diff --git a/libpolyml/exporter.cpp b/libpolyml/exporter.cpp index f2649e4d..7242b8ca 100644 --- a/libpolyml/exporter.cpp +++ b/libpolyml/exporter.cpp @@ -1,924 +1,924 @@ /* Title: exporter.cpp - Export a function as an object or C file Copyright (c) 2006-7, 2015, 2016-20 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #elif defined(_WIN32) #include "winconfig.h" #else #error "No configuration file" #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_SYS_PARAM_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #if (defined(_WIN32)) #include #else #define _T(x) x #define _tcslen strlen #define _tcscmp strcmp #define _tcscat strcat #endif #include "exporter.h" #include "save_vec.h" #include "polystring.h" #include "run_time.h" #include "osmem.h" #include "scanaddrs.h" #include "gc.h" #include "machine_dep.h" #include "diagnostics.h" #include "memmgr.h" #include "processes.h" // For IO_SPACING #include "sys.h" // For EXC_Fail #include "rtsentry.h" #include "pexport.h" #ifdef HAVE_PECOFF #include "pecoffexport.h" #elif defined(HAVE_ELF_H) || defined(HAVE_ELF_ABI_H) #include "elfexport.h" #elif defined(HAVE_MACH_O_RELOC_H) #include "machoexport.h" #endif #if (defined(_WIN32)) #define NOMEMORY ERROR_NOT_ENOUGH_MEMORY #define ERRORNUMBER _doserrno #else #define NOMEMORY ENOMEM #define ERRORNUMBER errno #endif extern "C" { POLYEXTERNALSYMBOL POLYUNSIGNED PolyExport(PolyObject *threadId, PolyWord fileName, PolyWord root); POLYEXTERNALSYMBOL POLYUNSIGNED PolyExportPortable(PolyObject *threadId, PolyWord fileName, PolyWord root); } /* To export the function and everything reachable from it we need to copy all the objects into a new area. We leave tombstones in the original objects by overwriting the length word. That prevents us from copying an object twice and breaks loops. Once we've copied the objects we then have to go back over the memory and turn the tombstones back into length words. */ GraveYard::~GraveYard() { free(graves); } // Used to calculate the space required for the ordinary mutables // and the no-overwrite mutables. They are interspersed in local space. class MutSizes : public ScanAddress { public: MutSizes() : mutSize(0), noOverSize(0) {} virtual PolyObject *ScanObjectAddress(PolyObject *base) { return base; }// No Actually used virtual void ScanAddressesInObject(PolyObject *base, POLYUNSIGNED lengthWord) { const POLYUNSIGNED words = OBJ_OBJECT_LENGTH(lengthWord) + 1; // Include length word if (OBJ_IS_NO_OVERWRITE(lengthWord)) noOverSize += words; else mutSize += words; } POLYUNSIGNED mutSize, noOverSize; }; CopyScan::CopyScan(unsigned h/*=0*/): hierarchy(h) { defaultImmSize = defaultMutSize = defaultCodeSize = defaultNoOverSize = 0; tombs = 0; graveYard = 0; } void CopyScan::initialise(bool isExport/*=true*/) { ASSERT(gMem.eSpaces.size() == 0); // Set the space sizes to a proportion of the space currently in use. // Computing these sizes is not obvious because CopyScan is used both // for export and for saved states. For saved states in particular we // want to use a smaller size because they are retained after we save // the state and if we have many child saved states it's important not // to waste memory. if (hierarchy == 0) { graveYard = new GraveYard[gMem.pSpaces.size()]; if (graveYard == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to allocate graveyard, size: %lu.\n", gMem.pSpaces.size()); throw MemoryException(); } } for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { PermanentMemSpace *space = *i; if (space->hierarchy >= hierarchy) { // Include this if we're exporting (hierarchy=0) or if we're saving a state // and will include this in the new state. size_t size = (space->top-space->bottom)/4; if (space->noOverwrite) defaultNoOverSize += size; else if (space->isMutable) defaultMutSize += size; else if (space->isCode) defaultCodeSize += size; else defaultImmSize += size; if (space->hierarchy == 0 && ! space->isMutable) { // We need a separate area for the tombstones because this is read-only graveYard[tombs].graves = (PolyWord*)calloc(space->spaceSize(), sizeof(PolyWord)); if (graveYard[tombs].graves == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to allocate graveyard for permanent space, size: %lu.\n", space->spaceSize() * sizeof(PolyWord)); throw MemoryException(); } if (debugOptions & DEBUG_SAVING) Log("SAVE: Allocated graveyard for permanent space, %p size: %lu.\n", graveYard[tombs].graves, space->spaceSize() * sizeof(PolyWord)); graveYard[tombs].startAddr = space->bottom; graveYard[tombs].endAddr = space->top; tombs++; } } } for (std::vector::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++) { LocalMemSpace *space = *i; uintptr_t size = space->allocatedSpace(); // It looks as though the mutable size generally gets // overestimated while the immutable size is correct. if (space->isMutable) { MutSizes sizeMut; sizeMut.ScanAddressesInRegion(space->bottom, space->lowerAllocPtr); sizeMut.ScanAddressesInRegion(space->upperAllocPtr, space->top); defaultNoOverSize += sizeMut.noOverSize / 4; defaultMutSize += sizeMut.mutSize / 4; } else defaultImmSize += size/2; } for (std::vector::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++) { CodeSpace *space = *i; uintptr_t size = space->spaceSize(); defaultCodeSize += size/2; } if (isExport) { // Minimum 1M words. if (defaultMutSize < 1024*1024) defaultMutSize = 1024*1024; if (defaultImmSize < 1024*1024) defaultImmSize = 1024*1024; if (defaultCodeSize < 1024*1024) defaultCodeSize = 1024*1024; #ifdef MACOSX // Limit the segment size for Mac OS X. The linker has a limit of 2^24 relocations // in a segment so this is a crude way of ensuring the limit isn't exceeded. // It's unlikely to be exceeded by the code itself. // Actually, from trial-and-error, the limit seems to be around 6M. if (defaultMutSize > 6 * 1024 * 1024) defaultMutSize = 6 * 1024 * 1024; if (defaultImmSize > 6 * 1024 * 1024) defaultImmSize = 6 * 1024 * 1024; #endif if (defaultNoOverSize < 4096) defaultNoOverSize = 4096; // Except for the no-overwrite area } else { // Much smaller minimum sizes for saved states. if (defaultMutSize < 1024) defaultMutSize = 1024; if (defaultImmSize < 4096) defaultImmSize = 4096; if (defaultCodeSize < 4096) defaultCodeSize = 4096; if (defaultNoOverSize < 4096) defaultNoOverSize = 4096; // Set maximum sizes as well. We may have insufficient contiguous space for // very large areas. if (defaultMutSize > 1024 * 1024) defaultMutSize = 1024 * 1024; if (defaultImmSize > 1024 * 1024) defaultImmSize = 1024 * 1024; if (defaultCodeSize > 1024 * 1024) defaultCodeSize = 1024 * 1024; if (defaultNoOverSize > 1024 * 1024) defaultNoOverSize = 1024 * 1024; } if (debugOptions & DEBUG_SAVING) Log("SAVE: Copyscan default sizes: Immutable: %" POLYUFMT ", Mutable: %" POLYUFMT ", Code: %" POLYUFMT ", No-overwrite %" POLYUFMT ".\n", defaultImmSize, defaultMutSize, defaultCodeSize, defaultNoOverSize); } CopyScan::~CopyScan() { gMem.DeleteExportSpaces(); if (graveYard) delete[](graveYard); } // This function is called for each address in an object // once it has been copied to its new location. We copy first // then scan to update the addresses. POLYUNSIGNED CopyScan::ScanAddressAt(PolyWord *pt) { PolyWord val = *pt; // Ignore integers. if (IS_INT(val) || val == PolyWord::FromUnsigned(0)) return 0; PolyObject *obj = val.AsObjPtr(); POLYUNSIGNED l = ScanAddress(&obj); *pt = obj; return l; } // This function is called for each address in an object // once it has been copied to its new location. We copy first // then scan to update the addresses. POLYUNSIGNED CopyScan::ScanAddress(PolyObject **pt) { PolyObject *obj = *pt; MemSpace *space = gMem.SpaceForAddress((PolyWord*)obj - 1); ASSERT(space != 0); // We may sometimes get addresses that have already been updated // to point to the new area. e.g. (only?) in the case of constants // that have been updated in ScanConstantsWithinCode. if (space->spaceType == ST_EXPORT) return 0; // If this is at a lower level than the hierarchy we are saving // then leave it untouched. if (space->spaceType == ST_PERMANENT) { PermanentMemSpace *pmSpace = (PermanentMemSpace*)space; if (pmSpace->hierarchy < hierarchy) return 0; } // Have we already scanned this? if (obj->ContainsForwardingPtr()) { // Update the address to the new value. #ifdef POLYML32IN64 PolyObject *newAddr; if (space->isCode) newAddr = (PolyObject*)(globalCodeBase + ((obj->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else newAddr = obj->GetForwardingPtr(); #else PolyObject *newAddr = obj->GetForwardingPtr(); #endif *pt = newAddr; return 0; // No need to scan it again. } else if (space->spaceType == ST_PERMANENT) { // See if we have this in the grave-yard. for (unsigned i = 0; i < tombs; i++) { GraveYard *g = &graveYard[i]; if ((PolyWord*)obj >= g->startAddr && (PolyWord*)obj < g->endAddr) { PolyWord *tombAddr = g->graves + ((PolyWord*)obj - g->startAddr); PolyObject *tombObject = (PolyObject*)tombAddr; if (tombObject->ContainsForwardingPtr()) { #ifdef POLYML32IN64 PolyObject *newAddr; if (space->isCode) newAddr = (PolyObject*)(globalCodeBase + ((tombObject->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else newAddr = tombObject->GetForwardingPtr(); #else PolyObject *newAddr = tombObject->GetForwardingPtr(); #endif *pt = newAddr; return 0; } break; // No need to look further } } } // No, we need to copy it. ASSERT(space->spaceType == ST_LOCAL || space->spaceType == ST_PERMANENT || space->spaceType == ST_CODE); POLYUNSIGNED lengthWord = obj->LengthWord(); POLYUNSIGNED words = OBJ_OBJECT_LENGTH(lengthWord); PolyObject *newObj = 0; PolyObject* writeAble = 0; bool isMutableObj = obj->IsMutable(); bool isNoOverwrite = false; bool isByteObj = false; bool isCodeObj = false; if (isMutableObj) { isNoOverwrite = obj->IsNoOverwriteObject(); isByteObj = obj->IsByteObject(); } else isCodeObj = obj->IsCodeObject(); // Allocate a new address for the object. for (std::vector::iterator i = gMem.eSpaces.begin(); i < gMem.eSpaces.end(); i++) { PermanentMemSpace *space = *i; if (isMutableObj == space->isMutable && isNoOverwrite == space->noOverwrite && isByteObj == space->byteOnly && isCodeObj == space->isCode) { ASSERT(space->topPointer <= space->top && space->topPointer >= space->bottom); size_t spaceLeft = space->top - space->topPointer; if (spaceLeft > words) { newObj = (PolyObject*)(space->topPointer + 1); writeAble = space->writeAble(newObj); space->topPointer += words + 1; #ifdef POLYML32IN64 // Maintain the odd-word alignment of topPointer if ((words & 1) == 0 && space->topPointer < space->top) { *space->writeAble(space->topPointer) = PolyWord::FromUnsigned(0); space->topPointer++; } #endif break; } } } if (newObj == 0) { // Didn't find room in the existing spaces. Create a new space. uintptr_t spaceWords; if (isMutableObj) { if (isNoOverwrite) spaceWords = defaultNoOverSize; else spaceWords = defaultMutSize; } else { if (isCodeObj) spaceWords = defaultCodeSize; else spaceWords = defaultImmSize; } if (spaceWords <= words) spaceWords = words + 1; // Make sure there's space for this object. PermanentMemSpace *space = gMem.NewExportSpace(spaceWords, isMutableObj, isNoOverwrite, isCodeObj); if (isByteObj) space->byteOnly = true; if (space == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to allocate export space, size: %lu.\n", spaceWords); // Unable to allocate this. throw MemoryException(); } newObj = (PolyObject*)(space->topPointer + 1); writeAble = space->writeAble(newObj); space->topPointer += words + 1; #ifdef POLYML32IN64 // Maintain the odd-word alignment of topPointer if ((words & 1) == 0 && space->topPointer < space->top) { - *space->topPointer = PolyWord::FromUnsigned(0); + *space->writeAble(space->topPointer) = PolyWord::FromUnsigned(0); space->topPointer++; } #endif ASSERT(space->topPointer <= space->top && space->topPointer >= space->bottom); } writeAble->SetLengthWord(lengthWord); // copy length word memcpy(writeAble, obj, words * sizeof(PolyWord)); if (space->spaceType == ST_PERMANENT && !space->isMutable && ((PermanentMemSpace*)space)->hierarchy == 0) { // The immutable permanent areas are read-only. unsigned m; for (m = 0; m < tombs; m++) { GraveYard *g = &graveYard[m]; if ((PolyWord*)obj >= g->startAddr && (PolyWord*)obj < g->endAddr) { PolyWord *tombAddr = g->graves + ((PolyWord*)obj - g->startAddr); PolyObject *tombObject = (PolyObject*)tombAddr; #ifdef POLYML32IN64 if (isCodeObj) { POLYUNSIGNED ll = (POLYUNSIGNED)(((PolyWord*)newObj - globalCodeBase) >> 1 | _OBJ_TOMBSTONE_BIT); tombObject->SetLengthWord(ll); } else tombObject->SetForwardingPtr(newObj); #else tombObject->SetForwardingPtr(newObj); #endif break; // No need to look further } } ASSERT(m < tombs); // Should be there. } else if (isCodeObj) #ifdef POLYML32IN64 // If this is a code address we can't use the usual forwarding pointer format. // Instead we have to compute the offset relative to the base of the code. { POLYUNSIGNED ll = (POLYUNSIGNED)(((PolyWord*)newObj-globalCodeBase) >> 1 | _OBJ_TOMBSTONE_BIT); gMem.SpaceForAddress(obj)->writeAble(obj)->SetLengthWord(ll); } #else gMem.SpaceForAddress(obj)->writeAble(obj)->SetForwardingPtr(newObj); #endif else obj->SetForwardingPtr(newObj); // Put forwarding pointer in old object. if (OBJ_IS_CODE_OBJECT(lengthWord)) { // We don't need to worry about flushing the instruction cache // since we're not going to execute this code here. // We do have to update any relative addresses within the code // to take account of its new position. We have to do that now // even though ScanAddressesInObject will do it again because this // is the only point where we have both the old and the new addresses. machineDependent->ScanConstantsWithinCode(newObj, obj, words, this); } *pt = newObj; // Update it to the newly copied object. return lengthWord; // This new object needs to be scanned. } // The address of code in the code area. We treat this as a normal heap cell. // We will probably need to copy this and to process addresses within it. POLYUNSIGNED CopyScan::ScanCodeAddressAt(PolyObject **pt) { POLYUNSIGNED lengthWord = ScanAddress(pt); if (lengthWord) ScanAddressesInObject(*pt, lengthWord); return 0; } PolyObject *CopyScan::ScanObjectAddress(PolyObject *base) { PolyWord val = base; // Scan this as an address. POLYUNSIGNED lengthWord = CopyScan::ScanAddressAt(&val); if (lengthWord) ScanAddressesInObject(val.AsObjPtr(), lengthWord); return val.AsObjPtr(); } #define MAX_EXTENSION 4 // The longest extension we may need to add is ".obj" // Convert the forwarding pointers in a region back into length words. // Generally if this object has a forwarding pointer that's // because we've moved it into the export region. We can, // though, get multiple levels of forwarding if there is an object // that has been shifted up by a garbage collection, leaving a forwarding // pointer and then that object has been moved to the export region. // We mustn't turn locally forwarded values back into ordinary objects // because they could contain addresses that are no longer valid. static POLYUNSIGNED GetObjLength(PolyObject *obj) { if (obj->ContainsForwardingPtr()) { PolyObject *forwardedTo; #ifdef POLYML32IN64 { MemSpace *space = gMem.SpaceForAddress((PolyWord*)obj - 1); if (space->isCode) forwardedTo = (PolyObject*)(globalCodeBase + ((obj->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else forwardedTo = obj->GetForwardingPtr(); } #else forwardedTo = obj->GetForwardingPtr(); #endif POLYUNSIGNED length = GetObjLength(forwardedTo); MemSpace *space = gMem.SpaceForAddress((PolyWord*)forwardedTo-1); if (space->spaceType == ST_EXPORT) gMem.SpaceForAddress(obj)->writeAble(obj)->SetLengthWord(length); return length; } else { ASSERT(obj->ContainsNormalLengthWord()); return obj->LengthWord(); } } static void FixForwarding(PolyWord *pt, size_t space) { while (space) { pt++; PolyObject *obj = (PolyObject*)pt; #ifdef POLYML32IN64 if ((uintptr_t)obj & 4) { // Skip filler words needed to align to an even word space--; continue; // We've added 1 to pt so just loop. } #endif size_t length = OBJ_OBJECT_LENGTH(GetObjLength(obj)); pt += length; ASSERT(space > length); space -= length+1; } } class ExportRequest: public MainThreadRequest { public: ExportRequest(Handle root, Exporter *exp): MainThreadRequest(MTP_EXPORTING), exportRoot(root), exporter(exp) {} virtual void Perform() { exporter->RunExport(exportRoot->WordP()); } Handle exportRoot; Exporter *exporter; }; static void exporter(TaskData *taskData, Handle fileName, Handle root, const TCHAR *extension, Exporter *exports) { size_t extLen = _tcslen(extension); TempString fileNameBuff(Poly_string_to_T_alloc(fileName->Word(), extLen)); if (fileNameBuff == NULL) raise_syscall(taskData, "Insufficient memory", NOMEMORY); size_t length = _tcslen(fileNameBuff); // Does it already have the extension? If not add it on. if (length < extLen || _tcscmp(fileNameBuff + length - extLen, extension) != 0) _tcscat(fileNameBuff, extension); #if (defined(_WIN32) && defined(UNICODE)) exports->exportFile = _wfopen(fileNameBuff, L"wb"); #else exports->exportFile = fopen(fileNameBuff, "wb"); #endif if (exports->exportFile == NULL) raise_syscall(taskData, "Cannot open export file", ERRORNUMBER); // Request a full GC to reduce the size of fix-ups. FullGC(taskData); // Request the main thread to do the export. ExportRequest request(root, exports); processes->MakeRootRequest(taskData, &request); if (exports->errorMessage) raise_fail(taskData, exports->errorMessage); } // This is called by the initial thread to actually do the export. void Exporter::RunExport(PolyObject *rootFunction) { Exporter *exports = this; PolyObject *copiedRoot = 0; CopyScan copyScan(hierarchy); try { copyScan.initialise(); // Copy the root and everything reachable from it into the temporary area. copiedRoot = copyScan.ScanObjectAddress(rootFunction); } catch (MemoryException &) { // If we ran out of memory. copiedRoot = 0; } // Fix the forwarding pointers. for (std::vector::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++) { LocalMemSpace *space = *i; // Local areas only have objects from the allocation pointer to the top. FixForwarding(space->bottom, space->lowerAllocPtr - space->bottom); FixForwarding(space->upperAllocPtr, space->top - space->upperAllocPtr); } for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { MemSpace *space = *i; // Permanent areas are filled with objects from the bottom. FixForwarding(space->bottom, space->top - space->bottom); } for (std::vector::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++) { MemSpace *space = *i; // Code areas are filled with objects from the bottom. FixForwarding(space->bottom, space->top - space->bottom); } // Reraise the exception after cleaning up the forwarding pointers. if (copiedRoot == 0) { exports->errorMessage = "Insufficient Memory"; return; } // Copy the areas into the export object. size_t tableEntries = gMem.eSpaces.size(); unsigned memEntry = 0; if (hierarchy != 0) tableEntries += gMem.pSpaces.size(); exports->memTable = new memoryTableEntry[tableEntries]; // If we're constructing a module we need to include the global spaces. if (hierarchy != 0) { // Permanent spaces from the executable. for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { PermanentMemSpace *space = *i; if (space->hierarchy < hierarchy) { memoryTableEntry *entry = &exports->memTable[memEntry++]; entry->mtOriginalAddr = entry->mtCurrentAddr = space->bottom; entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord); entry->mtIndex = space->index; entry->mtFlags = 0; if (space->isMutable) entry->mtFlags |= MTF_WRITEABLE; if (space->isCode) entry->mtFlags |= MTF_EXECUTABLE; } } newAreas = memEntry; } for (std::vector::iterator i = gMem.eSpaces.begin(); i < gMem.eSpaces.end(); i++) { memoryTableEntry *entry = &exports->memTable[memEntry++]; PermanentMemSpace *space = *i; entry->mtOriginalAddr = entry->mtCurrentAddr = space->bottom; entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord); entry->mtIndex = hierarchy == 0 ? memEntry-1 : space->index; entry->mtFlags = 0; if (space->isMutable) { entry->mtFlags = MTF_WRITEABLE; if (space->noOverwrite) entry->mtFlags |= MTF_NO_OVERWRITE; } if (space->isCode) entry->mtFlags |= MTF_EXECUTABLE; if (space->byteOnly) entry->mtFlags |= MTF_BYTES; } ASSERT(memEntry == tableEntries); exports->memTableEntries = memEntry; exports->rootFunction = copiedRoot; try { // This can raise MemoryException at least in PExport::exportStore. exports->exportStore(); } catch (MemoryException &) { exports->errorMessage = "Insufficient Memory"; } } // Functions called via the RTS call. Handle exportNative(TaskData *taskData, Handle args) { #ifdef HAVE_PECOFF // Windows including Cygwin #if (defined(_WIN32)) const TCHAR *extension = _T(".obj"); // Windows #else const char *extension = ".o"; // Cygwin #endif PECOFFExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), extension, &exports); #elif defined(HAVE_ELF_H) || defined(HAVE_ELF_ABI_H) // Most Unix including Linux, FreeBSD and Solaris. const char *extension = ".o"; ELFExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), extension, &exports); #elif defined(HAVE_MACH_O_RELOC_H) // Mac OS-X const char *extension = ".o"; MachoExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), extension, &exports); #else raise_exception_string (taskData, EXC_Fail, "Native export not available for this platform"); #endif return taskData->saveVec.push(TAGGED(0)); } Handle exportPortable(TaskData *taskData, Handle args) { PExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), _T(".txt"), &exports); return taskData->saveVec.push(TAGGED(0)); } POLYUNSIGNED PolyExport(PolyObject *threadId, PolyWord fileName, PolyWord root) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedName = taskData->saveVec.push(fileName); Handle pushedRoot = taskData->saveVec.push(root); try { #ifdef HAVE_PECOFF // Windows including Cygwin #if (defined(_WIN32)) const TCHAR *extension = _T(".obj"); // Windows #else const char *extension = ".o"; // Cygwin #endif PECOFFExport exports; exporter(taskData, pushedName, pushedRoot, extension, &exports); #elif defined(HAVE_ELF_H) || defined(HAVE_ELF_ABI_H) // Most Unix including Linux, FreeBSD and Solaris. const char *extension = ".o"; ELFExport exports; exporter(taskData, pushedName, pushedRoot, extension, &exports); #elif defined(HAVE_MACH_O_RELOC_H) // Mac OS-X const char *extension = ".o"; MachoExport exports; exporter(taskData, pushedName, pushedRoot, extension, &exports); #else raise_exception_string (taskData, EXC_Fail, "Native export not available for this platform"); #endif } catch (...) { } // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); // Returns unit } POLYUNSIGNED PolyExportPortable(PolyObject *threadId, PolyWord fileName, PolyWord root) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedName = taskData->saveVec.push(fileName); Handle pushedRoot = taskData->saveVec.push(root); try { PExport exports; exporter(taskData, pushedName, pushedRoot, _T(".txt"), &exports); } catch (...) { } // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); // Returns unit } // Helper functions for exporting. We need to produce relocation information // and this code is common to every method. Exporter::Exporter(unsigned int h): exportFile(NULL), errorMessage(0), hierarchy(h), memTable(0), newAreas(0) { } Exporter::~Exporter() { delete[](memTable); if (exportFile) fclose(exportFile); } void Exporter::relocateValue(PolyWord *pt) { #ifndef POLYML32IN64 PolyWord q = *pt; if (IS_INT(q) || q == PolyWord::FromUnsigned(0)) {} else createRelocation(pt); #endif } void Exporter::createRelocation(PolyWord* pt) { *gMem.SpaceForAddress(pt)->writeAble(pt) = createRelocation(*pt, pt); } // Check through the areas to see where the address is. It must be // in one of them. unsigned Exporter::findArea(void *p) { for (unsigned i = 0; i < memTableEntries; i++) { if (p > memTable[i].mtOriginalAddr && p <= (char*)memTable[i].mtOriginalAddr + memTable[i].mtLength) return i; } { ASSERT(0); } return 0; } void Exporter::relocateObject(PolyObject *p) { if (p->IsByteObject()) { if (p->IsMutable() && p->IsWeakRefObject()) { // Weak mutable byte refs are used for external references and // also in the FFI for non-persistent values. bool isFuncPtr = true; const char *entryName = getEntryPointName(p, &isFuncPtr); if (entryName != 0) addExternalReference(p, entryName, isFuncPtr); // Clear the first word of the data. ASSERT(p->Length() >= sizeof(uintptr_t)/sizeof(PolyWord)); *(uintptr_t*)p = 0; } } else if (p->IsCodeObject()) { POLYUNSIGNED constCount; PolyWord *cp; ASSERT(! p->IsMutable() ); p->GetConstSegmentForCode(cp, constCount); /* Now the constants. */ for (POLYUNSIGNED i = 0; i < constCount; i++) relocateValue(&(cp[i])); } else if (p->IsClosureObject()) { #ifndef POLYML32IN64 ASSERT(0); #endif // This should only be used in 32-in-64 where we don't use relocations. } else /* Ordinary objects, essentially tuples. */ { POLYUNSIGNED length = p->Length(); for (POLYUNSIGNED i = 0; i < length; i++) relocateValue(p->Offset(i)); } } ExportStringTable::ExportStringTable(): strings(0), stringSize(0), stringAvailable(0) { } ExportStringTable::~ExportStringTable() { free(strings); } // Add a string to the string table, growing it if necessary. unsigned long ExportStringTable::makeEntry(const char *str) { unsigned len = (unsigned)strlen(str); unsigned long entry = stringSize; if (stringSize + len + 1 > stringAvailable) { stringAvailable = stringAvailable+stringAvailable/2; if (stringAvailable < stringSize + len + 1) stringAvailable = stringSize + len + 1 + 500; char* newStrings = (char*)realloc(strings, stringAvailable); if (newStrings == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to realloc string table, size: %lu.\n", stringAvailable); throw MemoryException(); } else strings = newStrings; } strcpy(strings + stringSize, str); stringSize += len + 1; return entry; } struct _entrypts exporterEPT[] = { { "PolyExport", (polyRTSFunction)&PolyExport}, { "PolyExportPortable", (polyRTSFunction)&PolyExportPortable}, { NULL, NULL} // End of list. }; diff --git a/libpolyml/osmem.h b/libpolyml/osmem.h index 734cfb4b..4d8fb551 100644 --- a/libpolyml/osmem.h +++ b/libpolyml/osmem.h @@ -1,105 +1,105 @@ /* Title: osomem.h - Interface to OS memory management Copyright (c) 2006, 2017-18, 2020 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef OS_MEM_H_INCLUDED #define OS_MEM_H_INCLUDED // We need size_t so include these two here. #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef POLYML32IN64 #include "bitmap.h" #endif #include "locking.h" // This class provides access to the memory management provided by the // operating system. It would be nice if we could always use malloc and // free for this but we need to have execute permission on the code // objects. class OSMem { public: OSMem(); virtual ~OSMem(); enum _MemUsage { UsageData, // Data or code in the interpreted version UsageStack, // Stack UsageExecutableCode // Code in the native code versions. }; bool Initialise(enum _MemUsage usage, size_t space = 0, void** pBase = 0); // Allocate space and return a pointer to it. The size is the minimum // size requested in bytes and it is updated with the actual space allocated. // Returns NULL if it cannot allocate the space. void *AllocateDataArea(size_t& bytes); // Release the space previously allocated. This must free the whole of // the segment. The space must be the size actually allocated. bool FreeDataArea(void* p, size_t space); // Enable/disable writing. This must apply to the whole of a segment. // Only for data areas. bool EnableWrite(bool enable, void* p, size_t space); // Allocate code area. Some systems will not allow both write and execute permissions // on the same page. On those systems we have to allocate two regions of shared memory, // one with read+execute permission and the other with read+write. void *AllocateCodeArea(size_t& bytes, void*& shadowArea); // Free the allocated areas. bool FreeCodeArea(void* codeAddr, void* dataAddr, size_t space); // Remove write access. This is used after the permanent code area has been created // either from importing a portable export file or copying the area in 32-in-64. bool DisableWriteForCode(void* codeAddr, void* dataAddr, size_t space); protected: size_t pageSize; enum _MemUsage memUsage; #ifndef _WIN32 // If we need to use dual areas because WRITE+EXECUTE permission is not allowed. int shadowFd; PLock allocLock; size_t allocPtr; #endif #ifdef POLYML32IN64 Bitmap pageMap; uintptr_t lastAllocated; - char* memBase; + char* memBase, *shadowBase; PLock bitmapLock; #endif }; #endif diff --git a/libpolyml/osmemunix.cpp b/libpolyml/osmemunix.cpp index 65510697..06234b49 100644 --- a/libpolyml/osmemunix.cpp +++ b/libpolyml/osmemunix.cpp @@ -1,397 +1,460 @@ /* Title: osomem.cpp - Interface to OS memory management - Unix version Copyright (c) 2006, 2017-18, 2020 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #else #error "No configuration file" #endif #ifdef HAVE_SYS_TYPES_H #include #endif #ifdef HAVE_SYS_MMAN_H #include #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) #endif #include "osmem.h" #include "bitmap.h" #include "locking.h" // Linux prefers MAP_ANONYMOUS to MAP_ANON #ifndef MAP_ANON #ifdef MAP_ANONYMOUS #define MAP_ANON MAP_ANONYMOUS #endif #endif // Assume that mmap is supported. If it isn't we can't run. #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYS_PARAM_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #include "polystring.h" // For TempCString // How do we get the page size? #ifndef HAVE_GETPAGESIZE #ifdef _SC_PAGESIZE #define getpagesize() sysconf(_SC_PAGESIZE) #else // If this fails we're stuck #define getpagesize() PAGESIZE #endif #endif #ifdef SOLARIS #define FIXTYPE (caddr_t) #else #define FIXTYPE #endif // Open a temporary file, unlink it and return the file descriptor. static int openTmpFile(const char* dirName) { const char* template_subdir = "/mlMapXXXXXX"; TempString buff((char*)malloc(strlen(dirName) + strlen(template_subdir) + 1)); if (buff == 0) return -1; // Unable to allocate strcpy(buff, dirName); strcat(buff, template_subdir); int fd = mkstemp(buff); if (fd == -1) return -1; unlink(buff); return fd; } static int createTemporaryFile() { char *tmpDir = getenv("TMPDIR"); int fd; if (tmpDir != NULL) { fd = openTmpFile(tmpDir); if (fd != -1) return fd; } #ifdef P_tmpdir fd = openTmpFile(P_tmpdir); if (fd != -1) return fd; #endif fd = openTmpFile("/tmp"); if (fd != -1) return fd; fd = openTmpFile("/var/tmp"); if (fd != -1) return fd; return -1; } #ifdef POLYML32IN64 OSMem::OSMem() { memBase = 0; + shadowFd = -1; } OSMem::~OSMem() { } bool OSMem::Initialise(enum _MemUsage usage, size_t space /* = 0 */, void** pBase /* = 0 */) { memUsage = usage; pageSize = getpagesize(); - - memBase = (char*)mmap(0, space, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); - if (memBase == 0) return 0; - // We need the heap to be such that the top 32-bits are non-zero. - if ((uintptr_t)memBase < ((uintptr_t)1 << 32)) + bool simpleMmap; + if (usage != UsageExecutableCode) simpleMmap = true; + else + { + // Can we allocate memory with write+execute? + void *test = mmap(0, pageSize, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, -1, 0); + if (test != MAP_FAILED) + { + munmap(FIXTYPE test, pageSize); + simpleMmap = true; + } + else simpleMmap = false; + } + + if (simpleMmap) { - // Allocate again. - void* newSpace = mmap(0, space, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); - munmap(FIXTYPE memBase, space); // Free the old area that isn't suitable. - // Return what we got, or zero if it failed. - memBase = (char*)newSpace; + // Don't require shadow area. Can use mmap + memBase = (char*)mmap(0, space, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (memBase == MAP_FAILED) return false; + // We need the heap to be such that the top 32-bits are non-zero. + if ((uintptr_t)memBase < ((uintptr_t)1 << 32)) + { + // Allocate again. + void* newSpace = mmap(0, space, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); + munmap(FIXTYPE memBase, space); // Free the old area that isn't suitable. + // Return what we got, or zero if it failed. + memBase = (char*)newSpace; + } + shadowBase = memBase; + } + else + { + // More difficult - require file mapping + shadowFd = createTemporaryFile(); + if (shadowFd == -1) return false; + if (ftruncate(shadowFd, space) == -1) return false; + void *readWrite = mmap(0, space, PROT_NONE, MAP_SHARED, shadowFd, 0); + if (readWrite == MAP_FAILED) return 0; + memBase = (char*)mmap(0, space, PROT_NONE, MAP_SHARED, shadowFd, 0); + if (memBase == MAP_FAILED) + { + munmap(FIXTYPE readWrite, space); + return false; + } + // This should be above 32-bits. + ASSERT((uintptr_t)memBase >= ((uintptr_t)1 << 32)); + shadowBase = (char*)readWrite; } if (pBase != 0) *pBase = memBase; // Create a bitmap with a bit for each page. if (!pageMap.Create(space / pageSize)) return false; lastAllocated = space / pageSize; // Beyond the last page in the area // Set the last bit in the area so that we don't use it. // This is effectively a work-around for a problem with the heap. // If we have a zero-sized cell at the end of the memory its address is // going to be zero. This causes problems with forwarding pointers. // There may be better ways of doing this. pageMap.SetBit(space / pageSize - 1); return true; } void* OSMem::AllocateDataArea(size_t& space) { char* baseAddr; { PLocker l(&bitmapLock); uintptr_t pages = (space + pageSize - 1) / pageSize; // Round up to an integral number of pages. space = pages * pageSize; // Find some space while (pageMap.TestBit(lastAllocated - 1)) // Skip the wholly allocated area. lastAllocated--; uintptr_t free = pageMap.FindFree(0, lastAllocated, pages); if (free == lastAllocated) return 0; // Can't find the space. pageMap.SetBits(free, pages); // TODO: Do we need to zero this? It may have previously been set. baseAddr = memBase + free * pageSize; } int prot = PROT_READ | PROT_WRITE; if (mmap(baseAddr, space, prot, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == MAP_FAILED) return 0; msync(baseAddr, space, MS_SYNC | MS_INVALIDATE); return baseAddr; } bool OSMem::FreeDataArea(void* p, size_t space) { char* addr = (char*)p; uintptr_t offset = (addr - memBase) / pageSize; // Remap the pages as new entries. This should remove the old versions. if (mmap(p, space, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == MAP_FAILED) return false; msync(p, space, MS_SYNC | MS_INVALIDATE); uintptr_t pages = space / pageSize; { PLocker l(&bitmapLock); pageMap.ClearBits(offset, pages); if (offset + pages > lastAllocated) // We allocate from the top down. lastAllocated = offset + pages; } return true; } void* OSMem::AllocateCodeArea(size_t& space, void*& shadowArea) { - char* baseAddr; + uintptr_t offset; { PLocker l(&bitmapLock); uintptr_t pages = (space + pageSize - 1) / pageSize; // Round up to an integral number of pages. space = pages * pageSize; // Find some space while (pageMap.TestBit(lastAllocated - 1)) // Skip the wholly allocated area. lastAllocated--; uintptr_t free = pageMap.FindFree(0, lastAllocated, pages); if (free == lastAllocated) return 0; // Can't find the space. pageMap.SetBits(free, pages); - // TODO: Do we need to zero this? It may have previously been set. - baseAddr = memBase + free * pageSize; + offset = free * pageSize; + } + + if (shadowFd == -1) + { + char *baseAddr = memBase + offset; + int prot = PROT_READ | PROT_WRITE; + if (memUsage == UsageExecutableCode) prot |= PROT_EXEC; + if (mmap(baseAddr, space, prot, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == MAP_FAILED) + return 0; + msync(baseAddr, space, MS_SYNC | MS_INVALIDATE); + shadowArea = baseAddr; + return baseAddr; + } + else + { + char *baseAddr = memBase + offset; + char *readWriteArea = shadowBase + offset; + if (mmap(baseAddr, space, PROT_READ|PROT_EXEC, MAP_FIXED | MAP_SHARED, shadowFd, offset) == MAP_FAILED) + return 0; + msync(baseAddr, space, MS_SYNC | MS_INVALIDATE); + if (mmap(readWriteArea, space, PROT_READ|PROT_WRITE, MAP_FIXED | MAP_SHARED, shadowFd, offset) == MAP_FAILED) + return 0; + msync(readWriteArea, space, MS_SYNC | MS_INVALIDATE); + shadowArea = readWriteArea; + return baseAddr; } - - int prot = PROT_READ | PROT_WRITE; - if (memUsage == UsageExecutableCode) prot |= PROT_EXEC; - if (mmap(baseAddr, space, prot, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == MAP_FAILED) - return 0; - msync(baseAddr, space, MS_SYNC | MS_INVALIDATE); - shadowArea = baseAddr; - return baseAddr; } bool OSMem::FreeCodeArea(void* codeAddr, void* dataAddr, size_t space) { - ASSERT(codeAddr == dataAddr); - char* addr = (char*)codeAddr; - uintptr_t offset = (addr - memBase) / pageSize; - mmap(codeAddr, space, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0); - msync(codeAddr, space, MS_SYNC | MS_INVALIDATE); + // Free areas by mapping them with PROT_NONE. + uintptr_t offset = ((char*)codeAddr - memBase) / pageSize; + if (shadowFd == -1) + { + mmap(codeAddr, space, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0); + msync(codeAddr, space, MS_SYNC | MS_INVALIDATE); + } + else + { + + mmap(codeAddr, space, PROT_NONE, MAP_SHARED, shadowFd, offset); + msync(codeAddr, space, MS_SYNC | MS_INVALIDATE); + mmap(dataAddr, space, PROT_NONE, MAP_SHARED, shadowFd, offset); + msync(dataAddr, space, MS_SYNC | MS_INVALIDATE); + } uintptr_t pages = space / pageSize; { PLocker l(&bitmapLock); pageMap.ClearBits(offset, pages); if (offset + pages > lastAllocated) // We allocate from the top down. lastAllocated = offset + pages; } return true; } bool OSMem::EnableWrite(bool enable, void* p, size_t space) { int res = mprotect(FIXTYPE p, space, enable ? PROT_READ|PROT_WRITE: PROT_READ); return res != -1; } bool OSMem::DisableWriteForCode(void* codeAddr, void* dataAddr, size_t space) { int prot = PROT_READ; if (memUsage == UsageExecutableCode) prot |= PROT_EXEC; int res = mprotect(FIXTYPE codeAddr, space, prot); return res != -1; } #else // Native address versions OSMem::OSMem() { allocPtr = 0; shadowFd = -1; } OSMem::~OSMem() { if (shadowFd != -1) close(shadowFd); } bool OSMem::Initialise(enum _MemUsage usage, size_t space /* = 0 */, void **pBase /* = 0 */) { memUsage = usage; pageSize = getpagesize(); if (usage != UsageExecutableCode) return true; // Can we allocate memory with write+execute? int fd = -1; // This value is required by FreeBSD. Linux doesn't care void *test = mmap(0, pageSize, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, fd, 0); if (test != MAP_FAILED) { // Don't require shadow area munmap(FIXTYPE test, pageSize); return true; } if (errno != ENOTSUP && errno != EACCES) // Fails with ENOTSUPP on OpenBSD and EACCES in SELinux. return false; // Check that read-write works. test = mmap(0, pageSize, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, fd, 0); if (test == MAP_FAILED) return false; // There's a problem. munmap(FIXTYPE test, pageSize); // Need to create a file descriptor for mapping. shadowFd = createTemporaryFile(); if (shadowFd != -1) return true; return false; } // Allocate space and return a pointer to it. The size is the minimum // size requested and it is updated with the actual space allocated. // Returns NULL if it cannot allocate the space. void *OSMem::AllocateDataArea(size_t &space) { // Round up to an integral number of pages. space = (space + pageSize-1) & ~(pageSize-1); int fd = -1; // This value is required by FreeBSD. Linux doesn't care int flags = MAP_PRIVATE | MAP_ANON; #ifdef MAP_STACK if (memUsage == UsageStack) flags |= MAP_STACK; // OpenBSD seems to require this #endif void *result = mmap(0, space, PROT_READ|PROT_WRITE, flags, fd, 0); // Convert MAP_FAILED (-1) into NULL if (result == MAP_FAILED) return 0; return result; } // Release the space previously allocated. This must free the whole of // the segment. The space must be the size actually allocated. bool OSMem::FreeDataArea(void *p, size_t space) { return munmap(FIXTYPE p, space) == 0; } bool OSMem::EnableWrite(bool enable, void* p, size_t space) { int res = mprotect(FIXTYPE p, space, enable ? PROT_READ|PROT_WRITE: PROT_READ); return res != -1; } void *OSMem::AllocateCodeArea(size_t &space, void*& shadowArea) { // Round up to an integral number of pages. space = (space + pageSize-1) & ~(pageSize-1); if (shadowFd == -1) { int fd = -1; // This value is required by FreeBSD. Linux doesn't care int prot = PROT_READ | PROT_WRITE; if (memUsage == UsageExecutableCode) prot |= PROT_EXEC; void *result = mmap(0, space, prot, MAP_PRIVATE|MAP_ANON, fd, 0); // Convert MAP_FAILED (-1) into NULL if (result == MAP_FAILED) return 0; shadowArea = result; return result; } // Have to use dual areas. size_t allocAt; { PLocker lock(&allocLock); allocAt = allocPtr; allocPtr += space; } if (ftruncate(shadowFd, allocAt + space) == -1) return 0; void *readExec = mmap(0, space, PROT_READ|PROT_EXEC, MAP_SHARED, shadowFd, allocAt); if (readExec == MAP_FAILED) return 0; void *readWrite = mmap(0, space, PROT_READ|PROT_WRITE, MAP_SHARED, shadowFd, allocAt); if (readWrite == MAP_FAILED) { munmap(FIXTYPE readExec, space); return 0; } shadowArea = readWrite; return readExec; } bool OSMem::FreeCodeArea(void *codeArea, void *dataArea, size_t space) { bool freeCode = munmap(FIXTYPE codeArea, space) == 0; if (codeArea == dataArea) return freeCode; return (munmap(FIXTYPE dataArea, space) == 0) & freeCode; } bool OSMem::DisableWriteForCode(void* codeAddr, void* dataAddr, size_t space) { int prot = PROT_READ; if (memUsage == UsageExecutableCode) prot |= PROT_EXEC; int res = mprotect(FIXTYPE codeAddr, space, prot); return res != -1; } #endif