diff --git a/libpolyml/polyffi.cpp b/libpolyml/polyffi.cpp index 2ffb7e8d..99bac2d7 100644 --- a/libpolyml/polyffi.cpp +++ b/libpolyml/polyffi.cpp @@ -1,686 +1,688 @@ /* Title: New Foreign Function Interface Copyright (c) 2015, 2018, 2019 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #elif defined(_WIN32) #include "winconfig.h" #else #error "No configuration file" #endif #if (defined(_WIN32) || (defined(HAVE_DLOPEN))) #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_DLFCN_H #include #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) 0 #endif #ifdef HAVE_STDIO_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_MALLOC_H #include #endif #ifdef HAVE_STRING_H #include #endif #include "globals.h" // TODO: Do we need this?? // We need to include globals.h before in mingw64 otherwise // it messes up POLYUFMT/POLYSFMT. #include #include #include "arb.h" #include "save_vec.h" #include "polyffi.h" #include "run_time.h" #include "sys.h" #include "processes.h" #include "polystring.h" #if (defined(_WIN32)) #include #include "winstartup.h" /* For hApplicationInstance. */ #endif #include "scanaddrs.h" #include "diagnostics.h" #include "reals.h" #include "rts_module.h" #include "rtsentry.h" static Handle poly_ffi (TaskData *taskData, Handle args, Handle code); extern "C" { POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFIGeneral(PolyObject *threadId, PolyWord code, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolySizeFloat(); POLYEXTERNALSYMBOL POLYUNSIGNED PolySizeDouble(); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFIGetError(PolyWord addr); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFISetError(PolyWord err); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFICreateExtFn(PolyObject *threadId, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFICreateExtData(PolyObject *threadId, PolyWord arg); } static struct _abiTable { const char *abiName; ffi_abi abiCode; } abiTable[] = { // Unfortunately the ABI entries are enums rather than #defines so we // can't test individual entries. #ifdef X86_WIN32 {"sysv", FFI_SYSV}, {"stdcall", FFI_STDCALL}, {"thiscall", FFI_THISCALL}, {"fastcall", FFI_FASTCALL}, {"ms_cdecl", FFI_MS_CDECL}, #elif defined(X86_WIN64) {"win64", FFI_WIN64}, -#elif defined(X86_ANY) +#elif defined(X86_64) || (defined (__x86_64__) && defined (X86_DARWIN)) {"unix64", FFI_UNIX64}, +#elif defined(X86_ANY) + {"sysv", FFI_SYSV}, #endif { "default", FFI_DEFAULT_ABI} }; // Table of constants returned by call 51 static int constantTable[] = { FFI_DEFAULT_ABI, // Default ABI FFI_TYPE_VOID, // Type codes FFI_TYPE_INT, FFI_TYPE_FLOAT, FFI_TYPE_DOUBLE, FFI_TYPE_UINT8, FFI_TYPE_SINT8, FFI_TYPE_UINT16, FFI_TYPE_SINT16, FFI_TYPE_UINT32, FFI_TYPE_SINT32, FFI_TYPE_UINT64, FFI_TYPE_SINT64, FFI_TYPE_STRUCT, FFI_TYPE_POINTER, FFI_SIZEOF_ARG // Minimum size for result space }; // Table of predefined ffi types static ffi_type *ffiTypeTable[] = { &ffi_type_void, &ffi_type_uint8, &ffi_type_sint8, &ffi_type_uint16, &ffi_type_sint16, &ffi_type_uint32, &ffi_type_sint32, &ffi_type_uint64, &ffi_type_sint64, &ffi_type_float, &ffi_type_double, &ffi_type_pointer, &ffi_type_uchar, // These are all aliases for the above &ffi_type_schar, &ffi_type_ushort, &ffi_type_sshort, &ffi_type_uint, &ffi_type_sint, &ffi_type_ulong, &ffi_type_slong }; // Callback entry table static struct _cbStructEntry { PolyWord mlFunction; // The ML function to call void *closureSpace; // Space allocated for the closure void *resultFunction; // Executable address for the function. Needed to free. } *callbackTable; static unsigned callBackEntries = 0; static PLock callbackTableLock; // Mutex to protect table. static Handle mkAbitab(TaskData *taskData, void*, char *p); static void callbackEntryPt(ffi_cif *cif, void *ret, void* args[], void *data); static Handle toSysWord(TaskData *taskData, void *p) { return Make_sysword(taskData, (uintptr_t)p); } Handle poly_ffi(TaskData *taskData, Handle args, Handle code) { unsigned c = get_C_unsigned(taskData, code->Word()); switch (c) { case 0: // malloc { POLYUNSIGNED size = getPolyUnsigned(taskData, args->Word()); return toSysWord(taskData, malloc(size)); } case 1: // free { void *mem = *(void**)(args->WordP()); free(mem); return taskData->saveVec.push(TAGGED(0)); } case 2: // Load library { TempString libName(args->Word()); #if (defined(_WIN32)) HINSTANCE lib = LoadLibrary(libName); if (lib == NULL) { char buf[256]; #if (defined(UNICODE)) _snprintf(buf, sizeof(buf), "Loading <%S> failed. Error %lu", (LPCTSTR)libName, GetLastError()); #else _snprintf(buf, sizeof(buf), "Loading <%s> failed. Error %lu", (const char*)libName, GetLastError()); #endif buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #else void *lib = dlopen(libName, RTLD_LAZY); if (lib == NULL) { char buf[256]; snprintf(buf, sizeof(buf), "Loading <%s> failed: %s", (const char *)libName, dlerror()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif return toSysWord(taskData, lib); } case 3: // Load address of executable. { #if (defined(_WIN32)) HINSTANCE lib = hApplicationInstance; #else void *lib = dlopen(NULL, RTLD_LAZY); if (lib == NULL) { char buf[256]; snprintf(buf, sizeof(buf), "Loading address of executable failed: %s", dlerror()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif return toSysWord(taskData, lib); } case 4: // Unload library - Is this actually going to be used? { #if (defined(_WIN32)) HMODULE hMod = *(HMODULE*)(args->WordP()); if (! FreeLibrary(hMod)) raise_syscall(taskData, "FreeLibrary failed", GetLastError()); #else void *lib = *(void**)(args->WordP()); if (dlclose(lib) != 0) { char buf[256]; snprintf(buf, sizeof(buf), "dlclose failed: %s", dlerror()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif return taskData->saveVec.push(TAGGED(0)); } case 5: // Load the address of a symbol from a library. { TempCString symName(args->WordP()->Get(1)); #if (defined(_WIN32)) HMODULE hMod = *(HMODULE*)(args->WordP()->Get(0).AsAddress()); void *sym = (void*)GetProcAddress(hMod, symName); if (sym == NULL) { char buf[256]; _snprintf(buf, sizeof(buf), "Loading symbol <%s> failed. Error %lu", (LPCSTR)symName, GetLastError()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #else void *lib = *(void**)(args->WordP()->Get(0).AsAddress()); void *sym = dlsym(lib, symName); if (sym == NULL) { char buf[256]; snprintf(buf, sizeof(buf), "load_sym <%s> : %s", (const char *)symName, dlerror()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif return toSysWord(taskData, sym); } // Libffi functions case 50: // Return a list of available ABIs return makeList(taskData, sizeof(abiTable)/sizeof(abiTable[0]), (char*)abiTable, sizeof(abiTable[0]), 0, mkAbitab); case 51: // A constant from the table { unsigned index = get_C_unsigned(taskData, args->Word()); if (index >= sizeof(constantTable) / sizeof(constantTable[0])) raise_exception_string(taskData, EXC_foreign, "Index out of range"); return Make_arbitrary_precision(taskData, constantTable[index]); } case 52: // Return an FFI type { unsigned index = get_C_unsigned(taskData, args->Word()); if (index >= sizeof(ffiTypeTable) / sizeof(ffiTypeTable[0])) raise_exception_string(taskData, EXC_foreign, "Index out of range"); return toSysWord(taskData, ffiTypeTable[index]); } case 53: // Extract fields from ffi type. { ffi_type *ffit = *(ffi_type**)(args->WordP()); Handle sizeHandle = Make_arbitrary_precision(taskData, ffit->size); Handle alignHandle = Make_arbitrary_precision(taskData, ffit->alignment); Handle typeHandle = Make_arbitrary_precision(taskData, ffit->type); Handle elemHandle = toSysWord(taskData, ffit->elements); Handle resHandle = alloc_and_save(taskData, 4); resHandle->WordP()->Set(0, sizeHandle->Word()); resHandle->WordP()->Set(1, alignHandle->Word()); resHandle->WordP()->Set(2, typeHandle->Word()); resHandle->WordP()->Set(3, elemHandle->Word()); return resHandle; } case 54: // Construct an ffi type. { // This is probably only used to create structs. size_t size = getPolyUnsigned(taskData, args->WordP()->Get(0)); unsigned short align = get_C_ushort(taskData, args->WordP()->Get(1)); unsigned short type = get_C_ushort(taskData, args->WordP()->Get(2)); unsigned nElems = 0; for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) nElems++; size_t space = sizeof(ffi_type); // If we need the elements add space for the elements plus // one extra for the zero terminator. if (nElems != 0) space += (nElems+1) * sizeof(ffi_type *); ffi_type *result = (ffi_type*)calloc(1, space); // Raise an exception rather than returning zero. if (result == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM); ffi_type **elem = 0; if (nElems != 0) elem = (ffi_type **)(result+1); result->size = size; result->alignment = align; result->type = type; result->elements = elem; if (elem != 0) { for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) { PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h; *elem++ = *(ffi_type**)(e.AsAddress()); } *elem = 0; } return toSysWord(taskData, result); } case 55: // Create a CIF. This contains all the types and some extra information. // The result is in allocated memory followed immediately by the argument type vector. { ffi_abi abi = (ffi_abi)get_C_ushort(taskData, args->WordP()->Get(0)); ffi_type *rtype = *(ffi_type **)args->WordP()->Get(1).AsAddress(); unsigned nArgs = 0; for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) nArgs++; // Allocate space for the cif followed by the argument type vector size_t space = sizeof(ffi_cif) + nArgs * sizeof(ffi_type*); ffi_cif *cif = (ffi_cif *)malloc(space); if (cif == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM); ffi_type **atypes = (ffi_type **)(cif+1); // Copy the arguments types. ffi_type **at = atypes; for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) { PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h; *at++ = *(ffi_type**)(e.AsAddress()); } ffi_status status = ffi_prep_cif(cif, abi, nArgs, rtype, atypes); if (status == FFI_BAD_TYPEDEF) raise_exception_string(taskData, EXC_foreign, "Bad typedef in ffi_prep_cif"); else if (status == FFI_BAD_ABI) raise_exception_string(taskData, EXC_foreign, "Bad ABI in ffi_prep_cif"); else if (status != FFI_OK) raise_exception_string(taskData, EXC_foreign, "Error in ffi_prep_cif"); return toSysWord(taskData, cif); } case 56: // Call a function. { ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(0).AsAddress(); void *f = *(void**)args->WordP()->Get(1).AsAddress(); void *res = *(void**)args->WordP()->Get(2).AsAddress(); void **arg = *(void***)args->WordP()->Get(3).AsAddress(); // We release the ML memory across the call so a GC can occur // even if this thread is blocked in the C code. processes->ThreadReleaseMLMemory(taskData); ffi_call(cif, FFI_FN(f), res, arg); // Do we need to save the value of errno/GetLastError here? processes->ThreadUseMLMemory(taskData); return taskData->saveVec.push(TAGGED(0)); } case 57: // Create a callback. { #ifdef INTERPRETED raise_exception_string(taskData, EXC_foreign, "Callbacks are not implemented in the byte code interpreter"); #endif Handle mlFunction = taskData->saveVec.push(args->WordP()->Get(0)); ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(1).AsAddress(); void *resultFunction; // Allocate the memory. resultFunction is set to the executable address in or related to // the memory. ffi_closure *closure = (ffi_closure *)ffi_closure_alloc(sizeof(ffi_closure), &resultFunction); if (closure == 0) raise_exception_string(taskData, EXC_foreign, "Callbacks not implemented or insufficient memory"); PLocker pLocker(&callbackTableLock); // Find a free entry in the table if there is one. unsigned entryNo = 0; while (entryNo < callBackEntries && callbackTable[entryNo].closureSpace != 0) entryNo++; if (entryNo == callBackEntries) { // Need to grow the table. struct _cbStructEntry *newTable = (struct _cbStructEntry*)realloc(callbackTable, (callBackEntries+1)*sizeof(struct _cbStructEntry)); if (newTable == 0) raise_exception_string(taskData, EXC_foreign, "Unable to allocate memory for callback table"); callbackTable = newTable; callBackEntries++; } callbackTable[entryNo].mlFunction = mlFunction->Word(); callbackTable[entryNo].closureSpace = closure; callbackTable[entryNo].resultFunction = resultFunction; if (ffi_prep_closure_loc(closure, cif, callbackEntryPt, (void*)((uintptr_t)entryNo), resultFunction) != FFI_OK) raise_exception_string(taskData, EXC_foreign,"libffi error: ffi_prep_closure_loc failed"); return toSysWord(taskData, resultFunction); } case 58: // Free an existing callback. { // The address returned from call 57 above is the executable address that can // be passed as a callback function. The writable memory address returned // as the result of ffi_closure_alloc may or may not be the same. To be safe // we need to search the table. void *resFun = *(void**)args->Word().AsAddress(); PLocker pLocker(&callbackTableLock); for (unsigned i = 0; i < callBackEntries; i++) { if (callbackTable[i].resultFunction == resFun) { ffi_closure_free(callbackTable[i].closureSpace); callbackTable[i].closureSpace = 0; callbackTable[i].resultFunction = 0; callbackTable[i].mlFunction = TAGGED(0); // Release the ML function return taskData->saveVec.push(TAGGED(0)); } } raise_exception_string(taskData, EXC_foreign, "Invalid callback entry"); } default: { char msg[100]; sprintf(msg, "Unknown ffi function: %d", c); raise_exception_string(taskData, EXC_foreign, msg); return 0; } } } // Construct an entry in the ABI table. static Handle mkAbitab(TaskData *taskData, void *arg, char *p) { struct _abiTable *ab = (struct _abiTable *)p; // Construct a pair of the string and the code Handle name = taskData->saveVec.push(C_string_to_Poly(taskData, ab->abiName)); Handle code = Make_arbitrary_precision(taskData, ab->abiCode); Handle result = alloc_and_save(taskData, 2); result->WordP()->Set(0, name->Word()); result->WordP()->Set(1, code->Word()); return result; } // This is the C function that will get control when any callback is made. The "data" // argument is the index of the entry in the callback table.. static void callbackEntryPt(ffi_cif *cif, void *ret, void* args[], void *data) { uintptr_t cbIndex = (uintptr_t)data; ASSERT(cbIndex < callBackEntries); // We should get the task data for the thread that is running this code. // If this thread has been created by the foreign code we will have to // create a new one here. TaskData *taskData = processes->GetTaskDataForThread(); if (taskData == 0) { try { taskData = processes->CreateNewTaskData(0, 0, 0, TAGGED(0)); } catch (std::bad_alloc &) { ::Exit("Unable to create thread data - insufficient memory"); } catch (MemoryException &) { ::Exit("Unable to create thread data - insufficient memory"); } } else processes->ThreadUseMLMemory(taskData); // We may get multiple calls to call-backs and we mustn't risk // overflowing the save-vec. Handle mark = taskData->saveVec.mark(); // In the future we might want to call C functions without some of the // overhead that comes with an RTS call which may allocate in ML // memory. If we do that we also have to ensure that callbacks // don't allocate, so this code would have to change. Handle mlEntryHandle; { // Get the ML function. Lock to avoid another thread moving // callbackTable under our feet. PLocker pLocker(&callbackTableLock); struct _cbStructEntry *cbEntry = &callbackTable[cbIndex]; mlEntryHandle = taskData->saveVec.push(cbEntry->mlFunction); } // Create a pair of the arg vector and the result pointer. Handle argHandle = toSysWord(taskData, args); Handle resHandle = toSysWord(taskData, ret); // Result must go in here. Handle pairHandle = alloc_and_save(taskData, 2); pairHandle->WordP()->Set(0, argHandle->Word()); pairHandle->WordP()->Set(1, resHandle->Word()); taskData->EnterCallbackFunction(mlEntryHandle, pairHandle); taskData->saveVec.reset(mark); // Release ML memory now we're going back to C. processes->ThreadReleaseMLMemory(taskData); } class PolyFFI: public RtsModule { public: virtual void GarbageCollect(ScanAddress *process); }; // Declare this. It will be automatically added to the table. static PolyFFI polyFFIModule; // We need to scan the callback table. void PolyFFI::GarbageCollect(ScanAddress *process) { for (unsigned i = 0; i < callBackEntries; i++) process->ScanRuntimeWord(&callbackTable[i].mlFunction); } #else // The foreign function interface isn't available. #include "polyffi.h" #include "run_time.h" #include "sys.h" Handle poly_ffi(TaskData *taskData, Handle args, Handle code) { raise_exception_string(taskData, EXC_foreign, "The foreign function interface is not available on this platform"); } #endif // General interface to IO. Ideally the various cases will be made into // separate functions. POLYUNSIGNED PolyFFIGeneral(PolyObject *threadId, PolyWord code, PolyWord arg) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedCode = taskData->saveVec.push(code); Handle pushedArg = taskData->saveVec.push(arg); Handle result = 0; try { result = poly_ffi(taskData, pushedArg, pushedCode); } catch (...) { } // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // These functions are needed in the compiler POLYUNSIGNED PolySizeFloat() { return TAGGED((POLYSIGNED)ffi_type_float.size).AsUnsigned(); } POLYUNSIGNED PolySizeDouble() { return TAGGED((POLYSIGNED)ffi_type_double.size).AsUnsigned(); } // Get either errno or GetLastError POLYUNSIGNED PolyFFIGetError(PolyWord addr) { #if (defined(_WIN32)) addr.AsObjPtr()->Set(0, PolyWord::FromUnsigned(GetLastError())); #else addr.AsObjPtr()->Set(0, PolyWord::FromUnsigned((POLYUNSIGNED)errno)); #endif return 0; } // The argument is a SysWord.word value i.e. the address of a byte cell. POLYUNSIGNED PolyFFISetError(PolyWord err) { #if (defined(_WIN32)) SetLastError((DWORD)(err.AsObjPtr()->Get(0).AsUnsigned())); #else errno = err.AsObjPtr()->Get(0).AsSigned(); #endif return 0; } // Create an external function reference. The value returned has space for // an address followed by the name of the external symbol. Because the // address comes at the beginning it can be used in the same way as the // SysWord value returned by the get-symbol call from a library. POLYUNSIGNED PolyFFICreateExtFn(PolyObject *threadId, PolyWord arg) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedArg = taskData->saveVec.push(arg); Handle result = 0; try { result = creatEntryPointObject(taskData, pushedArg, true); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); // Ensure the save vec is reset taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // Create an external reference to data. On a small number of platforms // different forms of relocation are needed for data and for functions. POLYUNSIGNED PolyFFICreateExtData(PolyObject *threadId, PolyWord arg) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedArg = taskData->saveVec.push(arg); Handle result = 0; try { result = creatEntryPointObject(taskData, pushedArg, false); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); // Ensure the save vec is reset taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } struct _entrypts polyFFIEPT[] = { { "PolyFFIGeneral", (polyRTSFunction)&PolyFFIGeneral}, { "PolySizeFloat", (polyRTSFunction)&PolySizeFloat}, { "PolySizeDouble", (polyRTSFunction)&PolySizeDouble}, { "PolyFFIGetError", (polyRTSFunction)&PolyFFIGetError}, { "PolyFFISetError", (polyRTSFunction)&PolyFFISetError}, { "PolyFFICreateExtFn", (polyRTSFunction)&PolyFFICreateExtFn}, { "PolyFFICreateExtData", (polyRTSFunction)&PolyFFICreateExtData }, { NULL, NULL} // End of list. };