diff --git a/thys/Word_Lib/Word_EqI.thy b/thys/Word_Lib/Word_EqI.thy --- a/thys/Word_Lib/Word_EqI.thy +++ b/thys/Word_Lib/Word_EqI.thy @@ -1,68 +1,78 @@ (* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Solving Word Equalities" theory Word_EqI imports More_Word Aligned "HOL-Eisbach.Eisbach_Tools" begin text \ Some word equalities can be solved by considering the problem bitwise for all @{prop "n < LENGTH('a::len)"}, which is different to running @{text word_bitwise} and expanding into an explicit list of bits. \ +lemmas le_mask_high_bits_len = le_mask_high_bits[unfolded word_size] +lemmas neg_mask_le_high_bits_len = neg_mask_le_high_bits[unfolded word_size] + named_theorems word_eqI_simps lemmas [word_eqI_simps] = - bit_simps word_or_zero neg_mask_test_bit nth_ucast less_2p_is_upper_bits_unset - le_mask_high_bits + le_mask_high_bits_len + neg_mask_le_high_bits_len bang_eq is_up is_down is_aligned_nth - neg_mask_le_high_bits - word_size + word_size (* keep this, because the goal may contain "n < size x" terms *) -lemmas word_eqI_rule = word_eqI [rule_format] +lemmas word_eqI_folds [symmetric] = + push_bit_eq_mult + drop_bit_eq_div + take_bit_eq_mod + +(* bit_eqI subsumes the first rule; kept for backwards compatibility *) +lemmas word_eqI_rules = word_eqI [rule_format, unfolded word_size] bit_eqI lemma test_bit_lenD: "bit x n \ n < LENGTH('a) \ bit x n" for x :: "'a :: len word" by (fastforce dest: test_bit_size simp: word_size) method word_eqI uses simp simp_del split split_del cong flip = ((* reduce conclusion to test_bit: *) - rule word_eqI_rule, + rule word_eqI_rules, + (* fold common patterns into bit form *) + (simp only: word_eqI_folds)?, (* make sure we're in clarsimp normal form: *) (clarsimp simp: simp simp del: simp_del simp flip: flip split: split split del: split_del cong: cong)?, (* turn x < 2^n assumptions into mask equations: *) ((drule less_mask_eq)+)?, (* expand and distribute test_bit everywhere: *) - (clarsimp simp: word_eqI_simps simp simp del: simp_del simp flip: flip + (clarsimp simp: bit_simps word_eqI_simps simp not_less not_le simp del: simp_del simp flip: flip split: split split del: split_del cong: cong)?, (* add any additional word size constraints to new indices: *) ((drule test_bit_lenD)+)?, (* try to make progress (can't use +, would loop): *) - (clarsimp simp: word_eqI_simps simp simp del: simp_del simp flip: flip + (clarsimp simp: bit_simps word_eqI_simps simp simp del: simp_del simp flip: flip split: split split del: split_del cong: cong)?, (* helps sometimes, rarely: *) (simp add: simp test_bit_conj_lt del: simp_del flip: flip split: split split del: split_del cong: cong)?) -method word_eqI_solve uses simp simp_del split split_del cong flip = +method word_eqI_solve uses simp simp_del split split_del cong flip dest = solves \word_eqI simp: simp simp_del: simp_del split: split split_del: split_del cong: cong simp flip: flip; - (fastforce simp: word_eqI_simps simp flip: flip + (fastforce dest: dest simp: bit_simps word_eqI_simps simp flip: flip simp: simp simp del: simp_del split: split split del: split_del cong: cong)?\ end diff --git a/thys/Word_Lib/Word_Lemmas.thy b/thys/Word_Lib/Word_Lemmas.thy --- a/thys/Word_Lib/Word_Lemmas.thy +++ b/thys/Word_Lib/Word_Lemmas.thy @@ -1,1970 +1,1891 @@ (* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Lemmas with Generic Word Length" theory Word_Lemmas imports Type_Syntax Signed_Division_Word Signed_Words More_Word Most_significant_bit Enumeration_Word Aligned Bit_Shifts_Infix_Syntax Word_EqI begin context includes bit_operations_syntax begin lemma ucast_le_ucast_eq: fixes x y :: "'a::len word" assumes x: "x < 2 ^ n" assumes y: "y < 2 ^ n" assumes n: "n = LENGTH('b::len)" shows "(UCAST('a \ 'b) x \ UCAST('a \ 'b) y) = (x \ y)" apply (rule iffI) apply (cases "LENGTH('b) < LENGTH('a)") apply (subst less_mask_eq[OF x, symmetric]) apply (subst less_mask_eq[OF y, symmetric]) apply (unfold n) apply (subst ucast_ucast_mask[symmetric])+ apply (simp add: ucast_le_ucast)+ apply (erule ucast_mono_le[OF _ y[unfolded n]]) done lemma ucast_zero_is_aligned: \is_aligned w n\ if \UCAST('a::len \ 'b::len) w = 0\ \n \ LENGTH('b)\ proof (rule is_aligned_bitI) fix q assume \q < n\ moreover have \bit (UCAST('a::len \ 'b::len) w) q = bit 0 q\ using that by simp with \q < n\ \n \ LENGTH('b)\ show \\ bit w q\ by (simp add: bit_simps) qed lemma unat_ucast_eq_unat_and_mask: "unat (UCAST('b::len \ 'a::len) w) = unat (w AND mask LENGTH('a))" apply (simp flip: take_bit_eq_mask) apply transfer apply (simp add: ac_simps) done lemma le_max_word_ucast_id: \UCAST('b \ 'a) (UCAST('a \ 'b) x) = x\ if \x \ UCAST('b::len \ 'a) (- 1)\ for x :: \'a::len word\ proof - from that have a1: \x \ word_of_int (uint (word_of_int (2 ^ LENGTH('b) - 1) :: 'b word))\ by (simp add: of_int_mask_eq) have f2: "((\i ia. (0::int) \ i \ \ 0 \ i + - 1 * ia \ i mod ia \ i) \ \ (0::int) \ - 1 + 2 ^ LENGTH('b) \ (0::int) \ - 1 + 2 ^ LENGTH('b) + - 1 * 2 ^ LENGTH('b) \ (- (1::int) + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b) = - 1 + 2 ^ LENGTH('b)) = ((\i ia. (0::int) \ i \ \ 0 \ i + - 1 * ia \ i mod ia \ i) \ \ (1::int) \ 2 ^ LENGTH('b) \ 2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)) = 1)" by force have f3: "\i ia. \ (0::int) \ i \ 0 \ i + - 1 * ia \ i mod ia = i" using mod_pos_pos_trivial by force have "(1::int) \ 2 ^ LENGTH('b)" by simp then have "2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ len_of TYPE ('b)) = 1" using f3 f2 by blast then have f4: "- (1::int) + 2 ^ LENGTH('b) = (- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)" by linarith have f5: "x \ word_of_int (uint (word_of_int (- 1 + 2 ^ LENGTH('b))::'b word))" using a1 by force have f6: "2 ^ LENGTH('b) + - (1::int) = - 1 + 2 ^ LENGTH('b)" by force have f7: "- (1::int) * 1 = - 1" by auto have "\x0 x1. (x1::int) - x0 = x1 + - 1 * x0" by force then have "x \ 2 ^ LENGTH('b) - 1" using f7 f6 f5 f4 by (metis uint_word_of_int wi_homs(2) word_arith_wis(8) word_of_int_2p) then have \uint x \ uint (2 ^ LENGTH('b) - (1 :: 'a word))\ by (simp add: word_le_def) then have \uint x \ 2 ^ LENGTH('b) - 1\ by (simp add: uint_word_ariths) (metis \1 \ 2 ^ LENGTH('b)\ \uint x \ uint (2 ^ LENGTH('b) - 1)\ linorder_not_less lt2p_lem uint_1 uint_minus_simple_alt uint_power_lower word_le_def zle_diff1_eq) then show ?thesis apply (simp add: unsigned_ucast_eq take_bit_word_eq_self_iff) apply (meson \x \ 2 ^ LENGTH('b) - 1\ not_le word_less_sub_le) done qed lemma uint_shiftr_eq: \uint (w >> n) = uint w div 2 ^ n\ - by (rule bit_eqI) (simp flip: drop_bit_eq_div add: bit_simps) + by word_eqI lemma bit_shiftl_word_iff [bit_simps]: \bit (w << m) n \ m \ n \ n < LENGTH('a) \ bit w (n - m)\ for w :: \'a::len word\ by (simp add: bit_simps) lemma bit_shiftr_word_iff: \bit (w >> m) n \ bit w (m + n)\ for w :: \'a::len word\ by (simp add: bit_simps) lemma uint_sshiftr_eq: \uint (w >>> n) = take_bit LENGTH('a) (sint w div 2 ^ n)\ for w :: \'a::len word\ - by (rule bit_eqI) (auto simp add: bit_simps not_less simp flip: drop_bit_eq_div dest: bit_imp_le_length) - -lemma sshiftr_0: "0 >>> n = 0" - by (simp add: sshiftr_def) + by (word_eqI_solve dest: test_bit_lenD) lemma sshiftr_n1: "-1 >>> n = -1" by (simp add: sshiftr_def) -lemma bit_sshiftr_word_iff: - \bit (w >>> m) n \ bit w (if LENGTH('a) - m \ n \ n < LENGTH('a) then LENGTH('a) - 1 else (m + n))\ - for w :: \'a::len word\ - by (fact bit_sshiftr_iff) - -lemma nth_sshiftr : - "bit (w >>> m) n = - (n < size w \ (if n + m \ size w then bit w (size w - 1) else bit w (n + m)))" +lemma nth_sshiftr: + "bit (w >>> m) n = (n < size w \ (if n + m \ size w then bit w (size w - 1) else bit w (n + m)))" apply (auto simp add: bit_simps word_size ac_simps not_less) apply (meson bit_imp_le_length bit_shiftr_word_iff leD) done lemma sshiftr_numeral: \(numeral k >>> numeral n :: 'a::len word) = word_of_int (signed_take_bit (LENGTH('a) - 1) (numeral k) >> numeral n)\ using signed_drop_bit_word_numeral [of n k] by (simp add: sshiftr_def shiftr_def) lemma sshiftr_div_2n: "sint (w >>> n) = sint w div 2 ^ n" - apply (rule bit_eqI) - apply (cases \n < LENGTH('a)\) - apply (auto simp add: bit_simps not_less le_diff_conv2 simp flip: drop_bit_eq_div) - done + by word_eqI (cases \n < LENGTH('a)\; fastforce simp: le_diff_conv2) lemma mask_eq: \mask n = (1 << n) - (1 :: 'a::len word)\ by (simp add: mask_eq_exp_minus_1 shiftl_def) lemma nth_shiftl': "bit (w << m) n \ n < size w \ n >= m \ bit w (n - m)" for w :: "'a::len word" by (simp add: bit_simps word_size ac_simps) lemmas nth_shiftl = nth_shiftl' [unfolded word_size] lemma nth_shiftr: "bit (w >> m) n = bit w (n + m)" for w :: "'a::len word" by (simp add: bit_simps ac_simps) lemma shiftr_div_2n: "uint (shiftr w n) = uint w div 2 ^ n" by (fact uint_shiftr_eq) lemma shiftl_rev: "shiftl w n = word_reverse (shiftr (word_reverse w) n)" - by (rule bit_word_eqI) (auto simp add: bit_simps) + by word_eqI_solve lemma rev_shiftl: "word_reverse w << n = word_reverse (w >> n)" by (simp add: shiftl_rev) lemma shiftr_rev: "w >> n = word_reverse (word_reverse w << n)" by (simp add: rev_shiftl) lemma rev_shiftr: "word_reverse w >> n = word_reverse (w << n)" by (simp add: shiftr_rev) lemmas ucast_up = rc1 [simplified rev_shiftr [symmetric] revcast_ucast [symmetric]] lemmas ucast_down = rc2 [simplified rev_shiftr revcast_ucast [symmetric]] lemma shiftl_zero_size: "size x \ n \ x << n = 0" for x :: "'a::len word" by (simp add: shiftl_def word_size) lemma shiftl_t2n: "shiftl w n = 2 ^ n * w" for w :: "'a::len word" by (simp add: shiftl_def push_bit_eq_mult) lemma word_shift_by_2: "x * 4 = (x::'a::len word) << 2" by (simp add: shiftl_t2n) lemma word_shift_by_3: "x * 8 = (x::'a::len word) << 3" by (simp add: shiftl_t2n) lemma slice_shiftr: "slice n w = ucast (w >> n)" - apply (rule bit_word_eqI) - apply (cases \n \ LENGTH('b)\) - apply (auto simp add: bit_slice_iff bit_ucast_iff bit_shiftr_word_iff ac_simps - dest: bit_imp_le_length) - done + by word_eqI (cases \n \ LENGTH('b)\; fastforce simp: ac_simps dest: bit_imp_le_length) lemma shiftr_zero_size: "size x \ n \ x >> n = 0" for x :: "'a :: len word" - by (rule word_eqI) (auto simp add: nth_shiftr dest: test_bit_size) + by word_eqI lemma shiftr_x_0 [simp]: "x >> 0 = x" for x :: "'a::len word" by (simp add: shiftr_def) lemma shiftl_x_0 [simp]: "x << 0 = x" for x :: "'a::len word" by (simp add: shiftl_def) -lemma shiftl_1: "(1::'a::len word) << n = 2^n" - by (simp add: shiftl_def) +lemmas shiftl0 = shiftl_x_0 lemma shiftr_1 [simp]: "(1::'a::len word) >> n = (if n = 0 then 1 else 0)" by (simp add: shiftr_def) -lemma shiftl0: - "x << 0 = (x :: 'a :: len word)" - by (fact shiftl_x_0) - lemma and_not_mask: "w AND NOT (mask n) = (w >> n) << n" for w :: \'a::len word\ - by (rule bit_word_eqI) (auto simp add: bit_simps) + by word_eqI_solve lemma and_mask: "w AND mask n = (w << (size w - n)) >> (size w - n)" for w :: \'a::len word\ - by (rule bit_word_eqI) (auto simp add: bit_simps word_size) + by word_eqI_solve -lemma shiftr_div_2n_w: "n < size w \ w >> n = w div (2^n :: 'a :: len word)" - apply (unfold word_div_def) - apply (simp add: uint_2p_alt word_size) - apply (metis uint_shiftr_eq word_of_int_uint) - done +lemma shiftr_div_2n_w: "w >> n = w div (2^n :: 'a :: len word)" + by (fact shiftr_eq_div) lemma le_shiftr: "u \ v \ u >> (n :: nat) \ (v :: 'a :: len word) >> n" apply (unfold shiftr_def) apply transfer apply (simp add: take_bit_drop_bit) apply (simp add: drop_bit_eq_div zdiv_mono1) done lemma le_shiftr': "\ u >> n \ v >> n ; u >> n \ v >> n \ \ (u::'a::len word) \ v" - apply (metis le_cases le_shiftr verit_la_disequality) - done + by (metis le_cases le_shiftr verit_la_disequality) lemma shiftr_mask_le: "n <= m \ mask n >> m = (0 :: 'a::len word)" - by (rule bit_word_eqI) (auto simp add: bit_simps) + by word_eqI lemma shiftr_mask [simp]: \mask m >> m = (0::'a::len word)\ by (rule shiftr_mask_le) simp lemma le_mask_iff: "(w \ mask n) = (w >> n = 0)" for w :: \'a::len word\ apply safe apply (rule word_le_0_iff [THEN iffD1]) apply (rule xtrans(3)) apply (erule_tac [2] le_shiftr) apply simp apply (rule word_leI) apply (rename_tac n') apply (drule_tac x = "n' - n" in word_eqD) apply (simp add : nth_shiftr word_size bit_simps) apply (case_tac "n <= n'") by auto lemma and_mask_eq_iff_shiftr_0: "(w AND mask n = w) = (w >> n = 0)" for w :: \'a::len word\ by (simp flip: take_bit_eq_mask add: shiftr_def take_bit_eq_self_iff_drop_bit_eq_0) lemma mask_shiftl_decompose: "mask m << n = mask (m + n) AND NOT (mask n :: 'a::len word)" - by (rule bit_word_eqI) (auto simp add: bit_simps) + by word_eqI_solve lemma shiftl_over_and_dist: fixes a::"'a::len word" shows "(a AND b) << c = (a << c) AND (b << c)" by (unfold shiftl_def) (fact push_bit_and) lemma shiftr_over_and_dist: fixes a::"'a::len word" shows "a AND b >> c = (a >> c) AND (b >> c)" by (unfold shiftr_def) (fact drop_bit_and) lemma sshiftr_over_and_dist: fixes a::"'a::len word" shows "a AND b >>> c = (a >>> c) AND (b >>> c)" - apply(rule word_eqI) - apply(simp add:nth_sshiftr word_ao_nth word_size) - done + by word_eqI lemma shiftl_over_or_dist: fixes a::"'a::len word" shows "a OR b << c = (a << c) OR (b << c)" by (unfold shiftl_def) (fact push_bit_or) lemma shiftr_over_or_dist: fixes a::"'a::len word" shows "a OR b >> c = (a >> c) OR (b >> c)" by (unfold shiftr_def) (fact drop_bit_or) lemma sshiftr_over_or_dist: fixes a::"'a::len word" shows "a OR b >>> c = (a >>> c) OR (b >>> c)" - by (rule bit_word_eqI) (simp add: bit_simps) + by word_eqI lemmas shift_over_ao_dists = shiftl_over_or_dist shiftr_over_or_dist sshiftr_over_or_dist shiftl_over_and_dist shiftr_over_and_dist sshiftr_over_and_dist lemma shiftl_shiftl: fixes a::"'a::len word" shows "a << b << c = a << (b + c)" - apply(rule word_eqI) - apply(auto simp:word_size nth_shiftl add.commute add.left_commute) - done + by (word_eqI_solve simp: add.commute add.left_commute) lemma shiftr_shiftr: fixes a::"'a::len word" shows "a >> b >> c = a >> (b + c)" - apply(rule word_eqI) - apply(simp add:word_size nth_shiftr add.left_commute add.commute) - done + by word_eqI (simp add: add.left_commute add.commute) lemma shiftl_shiftr1: fixes a::"'a::len word" shows "c \ b \ a << b >> c = a AND (mask (size a - b)) << (b - c)" - apply (rule word_eqI) - apply (auto simp add: bit_simps not_le word_size ac_simps) - done + by word_eqI (auto simp: ac_simps) lemma shiftl_shiftr2: fixes a::"'a::len word" shows "b < c \ a << b >> c = (a >> (c - b)) AND (mask (size a - c))" - apply(rule word_eqI) - apply(auto simp:nth_shiftr nth_shiftl word_size word_ao_nth bit_simps) - done + by word_eqI_solve lemma shiftr_shiftl1: fixes a::"'a::len word" shows "c \ b \ a >> b << c = (a >> (b - c)) AND (NOT (mask c))" - by (rule bit_word_eqI) (auto simp add: bit_simps) + by word_eqI_solve lemma shiftr_shiftl2: fixes a::"'a::len word" shows "b < c \ a >> b << c = (a << (c - b)) AND (NOT (mask c))" - apply (rule word_eqI) - apply (auto simp add: bit_simps not_le word_size ac_simps) - done + by word_eqI (auto simp: ac_simps) lemmas multi_shift_simps = shiftl_shiftl shiftr_shiftr shiftl_shiftr1 shiftl_shiftr2 shiftr_shiftl1 shiftr_shiftl2 lemma shiftr_mask2: "n \ LENGTH('a) \ (mask n >> m :: ('a :: len) word) = mask (n - m)" - by (rule bit_word_eqI) (auto simp add: bit_simps) + by word_eqI_solve lemma word_shiftl_add_distrib: fixes x :: "'a :: len word" shows "(x + y) << n = (x << n) + (y << n)" by (simp add: shiftl_t2n ring_distribs) lemma mask_shift: "(x AND NOT (mask y)) >> y = x >> y" for x :: \'a::len word\ - apply (rule bit_eqI) - apply (simp add: bit_and_iff bit_not_iff bit_shiftr_word_iff bit_mask_iff not_le) - using bit_imp_le_length apply auto - done + by word_eqI lemma shiftr_div_2n': "unat (w >> n) = unat w div 2 ^ n" - apply (unfold unat_eq_nat_uint) - apply (subst shiftr_div_2n) - apply (subst nat_div_distrib) - apply simp - apply (simp add: nat_power_eq) - done + by word_eqI lemma shiftl_shiftr_id: - assumes nv: "n < LENGTH('a)" - and xv: "x < 2 ^ (LENGTH('a) - n)" - shows "x << n >> n = (x::'a::len word)" - apply (simp add: shiftl_t2n) - apply (rule word_eq_unatI) - apply (subst shiftr_div_2n') - apply (cases n) - apply simp - apply (subst iffD1 [OF unat_mult_lem])+ - apply (subst unat_power_lower[OF nv]) - apply (rule nat_less_power_trans [OF _ order_less_imp_le [OF nv]]) - apply (rule order_less_le_trans [OF unat_mono [OF xv] order_eq_refl]) - apply (rule unat_power_lower) - apply simp - apply (subst unat_power_lower[OF nv]) - apply simp - done + "\ n < LENGTH('a); x < 2 ^ (LENGTH('a) - n) \ \ x << n >> n = (x::'a::len word)" + by word_eqI (metis add.commute less_diff_conv) lemma ucast_shiftl_eq_0: fixes w :: "'a :: len word" shows "\ n \ LENGTH('b) \ \ ucast (w << n) = (0 :: 'b :: len word)" by (transfer fixing: n) (simp add: take_bit_push_bit) lemma word_shift_nonzero: "\ (x::'a::len word) \ 2 ^ m; m + n < LENGTH('a::len); x \ 0\ \ x << n \ 0" apply (simp only: word_neq_0_conv word_less_nat_alt shiftl_t2n mod_0 unat_word_ariths unat_power_lower word_le_nat_alt) apply (subst mod_less) apply (rule order_le_less_trans) apply (erule mult_le_mono2) apply (subst power_add[symmetric]) apply (rule power_strict_increasing) apply simp apply simp apply simp done lemma word_shiftr_lt: fixes w :: "'a::len word" shows "unat (w >> n) < (2 ^ (LENGTH('a) - n))" apply (subst shiftr_div_2n') apply transfer apply (simp flip: drop_bit_eq_div add: drop_bit_nat_eq drop_bit_take_bit) done lemma shiftr_less_t2n': "\ x AND mask (n + m) = x; m < LENGTH('a) \ \ x >> n < 2 ^ m" for x :: "'a :: len word" apply (simp add: word_size mask_eq_iff_w2p [symmetric] flip: take_bit_eq_mask) apply transfer apply (simp add: take_bit_drop_bit ac_simps) done lemma shiftr_less_t2n: "x < 2 ^ (n + m) \ x >> n < 2 ^ m" for x :: "'a :: len word" apply (rule shiftr_less_t2n') apply (erule less_mask_eq) apply (rule ccontr) apply (simp add: not_less) apply (subst (asm) p2_eq_0[symmetric]) apply (simp add: power_add) done lemma shiftr_eq_0: "n \ LENGTH('a) \ ((w::'a::len word) >> n) = 0" apply (cut_tac shiftr_less_t2n'[of w n 0], simp) apply (simp add: mask_eq_iff) apply (simp add: lt2p_lem) apply simp done lemma shiftl_less_t2n: fixes x :: "'a :: len word" shows "\ x < (2 ^ (m - n)); m < LENGTH('a) \ \ (x << n) < 2 ^ m" apply (simp add: word_size mask_eq_iff_w2p [symmetric] flip: take_bit_eq_mask) apply transfer apply (simp add: take_bit_push_bit) done lemma shiftl_less_t2n': "(x::'a::len word) < 2 ^ m \ m+n < LENGTH('a) \ x << n < 2 ^ (m + n)" by (rule shiftl_less_t2n) simp_all lemma scast_bit_test [simp]: "scast ((1 :: 'a::len signed word) << n) = (1 :: 'a word) << n" - by (rule bit_word_eqI) (simp add: bit_simps) + by word_eqI lemma signed_shift_guard_to_word: \unat x * 2 ^ y < 2 ^ n \ x = 0 \ x < 1 << n >> y\ if \n < LENGTH('a)\ \0 < n\ for x :: \'a::len word\ proof (cases \x = 0\) case True then show ?thesis by simp next case False then have \unat x \ 0\ by (simp add: unat_eq_0) then have \unat x \ 1\ by simp show ?thesis proof (cases \y < n\) case False then have \n \ y\ by simp then obtain q where \y = n + q\ using le_Suc_ex by blast moreover have \(2 :: nat) ^ n >> n + q \ 1\ by (simp add: drop_bit_eq_div power_add shiftr_def) ultimately show ?thesis using \x \ 0\ \unat x \ 1\ \n < LENGTH('a)\ by (simp add: power_add not_less word_le_nat_alt unat_drop_bit_eq shiftr_def shiftl_def) next case True with that have \y < LENGTH('a)\ by simp show ?thesis proof (cases \2 ^ n = unat x * 2 ^ y\) case True moreover have \unat x * 2 ^ y < 2 ^ LENGTH('a)\ using \n < LENGTH('a)\ by (simp flip: True) moreover have \(word_of_nat (2 ^ n) :: 'a word) = word_of_nat (unat x * 2 ^ y)\ using True by simp then have \2 ^ n = x * 2 ^ y\ by simp ultimately show ?thesis using \y < LENGTH('a)\ by (auto simp add: drop_bit_eq_div word_less_nat_alt unat_div unat_word_ariths shiftr_def shiftl_def) next case False with \y < n\ have *: \unat x \ 2 ^ n div 2 ^ y\ by (auto simp flip: power_sub power_add) have \unat x * 2 ^ y < 2 ^ n \ unat x * 2 ^ y \ 2 ^ n\ using False by (simp add: less_le) also have \\ \ unat x \ 2 ^ n div 2 ^ y\ by (simp add: less_eq_div_iff_mult_less_eq) also have \\ \ unat x < 2 ^ n div 2 ^ y\ using * by (simp add: less_le) finally show ?thesis using that \x \ 0\ by (simp flip: push_bit_eq_mult drop_bit_eq_div add: shiftr_def shiftl_def unat_drop_bit_eq word_less_iff_unsigned [where ?'a = nat]) qed qed qed lemma shiftr_not_mask_0: "n+m \ LENGTH('a :: len) \ ((w::'a::len word) >> n) AND NOT (mask m) = 0" - by (rule bit_word_eqI) (auto simp add: bit_simps word_size dest: bit_imp_le_length) + by word_eqI lemma shiftl_mask_is_0[simp]: "(x << n) AND mask n = 0" for x :: \'a::len word\ by (simp flip: take_bit_eq_mask add: take_bit_push_bit shiftl_def) lemma rshift_sub_mask_eq: "(a >> (size a - b)) AND mask b = a >> (size a - b)" for a :: \'a::len word\ using shiftl_shiftr2[where a=a and b=0 and c="size a - b"] apply (cases "b < size a") apply simp apply (simp add: linorder_not_less mask_eq_decr_exp word_size p2_eq_0[THEN iffD2]) done lemma shiftl_shiftr3: "b \ c \ a << b >> c = (a >> c - b) AND mask (size a - c)" for a :: \'a::len word\ apply (cases "b = c") apply (simp add: shiftl_shiftr1) apply (simp add: shiftl_shiftr2) done lemma and_mask_shiftr_comm: "m \ size w \ (w AND mask m) >> n = (w >> n) AND mask (m-n)" for w :: \'a::len word\ by (simp add: and_mask shiftr_shiftr) (simp add: word_size shiftl_shiftr3) lemma and_mask_shiftl_comm: "m+n \ size w \ (w AND mask m) << n = (w << n) AND mask (m+n)" for w :: \'a::len word\ by (simp add: and_mask word_size shiftl_shiftl) (simp add: shiftl_shiftr1) lemma le_mask_shiftl_le_mask: "s = m + n \ x \ mask n \ x << m \ mask s" for x :: \'a::len word\ by (simp add: le_mask_iff shiftl_shiftr3) lemma word_and_1_shiftl: "x AND (1 << n) = (if bit x n then (1 << n) else 0)" for x :: "'a :: len word" - apply (rule bit_word_eqI; transfer) - apply (auto simp add: bit_simps not_le ac_simps) - done + by word_eqI_solve lemmas word_and_1_shiftls' = word_and_1_shiftl[where n=0] word_and_1_shiftl[where n=1] word_and_1_shiftl[where n=2] lemmas word_and_1_shiftls = word_and_1_shiftls' [simplified] lemma word_and_mask_shiftl: "x AND (mask n << m) = ((x >> m) AND mask n) << m" for x :: \'a::len word\ - apply (rule bit_word_eqI; transfer) - apply (auto simp add: bit_simps not_le ac_simps) - done + by word_eqI_solve lemma shift_times_fold: "(x :: 'a :: len word) * (2 ^ n) << m = x << (m + n)" by (simp add: shiftl_t2n ac_simps power_add) lemma of_bool_nth: "of_bool (bit x v) = (x >> v) AND 1" for x :: \'a::len word\ by (simp add: bit_iff_odd_drop_bit word_and_1 shiftr_def) lemma shiftr_mask_eq: "(x >> n) AND mask (size x - n) = x >> n" for x :: "'a :: len word" - apply (simp flip: take_bit_eq_mask) - apply transfer - apply (simp add: take_bit_drop_bit) - done + by (word_eqI_solve dest: test_bit_lenD) lemma shiftr_mask_eq': "m = (size x - n) \ (x >> n) AND mask m = x >> n" for x :: "'a :: len word" by (simp add: shiftr_mask_eq) lemma and_eq_0_is_nth: fixes x :: "'a :: len word" shows "y = 1 << n \ ((x AND y) = 0) = (\ (bit x n))" by (simp add: and_exp_eq_0_iff_not_bit shiftl_def) lemma word_shift_zero: "\ x << n = 0; x \ 2^m; m + n < LENGTH('a)\ \ (x::'a::len word) = 0" apply (rule ccontr) apply (drule (2) word_shift_nonzero) apply simp done lemma mask_shift_and_negate[simp]:"(w AND mask n << m) AND NOT (mask n << m) = 0" for w :: \'a::len word\ - by (rule bit_word_eqI) (simp add: bit_simps) + by word_eqI (* The seL4 bitfield generator produces functions containing mask and shift operations, such that * invoking two of them consecutively can produce something like the following. *) lemma bitfield_op_twice: "(x AND NOT (mask n << m) OR ((y AND mask n) << m)) AND NOT (mask n << m) = x AND NOT (mask n << m)" for x :: \'a::len word\ - by (induct n arbitrary: m) (auto simp: word_ao_dist) + by word_eqI_solve lemma bitfield_op_twice'': "\NOT a = b << c; \x. b = mask x\ \ (x AND a OR (y AND b << c)) AND a = x AND a" for a b :: \'a::len word\ - apply clarsimp - apply (cut_tac n=xa and m=c and x=x and y=y in bitfield_op_twice) - apply (clarsimp simp:mask_eq_decr_exp) - apply (drule not_switch) - apply clarsimp - done + by word_eqI_solve lemma shiftr1_unfold: "x div 2 = x >> 1" by (simp add: drop_bit_eq_div shiftr_def) lemma shiftr1_is_div_2: "(x::('a::len) word) >> 1 = x div 2" by (simp add: drop_bit_eq_div shiftr_def) lemma shiftl1_is_mult: "(x << 1) = (x :: 'a::len word) * 2" by (metis One_nat_def mult_2 mult_2_right one_add_one power_0 power_Suc shiftl_t2n) lemma shiftr1_lt:"x \ 0 \ (x::('a::len) word) >> 1 < x" apply (subst shiftr1_is_div_2) apply (rule div_less_dividend_word) apply simp+ done lemma shiftr1_0_or_1:"(x::('a::len) word) >> 1 = 0 \ x = 0 \ x = 1" apply (subst (asm) shiftr1_is_div_2) apply (drule word_less_div) apply (case_tac "LENGTH('a) = 1") apply (simp add:degenerate_word) apply (erule disjE) apply (subgoal_tac "(2::'a word) \ 0") apply simp apply (rule not_degenerate_imp_2_neq_0) apply (subgoal_tac "LENGTH('a) \ 0") apply arith apply simp apply (rule x_less_2_0_1', simp+) done lemma shiftr1_irrelevant_lsb: "bit (x::('a::len) word) 0 \ x >> 1 = (x + 1) >> 1" apply (cases \LENGTH('a)\; transfer) apply (simp_all add: take_bit_drop_bit) apply (simp add: drop_bit_take_bit drop_bit_Suc) done lemma shiftr1_0_imp_only_lsb:"((x::('a::len) word) + 1) >> 1 = 0 \ x = 0 \ x + 1 = 0" by (metis One_nat_def shiftr1_0_or_1 word_less_1 word_overflow) lemma shiftr1_irrelevant_lsb': "\ (bit (x::('a::len) word) 0) \ x >> 1 = (x + 1) >> 1" by (metis shiftr1_irrelevant_lsb) (* Perhaps this one should be a simp lemma, but it seems a little dangerous. *) lemma cast_chunk_assemble_id: "\n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m\ \ (((ucast ((ucast (x::'b word))::'a word))::'b word) OR (((ucast ((ucast (x >> n))::'a word))::'b word) << n)) = x" apply (subgoal_tac "((ucast ((ucast (x >> n))::'a word))::'b word) = x >> n") apply clarsimp apply (subst and_not_mask[symmetric]) apply (subst ucast_ucast_mask) apply (subst word_ao_dist2[symmetric]) apply clarsimp apply (rule ucast_ucast_len) apply (rule shiftr_less_t2n') apply (subst and_mask_eq_iff_le_mask) apply (simp_all add: mask_eq_decr_exp flip: mult_2_right) apply (metis add_diff_cancel_left' len_gt_0 mult_2_right zero_less_diff) done lemma cast_chunk_scast_assemble_id: "\n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m\ \ (((ucast ((scast (x::'b word))::'a word))::'b word) OR (((ucast ((scast (x >> n))::'a word))::'b word) << n)) = x" apply (subgoal_tac "((scast x)::'a word) = ((ucast x)::'a word)") apply (subgoal_tac "((scast (x >> n))::'a word) = ((ucast (x >> n))::'a word)") apply (simp add:cast_chunk_assemble_id) apply (subst down_cast_same[symmetric], subst is_down, arith, simp)+ done lemma unat_shiftr_less_t2n: fixes x :: "'a :: len word" shows "unat x < 2 ^ (n + m) \ unat (x >> n) < 2 ^ m" by (simp add: shiftr_div_2n' power_add mult.commute less_mult_imp_div_less) lemma ucast_less_shiftl_helper: "\ LENGTH('b) + 2 < LENGTH('a); 2 ^ (LENGTH('b) + 2) \ n\ \ (ucast (x :: 'b::len word) << 2) < (n :: 'a::len word)" apply (erule order_less_le_trans[rotated]) using ucast_less[where x=x and 'a='a] apply (simp only: shiftl_t2n field_simps) apply (rule word_less_power_trans2; simp) done (* negating a mask which has been shifted to the very left *) lemma NOT_mask_shifted_lenword: "NOT (mask len << (LENGTH('a) - len) ::'a::len word) = mask (LENGTH('a) - len)" - by (rule bit_word_eqI) - (auto simp add: word_size bit_not_iff bit_push_bit_iff bit_mask_iff shiftl_def) + by word_eqI_solve (* Comparisons between different word sizes. *) lemma shiftr_less: "(w::'a::len word) < k \ w >> n < k" by (metis div_le_dividend le_less_trans shiftr_div_2n' unat_arith_simps(2)) lemma word_and_notzeroD: "w AND w' \ 0 \ w \ 0 \ w' \ 0" by auto lemma shiftr_le_0: "unat (w::'a::len word) < 2 ^ n \ w >> n = (0::'a::len word)" by (auto simp add: take_bit_word_eq_self_iff word_less_nat_alt shiftr_def simp flip: take_bit_eq_self_iff_drop_bit_eq_0 intro: ccontr) lemma of_nat_shiftl: "(of_nat x << n) = (of_nat (x * 2 ^ n) :: ('a::len) word)" proof - have "(of_nat x::'a word) << n = of_nat (2 ^ n) * of_nat x" using shiftl_t2n by (metis word_unat_power) thus ?thesis by simp qed lemma shiftl_1_not_0: "n < LENGTH('a) \ (1::'a::len word) << n \ 0" by (simp add: shiftl_t2n) (* continue sorting out from here *) (* usually: x,y = (len_of TYPE ('a)) *) lemma bitmagic_zeroLast_leq_or1Last: "(a::('a::len) word) AND (mask len << x - len) \ a OR mask (y - len)" by (meson le_word_or2 order_trans word_and_le2) lemma zero_base_lsb_imp_set_eq_as_bit_operation: fixes base ::"'a::len word" assumes valid_prefix: "mask (LENGTH('a) - len) AND base = 0" shows "(base = NOT (mask (LENGTH('a) - len)) AND a) \ (a \ {base .. base OR mask (LENGTH('a) - len)})" proof have helper3: "x OR y = x OR y AND NOT x" for x y ::"'a::len word" by (simp add: word_oa_dist2) from assms show "base = NOT (mask (LENGTH('a) - len)) AND a \ a \ {base..base OR mask (LENGTH('a) - len)}" apply(simp add: word_and_le1) apply(metis helper3 le_word_or2 word_bw_comms(1) word_bw_comms(2)) done next assume "a \ {base..base OR mask (LENGTH('a) - len)}" hence a: "base \ a \ a \ base OR mask (LENGTH('a) - len)" by simp show "base = NOT (mask (LENGTH('a) - len)) AND a" proof - have f2: "\x\<^sub>0. base AND NOT (mask x\<^sub>0) \ a AND NOT (mask x\<^sub>0)" using a neg_mask_mono_le by blast have f3: "\x\<^sub>0. a AND NOT (mask x\<^sub>0) \ (base OR mask (LENGTH('a) - len)) AND NOT (mask x\<^sub>0)" using a neg_mask_mono_le by blast have f4: "base = base AND NOT (mask (LENGTH('a) - len))" using valid_prefix by (metis mask_eq_0_eq_x word_bw_comms(1)) hence f5: "\x\<^sub>6. (base OR x\<^sub>6) AND NOT (mask (LENGTH('a) - len)) = base OR x\<^sub>6 AND NOT (mask (LENGTH('a) - len))" using word_ao_dist by (metis) have f6: "\x\<^sub>2 x\<^sub>3. a AND NOT (mask x\<^sub>2) \ x\<^sub>3 \ \ (base OR mask (LENGTH('a) - len)) AND NOT (mask x\<^sub>2) \ x\<^sub>3" using f3 dual_order.trans by auto have "base = (base OR mask (LENGTH('a) - len)) AND NOT (mask (LENGTH('a) - len))" using f5 by auto hence "base = a AND NOT (mask (LENGTH('a) - len))" using f2 f4 f6 by (metis eq_iff) thus "base = NOT (mask (LENGTH('a) - len)) AND a" by (metis word_bw_comms(1)) qed qed lemma of_nat_eq_signed_scast: "(of_nat x = (y :: ('a::len) signed word)) = (of_nat x = (scast y :: 'a word))" by (metis scast_of_nat scast_scast_id(2)) lemma word_aligned_add_no_wrap_bounded: "\ w + 2^n \ x; w + 2^n \ 0; is_aligned w n \ \ (w::'a::len word) < x" by (blast dest: is_aligned_no_overflow le_less_trans word_leq_le_minus_one) lemma mask_Suc: "mask (Suc n) = (2 :: 'a::len word) ^ n + mask n" by (simp add: mask_eq_decr_exp) lemma mask_mono: "sz' \ sz \ mask sz' \ (mask sz :: 'a::len word)" by (simp add: le_mask_iff shiftr_mask_le) lemma aligned_mask_disjoint: "\ is_aligned (a :: 'a :: len word) n; b \ mask n \ \ a AND b = 0" by (metis and_zero_eq is_aligned_mask le_mask_imp_and_mask word_bw_lcs(1)) lemma word_and_or_mask_aligned: "\ is_aligned a n; b \ mask n \ \ a + b = a OR b" by (simp add: aligned_mask_disjoint word_plus_and_or_coroll) lemma word_and_or_mask_aligned2: \is_aligned b n \ a \ mask n \ a + b = a OR b\ using word_and_or_mask_aligned [of b n a] by (simp add: ac_simps) lemma is_aligned_ucastI: "is_aligned w n \ is_aligned (ucast w) n" by (simp add: bit_ucast_iff is_aligned_nth) lemma ucast_le_maskI: "a \ mask n \ UCAST('a::len \ 'b::len) a \ mask n" by (metis and_mask_eq_iff_le_mask ucast_and_mask) lemma ucast_add_mask_aligned: "\ a \ mask n; is_aligned b n \ \ UCAST ('a::len \ 'b::len) (a + b) = ucast a + ucast b" by (metis add.commute is_aligned_ucastI ucast_le_maskI ucast_or_distrib word_and_or_mask_aligned) lemma ucast_shiftl: "LENGTH('b) \ LENGTH ('a) \ UCAST ('a::len \ 'b::len) x << n = ucast (x << n)" - by (rule bit_word_eqI) (auto simp add: bit_simps) + by word_eqI_solve lemma ucast_leq_mask: "LENGTH('a) \ n \ ucast (x::'a::len word) \ mask n" apply (simp add: less_eq_mask_iff_take_bit_eq_self) apply transfer apply (simp add: ac_simps) done lemma shiftl_inj: \x = y\ if \x << n = y << n\ \x \ mask (LENGTH('a) - n)\ \y \ mask (LENGTH('a) - n)\ for x y :: \'a::len word\ proof (cases \n < LENGTH('a)\) case False with that show ?thesis by simp next case True moreover from that have \take_bit (LENGTH('a) - n) x = x\ \take_bit (LENGTH('a) - n) y = y\ by (simp_all add: less_eq_mask_iff_take_bit_eq_self) ultimately show ?thesis using \x << n = y << n\ by (metis diff_less gr_implies_not0 linorder_cases linorder_not_le shiftl_shiftr_id shiftl_x_0 take_bit_word_eq_self_iff) qed lemma distinct_word_add_ucast_shift_inj: \p' = p \ off' = off\ if *: \p + (UCAST('a::len \ 'b::len) off << n) = p' + (ucast off' << n)\ and \is_aligned p n'\ \is_aligned p' n'\ \n' = n + LENGTH('a)\ \n' < LENGTH('b)\ proof - from \n' = n + LENGTH('a)\ have [simp]: \n' - n = LENGTH('a)\ \n + LENGTH('a) = n'\ by simp_all from \is_aligned p n'\ obtain q where p: \p = push_bit n' (word_of_nat q)\ \q < 2 ^ (LENGTH('b) - n')\ by (rule is_alignedE') from \is_aligned p' n'\ obtain q' where p': \p' = push_bit n' (word_of_nat q')\ \q' < 2 ^ (LENGTH('b) - n')\ by (rule is_alignedE') define m :: nat where \m = unat off\ then have off: \off = word_of_nat m\ by simp define m' :: nat where \m' = unat off'\ then have off': \off' = word_of_nat m'\ by simp have \push_bit n' q + take_bit n' (push_bit n m) < 2 ^ LENGTH('b)\ by (metis id_apply is_aligned_no_wrap''' of_nat_eq_id of_nat_push_bit p(1) p(2) take_bit_nat_eq_self_iff take_bit_nat_less_exp take_bit_push_bit that(2) that(5) unsigned_of_nat) moreover have \push_bit n' q' + take_bit n' (push_bit n m') < 2 ^ LENGTH('b)\ by (metis \n' - n = LENGTH('a)\ id_apply is_aligned_no_wrap''' m'_def of_nat_eq_id of_nat_push_bit off' p'(1) p'(2) take_bit_nat_eq_self_iff take_bit_push_bit that(3) that(5) unsigned_of_nat) ultimately have \push_bit n' q + take_bit n' (push_bit n m) = push_bit n' q' + take_bit n' (push_bit n m')\ using * by (simp add: p p' off off' push_bit_of_nat push_bit_take_bit word_of_nat_inj unsigned_of_nat shiftl_def flip: of_nat_add) then have \int (push_bit n' q + take_bit n' (push_bit n m)) = int (push_bit n' q' + take_bit n' (push_bit n m'))\ by simp then have \concat_bit n' (int (push_bit n m)) (int q) = concat_bit n' (int (push_bit n m')) (int q')\ by (simp add: of_nat_push_bit of_nat_take_bit concat_bit_eq) then show ?thesis by (simp add: p p' off off' take_bit_of_nat take_bit_push_bit word_of_nat_eq_iff concat_bit_eq_iff) (simp add: push_bit_eq_mult) qed lemma word_upto_Nil: "y < x \ [x .e. y ::'a::len word] = []" by (simp add: upto_enum_red not_le word_less_nat_alt) lemma word_enum_decomp_elem: assumes "[x .e. (y ::'a::len word)] = as @ a # bs" shows "x \ a \ a \ y" proof - have "set as \ set [x .e. y] \ a \ set [x .e. y]" using assms by (auto dest: arg_cong[where f=set]) then show ?thesis by auto qed lemma word_enum_prefix: "[x .e. (y ::'a::len word)] = as @ a # bs \ as = (if x < a then [x .e. a - 1] else [])" apply (induct as arbitrary: x; clarsimp) apply (case_tac "x < y") prefer 2 apply (case_tac "x = y", simp) apply (simp add: not_less) apply (drule (1) dual_order.not_eq_order_implies_strict) apply (simp add: word_upto_Nil) apply (simp add: word_upto_Cons_eq) apply (case_tac "x < y") prefer 2 apply (case_tac "x = y", simp) apply (simp add: not_less) apply (drule (1) dual_order.not_eq_order_implies_strict) apply (simp add: word_upto_Nil) apply (clarsimp simp: word_upto_Cons_eq) apply (frule word_enum_decomp_elem) apply clarsimp apply (rule conjI) prefer 2 apply (subst word_Suc_le[symmetric]; clarsimp) apply (drule meta_spec) apply (drule (1) meta_mp) apply clarsimp apply (rule conjI; clarsimp) apply (subst (2) word_upto_Cons_eq) apply unat_arith apply simp done lemma word_enum_decomp_set: "[x .e. (y ::'a::len word)] = as @ a # bs \ a \ set as" by (metis distinct_append distinct_enum_upto' not_distinct_conv_prefix) lemma word_enum_decomp: assumes "[x .e. (y ::'a::len word)] = as @ a # bs" shows "x \ a \ a \ y \ a \ set as \ (\z \ set as. x \ z \ z \ y)" proof - from assms have "set as \ set [x .e. y] \ a \ set [x .e. y]" by (auto dest: arg_cong[where f=set]) with word_enum_decomp_set[OF assms] show ?thesis by auto qed lemma of_nat_unat_le_mask_ucast: "\of_nat (unat t) = w; t \ mask LENGTH('a)\ \ t = UCAST('a::len \ 'b::len) w" by (clarsimp simp: ucast_nat_def ucast_ucast_mask simp flip: and_mask_eq_iff_le_mask) lemma less_diff_gt0: "a < b \ (0 :: 'a :: len word) < b - a" by unat_arith lemma unat_plus_gt: "unat ((a :: 'a :: len word) + b) \ unat a + unat b" by (clarsimp simp: unat_plus_if_size) lemma const_less: "\ (a :: 'a :: len word) - 1 < b; a \ b \ \ a < b" by (metis less_1_simp word_le_less_eq) lemma add_mult_aligned_neg_mask: \(x + y * m) AND NOT(mask n) = (x AND NOT(mask n)) + y * m\ if \m AND (2 ^ n - 1) = 0\ for x y m :: \'a::len word\ by (metis (no_types, opaque_lifting) - add.assoc add.commute add.right_neutral add_uminus_conv_diff - mask_eq_decr_exp mask_eqs(2) mask_eqs(6) mult.commute mult_zero_left - subtract_mask(1) that) + add.assoc add.commute add.right_neutral add_uminus_conv_diff + mask_eq_decr_exp mask_eqs(2) mask_eqs(6) mult.commute mult_zero_left + subtract_mask(1) that) lemma unat_of_nat_minus_1: "\ n < 2 ^ LENGTH('a); n \ 0 \ \ unat ((of_nat n:: 'a :: len word) - 1) = n - 1" by (simp add: of_nat_diff unat_eq_of_nat) lemma word_eq_zeroI: "a \ a - 1 \ a = 0" for a :: "'a :: len word" by (simp add: word_must_wrap) lemma word_add_format: "(-1 :: 'a :: len word) + b + c = b + (c - 1)" by simp lemma upto_enum_word_nth: "\ i \ j; k \ unat (j - i) \ \ [i .e. j] ! k = i + of_nat k" apply (clarsimp simp: upto_enum_def nth_append) apply (clarsimp simp: word_le_nat_alt[symmetric]) apply (rule conjI, clarsimp) apply (subst toEnum_of_nat, unat_arith) apply unat_arith apply (clarsimp simp: not_less unat_sub[symmetric]) apply unat_arith done lemma upto_enum_step_nth: "\ a \ c; n \ unat ((c - a) div (b - a)) \ \ [a, b .e. c] ! n = a + of_nat n * (b - a)" by (clarsimp simp: upto_enum_step_def not_less[symmetric] upto_enum_word_nth) lemma upto_enum_inc_1_len: "a < - 1 \ [(0 :: 'a :: len word) .e. 1 + a] = [0 .e. a] @ [1 + a]" apply (simp add: upto_enum_word) apply (subgoal_tac "unat (1+a) = 1 + unat a") apply simp apply (subst unat_plus_simple[THEN iffD1]) apply (metis add.commute no_plus_overflow_neg olen_add_eqv) apply unat_arith done lemma neg_mask_add: "y AND mask n = 0 \ x + y AND NOT(mask n) = (x AND NOT(mask n)) + y" for x y :: \'a::len word\ by (clarsimp simp: mask_out_sub_mask mask_eqs(7)[symmetric] mask_twice) lemma shiftr_shiftl_shiftr[simp]: "(x :: 'a :: len word) >> a << a >> a = x >> a" - by (rule bit_word_eqI) (auto simp add: bit_simps dest: bit_imp_le_length) + by (word_eqI_solve dest: bit_imp_le_length) lemma add_right_shift: "\ x AND mask n = 0; y AND mask n = 0; x \ x + y \ \ (x + y :: ('a :: len) word) >> n = (x >> n) + (y >> n)" apply (simp add: no_olen_add_nat is_aligned_mask[symmetric]) apply (simp add: unat_arith_simps shiftr_div_2n' split del: if_split) apply (subst if_P) apply (erule order_le_less_trans[rotated]) apply (simp add: add_mono) apply (simp add: shiftr_div_2n' is_aligned_iff_dvd_nat) done lemma sub_right_shift: "\ x AND mask n = 0; y AND mask n = 0; y \ x \ \ (x - y) >> n = (x >> n :: 'a :: len word) - (y >> n)" using add_right_shift[where x="x - y" and y=y and n=n] by (simp add: aligned_sub_aligned is_aligned_mask[symmetric] word_sub_le) lemma and_and_mask_simple: "y AND mask n = mask n \ (x AND y) AND mask n = x AND mask n" by (simp add: ac_simps) lemma and_and_mask_simple_not: "y AND mask n = 0 \ (x AND y) AND mask n = 0" by (simp add: ac_simps) lemma word_and_le': "b \ c \ (a :: 'a :: len word) AND b \ c" by (metis word_and_le1 order_trans) lemma word_and_less': "b < c \ (a :: 'a :: len word) AND b < c" by transfer simp lemma shiftr_w2p: "x < LENGTH('a) \ 2 ^ x = (2 ^ (LENGTH('a) - 1) >> (LENGTH('a) - 1 - x) :: 'a :: len word)" by (rule bit_word_eqI) (auto simp add: bit_simps) lemma t2p_shiftr: "\ b \ a; a < LENGTH('a) \ \ (2 :: 'a :: len word) ^ a >> b = 2 ^ (a - b)" by (rule bit_word_eqI) (auto simp add: bit_simps) lemma scast_1[simp]: "scast (1 :: 'a :: len signed word) = (1 :: 'a word)" by simp lemma unsigned_uminus1 [simp]: \(unsigned (-1::'b::len word)::'c::len word) = mask LENGTH('b)\ by (fact unsigned_minus_1_eq_mask) lemma ucast_ucast_mask_eq: "\ UCAST('a::len \ 'b::len) x = y; x AND mask LENGTH('b) = x \ \ x = ucast y" by (drule sym) (simp flip: take_bit_eq_mask add: unsigned_ucast_eq) lemma ucast_up_eq: "\ ucast x = (ucast y::'b::len word); LENGTH('a) \ LENGTH ('b) \ \ ucast x = (ucast y::'a::len word)" by (simp add: word_eq_iff bit_simps) lemma ucast_up_neq: "\ ucast x \ (ucast y::'b::len word); LENGTH('b) \ LENGTH ('a) \ \ ucast x \ (ucast y::'a::len word)" by (fastforce dest: ucast_up_eq) lemma mask_AND_less_0: "\ x AND mask n = 0; m \ n \ \ x AND mask m = 0" for x :: \'a::len word\ by (metis mask_twice2 word_and_notzeroD) lemma mask_len_id [simp]: "(x :: 'a :: len word) AND mask LENGTH('a) = x" using uint_lt2p [of x] by (simp add: mask_eq_iff) lemma scast_ucast_down_same: "LENGTH('b) \ LENGTH('a) \ SCAST('a \ 'b) = UCAST('a::len \ 'b::len)" by (simp add: down_cast_same is_down) lemma word_aligned_0_sum: "\ a + b = 0; is_aligned (a :: 'a :: len word) n; b \ mask n; n < LENGTH('a) \ \ a = 0 \ b = 0" by (simp add: word_plus_and_or_coroll aligned_mask_disjoint word_or_zero) lemma mask_eq1_nochoice: "\ LENGTH('a) > 1; (x :: 'a :: len word) AND 1 = x \ \ x = 0 \ x = 1" by (metis word_and_1) lemma shiftr_and_eq_shiftl: "(w >> n) AND x = y \ w AND (x << n) = (y << n)" for y :: "'a:: len word" apply (drule sym) apply simp apply (rule bit_word_eqI) apply (auto simp add: bit_simps) done lemma add_mask_lower_bits': "\ len = LENGTH('a); is_aligned (x :: 'a :: len word) n; \n' \ n. n' < len \ \ bit p n' \ \ x + p AND NOT(mask n) = x" using add_mask_lower_bits by auto lemma leq_mask_shift: "(x :: 'a :: len word) \ mask (low_bits + high_bits) \ (x >> low_bits) \ mask high_bits" by (simp add: le_mask_iff shiftr_shiftr ac_simps) lemma ucast_ucast_eq_mask_shift: "(x :: 'a :: len word) \ mask (low_bits + LENGTH('b)) \ ucast((ucast (x >> low_bits)) :: 'b :: len word) = x >> low_bits" by (meson and_mask_eq_iff_le_mask eq_ucast_ucast_eq not_le_imp_less shiftr_less_t2n' ucast_ucast_len) lemma const_le_unat: "\ b < 2 ^ LENGTH('a); of_nat b \ a \ \ b \ unat (a :: 'a :: len word)" by (simp add: word_le_nat_alt unsigned_of_nat take_bit_nat_eq_self) lemma upt_enum_offset_trivial: "\ x < 2 ^ LENGTH('a) - 1 ; n \ unat x \ \ ([(0 :: 'a :: len word) .e. x] ! n) = of_nat n" apply (induct x arbitrary: n) apply simp by (simp add: upto_enum_word_nth) lemma word_le_mask_out_plus_2sz: "x \ (x AND NOT(mask sz)) + 2 ^ sz - 1" for x :: \'a::len word\ by (metis add_diff_eq word_neg_and_le) lemma ucast_add: "ucast (a + (b :: 'a :: len word)) = ucast a + (ucast b :: ('a signed word))" by transfer (simp add: take_bit_add) lemma ucast_minus: "ucast (a - (b :: 'a :: len word)) = ucast a - (ucast b :: ('a signed word))" apply (insert ucast_add[where a=a and b="-b"]) apply (metis (no_types, opaque_lifting) add_diff_eq diff_add_cancel ucast_add) done lemma scast_ucast_add_one [simp]: "scast (ucast (x :: 'a::len word) + (1 :: 'a signed word)) = x + 1" apply (subst ucast_1[symmetric]) apply (subst ucast_add[symmetric]) apply clarsimp done lemma word_and_le_plus_one: "a > 0 \ (x :: 'a :: len word) AND (a - 1) < a" by (simp add: gt0_iff_gem1 word_and_less') lemma unat_of_ucast_then_shift_eq_unat_of_shift[simp]: "LENGTH('b) \ LENGTH('a) \ unat ((ucast (x :: 'a :: len word) :: 'b :: len word) >> n) = unat (x >> n)" by (simp add: shiftr_div_2n' unat_ucast_up_simp) lemma unat_of_ucast_then_mask_eq_unat_of_mask[simp]: "LENGTH('b) \ LENGTH('a) \ unat ((ucast (x :: 'a :: len word) :: 'b :: len word) AND mask m) = unat (x AND mask m)" by (metis ucast_and_mask unat_ucast_up_simp) lemma shiftr_less_t2n3: "\ (2 :: 'a word) ^ (n + m) = 0; m < LENGTH('a) \ \ (x :: 'a :: len word) >> n < 2 ^ m" by (fastforce intro: shiftr_less_t2n' simp: mask_eq_decr_exp power_overflow) lemma unat_shiftr_le_bound: "\ 2 ^ (LENGTH('a :: len) - n) - 1 \ bnd; 0 < n \ \ unat ((x :: 'a word) >> n) \ bnd" apply transfer apply (simp add: take_bit_drop_bit) apply (simp add: drop_bit_take_bit) apply (rule order_trans) defer apply assumption apply (simp add: nat_le_iff of_nat_diff) done lemma shiftr_eqD: "\ x >> n = y >> n; is_aligned x n; is_aligned y n \ \ x = y" by (metis is_aligned_shiftr_shiftl) lemma word_shiftr_shiftl_shiftr_eq_shiftr: "a \ b \ (x :: 'a :: len word) >> a << b >> b = x >> a" apply (rule bit_word_eqI) apply (auto simp add: bit_simps dest: bit_imp_le_length) done lemma of_int_uint_ucast: "of_int (uint (x :: 'a::len word)) = (ucast x :: 'b::len word)" by (fact Word.of_int_uint) lemma mod_mask_drop: "\ m = 2 ^ n; 0 < m; mask n AND msk = mask n \ \ (x mod m) AND msk = x mod m" for x :: \'a::len word\ by (simp add: word_mod_2p_is_mask word_bw_assocs) lemma mask_eq_ucast_eq: "\ x AND mask LENGTH('a) = (x :: ('c :: len word)); LENGTH('a) \ LENGTH('b)\ \ ucast (ucast x :: ('a :: len word)) = (ucast x :: ('b :: len word))" by (metis ucast_and_mask ucast_id ucast_ucast_mask ucast_up_eq) lemma of_nat_less_t2n: "of_nat i < (2 :: ('a :: len) word) ^ n \ n < LENGTH('a) \ unat (of_nat i :: 'a word) < 2 ^ n" by (metis order_less_trans p2_gt_0 unat_less_power word_neq_0_conv) lemma two_power_increasing_less_1: "\ n \ m; m \ LENGTH('a) \ \ (2 :: 'a :: len word) ^ n - 1 \ 2 ^ m - 1" by (metis diff_diff_cancel le_m1_iff_lt less_imp_diff_less p2_gt_0 two_power_increasing word_1_le_power word_le_minus_mono_left word_less_sub_1) lemma word_sub_mono4: "\ y + x \ z + x; y \ y + x; z \ z + x \ \ y \ z" for y :: "'a :: len word" by (simp add: word_add_le_iff2) lemma eq_or_less_helperD: "\ n = unat (2 ^ m - 1 :: 'a :: len word) \ n < unat (2 ^ m - 1 :: 'a word); m < LENGTH('a) \ \ n < 2 ^ m" by (meson le_less_trans nat_less_le unat_less_power word_power_less_1) lemma mask_sub: "n \ m \ mask m - mask n = mask m AND NOT(mask n :: 'a::len word)" by (metis (full_types) and_mask_eq_iff_shiftr_0 mask_out_sub_mask shiftr_mask_le word_bw_comms(1)) lemma neg_mask_diff_bound: "sz'\ sz \ (ptr AND NOT(mask sz')) - (ptr AND NOT(mask sz)) \ 2 ^ sz - 2 ^ sz'" (is "_ \ ?lhs \ ?rhs") for ptr :: \'a::len word\ proof - assume lt: "sz' \ sz" hence "?lhs = ptr AND (mask sz AND NOT(mask sz'))" by (metis add_diff_cancel_left' multiple_mask_trivia) also have "\ \ ?rhs" using lt by (metis (mono_tags) add_diff_eq diff_eq_eq eq_iff mask_2pm1 mask_sub word_and_le') finally show ?thesis by simp qed lemma mask_out_eq_0: "\ idx < 2 ^ sz; sz < LENGTH('a) \ \ (of_nat idx :: 'a :: len word) AND NOT(mask sz) = 0" by (simp add: of_nat_power less_mask_eq mask_eq_0_eq_x) lemma is_aligned_neg_mask_eq': "is_aligned ptr sz = (ptr AND NOT(mask sz) = ptr)" using is_aligned_mask mask_eq_0_eq_x by blast lemma neg_mask_mask_unat: "sz < LENGTH('a) \ unat ((ptr :: 'a :: len word) AND NOT(mask sz)) + unat (ptr AND mask sz) = unat ptr" by (metis AND_NOT_mask_plus_AND_mask_eq unat_plus_simple word_and_le2) lemma unat_pow_le_intro: "LENGTH('a) \ n \ unat (x :: 'a :: len word) < 2 ^ n" by (metis lt2p_lem not_le of_nat_le_iff of_nat_numeral semiring_1_class.of_nat_power uint_nat) lemma unat_shiftl_less_t2n: \unat (x << n) < 2 ^ m\ if \unat (x :: 'a :: len word) < 2 ^ (m - n)\ \m < LENGTH('a)\ proof (cases \n \ m\) case False with that show ?thesis apply (transfer fixing: m n) apply (simp add: not_le take_bit_push_bit) apply (metis diff_le_self order_le_less_trans push_bit_of_0 take_bit_0 take_bit_int_eq_self take_bit_int_less_exp take_bit_nonnegative take_bit_tightened) done next case True moreover define q r where \q = m - n\ and \r = LENGTH('a) - n - q\ ultimately have \m - n = q\ \m = n + q\ \LENGTH('a) = r + q + n\ using that by simp_all with that show ?thesis apply (transfer fixing: m n q r) apply (simp add: not_le take_bit_push_bit) apply (simp add: push_bit_eq_mult power_add) using take_bit_tightened_less_eq_int [of \r + q\ \r + q + n\] apply (rule le_less_trans) apply simp_all done qed lemma unat_is_aligned_add: "\ is_aligned p n; unat d < 2 ^ n \ \ unat (p + d AND mask n) = unat d \ unat (p + d AND NOT(mask n)) = unat p" by (metis add.right_neutral and_mask_eq_iff_le_mask and_not_mask le_mask_iff mask_add_aligned mask_out_add_aligned mult_zero_right shiftl_t2n shiftr_le_0) lemma unat_shiftr_shiftl_mask_zero: "\ c + a \ LENGTH('a) + b ; c < LENGTH('a) \ \ unat (((q :: 'a :: len word) >> a << b) AND NOT(mask c)) = 0" by (fastforce intro: unat_is_aligned_add[where p=0 and n=c, simplified, THEN conjunct2] unat_shiftl_less_t2n unat_shiftr_less_t2n unat_pow_le_intro) lemmas of_nat_ucast = ucast_of_nat[symmetric] lemma shift_then_mask_eq_shift_low_bits: "x \ mask (low_bits + high_bits) \ (x >> low_bits) AND mask high_bits = x >> low_bits" for x :: \'a::len word\ by (simp add: leq_mask_shift le_mask_imp_and_mask) lemma leq_low_bits_iff_zero: "\ x \ mask (low bits + high bits); x >> low_bits = 0 \ \ (x AND mask low_bits = 0) = (x = 0)" for x :: \'a::len word\ using and_mask_eq_iff_shiftr_0 by force lemma unat_less_iff: "\ unat (a :: 'a :: len word) = b; c < 2 ^ LENGTH('a) \ \ (a < of_nat c) = (b < c)" using unat_ucast_less_no_overflow_simp by blast lemma is_aligned_no_overflow3: "\ is_aligned (a :: 'a :: len word) n; n < LENGTH('a); b < 2 ^ n; c \ 2 ^ n; b < c \ \ a + b \ a + (c - 1)" by (meson is_aligned_no_wrap' le_m1_iff_lt not_le word_less_sub_1 word_plus_mono_right) lemma mask_add_aligned_right: "is_aligned p n \ (q + p) AND mask n = q AND mask n" by (simp add: mask_add_aligned add.commute) lemma leq_high_bits_shiftr_low_bits_leq_bits_mask: "x \ mask high_bits \ (x :: 'a :: len word) << low_bits \ mask (low_bits + high_bits)" by (metis le_mask_shiftl_le_mask) lemma word_two_power_neg_ineq: "2 ^ m \ (0 :: 'a word) \ 2 ^ n \ - (2 ^ m :: 'a :: len word)" apply (cases "n < LENGTH('a)"; simp add: power_overflow) apply (cases "m < LENGTH('a)"; simp add: power_overflow) apply (simp add: word_le_nat_alt unat_minus word_size) apply (cases "LENGTH('a)"; simp) apply (simp add: less_Suc_eq_le) apply (drule power_increasing[where a=2 and n=n] power_increasing[where a=2 and n=m], simp)+ apply (drule(1) add_le_mono) apply simp done lemma unat_shiftl_absorb: "\ x \ 2 ^ p; p + k < LENGTH('a) \ \ unat (x :: 'a :: len word) * 2 ^ k = unat (x * 2 ^ k)" by (smt add_diff_cancel_right' add_lessD1 le_add2 le_less_trans mult.commute nat_le_power_trans unat_lt2p unat_mult_lem unat_power_lower word_le_nat_alt) lemma word_plus_mono_right_split: "\ unat ((x :: 'a :: len word) AND mask sz) + unat z < 2 ^ sz; sz < LENGTH('a) \ \ x \ x + z" apply (subgoal_tac "(x AND NOT(mask sz)) + (x AND mask sz) \ (x AND NOT(mask sz)) + ((x AND mask sz) + z)") apply (simp add:word_plus_and_or_coroll2 field_simps) apply (rule word_plus_mono_right) apply (simp add: less_le_trans no_olen_add_nat) using of_nat_power is_aligned_no_wrap' by force lemma mul_not_mask_eq_neg_shiftl: "NOT(mask n :: 'a::len word) = -1 << n" by (simp add: NOT_mask shiftl_t2n) lemma shiftr_mul_not_mask_eq_and_not_mask: "(x >> n) * NOT(mask n) = - (x AND NOT(mask n))" for x :: \'a::len word\ by (metis NOT_mask and_not_mask mult_minus_left semiring_normalization_rules(7) shiftl_t2n) lemma mask_eq_n1_shiftr: "n \ LENGTH('a) \ (mask n :: 'a :: len word) = -1 >> (LENGTH('a) - n)" by (metis diff_diff_cancel eq_refl mask_full shiftr_mask2) lemma is_aligned_mask_out_add_eq: "is_aligned p n \ (p + x) AND NOT(mask n) = p + (x AND NOT(mask n))" by (simp add: mask_out_sub_mask mask_add_aligned) lemmas is_aligned_mask_out_add_eq_sub = is_aligned_mask_out_add_eq[where x="a - b" for a b, simplified field_simps] lemma aligned_bump_down: "is_aligned x n \ (x - 1) AND NOT(mask n) = x - 2 ^ n" by (drule is_aligned_mask_out_add_eq[where x="-1"]) (simp add: NOT_mask) lemma unat_2tp_if: "unat (2 ^ n :: ('a :: len) word) = (if n < LENGTH ('a) then 2 ^ n else 0)" by (split if_split, simp_all add: power_overflow) lemma mask_of_mask: "mask (n::nat) AND mask (m::nat) = (mask (min m n) :: 'a::len word)" by (rule bit_word_eqI) (auto simp add: bit_simps) lemma unat_signed_ucast_less_ucast: "LENGTH('a) \ LENGTH('b) \ unat (ucast (x :: 'a :: len word) :: 'b :: len signed word) = unat x" by (simp add: unat_ucast_up_simp) lemma toEnum_of_ucast: "LENGTH('b) \ LENGTH('a) \ (toEnum (unat (b::'b :: len word))::'a :: len word) = of_nat (unat b)" by (simp add: unat_pow_le_intro) lemma plus_mask_AND_NOT_mask_eq: "x AND NOT(mask n) = x \ (x + mask n) AND NOT(mask n) = x" for x::\'a::len word\ - by (subst word_plus_and_or_coroll; word_eqI_solve) + apply (subst word_plus_and_or_coroll; word_eqI; fastforce?) + apply (erule allE, drule (1) iffD2) + apply clarsimp + done lemmas unat_ucast_mask = unat_ucast_eq_unat_and_mask[where w=a for a] lemma t2n_mask_eq_if: "2 ^ n AND mask m = (if n < m then 2 ^ n else (0 :: 'a::len word))" - by (rule word_eqI) (auto simp add: bit_simps) + by word_eqI_solve lemma unat_ucast_le: "unat (ucast (x :: 'a :: len word) :: 'b :: len word) \ unat x" by (simp add: ucast_nat_def word_unat_less_le) lemma ucast_le_up_down_iff: "\ LENGTH('a) \ LENGTH('b); (x :: 'b :: len word) \ ucast (- 1 :: 'a :: len word) \ \ (ucast x \ (y :: 'a word)) = (x \ ucast y)" using le_max_word_ucast_id ucast_le_ucast by metis lemma ucast_ucast_mask_shift: "a \ LENGTH('a) + b \ ucast (ucast (p AND mask a >> b) :: 'a :: len word) = p AND mask a >> b" by (metis add.commute le_mask_iff shiftr_mask_le ucast_ucast_eq_mask_shift word_and_le') lemma unat_ucast_mask_shift: "a \ LENGTH('a) + b \ unat (ucast (p AND mask a >> b) :: 'a :: len word) = unat (p AND mask a >> b)" by (metis linear ucast_ucast_mask_shift unat_ucast_up_simp) lemma mask_overlap_zero: "a \ b \ (p AND mask a) AND NOT(mask b) = 0" for p :: \'a::len word\ by (metis NOT_mask_AND_mask mask_lower_twice2 max_def) lemma mask_shifl_overlap_zero: "a + c \ b \ (p AND mask a << c) AND NOT(mask b) = 0" for p :: \'a::len word\ by (metis and_mask_0_iff_le_mask mask_mono mask_shiftl_decompose order_trans shiftl_over_and_dist word_and_le' word_and_le2) lemma mask_overlap_zero': "a \ b \ (p AND NOT(mask a)) AND mask b = 0" for p :: \'a::len word\ using mask_AND_NOT_mask mask_AND_less_0 by blast lemma mask_rshift_mult_eq_rshift_lshift: "((a :: 'a :: len word) >> b) * (1 << c) = (a >> b << c)" by (simp add: shiftl_t2n) lemma shift_alignment: "a \ b \ is_aligned (p >> a << a) b" using is_aligned_shift is_aligned_weaken by blast lemma mask_split_sum_twice: "a \ b \ (p AND NOT(mask a)) + ((p AND mask a) AND NOT(mask b)) + (p AND mask b) = p" for p :: \'a::len word\ by (simp add: add.commute multiple_mask_trivia word_bw_comms(1) word_bw_lcs(1) word_plus_and_or_coroll2) lemma mask_shift_eq_mask_mask: "(p AND mask a >> b << b) = (p AND mask a) AND NOT(mask b)" for p :: \'a::len word\ by (simp add: and_not_mask) lemma mask_shift_sum: "\ a \ b; unat n = unat (p AND mask b) \ \ (p AND NOT(mask a)) + (p AND mask a >> b) * (1 << b) + n = (p :: 'a :: len word)" apply (simp add: shiftl_def shiftr_def flip: push_bit_eq_mult take_bit_eq_mask word_unat_eq_iff) apply (subst disjunctive_add) apply (auto simp add: bit_simps) apply (subst disjunctive_add) apply (auto simp add: bit_simps) apply (rule bit_word_eqI) apply (auto simp add: bit_simps) done lemma is_up_compose: "\ is_up uc; is_up uc' \ \ is_up (uc' \ uc)" unfolding is_up_def by (simp add: Word.target_size Word.source_size) lemma of_int_sint_scast: "of_int (sint (x :: 'a :: len word)) = (scast x :: 'b :: len word)" by (fact Word.of_int_sint) lemma scast_of_nat_to_signed [simp]: "scast (of_nat x :: 'a :: len word) = (of_nat x :: 'a signed word)" by (rule bit_word_eqI) (simp add: bit_simps) lemma scast_of_nat_signed_to_unsigned_add: "scast (of_nat x + of_nat y :: 'a :: len signed word) = (of_nat x + of_nat y :: 'a :: len word)" by (metis of_nat_add scast_of_nat) lemma scast_of_nat_unsigned_to_signed_add: "(scast (of_nat x + of_nat y :: 'a :: len word)) = (of_nat x + of_nat y :: 'a :: len signed word)" by (metis Abs_fnat_hom_add scast_of_nat_to_signed) lemma and_mask_cases: fixes x :: "'a :: len word" assumes len: "n < LENGTH('a)" shows "x AND mask n \ of_nat ` set [0 ..< 2 ^ n]" apply (simp flip: take_bit_eq_mask) apply (rule image_eqI [of _ _ \unat (take_bit n x)\]) using len apply simp_all apply transfer apply simp done lemma sint_eq_uint_2pl: "\ (a :: 'a :: len word) < 2 ^ (LENGTH('a) - 1) \ \ sint a = uint a" by (simp add: not_msb_from_less sint_eq_uint word_2p_lem word_size) lemma pow_sub_less: "\ a + b \ LENGTH('a); unat (x :: 'a :: len word) = 2 ^ a \ \ unat (x * 2 ^ b - 1) < 2 ^ (a + b)" by (smt (z3) eq_or_less_helperD le_add2 le_eq_less_or_eq le_trans power_add unat_mult_lem unat_pow_le_intro unat_power_lower word_eq_unatI) lemma sle_le_2pl: "\ (b :: 'a :: len word) < 2 ^ (LENGTH('a) - 1); a \ b \ \ a <=s b" by (simp add: not_msb_from_less word_sle_msb_le) lemma sless_less_2pl: "\ (b :: 'a :: len word) < 2 ^ (LENGTH('a) - 1); a < b \ \ a > n = w AND mask (size w - n)" for w :: \'a::len word\ by (rule bit_word_eqI) (auto simp add: bit_simps word_size) lemma aligned_sub_aligned_simple: "\ is_aligned a n; is_aligned b n \ \ is_aligned (a - b) n" by (simp add: aligned_sub_aligned) lemma minus_one_shift: "- (1 << n) = (-1 << n :: 'a::len word)" by (simp add: shiftl_def minus_exp_eq_not_mask) lemma ucast_eq_mask: "(UCAST('a::len \ 'b::len) x = UCAST('a \ 'b) y) = (x AND mask LENGTH('b) = y AND mask LENGTH('b))" by transfer (simp flip: take_bit_eq_mask add: ac_simps) context fixes w :: "'a::len word" begin private lemma sbintrunc_uint_ucast: - assumes "Suc n = LENGTH('b::len)" - shows "signed_take_bit n (uint (ucast w :: 'b word)) = signed_take_bit n (uint w)" - by (rule bit_eqI) (use assms in \simp add: bit_simps\) + "Suc n = LENGTH('b::len) \ signed_take_bit n (uint (ucast w :: 'b word)) = signed_take_bit n (uint w)" + by word_eqI private lemma test_bit_sbintrunc: assumes "i < LENGTH('a)" shows "bit (word_of_int (signed_take_bit n (uint w)) :: 'a word) i = (if n < i then bit w n else bit w i)" using assms by (simp add: bit_simps) private lemma test_bit_sbintrunc_ucast: assumes len_a: "i < LENGTH('a)" shows "bit (word_of_int (signed_take_bit (LENGTH('b) - 1) (uint (ucast w :: 'b word))) :: 'a word) i = (if LENGTH('b::len) \ i then bit w (LENGTH('b) - 1) else bit w i)" using len_a by (auto simp add: sbintrunc_uint_ucast bit_simps) lemma scast_ucast_high_bits: \scast (ucast w :: 'b::len word) = w \ (\ i \ {LENGTH('b) ..< size w}. bit w i = bit w (LENGTH('b) - 1))\ proof (cases \LENGTH('a) \ LENGTH('b)\) case True moreover define m where \m = LENGTH('b) - LENGTH('a)\ ultimately have \LENGTH('b) = m + LENGTH('a)\ by simp then show ?thesis - apply (simp_all add: signed_ucast_eq word_size) - apply (rule bit_word_eqI) - apply (simp add: bit_signed_take_bit_iff) - done + by (simp add: signed_ucast_eq word_size) word_eqI next case False define q where \q = LENGTH('b) - 1\ then have \LENGTH('b) = Suc q\ by simp moreover define m where \m = Suc LENGTH('a) - LENGTH('b)\ with False \LENGTH('b) = Suc q\ have \LENGTH('a) = m + q\ by (simp add: not_le) ultimately show ?thesis - apply (simp_all add: signed_ucast_eq word_size) + apply (simp add: signed_ucast_eq word_size) apply (transfer fixing: m q) apply (simp add: signed_take_bit_take_bit) - apply rule + apply (rule impI) apply (subst bit_eq_iff) apply (simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def) apply (auto simp add: Suc_le_eq) using less_imp_le_nat apply blast using less_imp_le_nat apply blast done qed lemma scast_ucast_mask_compare: "scast (ucast w :: 'b::len word) = w \ (w \ mask (LENGTH('b) - 1) \ NOT(mask (LENGTH('b) - 1)) \ w)" apply (clarsimp simp: le_mask_high_bits neg_mask_le_high_bits scast_ucast_high_bits word_size) apply (rule iffI; clarsimp) apply (rename_tac i j; case_tac "i = LENGTH('b) - 1"; case_tac "j = LENGTH('b) - 1") by auto lemma ucast_less_shiftl_helper': "\ LENGTH('b) + (a::nat) < LENGTH('a); 2 ^ (LENGTH('b) + a) \ n\ \ (ucast (x :: 'b::len word) << a) < (n :: 'a::len word)" apply (erule order_less_le_trans[rotated]) using ucast_less[where x=x and 'a='a] apply (simp only: shiftl_t2n field_simps) apply (rule word_less_power_trans2; simp) done end lemma ucast_ucast_mask2: "is_down (UCAST ('a \ 'b)) \ UCAST ('b::len \ 'c::len) (UCAST ('a::len \ 'b::len) x) = UCAST ('a \ 'c) (x AND mask LENGTH('b))" - apply (simp flip: take_bit_eq_mask) - apply transfer - apply simp - done + by word_eqI_solve lemma ucast_NOT: "ucast (NOT x) = NOT(ucast x) AND mask (LENGTH('a))" for x::"'a::len word" - by (rule bit_word_eqI) (auto simp add: bit_simps) + by word_eqI_solve lemma ucast_NOT_down: "is_down UCAST('a::len \ 'b::len) \ UCAST('a \ 'b) (NOT x) = NOT(UCAST('a \ 'b) x)" - by (rule bit_word_eqI) (auto simp add: bit_simps is_down.rep_eq) + by word_eqI lemma upto_enum_step_shift: - "\ is_aligned p n \ \ - ([p , p + 2 ^ m .e. p + 2 ^ n - 1]) - = map ((+) p) [0, 2 ^ m .e. 2 ^ n - 1]" + "is_aligned p n \ ([p , p + 2 ^ m .e. p + 2 ^ n - 1]) = map ((+) p) [0, 2 ^ m .e. 2 ^ n - 1]" apply (erule is_aligned_get_word_bits) prefer 2 apply (simp add: map_idI) apply (clarsimp simp: upto_enum_step_def) apply (frule is_aligned_no_overflow) apply (simp add: linorder_not_le [symmetric]) done lemma upto_enum_step_shift_red: "\ is_aligned p sz; sz < LENGTH('a); us \ sz \ \ [p :: 'a :: len word, p + 2 ^ us .e. p + 2 ^ sz - 1] = map (\x. p + of_nat x * 2 ^ us) [0 ..< 2 ^ (sz - us)]" apply (subst upto_enum_step_shift, assumption) apply (simp add: upto_enum_step_red) done lemma upto_enum_step_subset: "set [x, y .e. z] \ {x .. z}" apply (clarsimp simp: upto_enum_step_def linorder_not_less) apply (drule div_to_mult_word_lt) apply (rule conjI) apply (erule word_random[rotated]) apply simp apply (rule order_trans) apply (erule word_plus_mono_right) apply simp apply simp done lemma ucast_distrib: fixes M :: "'a::len word \ 'a::len word \ 'a::len word" fixes M' :: "'b::len word \ 'b::len word \ 'b::len word" fixes L :: "int \ int \ int" assumes lift_M: "\x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ LENGTH('a)" assumes lift_M': "\x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ LENGTH('b)" assumes distrib: "\x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b)) = (L x y) mod (2 ^ LENGTH('b))" assumes is_down: "is_down (ucast :: 'a word \ 'b word)" shows "ucast (M a b) = M' (ucast a) (ucast b)" apply (simp only: ucast_eq) apply (subst lift_M) apply (subst of_int_uint [symmetric], subst lift_M') apply (metis local.distrib local.is_down take_bit_eq_mod ucast_down_wi uint_word_of_int_eq word_of_int_uint) done lemma ucast_down_add: "is_down (ucast:: 'a word \ 'b word) \ ucast ((a :: 'a::len word) + b) = (ucast a + ucast b :: 'b::len word)" by (rule ucast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp) lemma ucast_down_minus: "is_down (ucast:: 'a word \ 'b word) \ ucast ((a :: 'a::len word) - b) = (ucast a - ucast b :: 'b::len word)" apply (rule ucast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_diff_left_eq mod_diff_right_eq) apply simp done lemma ucast_down_mult: "is_down (ucast:: 'a word \ 'b word) \ ucast ((a :: 'a::len word) * b) = (ucast a * ucast b :: 'b::len word)" apply (rule ucast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_mult_eq) apply simp done lemma scast_distrib: fixes M :: "'a::len word \ 'a::len word \ 'a::len word" fixes M' :: "'b::len word \ 'b::len word \ 'b::len word" fixes L :: "int \ int \ int" assumes lift_M: "\x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ LENGTH('a)" assumes lift_M': "\x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ LENGTH('b)" assumes distrib: "\x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b)) = (L x y) mod (2 ^ LENGTH('b))" assumes is_down: "is_down (scast :: 'a word \ 'b word)" shows "scast (M a b) = M' (scast a) (scast b)" apply (subst (1 2 3) down_cast_same [symmetric]) apply (insert is_down) apply (clarsimp simp: is_down_def target_size source_size is_down) apply (rule ucast_distrib [where L=L, OF lift_M lift_M' distrib]) apply (insert is_down) apply (clarsimp simp: is_down_def target_size source_size is_down) done lemma scast_down_add: "is_down (scast:: 'a word \ 'b word) \ scast ((a :: 'a::len word) + b) = (scast a + scast b :: 'b::len word)" by (rule scast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp) lemma scast_down_minus: "is_down (scast:: 'a word \ 'b word) \ scast ((a :: 'a::len word) - b) = (scast a - scast b :: 'b::len word)" apply (rule scast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_diff_left_eq mod_diff_right_eq) apply simp done lemma scast_down_mult: "is_down (scast:: 'a word \ 'b word) \ scast ((a :: 'a::len word) * b) = (scast a * scast b :: 'b::len word)" apply (rule scast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_mult_eq) apply simp done lemma scast_ucast_1: "\ is_down (ucast :: 'a word \ 'b word); is_down (ucast :: 'b word \ 'c word) \ \ (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_eq ucast_down_wi) lemma scast_ucast_3: "\ is_down (ucast :: 'a word \ 'c word); is_down (ucast :: 'b word \ 'c word) \ \ (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_eq ucast_down_wi) lemma scast_ucast_4: "\ is_up (ucast :: 'a word \ 'b word); is_down (ucast :: 'b word \ 'c word) \ \ (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_eq ucast_down_wi) lemma scast_scast_b: "\ is_up (scast :: 'a word \ 'b word) \ \ (scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis scast_eq sint_up_scast) lemma ucast_scast_1: "\ is_down (scast :: 'a word \ 'b word); is_down (ucast :: 'b word \ 'c word) \ \ (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis scast_eq ucast_down_wi) lemma ucast_scast_3: "\ is_down (scast :: 'a word \ 'c word); is_down (ucast :: 'b word \ 'c word) \ \ (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis scast_eq ucast_down_wi) lemma ucast_scast_4: "\ is_up (scast :: 'a word \ 'b word); is_down (ucast :: 'b word \ 'c word) \ \ (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis down_cast_same scast_eq sint_up_scast) lemma ucast_ucast_a: "\ is_down (ucast :: 'b word \ 'c word) \ \ (ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_eq ucast_down_wi) lemma ucast_ucast_b: "\ is_up (ucast :: 'a word \ 'b word) \ \ (ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis ucast_up_ucast) lemma scast_scast_a: "\ is_down (scast :: 'b word \ 'c word) \ \ (scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" apply (simp only: scast_eq) apply (metis down_cast_same is_up_down scast_eq ucast_down_wi) done lemma scast_down_wi [OF refl]: "uc = scast \ is_down uc \ uc (word_of_int x) = word_of_int x" by (metis down_cast_same is_up_down ucast_down_wi) lemmas cast_simps = is_down is_up scast_down_add scast_down_minus scast_down_mult ucast_down_add ucast_down_minus ucast_down_mult scast_ucast_1 scast_ucast_3 scast_ucast_4 ucast_scast_1 ucast_scast_3 ucast_scast_4 ucast_ucast_a ucast_ucast_b scast_scast_a scast_scast_b ucast_down_wi scast_down_wi ucast_of_nat scast_of_nat uint_up_ucast sint_up_scast up_scast_surj up_ucast_surj lemma sdiv_word_max: "(sint (a :: ('a::len) word) sdiv sint (b :: ('a::len) word) < (2 ^ (size a - 1))) = ((a \ - (2 ^ (size a - 1)) \ (b \ -1)))" (is "?lhs = (\ ?a_int_min \ \ ?b_minus1)") proof (rule classical) assume not_thesis: "\ ?thesis" have not_zero: "b \ 0" using not_thesis by (clarsimp) let ?range = \{- (2 ^ (size a - 1))..<2 ^ (size a - 1)} :: int set\ have result_range: "sint a sdiv sint b \ ?range \ {2 ^ (size a - 1)}" using sdiv_word_min [of a b] sdiv_word_max [of a b] by auto have result_range_overflow: "(sint a sdiv sint b = 2 ^ (size a - 1)) = (?a_int_min \ ?b_minus1)" apply (rule iffI [rotated]) apply (clarsimp simp: signed_divide_int_def sgn_if word_size sint_int_min) apply (rule classical) apply (case_tac "?a_int_min") apply (clarsimp simp: word_size sint_int_min) apply (metis diff_0_right int_sdiv_negated_is_minus1 minus_diff_eq minus_int_code(2) power_eq_0_iff sint_minus1 zero_neq_numeral) apply (subgoal_tac "abs (sint a) < 2 ^ (size a - 1)") apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1] apply (clarsimp simp: word_size) apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1] apply auto apply (cases \size a\) apply simp_all apply (smt (z3) One_nat_def diff_Suc_1 signed_word_eqI sint_int_min sint_range_size wsst_TYs(3)) done have result_range_simple: "(sint a sdiv sint b \ ?range) \ ?thesis" apply (insert sdiv_int_range [where a="sint a" and b="sint b"]) apply (clarsimp simp: word_size sint_int_min) done show ?thesis apply (rule UnE [OF result_range result_range_simple]) apply simp apply (clarsimp simp: word_size) using result_range_overflow apply (clarsimp simp: word_size) done qed lemmas sdiv_word_min' = sdiv_word_min [simplified word_size, simplified] lemmas sdiv_word_max' = sdiv_word_max [simplified word_size, simplified] lemma signed_arith_ineq_checks_to_eq: "((- (2 ^ (size a - 1)) \ (sint a + sint b)) \ (sint a + sint b \ (2 ^ (size a - 1) - 1))) = (sint a + sint b = sint (a + b ))" "((- (2 ^ (size a - 1)) \ (sint a - sint b)) \ (sint a - sint b \ (2 ^ (size a - 1) - 1))) = (sint a - sint b = sint (a - b))" "((- (2 ^ (size a - 1)) \ (- sint a)) \ (- sint a) \ (2 ^ (size a - 1) - 1)) = ((- sint a) = sint (- a))" "((- (2 ^ (size a - 1)) \ (sint a * sint b)) \ (sint a * sint b \ (2 ^ (size a - 1) - 1))) = (sint a * sint b = sint (a * b))" "((- (2 ^ (size a - 1)) \ (sint a sdiv sint b)) \ (sint a sdiv sint b \ (2 ^ (size a - 1) - 1))) = (sint a sdiv sint b = sint (a sdiv b))" "((- (2 ^ (size a - 1)) \ (sint a smod sint b)) \ (sint a smod sint b \ (2 ^ (size a - 1) - 1))) = (sint a smod sint b = sint (a smod b))" by (auto simp: sint_word_ariths word_size signed_div_arith signed_mod_arith signed_take_bit_int_eq_self_iff intro: sym dest: sym) lemma signed_arith_sint: "((- (2 ^ (size a - 1)) \ (sint a + sint b)) \ (sint a + sint b \ (2 ^ (size a - 1) - 1))) \ sint (a + b) = (sint a + sint b)" "((- (2 ^ (size a - 1)) \ (sint a - sint b)) \ (sint a - sint b \ (2 ^ (size a - 1) - 1))) \ sint (a - b) = (sint a - sint b)" "((- (2 ^ (size a - 1)) \ (- sint a)) \ (- sint a) \ (2 ^ (size a - 1) - 1)) \ sint (- a) = (- sint a)" "((- (2 ^ (size a - 1)) \ (sint a * sint b)) \ (sint a * sint b \ (2 ^ (size a - 1) - 1))) \ sint (a * b) = (sint a * sint b)" "((- (2 ^ (size a - 1)) \ (sint a sdiv sint b)) \ (sint a sdiv sint b \ (2 ^ (size a - 1) - 1))) \ sint (a sdiv b) = (sint a sdiv sint b)" "((- (2 ^ (size a - 1)) \ (sint a smod sint b)) \ (sint a smod sint b \ (2 ^ (size a - 1) - 1))) \ sint (a smod b) = (sint a smod sint b)" by (subst (asm) signed_arith_ineq_checks_to_eq; simp)+ lemma nasty_split_lt: \x * 2 ^ n + (2 ^ n - 1) \ 2 ^ m - 1\ if \x < 2 ^ (m - n)\ \n \ m\ \m < LENGTH('a::len)\ for x :: \'a::len word\ proof - define q where \q = m - n\ with \n \ m\ have \m = q + n\ by simp with \x < 2 ^ (m - n)\ have *: \i < q\ if \bit x i\ for i using that by simp (metis bit_take_bit_iff take_bit_word_eq_self_iff) from \m = q + n\ have \push_bit n x OR mask n \ mask m\ by (auto simp add: le_mask_high_bits word_size bit_simps dest!: *) then have \push_bit n x + mask n \ mask m\ by (simp add: disjunctive_add bit_simps) then show ?thesis by (simp add: mask_eq_exp_minus_1 push_bit_eq_mult) qed lemma nasty_split_less: "\m \ n; n \ nm; nm < LENGTH('a::len); x < 2 ^ (nm - n)\ \ (x :: 'a word) * 2 ^ n + (2 ^ m - 1) < 2 ^ nm" apply (simp only: word_less_sub_le[symmetric]) apply (rule order_trans [OF _ nasty_split_lt]) apply (rule word_plus_mono_right) apply (rule word_sub_mono) apply (simp add: word_le_nat_alt) apply simp apply (simp add: word_sub_1_le[OF power_not_zero]) apply (simp add: word_sub_1_le[OF power_not_zero]) apply (rule is_aligned_no_wrap') apply (rule is_aligned_mult_triv2) apply simp apply (erule order_le_less_trans, simp) apply simp+ done end end