bot_F Inf_F (\\) no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q" show "static_refutational_complete_calculus_axioms Bot_FL Inf_FL (\\L) with_labels.Red_Inf_Q" unfolding static_refutational_complete_calculus_axioms_def proof (intro conjI impI allI) fix Bl :: \'f \ 'l\ and Nl :: \('f \ 'l) set\ assume Bl_in: \Bl \ Bot_FL\ and Nl_sat: \with_labels.inter_red_crit_calculus.saturated Nl\ and Nl_entails_Bl: \Nl \\L {Bl}\ have static_axioms: "B \ Bot_F \ no_labels.lifted_calc_w_red_crit_family.inter_red_crit_calculus.saturated N \ N \\ {B} \ (\B'\Bot_F. B' \ N)" for B N using static[unfolded static_refutational_complete_calculus_axioms_def] by fast define B where "B = fst Bl" have B_in: "B \ Bot_F" using Bl_in Bot_FL_def B_def SigmaE by force define N where "N = fst ` Nl" have N_sat: "no_labels.lifted_calc_w_red_crit_family.inter_red_crit_calculus.saturated N" using N_def Nl_sat labeled_family_saturation_lifting by blast have N_entails_B: "N \\ {B}" using Nl_entails_Bl unfolding labeled_entailment_lifting N_def B_def by force have "\B' \ Bot_F. B' \ N" using B_in N_sat N_entails_B static_axioms[of B N] by blast then obtain B' where in_Bot: "B' \ Bot_F" and in_N: "B' \ N" by force then have "B' \ fst ` Bot_FL" unfolding Bot_FL_def by fastforce obtain Bl' where in_Nl: "Bl' \ Nl" and fst_Bl': "fst Bl' = B'" using in_N unfolding N_def by blast have "Bl' \ Bot_FL" unfolding Bot_FL_def using fst_Bl' in_Bot vimage_fst by fastforce then show \\Bl'\Bot_FL. Bl' \ Nl\ using in_Nl by blast qed qed end end diff --git a/thys/Saturation_Framework/Prover_Architectures.thy b/thys/Saturation_Framework/Prover_Architectures.thy --- a/thys/Saturation_Framework/Prover_Architectures.thy +++ b/thys/Saturation_Framework/Prover_Architectures.thy @@ -1,1307 +1,1304 @@ (* Title: Prover Architectures of the Saturation Framework * Author: Sophie Tourret , 2019-2020 *) section \Prover Architectures\ text \This section covers all the results presented in the section 4 of the report. This is where abstract architectures of provers are defined and proven dynamically refutationally complete.\ theory Prover_Architectures imports Labeled_Lifting_to_Non_Ground_Calculi begin subsection \Basis of the Prover Architectures\ locale Prover_Architecture_Basis = labeled_lifting_with_red_crit_family Bot_F Inf_F Bot_G Q entails_q Inf_G - Red_Inf_q Red_F_q \_F_q \_Inf_q l Inf_FL + Red_Inf_q Red_F_q \_F_q \_Inf_q Inf_FL for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ ('g set \ 'g set \ bool)" and Inf_G :: \'g inference set\ and Red_Inf_q :: "'q \ ('g set \ 'g inference set)" and Red_F_q :: "'q \ ('g set \ 'g set)" and \_F_q :: "'q \ 'f \ 'g set" and \_Inf_q :: "'q \ 'f inference \ 'g inference set option" - and l :: "'l itself" and Inf_FL :: \('f \ 'l) inference set\ + fixes Equiv_F :: "('f \ 'f) set" and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_l :: "'l \ 'l \ bool" (infix "\l" 50) assumes equiv_F_is_equiv_rel: "equiv UNIV Equiv_F" and wf_prec_F: "minimal_element (Prec_F) UNIV" and wf_prec_l: "minimal_element (Prec_l) UNIV" and compat_equiv_prec: "(C1, D1) \ equiv_F \ (C2,D2) \ equiv_F \ C1 \\ C2 \ D1 \\ D2" and equiv_F_grounding: "q \ Q \ (C1, C2) \ equiv_F \ \_F_q q C1 = \_F_q q C2" and prec_F_grounding: "q \ Q \ C1 \\ C2 \ \_F_q q C1 \ \_F_q q C2" and static_ref_comp: "static_refutational_complete_calculus Bot_F Inf_F (\\) no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_F_Q" begin definition equiv_F_fun :: "'f \ 'f \ bool" (infix "\" 50) where "equiv_F_fun C D \ (C, D) \ Equiv_F" definition Prec_eq_F :: "'f \ 'f \ bool" (infix "\\" 50) where "Prec_eq_F C D \ ((C, D) \ Equiv_F \ C \\ D)" definition Prec_FL :: "('f \ 'l) \ ('f \ 'l) \ bool" (infix "\" 50) where "Prec_FL Cl1 Cl2 \ (fst Cl1 \\ fst Cl2) \ (fst Cl1 \ fst Cl2 \ snd Cl1 \l snd Cl2)" lemma wf_prec_FL: "minimal_element (\) UNIV" proof show "po_on (\) UNIV" unfolding po_on_def proof show "irreflp_on (\) UNIV" unfolding irreflp_on_def Prec_FL_def proof fix a assume a_in: "a \ (UNIV::('f \ 'l) set)" have "\ (fst a \\ fst a)" using wf_prec_F minimal_element.min_elt_ex by force moreover have "\ (snd a \l snd a)" using wf_prec_l minimal_element.min_elt_ex by force ultimately show "\ (fst a \\ fst a \ fst a \ fst a \ snd a \l snd a)" by blast qed next show "transp_on (\) UNIV" unfolding transp_on_def Prec_FL_def proof (simp, intro allI impI) fix a1 b1 a2 b2 a3 b3 assume trans_hyp:"(a1 \\ a2 \ a1 \ a2 \ b1 \l b2) \ (a2 \\ a3 \ a2 \ a3 \ b2 \l b3)" have "a1 \\ a2 \ a2 \\ a3 \ a1 \\ a3" using wf_prec_F compat_equiv_prec by blast moreover have "a1 \\ a2 \ a2 \ a3 \ a1 \\ a3" using wf_prec_F compat_equiv_prec by blast moreover have "a1 \ a2 \ a2 \\ a3 \ a1 \\ a3" using wf_prec_F compat_equiv_prec by blast moreover have "b1 \l b2 \ b2 \l b3 \ b1 \l b3" using wf_prec_l unfolding minimal_element_def po_on_def transp_on_def by (meson UNIV_I) moreover have "a1 \ a2 \ a2 \ a3 \ a1 \ a3" using equiv_F_is_equiv_rel equiv_class_eq unfolding equiv_F_fun_def by fastforce ultimately show "(a1 \\ a3 \ a1 \ a3 \ b1 \l b3)" using trans_hyp by blast qed qed next show "wfp_on (\) UNIV" unfolding wfp_on_def proof assume contra: "\f. \i. f i \ UNIV \ f (Suc i) \ f i" then obtain f where f_in: "\i. f i \ UNIV" and f_suc: "\i. f (Suc i) \ f i" by blast define f_F where "f_F = (\i. fst (f i))" define f_L where "f_L = (\i. snd (f i))" have uni_F: "\i. f_F i \ UNIV" using f_in by simp have uni_L: "\i. f_L i \ UNIV" using f_in by simp have decomp: "\i. f_F (Suc i) \\ f_F i \ f_L (Suc i) \l f_L i" using f_suc unfolding Prec_FL_def f_F_def f_L_def by blast define I_F where "I_F = { i |i. f_F (Suc i) \\ f_F i}" define I_L where "I_L = { i |i. f_L (Suc i) \l f_L i}" have "I_F \ I_L = UNIV" using decomp unfolding I_F_def I_L_def by blast then have "finite I_F \ \ finite I_L" by (metis finite_UnI infinite_UNIV_nat) moreover have "infinite I_F \ \f. \i. f i \ UNIV \ f (Suc i) \\ f i" using uni_F unfolding I_F_def by (meson compat_equiv_prec iso_tuple_UNIV_I not_finite_existsD) moreover have "infinite I_L \ \f. \i. f i \ UNIV \ f (Suc i) \l f i" using uni_L unfolding I_L_def by (metis UNIV_I compat_equiv_prec decomp minimal_element_def wf_prec_F wfp_on_def) ultimately show False using wf_prec_F wf_prec_l by (metis minimal_element_def wfp_on_def) qed qed lemma labeled_static_ref_comp: "static_refutational_complete_calculus Bot_FL Inf_FL (\\L) with_labels.Red_Inf_Q with_labels.Red_F_Q" using labeled_static_ref[OF static_ref_comp] . lemma standard_labeled_lifting_family: assumes q_in: "q \ Q" shows "lifting_with_wf_ordering_family Bot_FL Inf_FL Bot_G (entails_q q) Inf_G (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q) (\g. Prec_FL)" proof - have "lifting_with_wf_ordering_family Bot_FL Inf_FL Bot_G (entails_q q) Inf_G (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q) (\g. Labeled_Empty_Order)" using ord_fam_lifted_q[OF q_in] . then have "standard_lifting Bot_FL Inf_FL Bot_G Inf_G (entails_q q) (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q)" using lifted_q[OF q_in] by blast then show "lifting_with_wf_ordering_family Bot_FL Inf_FL Bot_G (entails_q q) Inf_G (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q) (\g. Prec_FL)" using wf_prec_FL by (simp add: lifting_with_wf_ordering_family.intro lifting_with_wf_ordering_family_axioms.intro) qed sublocale labeled_ord_red_crit_fam: standard_lifting_with_red_crit_family Inf_FL Bot_G Inf_G Q entails_q Red_Inf_q Red_F_q Bot_FL \_F_L_q \_Inf_L_q "\g. Prec_FL" using standard_labeled_lifting_family no_labels.Ground_family.calculus_with_red_crit_family_axioms by (simp add: standard_lifting_with_red_crit_family.intro standard_lifting_with_red_crit_family_axioms.intro) lemma entail_equiv: "labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.entails_Q N1 N2 = (N1 \\L N2)" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.entails_Q_def entails_\_L_Q_def entails_\_L_q_def labeled_ord_red_crit_fam.entails_\_q_def labeled_ord_red_crit_fam.\_set_q_def \_set_L_q_def by simp lemma entail_equiv2: "labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.entails_Q = (\\L)" using entail_equiv by auto lemma red_inf_equiv: "labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q N = with_labels.Red_Inf_Q N" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q_def with_labels.Red_Inf_Q_def labeled_ord_red_crit_fam.Red_Inf_\_q_def Red_Inf_\_L_q_def labeled_ord_red_crit_fam.\_set_q_def \_set_L_q_def by simp lemma red_inf_equiv2: "labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q = with_labels.Red_Inf_Q" using red_inf_equiv by auto lemma empty_red_f_equiv: "labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.Red_F_Q N = with_labels.Red_F_Q N" unfolding labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.Red_F_Q_def with_labels.Red_F_Q_def labeled_ord_red_crit_fam.Red_F_\_empty_q_def Red_F_\_empty_L_q_def labeled_ord_red_crit_fam.\_set_q_def \_set_L_q_def Labeled_Empty_Order_def by simp lemma empty_red_f_equiv2: "labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.Red_F_Q = with_labels.Red_F_Q" using empty_red_f_equiv by auto lemma labeled_ordered_static_ref_comp: "static_refutational_complete_calculus Bot_FL Inf_FL labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.entails_Q labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q" using labeled_ord_red_crit_fam.static_empty_ord_inter_equiv_static_inter empty_red_f_equiv2 red_inf_equiv2 entail_equiv2 labeled_static_ref_comp by argo interpretation stat_ref_calc: static_refutational_complete_calculus Bot_FL Inf_FL labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.entails_Q labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q by (rule labeled_ordered_static_ref_comp) lemma labeled_ordered_dynamic_ref_comp: "dynamic_refutational_complete_calculus Bot_FL Inf_FL labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.entails_Q labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q" by (rule stat_ref_calc.dynamic_refutational_complete_calculus_axioms) (* lem:redundant-labeled-inferences *) lemma labeled_red_inf_eq_red_inf: "\ \ Inf_FL \ \ \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q N \ to_F \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` N)" for \ proof - fix \ assume i_in: "\ \ Inf_FL" have "\ \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q N \ to_F \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` N)" proof - assume i_in2: "\ \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q N" then have "X \ labeled_ord_red_crit_fam.Red_Inf_\_q ` Q \ \ \ X N" for X unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q_def by blast obtain X0 where "X0 \ labeled_ord_red_crit_fam.Red_Inf_\_q ` Q" using with_labels.Q_nonempty by blast then obtain q0 where x0_is: "X0 N = labeled_ord_red_crit_fam.Red_Inf_\_q q0 N" by blast then obtain Y0 where y0_is: "Y0 (fst ` N) = to_F ` (X0 N)" by auto have "Y0 (fst ` N) = no_labels.Red_Inf_\_q q0 (fst ` N)" unfolding y0_is proof show "to_F ` X0 N \ no_labels.Red_Inf_\_q q0 (fst ` N)" proof fix \0 assume i0_in: "\0 \ to_F ` X0 N" then have i0_in2: "\0 \ to_F ` (labeled_ord_red_crit_fam.Red_Inf_\_q q0 N)" using x0_is by argo then obtain \0_FL where i0_FL_in: "\0_FL \ Inf_FL" and i0_to_i0_FL: "\0 = to_F \0_FL" and subs1: "((\_Inf_L_q q0 \0_FL) \ None \ the (\_Inf_L_q q0 \0_FL) \ Red_Inf_q q0 (labeled_ord_red_crit_fam.\_set_q q0 N)) \ ((\_Inf_L_q q0 \0_FL = None) \ \_F_L_q q0 (concl_of \0_FL) \ (labeled_ord_red_crit_fam.\_set_q q0 N \ Red_F_q q0 (labeled_ord_red_crit_fam.\_set_q q0 N)))" unfolding labeled_ord_red_crit_fam.Red_Inf_\_q_def by blast have concl_swap: "fst (concl_of \0_FL) = concl_of \0" unfolding concl_of_def i0_to_i0_FL to_F_def by simp have i0_in3: "\0 \ Inf_F" using i0_to_i0_FL Inf_FL_to_Inf_F[OF i0_FL_in] unfolding to_F_def by blast { assume not_none: "\_Inf_q q0 \0 \ None" and "the (\_Inf_q q0 \0) \ {}" then obtain \1 where i1_in: "\1 \ the (\_Inf_q q0 \0)" by blast have "the (\_Inf_q q0 \0) \ Red_Inf_q q0 (no_labels.\_set_q q0 (fst ` N))" using subs1 i0_to_i0_FL not_none unfolding no_labels.\_set_q_def labeled_ord_red_crit_fam.\_set_q_def \_Inf_L_q_def \_F_L_q_def by auto } moreover { assume is_none: "\_Inf_q q0 \0 = None" then have "\_F_q q0 (concl_of \0) \ no_labels.\_set_q q0 (fst ` N) \ Red_F_q q0 (no_labels.\_set_q q0 (fst ` N))" using subs1 i0_to_i0_FL concl_swap unfolding no_labels.\_set_q_def labeled_ord_red_crit_fam.\_set_q_def \_Inf_L_q_def \_F_L_q_def by simp } ultimately show "\0 \ no_labels.Red_Inf_\_q q0 (fst ` N)" unfolding no_labels.Red_Inf_\_q_def using i0_in3 by auto qed next show "no_labels.Red_Inf_\_q q0 (fst ` N) \ to_F ` X0 N" proof fix \0 assume i0_in: "\0 \ no_labels.Red_Inf_\_q q0 (fst ` N)" then have i0_in2: "\0 \ Inf_F" unfolding no_labels.Red_Inf_\_q_def by blast obtain \0_FL where i0_FL_in: "\0_FL \ Inf_FL" and i0_to_i0_FL: "\0 = to_F \0_FL" using Inf_F_to_Inf_FL[OF i0_in2] unfolding to_F_def by (metis Ex_list_of_length fst_conv inference.exhaust_sel inference.inject map_fst_zip) have concl_swap: "fst (concl_of \0_FL) = concl_of \0" unfolding concl_of_def i0_to_i0_FL to_F_def by simp have subs1: "((\_Inf_L_q q0 \0_FL) \ None \ the (\_Inf_L_q q0 \0_FL) \ Red_Inf_q q0 (labeled_ord_red_crit_fam.\_set_q q0 N)) \ ((\_Inf_L_q q0 \0_FL = None) \ \_F_L_q q0 (concl_of \0_FL) \ (labeled_ord_red_crit_fam.\_set_q q0 N \ Red_F_q q0 (labeled_ord_red_crit_fam.\_set_q q0 N)))" using i0_in i0_to_i0_FL concl_swap unfolding no_labels.Red_Inf_\_q_def \_Inf_L_q_def no_labels.\_set_q_def labeled_ord_red_crit_fam.\_set_q_def \_F_L_q_def by simp then have "\0_FL \ labeled_ord_red_crit_fam.Red_Inf_\_q q0 N" using i0_FL_in unfolding labeled_ord_red_crit_fam.Red_Inf_\_q_def by simp then show "\0 \ to_F ` X0 N" using x0_is i0_to_i0_FL i0_in2 by blast qed qed then have "Y \ no_labels.Red_Inf_\_q ` Q \ (to_F \) \ Y (fst ` N)" for Y using i_in2 no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q_def red_inf_equiv2 red_inf_impl by fastforce then show "(to_F \) \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` N)" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q_def no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q_def by blast qed moreover have "(to_F \) \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` N) \ \ \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q N" proof - assume to_F_in: "to_F \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` N)" have imp_to_F: "X \ no_labels.Red_Inf_\_q ` Q \ to_F \ \ X (fst ` N)" for X using to_F_in unfolding no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q_def by blast then have to_F_in2: "to_F \ \ no_labels.Red_Inf_\_q q (fst ` N)" if "q \ Q" for q using that by auto have "labeled_ord_red_crit_fam.Red_Inf_\_q q N = {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q (fst ` N)}" for q proof show "labeled_ord_red_crit_fam.Red_Inf_\_q q N \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q (fst ` N)}" proof fix q0 \1 assume i1_in: "\1 \ labeled_ord_red_crit_fam.Red_Inf_\_q q0 N" have i1_in2: "\1 \ Inf_FL" using i1_in unfolding labeled_ord_red_crit_fam.Red_Inf_\_q_def by blast then have to_F_i1_in: "to_F \1 \ Inf_F" using Inf_FL_to_Inf_F unfolding to_F_def by simp have concl_swap: "fst (concl_of \1) = concl_of (to_F \1)" unfolding concl_of_def to_F_def by simp then have i1_to_F_in: "to_F \1 \ no_labels.Red_Inf_\_q q0 (fst ` N)" using i1_in to_F_i1_in unfolding labeled_ord_red_crit_fam.Red_Inf_\_q_def no_labels.Red_Inf_\_q_def \_Inf_L_q_def labeled_ord_red_crit_fam.\_set_q_def no_labels.\_set_q_def \_F_L_q_def by force show "\1 \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q0 (fst ` N)}" using i1_in2 i1_to_F_in by blast qed next show "{\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q (fst ` N)} \ labeled_ord_red_crit_fam.Red_Inf_\_q q N" proof fix q0 \1 assume i1_in: "\1 \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q0 (fst ` N)}" then have i1_in2: "\1 \ Inf_FL" by blast then have to_F_i1_in: "to_F \1 \ Inf_F" using Inf_FL_to_Inf_F unfolding to_F_def by simp have concl_swap: "fst (concl_of \1) = concl_of (to_F \1)" unfolding concl_of_def to_F_def by simp then have "((\_Inf_L_q q0 \1) \ None \ the (\_Inf_L_q q0 \1) \ Red_Inf_q q0 (labeled_ord_red_crit_fam.\_set_q q0 N)) \ ((\_Inf_L_q q0 \1 = None) \ \_F_L_q q0 (concl_of \1) \ (labeled_ord_red_crit_fam.\_set_q q0 N \ Red_F_q q0 (labeled_ord_red_crit_fam.\_set_q q0 N)))" using i1_in unfolding no_labels.Red_Inf_\_q_def \_Inf_L_q_def labeled_ord_red_crit_fam.\_set_q_def no_labels.\_set_q_def \_F_L_q_def by auto then show "\1 \ labeled_ord_red_crit_fam.Red_Inf_\_q q0 N" using i1_in2 unfolding labeled_ord_red_crit_fam.Red_Inf_\_q_def by blast qed qed then have "\ \ labeled_ord_red_crit_fam.Red_Inf_\_q q N" if "q \ Q" for q using that to_F_in2 i_in unfolding labeled_ord_red_crit_fam.Red_Inf_\_q_def no_labels.Red_Inf_\_q_def \_Inf_L_q_def labeled_ord_red_crit_fam.\_set_q_def no_labels.\_set_q_def \_F_L_q_def by auto then show "\ \ labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q N" unfolding labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q_def by blast qed ultimately show "\ \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_Inf_Q N \ to_F \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` N)" by argo qed (* lem:redundant-labeled-formulas *) lemma red_labeled_clauses: \C \ no_labels.Red_F_\_empty (fst ` N) \ (\C' \ (fst ` N). C \\ C') \ (\(C', L') \ N. (L' \l L \ C \\ C')) \ (C, L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N\ proof - assume \C \ no_labels.Red_F_\_empty (fst ` N) \ (\C' \ (fst ` N). C \\ C') \ (\(C',L') \ N. (L' \l L \ C \\ C'))\ moreover have i: \C \ no_labels.Red_F_\_empty (fst ` N) \ (C,L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N\ proof - assume "C \ no_labels.Red_F_\_empty (fst ` N)" then have "C \ no_labels.Red_F_\_empty_q q (fst ` N)" if "q \ Q" for q unfolding no_labels.Red_F_\_empty_def using that by fast then have g_in_red: "\_F_q q C \ Red_F_q q (no_labels.\_set_q q (fst ` N))" if "q \ Q" for q unfolding no_labels.Red_F_\_empty_q_def using that by blast have "no_labels.\_set_q q (fst ` N) = labeled_ord_red_crit_fam.\_set_q q N" for q unfolding no_labels.\_set_q_def labeled_ord_red_crit_fam.\_set_q_def \_F_L_q_def by simp then have "\_F_L_q q (C,L) \ Red_F_q q (labeled_ord_red_crit_fam.\_set_q q N)" if "q \ Q" for q using that g_in_red unfolding \_F_L_q_def by simp then show "(C,L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q_def labeled_ord_red_crit_fam.Red_F_\_q_g_def by blast qed moreover have ii: \\C' \ (fst ` N). C \\ C' \ (C,L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N\ proof - assume "\C' \ (fst ` N). C \\ C'" then obtain C' where c'_in: "C' \ (fst ` N)" and c_prec_c': "C \\ C'" by blast obtain L' where c'_l'_in: "(C',L') \ N" using c'_in by auto have c'_l'_prec: "(C',L') \ (C,L)" using c_prec_c' unfolding Prec_FL_def by (meson UNIV_I compat_equiv_prec) have c_in_c'_g: "\_F_q q C \ \_F_q q C'" if "q \ Q" for q using prec_F_grounding[OF that c_prec_c'] by presburger then have "\_F_L_q q (C,L) \ \_F_L_q q (C',L')" if "q \ Q" for q unfolding no_labels.\_set_q_def labeled_ord_red_crit_fam.\_set_q_def \_F_L_q_def using that by auto then have "(C, L) \ labeled_ord_red_crit_fam.Red_F_\_q_g q N" if "q \ Q" for q unfolding labeled_ord_red_crit_fam.Red_F_\_q_g_def using that c'_l'_in c'_l'_prec by blast then show "(C, L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q_def by blast qed moreover have iii: \\(C', L') \ N. (L' \l L \ C \\ C') \ (C,L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N\ proof - assume "\(C', L') \ N. L' \l L \ C \\ C'" then obtain C' L' where c'_l'_in: "(C',L') \ N" and l'_sub_l: "L' \l L" and c'_sub_c: "C \\ C'" by fast have "(C,L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N" if "C \\ C'" using that c'_l'_in ii by fastforce moreover { assume equiv_c_c': "C \ C'" then have equiv_c'_c: "C' \ C" using equiv_F_is_equiv_rel equiv_F_fun_def equiv_class_eq_iff by fastforce then have c'_l'_prec: "(C',L') \ (C,L)" using l'_sub_l unfolding Prec_FL_def by simp have "\_F_q q C = \_F_q q C'" if "q \ Q" for q using that equiv_F_grounding equiv_c'_c by blast then have "\_F_L_q q (C,L) = \_F_L_q q (C',L')" if "q \ Q" for q unfolding no_labels.\_set_q_def labeled_ord_red_crit_fam.\_set_q_def \_F_L_q_def using that by auto then have "(C,L) \ labeled_ord_red_crit_fam.Red_F_\_q_g q N" if "q \ Q" for q unfolding labeled_ord_red_crit_fam.Red_F_\_q_g_def using that c'_l'_in c'_l'_prec by blast then have "(C,L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q_def by blast } ultimately show "(C,L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N" using c'_sub_c unfolding Prec_eq_F_def equiv_F_fun_def equiv_F_is_equiv_rel by blast qed ultimately show \(C,L) \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N\ by blast qed end subsection \Given Clause Architecture\ locale Given_Clause = Prover_Architecture_Basis Bot_F Inf_F Bot_G Q entails_q Inf_G Red_Inf_q - Red_F_q \_F_q \_Inf_q l Inf_FL Equiv_F Prec_F Prec_l + Red_F_q \_F_q \_Inf_q Inf_FL Equiv_F Prec_F Prec_l for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ ('g set \ 'g set \ bool)" and Inf_G :: \'g inference set\ and Red_Inf_q :: "'q \ ('g set \ 'g inference set)" and Red_F_q :: "'q \ ('g set \ 'g set)" and \_F_q :: "'q \ 'f \ 'g set" and \_Inf_q :: "'q \ 'f inference \ 'g inference set option" and - l :: "'l itself" and Inf_FL :: \('f \ 'l) inference set\ and Equiv_F :: "('f \ 'f) set" and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_l :: "'l \ 'l \ bool" (infix "\l" 50) + fixes active :: "'l" assumes inf_have_premises: "\F \ Inf_F \ length (prems_of \F) > 0" and active_minimal: "l2 \ active \ active \l l2" and at_least_two_labels: "\l2. active \l l2" and inf_never_active: "\ \ Inf_FL \ snd (concl_of \) \ active" begin lemma labeled_inf_have_premises: "\ \ Inf_FL \ set (prems_of \) \ {}" using inf_have_premises Inf_FL_to_Inf_F by fastforce definition active_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "active_subset M = {CL \ M. snd CL = active}" definition non_active_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "non_active_subset M = {CL \ M. snd CL \ active}" inductive Given_Clause_step :: "('f \ 'l) set \ ('f \ 'l) set \ bool" (infix "\GC" 50) where process: "N1 = N \ M \ N2 = N \ M' \ N \ M = {} \ M \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q (N \ M') \ active_subset M' = {} \ N1 \GC N2" | infer: "N1 = N \ {(C,L)} \ {(C,L)} \ N = {} \ N2 = N \ {(C,active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Non_ground.Inf_from2 (fst ` (active_subset N)) {C} \ no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N \ {(C,active)} \ M)) \ N1 \GC N2" abbreviation derive :: "('f \ 'l) set \ ('f \ 'l) set \ bool" (infix "\RedL" 50) where "derive \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive" lemma one_step_equiv: "N1 \GC N2 \ N1 \RedL N2" proof (cases N1 N2 rule: Given_Clause_step.cases) show "N1 \GC N2 \ N1 \GC N2" by blast next fix N M M' assume gc_step: "N1 \GC N2" and n1_is: "N1 = N \ M" and n2_is: "N2 = N \ M'" and empty_inter: "N \ M = {}" and m_red: "M \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q (N \ M')" and active_empty: "active_subset M' = {}" have "N1 - N2 \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N2" using n1_is n2_is empty_inter m_red by auto then show "labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive N1 N2" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive.simps by blast next fix N C L M assume gc_step: "N1 \GC N2" and n1_is: "N1 = N \ {(C,L)}" and not_active: "L \ active" and n2_is: "N2 = N \ {(C, active)} \ M" and empty_inter: "{(C,L)} \ N = {}" and active_empty: "active_subset M = {}" have "(C, active) \ N2" using n2_is by auto moreover have "C \\ C" using Prec_eq_F_def equiv_F_is_equiv_rel equiv_class_eq_iff by fastforce moreover have "active \l L" using active_minimal[OF not_active] . ultimately have "{(C,L)} \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N2" using red_labeled_clauses by blast moreover have "(C,L) \ M \ N1 - N2 = {(C,L)}" using n1_is n2_is empty_inter not_active by auto moreover have "(C,L) \ M \ N1 - N2 = {}" using n1_is n2_is by auto ultimately have "N1 - N2 \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N2" using empty_red_f_equiv[of N2] by blast then show "labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive N1 N2" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive.simps by blast qed abbreviation fair :: "('f \ 'l) set llist \ bool" where "fair \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.fair" (* lem:gc-derivations-are-red-derivations *) lemma gc_to_red: "chain (\GC) D \ chain (\RedL) D" using one_step_equiv Lazy_List_Chain.chain_mono by blast lemma (in-) all_ex_finite_set: "(\(j::nat)\{0..(n::nat). P j n) \ (\n1 n2. \j\{0.. P j n2 \ n1 = n2) \ finite {n. \j \ {0.. nat \ bool" assume allj_exn: "\j\{0..n. P j n" and uniq_n: "\n1 n2. \j\{0.. P j n2 \ n1 = n2" have "{n. \j \ {0..((\j. {n. P j n}) ` {0..j\{0.. finite {n. \j \ {0..j. {n. P j n}"] by simp have "\j\{0..!n. P j n" using allj_exn uniq_n by blast then have "\j\{0..j \ {0..GC) D \ llength D > 0 \ active_subset (lnth D 0) = {} \ non_active_subset (Liminf_llist D) = {} \ fair D" proof - assume deriv: "chain (\GC) D" and non_empty: "llength D > 0" and init_state: "active_subset (lnth D 0) = {}" and final_state: "non_active_subset (Liminf_llist D) = {}" show "fair D" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.fair_def proof fix \ assume i_in: "\ \ with_labels.Inf_from (Liminf_llist D)" have i_in_inf_fl: "\ \ Inf_FL" using i_in unfolding with_labels.Inf_from_def by blast have "Liminf_llist D = active_subset (Liminf_llist D)" using final_state unfolding non_active_subset_def active_subset_def by blast then have i_in2: "\ \ with_labels.Inf_from (active_subset (Liminf_llist D))" using i_in by simp define m where "m = length (prems_of \)" then have m_def_F: "m = length (prems_of (to_F \))" unfolding to_F_def by simp have i_in_F: "to_F \ \ Inf_F" using i_in Inf_FL_to_Inf_F unfolding with_labels.Inf_from_def to_F_def by blast then have m_pos: "m > 0" using m_def_F using inf_have_premises by blast have exist_nj: "\j \ {0..nj. enat (Suc nj) < llength D \ (prems_of \)!j \ active_subset (lnth D nj) \ (\k. k > nj \ enat k < llength D \ (prems_of \)!j \ active_subset (lnth D k)))" proof clarify fix j assume j_in: "j \ {0..)!j" using i_in2 unfolding m_def with_labels.Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have "(C,active) \ Liminf_llist D" using j_in i_in unfolding m_def with_labels.Inf_from_def by force then obtain nj where nj_is: "enat nj < llength D" and c_in2: "(C,active) \ \ (lnth D ` {k. nj \ k \ enat k < llength D})" unfolding Liminf_llist_def using init_state by blast then have c_in3: "\k. k \ nj \ enat k < llength D \ (C,active) \ (lnth D k)" by blast have nj_pos: "nj > 0" using init_state c_in2 nj_is unfolding active_subset_def by fastforce obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength D \ (C,active) \ \ (lnth D ` {k. nj \ k \ enat k < llength D}))" by blast then have in_allk: "\k. k \ nj_min \ enat k < llength D \ (C,active) \ (lnth D k)" using c_in3 nj_is c_in2 by (metis (mono_tags, lifting) INT_E LeastI_ex mem_Collect_eq) have njm_smaller_D: "enat nj_min < llength D" using nj_min_is by (smt LeastI_ex \\thesis. (\nj. \enat nj < llength D; (C, active) \ \ (lnth D ` {k. nj \ k \ enat k < llength D})\ \ thesis) \ thesis\) have "nj_min > 0" using nj_is c_in2 nj_pos nj_min_is by (metis (mono_tags, lifting) Collect_empty_eq \(C, active) \ Liminf_llist D\ \Liminf_llist D = active_subset (Liminf_llist D)\ \\k\nj_min. enat k < llength D \ (C, active) \ lnth D k\ active_subset_def init_state linorder_not_less mem_Collect_eq non_empty zero_enat_def) then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto then have njm_prec_njm: "njm_prec < nj_min" by blast then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp have njm_prec_smaller_d: "njm_prec < llength D" using HOL.no_atp(15)[OF njm_smaller_D njm_prec_njm_enat] . have njm_prec_all_suc: "\k>njm_prec. enat k < llength D \ (C, active) \ lnth D k" using nj_prec_is in_allk by simp have notin_njm_prec: "(C, active) \ lnth D njm_prec" proof (rule ccontr) assume "\ (C, active) \ lnth D njm_prec" then have absurd_hyp: "(C, active) \ lnth D njm_prec" by simp have prec_smaller: "enat njm_prec < llength D" using nj_min_is nj_prec_is by (smt LeastI_ex Suc_leD \\thesis. (\nj. \enat nj < llength D; (C, active) \ \ (lnth D ` {k. nj \ k \ enat k < llength D})\ \ thesis) \ thesis\ enat_ord_simps(1) le_eq_less_or_eq le_less_trans) have "(C,active) \ \ (lnth D ` {k. njm_prec \ k \ enat k < llength D})" proof - { fix k assume k_in: "njm_prec \ k \ enat k < llength D" have "k = njm_prec \ (C,active) \ lnth D k" using absurd_hyp by simp moreover have "njm_prec < k \ (C,active) \ lnth D k" using nj_prec_is in_allk k_in by simp ultimately have "(C,active) \ lnth D k" using k_in by fastforce } then show "(C,active) \ \ (lnth D ` {k. njm_prec \ k \ enat k < llength D})" by blast qed then have "enat njm_prec < llength D \ (C,active) \ \ (lnth D ` {k. njm_prec \ k \ enat k < llength D})" using prec_smaller by blast then show False using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast qed then have notin_active_subs_njm_prec: "(C, active) \ active_subset (lnth D njm_prec)" unfolding active_subset_def by blast then show "\nj. enat (Suc nj) < llength D \ (prems_of \)!j \ active_subset (lnth D nj) \ (\k. k > nj \ enat k < llength D \ (prems_of \)!j \ active_subset (lnth D k))" using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting) active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv) qed define nj_set where "nj_set = {nj. (\j\{0.. (prems_of \)!j \ active_subset (lnth D nj) \ (\k. k > nj \ enat k < llength D \ (prems_of \)!j \ active_subset (lnth D k)))}" then have nj_not_empty: "nj_set \ {}" proof - have zero_in: "0 \ {0.. ! 0 \ active_subset (lnth D n0)" and "\k>n0. enat k < llength D \ prems_of \ ! 0 \ active_subset (lnth D k)" using exist_nj by fast then have "n0 \ nj_set" unfolding nj_set_def using zero_in by blast then show "nj_set \ {}" by auto qed have nj_finite: "finite nj_set" using all_ex_finite_set[OF exist_nj] by (metis (no_types, lifting) Suc_ile_eq dual_order.strict_implies_order linorder_neqE_nat nj_set_def) (* the n below in the n-1 from the pen-and-paper proof *) have "\n \ nj_set. \nj \ nj_set. nj \ n" using nj_not_empty nj_finite using Max_ge Max_in by blast then obtain n where n_in: "n \ nj_set" and n_bigger: "\nj \ nj_set. nj \ n" by blast then obtain j0 where j0_in: "j0 \ {0..)!j0 \ active_subset (lnth D n)" and j0_allin: "(\k. k > n \ enat k < llength D \ (prems_of \)!j0 \ active_subset (lnth D k))" unfolding nj_set_def by blast obtain C0 where C0_is: "(prems_of \)!j0 = (C0,active)" using j0_in using i_in2 unfolding m_def with_labels.Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have C0_prems_i: "(C0,active) \ set (prems_of \)" using in_set_conv_nth j0_in m_def by force have C0_in: "(C0,active) \ (lnth D (Suc n))" using C0_is j0_allin suc_n_length by (simp add: active_subset_def) have C0_notin: "(C0,active) \ (lnth D n)" using C0_is j0_notin unfolding active_subset_def by simp have step_n: "lnth D n \GC lnth D (Suc n)" using deriv chain_lnth_rel n_in unfolding nj_set_def by blast have "\N C L M. (lnth D n = N \ {(C,L)} \ {(C,L)} \ N = {} \ lnth D (Suc n) = N \ {(C,active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Non_ground.Inf_from2 (fst ` (active_subset N)) {C} \ no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N \ {(C,active)} \ M)))" proof - have proc_or_infer: "(\N1 N M N2 M'. lnth D n = N1 \ lnth D (Suc n) = N2 \ N1 = N \ M \ N2 = N \ M' \ N \ M = {} \ M \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q (N \ M') \ active_subset M' = {}) \ (\N1 N C L N2 M. lnth D n = N1 \ lnth D (Suc n) = N2 \ N1 = N \ {(C, L)} \ {(C, L)} \ N = {} \ N2 = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Non_ground.Inf_from2 (fst ` (active_subset N)) {C} \ no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N \ {(C,active)} \ M)))" using Given_Clause_step.simps[of "lnth D n" "lnth D (Suc n)"] step_n by blast show ?thesis using C0_in C0_notin proc_or_infer j0_in C0_is by (smt Un_iff active_subset_def mem_Collect_eq snd_conv sup_bot.right_neutral) qed then obtain N M L where inf_from_subs: "no_labels.Non_ground.Inf_from2 (fst ` (active_subset N)) {C0} \ no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N \ {(C0,active)} \ M))" and nth_d_is: "lnth D n = N \ {(C0,L)}" and suc_nth_d_is: "lnth D (Suc n) = N \ {(C0,active)} \ M" and l_not_active: "L \ active" using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce have "j \ {0.. (prems_of \)!j \ (prems_of \)!j0 \ (prems_of \)!j \ (active_subset N)" for j proof - fix j assume j_in: "j \ {0..)!j \ (prems_of \)!j0" obtain nj where nj_len: "enat (Suc nj) < llength D" and nj_prems: "(prems_of \)!j \ active_subset (lnth D nj)" and nj_greater: "(\k. k > nj \ enat k < llength D \ (prems_of \)!j \ active_subset (lnth D k))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast moreover have "nj \ n" proof (rule ccontr) assume "\ nj \ n" then have "(prems_of \)!j = (C0,active)" using C0_in C0_notin Given_Clause_step.simps[of "lnth D n" "lnth D (Suc n)"] step_n by (smt Un_iff Un_insert_right nj_greater nj_prems active_subset_def empty_Collect_eq insertE lessI mem_Collect_eq prod.sel(2) suc_n_length) then show False using j_not_j0 C0_is by simp qed ultimately have "nj < n" using n_bigger by force then have "(prems_of \)!j \ (active_subset (lnth D n))" using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order unfolding nj_set_def by blast then show "(prems_of \)!j \ (active_subset N)" using nth_d_is l_not_active unfolding active_subset_def by force qed then have "set (prems_of \) \ active_subset N \ {(C0, active)}" using C0_prems_i C0_is m_def by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI) moreover have "\ (set (prems_of \) \ active_subset N - {(C0, active)})" using C0_prems_i by blast ultimately have "\ \ with_labels.Inf_from2 (active_subset N) {(C0,active)}" using i_in_inf_fl unfolding with_labels.Inf_from2_def with_labels.Inf_from_def by blast then have "to_F \ \ no_labels.Non_ground.Inf_from2 (fst ` (active_subset N)) {C0}" unfolding to_F_def with_labels.Inf_from2_def with_labels.Inf_from_def no_labels.Non_ground.Inf_from2_def no_labels.Non_ground.Inf_from_def using Inf_FL_to_Inf_F by force then have "to_F \ \ no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (lnth D (Suc n)))" using suc_nth_d_is inf_from_subs by fastforce then have "\q \ Q. (\_Inf_q q (to_F \) \ None \ the (\_Inf_q q (to_F \)) \ Red_Inf_q q (\ (\_F_q q ` (fst ` (lnth D (Suc n)))))) \ (\_Inf_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ (\ (\_F_q q ` (fst ` (lnth D (Suc n))))) \ Red_F_q q (\ (\_F_q q ` (fst ` (lnth D (Suc n))))))" unfolding to_F_def no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q_def no_labels.Red_Inf_\_q_def no_labels.\_set_q_def by fastforce then have "\ \ with_labels.Red_Inf_Q (lnth D (Suc n))" unfolding to_F_def with_labels.Red_Inf_Q_def Red_Inf_\_L_q_def \_Inf_L_q_def \_set_L_q_def \_F_L_q_def using i_in_inf_fl by auto then show "\ \ labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.inter_red_crit_calculus.Sup_Red_Inf_llist D" unfolding labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.inter_red_crit_calculus.Sup_Red_Inf_llist_def using red_inf_equiv2 suc_n_length by auto qed qed (* thm:gc-completeness *) theorem gc_complete: "chain (\GC) D \ llength D > 0 \ active_subset (lnth D 0) = {} \ non_active_subset (Liminf_llist D) = {} \ B \ Bot_F \ no_labels.entails_\_Q (fst ` (lnth D 0)) {B} \ \i. enat i < llength D \ (\BL\ Bot_FL. BL \ (lnth D i))" proof - fix B assume deriv: "chain (\GC) D" and not_empty_d: "llength D > 0" and init_state: "active_subset (lnth D 0) = {}" and final_state: "non_active_subset (Liminf_llist D) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\_Q (fst ` (lnth D 0)) {B}" have labeled_b_in: "(B,active) \ Bot_FL" unfolding Bot_FL_def using b_in by simp have not_empty_d2: "\ lnull D" using not_empty_d by force have labeled_bot_entailed: "entails_\_L_Q (lnth D 0) {(B,active)}" using labeled_entailment_lifting bot_entailed by fastforce have "fair D" using gc_fair[OF deriv not_empty_d init_state final_state] . then have "\i \ {i. enat i < llength D}. \BL\Bot_FL. BL \ lnth D i" using labeled_ordered_dynamic_ref_comp labeled_b_in not_empty_d2 gc_to_red[OF deriv] labeled_bot_entailed entail_equiv unfolding dynamic_refutational_complete_calculus_def dynamic_refutational_complete_calculus_axioms_def by blast then show ?thesis by blast qed end subsection \Lazy Given Clause Architecture\ locale Lazy_Given_Clause = Prover_Architecture_Basis Bot_F Inf_F Bot_G Q entails_q Inf_G Red_Inf_q - Red_F_q \_F_q \_Inf_q l Inf_FL Equiv_F Prec_F Prec_l + Red_F_q \_F_q \_Inf_q Inf_FL Equiv_F Prec_F Prec_l for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ ('g set \ 'g set \ bool)" and Inf_G :: \'g inference set\ and Red_Inf_q :: "'q \ ('g set \ 'g inference set)" and Red_F_q :: "'q \ ('g set \ 'g set)" and \_F_q :: "'q \ 'f \ 'g set" and \_Inf_q :: "'q \ 'f inference \ 'g inference set option" and - l :: "'l itself" and Inf_FL :: \('f \ 'l) inference set\ and Equiv_F :: "('f \ 'f) set" and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_l :: "'l \ 'l \ bool" (infix "\l" 50) + fixes active :: "'l" assumes active_minimal: "l2 \ active \ active \l l2" and at_least_two_labels: "\l2. active \l l2" and inf_never_active: "\ \ Inf_FL \ snd (concl_of \) \ active" begin definition active_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "active_subset M = {CL \ M. snd CL = active}" definition non_active_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "non_active_subset M = {CL \ M. snd CL \ active}" inductive Lazy_Given_Clause_step :: "'f inference set \ ('f \ 'l) set \ 'f inference set \ ('f \ 'l) set \ bool" (infix "\LGC" 50) where process: "N1 = N \ M \ N2 = N \ M' \ N \ M = {} \ M \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q (N \ M') \ active_subset M' = {} \ (T,N1) \LGC (T,N2)" | schedule_infer: "T2 = T1 \ T' \ N1 = N \ {(C,L)} \ {(C,L)} \ N = {} \ N2 = N \ {(C,active)} \ L \ active \ T' = no_labels.Non_ground.Inf_from2 (fst ` (active_subset N)) {C} \ (T1,N1) \LGC (T2,N2)" | compute_infer: "T1 = T2 \ {\} \ T2 \ {\} = {} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N1 \ M)) \ (T1,N1) \LGC (T2,N2)" | delete_orphans: "T1 = T2 \ T' \ T2 \ T' = {} \ T' \ no_labels.Non_ground.Inf_from (fst ` (active_subset N)) = {} \ (T1,N) \LGC (T2,N)" abbreviation derive :: "('f \ 'l) set \ ('f \ 'l) set \ bool" (infix "\RedL" 50) where "derive \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive" lemma premise_free_inf_always_from: "\ \ Inf_F \ length (prems_of \) = 0 \ \ \ no_labels.Non_ground.Inf_from N" unfolding no_labels.Non_ground.Inf_from_def by simp lemma one_step_equiv: "(T1,N1) \LGC (T2,N2) \ N1 \RedL N2" proof (cases "(T1,N1)" "(T2,N2)" rule: Lazy_Given_Clause_step.cases) show "(T1,N1) \LGC (T2,N2) \ (T1,N1) \LGC (T2,N2)" by blast next fix N M M' assume n1_is: "N1 = N \ M" and n2_is: "N2 = N \ M'" and empty_inter: "N \ M = {}" and m_red: "M \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q (N \ M')" have "N1 - N2 \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N2" using n1_is n2_is empty_inter m_red by auto then show "N1 \RedL N2" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive.simps by blast next fix N C L M assume n1_is: "N1 = N \ {(C,L)}" and not_active: "L \ active" and n2_is: "N2 = N \ {(C, active)}" have "(C, active) \ N2" using n2_is by auto moreover have "C \\ C" using Prec_eq_F_def equiv_F_is_equiv_rel equiv_class_eq_iff by fastforce moreover have "active \l L" using active_minimal[OF not_active] . ultimately have "{(C,L)} \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N2" using red_labeled_clauses by blast then have "N1 - N2 \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N2" using empty_red_f_equiv[of N2] using n1_is n2_is by blast then show "N1 \RedL N2" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive.simps by blast next fix M assume n2_is: "N2 = N1 \ M" have "N1 - N2 \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N2" using n2_is by blast then show "N1 \RedL N2" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive.simps by blast next assume n2_is: "N2 = N1" have "N1 - N2 \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.Red_F_Q N2" using n2_is by blast then show "N1 \RedL N2" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.derive.simps by blast qed abbreviation fair :: "('f \ 'l) set llist \ bool" where "fair \ labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.fair" (* lem:lgc-derivations-are-red-derivations *) lemma lgc_to_red: "chain (\LGC) D \ chain (\RedL) (lmap snd D)" using one_step_equiv Lazy_List_Chain.chain_mono by (smt chain_lmap prod.collapse) (* lem:fair-lgc-derivations *) lemma lgc_fair: "chain (\LGC) D \ llength D > 0 \ active_subset (snd (lnth D 0)) = {} \ non_active_subset (Liminf_llist (lmap snd D)) = {} \ (\\ \ Inf_F. length (prems_of \) = 0 \ \ \ (fst (lnth D 0))) \ Liminf_llist (lmap fst D) = {} \ fair (lmap snd D)" proof - assume deriv: "chain (\LGC) D" and non_empty: "llength D > 0" and init_state: "active_subset (snd (lnth D 0)) = {}" and final_state: "non_active_subset (Liminf_llist (lmap snd D)) = {}" and no_prems_init_active: "\\ \ Inf_F. length (prems_of \) = 0 \ \ \ (fst (lnth D 0))" and final_schedule: "Liminf_llist (lmap fst D) = {}" show "fair (lmap snd D)" unfolding labeled_ord_red_crit_fam.lifted_calc_w_red_crit_family.inter_red_crit_calculus.fair_def proof fix \ assume i_in: "\ \ with_labels.Inf_from (Liminf_llist (lmap snd D))" have i_in_inf_fl: "\ \ Inf_FL" using i_in unfolding with_labels.Inf_from_def by blast have "Liminf_llist (lmap snd D) = active_subset (Liminf_llist (lmap snd D))" using final_state unfolding non_active_subset_def active_subset_def by blast then have i_in2: "\ \ with_labels.Inf_from (active_subset (Liminf_llist (lmap snd D)))" using i_in by simp define m where "m = length (prems_of \)" then have m_def_F: "m = length (prems_of (to_F \))" unfolding to_F_def by simp have i_in_F: "to_F \ \ Inf_F" using i_in Inf_FL_to_Inf_F unfolding with_labels.Inf_from_def to_F_def by blast have exist_nj: "\j \ {0..nj. enat (Suc nj) < llength D \ (prems_of \)!j \ active_subset (snd (lnth D nj)) \ (\k. k > nj \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k))))" proof clarify fix j assume j_in: "j \ {0..)!j" using i_in2 unfolding m_def with_labels.Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have "(C,active) \ Liminf_llist (lmap snd D)" using j_in i_in unfolding m_def with_labels.Inf_from_def by force then obtain nj where nj_is: "enat nj < llength D" and c_in2: "(C,active) \ \ (snd ` (lnth D ` {k. nj \ k \ enat k < llength D}))" unfolding Liminf_llist_def using init_state by fastforce then have c_in3: "\k. k \ nj \ enat k < llength D \ (C,active) \ snd (lnth D k)" by blast have nj_pos: "nj > 0" using init_state c_in2 nj_is unfolding active_subset_def by fastforce obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength D \ (C,active) \ \ (snd ` (lnth D ` {k. nj \ k \ enat k < llength D})))" by blast then have in_allk: "\k. k \ nj_min \ enat k < llength D \ (C,active) \ snd (lnth D k)" using c_in3 nj_is c_in2 INT_E LeastI_ex by (smt INT_iff INT_simps(10) c_is image_eqI mem_Collect_eq) have njm_smaller_D: "enat nj_min < llength D" using nj_min_is by (smt LeastI_ex \\thesis. (\nj. \enat nj < llength D; (C, active) \ \ (snd ` (lnth D ` {k. nj \ k \ enat k < llength D}))\ \ thesis) \ thesis\) have "nj_min > 0" using nj_is c_in2 nj_pos nj_min_is by (metis (mono_tags, lifting) active_subset_def emptyE in_allk init_state mem_Collect_eq non_empty not_less snd_conv zero_enat_def) then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto then have njm_prec_njm: "njm_prec < nj_min" by blast then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp have njm_prec_smaller_d: "njm_prec < llength D" using HOL.no_atp(15)[OF njm_smaller_D njm_prec_njm_enat] . have njm_prec_all_suc: "\k>njm_prec. enat k < llength D \ (C, active) \ snd (lnth D k)" using nj_prec_is in_allk by simp have notin_njm_prec: "(C, active) \ snd (lnth D njm_prec)" proof (rule ccontr) assume "\ (C, active) \ snd (lnth D njm_prec)" then have absurd_hyp: "(C, active) \ snd (lnth D njm_prec)" by simp have prec_smaller: "enat njm_prec < llength D" using nj_min_is nj_prec_is by (smt LeastI_ex Suc_leD \\thesis. (\nj. \enat nj < llength D; (C, active) \ \ (snd ` (lnth D ` {k. nj \ k \ enat k < llength D}))\ \ thesis) \ thesis\ enat_ord_simps(1) le_eq_less_or_eq le_less_trans) have "(C,active) \ \ (snd ` (lnth D ` {k. njm_prec \ k \ enat k < llength D}))" proof - { fix k assume k_in: "njm_prec \ k \ enat k < llength D" have "k = njm_prec \ (C,active) \ snd (lnth D k)" using absurd_hyp by simp moreover have "njm_prec < k \ (C,active) \ snd (lnth D k)" using nj_prec_is in_allk k_in by simp ultimately have "(C,active) \ snd (lnth D k)" using k_in by fastforce } then show "(C,active) \ \ (snd ` (lnth D ` {k. njm_prec \ k \ enat k < llength D}))" by blast qed then have "enat njm_prec < llength D \ (C,active) \ \ (snd ` (lnth D ` {k. njm_prec \ k \ enat k < llength D}))" using prec_smaller by blast then show False using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast qed then have notin_active_subs_njm_prec: "(C, active) \ active_subset (snd (lnth D njm_prec))" unfolding active_subset_def by blast then show "\nj. enat (Suc nj) < llength D \ (prems_of \)!j \ active_subset (snd (lnth D nj)) \ (\k. k > nj \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k)))" using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting) active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv) qed define nj_set where "nj_set = {nj. (\j\{0.. (prems_of \)!j \ active_subset (snd (lnth D nj)) \ (\k. k > nj \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k))))}" { assume m_null: "m = 0" then have "enat 0 < llength D \ to_F \ \ fst (lnth D 0)" using no_prems_init_active i_in_F non_empty m_def_F zero_enat_def by auto then have "\n. enat n < llength D \ to_F \ \ fst (lnth D n)" by blast } moreover { assume m_pos: "m > 0" have uniq_nj: "j \ {0.. (enat (Suc nj1) < llength D \ (prems_of \)!j \ active_subset (snd (lnth D nj1)) \ (\k. k > nj1 \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k)))) \ (enat (Suc nj2) < llength D \ (prems_of \)!j \ active_subset (snd (lnth D nj2)) \ (\k. k > nj2 \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k)))) \ nj1=nj2" proof (clarify, rule ccontr) fix j nj1 nj2 assume "j \ {0.. ! j \ active_subset (snd (lnth D nj1))" and k_nj1: "\k>nj1. enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k))" and nj2_notin: "prems_of \ ! j \ active_subset (snd (lnth D nj2))" and k_nj2: "\k>nj2. enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k))" and diff_12: "nj1 \ nj2" have "nj1 < nj2 \ False" proof - assume prec_12: "nj1 < nj2" have "enat nj2 < llength D" using nj2_d using Suc_ile_eq less_trans by blast then have "prems_of \ ! j \ active_subset (snd (lnth D nj2))" using k_nj1 prec_12 by simp then show False using nj2_notin by simp qed moreover have "nj1 > nj2 \ False" proof - assume prec_21: "nj2 < nj1" have "enat nj1 < llength D" using nj1_d using Suc_ile_eq less_trans by blast then have "prems_of \ ! j \ active_subset (snd (lnth D nj1))" using k_nj2 prec_21 by simp then show False using nj1_notin by simp qed ultimately show False using diff_12 by linarith qed have nj_not_empty: "nj_set \ {}" proof - have zero_in: "0 \ {0.. ! 0 \ active_subset (snd (lnth D n0))" and "\k>n0. enat k < llength D \ prems_of \ ! 0 \ active_subset (snd (lnth D k))" using exist_nj by fast then have "n0 \ nj_set" unfolding nj_set_def using zero_in by blast then show "nj_set \ {}" by auto qed have nj_finite: "finite nj_set" using uniq_nj all_ex_finite_set[OF exist_nj] by (metis (no_types, lifting) Suc_ile_eq dual_order.strict_implies_order linorder_neqE_nat nj_set_def) have "\n \ nj_set. \nj \ nj_set. nj \ n" using nj_not_empty nj_finite using Max_ge Max_in by blast then obtain n where n_in: "n \ nj_set" and n_bigger: "\nj \ nj_set. nj \ n" by blast then obtain j0 where j0_in: "j0 \ {0..)!j0 \ active_subset (snd (lnth D n))" and j0_allin: "(\k. k > n \ enat k < llength D \ (prems_of \)!j0 \ active_subset (snd (lnth D k)))" unfolding nj_set_def by blast obtain C0 where C0_is: "(prems_of \)!j0 = (C0,active)" using j0_in i_in2 unfolding m_def with_labels.Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have C0_prems_i: "(C0,active) \ set (prems_of \)" using in_set_conv_nth j0_in m_def by force have C0_in: "(C0,active) \ (snd (lnth D (Suc n)))" using C0_is j0_allin suc_n_length by (simp add: active_subset_def) have C0_notin: "(C0,active) \ (snd (lnth D n))" using C0_is j0_notin unfolding active_subset_def by simp have step_n: "lnth D n \LGC lnth D (Suc n)" using deriv chain_lnth_rel n_in unfolding nj_set_def by blast have is_scheduled: "\T2 T1 T' N1 N C L N2. lnth D n = (T1, N1) \ lnth D (Suc n) = (T2, N2) \ T2 = T1 \ T' \ N1 = N \ {(C, L)} \ {(C, L)} \ N = {} \ N2 = N \ {(C, active)} \ L \ active \ T' = no_labels.Non_ground.Inf_from2 (fst ` active_subset N) {C}" using Lazy_Given_Clause_step.simps[of "lnth D n" "lnth D (Suc n)"] step_n C0_in C0_notin unfolding active_subset_def by fastforce then obtain T2 T1 T' N1 N L N2 where nth_d_is: "lnth D n = (T1, N1)" and suc_nth_d_is: "lnth D (Suc n) = (T2, N2)" and t2_is: "T2 = T1 \ T'" and n1_is: "N1 = N \ {(C0, L)}" "{(C0, L)} \ N = {}" "N2 = N \ {(C0, active)}" and l_not_active: "L \ active" and tp_is: "T' = no_labels.Non_ground.Inf_from2 (fst ` active_subset N) {C0}" using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce have "j \ {0.. (prems_of \)!j \ (prems_of \)!j0 \ (prems_of \)!j \ (active_subset N)" for j proof - fix j assume j_in: "j \ {0..)!j \ (prems_of \)!j0" obtain nj where nj_len: "enat (Suc nj) < llength D" and nj_prems: "(prems_of \)!j \ active_subset (snd (lnth D nj))" and nj_greater: "(\k. k > nj \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k)))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast moreover have "nj \ n" proof (rule ccontr) assume "\ nj \ n" then have "(prems_of \)!j = (C0,active)" using C0_in C0_notin Lazy_Given_Clause_step.simps[of "lnth D n" "lnth D (Suc n)"] step_n active_subset_def is_scheduled nj_greater nj_prems suc_n_length by auto then show False using j_not_j0 C0_is by simp qed ultimately have "nj < n" using n_bigger by force then have "(prems_of \)!j \ (active_subset (snd (lnth D n)))" using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order unfolding nj_set_def by blast then show "(prems_of \)!j \ (active_subset N)" using nth_d_is l_not_active n1_is unfolding active_subset_def by force qed then have prems_i_active: "set (prems_of \) \ active_subset N \ {(C0, active)}" using C0_prems_i C0_is m_def by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI) moreover have "\ (set (prems_of \) \ active_subset N - {(C0, active)})" using C0_prems_i by blast ultimately have "\ \ with_labels.Inf_from2 (active_subset N) {(C0,active)}" using i_in_inf_fl prems_i_active unfolding with_labels.Inf_from2_def with_labels.Inf_from_def by blast then have "to_F \ \ no_labels.Non_ground.Inf_from2 (fst ` (active_subset N)) {C0}" unfolding to_F_def with_labels.Inf_from2_def with_labels.Inf_from_def no_labels.Non_ground.Inf_from2_def no_labels.Non_ground.Inf_from_def using Inf_FL_to_Inf_F by force then have i_in_t2: "to_F \ \ T2" using tp_is t2_is by simp have "j \ {0.. (\k. k > n \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k)))" for j proof (cases "j = j0") case True assume "j = j0" then show "(\k. k > n \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k)))" using j0_allin by simp next case False assume j_in: "j \ {0.. j0" obtain nj where nj_len: "enat (Suc nj) < llength D" and nj_prems: "(prems_of \)!j \ active_subset (snd (lnth D nj))" and nj_greater: "(\k. k > nj \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k)))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast then show "(\k. k > n \ enat k < llength D \ (prems_of \)!j \ active_subset (snd (lnth D k)))" using nj_greater n_bigger by auto qed then have allj_allk: "(\c\ set (prems_of \). (\k. k > n \ enat k < llength D \ c \ active_subset (snd (lnth D k))))" using m_def by (metis atLeast0LessThan in_set_conv_nth lessThan_iff) have "\c\ set (prems_of \). snd c = active" using prems_i_active unfolding active_subset_def by auto then have ex_n_i_in: "\n. enat (Suc n) < llength D \ to_F \ \ fst (lnth D (Suc n)) \ (\c\ set (prems_of \). snd c = active) \ (\c\ set (prems_of \). (\k. k > n \ enat k < llength D \ c \ active_subset (snd (lnth D k))))" using allj_allk i_in_t2 suc_nth_d_is fstI n_in nj_set_def by auto then have "\n. enat n < llength D \ to_F \ \ fst (lnth D n) \ (\c\ set (prems_of \). snd c = active) \ (\c\ set (prems_of \). (\k. k \ n \ enat k < llength D \ c \ active_subset (snd (lnth D k))))" by auto } ultimately obtain n T2 N2 where i_in_suc_n: "to_F \ \ fst (lnth D n)" and all_prems_active_after: "m > 0 \ (\c\ set (prems_of \). (\k. k \ n \ enat k < llength D \ c \ active_subset (snd (lnth D k))))" and suc_n_length: "enat n < llength D" and suc_nth_d_is: "lnth D n = (T2, N2)" by (metis less_antisym old.prod.exhaust zero_less_Suc) then have i_in_t2: "to_F \ \ T2" by simp have "\p\n. enat (Suc p) < llength D \ to_F \ \ (fst (lnth D p)) \ to_F \ \ (fst (lnth D (Suc p)))" proof (rule ccontr) assume contra: "\ (\p\n. enat (Suc p) < llength D \ to_F \ \ (fst (lnth D p)) \ to_F \ \ (fst (lnth D (Suc p))))" then have i_in_suc: "p0 \ n \ enat (Suc p0) < llength D \ to_F \ \ (fst (lnth D p0)) \ to_F \ \ (fst (lnth D (Suc p0)))" for p0 by blast have "p0 \ n \ enat p0 < llength D \ to_F \ \ (fst (lnth D p0))" for p0 proof (induction rule: nat_induct_at_least) case base then show ?case using i_in_t2 suc_nth_d_is by simp next case (Suc p0) assume p_bigger_n: "n \ p0" and induct_hyp: "enat p0 < llength D \ to_F \ \ fst (lnth D p0)" and sucsuc_smaller_d: "enat (Suc p0) < llength D" have suc_p_bigger_n: "n \ p0" using p_bigger_n by simp have suc_smaller_d: "enat p0 < llength D" using sucsuc_smaller_d Suc_ile_eq dual_order.strict_implies_order by blast then have "to_F \ \ fst (lnth D p0)" using induct_hyp by blast then show ?case using i_in_suc[OF suc_p_bigger_n sucsuc_smaller_d] by blast qed then have i_in_all_bigger_n: "\j. j \ n \ enat j < llength D \ to_F \ \ (fst (lnth D j))" by presburger have "llength (lmap fst D) = llength D" by force then have "to_F \ \ \ (lnth (lmap fst D) ` {j. n \ j \ enat j < llength (lmap fst D)})" using i_in_all_bigger_n using Suc_le_D by auto then have "to_F \ \ Liminf_llist (lmap fst D)" unfolding Liminf_llist_def using suc_n_length by auto then show False using final_schedule by fast qed then obtain p where p_greater_n: "p \ n" and p_smaller_d: "enat (Suc p) < llength D" and i_in_p: "to_F \ \ (fst (lnth D p))" and i_notin_suc_p: "to_F \ \ (fst (lnth D (Suc p)))" by blast have p_neq_n: "Suc p \ n" using i_notin_suc_p i_in_suc_n by blast have step_p: "lnth D p \LGC lnth D (Suc p)" using deriv p_smaller_d chain_lnth_rel by blast then have "\T1 T2 \ N2 N1 M. lnth D p = (T1, N1) \ lnth D (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ T2 \ {\} = {} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N1 \ M))" proof - have ci_or_do: "(\T1 T2 \ N2 N1 M. lnth D p = (T1, N1) \ lnth D (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ T2 \ {\} = {} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N1 \ M))) \ (\T1 T2 T' N. lnth D p = (T1, N) \ lnth D (Suc p) = (T2, N) \ T1 = T2 \ T' \ T2 \ T' = {} \ T' \ no_labels.Non_ground.Inf_from (fst ` active_subset N) = {})" using Lazy_Given_Clause_step.simps[of "lnth D p" "lnth D (Suc p)"] step_p i_in_p i_notin_suc_p by fastforce then have p_greater_n_strict: "n < Suc p" using suc_nth_d_is p_greater_n i_in_t2 i_notin_suc_p le_eq_less_or_eq by force have "m > 0 \ j \ {0.. (prems_of (to_F \))!j \ (fst ` (active_subset (snd (lnth D p))))" for j proof - fix j assume m_pos: "m > 0" and j_in: "j \ {0..)!j \ (active_subset (snd (lnth D p)))" using all_prems_active_after[OF m_pos] p_smaller_d m_def p_greater_n p_neq_n by (meson Suc_ile_eq atLeastLessThan_iff dual_order.strict_implies_order nth_mem p_greater_n_strict) then have "fst ((prems_of \)!j) \ (fst ` (active_subset (snd (lnth D p))))" by blast then show "(prems_of (to_F \))!j \ (fst ` (active_subset (snd (lnth D p))))" unfolding to_F_def using j_in m_def by simp qed then have prems_i_active_p: "m > 0 \ to_F \ \ no_labels.Non_ground.Inf_from (fst ` active_subset (snd (lnth D p)))" using i_in_F unfolding no_labels.Non_ground.Inf_from_def by (smt atLeast0LessThan in_set_conv_nth lessThan_iff m_def_F mem_Collect_eq subsetI) have "m = 0 \ (\T1 T2 \ N2 N1 M. lnth D p = (T1, N1) \ lnth D (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ T2 \ {\} = {} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N1 \ M)))" using ci_or_do premise_free_inf_always_from[of "to_F \" "fst ` active_subset _", OF i_in_F] m_def i_in_p i_notin_suc_p m_def_F by auto then show "(\T1 T2 \ N2 N1 M. lnth D p = (T1, N1) \ lnth D (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ T2 \ {\} = {} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N1 \ M)))" using ci_or_do i_in_p i_notin_suc_p prems_i_active_p unfolding active_subset_def by force qed then obtain T1p T2p N1p N2p Mp where "lnth D p = (T1p, N1p)" and suc_p_is: "lnth D (Suc p) = (T2p, N2p)" and "T1p = T2p \ {to_F \}" and "T2p \ {to_F \} = {}" and n2p_is: "N2p = N1p \ Mp"and "active_subset Mp = {}" and i_in_red_inf: "to_F \ \ no_labels.empty_ord_lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (N1p \ Mp))" using i_in_p i_notin_suc_p by fastforce have "to_F \ \ no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q (fst ` (snd (lnth D (Suc p))))" using i_in_red_inf suc_p_is n2p_is by fastforce then have "\q \ Q. (\_Inf_q q (to_F \) \ None \ the (\_Inf_q q (to_F \)) \ Red_Inf_q q (\ (\_F_q q ` (fst ` (snd (lnth D (Suc p))))))) \ (\_Inf_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ (\ (\_F_q q ` (fst ` (snd (lnth D (Suc p)))))) \ Red_F_q q (\ (\_F_q q ` (fst ` (snd (lnth D (Suc p)))))))" unfolding to_F_def no_labels.lifted_calc_w_red_crit_family.Red_Inf_Q_def no_labels.Red_Inf_\_q_def no_labels.\_set_q_def by fastforce then have "\ \ with_labels.Red_Inf_Q (snd (lnth D (Suc p)))" unfolding to_F_def with_labels.Red_Inf_Q_def Red_Inf_\_L_q_def \_Inf_L_q_def \_set_L_q_def \_F_L_q_def using i_in_inf_fl by auto then show "\ \ labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.inter_red_crit_calculus.Sup_Red_Inf_llist (lmap snd D)" unfolding labeled_ord_red_crit_fam.empty_ord_lifted_calc_w_red_crit_family.inter_red_crit_calculus.Sup_Red_Inf_llist_def using red_inf_equiv2 suc_n_length p_smaller_d by auto qed qed (* thm:lgc-completeness *) theorem lgc_complete: "chain (\LGC) D \ llength D > 0 \ active_subset (snd (lnth D 0)) = {} \ non_active_subset (Liminf_llist (lmap snd D)) = {} \ (\\ \ Inf_F. length (prems_of \) = 0 \ \ \ (fst (lnth D 0))) \ Liminf_llist (lmap fst D) = {} \ B \ Bot_F \ no_labels.entails_\_Q (fst ` (snd (lnth D 0))) {B} \ \i. enat i < llength D \ (\BL\ Bot_FL. BL \ (snd (lnth D i)))" proof - fix B assume deriv: "chain (\LGC) D" and not_empty_d: "llength D > 0" and init_state: "active_subset (snd (lnth D 0)) = {}" and final_state: "non_active_subset (Liminf_llist (lmap snd D)) = {}" and no_prems_init_active: "\\ \ Inf_F. length (prems_of \) = 0 \ \ \ fst (lnth D 0)" and final_schedule: "Liminf_llist (lmap fst D) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\_Q (fst ` (snd (lnth D 0))) {B}" have labeled_b_in: "(B,active) \ Bot_FL" unfolding Bot_FL_def using b_in by simp have not_empty_d2: "\ lnull (lmap snd D)" using not_empty_d by force have simp_snd_lmap: "lnth (lmap snd D) 0 = snd (lnth D 0)" using lnth_lmap[of 0 D snd] not_empty_d by (simp add: zero_enat_def) have labeled_bot_entailed: "entails_\_L_Q (snd (lnth D 0)) {(B,active)}" using labeled_entailment_lifting bot_entailed by fastforce have "fair (lmap snd D)" using lgc_fair[OF deriv not_empty_d init_state final_state no_prems_init_active final_schedule] . then have "\i \ {i. enat i < llength D}. \BL\Bot_FL. BL \ (snd (lnth D i))" using labeled_ordered_dynamic_ref_comp labeled_b_in not_empty_d2 lgc_to_red[OF deriv] labeled_bot_entailed entail_equiv simp_snd_lmap unfolding dynamic_refutational_complete_calculus_def dynamic_refutational_complete_calculus_axioms_def by (metis (mono_tags, lifting) llength_lmap lnth_lmap mem_Collect_eq) then show ?thesis by blast qed end end