diff --git a/thys/Saturation_Framework/Given_Clause_Architectures.thy b/thys/Saturation_Framework/Given_Clause_Architectures.thy --- a/thys/Saturation_Framework/Given_Clause_Architectures.thy +++ b/thys/Saturation_Framework/Given_Clause_Architectures.thy @@ -1,1175 +1,1173 @@ (* Title: Given Clause Prover Architectures * Author: Sophie Tourret , 2019-2020 *) section \Given Clause Prover Architectures\ text \This section covers all the results presented in the section 4 of the report. This is where abstract architectures of provers are defined and proven dynamically refutationally complete.\ theory Given_Clause_Architectures imports Lambda_Free_RPOs.Lambda_Free_Util Labeled_Lifting_to_Non_Ground_Calculi begin subsection \Basis of the Given Clause Prover Architectures\ locale given_clause_basis = std?: labeled_lifting_intersection Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_Inf_q Red_F_q \_F_q \_Inf_q Inf_FL for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: \'q \ 'g inference set\ and Red_Inf_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_Inf_q :: "'q \ 'f inference \ 'g inference set option" and Inf_FL :: \('f \ 'l) inference set\ + fixes Equiv_F :: "'f \ 'f \ bool" (infix "\" 50) and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_l :: "'l \ 'l \ bool" (infix "\l" 50) and active :: "'l" assumes equiv_equiv_F: "equivp (\)" and wf_prec_F: "minimal_element (\\) UNIV" and wf_prec_l: "minimal_element (\l) UNIV" and compat_equiv_prec: "C1 \ D1 \ C2 \ D2 \ C1 \\ C2 \ D1 \\ D2" and equiv_F_grounding: "q \ Q \ C1 \ C2 \ \_F_q q C1 \ \_F_q q C2" and prec_F_grounding: "q \ Q \ C2 \\ C1 \ \_F_q q C1 \ \_F_q q C2" and active_minimal: "l2 \ active \ active \l l2" and at_least_two_labels: "\l2. active \l l2" and inf_never_active: "\ \ Inf_FL \ snd (concl_of \) \ active" and static_ref_comp: "statically_complete_calculus Bot_F Inf_F (\\\) no_labels.Red_Inf_\_Q no_labels.Red_F_\_empty" begin abbreviation Prec_eq_F :: "'f \ 'f \ bool" (infix "\\" 50) where "C \\ D \ C \ D \ C \\ D" definition Prec_FL :: "('f \ 'l) \ ('f \ 'l) \ bool" (infix "\" 50) where "Cl1 \ Cl2 \ fst Cl1 \\ fst Cl2 \ (fst Cl1 \ fst Cl2 \ snd Cl1 \l snd Cl2)" lemma irrefl_prec_F: "\ C \\ C" by (simp add: minimal_element.po[OF wf_prec_F, unfolded po_on_def irreflp_on_def]) lemma trans_prec_F: "C1 \\ C2 \ C2 \\ C3 \ C1 \\ C3" by (auto intro: minimal_element.po[OF wf_prec_F, unfolded po_on_def transp_on_def, THEN conjunct2, simplified, rule_format]) lemma wf_prec_FL: "minimal_element (\) UNIV" proof show "po_on (\) UNIV" unfolding po_on_def proof show "irreflp_on (\) UNIV" unfolding irreflp_on_def Prec_FL_def proof fix Cl assume a_in: "Cl \ (UNIV::('f \ 'l) set)" have "\ (fst Cl \\ fst Cl)" using wf_prec_F minimal_element.min_elt_ex by force moreover have "\ (snd Cl \l snd Cl)" using wf_prec_l minimal_element.min_elt_ex by force ultimately show "\ (fst Cl \\ fst Cl \ fst Cl \ fst Cl \ snd Cl \l snd Cl)" by blast qed next show "transp_on (\) UNIV" unfolding transp_on_def Prec_FL_def proof (simp, intro allI impI) fix C1 l1 C2 l2 C3 l3 assume trans_hyp: "(C1 \\ C2 \ C1 \ C2 \ l1 \l l2) \ (C2 \\ C3 \ C2 \ C3 \ l2 \l l3)" have "C1 \\ C2 \ C2 \ C3 \ C1 \\ C3" using compat_equiv_prec by (metis equiv_equiv_F equivp_def) moreover have "C1 \ C2 \ C2 \\ C3 \ C1 \\ C3" using compat_equiv_prec by (metis equiv_equiv_F equivp_def) moreover have "l1 \l l2 \ l2 \l l3 \ l1 \l l3" using wf_prec_l unfolding minimal_element_def po_on_def transp_on_def by (meson UNIV_I) moreover have "C1 \ C2 \ C2 \ C3 \ C1 \ C3" using equiv_equiv_F by (meson equivp_transp) ultimately show "C1 \\ C3 \ C1 \ C3 \ l1 \l l3" using trans_hyp using trans_prec_F by blast qed qed next show "wfp_on (\) UNIV" unfolding wfp_on_def proof assume contra: "\f. \i. f i \ UNIV \ f (Suc i) \ f i" then obtain f where f_suc: "\i. f (Suc i) \ f i" by blast define R :: "(('f \ 'l) \ ('f \ 'l)) set" where "R = {(Cl1, Cl2). fst Cl1 \\ fst Cl2}" define S :: "(('f \ 'l) \ ('f \ 'l)) set" where "S = {(Cl1, Cl2). fst Cl1 \ fst Cl2 \ snd Cl1 \l snd Cl2}" obtain k where f_chain: "\i. (f (Suc (i + k)), f (i + k)) \ S" proof (atomize_elim, rule wf_infinite_down_chain_compatible[of R f S]) show "wf R" unfolding R_def using wf_app[OF wf_prec_F[unfolded minimal_element_def, THEN conjunct2, unfolded wfp_on_UNIV wfP_def]] by force next show "\i. (f (Suc i), f i) \ R \ S" using f_suc unfolding R_def S_def Prec_FL_def by blast next show "R O S \ R" unfolding R_def S_def using compat_equiv_prec equiv_equiv_F equivp_reflp by fastforce qed define g where "\i. g i = f (i + k)" have g_chain: "\i. (g (Suc i), g i) \ S" unfolding g_def using f_chain by simp have wf_s: "wf S" unfolding S_def by (rule wf_subset[OF wf_app[OF wf_prec_l[unfolded minimal_element_def, THEN conjunct2, unfolded wfp_on_UNIV wfP_def], of snd]]) fast show False using g_chain[unfolded S_def] wf_s[unfolded S_def, folded wfP_def wfp_on_UNIV, unfolded wfp_on_def] by auto qed qed definition active_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "active_subset M = {CL \ M. snd CL = active}" definition passive_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "passive_subset M = {CL \ M. snd CL \ active}" lemma active_subset_insert[simp]: "active_subset (insert Cl N) = (if snd Cl = active then {Cl} else {}) \ active_subset N" unfolding active_subset_def by auto lemma active_subset_union[simp]: "active_subset (M \ N) = active_subset M \ active_subset N" unfolding active_subset_def by auto lemma passive_subset_insert[simp]: "passive_subset (insert Cl N) = (if snd Cl \ active then {Cl} else {}) \ passive_subset N" unfolding passive_subset_def by auto lemma passive_subset_union[simp]: "passive_subset (M \ N) = passive_subset M \ passive_subset N" unfolding passive_subset_def by auto sublocale std?: statically_complete_calculus Bot_FL Inf_FL "(\\\L)" Red_Inf_Q Red_F_Q using labeled_static_ref[OF static_ref_comp] . -lemma standard_labeled_lifting_family: +lemma labeled_tiebreaker_lifting: assumes q_in: "q \ Q" - shows "lifting_intersection Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) + shows "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q) (\g. Prec_FL)" proof - - have "lifting_intersection Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) + have "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q) (\g Cl Cl'. False)" using ord_fam_lifted_q[OF q_in] . then have "standard_lifting Bot_FL Inf_FL Bot_G (Inf_G_q q) (entails_q q) (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q)" using lifted_q[OF q_in] by blast - then show "lifting_intersection Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) + then show "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q) (\g. Prec_FL)" - using wf_prec_FL - by (simp add: lifting_intersection.intro lifting_intersection_axioms.intro) + using wf_prec_FL by (simp add: tiebreaker_lifting.intro tiebreaker_lifting_axioms.intro) qed -sublocale standard_lifting_with_red_crit_family Inf_FL Bot_G Q Inf_G_q entails_q Red_Inf_q Red_F_q +sublocale lifting_intersection Inf_FL Bot_G Q Inf_G_q entails_q Red_Inf_q Red_F_q Bot_FL \_F_L_q \_Inf_L_q "\g. Prec_FL" - using standard_labeled_lifting_family no_labels.ground.calculus_family_axioms - by (simp add: standard_lifting_with_red_crit_family.intro - standard_lifting_with_red_crit_family_axioms.intro) + using labeled_tiebreaker_lifting no_labels.ground.calculus_family_axioms + unfolding lifting_intersection_def by (simp add: lifting_intersection_axioms.intro) notation derive (infix "\RedL" 50) lemma std_Red_Inf_Q_eq: "std.Red_Inf_Q = Red_Inf_\_Q" unfolding Red_Inf_\_q_def Red_Inf_\_L_q_def by simp lemma std_Red_F_Q_eq: "std.Red_F_Q = Red_F_\_empty" unfolding Red_F_\_empty_q_def Red_F_\_empty_L_q_def by simp sublocale statically_complete_calculus Bot_FL Inf_FL "(\\\L)" Red_Inf_Q Red_F_Q by unfold_locales (use statically_complete std_Red_Inf_Q_eq in auto) (* lem:redundant-labeled-inferences *) lemma labeled_red_inf_eq_red_inf: assumes i_in: "\ \ Inf_FL" shows "\ \ Red_Inf_Q N \ to_F \ \ no_labels.Red_Inf_\_Q (fst ` N)" proof assume i_in2: "\ \ Red_Inf_Q N" then have "X \ Red_Inf_\_q ` Q \ \ \ X N" for X unfolding Red_Inf_Q_def by blast obtain X0 where "X0 \ Red_Inf_\_q ` Q" using Q_nonempty by blast then obtain q0 where x0_is: "X0 N = Red_Inf_\_q q0 N" by blast then obtain Y0 where y0_is: "Y0 (fst ` N) = to_F ` (X0 N)" by auto have "Y0 (fst ` N) = no_labels.Red_Inf_\_q q0 (fst ` N)" unfolding y0_is proof show "to_F ` X0 N \ no_labels.Red_Inf_\_q q0 (fst ` N)" proof fix \0 assume i0_in: "\0 \ to_F ` X0 N" then have i0_in2: "\0 \ to_F ` Red_Inf_\_q q0 N" using x0_is by argo then obtain \0_FL where i0_FL_in: "\0_FL \ Inf_FL" and i0_to_i0_FL: "\0 = to_F \0_FL" and subs1: "((\_Inf_L_q q0 \0_FL) \ None \ the (\_Inf_L_q q0 \0_FL) \ Red_Inf_q q0 (\_set_q q0 N)) \ ((\_Inf_L_q q0 \0_FL = None) \ \_F_L_q q0 (concl_of \0_FL) \ \_set_q q0 N \ Red_F_q q0 (\_set_q q0 N))" unfolding Red_Inf_\_q_def by blast have concl_swap: "fst (concl_of \0_FL) = concl_of \0" unfolding concl_of_def i0_to_i0_FL to_F_def by simp have i0_in3: "\0 \ Inf_F" using i0_to_i0_FL Inf_FL_to_Inf_F[OF i0_FL_in] unfolding to_F_def by blast { assume not_none: "\_Inf_q q0 \0 \ None" and "the (\_Inf_q q0 \0) \ {}" then obtain \1 where i1_in: "\1 \ the (\_Inf_q q0 \0)" by blast have "the (\_Inf_q q0 \0) \ Red_Inf_q q0 (no_labels.\_set_q q0 (fst ` N))" using subs1 i0_to_i0_FL not_none by auto } moreover { assume is_none: "\_Inf_q q0 \0 = None" then have "\_F_q q0 (concl_of \0) \ no_labels.\_set_q q0 (fst ` N) \ Red_F_q q0 (no_labels.\_set_q q0 (fst ` N))" using subs1 i0_to_i0_FL concl_swap by simp } ultimately show "\0 \ no_labels.Red_Inf_\_q q0 (fst ` N)" unfolding no_labels.Red_Inf_\_q_def using i0_in3 by auto qed next show "no_labels.Red_Inf_\_q q0 (fst ` N) \ to_F ` X0 N" proof fix \0 assume i0_in: "\0 \ no_labels.Red_Inf_\_q q0 (fst ` N)" then have i0_in2: "\0 \ Inf_F" unfolding no_labels.Red_Inf_\_q_def by blast obtain \0_FL where i0_FL_in: "\0_FL \ Inf_FL" and i0_to_i0_FL: "\0 = to_F \0_FL" using Inf_F_to_Inf_FL[OF i0_in2] unfolding to_F_def by (metis Ex_list_of_length fst_conv inference.exhaust_sel inference.inject map_fst_zip) have concl_swap: "fst (concl_of \0_FL) = concl_of \0" unfolding concl_of_def i0_to_i0_FL to_F_def by simp have subs1: "((\_Inf_L_q q0 \0_FL) \ None \ the (\_Inf_L_q q0 \0_FL) \ Red_Inf_q q0 (\_set_q q0 N)) \ ((\_Inf_L_q q0 \0_FL = None) \ \_F_L_q q0 (concl_of \0_FL) \ (\_set_q q0 N \ Red_F_q q0 (\_set_q q0 N)))" using i0_in i0_to_i0_FL concl_swap unfolding no_labels.Red_Inf_\_q_def by simp then have "\0_FL \ Red_Inf_\_q q0 N" using i0_FL_in unfolding Red_Inf_\_q_def by simp then show "\0 \ to_F ` X0 N" using x0_is i0_to_i0_FL i0_in2 by blast qed qed then have "Y \ no_labels.Red_Inf_\_q ` Q \ to_F \ \ Y (fst ` N)" for Y using i_in2 no_labels.Red_Inf_Q_def std_Red_Inf_Q_eq red_inf_impl by force then show "to_F \ \ no_labels.Red_Inf_\_Q (fst ` N)" unfolding Red_Inf_Q_def no_labels.Red_Inf_\_Q_def by blast next assume to_F_in: "to_F \ \ no_labels.Red_Inf_\_Q (fst ` N)" have imp_to_F: "X \ no_labels.Red_Inf_\_q ` Q \ to_F \ \ X (fst ` N)" for X using to_F_in unfolding no_labels.Red_Inf_\_Q_def by blast then have to_F_in2: "to_F \ \ no_labels.Red_Inf_\_q q (fst ` N)" if "q \ Q" for q using that by auto have "Red_Inf_\_q q N = {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q (fst ` N)}" for q proof show "Red_Inf_\_q q N \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q (fst ` N)}" proof fix q0 \1 assume i1_in: "\1 \ Red_Inf_\_q q0 N" have i1_in2: "\1 \ Inf_FL" using i1_in unfolding Red_Inf_\_q_def by blast then have to_F_i1_in: "to_F \1 \ Inf_F" using Inf_FL_to_Inf_F unfolding to_F_def by simp have concl_swap: "fst (concl_of \1) = concl_of (to_F \1)" unfolding concl_of_def to_F_def by simp then have i1_to_F_in: "to_F \1 \ no_labels.Red_Inf_\_q q0 (fst ` N)" using i1_in to_F_i1_in unfolding Red_Inf_\_q_def no_labels.Red_Inf_\_q_def by force show "\1 \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q0 (fst ` N)}" using i1_in2 i1_to_F_in by blast qed next show "{\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q (fst ` N)} \ Red_Inf_\_q q N" proof fix q0 \1 assume i1_in: "\1 \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_Inf_\_q q0 (fst ` N)}" then have i1_in2: "\1 \ Inf_FL" by blast then have to_F_i1_in: "to_F \1 \ Inf_F" using Inf_FL_to_Inf_F unfolding to_F_def by simp have concl_swap: "fst (concl_of \1) = concl_of (to_F \1)" unfolding concl_of_def to_F_def by simp then have "((\_Inf_L_q q0 \1) \ None \ the (\_Inf_L_q q0 \1) \ Red_Inf_q q0 (\_set_q q0 N)) \ (\_Inf_L_q q0 \1 = None \ \_F_L_q q0 (concl_of \1) \ \_set_q q0 N \ Red_F_q q0 (\_set_q q0 N))" using i1_in unfolding no_labels.Red_Inf_\_q_def by auto then show "\1 \ Red_Inf_\_q q0 N" using i1_in2 unfolding Red_Inf_\_q_def by blast qed qed then have "\ \ Red_Inf_\_q q N" if "q \ Q" for q using that to_F_in2 i_in unfolding Red_Inf_\_q_def no_labels.Red_Inf_\_q_def by auto then show "\ \ Red_Inf_\_Q N" unfolding Red_Inf_\_Q_def by blast qed (* lem:redundant-labeled-formulas *) lemma red_labeled_clauses: assumes \C \ no_labels.Red_F_\_empty (fst ` N) \ (\C' \ fst ` N. C' \\ C) \ (\(C', L') \ N. L' \l L \ C' \\ C)\ shows \(C, L) \ Red_F_Q N\ proof - note assms moreover have i: \C \ no_labels.Red_F_\_empty (fst ` N) \ (C, L) \ Red_F_Q N\ proof - assume "C \ no_labels.Red_F_\_empty (fst ` N)" then have "C \ no_labels.Red_F_\_empty_q q (fst ` N)" if "q \ Q" for q unfolding no_labels.Red_F_\_empty_def using that by fast then have g_in_red: "\_F_q q C \ Red_F_q q (no_labels.\_set_q q (fst ` N))" if "q \ Q" for q unfolding no_labels.Red_F_\_empty_q_def using that by blast have "\_F_L_q q (C, L) \ Red_F_q q (\_set_q q N)" if "q \ Q" for q using that g_in_red by simp then show ?thesis unfolding Red_F_Q_def Red_F_\_q_g_def by blast qed moreover have ii: \\C' \ fst ` N. C' \\ C \ (C, L) \ Red_F_Q N\ proof - assume "\C' \ fst ` N. C' \\ C" then obtain C' where c'_in: "C' \ fst ` N" and c_prec_c': "C' \\ C" by blast obtain L' where c'_l'_in: "(C', L') \ N" using c'_in by auto have c'_l'_prec: "(C', L') \ (C, L)" using c_prec_c' unfolding Prec_FL_def by simp have c_in_c'_g: "\_F_q q C \ \_F_q q C'" if "q \ Q" for q using prec_F_grounding[OF that c_prec_c'] by presburger then have "\_F_L_q q (C, L) \ \_F_L_q q (C', L')" if "q \ Q" for q using that by auto then have "(C, L) \ Red_F_\_q_g q N" if "q \ Q" for q unfolding Red_F_\_q_g_def using that c'_l'_in c'_l'_prec by blast then show ?thesis unfolding Red_F_Q_def by blast qed moreover have iii: \\(C', L') \ N. L' \l L \ C' \\ C \ (C, L) \ Red_F_Q N\ proof - assume "\(C', L') \ N. L' \l L \ C' \\ C" then obtain C' L' where c'_l'_in: "(C', L') \ N" and l'_sub_l: "L' \l L" and c'_sub_c: "C' \\ C" by fast have "(C, L) \ Red_F_Q N" if "C' \\ C" using that c'_l'_in ii by fastforce moreover { assume equiv_c_c': "C \ C'" then have equiv_c'_c: "C' \ C" using equiv_equiv_F by (simp add: equivp_symp) then have c'_l'_prec: "(C', L') \ (C, L)" using l'_sub_l unfolding Prec_FL_def by simp have "\_F_q q C = \_F_q q C'" if "q \ Q" for q using that equiv_F_grounding equiv_c_c' equiv_c'_c by (simp add: set_eq_subset) then have "\_F_L_q q (C, L) = \_F_L_q q (C', L')" if "q \ Q" for q using that by auto then have "(C, L) \ Red_F_\_q_g q N" if "q \ Q" for q unfolding Red_F_\_q_g_def using that c'_l'_in c'_l'_prec by blast then have ?thesis unfolding Red_F_Q_def by blast } ultimately show ?thesis using c'_sub_c equiv_equiv_F equivp_symp by fastforce qed ultimately show ?thesis by blast qed end subsection \Given Clause Procedure\ locale given_clause = given_clause_basis Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_Inf_q Red_F_q \_F_q \_Inf_q Inf_FL Equiv_F Prec_F Prec_l active for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: \'q \ 'g inference set\ and Red_Inf_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_Inf_q :: "'q \ 'f inference \ 'g inference set option" and Inf_FL :: \('f \ 'l) inference set\ and Equiv_F :: "'f \ 'f \ bool" (infix "\" 50) and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_l :: "'l \ 'l \ bool" (infix "\l" 50) and active :: 'l + assumes inf_have_prems: "\F \ Inf_F \ prems_of \F \ []" begin lemma labeled_inf_have_prems: "\ \ Inf_FL \ prems_of \ \ []" using inf_have_prems Inf_FL_to_Inf_F by fastforce inductive step :: "('f \ 'l) set \ ('f \ 'l) set \ bool" (infix "\GC" 50) where process: "N1 = N \ M \ N2 = N \ M' \ M \ Red_F_Q (N \ M') \ active_subset M' = {} \ N1 \GC N2" | infer: "N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Inf_from2 (fst ` (active_subset N)) {C} \ no_labels.Red_Inf_Q (fst ` (N \ {(C, active)} \ M)) \ N1 \GC N2" lemma one_step_equiv: "N1 \GC N2 \ N1 \RedL N2" proof (cases N1 N2 rule: step.cases) show "N1 \GC N2 \ N1 \GC N2" by blast next fix N M M' assume gc_step: "N1 \GC N2" and n1_is: "N1 = N \ M" and n2_is: "N2 = N \ M'" and m_red: "M \ Red_F_Q (N \ M')" and active_empty: "active_subset M' = {}" have "N1 - N2 \ Red_F_Q N2" using n1_is n2_is m_red by auto then show "N1 \RedL N2" unfolding derive.simps by blast next fix N C L M assume gc_step: "N1 \GC N2" and n1_is: "N1 = N \ {(C, L)}" and not_active: "L \ active" and n2_is: "N2 = N \ {(C, active)} \ M" and active_empty: "active_subset M = {}" have "(C, active) \ N2" using n2_is by auto moreover have "C \\ C" using equiv_equiv_F by (metis equivp_def) moreover have "active \l L" using active_minimal[OF not_active] . ultimately have "{(C, L)} \ Red_F_Q N2" using red_labeled_clauses by blast moreover have "N1 - N2 = {} \ N1 - N2 = {(C, L)}" using n1_is n2_is by blast ultimately have "N1 - N2 \ Red_F_Q N2" using std_Red_F_Q_eq by blast then show "N1 \RedL N2" unfolding derive.simps by blast qed (* lem:gc-derivations-are-red-derivations *) lemma gc_to_red: "chain (\GC) D \ chain (\RedL) D" using one_step_equiv Lazy_List_Chain.chain_mono by blast lemma (in-) all_ex_finite_set: "(\(j::nat)\{0..(n::nat). P j n) \ (\n1 n2. \j\{0.. P j n2 \ n1 = n2) \ finite {n. \j \ {0.. nat \ bool" assume allj_exn: "\j\{0..n. P j n" and uniq_n: "\n1 n2. \j\{0.. P j n2 \ n1 = n2" have "{n. \j \ {0..((\j. {n. P j n}) ` {0..j\{0.. finite {n. \j \ {0..j. {n. P j n}"] by simp have "\j\{0..!n. P j n" using allj_exn uniq_n by blast then have "\j\{0..j \ {0..GC) D" and init_state: "active_subset (lhd D) = {}" and final_state: "passive_subset (Liminf_llist D) = {}" shows "fair D" unfolding fair_def proof fix \ assume i_in: "\ \ Inf_from (Liminf_llist D)" note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have i_in_inf_fl: "\ \ Inf_FL" using i_in unfolding Inf_from_def by blast have "Liminf_llist D = active_subset (Liminf_llist D)" using final_state unfolding passive_subset_def active_subset_def by blast then have i_in2: "\ \ Inf_from (active_subset (Liminf_llist D))" using i_in by simp define m where "m = length (prems_of \)" then have m_def_F: "m = length (prems_of (to_F \))" unfolding to_F_def by simp have i_in_F: "to_F \ \ Inf_F" using i_in Inf_FL_to_Inf_F unfolding Inf_from_def to_F_def by blast then have m_pos: "m > 0" using m_def_F using inf_have_prems by blast have exist_nj: "\j \ {0..nj. enat (Suc nj) < llength D \ prems_of \ ! j \ active_subset (lnth D nj) \ (\k. k > nj \ enat k < llength D \ prems_of \ ! j \ active_subset (lnth D k)))" proof clarify fix j assume j_in: "j \ {0.. ! j" using i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have "(C, active) \ Liminf_llist D" using j_in i_in unfolding m_def Inf_from_def by force then obtain nj where nj_is: "enat nj < llength D" and c_in2: "(C, active) \ \ (lnth D ` {k. nj \ k \ enat k < llength D})" unfolding Liminf_llist_def using init_state by blast then have c_in3: "\k. k \ nj \ enat k < llength D \ (C, active) \ lnth D k" by blast have nj_pos: "nj > 0" using init_state c_in2 nj_is unfolding active_subset_def lhd_is by force obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength D \ (C, active) \ \ (lnth D ` {k. nj \ k \ enat k < llength D}))" by blast then have in_allk: "\k. k \ nj_min \ enat k < llength D \ (C, active) \ (lnth D k)" using c_in3 nj_is c_in2 by (metis (mono_tags, lifting) INT_E LeastI_ex mem_Collect_eq) have njm_smaller_D: "enat nj_min < llength D" using nj_min_is by (smt LeastI_ex \\thesis. (\nj. \enat nj < llength D; (C, active) \ \ (lnth D ` {k. nj \ k \ enat k < llength D})\ \ thesis) \ thesis\) have "nj_min > 0" using nj_is c_in2 nj_pos nj_min_is lhd_is by (metis (mono_tags, lifting) Collect_empty_eq \(C, active) \ Liminf_llist D\ \Liminf_llist D = active_subset (Liminf_llist D)\ \\k\nj_min. enat k < llength D \ (C, active) \ lnth D k\ active_subset_def init_state linorder_not_less mem_Collect_eq zero_enat_def chain_length_pos[OF deriv]) then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto then have njm_prec_njm: "njm_prec < nj_min" by blast then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp have njm_prec_smaller_d: "njm_prec < llength D" using HOL.no_atp(15)[OF njm_smaller_D njm_prec_njm_enat] . have njm_prec_all_suc: "\k>njm_prec. enat k < llength D \ (C, active) \ lnth D k" using nj_prec_is in_allk by simp have notin_njm_prec: "(C, active) \ lnth D njm_prec" proof (rule ccontr) assume "\ (C, active) \ lnth D njm_prec" then have absurd_hyp: "(C, active) \ lnth D njm_prec" by simp have prec_smaller: "enat njm_prec < llength D" using nj_min_is nj_prec_is by (smt LeastI_ex Suc_leD \\thesis. (\nj. \enat nj < llength D; (C, active) \ \ (lnth D ` {k. nj \ k \ enat k < llength D})\ \ thesis) \ thesis\ enat_ord_simps(1) le_eq_less_or_eq le_less_trans) have "(C, active) \ \ (lnth D ` {k. njm_prec \ k \ enat k < llength D})" proof - { fix k assume k_in: "njm_prec \ k \ enat k < llength D" have "k = njm_prec \ (C, active) \ lnth D k" using absurd_hyp by simp moreover have "njm_prec < k \ (C, active) \ lnth D k" using nj_prec_is in_allk k_in by simp ultimately have "(C, active) \ lnth D k" using k_in by fastforce } then show "(C, active) \ \ (lnth D ` {k. njm_prec \ k \ enat k < llength D})" by blast qed then have "enat njm_prec < llength D \ (C, active) \ \ (lnth D ` {k. njm_prec \ k \ enat k < llength D})" using prec_smaller by blast then show False using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast qed then have notin_active_subs_njm_prec: "(C, active) \ active_subset (lnth D njm_prec)" unfolding active_subset_def by blast then show "\nj. enat (Suc nj) < llength D \ prems_of \ ! j \ active_subset (lnth D nj) \ (\k. k > nj \ enat k < llength D \ prems_of \ ! j \ active_subset (lnth D k))" using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting) active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv) qed define nj_set where "nj_set = {nj. (\j\{0.. prems_of \ ! j \ active_subset (lnth D nj) \ (\k. k > nj \ enat k < llength D \ prems_of \ ! j \ active_subset (lnth D k)))}" then have nj_not_empty: "nj_set \ {}" proof - have zero_in: "0 \ {0.. ! 0 \ active_subset (lnth D n0)" and "\k>n0. enat k < llength D \ prems_of \ ! 0 \ active_subset (lnth D k)" using exist_nj by fast then have "n0 \ nj_set" unfolding nj_set_def using zero_in by blast then show "nj_set \ {}" by auto qed have nj_finite: "finite nj_set" using all_ex_finite_set[OF exist_nj] by (metis (no_types, lifting) Suc_ile_eq dual_order.strict_implies_order linorder_neqE_nat nj_set_def) (* the n below in the n-1 from the pen-and-paper proof *) have "\n \ nj_set. \nj \ nj_set. nj \ n" using nj_not_empty nj_finite using Max_ge Max_in by blast then obtain n where n_in: "n \ nj_set" and n_bigger: "\nj \ nj_set. nj \ n" by blast then obtain j0 where j0_in: "j0 \ {0.. ! j0 \ active_subset (lnth D n)" and j0_allin: "(\k. k > n \ enat k < llength D \ prems_of \ ! j0 \ active_subset (lnth D k))" unfolding nj_set_def by blast obtain C0 where C0_is: "prems_of \ ! j0 = (C0, active)" using j0_in using i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have C0_prems_i: "(C0, active) \ set (prems_of \)" using in_set_conv_nth j0_in m_def by force have C0_in: "(C0, active) \ (lnth D (Suc n))" using C0_is j0_allin suc_n_length by (simp add: active_subset_def) have C0_notin: "(C0, active) \ (lnth D n)" using C0_is j0_notin unfolding active_subset_def by simp have step_n: "lnth D n \GC lnth D (Suc n)" using deriv chain_lnth_rel n_in unfolding nj_set_def by blast have "\N C L M. (lnth D n = N \ {(C, L)} \ lnth D (Suc n) = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Inf_from2 (fst ` (active_subset N)) {C} \ no_labels.Red_Inf_Q (fst ` (N \ {(C, active)} \ M)))" proof - have proc_or_infer: "(\N1 N M N2 M'. lnth D n = N1 \ lnth D (Suc n) = N2 \ N1 = N \ M \ N2 = N \ M' \ M \ Red_F_Q (N \ M') \ active_subset M' = {}) \ (\N1 N C L N2 M. lnth D n = N1 \ lnth D (Suc n) = N2 \ N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Inf_from2 (fst ` (active_subset N)) {C} \ no_labels.Red_Inf_Q (fst ` (N \ {(C, active)} \ M)))" using step.simps[of "lnth D n" "lnth D (Suc n)"] step_n by blast show ?thesis using C0_in C0_notin proc_or_infer j0_in C0_is by (smt Un_iff active_subset_def mem_Collect_eq snd_conv sup_bot.right_neutral) qed then obtain N M L where inf_from_subs: "no_labels.Inf_from2 (fst ` (active_subset N)) {C0} \ no_labels.Red_Inf_Q (fst ` (N \ {(C0, active)} \ M))" and nth_d_is: "lnth D n = N \ {(C0, L)}" and suc_nth_d_is: "lnth D (Suc n) = N \ {(C0, active)} \ M" and l_not_active: "L \ active" using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce have "j \ {0.. prems_of \ ! j \ prems_of \ ! j0 \ prems_of \ ! j \ (active_subset N)" for j proof - fix j assume j_in: "j \ {0.. ! j \ prems_of \ ! j0" obtain nj where nj_len: "enat (Suc nj) < llength D" and nj_prems: "prems_of \ ! j \ active_subset (lnth D nj)" and nj_greater: "(\k. k > nj \ enat k < llength D \ prems_of \ ! j \ active_subset (lnth D k))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast moreover have "nj \ n" proof (rule ccontr) assume "\ nj \ n" then have "prems_of \ ! j = (C0, active)" using C0_in C0_notin step.simps[of "lnth D n" "lnth D (Suc n)"] step_n by (smt Un_iff nth_d_is suc_nth_d_is l_not_active active_subset_def insertCI insertE lessI mem_Collect_eq nj_greater nj_prems snd_conv suc_n_length) then show False using j_not_j0 C0_is by simp qed ultimately have "nj < n" using n_bigger by force then have "prems_of \ ! j \ (active_subset (lnth D n))" using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order unfolding nj_set_def by blast then show "prems_of \ ! j \ (active_subset N)" using nth_d_is l_not_active unfolding active_subset_def by force qed then have "set (prems_of \) \ active_subset N \ {(C0, active)}" using C0_prems_i C0_is m_def by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI) moreover have "\ (set (prems_of \) \ active_subset N - {(C0, active)})" using C0_prems_i by blast ultimately have "\ \ Inf_from2 (active_subset N) {(C0, active)}" using i_in_inf_fl unfolding Inf_from2_def Inf_from_def by blast then have "to_F \ \ no_labels.Inf_from2 (fst ` (active_subset N)) {C0}" unfolding to_F_def Inf_from2_def Inf_from_def no_labels.Inf_from2_def no_labels.Inf_from_def using Inf_FL_to_Inf_F by force then have "to_F \ \ no_labels.Red_Inf_Q (fst ` (lnth D (Suc n)))" using suc_nth_d_is inf_from_subs by fastforce then have "\q \ Q. (\_Inf_q q (to_F \) \ None \ the (\_Inf_q q (to_F \)) \ Red_Inf_q q (\ (\_F_q q ` fst ` lnth D (Suc n)))) \ (\_Inf_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ \ (\_F_q q ` fst ` lnth D (Suc n)) \ Red_F_q q (\ (\_F_q q ` fst ` lnth D (Suc n))))" unfolding to_F_def no_labels.Red_Inf_Q_def no_labels.Red_Inf_\_q_def by blast then have "\ \ Red_Inf_\_Q (lnth D (Suc n))" using i_in_inf_fl unfolding Red_Inf_\_Q_def Red_Inf_\_q_def by (simp add: to_F_def) then show "\ \ Sup_llist (lmap Red_Inf_\_Q D)" unfolding Sup_llist_def using suc_n_length by auto qed theorem gc_complete_Liminf: assumes deriv: "chain (\GC) D" and init_state: "active_subset (lhd D) = {}" and final_state: "passive_subset (Liminf_llist D) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\_Q (fst ` lhd D) {B}" shows "\BL \ Bot_FL. BL \ Liminf_llist D" proof - note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have labeled_b_in: "(B, active) \ Bot_FL" using b_in by simp have labeled_bot_entailed: "entails_\_L_Q (lhd D) {(B, active)}" using labeled_entailment_lifting bot_entailed lhd_is by fastforce have fair: "fair D" using gc_fair[OF deriv init_state final_state] . then show ?thesis using dynamically__complete_Liminf[OF labeled_b_in gc_to_red[OF deriv] fair labeled_bot_entailed] by blast qed (* thm:gc-completeness *) theorem gc_complete: assumes deriv: "chain (\GC) D" and init_state: "active_subset (lhd D) = {}" and final_state: "passive_subset (Liminf_llist D) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\_Q (fst ` lhd D) {B}" shows "\i. enat i < llength D \ (\BL \ Bot_FL. BL \ lnth D i)" proof - note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have "\BL\Bot_FL. BL \ Liminf_llist D" using assms by (rule gc_complete_Liminf) then show ?thesis unfolding Liminf_llist_def by auto qed end subsection \Lazy Given Clause Procedure\ locale lazy_given_clause = given_clause_basis Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_Inf_q Red_F_q \_F_q \_Inf_q Inf_FL Equiv_F Prec_F Prec_l active for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: \'q \ 'g inference set\ and Red_Inf_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_Inf_q :: "'q \ 'f inference \ 'g inference set option" and Inf_FL :: \('f \ 'l) inference set\ and Equiv_F :: "'f \ 'f \ bool" (infix "\" 50) and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_l :: "'l \ 'l \ bool" (infix "\l" 50) and active :: 'l begin inductive step :: "'f inference set \ ('f \ 'l) set \ 'f inference set \ ('f \ 'l) set \ bool" (infix "\LGC" 50) where process: "N1 = N \ M \ N2 = N \ M' \ M \ Red_F_Q (N \ M') \ active_subset M' = {} \ (T, N1) \LGC (T, N2)" | schedule_infer: "T2 = T1 \ T' \ N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ L \ active \ T' = no_labels.Inf_from2 (fst ` (active_subset N)) {C} \ (T1, N1) \LGC (T2, N2)" | compute_infer: "T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_Inf_Q (fst ` (N1 \ M)) \ (T1, N1) \LGC (T2, N2)" | delete_orphans: "T1 = T2 \ T' \ T' \ no_labels.Inf_from (fst ` (active_subset N)) = {} \ (T1, N) \LGC (T2, N)" lemma premise_free_inf_always_from: "\ \ Inf_F \ length (prems_of \) = 0 \ \ \ no_labels.Inf_from N" unfolding no_labels.Inf_from_def by simp lemma one_step_equiv: "(T1, N1) \LGC (T2, N2) \ N1 \RedL N2" proof (cases "(T1, N1)" "(T2, N2)" rule: step.cases) show "(T1, N1) \LGC (T2, N2) \ (T1, N1) \LGC (T2, N2)" by blast next fix N M M' assume n1_is: "N1 = N \ M" and n2_is: "N2 = N \ M'" and m_red: "M \ Red_F_Q (N \ M')" have "N1 - N2 \ Red_F_Q N2" using n1_is n2_is m_red by auto then show "N1 \RedL N2" unfolding derive.simps by blast next fix N C L M assume n1_is: "N1 = N \ {(C, L)}" and not_active: "L \ active" and n2_is: "N2 = N \ {(C, active)}" have "(C, active) \ N2" using n2_is by auto moreover have "C \\ C" by (metis equivp_def equiv_equiv_F) moreover have "active \l L" using active_minimal[OF not_active] . ultimately have "{(C, L)} \ Red_F_Q N2" using red_labeled_clauses by blast then have "N1 - N2 \ Red_F_Q N2" using std_Red_F_Q_eq using n1_is n2_is by blast then show "N1 \RedL N2" unfolding derive.simps by blast next fix M assume n2_is: "N2 = N1 \ M" have "N1 - N2 \ Red_F_Q N2" using n2_is by blast then show "N1 \RedL N2" unfolding derive.simps by blast next assume n2_is: "N2 = N1" have "N1 - N2 \ Red_F_Q N2" using n2_is by blast then show "N1 \RedL N2" unfolding derive.simps by blast qed (* lem:lgc-derivations-are-red-derivations *) lemma lgc_to_red: "chain (\LGC) D \ chain (\RedL) (lmap snd D)" using one_step_equiv Lazy_List_Chain.chain_mono by (smt chain_lmap prod.collapse) (* lem:fair-lgc-derivations *) lemma lgc_fair: assumes deriv: "chain (\LGC) D" and init_state: "active_subset (snd (lhd D)) = {}" and final_state: "passive_subset (Liminf_llist (lmap snd D)) = {}" and no_prems_init_active: "\\ \ Inf_F. length (prems_of \) = 0 \ \ \ fst (lhd D)" and final_schedule: "Liminf_llist (lmap fst D) = {}" shows "fair (lmap snd D)" unfolding fair_def proof fix \ assume i_in: "\ \ Inf_from (Liminf_llist (lmap snd D))" note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have i_in_inf_fl: "\ \ Inf_FL" using i_in unfolding Inf_from_def by blast have "Liminf_llist (lmap snd D) = active_subset (Liminf_llist (lmap snd D))" using final_state unfolding passive_subset_def active_subset_def by blast then have i_in2: "\ \ Inf_from (active_subset (Liminf_llist (lmap snd D)))" using i_in by simp define m where "m = length (prems_of \)" then have m_def_F: "m = length (prems_of (to_F \))" unfolding to_F_def by simp have i_in_F: "to_F \ \ Inf_F" using i_in Inf_FL_to_Inf_F unfolding Inf_from_def to_F_def by blast have exist_nj: "\j \ {0..nj. enat (Suc nj) < llength D \ prems_of \ ! j \ active_subset (snd (lnth D nj)) \ (\k. k > nj \ enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k))))" proof clarify fix j assume j_in: "j \ {0.. ! j" using i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have "(C, active) \ Liminf_llist (lmap snd D)" using j_in i_in unfolding m_def Inf_from_def by force then obtain nj where nj_is: "enat nj < llength D" and c_in2: "(C, active) \ \ (snd ` (lnth D ` {k. nj \ k \ enat k < llength D}))" unfolding Liminf_llist_def using init_state by fastforce then have c_in3: "\k. k \ nj \ enat k < llength D \ (C, active) \ snd (lnth D k)" by blast have nj_pos: "nj > 0" using init_state c_in2 nj_is unfolding active_subset_def lhd_is by fastforce obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength D \ (C, active) \ \ (snd ` (lnth D ` {k. nj \ k \ enat k < llength D})))" by blast then have in_allk: "\k. k \ nj_min \ enat k < llength D \ (C, active) \ snd (lnth D k)" using c_in3 nj_is c_in2 INT_E LeastI_ex by (smt INT_iff INT_simps(10) c_is image_eqI mem_Collect_eq) have njm_smaller_D: "enat nj_min < llength D" using nj_min_is by (smt LeastI_ex \\thesis. (\nj. \enat nj < llength D; (C, active) \ \ (snd ` (lnth D ` {k. nj \ k \ enat k < llength D}))\ \ thesis) \ thesis\) have "nj_min > 0" using nj_is c_in2 nj_pos nj_min_is lhd_is by (metis (mono_tags, lifting) active_subset_def emptyE in_allk init_state mem_Collect_eq not_less snd_conv zero_enat_def chain_length_pos[OF deriv]) then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto then have njm_prec_njm: "njm_prec < nj_min" by blast then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp have njm_prec_smaller_d: "njm_prec < llength D" using HOL.no_atp(15)[OF njm_smaller_D njm_prec_njm_enat] . have njm_prec_all_suc: "\k>njm_prec. enat k < llength D \ (C, active) \ snd (lnth D k)" using nj_prec_is in_allk by simp have notin_njm_prec: "(C, active) \ snd (lnth D njm_prec)" proof (rule ccontr) assume "\ (C, active) \ snd (lnth D njm_prec)" then have absurd_hyp: "(C, active) \ snd (lnth D njm_prec)" by simp have prec_smaller: "enat njm_prec < llength D" using nj_min_is nj_prec_is by (smt LeastI_ex Suc_leD \\thesis. (\nj. \enat nj < llength D; (C, active) \ \ (snd ` (lnth D ` {k. nj \ k \ enat k < llength D}))\ \ thesis) \ thesis\ enat_ord_simps(1) le_eq_less_or_eq le_less_trans) have "(C, active) \ \ (snd ` (lnth D ` {k. njm_prec \ k \ enat k < llength D}))" proof - { fix k assume k_in: "njm_prec \ k \ enat k < llength D" have "k = njm_prec \ (C, active) \ snd (lnth D k)" using absurd_hyp by simp moreover have "njm_prec < k \ (C, active) \ snd (lnth D k)" using nj_prec_is in_allk k_in by simp ultimately have "(C, active) \ snd (lnth D k)" using k_in by fastforce } then show "(C, active) \ \ (snd ` (lnth D ` {k. njm_prec \ k \ enat k < llength D}))" by blast qed then have "enat njm_prec < llength D \ (C, active) \ \ (snd ` (lnth D ` {k. njm_prec \ k \ enat k < llength D}))" using prec_smaller by blast then show False using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast qed then have notin_active_subs_njm_prec: "(C, active) \ active_subset (snd (lnth D njm_prec))" unfolding active_subset_def by blast then show "\nj. enat (Suc nj) < llength D \ prems_of \ ! j \ active_subset (snd (lnth D nj)) \ (\k. k > nj \ enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k)))" using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting) active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv) qed define nj_set where "nj_set = {nj. (\j\{0.. prems_of \ ! j \ active_subset (snd (lnth D nj)) \ (\k. k > nj \ enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k))))}" { assume m_null: "m = 0" then have "enat 0 < llength D \ to_F \ \ fst (lhd D)" using no_prems_init_active i_in_F m_def_F zero_enat_def chain_length_pos[OF deriv] by auto then have "\n. enat n < llength D \ to_F \ \ fst (lnth D n)" unfolding lhd_is by blast } moreover { assume m_pos: "m > 0" have nj_not_empty: "nj_set \ {}" proof - have zero_in: "0 \ {0.. ! 0 \ active_subset (snd (lnth D n0))" and "\k>n0. enat k < llength D \ prems_of \ ! 0 \ active_subset (snd (lnth D k))" using exist_nj by fast then have "n0 \ nj_set" unfolding nj_set_def using zero_in by blast then show "nj_set \ {}" by auto qed have nj_finite: "finite nj_set" using all_ex_finite_set[OF exist_nj] by (metis (no_types, lifting) Suc_ile_eq dual_order.strict_implies_order linorder_neqE_nat nj_set_def) have "\n \ nj_set. \nj \ nj_set. nj \ n" using nj_not_empty nj_finite using Max_ge Max_in by blast then obtain n where n_in: "n \ nj_set" and n_bigger: "\nj \ nj_set. nj \ n" by blast then obtain j0 where j0_in: "j0 \ {0.. ! j0 \ active_subset (snd (lnth D n))" and j0_allin: "(\k. k > n \ enat k < llength D \ prems_of \ ! j0 \ active_subset (snd (lnth D k)))" unfolding nj_set_def by blast obtain C0 where C0_is: "prems_of \ ! j0 = (C0, active)" using j0_in i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have C0_prems_i: "(C0, active) \ set (prems_of \)" using in_set_conv_nth j0_in m_def by force have C0_in: "(C0, active) \ (snd (lnth D (Suc n)))" using C0_is j0_allin suc_n_length by (simp add: active_subset_def) have C0_notin: "(C0, active) \ (snd (lnth D n))" using C0_is j0_notin unfolding active_subset_def by simp have step_n: "lnth D n \LGC lnth D (Suc n)" using deriv chain_lnth_rel n_in unfolding nj_set_def by blast have is_scheduled: "\T2 T1 T' N1 N C L N2. lnth D n = (T1, N1) \ lnth D (Suc n) = (T2, N2) \ T2 = T1 \ T' \ N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ L \ active \ T' = no_labels.Inf_from2 (fst ` active_subset N) {C}" using step.simps[of "lnth D n" "lnth D (Suc n)"] step_n C0_in C0_notin unfolding active_subset_def by fastforce then obtain T2 T1 T' N1 N L N2 where nth_d_is: "lnth D n = (T1, N1)" and suc_nth_d_is: "lnth D (Suc n) = (T2, N2)" and t2_is: "T2 = T1 \ T'" and n1_is: "N1 = N \ {(C0, L)}" "N2 = N \ {(C0, active)}" and l_not_active: "L \ active" and tp_is: "T' = no_labels.Inf_from2 (fst ` active_subset N) {C0}" using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce have "j \ {0.. prems_of \ ! j \ prems_of \ ! j0 \ prems_of \ ! j \ (active_subset N)" for j proof - fix j assume j_in: "j \ {0.. ! j \ prems_of \ ! j0" obtain nj where nj_len: "enat (Suc nj) < llength D" and nj_prems: "prems_of \ ! j \ active_subset (snd (lnth D nj))" and nj_greater: "(\k. k > nj \ enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k)))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast moreover have "nj \ n" proof (rule ccontr) assume "\ nj \ n" then have "prems_of \ ! j = (C0, active)" using C0_in C0_notin step.simps[of "lnth D n" "lnth D (Suc n)"] step_n active_subset_def is_scheduled nj_greater nj_prems suc_n_length by auto then show False using j_not_j0 C0_is by simp qed ultimately have "nj < n" using n_bigger by force then have "prems_of \ ! j \ (active_subset (snd (lnth D n)))" using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order unfolding nj_set_def by blast then show "prems_of \ ! j \ (active_subset N)" using nth_d_is l_not_active n1_is unfolding active_subset_def by force qed then have prems_i_active: "set (prems_of \) \ active_subset N \ {(C0, active)}" using C0_prems_i C0_is m_def by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI) moreover have "\ (set (prems_of \) \ active_subset N - {(C0, active)})" using C0_prems_i by blast ultimately have "\ \ Inf_from2 (active_subset N) {(C0, active)}" using i_in_inf_fl prems_i_active unfolding Inf_from2_def Inf_from_def by blast then have "to_F \ \ no_labels.Inf_from2 (fst ` (active_subset N)) {C0}" unfolding to_F_def Inf_from2_def Inf_from_def no_labels.Inf_from2_def no_labels.Inf_from_def using Inf_FL_to_Inf_F by force then have i_in_t2: "to_F \ \ T2" using tp_is t2_is by simp have "j \ {0.. (\k. k > n \ enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k)))" for j proof (cases "j = j0") case True assume "j = j0" then show "(\k. k > n \ enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k)))" using j0_allin by simp next case False assume j_in: "j \ {0.. j0" obtain nj where nj_len: "enat (Suc nj) < llength D" and nj_prems: "prems_of \ ! j \ active_subset (snd (lnth D nj))" and nj_greater: "(\k. k > nj \ enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k)))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast then show "(\k. k > n \ enat k < llength D \ prems_of \ ! j \ active_subset (snd (lnth D k)))" using nj_greater n_bigger by auto qed then have allj_allk: "(\c\ set (prems_of \). (\k. k > n \ enat k < llength D \ c \ active_subset (snd (lnth D k))))" using m_def by (metis atLeast0LessThan in_set_conv_nth lessThan_iff) have "\c\ set (prems_of \). snd c = active" using prems_i_active unfolding active_subset_def by auto then have ex_n_i_in: "\n. enat (Suc n) < llength D \ to_F \ \ fst (lnth D (Suc n)) \ (\c\ set (prems_of \). snd c = active) \ (\c\ set (prems_of \). (\k. k > n \ enat k < llength D \ c \ active_subset (snd (lnth D k))))" using allj_allk i_in_t2 suc_nth_d_is fstI n_in nj_set_def by auto then have "\n. enat n < llength D \ to_F \ \ fst (lnth D n) \ (\c\ set (prems_of \). snd c = active) \ (\c\ set (prems_of \). (\k. k \ n \ enat k < llength D \ c \ active_subset (snd (lnth D k))))" by auto } ultimately obtain n T2 N2 where i_in_suc_n: "to_F \ \ fst (lnth D n)" and all_prems_active_after: "m > 0 \ (\c\ set (prems_of \). (\k. k \ n \ enat k < llength D \ c \ active_subset (snd (lnth D k))))" and suc_n_length: "enat n < llength D" and suc_nth_d_is: "lnth D n = (T2, N2)" by (metis less_antisym old.prod.exhaust zero_less_Suc) then have i_in_t2: "to_F \ \ T2" by simp have "\p\n. enat (Suc p) < llength D \ to_F \ \ (fst (lnth D p)) \ to_F \ \ (fst (lnth D (Suc p)))" proof (rule ccontr) assume contra: "\ (\p\n. enat (Suc p) < llength D \ to_F \ \ (fst (lnth D p)) \ to_F \ \ (fst (lnth D (Suc p))))" then have i_in_suc: "p0 \ n \ enat (Suc p0) < llength D \ to_F \ \ (fst (lnth D p0)) \ to_F \ \ (fst (lnth D (Suc p0)))" for p0 by blast have "p0 \ n \ enat p0 < llength D \ to_F \ \ (fst (lnth D p0))" for p0 proof (induction rule: nat_induct_at_least) case base then show ?case using i_in_t2 suc_nth_d_is by simp next case (Suc p0) assume p_bigger_n: "n \ p0" and induct_hyp: "enat p0 < llength D \ to_F \ \ fst (lnth D p0)" and sucsuc_smaller_d: "enat (Suc p0) < llength D" have suc_p_bigger_n: "n \ p0" using p_bigger_n by simp have suc_smaller_d: "enat p0 < llength D" using sucsuc_smaller_d Suc_ile_eq dual_order.strict_implies_order by blast then have "to_F \ \ fst (lnth D p0)" using induct_hyp by blast then show ?case using i_in_suc[OF suc_p_bigger_n sucsuc_smaller_d] by blast qed then have i_in_all_bigger_n: "\j. j \ n \ enat j < llength D \ to_F \ \ (fst (lnth D j))" by presburger have "llength (lmap fst D) = llength D" by force then have "to_F \ \ \ (lnth (lmap fst D) ` {j. n \ j \ enat j < llength (lmap fst D)})" using i_in_all_bigger_n using Suc_le_D by auto then have "to_F \ \ Liminf_llist (lmap fst D)" unfolding Liminf_llist_def using suc_n_length by auto then show False using final_schedule by fast qed then obtain p where p_greater_n: "p \ n" and p_smaller_d: "enat (Suc p) < llength D" and i_in_p: "to_F \ \ (fst (lnth D p))" and i_notin_suc_p: "to_F \ \ (fst (lnth D (Suc p)))" by blast have p_neq_n: "Suc p \ n" using i_notin_suc_p i_in_suc_n by blast have step_p: "lnth D p \LGC lnth D (Suc p)" using deriv p_smaller_d chain_lnth_rel by blast then have "\T1 T2 \ N2 N1 M. lnth D p = (T1, N1) \ lnth D (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_Inf_\_Q (fst ` (N1 \ M))" proof - have ci_or_do: "(\T1 T2 \ N2 N1 M. lnth D p = (T1, N1) \ lnth D (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_Inf_\_Q (fst ` (N1 \ M))) \ (\T1 T2 T' N. lnth D p = (T1, N) \ lnth D (Suc p) = (T2, N) \ T1 = T2 \ T' \ T' \ no_labels.Inf_from (fst ` active_subset N) = {})" using step.simps[of "lnth D p" "lnth D (Suc p)"] step_p i_in_p i_notin_suc_p by fastforce then have p_greater_n_strict: "n < Suc p" using suc_nth_d_is p_greater_n i_in_t2 i_notin_suc_p le_eq_less_or_eq by force have "m > 0 \ j \ {0.. prems_of (to_F \) ! j \ fst ` active_subset (snd (lnth D p))" for j proof - fix j assume m_pos: "m > 0" and j_in: "j \ {0.. ! j \ (active_subset (snd (lnth D p)))" using all_prems_active_after[OF m_pos] p_smaller_d m_def p_greater_n p_neq_n by (meson Suc_ile_eq atLeastLessThan_iff dual_order.strict_implies_order nth_mem p_greater_n_strict) then have "fst (prems_of \ ! j) \ fst ` active_subset (snd (lnth D p))" by blast then show "prems_of (to_F \) ! j \ fst ` active_subset (snd (lnth D p))" unfolding to_F_def using j_in m_def by simp qed then have prems_i_active_p: "m > 0 \ to_F \ \ no_labels.Inf_from (fst ` active_subset (snd (lnth D p)))" using i_in_F unfolding no_labels.Inf_from_def by (smt atLeast0LessThan in_set_conv_nth lessThan_iff m_def_F mem_Collect_eq subsetI) have "m = 0 \ (\T1 T2 \ N2 N1 M. lnth D p = (T1, N1) \ lnth D (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_Inf_\_Q (fst ` (N1 \ M)))" using ci_or_do premise_free_inf_always_from[of "to_F \" "fst ` active_subset _", OF i_in_F] m_def i_in_p i_notin_suc_p m_def_F by auto then show "(\T1 T2 \ N2 N1 M. lnth D p = (T1, N1) \ lnth D (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_Inf_\_Q (fst ` (N1 \ M)))" using ci_or_do i_in_p i_notin_suc_p prems_i_active_p unfolding active_subset_def by force qed then obtain T1p T2p N1p N2p Mp where "lnth D p = (T1p, N1p)" and suc_p_is: "lnth D (Suc p) = (T2p, N2p)" and "T1p = T2p \ {to_F \}" and "T2p \ {to_F \} = {}" and n2p_is: "N2p = N1p \ Mp"and "active_subset Mp = {}" and i_in_red_inf: "to_F \ \ no_labels.Red_Inf_\_Q (fst ` (N1p \ Mp))" using i_in_p i_notin_suc_p by fastforce have "to_F \ \ no_labels.Red_Inf_Q (fst ` (snd (lnth D (Suc p))))" using i_in_red_inf suc_p_is n2p_is by fastforce then have "\q \ Q. (\_Inf_q q (to_F \) \ None \ the (\_Inf_q q (to_F \)) \ Red_Inf_q q (\ (\_F_q q ` fst ` snd (lnth D (Suc p))))) \ (\_Inf_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ \ (\_F_q q ` fst ` snd (lnth D (Suc p))) \ Red_F_q q (\ (\_F_q q ` fst ` snd (lnth D (Suc p)))))" unfolding to_F_def no_labels.Red_Inf_Q_def no_labels.Red_Inf_\_q_def by blast then have "\ \ Red_Inf_\_Q (snd (lnth D (Suc p)))" using i_in_inf_fl unfolding Red_Inf_\_Q_def Red_Inf_\_q_def by (simp add: to_F_def) then show "\ \ Sup_llist (lmap Red_Inf_\_Q (lmap snd D))" unfolding Sup_llist_def using suc_n_length p_smaller_d by auto qed theorem lgc_complete_Liminf: assumes deriv: "chain (\LGC) D" and init_state: "active_subset (snd (lhd D)) = {}" and final_state: "passive_subset (Liminf_llist (lmap snd D)) = {}" and no_prems_init_active: "\\ \ Inf_F. length (prems_of \) = 0 \ \ \ fst (lhd D)" and final_schedule: "Liminf_llist (lmap fst D) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\_Q (fst ` snd (lhd D)) {B}" shows "\BL \ Bot_FL. BL \ Liminf_llist (lmap snd D)" proof - have labeled_b_in: "(B, active) \ Bot_FL" using b_in by simp have simp_snd_lmap: "lhd (lmap snd D) = snd (lhd D)" by (rule llist.map_sel(1)[OF chain_not_lnull[OF deriv]]) have labeled_bot_entailed: "entails_\_L_Q (snd (lhd D)) {(B, active)}" using labeled_entailment_lifting bot_entailed by fastforce have "fair (lmap snd D)" using lgc_fair[OF deriv init_state final_state no_prems_init_active final_schedule] . then show ?thesis using dynamically__complete_Liminf labeled_b_in lgc_to_red[OF deriv] labeled_bot_entailed simp_snd_lmap std_Red_Inf_Q_eq by presburger qed (* thm:lgc-completeness *) theorem lgc_complete: assumes deriv: "chain (\LGC) D" and init_state: "active_subset (snd (lhd D)) = {}" and final_state: "passive_subset (Liminf_llist (lmap snd D)) = {}" and no_prems_init_active: "\\ \ Inf_F. length (prems_of \) = 0 \ \ \ fst (lhd D)" and final_schedule: "Liminf_llist (lmap fst D) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\_Q (fst ` snd (lhd D)) {B}" shows "\i. enat i < llength D \ (\BL \ Bot_FL. BL \ snd (lnth D i))" proof - have "\BL\Bot_FL. BL \ Liminf_llist (lmap snd D)" using assms by (rule lgc_complete_Liminf) then show ?thesis unfolding Liminf_llist_def by auto qed end end diff --git a/thys/Saturation_Framework/Labeled_Lifting_to_Non_Ground_Calculi.thy b/thys/Saturation_Framework/Labeled_Lifting_to_Non_Ground_Calculi.thy --- a/thys/Saturation_Framework/Labeled_Lifting_to_Non_Ground_Calculi.thy +++ b/thys/Saturation_Framework/Labeled_Lifting_to_Non_Ground_Calculi.thy @@ -1,363 +1,363 @@ (* Title: Labeled Lifting to Non-Ground Calculi * Author: Sophie Tourret , 2019-2020 *) section \Labeled Lifting to Non-Ground Calculi\ text \This section formalizes the extension of the lifting results to labeled calculi. This corresponds to section 3.4 of the report.\ theory Labeled_Lifting_to_Non_Ground_Calculi imports Lifting_to_Non_Ground_Calculi begin subsection \Labeled Lifting with a Family of Tiebreaker Orderings\ -locale labeled_tiebreaking_lifting = no_labels: lifting_intersection Bot_F Inf_F +locale labeled_tiebreaking_lifting = no_labels: tiebreaker_lifting Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F \_Inf Prec_F for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and entails_G :: "'g set \ 'g set \ bool" (infix "\G" 50) and Inf_G :: "'g inference set" and Red_Inf_G :: "'g set \ 'g inference set" and Red_F_G :: "'g set \ 'g set" and \_F :: "'f \ 'g set" and \_Inf :: "'f inference \ 'g inference set option" and Prec_F :: "'g \ 'f \ 'f \ bool" (infix "\" 50) + fixes Inf_FL :: \('f \ 'l) inference set\ assumes Inf_F_to_Inf_FL: \\\<^sub>F \ Inf_F \ length (Ll :: 'l list) = length (prems_of \\<^sub>F) \ \L0. Infer (zip (prems_of \\<^sub>F) Ll) (concl_of \\<^sub>F, L0) \ Inf_FL\ and Inf_FL_to_Inf_F: \\\<^sub>F\<^sub>L \ Inf_FL \ Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L)) \ Inf_F\ begin definition to_F :: \('f \ 'l) inference \ 'f inference\ where \to_F \\<^sub>F\<^sub>L = Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L))\ abbreviation Bot_FL :: \('f \ 'l) set\ where \Bot_FL \ Bot_F \ UNIV\ abbreviation \_F_L :: \('f \ 'l) \ 'g set\ where \\_F_L CL \ \_F (fst CL)\ abbreviation \_Inf_L :: \('f \ 'l) inference \ 'g inference set option\ where \\_Inf_L \\<^sub>F\<^sub>L \ \_Inf (to_F \\<^sub>F\<^sub>L)\ (* lem:labeled-grounding-function *) sublocale standard_lifting Bot_FL Inf_FL Bot_G Inf_G "(\G)" Red_Inf_G Red_F_G \_F_L \_Inf_L proof show "Bot_FL \ {}" using no_labels.Bot_F_not_empty by simp next show "B \ Bot_FL \ \_F_L B \ {}" for B using no_labels.Bot_map_not_empty by auto next show "B \ Bot_FL \ \_F_L B \ Bot_G" for B using no_labels.Bot_map by force next fix CL show "\_F_L CL \ Bot_G \ {} \ CL \ Bot_FL" using no_labels.Bot_cond by (metis SigmaE UNIV_I UNIV_Times_UNIV mem_Sigma_iff prod.sel(1)) next fix \ assume i_in: \\ \ Inf_FL\ and ground_not_none: \\_Inf_L \ \ None\ then show "the (\_Inf_L \) \ Red_Inf_G (\_F_L (concl_of \))" unfolding to_F_def using no_labels.inf_map Inf_FL_to_Inf_F by fastforce qed -sublocale lifting_intersection Bot_FL Inf_FL Bot_G entails_G Inf_G Red_Inf_G Red_F_G - \_F_L \_Inf_L "\g Cl Cl'. False" +sublocale tiebreaker_lifting Bot_FL Inf_FL Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F_L \_Inf_L + "\g Cl Cl'. False" by unfold_locales simp+ notation entails_\ (infix "\\L" 50) (* lem:labeled-consequence *) lemma labeled_entailment_lifting: "NL1 \\L NL2 \ fst ` NL1 \\ fst ` NL2" by simp lemma red_inf_impl: "\ \ Red_Inf_\ NL \ to_F \ \ no_labels.Red_Inf_\ (fst ` NL)" unfolding Red_Inf_\_def no_labels.Red_Inf_\_def using Inf_FL_to_Inf_F by (auto simp: to_F_def) (* lem:labeled-saturation *) lemma labeled_saturation_lifting: "saturated NL \ no_labels.saturated (fst ` NL)" unfolding saturated_def no_labels.saturated_def Inf_from_def no_labels.Inf_from_def proof clarify fix \ assume subs_Red_Inf: "{\ \ Inf_FL. set (prems_of \) \ NL} \ Red_Inf_\ NL" and i_in: "\ \ Inf_F" and i_prems: "set (prems_of \) \ fst ` NL" define Lli where "Lli i = (SOME x. ((prems_of \)!i,x) \ NL)" for i have [simp]:"((prems_of \)!i,Lli i) \ NL" if "i < length (prems_of \)" for i using that i_prems unfolding Lli_def by (metis nth_mem someI_ex DomainE Domain_fst subset_eq) define Ll where "Ll = map Lli [0..)]" have Ll_length: "length Ll = length (prems_of \)" unfolding Ll_def by auto have subs_NL: "set (zip (prems_of \) Ll) \ NL" unfolding Ll_def by (auto simp:in_set_zip) obtain L0 where L0: "Infer (zip (prems_of \) Ll) (concl_of \, L0) \ Inf_FL" using Inf_F_to_Inf_FL[OF i_in Ll_length] .. define \_FL where "\_FL = Infer (zip (prems_of \) Ll) (concl_of \, L0)" then have "set (prems_of \_FL) \ NL" using subs_NL by simp then have "\_FL \ {\ \ Inf_FL. set (prems_of \) \ NL}" unfolding \_FL_def using L0 by blast then have "\_FL \ Red_Inf_\ NL" using subs_Red_Inf by fast moreover have "\ = to_F \_FL" unfolding to_F_def \_FL_def using Ll_length by (cases \) auto ultimately show "\ \ no_labels.Red_Inf_\ (fst ` NL)" by (auto intro: red_inf_impl) qed (* lem:labeled-static-ref-compl *) lemma stat_ref_comp_to_labeled_sta_ref_comp: assumes static: "statically_complete_calculus Bot_F Inf_F (\\) no_labels.Red_Inf_\ no_labels.Red_F_\" shows "statically_complete_calculus Bot_FL Inf_FL (\\L) Red_Inf_\ Red_F_\" proof fix Bl :: \'f \ 'l\ and Nl :: \('f \ 'l) set\ assume Bl_in: \Bl \ Bot_FL\ and Nl_sat: \saturated Nl\ and Nl_entails_Bl: \Nl \\L {Bl}\ define B where "B = fst Bl" have B_in: "B \ Bot_F" using Bl_in B_def SigmaE by force define N where "N = fst ` Nl" have N_sat: "no_labels.saturated N" using N_def Nl_sat labeled_saturation_lifting by blast have N_entails_B: "N \\ {B}" using Nl_entails_Bl unfolding labeled_entailment_lifting N_def B_def by force have "\B' \ Bot_F. B' \ N" using B_in N_sat N_entails_B using static[unfolded statically_complete_calculus_def statically_complete_calculus_axioms_def] by blast then obtain B' where in_Bot: "B' \ Bot_F" and in_N: "B' \ N" by force then have "B' \ fst ` Bot_FL" by fastforce obtain Bl' where in_Nl: "Bl' \ Nl" and fst_Bl': "fst Bl' = B'" using in_N unfolding N_def by blast have "Bl' \ Bot_FL" using fst_Bl' in_Bot vimage_fst by fastforce then show \\Bl'\Bot_FL. Bl' \ Nl\ using in_Nl by blast qed end subsection \Labeled Lifting with a Family of Redundancy Criteria\ -locale labeled_lifting_intersection = no_labels: standard_lifting_with_red_crit_family Inf_F +locale labeled_lifting_intersection = no_labels: lifting_intersection Inf_F Bot_G Q Inf_G_q entails_q Red_Inf_q Red_F_q Bot_F \_F_q \_Inf_q "\g Cl Cl'. False" for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: "'q \ 'g inference set" and Red_Inf_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_Inf_q :: "'q \ 'f inference \ 'g inference set option" + fixes Inf_FL :: \('f \ 'l) inference set\ assumes Inf_F_to_Inf_FL: \\\<^sub>F \ Inf_F \ length (Ll :: 'l list) = length (prems_of \\<^sub>F) \ \L0. Infer (zip (prems_of \\<^sub>F) Ll) (concl_of \\<^sub>F, L0) \ Inf_FL\ and Inf_FL_to_Inf_F: \\\<^sub>F\<^sub>L \ Inf_FL \ Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L)) \ Inf_F\ begin definition to_F :: \('f \ 'l) inference \ 'f inference\ where \to_F \\<^sub>F\<^sub>L = Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L))\ abbreviation Bot_FL :: \('f \ 'l) set\ where \Bot_FL \ Bot_F \ UNIV\ abbreviation \_F_L_q :: \'q \ ('f \ 'l) \ 'g set\ where \\_F_L_q q CL \ \_F_q q (fst CL)\ abbreviation \_Inf_L_q :: \'q \ ('f \ 'l) inference \ 'g inference set option\ where \\_Inf_L_q q \\<^sub>F\<^sub>L \ \_Inf_q q (to_F \\<^sub>F\<^sub>L)\ abbreviation \_set_L_q :: "'q \ ('f \ 'l) set \ 'g set" where "\_set_L_q q N \ \ (\_F_L_q q ` N)" definition Red_Inf_\_L_q :: "'q \ ('f \ 'l) set \ ('f \ 'l) inference set" where "Red_Inf_\_L_q q N = {\ \ Inf_FL. (\_Inf_L_q q \ \ None \ the (\_Inf_L_q q \) \ Red_Inf_q q (\_set_L_q q N)) \ (\_Inf_L_q q \ = None \ \_F_L_q q (concl_of \) \ \_set_L_q q N \ Red_F_q q (\_set_L_q q N))}" abbreviation Red_Inf_\_L_Q :: "('f \ 'l) set \ ('f \ 'l) inference set" where "Red_Inf_\_L_Q N \ (\q \ Q. Red_Inf_\_L_q q N)" abbreviation entails_\_L_q :: "'q \ ('f \ 'l) set \ ('f \ 'l) set \ bool" where "entails_\_L_q q N1 N2 \ entails_q q (\_set_L_q q N1) (\_set_L_q q N2)" lemma lifting_q: assumes "q \ Q" shows "labeled_tiebreaking_lifting Bot_F Inf_F Bot_G (entails_q q) (Inf_G_q q) (Red_Inf_q q) (Red_F_q q) (\_F_q q) (\_Inf_q q) (\g Cl Cl'. False) Inf_FL" using assms no_labels.standard_lifting_family Inf_F_to_Inf_FL Inf_FL_to_Inf_F by (simp add: labeled_tiebreaking_lifting_axioms_def labeled_tiebreaking_lifting_def) lemma lifted_q: assumes q_in: "q \ Q" shows "standard_lifting Bot_FL Inf_FL Bot_G (Inf_G_q q) (entails_q q) (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q)" proof - interpret q_lifting: labeled_tiebreaking_lifting Bot_F Inf_F Bot_G "entails_q q" "Inf_G_q q" "Red_Inf_q q" "Red_F_q q" "\_F_q q" "\_Inf_q q" "\g Cl Cl'. False" Inf_FL using lifting_q[OF q_in] . have "\_Inf_L_q q = q_lifting.\_Inf_L" unfolding to_F_def q_lifting.to_F_def by simp then show ?thesis using q_lifting.standard_lifting_axioms by simp qed lemma ord_fam_lifted_q: assumes q_in: "q \ Q" - shows "lifting_intersection Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_Inf_q q) + shows "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_Inf_q q) (Red_F_q q) (\_F_L_q q) (\_Inf_L_q q) (\g Cl Cl'. False)" proof - interpret standard_q_lifting: standard_lifting Bot_FL Inf_FL Bot_G "Inf_G_q q" "entails_q q" "Red_Inf_q q" "Red_F_q q" "\_F_L_q q" "\_Inf_L_q q" using lifted_q[OF q_in] . have "minimal_element (\Cl Cl'. False) UNIV" by (simp add: minimal_element.intro po_on_def transp_onI wfp_on_imp_irreflp_on) then show ?thesis using standard_q_lifting.standard_lifting_axioms - by (simp add: lifting_intersection_axioms_def lifting_intersection_def) + by (simp add: tiebreaker_lifting_axioms_def tiebreaker_lifting_def) qed definition Red_F_\_empty_L_q :: "'q \ ('f \ 'l) set \ ('f \ 'l) set" where "Red_F_\_empty_L_q q N = {C. \D \ \_F_L_q q C. D \ Red_F_q q (\_set_L_q q N) \ (\E \ N. False \ D \ \_F_L_q q E)}" abbreviation Red_F_\_empty_L :: "('f \ 'l) set \ ('f \ 'l) set" where "Red_F_\_empty_L N \ (\q \ Q. Red_F_\_empty_L_q q N)" lemma all_lifted_red_crit: assumes q_in: "q \ Q" shows "calculus Bot_FL Inf_FL (entails_\_L_q q) (Red_Inf_\_L_q q) (Red_F_\_empty_L_q q)" proof - - interpret ord_q_lifting: lifting_intersection Bot_FL Inf_FL Bot_G "entails_q q" + interpret ord_q_lifting: tiebreaker_lifting Bot_FL Inf_FL Bot_G "entails_q q" "Inf_G_q q" "Red_Inf_q q" "Red_F_q q" "\_F_L_q q" "\_Inf_L_q q" "\g Cl Cl'. False" using ord_fam_lifted_q[OF q_in] . have "Red_Inf_\_L_q q = ord_q_lifting.Red_Inf_\" unfolding Red_Inf_\_L_q_def ord_q_lifting.Red_Inf_\_def by simp moreover have "Red_F_\_empty_L_q q = ord_q_lifting.Red_F_\" unfolding Red_F_\_empty_L_q_def ord_q_lifting.Red_F_\_def by simp ultimately show ?thesis using ord_q_lifting.calculus_axioms by argo qed lemma all_lifted_cons_rel: assumes q_in: "q \ Q" shows "consequence_relation Bot_FL (entails_\_L_q q)" using all_lifted_red_crit calculus_def q_in by blast sublocale consequence_relation_family Bot_FL Q entails_\_L_q using all_lifted_cons_rel by (simp add: consequence_relation_family.intro no_labels.Q_nonempty) sublocale intersection_calculus Bot_FL Inf_FL Q entails_\_L_q Red_Inf_\_L_q Red_F_\_empty_L_q using intersection_calculus.intro[OF consequence_relation_family_axioms] by (simp add: all_lifted_red_crit intersection_calculus_axioms_def no_labels.Q_nonempty) lemma in_Inf_FL_imp_to_F_in_Inf_F: "\ \ Inf_FL \ to_F \ \ Inf_F" by (simp add: Inf_FL_to_Inf_F to_F_def) lemma in_Inf_from_imp_to_F_in_Inf_from: "\ \ Inf_from N \ to_F \ \ no_labels.Inf_from (fst ` N)" unfolding Inf_from_def no_labels.Inf_from_def to_F_def by (auto intro: Inf_FL_to_Inf_F) notation no_labels.entails_\_Q (infix "\\\" 50) abbreviation entails_\_L_Q :: "('f \ 'l) set \ ('f \ 'l) set \ bool" (infix "\\\L" 50) where "(\\\L) \ entails_Q" lemmas entails_\_L_Q_def = entails_Q_def (* lem:labeled-consequence-intersection *) lemma labeled_entailment_lifting: "NL1 \\\L NL2 \ fst ` NL1 \\\ fst ` NL2" unfolding no_labels.entails_\_Q_def entails_\_L_Q_def by force lemma red_inf_impl: "\ \ Red_Inf_Q NL \ to_F \ \ no_labels.Red_Inf_\_Q (fst ` NL)" unfolding no_labels.Red_Inf_\_Q_def Red_Inf_Q_def proof clarify fix X Xa q assume q_in: "q \ Q" and i_in_inter: "\ \ (\q \ Q. Red_Inf_\_L_q q NL)" have i_in_q: "\ \ Red_Inf_\_L_q q NL" using q_in i_in_inter image_eqI by blast then have i_in: "\ \ Inf_FL" unfolding Red_Inf_\_L_q_def by blast have to_F_in: "to_F \ \ Inf_F" unfolding to_F_def using Inf_FL_to_Inf_F[OF i_in] . have rephrase1: "(\CL\NL. \_F_q q (fst CL)) = (\ (\_F_q q ` fst ` NL))" by blast have rephrase2: "fst (concl_of \) = concl_of (to_F \)" unfolding concl_of_def to_F_def by simp have subs_red: "(\_Inf_L_q q \ \ None \ the (\_Inf_L_q q \) \ Red_Inf_q q (\_set_L_q q NL)) \ (\_Inf_L_q q \ = None \ \_F_L_q q (concl_of \) \ \_set_L_q q NL \ Red_F_q q (\_set_L_q q NL))" using i_in_q unfolding Red_Inf_\_L_q_def by blast then have to_F_subs_red: "(\_Inf_q q (to_F \) \ None \ the (\_Inf_q q (to_F \)) \ Red_Inf_q q (no_labels.\_set_q q (fst ` NL))) \ (\_Inf_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ no_labels.\_set_q q (fst ` NL) \ Red_F_q q (no_labels.\_set_q q (fst ` NL)))" using rephrase1 rephrase2 by metis then show "to_F \ \ no_labels.Red_Inf_\_q q (fst ` NL)" using to_F_in unfolding no_labels.Red_Inf_\_q_def by simp qed (* lem:labeled-saturation-intersection *) lemma labeled_family_saturation_lifting: "saturated NL \ no_labels.saturated (fst ` NL)" unfolding saturated_def no_labels.saturated_def Inf_from_def no_labels.Inf_from_def proof clarify fix \F assume labeled_sat: "{\ \ Inf_FL. set (prems_of \) \ NL} \ Red_Inf_Q NL" and iF_in: "\F \ Inf_F" and iF_prems: "set (prems_of \F) \ fst ` NL" define Lli where "Lli i = (SOME x. ((prems_of \F)!i,x) \ NL)" for i have [simp]:"((prems_of \F)!i,Lli i) \ NL" if "i < length (prems_of \F)" for i using that iF_prems nth_mem someI_ex unfolding Lli_def by (metis DomainE Domain_fst subset_eq) define Ll where "Ll = map Lli [0..F)]" have Ll_length: "length Ll = length (prems_of \F)" unfolding Ll_def by auto have subs_NL: "set (zip (prems_of \F) Ll) \ NL" unfolding Ll_def by (auto simp:in_set_zip) obtain L0 where L0: "Infer (zip (prems_of \F) Ll) (concl_of \F, L0) \ Inf_FL" using Inf_F_to_Inf_FL[OF iF_in Ll_length] .. define \FL where "\FL = Infer (zip (prems_of \F) Ll) (concl_of \F, L0)" then have "set (prems_of \FL) \ NL" using subs_NL by simp then have "\FL \ {\ \ Inf_FL. set (prems_of \) \ NL}" unfolding \FL_def using L0 by blast then have "\FL \ Red_Inf_Q NL" using labeled_sat by fast moreover have "\F = to_F \FL" unfolding to_F_def \FL_def using Ll_length by (cases \F) auto ultimately show "\F \ no_labels.Red_Inf_\_Q (fst ` NL)" by (auto intro: red_inf_impl) qed (* thm:labeled-static-ref-compl-intersection *) theorem labeled_static_ref: assumes calc: "statically_complete_calculus Bot_F Inf_F (\\\) no_labels.Red_Inf_\_Q no_labels.Red_F_\_empty" shows "statically_complete_calculus Bot_FL Inf_FL (\\\L) Red_Inf_Q Red_F_Q" proof fix Bl :: \'f \ 'l\ and Nl :: \('f \ 'l) set\ assume Bl_in: \Bl \ Bot_FL\ and Nl_sat: \saturated Nl\ and Nl_entails_Bl: \Nl \\\L {Bl}\ define B where "B = fst Bl" have B_in: "B \ Bot_F" using Bl_in B_def SigmaE by force define N where "N = fst ` Nl" have N_sat: "no_labels.saturated N" using N_def Nl_sat labeled_family_saturation_lifting by blast have N_entails_B: "N \\\ {B}" using Nl_entails_Bl unfolding labeled_entailment_lifting N_def B_def by force have "\B' \ Bot_F. B' \ N" using B_in N_sat N_entails_B calc[unfolded statically_complete_calculus_def statically_complete_calculus_axioms_def] by blast then obtain B' where in_Bot: "B' \ Bot_F" and in_N: "B' \ N" by force then have "B' \ fst ` Bot_FL" by fastforce obtain Bl' where in_Nl: "Bl' \ Nl" and fst_Bl': "fst Bl' = B'" using in_N unfolding N_def by blast have "Bl' \ Bot_FL" using fst_Bl' in_Bot vimage_fst by fastforce then show \\Bl'\Bot_FL. Bl' \ Nl\ using in_Nl by blast qed end end diff --git a/thys/Saturation_Framework/Lifting_to_Non_Ground_Calculi.thy b/thys/Saturation_Framework/Lifting_to_Non_Ground_Calculi.thy --- a/thys/Saturation_Framework/Lifting_to_Non_Ground_Calculi.thy +++ b/thys/Saturation_Framework/Lifting_to_Non_Ground_Calculi.thy @@ -1,757 +1,757 @@ (* Title: Lifting to Non-Ground Calculi * Author: Sophie Tourret , 2018-2020 *) section \Lifting to Non-ground Calculi\ text \The section 3.1 to 3.3 of the report are covered by the current section. Various forms of lifting are proven correct. These allow to obtain the dynamic refutational completeness of a non-ground calculus from the static refutational completeness of its ground counterpart.\ theory Lifting_to_Non_Ground_Calculi imports Intersection_Calculus Calculus_Variations Well_Quasi_Orders.Minimal_Elements begin subsection \Standard Lifting\ locale standard_lifting = inference_system Inf_F + ground: calculus Bot_G Inf_G entails_G Red_Inf_G Red_F_G for Bot_F :: \'f set\ and Inf_F :: \'f inference set\ and Bot_G :: \'g set\ and Inf_G :: \'g inference set\ and entails_G :: \'g set \ 'g set \ bool\ (infix "\G" 50) and Red_Inf_G :: \'g set \ 'g inference set\ and Red_F_G :: \'g set \ 'g set\ + fixes \_F :: \'f \ 'g set\ and \_Inf :: \'f inference \ 'g inference set option\ assumes Bot_F_not_empty: "Bot_F \ {}" and Bot_map_not_empty: \B \ Bot_F \ \_F B \ {}\ and Bot_map: \B \ Bot_F \ \_F B \ Bot_G\ and Bot_cond: \\_F C \ Bot_G \ {} \ C \ Bot_F\ and inf_map: \\ \ Inf_F \ \_Inf \ \ None \ the (\_Inf \) \ Red_Inf_G (\_F (concl_of \))\ begin abbreviation \_set :: \'f set \ 'g set\ where \\_set N \ \ (\_F ` N)\ lemma \_subset: \N1 \ N2 \ \_set N1 \ \_set N2\ by auto abbreviation entails_\ :: \'f set \ 'f set \ bool\ (infix "\\" 50) where \N1 \\ N2 \ \_set N1 \G \_set N2\ lemma subs_Bot_G_entails: assumes not_empty: \sB \ {}\ and in_bot: \sB \ Bot_G\ shows \sB \G N\ proof - have \\B. B \ sB\ using not_empty by auto then obtain B where B_in: \B \ sB\ by auto then have r_trans: \{B} \G N\ using ground.bot_entails_all in_bot by auto have l_trans: \sB \G {B}\ using B_in ground.subset_entailed by auto then show ?thesis using r_trans ground.entails_trans[of sB "{B}"] by auto qed (* lem:derived-consequence-relation *) sublocale consequence_relation Bot_F entails_\ proof show "Bot_F \ {}" using Bot_F_not_empty . next show \B\Bot_F \ {B} \\ N\ for B N proof - assume \B \ Bot_F\ then show \{B} \\ N\ using Bot_map ground.bot_entails_all[of _ "\_set N"] subs_Bot_G_entails Bot_map_not_empty by auto qed next fix N1 N2 :: \'f set\ assume \N2 \ N1\ then show \N1 \\ N2\ using \_subset ground.subset_entailed by auto next fix N1 N2 assume N1_entails_C: \\C \ N2. N1 \\ {C}\ show \N1 \\ N2\ using ground.all_formulas_entailed N1_entails_C by (smt UN_E UN_I ground.entail_set_all_formulas singletonI) next fix N1 N2 N3 assume \N1 \\ N2\ and \N2 \\ N3\ then show \N1 \\ N3\ using ground.entails_trans by blast qed end subsection \Strong Standard Lifting\ (* rmk:strong-standard-lifting *) locale strong_standard_lifting = inference_system Inf_F + ground: calculus Bot_G Inf_G entails_G Red_Inf_G Red_F_G for Bot_F :: \'f set\ and Inf_F :: \'f inference set\ and Bot_G :: \'g set\ and Inf_G :: \'g inference set\ and entails_G :: \'g set \ 'g set \ bool\ (infix "\G" 50) and Red_Inf_G :: \'g set \ 'g inference set\ and Red_F_G :: \'g set \ 'g set\ + fixes \_F :: \'f \ 'g set\ and \_Inf :: \'f inference \ 'g inference set option\ assumes Bot_F_not_empty: "Bot_F \ {}" and Bot_map_not_empty: \B \ Bot_F \ \_F B \ {}\ and Bot_map: \B \ Bot_F \ \_F B \ Bot_G\ and Bot_cond: \\_F C \ Bot_G \ {} \ C \ Bot_F\ and strong_inf_map: \\ \ Inf_F \ \_Inf \ \ None \ concl_of ` (the (\_Inf \)) \ (\_F (concl_of \))\ and inf_map_in_Inf: \\ \ Inf_F \ \_Inf \ \ None \ the (\_Inf \) \ Inf_G\ begin sublocale standard_lifting Bot_F Inf_F Bot_G Inf_G "(\G)" Red_Inf_G Red_F_G \_F \_Inf proof show "Bot_F \ {}" using Bot_F_not_empty . next fix B assume b_in: "B \ Bot_F" show "\_F B \ {}" using Bot_map_not_empty[OF b_in] . next fix B assume b_in: "B \ Bot_F" show "\_F B \ Bot_G" using Bot_map[OF b_in] . next show "\C. \_F C \ Bot_G \ {} \ C \ Bot_F" using Bot_cond . next fix \ assume i_in: "\ \ Inf_F" and some_g: "\_Inf \ \ None" show "the (\_Inf \) \ Red_Inf_G (\_F (concl_of \))" proof fix \G assume ig_in1: "\G \ the (\_Inf \)" then have ig_in2: "\G \ Inf_G" using inf_map_in_Inf[OF i_in some_g] by blast show "\G \ Red_Inf_G (\_F (concl_of \))" using strong_inf_map[OF i_in some_g] ground.Red_Inf_of_Inf_to_N[OF ig_in2] ig_in1 by blast qed qed end subsection \Lifting with a Family of Tiebreaker Orderings\ -locale lifting_intersection = +locale tiebreaker_lifting = standard_lifting Bot_F Inf_F Bot_G Inf_G entails_G Red_Inf_G Red_F_G \_F \_Inf for Bot_F :: \'f set\ and Inf_F :: \'f inference set\ and Bot_G :: \'g set\ and entails_G :: \'g set \ 'g set \ bool\ (infix "\G" 50) and Inf_G :: \'g inference set\ and Red_Inf_G :: \'g set \ 'g inference set\ and Red_F_G :: \'g set \ 'g set\ and \_F :: "'f \ 'g set" and \_Inf :: "'f inference \ 'g inference set option" + fixes Prec_F_g :: \'g \ 'f \ 'f \ bool\ assumes all_wf: "minimal_element (Prec_F_g g) UNIV" begin definition Red_Inf_\ :: "'f set \ 'f inference set" where \Red_Inf_\ N = {\ \ Inf_F. (\_Inf \ \ None \ the (\_Inf \) \ Red_Inf_G (\_set N)) \ (\_Inf \ = None \ \_F (concl_of \) \ \_set N \ Red_F_G (\_set N))}\ definition Red_F_\ :: "'f set \ 'f set" where \Red_F_\ N = {C. \D \ \_F C. D \ Red_F_G (\_set N) \ (\E \ N. Prec_F_g D E C \ D \ \_F E)}\ lemma Prec_trans: assumes \Prec_F_g D A B\ and \Prec_F_g D B C\ shows \Prec_F_g D A C\ using minimal_element.po assms unfolding po_on_def transp_on_def by (smt UNIV_I all_wf) lemma prop_nested_in_set: "D \ P C \ C \ {C. \D \ P C. A D \ B C D} \ A D \ B C D" by blast (* lem:wolog-C'-nonredundant *) lemma Red_F_\_equiv_def: \Red_F_\ N = {C. \Di \ \_F C. Di \ Red_F_G (\_set N) \ (\E \ (N - Red_F_\ N). Prec_F_g Di E C \ Di \ \_F E)}\ proof (rule; clarsimp) fix C D assume C_in: \C \ Red_F_\ N\ and D_in: \D \ \_F C\ and not_sec_case: \\E \ N - Red_F_\ N. Prec_F_g D E C \ D \ \_F E\ have C_in_unfolded: "C \ {C. \Di \ \_F C. Di \ Red_F_G (\_set N) \ (\E\N. Prec_F_g Di E C \ Di \ \_F E)}" using C_in unfolding Red_F_\_def . have neg_not_sec_case: \\ (\E\N - Red_F_\ N. Prec_F_g D E C \ D \ \_F E)\ using not_sec_case by clarsimp have unfol_C_D: \D \ Red_F_G (\_set N) \ (\E\N. Prec_F_g D E C \ D \ \_F E)\ using prop_nested_in_set[of D \_F C "\x. x \ Red_F_G (\ (\_F ` N))" "\x y. \E \ N. Prec_F_g y E x \ y \ \_F E", OF D_in C_in_unfolded] by blast show \D \ Red_F_G (\_set N)\ proof (rule ccontr) assume contrad: \D \ Red_F_G (\_set N)\ have non_empty: \\E\N. Prec_F_g D E C \ D \ \_F E\ using contrad unfol_C_D by auto define B where \B = {E \ N. Prec_F_g D E C \ D \ \_F E}\ then have B_non_empty: \B \ {}\ using non_empty by auto interpret minimal_element "Prec_F_g D" UNIV using all_wf[of D] . obtain F :: 'f where F: \F = min_elt B\ by auto then have D_in_F: \D \ \_F F\ unfolding B_def using non_empty by (smt Sup_UNIV Sup_upper UNIV_I contra_subsetD empty_iff empty_subsetI mem_Collect_eq min_elt_mem unfol_C_D) have F_prec: \Prec_F_g D F C\ using F min_elt_mem[of B, OF _ B_non_empty] unfolding B_def by auto have F_not_in: \F \ Red_F_\ N\ proof assume F_in: \F \ Red_F_\ N\ have unfol_F_D: \D \ Red_F_G (\_set N) \ (\G\N. Prec_F_g D G F \ D \ \_F G)\ using F_in D_in_F unfolding Red_F_\_def by auto then have \\G\N. Prec_F_g D G F \ D \ \_F G\ using contrad D_in unfolding Red_F_\_def by auto then obtain G where G_in: \G \ N\ and G_prec: \Prec_F_g D G F\ and G_map: \D \ \_F G\ by auto have \Prec_F_g D G C\ using G_prec F_prec Prec_trans by blast then have \G \ B\ unfolding B_def using G_in G_map by auto then show \False\ using F G_prec min_elt_minimal[of B G, OF _ B_non_empty] by auto qed have \F \ N\ using F by (metis B_def B_non_empty mem_Collect_eq min_elt_mem top_greatest) then have \F \ N - Red_F_\ N\ using F_not_in by auto then show \False\ using D_in_F neg_not_sec_case F_prec by blast qed next fix C assume only_if: \\D\\_F C. D \ Red_F_G (\_set N) \ (\E\N - Red_F_\ N. Prec_F_g D E C \ D \ \_F E)\ show \C \ Red_F_\ N\ unfolding Red_F_\_def using only_if by auto qed (* lem:lifting-main-technical *) lemma not_red_map_in_map_not_red: \\_set N - Red_F_G (\_set N) \ \_set (N - Red_F_\ N)\ proof fix D assume D_hyp: \D \ \_set N - Red_F_G (\_set N)\ interpret minimal_element "Prec_F_g D" UNIV using all_wf[of D] . have D_in: \D \ \_set N\ using D_hyp by blast have D_not_in: \D \ Red_F_G (\_set N)\ using D_hyp by blast have exist_C: \\C. C \ N \ D \ \_F C\ using D_in by auto define B where \B = {C \ N. D \ \_F C}\ obtain C where C: \C = min_elt B\ by auto have C_in_N: \C \ N\ using exist_C by (metis B_def C empty_iff mem_Collect_eq min_elt_mem top_greatest) have D_in_C: \D \ \_F C\ using exist_C by (metis B_def C empty_iff mem_Collect_eq min_elt_mem top_greatest) have C_not_in: \C \ Red_F_\ N\ proof assume C_in: \C \ Red_F_\ N\ have \D \ Red_F_G (\_set N) \ (\E\N. Prec_F_g D E C \ D \ \_F E)\ using C_in D_in_C unfolding Red_F_\_def by auto then show \False\ proof assume \D \ Red_F_G (\_set N)\ then show \False\ using D_not_in by simp next assume \\E\N. Prec_F_g D E C \ D \ \_F E\ then show \False\ using C by (metis (no_types, lifting) B_def UNIV_I empty_iff mem_Collect_eq min_elt_minimal top_greatest) qed qed show \D \ \_set (N - Red_F_\ N)\ using D_in_C C_not_in C_in_N by blast qed (* lem:nonredundant-entails-redundant *) lemma Red_F_Bot_F: \B \ Bot_F \ N \\ {B} \ N - Red_F_\ N \\ {B}\ proof - fix B N assume B_in: \B \ Bot_F\ and N_entails: \N \\ {B}\ then have to_bot: \\_set N - Red_F_G (\_set N) \G \_F B\ using ground.Red_F_Bot Bot_map by (smt cSup_singleton ground.entail_set_all_formulas image_insert image_is_empty subsetCE) have from_f: \\_set (N - Red_F_\ N) \G \_set N - Red_F_G (\_set N)\ using ground.subset_entailed[OF not_red_map_in_map_not_red] by blast then have \\_set (N - Red_F_\ N) \G \_F B\ using to_bot ground.entails_trans by blast then show \N - Red_F_\ N \\ {B}\ using Bot_map by simp qed (* lem:redundancy-monotonic-addition 1/2 *) lemma Red_F_of_subset_F: \N \ N' \ Red_F_\ N \ Red_F_\ N'\ using ground.Red_F_of_subset unfolding Red_F_\_def by clarsimp (meson \_subset subsetD) (* lem:redundancy-monotonic-addition 2/2 *) lemma Red_Inf_of_subset_F: \N \ N' \ Red_Inf_\ N \ Red_Inf_\ N'\ using Collect_mono \_subset subset_iff ground.Red_Inf_of_subset unfolding Red_Inf_\_def by (smt ground.Red_F_of_subset Un_iff) (* lem:redundancy-monotonic-deletion-forms *) lemma Red_F_of_Red_F_subset_F: \N' \ Red_F_\ N \ Red_F_\ N \ Red_F_\ (N - N')\ proof fix N N' C assume N'_in_Red_F_N: \N' \ Red_F_\ N\ and C_in_red_F_N: \C \ Red_F_\ N\ have lem8: \\D \ \_F C. D \ Red_F_G (\_set N) \ (\E \ (N - Red_F_\ N). Prec_F_g D E C \ D \ \_F E)\ using Red_F_\_equiv_def C_in_red_F_N by blast show \C \ Red_F_\ (N - N')\ unfolding Red_F_\_def proof (rule,rule) fix D assume \D \ \_F C\ then have \D \ Red_F_G (\_set N) \ (\E \ (N - Red_F_\ N). Prec_F_g D E C \ D \ \_F E)\ using lem8 by auto then show \D \ Red_F_G (\_set (N - N')) \ (\E\N - N'. Prec_F_g D E C \ D \ \_F E)\ proof assume \D \ Red_F_G (\_set N)\ then have \D \ Red_F_G (\_set N - Red_F_G (\_set N))\ using ground.Red_F_of_Red_F_subset[of "Red_F_G (\_set N)" "\_set N"] by auto then have \D \ Red_F_G (\_set (N - Red_F_\ N))\ using ground.Red_F_of_subset[OF not_red_map_in_map_not_red[of N]] by auto then have \D \ Red_F_G (\_set (N - N'))\ using N'_in_Red_F_N \_subset[of "N - Red_F_\ N" "N - N'"] by (smt DiffE DiffI ground.Red_F_of_subset subsetCE subsetI) then show ?thesis by blast next assume \\E\N - Red_F_\ N. Prec_F_g D E C \ D \ \_F E\ then obtain E where E_in: \E\N - Red_F_\ N\ and E_prec_C: \Prec_F_g D E C\ and D_in: \D \ \_F E\ by auto have \E \ N - N'\ using E_in N'_in_Red_F_N by blast then show ?thesis using E_prec_C D_in by blast qed qed qed (* lem:redundancy-monotonic-deletion-infs *) lemma Red_Inf_of_Red_F_subset_F: \N' \ Red_F_\ N \ Red_Inf_\ N \ Red_Inf_\ (N - N') \ proof fix N N' \ assume N'_in_Red_F_N: \N' \ Red_F_\ N\ and i_in_Red_Inf_N: \\ \ Red_Inf_\ N\ have i_in: \\ \ Inf_F\ using i_in_Red_Inf_N unfolding Red_Inf_\_def by blast { assume not_none: "\_Inf \ \ None" have \\\' \ the (\_Inf \). \' \ Red_Inf_G (\_set N)\ using not_none i_in_Red_Inf_N unfolding Red_Inf_\_def by auto then have \\\' \ the (\_Inf \). \' \ Red_Inf_G (\_set N - Red_F_G (\_set N))\ using not_none ground.Red_Inf_of_Red_F_subset by blast then have ip_in_Red_Inf_G: \\\' \ the (\_Inf \). \' \ Red_Inf_G (\_set (N - Red_F_\ N))\ using not_none ground.Red_Inf_of_subset[OF not_red_map_in_map_not_red[of N]] by auto then have not_none_in: \\\' \ the (\_Inf \). \' \ Red_Inf_G (\_set (N - N'))\ using not_none N'_in_Red_F_N by (meson Diff_mono ground.Red_Inf_of_subset \_subset subset_iff subset_refl) then have "the (\_Inf \) \ Red_Inf_G (\_set (N - N'))" by blast } moreover { assume none: "\_Inf \ = None" have ground_concl_subs: "\_F (concl_of \) \ (\_set N \ Red_F_G (\_set N))" using none i_in_Red_Inf_N unfolding Red_Inf_\_def by blast then have d_in_imp12: "D \ \_F (concl_of \) \ D \ \_set N - Red_F_G (\_set N) \ D \ Red_F_G (\_set N)" by blast have d_in_imp1: "D \ \_set N - Red_F_G (\_set N) \ D \ \_set (N - N')" using not_red_map_in_map_not_red N'_in_Red_F_N by blast have d_in_imp_d_in: "D \ Red_F_G (\_set N) \ D \ Red_F_G (\_set N - Red_F_G (\_set N))" using ground.Red_F_of_Red_F_subset[of "Red_F_G (\_set N)" "\_set N"] by blast have g_subs1: "\_set N - Red_F_G (\_set N) \ \_set (N - Red_F_\ N)" using not_red_map_in_map_not_red unfolding Red_F_\_def by auto have g_subs2: "\_set (N - Red_F_\ N) \ \_set (N - N')" using N'_in_Red_F_N by blast have d_in_imp2: "D \ Red_F_G (\_set N) \ D \ Red_F_G (\_set (N - N'))" using ground.Red_F_of_subset ground.Red_F_of_subset[OF g_subs1] ground.Red_F_of_subset[OF g_subs2] d_in_imp_d_in by blast have "\_F (concl_of \) \ (\_set (N - N') \ Red_F_G (\_set (N - N')))" using d_in_imp12 d_in_imp1 d_in_imp2 by (smt ground.Red_F_of_Red_F_subset ground.Red_F_of_subset UnCI UnE Un_Diff_cancel2 ground_concl_subs g_subs1 g_subs2 subset_iff) } ultimately show \\ \ Red_Inf_\ (N - N')\ using i_in unfolding Red_Inf_\_def by auto qed (* lem:concl-contained-implies-red-inf *) lemma Red_Inf_of_Inf_to_N_F: assumes i_in: \\ \ Inf_F\ and concl_i_in: \concl_of \ \ N\ shows \\ \ Red_Inf_\ N \ proof - have \\ \ Inf_F \ \_Inf \ \ None \ the (\_Inf \) \ Red_Inf_G (\_F (concl_of \))\ using inf_map by simp moreover have \Red_Inf_G (\_F (concl_of \)) \ Red_Inf_G (\_set N)\ using concl_i_in ground.Red_Inf_of_subset by blast moreover have "\ \ Inf_F \ \_Inf \ = None \ concl_of \ \ N \ \_F (concl_of \) \ \_set N" by blast ultimately show ?thesis using i_in concl_i_in unfolding Red_Inf_\_def by auto qed (* thm:FRedsqsubset-is-red-crit and also thm:lifted-red-crit if ordering empty *) sublocale calculus Bot_F Inf_F entails_\ Red_Inf_\ Red_F_\ proof fix B N N' \ show \Red_Inf_\ N \ Inf_F\ unfolding Red_Inf_\_def by blast show \B \ Bot_F \ N \\ {B} \ N - Red_F_\ N \\ {B}\ using Red_F_Bot_F by simp show \N \ N' \ Red_F_\ N \ Red_F_\ N'\ using Red_F_of_subset_F by simp show \N \ N' \ Red_Inf_\ N \ Red_Inf_\ N'\ using Red_Inf_of_subset_F by simp show \N' \ Red_F_\ N \ Red_F_\ N \ Red_F_\ (N - N')\ using Red_F_of_Red_F_subset_F by simp show \N' \ Red_F_\ N \ Red_Inf_\ N \ Red_Inf_\ (N - N')\ using Red_Inf_of_Red_F_subset_F by simp show \\ \ Inf_F \ concl_of \ \ N \ \ \ Red_Inf_\ N\ using Red_Inf_of_Inf_to_N_F by simp qed lemma grounded_inf_in_ground_inf: "\ \ Inf_F \ \_Inf \ \ None \ the (\_Inf \) \ Inf_G" using inf_map ground.Red_Inf_to_Inf by blast abbreviation ground_Inf_redundant :: "'f set \ bool" where "ground_Inf_redundant N \ ground.Inf_from (\_set N) \ {\. \\'\ Inf_from N. \_Inf \' \ None \ \ \ the (\_Inf \')} \ Red_Inf_G (\_set N)" lemma sat_inf_imp_ground_red: assumes "saturated N" and "\' \ Inf_from N" and "\_Inf \' \ None \ \ \ the (\_Inf \')" shows "\ \ Red_Inf_G (\_set N)" using assms Red_Inf_\_def unfolding saturated_def by auto (* lem:sat-wrt-finf *) lemma sat_imp_ground_sat: "saturated N \ ground_Inf_redundant N \ ground.saturated (\_set N)" unfolding ground.saturated_def using sat_inf_imp_ground_red by auto (* thm:finf-complete *) theorem stat_ref_comp_to_non_ground: assumes stat_ref_G: "statically_complete_calculus Bot_G Inf_G entails_G Red_Inf_G Red_F_G" and sat_n_imp: "\N. saturated N \ ground_Inf_redundant N" shows "statically_complete_calculus Bot_F Inf_F entails_\ Red_Inf_\ Red_F_\" proof fix B N assume b_in: "B \ Bot_F" and sat_n: "saturated N" and n_entails_bot: "N \\ {B}" have ground_n_entails: "\_set N \G \_F B" using n_entails_bot by simp then obtain BG where bg_in1: "BG \ \_F B" using Bot_map_not_empty[OF b_in] by blast then have bg_in: "BG \ Bot_G" using Bot_map[OF b_in] by blast have ground_n_entails_bot: "\_set N \G {BG}" using ground_n_entails bg_in1 ground.entail_set_all_formulas by blast have "ground.Inf_from (\_set N) \ {\. \\'\ Inf_from N. \_Inf \' \ None \ \ \ the (\_Inf \')} \ Red_Inf_G (\_set N)" using sat_n_imp[OF sat_n] . have "ground.saturated (\_set N)" using sat_imp_ground_sat[OF sat_n sat_n_imp[OF sat_n]] . then have "\BG'\Bot_G. BG' \ (\_set N)" using stat_ref_G ground.calculus_axioms bg_in ground_n_entails_bot unfolding statically_complete_calculus_def statically_complete_calculus_axioms_def by blast then show "\B'\ Bot_F. B' \ N" using bg_in Bot_cond Bot_map_not_empty Bot_cond by blast qed end lemma wf_empty_rel: "minimal_element (\_ _. False) UNIV" by (simp add: minimal_element.intro po_on_def transp_onI wfp_on_imp_irreflp_on) lemma any_to_empty_order_lifting: - "lifting_intersection Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F - \_Inf Prec_F_g \ lifting_intersection Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G + "tiebreaker_lifting Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F + \_Inf Prec_F_g \ tiebreaker_lifting Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F \_Inf (\g C C'. False)" proof - fix Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F \_Inf Prec_F_g - assume lift: "lifting_intersection Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G + assume lift: "tiebreaker_lifting Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F \_Inf Prec_F_g" then interpret lift_g: - lifting_intersection Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F + tiebreaker_lifting Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F \_Inf Prec_F_g by auto - show "lifting_intersection Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G + show "tiebreaker_lifting Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F \_Inf (\g C C'. False)" by (simp add: wf_empty_rel lift_g.standard_lifting_axioms - lifting_intersection_axioms.intro lifting_intersection_def) + tiebreaker_lifting_axioms.intro tiebreaker_lifting_def) qed lemma po_on_empty_rel[simp]: "po_on (\_ _. False) UNIV" unfolding po_on_def irreflp_on_def transp_on_def by auto locale lifting_equivalence_with_empty_order = - any_order_lifting: lifting_intersection Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G + any_order_lifting: tiebreaker_lifting Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F \_Inf Prec_F_g + - empty_order_lifting: lifting_intersection Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G + empty_order_lifting: tiebreaker_lifting Bot_F Inf_F Bot_G entails_G Inf_G Red_Inf_G Red_F_G \_F \_Inf "\g C C'. False" for \_F :: \'f \ 'g set\ and \_Inf :: \'f inference \ 'g inference set option\ and Bot_F :: \'f set\ and Inf_F :: \'f inference set\ and Bot_G :: \'g set\ and Inf_G :: \'g inference set\ and entails_G :: \'g set \ 'g set \ bool\ (infix "\G" 50) and Red_Inf_G :: \'g set \ 'g inference set\ and Red_F_G :: \'g set \ 'g set\ and Prec_F_g :: \'g \ 'f \ 'f \ bool\ -sublocale lifting_intersection \ lifting_equivalence_with_empty_order +sublocale tiebreaker_lifting \ lifting_equivalence_with_empty_order by unfold_locales simp+ context lifting_equivalence_with_empty_order begin (* lem:saturation-indep-of-sqsubset *) lemma saturated_empty_order_equiv_saturated: "any_order_lifting.saturated N = empty_order_lifting.saturated N" by (rule refl) (* lem:static-ref-compl-indep-of-sqsubset *) lemma static_empty_order_equiv_static: "statically_complete_calculus Bot_F Inf_F any_order_lifting.entails_\ empty_order_lifting.Red_Inf_\ empty_order_lifting.Red_F_\ = statically_complete_calculus Bot_F Inf_F any_order_lifting.entails_\ any_order_lifting.Red_Inf_\ any_order_lifting.Red_F_\" unfolding statically_complete_calculus_def by (rule iffI) (standard,(standard)[],simp)+ (* thm:FRedsqsubset-is-dyn-ref-compl *) theorem static_to_dynamic: "statically_complete_calculus Bot_F Inf_F any_order_lifting.entails_\ empty_order_lifting.Red_Inf_\ empty_order_lifting.Red_F_\ = dynamically_complete_calculus Bot_F Inf_F any_order_lifting.entails_\ any_order_lifting.Red_Inf_\ any_order_lifting.Red_F_\ " using any_order_lifting.dyn_equiv_stat static_empty_order_equiv_static by blast end subsection \Lifting with a Family of Redundancy Criteria\ -locale standard_lifting_with_red_crit_family = inference_system Inf_F +locale lifting_intersection = inference_system Inf_F + ground: calculus_family Bot_G Q Inf_G_q entails_q Red_Inf_q Red_F_q for Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and Inf_G_q :: \'q \ 'g inference set\ and entails_q :: "'q \ 'g set \ 'g set \ bool" and Red_Inf_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" + fixes Bot_F :: "'f set" and \_F_q :: "'q \ 'f \ 'g set" and \_Inf_q :: "'q \ 'f inference \ 'g inference set option" and Prec_F_g :: "'g \ 'f \ 'f \ bool" assumes standard_lifting_family: - "\q \ Q. lifting_intersection Bot_F Inf_F Bot_G (entails_q q) (Inf_G_q q) + "\q \ Q. tiebreaker_lifting Bot_F Inf_F Bot_G (entails_q q) (Inf_G_q q) (Red_Inf_q q) (Red_F_q q) (\_F_q q) (\_Inf_q q) Prec_F_g" begin abbreviation \_set_q :: "'q \ 'f set \ 'g set" where "\_set_q q N \ \ (\_F_q q ` N)" definition Red_Inf_\_q :: "'q \ 'f set \ 'f inference set" where "Red_Inf_\_q q N = {\ \ Inf_F. (\_Inf_q q \ \ None \ the (\_Inf_q q \) \ Red_Inf_q q (\_set_q q N)) \ (\_Inf_q q \ = None \ \_F_q q (concl_of \) \ (\_set_q q N \ Red_F_q q (\_set_q q N)))}" definition Red_F_\_empty_q :: "'q \ 'f set \ 'f set" where "Red_F_\_empty_q q N = {C. \D \ \_F_q q C. D \ Red_F_q q (\_set_q q N)}" definition Red_F_\_q_g :: "'q \ 'f set \ 'f set" where "Red_F_\_q_g q N = {C. \D \ \_F_q q C. D \ Red_F_q q (\_set_q q N) \ (\E \ N. Prec_F_g D E C \ D \ \_F_q q E)}" abbreviation entails_\_q :: "'q \ 'f set \ 'f set \ bool" where "entails_\_q q N1 N2 \ entails_q q (\_set_q q N1) (\_set_q q N2)" lemma red_crit_lifting_family: assumes q_in: "q \ Q" shows "calculus Bot_F Inf_F (entails_\_q q) (Red_Inf_\_q q) (Red_F_\_q_g q)" proof - interpret wf_lift: - lifting_intersection Bot_F Inf_F Bot_G "entails_q q" "Inf_G_q q" "Red_Inf_q q" + tiebreaker_lifting Bot_F Inf_F Bot_G "entails_q q" "Inf_G_q q" "Red_Inf_q q" "Red_F_q q" "\_F_q q" "\_Inf_q q" Prec_F_g using standard_lifting_family q_in by metis have "Red_Inf_\_q q = wf_lift.Red_Inf_\" unfolding Red_Inf_\_q_def wf_lift.Red_Inf_\_def by blast moreover have "Red_F_\_q_g q = wf_lift.Red_F_\" unfolding Red_F_\_q_g_def wf_lift.Red_F_\_def by blast ultimately show ?thesis using wf_lift.calculus_axioms by simp qed lemma red_crit_lifting_family_empty_ord: assumes q_in: "q \ Q" shows "calculus Bot_F Inf_F (entails_\_q q) (Red_Inf_\_q q) (Red_F_\_empty_q q)" proof - interpret wf_lift: - lifting_intersection Bot_F Inf_F Bot_G "entails_q q" "Inf_G_q q" "Red_Inf_q q" + tiebreaker_lifting Bot_F Inf_F Bot_G "entails_q q" "Inf_G_q q" "Red_Inf_q q" "Red_F_q q" "\_F_q q" "\_Inf_q q" Prec_F_g using standard_lifting_family q_in by metis have "Red_Inf_\_q q = wf_lift.Red_Inf_\" unfolding Red_Inf_\_q_def wf_lift.Red_Inf_\_def by blast moreover have "Red_F_\_empty_q q = wf_lift.empty_order_lifting.Red_F_\" unfolding Red_F_\_empty_q_def wf_lift.empty_order_lifting.Red_F_\_def by blast ultimately show ?thesis using wf_lift.empty_order_lifting.calculus_axioms by simp qed sublocale consequence_relation_family Bot_F Q entails_\_q proof (unfold_locales; (intro ballI)?) show "Q \ {}" by (rule ground.Q_nonempty) next fix qi assume qi_in: "qi \ Q" - interpret lift: lifting_intersection Bot_F Inf_F Bot_G "entails_q qi" "Inf_G_q qi" + interpret lift: tiebreaker_lifting Bot_F Inf_F Bot_G "entails_q qi" "Inf_G_q qi" "Red_Inf_q qi" "Red_F_q qi" "\_F_q qi" "\_Inf_q qi" Prec_F_g using qi_in by (metis standard_lifting_family) show "consequence_relation Bot_F (entails_\_q qi)" by unfold_locales qed sublocale intersection_calculus Bot_F Inf_F Q entails_\_q Red_Inf_\_q Red_F_\_q_g by unfold_locales (auto simp: Q_nonempty red_crit_lifting_family) abbreviation entails_\_Q :: "'f set \ 'f set \ bool" (infix "\\\" 50) where "(\\\) \ entails_Q" abbreviation Red_Inf_\_Q :: "'f set \ 'f inference set" where "Red_Inf_\_Q \ Red_Inf_Q" abbreviation Red_F_\_Q :: "'f set \ 'f set" where "Red_F_\_Q \ Red_F_Q" lemmas entails_\_Q_def = entails_Q_def lemmas Red_Inf_\_Q_def = Red_Inf_Q_def lemmas Red_F_\_Q_def = Red_F_Q_def sublocale empty_ord: intersection_calculus Bot_F Inf_F Q entails_\_q Red_Inf_\_q Red_F_\_empty_q by unfold_locales (auto simp: Q_nonempty red_crit_lifting_family_empty_ord) abbreviation Red_F_\_empty :: "'f set \ 'f set" where "Red_F_\_empty \ empty_ord.Red_F_Q" lemmas Red_F_\_empty_def = empty_ord.Red_F_Q_def lemma sat_inf_imp_ground_red_fam_inter: assumes sat_n: "saturated N" and i'_in: "\' \ Inf_from N" and q_in: "q \ Q" and grounding: "\_Inf_q q \' \ None \ \ \ the (\_Inf_q q \')" shows "\ \ Red_Inf_q q (\_set_q q N)" proof - have "\' \ Red_Inf_\_q q N" using sat_n i'_in q_in all_red_crit calculus.saturated_def sat_int_to_sat_q by blast then have "the (\_Inf_q q \') \ Red_Inf_q q (\_set_q q N)" by (simp add: Red_Inf_\_q_def grounding) then show ?thesis using grounding by blast qed abbreviation ground_Inf_redundant :: "'q \ 'f set \ bool" where "ground_Inf_redundant q N \ ground.Inf_from_q q (\_set_q q N) \ {\. \\'\ Inf_from N. \_Inf_q q \' \ None \ \ \ the (\_Inf_q q \')} \ Red_Inf_q q (\_set_q q N)" abbreviation ground_saturated :: "'q \ 'f set \ bool" where "ground_saturated q N \ ground.Inf_from_q q (\_set_q q N) \ Red_Inf_q q (\_set_q q N)" lemma sat_imp_ground_sat_fam_inter: "saturated N \ q \ Q \ ground_Inf_redundant q N \ ground_saturated q N" using sat_inf_imp_ground_red_fam_inter by auto (* thm:intersect-finf-complete *) theorem stat_ref_comp_to_non_ground_fam_inter: assumes stat_ref_G: "\q \ Q. statically_complete_calculus Bot_G (Inf_G_q q) (entails_q q) (Red_Inf_q q) (Red_F_q q)" and sat_n_imp: "\N. saturated N \ \q \ Q. ground_Inf_redundant q N" shows "statically_complete_calculus Bot_F Inf_F entails_\_Q Red_Inf_\_Q Red_F_\_empty" using empty_ord.calculus_axioms unfolding statically_complete_calculus_def statically_complete_calculus_axioms_def proof (standard, clarify) fix B N assume b_in: "B \ Bot_F" and sat_n: "saturated N" and entails_bot: "N \\\ {B}" then obtain q where q_in: "q \ Q" and inf_subs: "ground.Inf_from_q q (\_set_q q N) \ {\. \\'\ Inf_from N. \_Inf_q q \' \ None \ \ \ the (\_Inf_q q \')} \ Red_Inf_q q (\_set_q q N)" using sat_n_imp[of N] by blast interpret q_calc: calculus Bot_F Inf_F "entails_\_q q" "Red_Inf_\_q q" "Red_F_\_q_g q" using all_red_crit[rule_format, OF q_in] . have n_q_sat: "q_calc.saturated N" using q_in sat_int_to_sat_q sat_n by simp interpret lifted_q_calc: - lifting_intersection Bot_F Inf_F Bot_G "entails_q q" "Inf_G_q q" "Red_Inf_q q" + tiebreaker_lifting Bot_F Inf_F Bot_G "entails_q q" "Inf_G_q q" "Red_Inf_q q" "Red_F_q q" "\_F_q q" "\_Inf_q q" using q_in by (simp add: standard_lifting_family) have n_lift_sat: "lifted_q_calc.empty_order_lifting.saturated N" using n_q_sat unfolding Red_Inf_\_q_def lifted_q_calc.empty_order_lifting.Red_Inf_\_def lifted_q_calc.saturated_def q_calc.saturated_def by auto have ground_sat_n: "lifted_q_calc.ground.saturated (\_set_q q N)" by (rule lifted_q_calc.sat_imp_ground_sat[OF n_lift_sat]) (use n_lift_sat inf_subs ground.Inf_from_q_def in auto) have ground_n_entails_bot: "entails_\_q q N {B}" using q_in entails_bot unfolding entails_\_Q_def by simp interpret statically_complete_calculus Bot_G "Inf_G_q q" "entails_q q" "Red_Inf_q q" "Red_F_q q" using stat_ref_G[rule_format, OF q_in] . obtain BG where bg_in: "BG \ \_F_q q B" using lifted_q_calc.Bot_map_not_empty[OF b_in] by blast then have "BG \ Bot_G" using lifted_q_calc.Bot_map[OF b_in] by blast then have "\BG'\Bot_G. BG' \ \_set_q q N" using ground_sat_n ground_n_entails_bot statically_complete[of BG, OF _ ground_sat_n] bg_in lifted_q_calc.ground.entail_set_all_formulas[of "\_set_q q N" "\_set_q q {B}"] by simp then show "\B'\ Bot_F. B' \ N" using lifted_q_calc.Bot_cond by blast qed (* lem:intersect-saturation-indep-of-sqsubset *) lemma sat_eq_sat_empty_order: "saturated N = empty_ord.saturated N" by (rule refl) (* lem:intersect-static-ref-compl-indep-of-sqsubset *) lemma static_empty_ord_inter_equiv_static_inter: "statically_complete_calculus Bot_F Inf_F entails_Q Red_Inf_Q Red_F_Q = statically_complete_calculus Bot_F Inf_F entails_Q Red_Inf_Q Red_F_\_empty" unfolding statically_complete_calculus_def by (simp add: empty_ord.calculus_axioms calculus_axioms) (* thm:intersect-static-ref-compl-is-dyn-ref-compl-with-order *) theorem stat_eq_dyn_ref_comp_fam_inter: "statically_complete_calculus Bot_F Inf_F entails_Q Red_Inf_Q Red_F_\_empty = dynamically_complete_calculus Bot_F Inf_F entails_Q Red_Inf_Q Red_F_Q" using dyn_equiv_stat static_empty_ord_inter_equiv_static_inter by blast end end