diff --git a/thys/Saturation_Framework/Given_Clause_Architectures.thy b/thys/Saturation_Framework/Given_Clause_Architectures.thy --- a/thys/Saturation_Framework/Given_Clause_Architectures.thy +++ b/thys/Saturation_Framework/Given_Clause_Architectures.thy @@ -1,1175 +1,1175 @@ (* Title: Given Clause Prover Architectures * Author: Sophie Tourret , 2019-2020 *) section \Given Clause Prover Architectures\ text \This section covers all the results presented in the section 4 of the report. This is where abstract architectures of provers are defined and proven dynamically refutationally complete.\ theory Given_Clause_Architectures imports Lambda_Free_RPOs.Lambda_Free_Util Labeled_Lifting_to_Non_Ground_Calculi begin subsection \Basis of the Given Clause Prover Architectures\ locale given_clause_basis = std?: labeled_lifting_intersection Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_I_q Red_F_q \_F_q \_I_q "{\\<^sub>F\<^sub>L :: ('f \ 'l) inference. Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L)) \ Inf_F}" for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: \'q \ 'g inference set\ and Red_I_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_I_q :: "'q \ 'f inference \ 'g inference set option" + fixes Equiv_F :: "'f \ 'f \ bool" (infix "\" 50) and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_L :: "'l \ 'l \ bool" (infix "\L" 50) and active :: "'l" assumes equiv_equiv_F: "equivp (\)" and wf_prec_F: "minimal_element (\\) UNIV" and wf_prec_L: "minimal_element (\L) UNIV" and compat_equiv_prec: "C1 \ D1 \ C2 \ D2 \ C1 \\ C2 \ D1 \\ D2" and equiv_F_grounding: "q \ Q \ C1 \ C2 \ \_F_q q C1 \ \_F_q q C2" and prec_F_grounding: "q \ Q \ C2 \\ C1 \ \_F_q q C1 \ \_F_q q C2" and active_minimal: "l2 \ active \ active \L l2" and at_least_two_labels: "\l2. active \L l2" and static_ref_comp: "statically_complete_calculus Bot_F Inf_F (\\\) no_labels.Red_I_\ no_labels.Red_F_\_empty" begin abbreviation Inf_FL :: "('f \ 'l) inference set" where "Inf_FL \ {\\<^sub>F\<^sub>L. Infer (map fst (prems_of \\<^sub>F\<^sub>L)) (fst (concl_of \\<^sub>F\<^sub>L)) \ Inf_F}" abbreviation Prec_eq_F :: "'f \ 'f \ bool" (infix "\\" 50) where "C \\ D \ C \ D \ C \\ D" definition Prec_FL :: "('f \ 'l) \ ('f \ 'l) \ bool" (infix "\" 50) where "Cl1 \ Cl2 \ fst Cl1 \\ fst Cl2 \ (fst Cl1 \ fst Cl2 \ snd Cl1 \L snd Cl2)" lemma irrefl_prec_F: "\ C \\ C" by (simp add: minimal_element.po[OF wf_prec_F, unfolded po_on_def irreflp_on_def]) lemma trans_prec_F: "C1 \\ C2 \ C2 \\ C3 \ C1 \\ C3" by (auto intro: minimal_element.po[OF wf_prec_F, unfolded po_on_def transp_on_def, THEN conjunct2, simplified, rule_format]) lemma wf_prec_FL: "minimal_element (\) UNIV" proof show "po_on (\) UNIV" unfolding po_on_def proof show "irreflp_on (\) UNIV" unfolding irreflp_on_def Prec_FL_def proof fix Cl assume a_in: "Cl \ (UNIV::('f \ 'l) set)" have "\ (fst Cl \\ fst Cl)" using wf_prec_F minimal_element.min_elt_ex by force moreover have "\ (snd Cl \L snd Cl)" using wf_prec_L minimal_element.min_elt_ex by force ultimately show "\ (fst Cl \\ fst Cl \ fst Cl \ fst Cl \ snd Cl \L snd Cl)" by blast qed next show "transp_on (\) UNIV" unfolding transp_on_def Prec_FL_def proof (simp, intro allI impI) fix C1 l1 C2 l2 C3 l3 assume trans_hyp: "(C1 \\ C2 \ C1 \ C2 \ l1 \L l2) \ (C2 \\ C3 \ C2 \ C3 \ l2 \L l3)" have "C1 \\ C2 \ C2 \ C3 \ C1 \\ C3" using compat_equiv_prec by (metis equiv_equiv_F equivp_def) moreover have "C1 \ C2 \ C2 \\ C3 \ C1 \\ C3" using compat_equiv_prec by (metis equiv_equiv_F equivp_def) moreover have "l1 \L l2 \ l2 \L l3 \ l1 \L l3" using wf_prec_L unfolding minimal_element_def po_on_def transp_on_def by (meson UNIV_I) moreover have "C1 \ C2 \ C2 \ C3 \ C1 \ C3" using equiv_equiv_F by (meson equivp_transp) ultimately show "C1 \\ C3 \ C1 \ C3 \ l1 \L l3" using trans_hyp using trans_prec_F by blast qed qed next show "wfp_on (\) UNIV" unfolding wfp_on_def proof assume contra: "\f. \i. f i \ UNIV \ f (Suc i) \ f i" then obtain f where f_suc: "\i. f (Suc i) \ f i" by blast define R :: "(('f \ 'l) \ ('f \ 'l)) set" where "R = {(Cl1, Cl2). fst Cl1 \\ fst Cl2}" define S :: "(('f \ 'l) \ ('f \ 'l)) set" where "S = {(Cl1, Cl2). fst Cl1 \ fst Cl2 \ snd Cl1 \L snd Cl2}" obtain k where f_chain: "\i. (f (Suc (i + k)), f (i + k)) \ S" proof (atomize_elim, rule wf_infinite_down_chain_compatible[of R f S]) show "wf R" unfolding R_def using wf_app[OF wf_prec_F[unfolded minimal_element_def, THEN conjunct2, unfolded wfp_on_UNIV wfP_def]] by force next show "\i. (f (Suc i), f i) \ R \ S" using f_suc unfolding R_def S_def Prec_FL_def by blast next show "R O S \ R" unfolding R_def S_def using compat_equiv_prec equiv_equiv_F equivp_reflp by fastforce qed define g where "\i. g i = f (i + k)" have g_chain: "\i. (g (Suc i), g i) \ S" unfolding g_def using f_chain by simp have wf_s: "wf S" unfolding S_def by (rule wf_subset[OF wf_app[OF wf_prec_L[unfolded minimal_element_def, THEN conjunct2, unfolded wfp_on_UNIV wfP_def], of snd]]) fast show False using g_chain[unfolded S_def] wf_s[unfolded S_def, folded wfP_def wfp_on_UNIV, unfolded wfp_on_def] by auto qed qed definition active_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "active_subset M = {CL \ M. snd CL = active}" definition passive_subset :: "('f \ 'l) set \ ('f \ 'l) set" where "passive_subset M = {CL \ M. snd CL \ active}" lemma active_subset_insert[simp]: "active_subset (insert Cl N) = (if snd Cl = active then {Cl} else {}) \ active_subset N" unfolding active_subset_def by auto lemma active_subset_union[simp]: "active_subset (M \ N) = active_subset M \ active_subset N" unfolding active_subset_def by auto lemma passive_subset_insert[simp]: "passive_subset (insert Cl N) = (if snd Cl \ active then {Cl} else {}) \ passive_subset N" unfolding passive_subset_def by auto lemma passive_subset_union[simp]: "passive_subset (M \ N) = passive_subset M \ passive_subset N" unfolding passive_subset_def by auto sublocale std?: statically_complete_calculus Bot_FL Inf_FL "(\\\L)" Red_I Red_F using labeled_static_ref[OF static_ref_comp] . lemma labeled_tiebreaker_lifting: assumes q_in: "q \ Q" shows "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_I_q q) (Red_F_q q) (\_F_L_q q) (\_I_L_q q) (\g. Prec_FL)" proof - have "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_I_q q) (Red_F_q q) (\_F_L_q q) (\_I_L_q q) (\g Cl Cl'. False)" using ord_fam_lifted_q[OF q_in] . then have "standard_lifting Inf_FL Bot_G (Inf_G_q q) (entails_q q) (Red_I_q q) (Red_F_q q) Bot_FL (\_F_L_q q) (\_I_L_q q)" using lifted_q[OF q_in] by blast then show "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_I_q q) (Red_F_q q) (\_F_L_q q) (\_I_L_q q) (\g. Prec_FL)" using wf_prec_FL by (simp add: tiebreaker_lifting.intro tiebreaker_lifting_axioms.intro) qed sublocale lifting_intersection Inf_FL Bot_G Q Inf_G_q entails_q Red_I_q Red_F_q Bot_FL \_F_L_q \_I_L_q "\g. Prec_FL" using labeled_tiebreaker_lifting unfolding lifting_intersection_def by (simp add: lifting_intersection_axioms.intro no_labels.ground.consequence_relation_family_axioms no_labels.ground.inference_system_family_axioms) notation derive (infix "\L" 50) lemma std_Red_I_eq: "std.Red_I = Red_I_\" unfolding Red_I_\_q_def Red_I_\_L_q_def by simp lemma std_Red_F_eq: "std.Red_F = Red_F_\_empty" unfolding Red_F_\_empty_q_def Red_F_\_empty_L_q_def by simp sublocale statically_complete_calculus Bot_FL Inf_FL "(\\\L)" Red_I Red_F by unfold_locales (use statically_complete std_Red_I_eq in auto) (* lem:redundant-labeled-inferences *) lemma labeled_red_inf_eq_red_inf: assumes i_in: "\ \ Inf_FL" shows "\ \ Red_I N \ to_F \ \ no_labels.Red_I_\ (fst ` N)" proof assume i_in2: "\ \ Red_I N" then have "X \ Red_I_\_q ` Q \ \ \ X N" for X unfolding Red_I_def by blast obtain X0 where "X0 \ Red_I_\_q ` Q" using Q_nonempty by blast then obtain q0 where x0_is: "X0 N = Red_I_\_q q0 N" by blast then obtain Y0 where y0_is: "Y0 (fst ` N) = to_F ` (X0 N)" by auto have "Y0 (fst ` N) = no_labels.Red_I_\_q q0 (fst ` N)" unfolding y0_is proof show "to_F ` X0 N \ no_labels.Red_I_\_q q0 (fst ` N)" proof fix \0 assume i0_in: "\0 \ to_F ` X0 N" then have i0_in2: "\0 \ to_F ` Red_I_\_q q0 N" using x0_is by argo then obtain \0_FL where i0_FL_in: "\0_FL \ Inf_FL" and i0_to_i0_FL: "\0 = to_F \0_FL" and subs1: "((\_I_L_q q0 \0_FL) \ None \ the (\_I_L_q q0 \0_FL) \ Red_I_q q0 (\_Fset_q q0 N)) \ ((\_I_L_q q0 \0_FL = None) \ \_F_L_q q0 (concl_of \0_FL) \ \_Fset_q q0 N \ Red_F_q q0 (\_Fset_q q0 N))" unfolding Red_I_\_q_def by blast have concl_swap: "fst (concl_of \0_FL) = concl_of \0" unfolding concl_of_def i0_to_i0_FL to_F_def by simp have i0_in3: "\0 \ Inf_F" using i0_to_i0_FL Inf_FL_to_Inf_F[OF i0_FL_in] unfolding to_F_def by blast { assume not_none: "\_I_q q0 \0 \ None" and "the (\_I_q q0 \0) \ {}" then obtain \1 where i1_in: "\1 \ the (\_I_q q0 \0)" by blast have "the (\_I_q q0 \0) \ Red_I_q q0 (no_labels.\_Fset_q q0 (fst ` N))" using subs1 i0_to_i0_FL not_none by auto } moreover { assume is_none: "\_I_q q0 \0 = None" then have "\_F_q q0 (concl_of \0) \ no_labels.\_Fset_q q0 (fst ` N) \ Red_F_q q0 (no_labels.\_Fset_q q0 (fst ` N))" using subs1 i0_to_i0_FL concl_swap by simp } ultimately show "\0 \ no_labels.Red_I_\_q q0 (fst ` N)" unfolding no_labels.Red_I_\_q_def using i0_in3 by auto qed next show "no_labels.Red_I_\_q q0 (fst ` N) \ to_F ` X0 N" proof fix \0 assume i0_in: "\0 \ no_labels.Red_I_\_q q0 (fst ` N)" then have i0_in2: "\0 \ Inf_F" unfolding no_labels.Red_I_\_q_def by blast obtain \0_FL where i0_FL_in: "\0_FL \ Inf_FL" and i0_to_i0_FL: "\0 = to_F \0_FL" using Inf_F_to_Inf_FL[OF i0_in2] unfolding to_F_def by (smt (verit) Ex_list_of_length fst_conv inference.exhaust_sel inference.sel(1) inference.sel(2) map_fst_zip) have concl_swap: "fst (concl_of \0_FL) = concl_of \0" unfolding concl_of_def i0_to_i0_FL to_F_def by simp have subs1: "((\_I_L_q q0 \0_FL) \ None \ the (\_I_L_q q0 \0_FL) \ Red_I_q q0 (\_Fset_q q0 N)) \ ((\_I_L_q q0 \0_FL = None) \ \_F_L_q q0 (concl_of \0_FL) \ (\_Fset_q q0 N \ Red_F_q q0 (\_Fset_q q0 N)))" using i0_in i0_to_i0_FL concl_swap unfolding no_labels.Red_I_\_q_def by simp then have "\0_FL \ Red_I_\_q q0 N" using i0_FL_in unfolding Red_I_\_q_def by simp then show "\0 \ to_F ` X0 N" using x0_is i0_to_i0_FL i0_in2 by blast qed qed then have "Y \ no_labels.Red_I_\_q ` Q \ to_F \ \ Y (fst ` N)" for Y using i_in2 no_labels.Red_I_def std_Red_I_eq red_inf_impl by force then show "to_F \ \ no_labels.Red_I_\ (fst ` N)" unfolding Red_I_def no_labels.Red_I_\_def by blast next assume to_F_in: "to_F \ \ no_labels.Red_I_\ (fst ` N)" have imp_to_F: "X \ no_labels.Red_I_\_q ` Q \ to_F \ \ X (fst ` N)" for X using to_F_in unfolding no_labels.Red_I_\_def by blast then have to_F_in2: "to_F \ \ no_labels.Red_I_\_q q (fst ` N)" if "q \ Q" for q using that by auto have "Red_I_\_q q N = {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q (fst ` N)}" for q proof show "Red_I_\_q q N \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q (fst ` N)}" proof fix q0 \1 assume i1_in: "\1 \ Red_I_\_q q0 N" have i1_in2: "\1 \ Inf_FL" using i1_in unfolding Red_I_\_q_def by blast then have to_F_i1_in: "to_F \1 \ Inf_F" using Inf_FL_to_Inf_F unfolding to_F_def by blast have concl_swap: "fst (concl_of \1) = concl_of (to_F \1)" unfolding concl_of_def to_F_def by simp then have i1_to_F_in: "to_F \1 \ no_labels.Red_I_\_q q0 (fst ` N)" using i1_in to_F_i1_in unfolding Red_I_\_q_def no_labels.Red_I_\_q_def by force show "\1 \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q0 (fst ` N)}" using i1_in2 i1_to_F_in by blast qed next show "{\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q (fst ` N)} \ Red_I_\_q q N" proof fix q0 \1 assume i1_in: "\1 \ {\0_FL \ Inf_FL. to_F \0_FL \ no_labels.Red_I_\_q q0 (fst ` N)}" then have i1_in2: "\1 \ Inf_FL" by blast then have to_F_i1_in: "to_F \1 \ Inf_F" using Inf_FL_to_Inf_F unfolding to_F_def by blast have concl_swap: "fst (concl_of \1) = concl_of (to_F \1)" unfolding concl_of_def to_F_def by simp then have "((\_I_L_q q0 \1) \ None \ the (\_I_L_q q0 \1) \ Red_I_q q0 (\_Fset_q q0 N)) \ (\_I_L_q q0 \1 = None \ \_F_L_q q0 (concl_of \1) \ \_Fset_q q0 N \ Red_F_q q0 (\_Fset_q q0 N))" using i1_in unfolding no_labels.Red_I_\_q_def by auto then show "\1 \ Red_I_\_q q0 N" using i1_in2 unfolding Red_I_\_q_def by blast qed qed then have "\ \ Red_I_\_q q N" if "q \ Q" for q using that to_F_in2 i_in unfolding Red_I_\_q_def no_labels.Red_I_\_q_def by auto then show "\ \ Red_I_\ N" unfolding Red_I_\_def by blast qed (* lem:redundant-labeled-formulas *) lemma red_labeled_clauses: assumes \C \ no_labels.Red_F_\_empty (fst ` N) \ (\C' \ fst ` N. C' \\ C) \ (\(C', L') \ N. L' \L L \ C' \\ C)\ shows \(C, L) \ Red_F N\ proof - note assms moreover have i: \C \ no_labels.Red_F_\_empty (fst ` N) \ (C, L) \ Red_F N\ proof - assume "C \ no_labels.Red_F_\_empty (fst ` N)" then have "C \ no_labels.Red_F_\_empty_q q (fst ` N)" if "q \ Q" for q unfolding no_labels.Red_F_\_empty_def using that by fast then have g_in_red: "\_F_q q C \ Red_F_q q (no_labels.\_Fset_q q (fst ` N))" if "q \ Q" for q unfolding no_labels.Red_F_\_empty_q_def using that by blast have "\_F_L_q q (C, L) \ Red_F_q q (\_Fset_q q N)" if "q \ Q" for q using that g_in_red by simp then show ?thesis unfolding Red_F_def Red_F_\_q_def by blast qed moreover have ii: \\C' \ fst ` N. C' \\ C \ (C, L) \ Red_F N\ proof - assume "\C' \ fst ` N. C' \\ C" then obtain C' where c'_in: "C' \ fst ` N" and c_prec_c': "C' \\ C" by blast obtain L' where c'_l'_in: "(C', L') \ N" using c'_in by auto have c'_l'_prec: "(C', L') \ (C, L)" using c_prec_c' unfolding Prec_FL_def by simp have c_in_c'_g: "\_F_q q C \ \_F_q q C'" if "q \ Q" for q using prec_F_grounding[OF that c_prec_c'] by presburger then have "\_F_L_q q (C, L) \ \_F_L_q q (C', L')" if "q \ Q" for q using that by auto then have "(C, L) \ Red_F_\_q q N" if "q \ Q" for q unfolding Red_F_\_q_def using that c'_l'_in c'_l'_prec by blast then show ?thesis unfolding Red_F_def by blast qed moreover have iii: \\(C', L') \ N. L' \L L \ C' \\ C \ (C, L) \ Red_F N\ proof - assume "\(C', L') \ N. L' \L L \ C' \\ C" then obtain C' L' where c'_l'_in: "(C', L') \ N" and l'_sub_l: "L' \L L" and c'_sub_c: "C' \\ C" by fast have "(C, L) \ Red_F N" if "C' \\ C" using that c'_l'_in ii by fastforce moreover { assume equiv_c_c': "C \ C'" then have equiv_c'_c: "C' \ C" using equiv_equiv_F by (simp add: equivp_symp) then have c'_l'_prec: "(C', L') \ (C, L)" using l'_sub_l unfolding Prec_FL_def by simp have "\_F_q q C = \_F_q q C'" if "q \ Q" for q using that equiv_F_grounding equiv_c_c' equiv_c'_c by (simp add: set_eq_subset) then have "\_F_L_q q (C, L) = \_F_L_q q (C', L')" if "q \ Q" for q using that by auto then have "(C, L) \ Red_F_\_q q N" if "q \ Q" for q unfolding Red_F_\_q_def using that c'_l'_in c'_l'_prec by blast then have ?thesis unfolding Red_F_def by blast } ultimately show ?thesis using c'_sub_c equiv_equiv_F equivp_symp by fastforce qed ultimately show ?thesis by blast qed end subsection \Given Clause Procedure\ locale given_clause = given_clause_basis Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_I_q Red_F_q \_F_q \_I_q Equiv_F Prec_F Prec_L active for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: \'q \ 'g inference set\ and Red_I_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_I_q :: "'q \ 'f inference \ 'g inference set option" and Equiv_F :: "'f \ 'f \ bool" (infix "\" 50) and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_L :: "'l \ 'l \ bool" (infix "\L" 50) and active :: 'l + assumes inf_have_prems: "\F \ Inf_F \ prems_of \F \ []" begin lemma labeled_inf_have_prems: "\ \ Inf_FL \ prems_of \ \ []" using inf_have_prems by fastforce inductive step :: "('f \ 'l) set \ ('f \ 'l) set \ bool" (infix "\GC" 50) where process: "N1 = N \ M \ N2 = N \ M' \ M \ Red_F (N \ M') \ active_subset M' = {} \ N1 \GC N2" | infer: "N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Inf_between (fst ` active_subset N) {C} \ no_labels.Red_I (fst ` (N \ {(C, active)} \ M)) \ N1 \GC N2" lemma one_step_equiv: "N1 \GC N2 \ N1 \L N2" proof (cases N1 N2 rule: step.cases) show "N1 \GC N2 \ N1 \GC N2" by blast next fix N M M' assume gc_step: "N1 \GC N2" and n1_is: "N1 = N \ M" and n2_is: "N2 = N \ M'" and m_red: "M \ Red_F (N \ M')" and active_empty: "active_subset M' = {}" have "N1 - N2 \ Red_F N2" using n1_is n2_is m_red by auto then show "N1 \L N2" unfolding derive.simps by blast next fix N C L M assume gc_step: "N1 \GC N2" and n1_is: "N1 = N \ {(C, L)}" and not_active: "L \ active" and n2_is: "N2 = N \ {(C, active)} \ M" and active_empty: "active_subset M = {}" have "(C, active) \ N2" using n2_is by auto moreover have "C \\ C" using equiv_equiv_F by (metis equivp_def) moreover have "active \L L" using active_minimal[OF not_active] . ultimately have "{(C, L)} \ Red_F N2" using red_labeled_clauses by blast moreover have "N1 - N2 = {} \ N1 - N2 = {(C, L)}" using n1_is n2_is by blast ultimately have "N1 - N2 \ Red_F N2" using std_Red_F_eq by blast then show "N1 \L N2" unfolding derive.simps by blast qed (* lem:gc-derivations-are-red-derivations *) lemma gc_to_red: "chain (\GC) Ns \ chain (\L) Ns" using one_step_equiv Lazy_List_Chain.chain_mono by blast lemma (in-) all_ex_finite_set: "(\(j::nat)\{0..(n::nat). P j n) \ (\n1 n2. \j\{0.. P j n2 \ n1 = n2) \ finite {n. \j \ {0.. nat \ bool" assume allj_exn: "\j\{0..n. P j n" and uniq_n: "\n1 n2. \j\{0.. P j n2 \ n1 = n2" have "{n. \j \ {0..((\j. {n. P j n}) ` {0..j\{0.. finite {n. \j \ {0..j. {n. P j n}"] by simp have "\j\{0..!n. P j n" using allj_exn uniq_n by blast then have "\j\{0..j \ {0..GC) Ns" and init_state: "active_subset (lhd Ns) = {}" and final_state: "passive_subset (Liminf_llist Ns) = {}" shows "fair Ns" unfolding fair_def proof fix \ assume i_in: "\ \ Inf_from (Liminf_llist Ns)" note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have i_in_inf_fl: "\ \ Inf_FL" using i_in unfolding Inf_from_def by blast have "Liminf_llist Ns = active_subset (Liminf_llist Ns)" using final_state unfolding passive_subset_def active_subset_def by blast then have i_in2: "\ \ Inf_from (active_subset (Liminf_llist Ns))" using i_in by simp define m where "m = length (prems_of \)" then have m_def_F: "m = length (prems_of (to_F \))" unfolding to_F_def by simp have i_in_F: "to_F \ \ Inf_F" using i_in Inf_FL_to_Inf_F unfolding Inf_from_def to_F_def by blast then have m_pos: "m > 0" using m_def_F using inf_have_prems by blast have exist_nj: "\j \ {0..nj. enat (Suc nj) < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns nj) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns k)))" proof clarify fix j assume j_in: "j \ {0.. ! j" using i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have "(C, active) \ Liminf_llist Ns" using j_in i_in unfolding m_def Inf_from_def by force then obtain nj where nj_is: "enat nj < llength Ns" and c_in2: "(C, active) \ \ (lnth Ns ` {k. nj \ k \ enat k < llength Ns})" unfolding Liminf_llist_def using init_state by blast then have c_in3: "\k. k \ nj \ enat k < llength Ns \ (C, active) \ lnth Ns k" by blast have nj_pos: "nj > 0" using init_state c_in2 nj_is unfolding active_subset_def lhd_is by force obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength Ns \ (C, active) \ \ (lnth Ns ` {k. nj \ k \ enat k < llength Ns}))" by blast then have in_allk: "\k. k \ nj_min \ enat k < llength Ns \ (C, active) \ (lnth Ns k)" using c_in3 nj_is c_in2 by (metis (mono_tags, lifting) INT_E LeastI_ex mem_Collect_eq) have njm_smaller_D: "enat nj_min < llength Ns" using nj_min_is by (smt LeastI_ex \\thesis. (\nj. \enat nj < llength Ns; (C, active) \ \ (lnth Ns ` {k. nj \ k \ enat k < llength Ns})\ \ thesis) \ thesis\) have "nj_min > 0" using nj_is c_in2 nj_pos nj_min_is lhd_is by (metis (mono_tags, lifting) Collect_empty_eq \(C, active) \ Liminf_llist Ns\ \Liminf_llist Ns = active_subset (Liminf_llist Ns)\ \\k\nj_min. enat k < llength Ns \ (C, active) \ lnth Ns k\ active_subset_def init_state linorder_not_less mem_Collect_eq zero_enat_def chain_length_pos[OF deriv]) then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto then have njm_prec_njm: "njm_prec < nj_min" by blast then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp have njm_prec_smaller_d: "njm_prec < llength Ns" by (rule less_trans[OF njm_prec_njm_enat njm_smaller_D]) have njm_prec_all_suc: "\k>njm_prec. enat k < llength Ns \ (C, active) \ lnth Ns k" using nj_prec_is in_allk by simp have notin_njm_prec: "(C, active) \ lnth Ns njm_prec" proof (rule ccontr) assume "\ (C, active) \ lnth Ns njm_prec" then have absurd_hyp: "(C, active) \ lnth Ns njm_prec" by simp have prec_smaller: "enat njm_prec < llength Ns" using nj_min_is nj_prec_is by (smt LeastI_ex Suc_leD \\thesis. (\nj. \enat nj < llength Ns; (C, active) \ \ (lnth Ns ` {k. nj \ k \ enat k < llength Ns})\ \ thesis) \ thesis\ enat_ord_simps(1) le_eq_less_or_eq le_less_trans) have "(C, active) \ \ (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns})" proof - { fix k assume k_in: "njm_prec \ k \ enat k < llength Ns" have "k = njm_prec \ (C, active) \ lnth Ns k" using absurd_hyp by simp moreover have "njm_prec < k \ (C, active) \ lnth Ns k" using nj_prec_is in_allk k_in by simp ultimately have "(C, active) \ lnth Ns k" using k_in by fastforce } then show "(C, active) \ \ (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns})" by blast qed then have "enat njm_prec < llength Ns \ (C, active) \ \ (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns})" using prec_smaller by blast then show False using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast qed then have notin_active_subs_njm_prec: "(C, active) \ active_subset (lnth Ns njm_prec)" unfolding active_subset_def by blast then show "\nj. enat (Suc nj) < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns nj) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns k))" using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting) active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv) qed define nj_set where "nj_set = {nj. (\j\{0.. prems_of \ ! j \ active_subset (lnth Ns nj) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns k)))}" then have nj_not_empty: "nj_set \ {}" proof - have zero_in: "0 \ {0.. ! 0 \ active_subset (lnth Ns n0)" and "\k>n0. enat k < llength Ns \ prems_of \ ! 0 \ active_subset (lnth Ns k)" using exist_nj by fast then have "n0 \ nj_set" unfolding nj_set_def using zero_in by blast then show "nj_set \ {}" by auto qed have nj_finite: "finite nj_set" using all_ex_finite_set[OF exist_nj] by (metis (no_types, lifting) Suc_ile_eq dual_order.strict_implies_order linorder_neqE_nat nj_set_def) (* the n below in the n-1 from the pen-and-paper proof *) have "\n \ nj_set. \nj \ nj_set. nj \ n" using nj_not_empty nj_finite using Max_ge Max_in by blast then obtain n where n_in: "n \ nj_set" and n_bigger: "\nj \ nj_set. nj \ n" by blast then obtain j0 where j0_in: "j0 \ {0.. ! j0 \ active_subset (lnth Ns n)" and j0_allin: "(\k. k > n \ enat k < llength Ns \ prems_of \ ! j0 \ active_subset (lnth Ns k))" unfolding nj_set_def by blast obtain C0 where C0_is: "prems_of \ ! j0 = (C0, active)" using j0_in using i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have C0_prems_i: "(C0, active) \ set (prems_of \)" using in_set_conv_nth j0_in m_def by force have C0_in: "(C0, active) \ (lnth Ns (Suc n))" using C0_is j0_allin suc_n_length by (simp add: active_subset_def) have C0_notin: "(C0, active) \ (lnth Ns n)" using C0_is j0_notin unfolding active_subset_def by simp have step_n: "lnth Ns n \GC lnth Ns (Suc n)" using deriv chain_lnth_rel n_in unfolding nj_set_def by blast have "\N C L M. (lnth Ns n = N \ {(C, L)} \ lnth Ns (Suc n) = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Inf_between (fst ` (active_subset N)) {C} \ no_labels.Red_I (fst ` (N \ {(C, active)} \ M)))" proof - have proc_or_infer: "(\N1 N M N2 M'. lnth Ns n = N1 \ lnth Ns (Suc n) = N2 \ N1 = N \ M \ N2 = N \ M' \ M \ Red_F (N \ M') \ active_subset M' = {}) \ (\N1 N C L N2 M. lnth Ns n = N1 \ lnth Ns (Suc n) = N2 \ N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ M \ L \ active \ active_subset M = {} \ no_labels.Inf_between (fst ` (active_subset N)) {C} \ no_labels.Red_I (fst ` (N \ {(C, active)} \ M)))" using step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n by blast show ?thesis using C0_in C0_notin proc_or_infer j0_in C0_is by (smt Un_iff active_subset_def mem_Collect_eq snd_conv sup_bot.right_neutral) qed then obtain N M L where inf_from_subs: "no_labels.Inf_between (fst ` (active_subset N)) {C0} \ no_labels.Red_I (fst ` (N \ {(C0, active)} \ M))" and nth_d_is: "lnth Ns n = N \ {(C0, L)}" and suc_nth_d_is: "lnth Ns (Suc n) = N \ {(C0, active)} \ M" and l_not_active: "L \ active" using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce have "j \ {0.. prems_of \ ! j \ prems_of \ ! j0 \ prems_of \ ! j \ (active_subset N)" for j proof - fix j assume j_in: "j \ {0.. ! j \ prems_of \ ! j0" obtain nj where nj_len: "enat (Suc nj) < llength Ns" and nj_prems: "prems_of \ ! j \ active_subset (lnth Ns nj)" and nj_greater: "(\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (lnth Ns k))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast moreover have "nj \ n" proof (rule ccontr) assume "\ nj \ n" then have "prems_of \ ! j = (C0, active)" using C0_in C0_notin step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n by (smt Un_iff nth_d_is suc_nth_d_is l_not_active active_subset_def insertCI insertE lessI mem_Collect_eq nj_greater nj_prems snd_conv suc_n_length) then show False using j_not_j0 C0_is by simp qed ultimately have "nj < n" using n_bigger by force then have "prems_of \ ! j \ (active_subset (lnth Ns n))" using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order unfolding nj_set_def by blast then show "prems_of \ ! j \ (active_subset N)" using nth_d_is l_not_active unfolding active_subset_def by force qed then have "set (prems_of \) \ active_subset N \ {(C0, active)}" using C0_prems_i C0_is m_def by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI) moreover have "\ (set (prems_of \) \ active_subset N - {(C0, active)})" using C0_prems_i by blast ultimately have "\ \ Inf_between (active_subset N) {(C0, active)}" using i_in_inf_fl unfolding Inf_between_def Inf_from_def by blast then have "to_F \ \ no_labels.Inf_between (fst ` (active_subset N)) {C0}" unfolding to_F_def Inf_between_def Inf_from_def no_labels.Inf_between_def no_labels.Inf_from_def using Inf_FL_to_Inf_F by force then have "to_F \ \ no_labels.Red_I (fst ` (lnth Ns (Suc n)))" using suc_nth_d_is inf_from_subs by fastforce then have "\q \ Q. (\_I_q q (to_F \) \ None \ the (\_I_q q (to_F \)) \ Red_I_q q (\ (\_F_q q ` fst ` lnth Ns (Suc n)))) \ (\_I_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ \ (\_F_q q ` fst ` lnth Ns (Suc n)) \ Red_F_q q (\ (\_F_q q ` fst ` lnth Ns (Suc n))))" unfolding to_F_def no_labels.Red_I_def no_labels.Red_I_\_q_def by blast then have "\ \ Red_I_\ (lnth Ns (Suc n))" using i_in_inf_fl unfolding Red_I_\_def Red_I_\_q_def by (simp add: to_F_def) then show "\ \ Sup_llist (lmap Red_I_\ Ns)" unfolding Sup_llist_def using suc_n_length by auto qed theorem gc_complete_Liminf: assumes deriv: "chain (\GC) Ns" and init_state: "active_subset (lhd Ns) = {}" and final_state: "passive_subset (Liminf_llist Ns) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\ (fst ` lhd Ns) {B}" shows "\BL \ Bot_FL. BL \ Liminf_llist Ns" proof - note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have labeled_b_in: "(B, active) \ Bot_FL" using b_in by simp have labeled_bot_entailed: "entails_\_L (lhd Ns) {(B, active)}" using labeled_entailment_lifting bot_entailed lhd_is by fastforce have fair: "fair Ns" using gc_fair[OF deriv init_state final_state] . then show ?thesis using dynamically_complete_Liminf[OF labeled_b_in gc_to_red[OF deriv] fair labeled_bot_entailed] by blast qed (* thm:gc-completeness *) theorem gc_complete: assumes deriv: "chain (\GC) Ns" and init_state: "active_subset (lhd Ns) = {}" and final_state: "passive_subset (Liminf_llist Ns) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\ (fst ` lhd Ns) {B}" shows "\i. enat i < llength Ns \ (\BL \ Bot_FL. BL \ lnth Ns i)" proof - note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have "\BL\Bot_FL. BL \ Liminf_llist Ns" using assms by (rule gc_complete_Liminf) then show ?thesis unfolding Liminf_llist_def by auto qed end subsection \Lazy Given Clause Procedure\ locale lazy_given_clause = given_clause_basis Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_I_q Red_F_q \_F_q \_I_q Equiv_F Prec_F Prec_L active for Bot_F :: "'f set" and Inf_F :: "'f inference set" and Bot_G :: "'g set" and Q :: "'q set" and entails_q :: "'q \ 'g set \ 'g set \ bool" and Inf_G_q :: \'q \ 'g inference set\ and Red_I_q :: "'q \ 'g set \ 'g inference set" and Red_F_q :: "'q \ 'g set \ 'g set" and \_F_q :: "'q \ 'f \ 'g set" and \_I_q :: "'q \ 'f inference \ 'g inference set option" and Equiv_F :: "'f \ 'f \ bool" (infix "\" 50) and Prec_F :: "'f \ 'f \ bool" (infix "\\" 50) and Prec_L :: "'l \ 'l \ bool" (infix "\L" 50) and active :: 'l begin inductive step :: "'f inference set \ ('f \ 'l) set \ 'f inference set \ ('f \ 'l) set \ bool" (infix "\LGC" 50) where process: "N1 = N \ M \ N2 = N \ M' \ M \ Red_F (N \ M') \ active_subset M' = {} \ (T, N1) \LGC (T, N2)" | schedule_infer: "T2 = T1 \ T' \ N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ L \ active \ T' = no_labels.Inf_between (fst ` (active_subset N)) {C} \ (T1, N1) \LGC (T2, N2)" | compute_infer: "T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I (fst ` (N1 \ M)) \ (T1, N1) \LGC (T2, N2)" | - delete_orphans: "T1 = T2 \ T' \ + delete_orphan_formulas: "T1 = T2 \ T' \ T' \ no_labels.Inf_from (fst ` (active_subset N)) = {} \ (T1, N) \LGC (T2, N)" lemma premise_free_inf_always_from: "\ \ Inf_F \ prems_of \ = [] \ \ \ no_labels.Inf_from N" unfolding no_labels.Inf_from_def by simp lemma one_step_equiv: "(T1, N1) \LGC (T2, N2) \ N1 \L N2" proof (cases "(T1, N1)" "(T2, N2)" rule: step.cases) show "(T1, N1) \LGC (T2, N2) \ (T1, N1) \LGC (T2, N2)" by blast next fix N M M' assume n1_is: "N1 = N \ M" and n2_is: "N2 = N \ M'" and m_red: "M \ Red_F (N \ M')" have "N1 - N2 \ Red_F N2" using n1_is n2_is m_red by auto then show "N1 \L N2" unfolding derive.simps by blast next fix N C L M assume n1_is: "N1 = N \ {(C, L)}" and not_active: "L \ active" and n2_is: "N2 = N \ {(C, active)}" have "(C, active) \ N2" using n2_is by auto moreover have "C \\ C" by (metis equivp_def equiv_equiv_F) moreover have "active \L L" using active_minimal[OF not_active] . ultimately have "{(C, L)} \ Red_F N2" using red_labeled_clauses by blast then have "N1 - N2 \ Red_F N2" using std_Red_F_eq using n1_is n2_is by blast then show "N1 \L N2" unfolding derive.simps by blast next fix M assume n2_is: "N2 = N1 \ M" have "N1 - N2 \ Red_F N2" using n2_is by blast then show "N1 \L N2" unfolding derive.simps by blast next assume n2_is: "N2 = N1" have "N1 - N2 \ Red_F N2" using n2_is by blast then show "N1 \L N2" unfolding derive.simps by blast qed (* lem:lgc-derivations-are-red-derivations *) lemma lgc_to_red: "chain (\LGC) Ns \ chain (\L) (lmap snd Ns)" using one_step_equiv Lazy_List_Chain.chain_mono by (smt chain_lmap prod.collapse) (* lem:fair-lgc-derivations *) lemma lgc_fair: assumes deriv: "chain (\LGC) Ns" and init_state: "active_subset (snd (lhd Ns)) = {}" and final_state: "passive_subset (Liminf_llist (lmap snd Ns)) = {}" and no_prems_init: "\\ \ Inf_F. prems_of \ = [] \ \ \ fst (lhd Ns)" and final_schedule: "Liminf_llist (lmap fst Ns) = {}" shows "fair (lmap snd Ns)" unfolding fair_def proof fix \ assume i_in: "\ \ Inf_from (Liminf_llist (lmap snd Ns))" note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]] have i_in_inf_fl: "\ \ Inf_FL" using i_in unfolding Inf_from_def by blast have "Liminf_llist (lmap snd Ns) = active_subset (Liminf_llist (lmap snd Ns))" using final_state unfolding passive_subset_def active_subset_def by blast then have i_in2: "\ \ Inf_from (active_subset (Liminf_llist (lmap snd Ns)))" using i_in by simp define m where "m = length (prems_of \)" then have m_def_F: "m = length (prems_of (to_F \))" unfolding to_F_def by simp have i_in_F: "to_F \ \ Inf_F" using i_in Inf_FL_to_Inf_F unfolding Inf_from_def to_F_def by blast have exist_nj: "\j \ {0..nj. enat (Suc nj) < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns nj)) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k))))" proof clarify fix j assume j_in: "j \ {0.. ! j" using i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have "(C, active) \ Liminf_llist (lmap snd Ns)" using j_in i_in unfolding m_def Inf_from_def by force then obtain nj where nj_is: "enat nj < llength Ns" and c_in2: "(C, active) \ \ (snd ` (lnth Ns ` {k. nj \ k \ enat k < llength Ns}))" unfolding Liminf_llist_def using init_state by fastforce then have c_in3: "\k. k \ nj \ enat k < llength Ns \ (C, active) \ snd (lnth Ns k)" by blast have nj_pos: "nj > 0" using init_state c_in2 nj_is unfolding active_subset_def lhd_is by fastforce obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength Ns \ (C, active) \ \ (snd ` (lnth Ns ` {k. nj \ k \ enat k < llength Ns})))" by blast then have in_allk: "\k. k \ nj_min \ enat k < llength Ns \ (C, active) \ snd (lnth Ns k)" using c_in3 nj_is c_in2 INT_E LeastI_ex by (smt INT_iff INT_simps(10) c_is image_eqI mem_Collect_eq) have njm_smaller_D: "enat nj_min < llength Ns" using nj_min_is by (smt LeastI_ex \\thesis. (\nj. \enat nj < llength Ns; (C, active) \ \ (snd ` (lnth Ns ` {k. nj \ k \ enat k < llength Ns}))\ \ thesis) \ thesis\) have "nj_min > 0" using nj_is c_in2 nj_pos nj_min_is lhd_is by (metis (mono_tags, lifting) active_subset_def emptyE in_allk init_state mem_Collect_eq not_less snd_conv zero_enat_def chain_length_pos[OF deriv]) then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto then have njm_prec_njm: "njm_prec < nj_min" by blast then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp have njm_prec_smaller_d: "njm_prec < llength Ns" by (rule less_trans[OF njm_prec_njm_enat njm_smaller_D]) have njm_prec_all_suc: "\k>njm_prec. enat k < llength Ns \ (C, active) \ snd (lnth Ns k)" using nj_prec_is in_allk by simp have notin_njm_prec: "(C, active) \ snd (lnth Ns njm_prec)" proof (rule ccontr) assume "\ (C, active) \ snd (lnth Ns njm_prec)" then have absurd_hyp: "(C, active) \ snd (lnth Ns njm_prec)" by simp have prec_smaller: "enat njm_prec < llength Ns" using nj_min_is nj_prec_is by (smt LeastI_ex Suc_leD \\thesis. (\nj. \enat nj < llength Ns; (C, active) \ \ (snd ` (lnth Ns ` {k. nj \ k \ enat k < llength Ns}))\ \ thesis) \ thesis\ enat_ord_simps(1) le_eq_less_or_eq le_less_trans) have "(C, active) \ \ (snd ` (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns}))" proof - { fix k assume k_in: "njm_prec \ k \ enat k < llength Ns" have "k = njm_prec \ (C, active) \ snd (lnth Ns k)" using absurd_hyp by simp moreover have "njm_prec < k \ (C, active) \ snd (lnth Ns k)" using nj_prec_is in_allk k_in by simp ultimately have "(C, active) \ snd (lnth Ns k)" using k_in by fastforce } then show "(C, active) \ \ (snd ` (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns}))" by blast qed then have "enat njm_prec < llength Ns \ (C, active) \ \ (snd ` (lnth Ns ` {k. njm_prec \ k \ enat k < llength Ns}))" using prec_smaller by blast then show False using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast qed then have notin_active_subs_njm_prec: "(C, active) \ active_subset (snd (lnth Ns njm_prec))" unfolding active_subset_def by blast then show "\nj. enat (Suc nj) < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns nj)) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting) active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv) qed define nj_set where "nj_set = {nj. (\j\{0.. prems_of \ ! j \ active_subset (snd (lnth Ns nj)) \ (\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k))))}" { assume m_null: "m = 0" then have "enat 0 < llength Ns \ to_F \ \ fst (lhd Ns)" using no_prems_init i_in_F m_def_F zero_enat_def chain_length_pos[OF deriv] by auto then have "\n. enat n < llength Ns \ to_F \ \ fst (lnth Ns n)" unfolding lhd_is by blast } moreover { assume m_pos: "m > 0" have nj_not_empty: "nj_set \ {}" proof - have zero_in: "0 \ {0.. ! 0 \ active_subset (snd (lnth Ns n0))" and "\k>n0. enat k < llength Ns \ prems_of \ ! 0 \ active_subset (snd (lnth Ns k))" using exist_nj by fast then have "n0 \ nj_set" unfolding nj_set_def using zero_in by blast then show "nj_set \ {}" by auto qed have nj_finite: "finite nj_set" using all_ex_finite_set[OF exist_nj] by (metis (no_types, lifting) Suc_ile_eq dual_order.strict_implies_order linorder_neqE_nat nj_set_def) have "\n \ nj_set. \nj \ nj_set. nj \ n" using nj_not_empty nj_finite using Max_ge Max_in by blast then obtain n where n_in: "n \ nj_set" and n_bigger: "\nj \ nj_set. nj \ n" by blast then obtain j0 where j0_in: "j0 \ {0.. ! j0 \ active_subset (snd (lnth Ns n))" and j0_allin: "(\k. k > n \ enat k < llength Ns \ prems_of \ ! j0 \ active_subset (snd (lnth Ns k)))" unfolding nj_set_def by blast obtain C0 where C0_is: "prems_of \ ! j0 = (C0, active)" using j0_in i_in2 unfolding m_def Inf_from_def active_subset_def by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv) then have C0_prems_i: "(C0, active) \ set (prems_of \)" using in_set_conv_nth j0_in m_def by force have C0_in: "(C0, active) \ (snd (lnth Ns (Suc n)))" using C0_is j0_allin suc_n_length by (simp add: active_subset_def) have C0_notin: "(C0, active) \ (snd (lnth Ns n))" using C0_is j0_notin unfolding active_subset_def by simp have step_n: "lnth Ns n \LGC lnth Ns (Suc n)" using deriv chain_lnth_rel n_in unfolding nj_set_def by blast have is_scheduled: "\T2 T1 T' N1 N C L N2. lnth Ns n = (T1, N1) \ lnth Ns (Suc n) = (T2, N2) \ T2 = T1 \ T' \ N1 = N \ {(C, L)} \ N2 = N \ {(C, active)} \ L \ active \ T' = no_labels.Inf_between (fst ` active_subset N) {C}" using step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n C0_in C0_notin unfolding active_subset_def by fastforce then obtain T2 T1 T' N1 N L N2 where nth_d_is: "lnth Ns n = (T1, N1)" and suc_nth_d_is: "lnth Ns (Suc n) = (T2, N2)" and t2_is: "T2 = T1 \ T'" and n1_is: "N1 = N \ {(C0, L)}" "N2 = N \ {(C0, active)}" and l_not_active: "L \ active" and tp_is: "T' = no_labels.Inf_between (fst ` active_subset N) {C0}" using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce have "j \ {0.. prems_of \ ! j \ prems_of \ ! j0 \ prems_of \ ! j \ (active_subset N)" for j proof - fix j assume j_in: "j \ {0.. ! j \ prems_of \ ! j0" obtain nj where nj_len: "enat (Suc nj) < llength Ns" and nj_prems: "prems_of \ ! j \ active_subset (snd (lnth Ns nj))" and nj_greater: "(\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast moreover have "nj \ n" proof (rule ccontr) assume "\ nj \ n" then have "prems_of \ ! j = (C0, active)" using C0_in C0_notin step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n active_subset_def is_scheduled nj_greater nj_prems suc_n_length by auto then show False using j_not_j0 C0_is by simp qed ultimately have "nj < n" using n_bigger by force then have "prems_of \ ! j \ (active_subset (snd (lnth Ns n)))" using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order unfolding nj_set_def by blast then show "prems_of \ ! j \ (active_subset N)" using nth_d_is l_not_active n1_is unfolding active_subset_def by force qed then have prems_i_active: "set (prems_of \) \ active_subset N \ {(C0, active)}" using C0_prems_i C0_is m_def by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI) moreover have "\ (set (prems_of \) \ active_subset N - {(C0, active)})" using C0_prems_i by blast ultimately have "\ \ Inf_between (active_subset N) {(C0, active)}" using i_in_inf_fl prems_i_active unfolding Inf_between_def Inf_from_def by blast then have "to_F \ \ no_labels.Inf_between (fst ` (active_subset N)) {C0}" unfolding to_F_def Inf_between_def Inf_from_def no_labels.Inf_between_def no_labels.Inf_from_def using Inf_FL_to_Inf_F by force then have i_in_t2: "to_F \ \ T2" using tp_is t2_is by simp have "j \ {0.. (\k. k > n \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" for j proof (cases "j = j0") case True assume "j = j0" then show "(\k. k > n \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using j0_allin by simp next case False assume j_in: "j \ {0.. j0" obtain nj where nj_len: "enat (Suc nj) < llength Ns" and nj_prems: "prems_of \ ! j \ active_subset (snd (lnth Ns nj))" and nj_greater: "(\k. k > nj \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using exist_nj j_in by blast then have "nj \ nj_set" unfolding nj_set_def using j_in by blast then show "(\k. k > n \ enat k < llength Ns \ prems_of \ ! j \ active_subset (snd (lnth Ns k)))" using nj_greater n_bigger by auto qed then have allj_allk: "(\c\ set (prems_of \). (\k. k > n \ enat k < llength Ns \ c \ active_subset (snd (lnth Ns k))))" using m_def by (metis atLeast0LessThan in_set_conv_nth lessThan_iff) have "\c\ set (prems_of \). snd c = active" using prems_i_active unfolding active_subset_def by auto then have ex_n_i_in: "\n. enat (Suc n) < llength Ns \ to_F \ \ fst (lnth Ns (Suc n)) \ (\c\ set (prems_of \). snd c = active) \ (\c\ set (prems_of \). (\k. k > n \ enat k < llength Ns \ c \ active_subset (snd (lnth Ns k))))" using allj_allk i_in_t2 suc_nth_d_is fstI n_in nj_set_def by auto then have "\n. enat n < llength Ns \ to_F \ \ fst (lnth Ns n) \ (\c\ set (prems_of \). snd c = active) \ (\c\ set (prems_of \). (\k. k \ n \ enat k < llength Ns \ c \ active_subset (snd (lnth Ns k))))" by auto } ultimately obtain n T2 N2 where i_in_suc_n: "to_F \ \ fst (lnth Ns n)" and all_prems_active_after: "m > 0 \ (\c\ set (prems_of \). (\k. k \ n \ enat k < llength Ns \ c \ active_subset (snd (lnth Ns k))))" and suc_n_length: "enat n < llength Ns" and suc_nth_d_is: "lnth Ns n = (T2, N2)" by (metis less_antisym old.prod.exhaust zero_less_Suc) then have i_in_t2: "to_F \ \ T2" by simp have "\p\n. enat (Suc p) < llength Ns \ to_F \ \ (fst (lnth Ns p)) \ to_F \ \ (fst (lnth Ns (Suc p)))" proof (rule ccontr) assume contra: "\ (\p\n. enat (Suc p) < llength Ns \ to_F \ \ (fst (lnth Ns p)) \ to_F \ \ (fst (lnth Ns (Suc p))))" then have i_in_suc: "p0 \ n \ enat (Suc p0) < llength Ns \ to_F \ \ (fst (lnth Ns p0)) \ to_F \ \ (fst (lnth Ns (Suc p0)))" for p0 by blast have "p0 \ n \ enat p0 < llength Ns \ to_F \ \ (fst (lnth Ns p0))" for p0 proof (induction rule: nat_induct_at_least) case base then show ?case using i_in_t2 suc_nth_d_is by simp next case (Suc p0) assume p_bigger_n: "n \ p0" and induct_hyp: "enat p0 < llength Ns \ to_F \ \ fst (lnth Ns p0)" and sucsuc_smaller_d: "enat (Suc p0) < llength Ns" have suc_p_bigger_n: "n \ p0" using p_bigger_n by simp have suc_smaller_d: "enat p0 < llength Ns" using sucsuc_smaller_d Suc_ile_eq dual_order.strict_implies_order by blast then have "to_F \ \ fst (lnth Ns p0)" using induct_hyp by blast then show ?case using i_in_suc[OF suc_p_bigger_n sucsuc_smaller_d] by blast qed then have i_in_all_bigger_n: "\j. j \ n \ enat j < llength Ns \ to_F \ \ (fst (lnth Ns j))" by presburger have "llength (lmap fst Ns) = llength Ns" by force then have "to_F \ \ \ (lnth (lmap fst Ns) ` {j. n \ j \ enat j < llength (lmap fst Ns)})" using i_in_all_bigger_n using Suc_le_D by auto then have "to_F \ \ Liminf_llist (lmap fst Ns)" unfolding Liminf_llist_def using suc_n_length by auto then show False using final_schedule by fast qed then obtain p where p_greater_n: "p \ n" and p_smaller_d: "enat (Suc p) < llength Ns" and i_in_p: "to_F \ \ (fst (lnth Ns p))" and i_notin_suc_p: "to_F \ \ (fst (lnth Ns (Suc p)))" by blast have p_neq_n: "Suc p \ n" using i_notin_suc_p i_in_suc_n by blast have step_p: "lnth Ns p \LGC lnth Ns (Suc p)" using deriv p_smaller_d chain_lnth_rel by blast then have "\T1 T2 \ N2 N1 M. lnth Ns p = (T1, N1) \ lnth Ns (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I_\ (fst ` (N1 \ M))" proof - have ci_or_do: "(\T1 T2 \ N2 N1 M. lnth Ns p = (T1, N1) \ lnth Ns (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I_\ (fst ` (N1 \ M))) \ (\T1 T2 T' N. lnth Ns p = (T1, N) \ lnth Ns (Suc p) = (T2, N) \ T1 = T2 \ T' \ T' \ no_labels.Inf_from (fst ` active_subset N) = {})" using step.simps[of "lnth Ns p" "lnth Ns (Suc p)"] step_p i_in_p i_notin_suc_p by fastforce then have p_greater_n_strict: "n < Suc p" using suc_nth_d_is p_greater_n i_in_t2 i_notin_suc_p le_eq_less_or_eq by force have "m > 0 \ j \ {0.. prems_of (to_F \) ! j \ fst ` active_subset (snd (lnth Ns p))" for j proof - fix j assume m_pos: "m > 0" and j_in: "j \ {0.. ! j \ (active_subset (snd (lnth Ns p)))" using all_prems_active_after[OF m_pos] p_smaller_d m_def p_greater_n p_neq_n by (meson Suc_ile_eq atLeastLessThan_iff dual_order.strict_implies_order nth_mem p_greater_n_strict) then have "fst (prems_of \ ! j) \ fst ` active_subset (snd (lnth Ns p))" by blast then show "prems_of (to_F \) ! j \ fst ` active_subset (snd (lnth Ns p))" unfolding to_F_def using j_in m_def by simp qed then have prems_i_active_p: "m > 0 \ to_F \ \ no_labels.Inf_from (fst ` active_subset (snd (lnth Ns p)))" using i_in_F unfolding no_labels.Inf_from_def by (smt atLeast0LessThan in_set_conv_nth lessThan_iff m_def_F mem_Collect_eq subsetI) have "m = 0 \ (\T1 T2 \ N2 N1 M. lnth Ns p = (T1, N1) \ lnth Ns (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I_\ (fst ` (N1 \ M)))" using ci_or_do premise_free_inf_always_from[of "to_F \" "fst ` active_subset _", OF i_in_F] m_def i_in_p i_notin_suc_p m_def_F by auto then show "(\T1 T2 \ N2 N1 M. lnth Ns p = (T1, N1) \ lnth Ns (Suc p) = (T2, N2) \ T1 = T2 \ {\} \ N2 = N1 \ M \ active_subset M = {} \ \ \ no_labels.Red_I_\ (fst ` (N1 \ M)))" using ci_or_do i_in_p i_notin_suc_p prems_i_active_p unfolding active_subset_def by force qed then obtain T1p T2p N1p N2p Mp where "lnth Ns p = (T1p, N1p)" and suc_p_is: "lnth Ns (Suc p) = (T2p, N2p)" and "T1p = T2p \ {to_F \}" and "T2p \ {to_F \} = {}" and n2p_is: "N2p = N1p \ Mp"and "active_subset Mp = {}" and i_in_red_inf: "to_F \ \ no_labels.Red_I_\ (fst ` (N1p \ Mp))" using i_in_p i_notin_suc_p by fastforce have "to_F \ \ no_labels.Red_I (fst ` (snd (lnth Ns (Suc p))))" using i_in_red_inf suc_p_is n2p_is by fastforce then have "\q \ Q. (\_I_q q (to_F \) \ None \ the (\_I_q q (to_F \)) \ Red_I_q q (\ (\_F_q q ` fst ` snd (lnth Ns (Suc p))))) \ (\_I_q q (to_F \) = None \ \_F_q q (concl_of (to_F \)) \ \ (\_F_q q ` fst ` snd (lnth Ns (Suc p))) \ Red_F_q q (\ (\_F_q q ` fst ` snd (lnth Ns (Suc p)))))" unfolding to_F_def no_labels.Red_I_def no_labels.Red_I_\_q_def by blast then have "\ \ Red_I_\ (snd (lnth Ns (Suc p)))" using i_in_inf_fl unfolding Red_I_\_def Red_I_\_q_def by (simp add: to_F_def) then show "\ \ Sup_llist (lmap Red_I_\ (lmap snd Ns))" unfolding Sup_llist_def using suc_n_length p_smaller_d by auto qed theorem lgc_complete_Liminf: assumes deriv: "chain (\LGC) Ns" and init_state: "active_subset (snd (lhd Ns)) = {}" and final_state: "passive_subset (Liminf_llist (lmap snd Ns)) = {}" and no_prems_init: "\\ \ Inf_F. prems_of \ = [] \ \ \ fst (lhd Ns)" and final_schedule: "Liminf_llist (lmap fst Ns) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\ (fst ` snd (lhd Ns)) {B}" shows "\BL \ Bot_FL. BL \ Liminf_llist (lmap snd Ns)" proof - have labeled_b_in: "(B, active) \ Bot_FL" using b_in by simp have simp_snd_lmap: "lhd (lmap snd Ns) = snd (lhd Ns)" by (rule llist.map_sel(1)[OF chain_not_lnull[OF deriv]]) have labeled_bot_entailed: "entails_\_L (snd (lhd Ns)) {(B, active)}" using labeled_entailment_lifting bot_entailed by fastforce have "fair (lmap snd Ns)" using lgc_fair[OF deriv init_state final_state no_prems_init final_schedule] . then show ?thesis using dynamically_complete_Liminf labeled_b_in lgc_to_red[OF deriv] labeled_bot_entailed simp_snd_lmap std_Red_I_eq by presburger qed (* thm:lgc-completeness *) theorem lgc_complete: assumes deriv: "chain (\LGC) Ns" and init_state: "active_subset (snd (lhd Ns)) = {}" and final_state: "passive_subset (Liminf_llist (lmap snd Ns)) = {}" and no_prems_init: "\\ \ Inf_F. prems_of \ = [] \ \ \ fst (lhd Ns)" and final_schedule: "Liminf_llist (lmap fst Ns) = {}" and b_in: "B \ Bot_F" and bot_entailed: "no_labels.entails_\ (fst ` snd (lhd Ns)) {B}" shows "\i. enat i < llength Ns \ (\BL \ Bot_FL. BL \ snd (lnth Ns i))" proof - have "\BL\Bot_FL. BL \ Liminf_llist (lmap snd Ns)" using assms by (rule lgc_complete_Liminf) then show ?thesis unfolding Liminf_llist_def by auto qed end end diff --git a/thys/Saturation_Framework_Extensions/Given_Clause_Architectures_Revisited.thy b/thys/Saturation_Framework_Extensions/Given_Clause_Architectures_Revisited.thy --- a/thys/Saturation_Framework_Extensions/Given_Clause_Architectures_Revisited.thy +++ b/thys/Saturation_Framework_Extensions/Given_Clause_Architectures_Revisited.thy @@ -1,498 +1,498 @@ (* Title: New Fairness Proofs for the Given Clause Prover Architectures Author: Jasmin Blanchette , 2020 *) section \New Fairness Proofs for the Given Clause Prover Architectures\ theory Given_Clause_Architectures_Revisited imports Saturation_Framework.Given_Clause_Architectures begin text \The given clause and lazy given clause procedures satisfy key invariants. This provides an alternative way to prove fairness and hence saturation of the limit.\ subsection \Given Clause Procedure\ context given_clause begin definition gc_invar :: "('f \ 'l) set llist \ enat \ bool" where "gc_invar Ns i \ Inf_from (active_subset (Liminf_upto_llist Ns i)) \ Sup_upto_llist (lmap Red_I_\ Ns) i" lemma gc_invar_infinity: assumes nnil: "\ lnull Ns" and invar: "\i. enat i < llength Ns \ gc_invar Ns (enat i)" shows "gc_invar Ns \" unfolding gc_invar_def proof (intro subsetI, unfold Liminf_upto_llist_infinity Sup_upto_llist_infinity) fix \ assume \_inff: "\ \ Inf_from (active_subset (Liminf_llist Ns))" define As where "As = lmap active_subset Ns" have act_ns: "active_subset (Liminf_llist Ns) = Liminf_llist As" unfolding As_def active_subset_def Liminf_set_filter_commute[symmetric] .. note \_inf = Inf_if_Inf_from[OF \_inff] note \_inff' = \_inff[unfolded act_ns] have "\ lnull As" unfolding As_def using nnil by auto moreover have "set (prems_of \) \ Liminf_llist As" using \_inff'[unfolded Inf_from_def] by simp ultimately obtain i where i_lt_as: "enat i < llength As" and prems_sub_ge_i: "set (prems_of \) \ (\j \ {j. i \ j \ enat j < llength As}. lnth As j)" using finite_subset_Liminf_llist_imp_exists_index by blast note i_lt_ns = i_lt_as[unfolded As_def, simplified] have "set (prems_of \) \ lnth As i" using prems_sub_ge_i i_lt_as by auto then have "\ \ Inf_from (active_subset (lnth Ns i))" using i_lt_as \_inf unfolding Inf_from_def As_def by auto then have "\ \ Sup_upto_llist (lmap Red_I_\ Ns) (enat i)" using nnil i_lt_ns invar[unfolded gc_invar_def] by auto then show "\ \ Sup_llist (lmap Red_I_\ Ns)" using Sup_upto_llist_subset_Sup_llist by fastforce qed lemma gc_invar_gc_init: assumes "\ lnull Ns" and "active_subset (lhd Ns) = {}" shows "gc_invar Ns 0" using assms labeled_inf_have_prems unfolding gc_invar_def Inf_from_def by auto lemma gc_invar_gc_step: assumes Si_lt: "enat (Suc i) < llength Ns" and invar: "gc_invar Ns i" and step: "lnth Ns i \GC lnth Ns (Suc i)" shows "gc_invar Ns (Suc i)" using step Si_lt invar proof cases have i_lt: "enat i < llength Ns" using Si_lt Suc_ile_eq order.strict_implies_order by blast have lim_i: "Liminf_upto_llist Ns (enat i) = lnth Ns i" using i_lt by auto have lim_Si: "Liminf_upto_llist Ns (enat (Suc i)) = lnth Ns (Suc i)" using Si_lt by auto { case (process N M M') note ni = this(1) and nSi = this(2) and m'_pas = this(4) have "Inf_from (active_subset (N \ M')) \ Inf_from (active_subset (N \ M))" using m'_pas by (simp add: Inf_from_mono) also have "\ \ Sup_upto_llist (lmap Red_I_\ Ns) (enat i)" using invar unfolding gc_invar_def lim_i ni by auto also have "\ \ Sup_upto_llist (lmap Red_I_\ Ns) (enat (Suc i))" by simp finally show ?thesis unfolding gc_invar_def lim_Si nSi . next case (infer N C L M) note ni = this(1) and nSi = this(2) and l_pas = this(3) and m_pas = this(4) and inff_red = this(5) { fix \ assume \_inff: "\ \ Inf_from (active_subset (N \ {(C, active)} \ M))" have \_inf: "\ \ Inf_FL" using \_inff unfolding Inf_from_def by auto then have F\_inf: "to_F \ \ Inf_F" using in_Inf_FL_imp_to_F_in_Inf_F by blast have "\ \ Inf_from (active_subset N \ {(C, active)})" using \_inff m_pas by simp then have F\_inff: "to_F \ \ no_labels.Inf_from (fst ` (active_subset N \ {(C, active)}))" using F\_inf unfolding to_F_def Inf_from_def no_labels.Inf_from_def by auto have "\ \ Sup_upto_llist (lmap Red_I_\ Ns) (enat (Suc i))" proof (cases "to_F \ \ no_labels.Inf_between (fst ` active_subset N) {C}") case True then have "to_F \ \ no_labels.Red_I_\ (fst ` (N \ {(C, active)} \ M))" using inff_red by auto then have "\ \ Red_I_\ (N \ {(C, active)} \ M)" by (subst labeled_red_inf_eq_red_inf[OF \_inf]) then show ?thesis using Si_lt using nSi by auto next case False then have "to_F \ \ no_labels.Inf_from (fst ` active_subset N)" using F\_inff unfolding no_labels.Inf_from_def no_labels.Inf_between_def by auto then have "\ \ Inf_from (active_subset N)" using \_inf l_pas unfolding to_F_def Inf_from_def no_labels.Inf_from_def by clarsimp (smt \_inff[unfolded Inf_from_def] active_subset_def imageE image_subset_iff in_mono mem_Collect_eq prod.collapse) then show ?thesis using invar l_pas unfolding gc_invar_def lim_i ni by auto qed } then show ?thesis unfolding gc_invar_def lim_Si nSi by blast } qed lemma gc_invar_gc: assumes gc: "chain (\GC) Ns" and init: "active_subset (lhd Ns) = {}" and i_lt: "i < llength Ns" shows "gc_invar Ns i" using i_lt proof (induct i) case (enat i) then show ?case proof (induct i) case 0 then show ?case using gc_invar_gc_init[OF chain_not_lnull[OF gc] init] by (simp add: enat_0) next case (Suc i) note ih = this(1) and Si_lt = this(2) have i_lt: "enat i < llength Ns" using Si_lt Suc_ile_eq less_le by blast show ?case by (rule gc_invar_gc_step[OF Si_lt ih[OF i_lt] chain_lnth_rel[OF gc Si_lt]]) qed qed simp lemma gc_fair_new_proof: assumes gc: "chain (\GC) Ns" and init: "active_subset (lhd Ns) = {}" and lim: "passive_subset (Liminf_llist Ns) = {}" shows "fair Ns" unfolding fair_def proof - have "Inf_from (Liminf_llist Ns) \ Inf_from (active_subset (Liminf_llist Ns))" (is "?lhs \ _") using lim unfolding active_subset_def passive_subset_def by (metis (no_types, lifting) Inf_from_mono empty_Collect_eq mem_Collect_eq subsetI) also have "... \ Sup_llist (lmap Red_I_\ Ns)" (is "_ \ ?rhs") using gc_invar_infinity[OF chain_not_lnull[OF gc]] gc_invar_gc[OF gc init] unfolding gc_invar_def by fastforce finally show "?lhs \ ?rhs" . qed end subsection \Lazy Given Clause\ context lazy_given_clause begin definition from_F :: "'f inference \ ('f \ 'l) inference set" where "from_F \ = {\' \ Inf_FL. to_F \' = \}" definition lgc_invar :: "('f inference set \ ('f \ 'l) set) llist \ enat \ bool" where "lgc_invar TNs i \ Inf_from (active_subset (Liminf_upto_llist (lmap snd TNs) i)) \ \ (from_F ` Liminf_upto_llist (lmap fst TNs) i) \ Sup_upto_llist (lmap (Red_I_\ \ snd) TNs) i" lemma lgc_invar_infinity: assumes nnil: "\ lnull TNs" and invar: "\i. enat i < llength TNs \ lgc_invar TNs (enat i)" shows "lgc_invar TNs \" unfolding lgc_invar_def proof (intro subsetI, unfold Liminf_upto_llist_infinity Sup_upto_llist_infinity) fix \ assume \_inff: "\ \ Inf_from (active_subset (Liminf_llist (lmap snd TNs)))" define As where "As = lmap (active_subset \ snd) TNs" have act_ns: "active_subset (Liminf_llist (lmap snd TNs)) = Liminf_llist As" unfolding As_def active_subset_def Liminf_set_filter_commute[symmetric] llist.map_comp .. note \_inf = Inf_if_Inf_from[OF \_inff] note \_inff' = \_inff[unfolded act_ns] show "\ \ \ (from_F ` Liminf_llist (lmap fst TNs)) \ Sup_llist (lmap (Red_I_\ \ snd) TNs)" proof - { assume \_ni_lim: "\ \ \ (from_F ` Liminf_llist (lmap fst TNs))" have "\ lnull As" unfolding As_def using nnil by auto moreover have "set (prems_of \) \ Liminf_llist As" using \_inff'[unfolded Inf_from_def] by simp ultimately obtain i where i_lt_as: "enat i < llength As" and prems_sub_ge_i: "set (prems_of \) \ (\j \ {j. i \ j \ enat j < llength As}. lnth As j)" using finite_subset_Liminf_llist_imp_exists_index by blast have ts_nnil: "\ lnull (lmap fst TNs)" using As_def nnil by simp have F\_ni_lim: "to_F \ \ Liminf_llist (lmap fst TNs)" using \_inf \_ni_lim unfolding from_F_def by auto obtain i' where i_le_i': "i \ i'" and i'_lt_as: "enat i' < llength As" and F\_ni_i': "to_F \ \ lnth (lmap fst TNs) i'" using i_lt_as not_Liminf_llist_imp_exists_index[OF ts_nnil F\_ni_lim, of i] unfolding As_def by auto have \_ni_i': "\ \ \ (from_F ` fst (lnth TNs i'))" using F\_ni_i' i'_lt_as[unfolded As_def] unfolding from_F_def by auto have "set (prems_of \) \ (\j \ {j. i' \ j \ enat j < llength As}. lnth As j)" using prems_sub_ge_i i_le_i' by auto then have "set (prems_of \) \ lnth As i'" using i'_lt_as by auto then have "\ \ Inf_from (active_subset (snd (lnth TNs i')))" using i'_lt_as \_inf unfolding Inf_from_def As_def by auto then have \_in_i': "\ \ Sup_upto_llist (lmap (Red_I_\ \ snd) TNs) (enat i')" using \_ni_i' i'_lt_as[unfolded As_def] invar[unfolded lgc_invar_def] by auto then have "\ \ Sup_llist (lmap (Red_I_\ \ snd) TNs)" using Sup_upto_llist_subset_Sup_llist by fastforce } then show ?thesis by blast qed qed lemma lgc_invar_lgc_init: assumes nnil: "\ lnull TNs" and n_init: "active_subset (snd (lhd TNs)) = {}" and t_init: "\\ \ Inf_F. prems_of \ = [] \ \ \ fst (lhd TNs)" shows "lgc_invar TNs 0" unfolding lgc_invar_def proof - have "Inf_from (active_subset (Liminf_upto_llist (lmap snd TNs) 0)) = Inf_from {}" (is "?lhs = _") using nnil n_init by auto also have "... \ \ (from_F ` fst (lhd TNs))" using t_init Inf_FL_to_Inf_F unfolding Inf_from_def from_F_def to_F_def by force also have "... \ \ (from_F ` fst (lhd TNs)) \ Red_I_\ (snd (lhd TNs))" by fast also have "... = \ (from_F ` Liminf_upto_llist (lmap fst TNs) 0) \ Sup_upto_llist (lmap (Red_I_\ \ snd) TNs) 0" (is "_ = ?rhs") using nnil by auto finally show "?lhs \ ?rhs" . qed lemma lgc_invar_lgc_step: assumes Si_lt: "enat (Suc i) < llength TNs" and invar: "lgc_invar TNs i" and step: "lnth TNs i \LGC lnth TNs (Suc i)" shows "lgc_invar TNs (Suc i)" using step Si_lt invar proof cases let ?Sup_Red_i = "Sup_upto_llist (lmap (Red_I_\ \ snd) TNs) (enat i)" let ?Sup_Red_Si = "Sup_upto_llist (lmap (Red_I_\ \ snd) TNs) (enat (Suc i))" have i_lt: "enat i < llength TNs" using Si_lt Suc_ile_eq order.strict_implies_order by blast have lim_i: "Liminf_upto_llist (lmap fst TNs) (enat i) = lnth (lmap fst TNs) i" "Liminf_upto_llist (lmap snd TNs) (enat i) = lnth (lmap snd TNs) i" using i_lt by auto have lim_Si: "Liminf_upto_llist (lmap fst TNs) (enat (Suc i)) = lnth (lmap fst TNs) (Suc i)" "Liminf_upto_llist (lmap snd TNs) (enat (Suc i)) = lnth (lmap snd TNs) (Suc i)" using Si_lt by auto { case (process N1 N M N2 M' T) note tni = this(1) and tnSi = this(2) and n1 = this(3) and n2 = this(4) and m_red = this(5) and m'_pas = this(6) have ni: "lnth (lmap snd TNs) i = N \ M" by (simp add: i_lt n1 tni) have nSi: "lnth (lmap snd TNs) (Suc i) = N \ M'" by (simp add: Si_lt n2 tnSi) have ti: "lnth (lmap fst TNs) i = T" by (simp add: i_lt tni) have tSi: "lnth (lmap fst TNs) (Suc i) = T" by (simp add: Si_lt tnSi) have "Inf_from (active_subset (N \ M')) \ Inf_from (active_subset (N \ M))" using m'_pas by (simp add: Inf_from_mono) also have "\ \ \ (from_F ` T) \ ?Sup_Red_i" using invar unfolding lgc_invar_def lim_i ni ti . also have "\ \ \ (from_F ` T) \ ?Sup_Red_Si" using Sup_upto_llist_mono by auto finally show ?thesis unfolding lgc_invar_def lim_Si nSi tSi . next case (schedule_infer T2 T1 T' N1 N C L N2) note tni = this(1) and tnSi = this(2) and t2 = this(3) and n1 = this(4) and n2 = this(5) and l_pas = this(6) and t' = this(7) have ni: "lnth (lmap snd TNs) i = N \ {(C, L)}" by (simp add: i_lt n1 tni) have nSi: "lnth (lmap snd TNs) (Suc i) = N \ {(C, active)}" by (simp add: Si_lt n2 tnSi) have ti: "lnth (lmap fst TNs) i = T1" by (simp add: i_lt tni) have tSi: "lnth (lmap fst TNs) (Suc i) = T1 \ T'" by (simp add: Si_lt t2 tnSi) { fix \ assume \_inff: "\ \ Inf_from (active_subset (N \ {(C, active)}))" have \_inf: "\ \ Inf_FL" using \_inff unfolding Inf_from_def by auto then have F\_inf: "to_F \ \ Inf_F" using in_Inf_FL_imp_to_F_in_Inf_F by blast have "\ \ \ (from_F ` (T1 \ T')) \ ?Sup_Red_Si" proof (cases "to_F \ \ no_labels.Inf_between (fst ` active_subset N) {C}") case True then have "\ \ \ (from_F ` (T1 \ T'))" unfolding t' from_F_def using \_inf by auto then show ?thesis by blast next case False moreover have "to_F \ \ no_labels.Inf_from (fst ` (active_subset N \ {(C, active)}))" using \_inff F\_inf unfolding to_F_def Inf_from_def no_labels.Inf_from_def by auto ultimately have "to_F \ \ no_labels.Inf_from (fst ` active_subset N)" unfolding no_labels.Inf_from_def no_labels.Inf_between_def by auto then have "\ \ Inf_from (active_subset N)" using \_inf unfolding to_F_def no_labels.Inf_from_def by clarsimp (smt Inf_from_def Un_insert_right \_inff active_subset_def boolean_algebra_cancel.sup0 imageE image_subset_iff insert_iff mem_Collect_eq prod.collapse snd_conv subset_iff) then have "\ \ \ (from_F ` (T1 \ T')) \ ?Sup_Red_i" using invar[unfolded lgc_invar_def] l_pas unfolding lim_i ni ti by auto then show ?thesis using Sup_upto_llist_mono by force qed } then show ?thesis unfolding lgc_invar_def lim_i lim_Si nSi tSi by fast next case (compute_infer T1 T2 \' N2 N1 M) note tni = this(1) and tnSi = this(2) and t1 = this(3) and n2 = this(4) and m_pas = this(5) and \'_red = this(6) have ni: "lnth (lmap snd TNs) i = N1" by (simp add: i_lt tni) have nSi: "lnth (lmap snd TNs) (Suc i) = N1 \ M" by (simp add: Si_lt n2 tnSi) have ti: "lnth (lmap fst TNs) i = T2 \ {\'}" by (simp add: i_lt t1 tni) have tSi: "lnth (lmap fst TNs) (Suc i) = T2" by (simp add: Si_lt tnSi) { fix \ assume \_inff: "\ \ Inf_from (active_subset (N1 \ M))" have \_bef: "\ \ \ (from_F ` (T2 \ {\'})) \ ?Sup_Red_i" using \_inff invar[unfolded lgc_invar_def lim_i ti ni] m_pas by auto have "\ \ \ (from_F ` T2) \ ?Sup_Red_Si" proof (cases "\ \ from_F \'") case \_in_\': True then have "\ \ Red_I_\ (N1 \ M)" using \'_red from_F_def labeled_red_inf_eq_red_inf by auto then have "\ \ ?Sup_Red_Si" using Si_lt by (simp add: n2 tnSi) then show ?thesis by auto next case False then show ?thesis using \_bef by auto qed } then show ?thesis unfolding lgc_invar_def lim_Si tSi nSi by blast next - case (delete_orphans T1 T2 T' N) + case (delete_orphan_formulas T1 T2 T' N) note tni = this(1) and tnSi = this(2) and t1 = this(3) and t'_orph = this(4) have ni: "lnth (lmap snd TNs) i = N" by (simp add: i_lt tni) have nSi: "lnth (lmap snd TNs) (Suc i) = N" by (simp add: Si_lt tnSi) have ti: "lnth (lmap fst TNs) i = T2 \ T'" by (simp add: i_lt t1 tni) have tSi: "lnth (lmap fst TNs) (Suc i) = T2" by (simp add: Si_lt tnSi) { fix \ assume \_inff: "\ \ Inf_from (active_subset N)" have "to_F \ \ T'" using t'_orph \_inff in_Inf_from_imp_to_F_in_Inf_from by blast hence "\ \ \ (from_F ` T')" unfolding from_F_def by auto then have "\ \ \ (from_F ` T2) \ ?Sup_Red_Si" using \_inff invar unfolding lgc_invar_def lim_i ni ti by auto } then show ?thesis unfolding lgc_invar_def lim_Si tSi nSi by blast } qed lemma lgc_invar_lgc: assumes lgc: "chain (\LGC) TNs" and n_init: "active_subset (snd (lhd TNs)) = {}" and t_init: "\\ \ Inf_F. prems_of \ = [] \ \ \ fst (lhd TNs)" and i_lt: "i < llength TNs" shows "lgc_invar TNs i" using i_lt proof (induct i) case (enat i) then show ?case proof (induct i) case 0 then show ?case using lgc_invar_lgc_init[OF chain_not_lnull[OF lgc] n_init t_init] by (simp add: enat_0) next case (Suc i) note ih = this(1) and Si_lt = this(2) have i_lt: "enat i < llength TNs" using Si_lt Suc_ile_eq less_le by blast show ?case by (rule lgc_invar_lgc_step[OF Si_lt ih[OF i_lt] chain_lnth_rel[OF lgc Si_lt]]) qed qed simp lemma lgc_fair_new_proof: assumes lgc: "chain (\LGC) TNs" and n_init: "active_subset (snd (lhd TNs)) = {}" and n_lim: "passive_subset (Liminf_llist (lmap snd TNs)) = {}" and t_init: "\\ \ Inf_F. prems_of \ = [] \ \ \ fst (lhd TNs)" and t_lim: "Liminf_llist (lmap fst TNs) = {}" shows "fair (lmap snd TNs)" unfolding fair_def llist.map_comp proof - have "Inf_from (Liminf_llist (lmap snd TNs)) \ Inf_from (active_subset (Liminf_llist (lmap snd TNs)))" (is "?lhs \ _") by (rule Inf_from_mono) (use n_lim passive_subset_def active_subset_def in blast) also have "... \ \ (from_F ` Liminf_upto_llist (lmap fst TNs) \) \ Sup_llist (lmap (Red_I_\ \ snd) TNs)" using lgc_invar_infinity[OF chain_not_lnull[OF lgc]] lgc_invar_lgc[OF lgc n_init t_init] unfolding lgc_invar_def by fastforce also have "... \ Sup_llist (lmap (Red_I_\ \ snd) TNs)" (is "_ \ ?rhs") using t_lim by auto finally show "?lhs \ ?rhs" . qed end end