diff --git a/libpolyml/exporter.cpp b/libpolyml/exporter.cpp index e05099f5..740c832d 100644 --- a/libpolyml/exporter.cpp +++ b/libpolyml/exporter.cpp @@ -1,939 +1,936 @@ /* Title: exporter.cpp - Export a function as an object or C file Copyright (c) 2006-7, 2015, 2016-20 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #elif defined(_WIN32) #include "winconfig.h" #else #error "No configuration file" #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_SYS_PARAM_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #if (defined(_WIN32)) #include #else #define _T(x) x #define _tcslen strlen #define _tcscmp strcmp #define _tcscat strcat #endif #include "exporter.h" #include "save_vec.h" #include "polystring.h" #include "run_time.h" #include "osmem.h" #include "scanaddrs.h" #include "gc.h" #include "machine_dep.h" #include "diagnostics.h" #include "memmgr.h" #include "processes.h" // For IO_SPACING #include "sys.h" // For EXC_Fail #include "rtsentry.h" #include "pexport.h" #ifdef HAVE_PECOFF #include "pecoffexport.h" #elif defined(HAVE_ELF_H) || defined(HAVE_ELF_ABI_H) #include "elfexport.h" #elif defined(HAVE_MACH_O_RELOC_H) #include "machoexport.h" #endif #if (defined(_WIN32)) #define NOMEMORY ERROR_NOT_ENOUGH_MEMORY #define ERRORNUMBER _doserrno #else #define NOMEMORY ENOMEM #define ERRORNUMBER errno #endif extern "C" { POLYEXTERNALSYMBOL POLYUNSIGNED PolyExport(PolyObject *threadId, PolyWord fileName, PolyWord root); POLYEXTERNALSYMBOL POLYUNSIGNED PolyExportPortable(PolyObject *threadId, PolyWord fileName, PolyWord root); } /* To export the function and everything reachable from it we need to copy all the objects into a new area. We leave tombstones in the original objects by overwriting the length word. That prevents us from copying an object twice and breaks loops. Once we've copied the objects we then have to go back over the memory and turn the tombstones back into length words. */ GraveYard::~GraveYard() { free(graves); } // Used to calculate the space required for the ordinary mutables // and the no-overwrite mutables. They are interspersed in local space. class MutSizes : public ScanAddress { public: MutSizes() : mutSize(0), noOverSize(0) {} virtual PolyObject *ScanObjectAddress(PolyObject *base) { return base; }// No Actually used virtual void ScanAddressesInObject(PolyObject *base, POLYUNSIGNED lengthWord) { const POLYUNSIGNED words = OBJ_OBJECT_LENGTH(lengthWord) + 1; // Include length word if (OBJ_IS_NO_OVERWRITE(lengthWord)) noOverSize += words; else mutSize += words; } POLYUNSIGNED mutSize, noOverSize; }; CopyScan::CopyScan(unsigned h/*=0*/): hierarchy(h) { defaultImmSize = defaultMutSize = defaultCodeSize = defaultNoOverSize = 0; tombs = 0; graveYard = 0; } void CopyScan::initialise(bool isExport/*=true*/) { ASSERT(gMem.eSpaces.size() == 0); // Set the space sizes to a proportion of the space currently in use. // Computing these sizes is not obvious because CopyScan is used both // for export and for saved states. For saved states in particular we // want to use a smaller size because they are retained after we save // the state and if we have many child saved states it's important not // to waste memory. if (hierarchy == 0) { graveYard = new GraveYard[gMem.pSpaces.size()]; if (graveYard == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to allocate graveyard, size: %lu.\n", gMem.pSpaces.size()); throw MemoryException(); } } for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { PermanentMemSpace *space = *i; if (space->hierarchy >= hierarchy) { // Include this if we're exporting (hierarchy=0) or if we're saving a state // and will include this in the new state. size_t size = (space->top-space->bottom)/4; if (space->noOverwrite) defaultNoOverSize += size; else if (space->isMutable) defaultMutSize += size; else if (space->isCode) defaultCodeSize += size; else defaultImmSize += size; if (space->hierarchy == 0 && ! space->isMutable) { // We need a separate area for the tombstones because this is read-only graveYard[tombs].graves = (PolyWord*)calloc(space->spaceSize(), sizeof(PolyWord)); if (graveYard[tombs].graves == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to allocate graveyard for permanent space, size: %lu.\n", space->spaceSize() * sizeof(PolyWord)); throw MemoryException(); } if (debugOptions & DEBUG_SAVING) Log("SAVE: Allocated graveyard for permanent space, %p size: %lu.\n", graveYard[tombs].graves, space->spaceSize() * sizeof(PolyWord)); graveYard[tombs].startAddr = space->bottom; graveYard[tombs].endAddr = space->top; tombs++; } } } for (std::vector::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++) { LocalMemSpace *space = *i; uintptr_t size = space->allocatedSpace(); // It looks as though the mutable size generally gets // overestimated while the immutable size is correct. if (space->isMutable) { MutSizes sizeMut; sizeMut.ScanAddressesInRegion(space->bottom, space->lowerAllocPtr); sizeMut.ScanAddressesInRegion(space->upperAllocPtr, space->top); defaultNoOverSize += sizeMut.noOverSize / 4; defaultMutSize += sizeMut.mutSize / 4; } else defaultImmSize += size/2; } for (std::vector::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++) { CodeSpace *space = *i; uintptr_t size = space->spaceSize(); defaultCodeSize += size/2; } if (isExport) { // Minimum 1M words. if (defaultMutSize < 1024*1024) defaultMutSize = 1024*1024; if (defaultImmSize < 1024*1024) defaultImmSize = 1024*1024; if (defaultCodeSize < 1024*1024) defaultCodeSize = 1024*1024; #ifdef MACOSX // Limit the segment size for Mac OS X. The linker has a limit of 2^24 relocations // in a segment so this is a crude way of ensuring the limit isn't exceeded. // It's unlikely to be exceeded by the code itself. // Actually, from trial-and-error, the limit seems to be around 6M. if (defaultMutSize > 6 * 1024 * 1024) defaultMutSize = 6 * 1024 * 1024; if (defaultImmSize > 6 * 1024 * 1024) defaultImmSize = 6 * 1024 * 1024; #endif if (defaultNoOverSize < 4096) defaultNoOverSize = 4096; // Except for the no-overwrite area } else { // Much smaller minimum sizes for saved states. if (defaultMutSize < 1024) defaultMutSize = 1024; if (defaultImmSize < 4096) defaultImmSize = 4096; if (defaultCodeSize < 4096) defaultCodeSize = 4096; if (defaultNoOverSize < 4096) defaultNoOverSize = 4096; // Set maximum sizes as well. We may have insufficient contiguous space for // very large areas. if (defaultMutSize > 1024 * 1024) defaultMutSize = 1024 * 1024; if (defaultImmSize > 1024 * 1024) defaultImmSize = 1024 * 1024; if (defaultCodeSize > 1024 * 1024) defaultCodeSize = 1024 * 1024; if (defaultNoOverSize > 1024 * 1024) defaultNoOverSize = 1024 * 1024; } if (debugOptions & DEBUG_SAVING) Log("SAVE: Copyscan default sizes: Immutable: %" POLYUFMT ", Mutable: %" POLYUFMT ", Code: %" POLYUFMT ", No-overwrite %" POLYUFMT ".\n", defaultImmSize, defaultMutSize, defaultCodeSize, defaultNoOverSize); } CopyScan::~CopyScan() { gMem.DeleteExportSpaces(); if (graveYard) delete[](graveYard); } // This function is called for each address in an object // once it has been copied to its new location. We copy first // then scan to update the addresses. POLYUNSIGNED CopyScan::ScanAddressAt(PolyWord *pt) { PolyWord val = *pt; // Ignore integers. if (IS_INT(val) || val == PolyWord::FromUnsigned(0)) return 0; PolyObject *obj = val.AsObjPtr(); POLYUNSIGNED l = ScanAddress(&obj); *pt = obj; return l; } // This function is called for each address in an object // once it has been copied to its new location. We copy first // then scan to update the addresses. POLYUNSIGNED CopyScan::ScanAddress(PolyObject **pt) { PolyObject *obj = *pt; MemSpace *space = gMem.SpaceForAddress((PolyWord*)obj - 1); ASSERT(space != 0); // We may sometimes get addresses that have already been updated // to point to the new area. e.g. (only?) in the case of constants // that have been updated in ScanConstantsWithinCode. if (space->spaceType == ST_EXPORT) return 0; // If this is at a lower level than the hierarchy we are saving // then leave it untouched. if (space->spaceType == ST_PERMANENT) { PermanentMemSpace *pmSpace = (PermanentMemSpace*)space; if (pmSpace->hierarchy < hierarchy) return 0; } // Have we already scanned this? if (obj->ContainsForwardingPtr()) { // Update the address to the new value. #ifdef POLYML32IN64 PolyObject *newAddr; if (space->isCode) newAddr = (PolyObject*)(globalCodeBase + ((obj->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else newAddr = obj->GetForwardingPtr(); #else PolyObject *newAddr = obj->GetForwardingPtr(); #endif *pt = newAddr; return 0; // No need to scan it again. } else if (space->spaceType == ST_PERMANENT) { // See if we have this in the grave-yard. for (unsigned i = 0; i < tombs; i++) { GraveYard *g = &graveYard[i]; if ((PolyWord*)obj >= g->startAddr && (PolyWord*)obj < g->endAddr) { PolyWord *tombAddr = g->graves + ((PolyWord*)obj - g->startAddr); PolyObject *tombObject = (PolyObject*)tombAddr; if (tombObject->ContainsForwardingPtr()) { #ifdef POLYML32IN64 PolyObject *newAddr; if (space->isCode) newAddr = (PolyObject*)(globalCodeBase + ((tombObject->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else newAddr = tombObject->GetForwardingPtr(); #else PolyObject *newAddr = tombObject->GetForwardingPtr(); #endif *pt = newAddr; return 0; } break; // No need to look further } } } // No, we need to copy it. ASSERT(space->spaceType == ST_LOCAL || space->spaceType == ST_PERMANENT || space->spaceType == ST_CODE); POLYUNSIGNED lengthWord = obj->LengthWord(); POLYUNSIGNED words = OBJ_OBJECT_LENGTH(lengthWord); PolyObject *newObj = 0; PolyObject* writeAble = 0; bool isMutableObj = obj->IsMutable(); bool isNoOverwrite = false; bool isByteObj = false; bool isCodeObj = false; if (isMutableObj) { isNoOverwrite = obj->IsNoOverwriteObject(); isByteObj = obj->IsByteObject(); } else isCodeObj = obj->IsCodeObject(); // Allocate a new address for the object. for (std::vector::iterator i = gMem.eSpaces.begin(); i < gMem.eSpaces.end(); i++) { PermanentMemSpace *space = *i; if (isMutableObj == space->isMutable && isNoOverwrite == space->noOverwrite && isByteObj == space->byteOnly && isCodeObj == space->isCode) { ASSERT(space->topPointer <= space->top && space->topPointer >= space->bottom); size_t spaceLeft = space->top - space->topPointer; if (spaceLeft > words) { newObj = (PolyObject*)(space->topPointer + 1); writeAble = space->writeAble(newObj); space->topPointer += words + 1; #ifdef POLYML32IN64 // Maintain the odd-word alignment of topPointer if ((words & 1) == 0 && space->topPointer < space->top) { *space->writeAble(space->topPointer) = PolyWord::FromUnsigned(0); space->topPointer++; } #endif break; } } } if (newObj == 0) { // Didn't find room in the existing spaces. Create a new space. uintptr_t spaceWords; if (isMutableObj) { if (isNoOverwrite) spaceWords = defaultNoOverSize; else spaceWords = defaultMutSize; } else { if (isCodeObj) spaceWords = defaultCodeSize; else spaceWords = defaultImmSize; } if (spaceWords <= words) spaceWords = words + 1; // Make sure there's space for this object. PermanentMemSpace *space = gMem.NewExportSpace(spaceWords, isMutableObj, isNoOverwrite, isCodeObj); if (isByteObj) space->byteOnly = true; if (space == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to allocate export space, size: %lu.\n", spaceWords); // Unable to allocate this. throw MemoryException(); } newObj = (PolyObject*)(space->topPointer + 1); writeAble = space->writeAble(newObj); space->topPointer += words + 1; #ifdef POLYML32IN64 // Maintain the odd-word alignment of topPointer if ((words & 1) == 0 && space->topPointer < space->top) { *space->writeAble(space->topPointer) = PolyWord::FromUnsigned(0); space->topPointer++; } #endif ASSERT(space->topPointer <= space->top && space->topPointer >= space->bottom); } writeAble->SetLengthWord(lengthWord); // copy length word - if (isNoOverwrite && isMutableObj && !isByteObj) + if (hierarchy == 0 /* Exporting object module */ && isNoOverwrite && isMutableObj && !isByteObj) { - ASSERT(0); - // There's a problem with this. We'd like to clear this on export to avoid - // exporting the open file list but when we create a saved state we use - // the exported version as our local copy for the rest of the session. - - // These are not exported. They are used for special values e.g. mutexes // that should be set to 0/nil/NONE at start-up. // Weak+No-overwrite byte objects are used for entry points and volatiles // in the foreign-function interface and have to be treated specially. + + // Note: this must not be done when exporting a saved state because the + // copied version is used as the local data for the rest of the session. for (POLYUNSIGNED i = 0; i < words; i++) writeAble->Set(i, TAGGED(0)); } else memcpy(writeAble, obj, words * sizeof(PolyWord)); if (space->spaceType == ST_PERMANENT && !space->isMutable && ((PermanentMemSpace*)space)->hierarchy == 0) { // The immutable permanent areas are read-only. unsigned m; for (m = 0; m < tombs; m++) { GraveYard *g = &graveYard[m]; if ((PolyWord*)obj >= g->startAddr && (PolyWord*)obj < g->endAddr) { PolyWord *tombAddr = g->graves + ((PolyWord*)obj - g->startAddr); PolyObject *tombObject = (PolyObject*)tombAddr; #ifdef POLYML32IN64 if (isCodeObj) { POLYUNSIGNED ll = (POLYUNSIGNED)(((PolyWord*)newObj - globalCodeBase) >> 1 | _OBJ_TOMBSTONE_BIT); tombObject->SetLengthWord(ll); } else tombObject->SetForwardingPtr(newObj); #else tombObject->SetForwardingPtr(newObj); #endif break; // No need to look further } } ASSERT(m < tombs); // Should be there. } else if (isCodeObj) #ifdef POLYML32IN64 // If this is a code address we can't use the usual forwarding pointer format. // Instead we have to compute the offset relative to the base of the code. { POLYUNSIGNED ll = (POLYUNSIGNED)(((PolyWord*)newObj-globalCodeBase) >> 1 | _OBJ_TOMBSTONE_BIT); gMem.SpaceForAddress(obj)->writeAble(obj)->SetLengthWord(ll); } #else gMem.SpaceForAddress(obj)->writeAble(obj)->SetForwardingPtr(newObj); #endif else obj->SetForwardingPtr(newObj); // Put forwarding pointer in old object. if (OBJ_IS_CODE_OBJECT(lengthWord)) { // We don't need to worry about flushing the instruction cache // since we're not going to execute this code here. // We do have to update any relative addresses within the code // to take account of its new position. We have to do that now // even though ScanAddressesInObject will do it again because this // is the only point where we have both the old and the new addresses. machineDependent->ScanConstantsWithinCode(newObj, obj, words, this); } *pt = newObj; // Update it to the newly copied object. return lengthWord; // This new object needs to be scanned. } // The address of code in the code area. We treat this as a normal heap cell. // We will probably need to copy this and to process addresses within it. POLYUNSIGNED CopyScan::ScanCodeAddressAt(PolyObject **pt) { POLYUNSIGNED lengthWord = ScanAddress(pt); if (lengthWord) ScanAddressesInObject(*pt, lengthWord); return 0; } PolyObject *CopyScan::ScanObjectAddress(PolyObject *base) { PolyWord val = base; // Scan this as an address. POLYUNSIGNED lengthWord = CopyScan::ScanAddressAt(&val); if (lengthWord) ScanAddressesInObject(val.AsObjPtr(), lengthWord); return val.AsObjPtr(); } #define MAX_EXTENSION 4 // The longest extension we may need to add is ".obj" // Convert the forwarding pointers in a region back into length words. // Generally if this object has a forwarding pointer that's // because we've moved it into the export region. We can, // though, get multiple levels of forwarding if there is an object // that has been shifted up by a garbage collection, leaving a forwarding // pointer and then that object has been moved to the export region. // We mustn't turn locally forwarded values back into ordinary objects // because they could contain addresses that are no longer valid. static POLYUNSIGNED GetObjLength(PolyObject *obj) { if (obj->ContainsForwardingPtr()) { PolyObject *forwardedTo; #ifdef POLYML32IN64 { MemSpace *space = gMem.SpaceForAddress((PolyWord*)obj - 1); if (space->isCode) forwardedTo = (PolyObject*)(globalCodeBase + ((obj->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else forwardedTo = obj->GetForwardingPtr(); } #else forwardedTo = obj->GetForwardingPtr(); #endif POLYUNSIGNED length = GetObjLength(forwardedTo); MemSpace *space = gMem.SpaceForAddress((PolyWord*)forwardedTo-1); if (space->spaceType == ST_EXPORT) gMem.SpaceForAddress(obj)->writeAble(obj)->SetLengthWord(length); return length; } else { ASSERT(obj->ContainsNormalLengthWord()); return obj->LengthWord(); } } static void FixForwarding(PolyWord *pt, size_t space) { while (space) { pt++; PolyObject *obj = (PolyObject*)pt; #ifdef POLYML32IN64 if ((uintptr_t)obj & 4) { // Skip filler words needed to align to an even word space--; continue; // We've added 1 to pt so just loop. } #endif size_t length = OBJ_OBJECT_LENGTH(GetObjLength(obj)); pt += length; ASSERT(space > length); space -= length+1; } } class ExportRequest: public MainThreadRequest { public: ExportRequest(Handle root, Exporter *exp): MainThreadRequest(MTP_EXPORTING), exportRoot(root), exporter(exp) {} virtual void Perform() { exporter->RunExport(exportRoot->WordP()); } Handle exportRoot; Exporter *exporter; }; static void exporter(TaskData *taskData, Handle fileName, Handle root, const TCHAR *extension, Exporter *exports) { size_t extLen = _tcslen(extension); TempString fileNameBuff(Poly_string_to_T_alloc(fileName->Word(), extLen)); if (fileNameBuff == NULL) raise_syscall(taskData, "Insufficient memory", NOMEMORY); size_t length = _tcslen(fileNameBuff); // Does it already have the extension? If not add it on. if (length < extLen || _tcscmp(fileNameBuff + length - extLen, extension) != 0) _tcscat(fileNameBuff, extension); #if (defined(_WIN32) && defined(UNICODE)) exports->exportFile = _wfopen(fileNameBuff, L"wb"); #else exports->exportFile = fopen(fileNameBuff, "wb"); #endif if (exports->exportFile == NULL) raise_syscall(taskData, "Cannot open export file", ERRORNUMBER); // Request a full GC to reduce the size of fix-ups. FullGC(taskData); // Request the main thread to do the export. ExportRequest request(root, exports); processes->MakeRootRequest(taskData, &request); if (exports->errorMessage) raise_fail(taskData, exports->errorMessage); } // This is called by the initial thread to actually do the export. void Exporter::RunExport(PolyObject *rootFunction) { Exporter *exports = this; PolyObject *copiedRoot = 0; CopyScan copyScan(hierarchy); try { copyScan.initialise(); // Copy the root and everything reachable from it into the temporary area. copiedRoot = copyScan.ScanObjectAddress(rootFunction); } catch (MemoryException &) { // If we ran out of memory. copiedRoot = 0; } // Fix the forwarding pointers. for (std::vector::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++) { LocalMemSpace *space = *i; // Local areas only have objects from the allocation pointer to the top. FixForwarding(space->bottom, space->lowerAllocPtr - space->bottom); FixForwarding(space->upperAllocPtr, space->top - space->upperAllocPtr); } for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { MemSpace *space = *i; // Permanent areas are filled with objects from the bottom. FixForwarding(space->bottom, space->top - space->bottom); } for (std::vector::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++) { MemSpace *space = *i; // Code areas are filled with objects from the bottom. FixForwarding(space->bottom, space->top - space->bottom); } // Reraise the exception after cleaning up the forwarding pointers. if (copiedRoot == 0) { exports->errorMessage = "Insufficient Memory"; return; } // Copy the areas into the export object. size_t tableEntries = gMem.eSpaces.size(); unsigned memEntry = 0; if (hierarchy != 0) tableEntries += gMem.pSpaces.size(); exports->memTable = new memoryTableEntry[tableEntries]; // If we're constructing a module we need to include the global spaces. if (hierarchy != 0) { // Permanent spaces from the executable. for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { PermanentMemSpace *space = *i; if (space->hierarchy < hierarchy) { memoryTableEntry *entry = &exports->memTable[memEntry++]; entry->mtOriginalAddr = entry->mtCurrentAddr = space->bottom; entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord); entry->mtIndex = space->index; entry->mtFlags = 0; if (space->isMutable) entry->mtFlags |= MTF_WRITEABLE; if (space->isCode) entry->mtFlags |= MTF_EXECUTABLE; } } newAreas = memEntry; } for (std::vector::iterator i = gMem.eSpaces.begin(); i < gMem.eSpaces.end(); i++) { memoryTableEntry *entry = &exports->memTable[memEntry++]; PermanentMemSpace *space = *i; entry->mtOriginalAddr = entry->mtCurrentAddr = space->bottom; entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord); entry->mtIndex = hierarchy == 0 ? memEntry-1 : space->index; entry->mtFlags = 0; if (space->isMutable) { entry->mtFlags = MTF_WRITEABLE; if (space->noOverwrite) entry->mtFlags |= MTF_NO_OVERWRITE; } if (space->isCode) entry->mtFlags |= MTF_EXECUTABLE; if (space->byteOnly) entry->mtFlags |= MTF_BYTES; } ASSERT(memEntry == tableEntries); exports->memTableEntries = memEntry; exports->rootFunction = copiedRoot; try { // This can raise MemoryException at least in PExport::exportStore. exports->exportStore(); } catch (MemoryException &) { exports->errorMessage = "Insufficient Memory"; } } // Functions called via the RTS call. Handle exportNative(TaskData *taskData, Handle args) { #ifdef HAVE_PECOFF // Windows including Cygwin #if (defined(_WIN32)) const TCHAR *extension = _T(".obj"); // Windows #else const char *extension = ".o"; // Cygwin #endif PECOFFExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), extension, &exports); #elif defined(HAVE_ELF_H) || defined(HAVE_ELF_ABI_H) // Most Unix including Linux, FreeBSD and Solaris. const char *extension = ".o"; ELFExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), extension, &exports); #elif defined(HAVE_MACH_O_RELOC_H) // Mac OS-X const char *extension = ".o"; MachoExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), extension, &exports); #else raise_exception_string (taskData, EXC_Fail, "Native export not available for this platform"); #endif return taskData->saveVec.push(TAGGED(0)); } Handle exportPortable(TaskData *taskData, Handle args) { PExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), _T(".txt"), &exports); return taskData->saveVec.push(TAGGED(0)); } POLYUNSIGNED PolyExport(PolyObject *threadId, PolyWord fileName, PolyWord root) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedName = taskData->saveVec.push(fileName); Handle pushedRoot = taskData->saveVec.push(root); try { #ifdef HAVE_PECOFF // Windows including Cygwin #if (defined(_WIN32)) const TCHAR *extension = _T(".obj"); // Windows #else const char *extension = ".o"; // Cygwin #endif PECOFFExport exports; exporter(taskData, pushedName, pushedRoot, extension, &exports); #elif defined(HAVE_ELF_H) || defined(HAVE_ELF_ABI_H) // Most Unix including Linux, FreeBSD and Solaris. const char *extension = ".o"; ELFExport exports; exporter(taskData, pushedName, pushedRoot, extension, &exports); #elif defined(HAVE_MACH_O_RELOC_H) // Mac OS-X const char *extension = ".o"; MachoExport exports; exporter(taskData, pushedName, pushedRoot, extension, &exports); #else raise_exception_string (taskData, EXC_Fail, "Native export not available for this platform"); #endif } catch (...) { } // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); // Returns unit } POLYUNSIGNED PolyExportPortable(PolyObject *threadId, PolyWord fileName, PolyWord root) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedName = taskData->saveVec.push(fileName); Handle pushedRoot = taskData->saveVec.push(root); try { PExport exports; exporter(taskData, pushedName, pushedRoot, _T(".txt"), &exports); } catch (...) { } // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); // Returns unit } // Helper functions for exporting. We need to produce relocation information // and this code is common to every method. Exporter::Exporter(unsigned int h): exportFile(NULL), errorMessage(0), hierarchy(h), memTable(0), newAreas(0) { } Exporter::~Exporter() { delete[](memTable); if (exportFile) fclose(exportFile); } void Exporter::relocateValue(PolyWord *pt) { #ifndef POLYML32IN64 PolyWord q = *pt; if (IS_INT(q) || q == PolyWord::FromUnsigned(0)) {} else createRelocation(pt); #endif } void Exporter::createRelocation(PolyWord* pt) { *gMem.SpaceForAddress(pt)->writeAble(pt) = createRelocation(*pt, pt); } // Check through the areas to see where the address is. It must be // in one of them. unsigned Exporter::findArea(void *p) { for (unsigned i = 0; i < memTableEntries; i++) { if (p > memTable[i].mtOriginalAddr && p <= (char*)memTable[i].mtOriginalAddr + memTable[i].mtLength) return i; } { ASSERT(0); } return 0; } void Exporter::relocateObject(PolyObject *p) { if (p->IsByteObject()) { if (p->IsMutable() && p->IsWeakRefObject()) { // Weak mutable byte refs are used for external references and // also in the FFI for non-persistent values. bool isFuncPtr = true; const char *entryName = getEntryPointName(p, &isFuncPtr); if (entryName != 0) addExternalReference(p, entryName, isFuncPtr); // Clear the first word of the data. ASSERT(p->Length() >= sizeof(uintptr_t)/sizeof(PolyWord)); *(uintptr_t*)p = 0; } } else if (p->IsCodeObject()) { POLYUNSIGNED constCount; PolyWord *cp; ASSERT(! p->IsMutable() ); p->GetConstSegmentForCode(cp, constCount); /* Now the constants. */ for (POLYUNSIGNED i = 0; i < constCount; i++) relocateValue(&(cp[i])); } else if (p->IsClosureObject()) { #ifndef POLYML32IN64 ASSERT(0); #endif // This should only be used in 32-in-64 where we don't use relocations. } else /* Ordinary objects, essentially tuples. */ { POLYUNSIGNED length = p->Length(); for (POLYUNSIGNED i = 0; i < length; i++) relocateValue(p->Offset(i)); } } ExportStringTable::ExportStringTable(): strings(0), stringSize(0), stringAvailable(0) { } ExportStringTable::~ExportStringTable() { free(strings); } // Add a string to the string table, growing it if necessary. unsigned long ExportStringTable::makeEntry(const char *str) { unsigned len = (unsigned)strlen(str); unsigned long entry = stringSize; if (stringSize + len + 1 > stringAvailable) { stringAvailable = stringAvailable+stringAvailable/2; if (stringAvailable < stringSize + len + 1) stringAvailable = stringSize + len + 1 + 500; char* newStrings = (char*)realloc(strings, stringAvailable); if (newStrings == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to realloc string table, size: %lu.\n", stringAvailable); throw MemoryException(); } else strings = newStrings; } strcpy(strings + stringSize, str); stringSize += len + 1; return entry; } struct _entrypts exporterEPT[] = { { "PolyExport", (polyRTSFunction)&PolyExport}, { "PolyExportPortable", (polyRTSFunction)&PolyExportPortable}, { NULL, NULL} // End of list. }; diff --git a/libpolyml/savestate.cpp b/libpolyml/savestate.cpp index 0798a8f3..b3cc9e2c 100644 --- a/libpolyml/savestate.cpp +++ b/libpolyml/savestate.cpp @@ -1,2223 +1,2237 @@ /* Title: savestate.cpp - Save and Load state Copyright (c) 2007, 2015, 2017-19 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #elif defined(_WIN32) #include "winconfig.h" #else #error "No configuration file" #endif #ifdef HAVE_STDIO_H #include #endif #ifdef HAVE_WINDOWS_H #include // For MAX_PATH #endif #ifdef HAVE_SYS_PARAM_H #include // For MAX_PATH #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_TIME_H #include #endif #ifdef HAVE_SYS_TYPES_H #include #endif #ifdef HAVE_SYS_STAT_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) #endif #if (defined(_WIN32)) #include #define ERRORNUMBER _doserrno #define NOMEMORY ERROR_NOT_ENOUGH_MEMORY #else typedef char TCHAR; #define _T(x) x #define _tfopen fopen #define _tcscpy strcpy #define _tcsdup strdup #define _tcslen strlen #define _fputtc fputc #define _fputts fputs #ifndef lstrcmpi #define lstrcmpi strcasecmp #endif #define ERRORNUMBER errno #define NOMEMORY ENOMEM #endif #include "globals.h" #include "savestate.h" #include "processes.h" #include "run_time.h" #include "polystring.h" #include "scanaddrs.h" #include "arb.h" #include "memmgr.h" #include "mpoly.h" // For exportTimeStamp #include "exporter.h" // For CopyScan #include "machine_dep.h" #include "osmem.h" #include "gc.h" // For FullGC. #include "timing.h" #include "rtsentry.h" #include "check_objects.h" #include "rtsentry.h" #include "../polyexports.h" // For InitHeaderFromExport #include "version.h" // For InitHeaderFromExport #ifdef _MSC_VER // Don't tell me about ISO C++ changes. #pragma warning(disable:4996) #endif extern "C" { POLYEXTERNALSYMBOL POLYUNSIGNED PolySaveState(PolyObject *threadId, PolyWord fileName, PolyWord depth); POLYEXTERNALSYMBOL POLYUNSIGNED PolyLoadState(PolyObject *threadId, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyShowHierarchy(PolyObject *threadId); POLYEXTERNALSYMBOL POLYUNSIGNED PolyRenameParent(PolyObject *threadId, PolyWord childName, PolyWord parentName); POLYEXTERNALSYMBOL POLYUNSIGNED PolyShowParent(PolyObject *threadId, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyStoreModule(PolyObject *threadId, PolyWord name, PolyWord contents); POLYEXTERNALSYMBOL POLYUNSIGNED PolyLoadModule(PolyObject *threadId, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyLoadHierarchy(PolyObject *threadId, PolyWord arg); POLYEXTERNALSYMBOL POLYUNSIGNED PolyGetModuleDirectory(PolyObject *threadId); } // Helper class to close files on exit. class AutoClose { public: AutoClose(FILE *f = 0): m_file(f) {} ~AutoClose() { if (m_file) ::fclose(m_file); } operator FILE*() { return m_file; } FILE* operator = (FILE* p) { return (m_file = p); } private: FILE *m_file; }; // This is probably generally useful so may be moved into // a general header file. template class AutoFree { public: AutoFree(BASE p = 0): m_value(p) {} ~AutoFree() { free(m_value); } // Automatic conversions to the base type. operator BASE() { return m_value; } BASE operator = (BASE p) { return (m_value = p); } private: BASE m_value; }; #ifdef HAVE__FTELLI64 // fseek and ftell are only 32-bits in Windows. #define off_t __int64 #define fseek _fseeki64 #define ftell _ftelli64 #endif /* * Structure definitions for the saved state files. */ #define SAVEDSTATESIGNATURE "POLYSAVE" #define SAVEDSTATEVERSION 2 // File header for a saved state file. This appears as the first entry // in the file. typedef struct _savedStateHeader { // These entries are primarily to check that we have a valid // saved state file before we try to interpret anything else. char headerSignature[8]; // Should contain SAVEDSTATESIGNATURE unsigned headerVersion; // Should contain SAVEDSTATEVERSION unsigned headerLength; // Number of bytes in the header unsigned segmentDescrLength; // Number of bytes in a descriptor // These entries contain the real data. off_t segmentDescr; // Position of segment descriptor table unsigned segmentDescrCount; // Number of segment descriptors in the table off_t stringTable; // Pointer to the string table (zero if none) size_t stringTableSize; // Size of string table unsigned parentNameEntry; // Position of parent name in string table (0 if top) time_t timeStamp; // The time stamp for this file. time_t parentTimeStamp; // The time stamp for the parent. void *originalBaseAddr; // Original base address (32-in-64 only) } SavedStateHeader; // Entry for segment table. This describes the segments on the disc that // need to be loaded into memory. typedef struct _savedStateSegmentDescr { off_t segmentData; // Position of the segment data size_t segmentSize; // Size of the segment data off_t relocations; // Position of the relocation table unsigned relocationCount; // Number of entries in relocation table unsigned relocationSize; // Size of a relocation entry unsigned segmentFlags; // Segment flags (see SSF_ values) unsigned segmentIndex; // The index of this segment or the segment it overwrites void *originalAddress; // The base address when the segment was written. } SavedStateSegmentDescr; #define SSF_WRITABLE 1 // The segment contains mutable data #define SSF_OVERWRITE 2 // The segment overwrites the data (mutable) in a parent. #define SSF_NOOVERWRITE 4 // The segment must not be further overwritten #define SSF_BYTES 8 // The segment contains only byte data #define SSF_CODE 16 // The segment contains only code typedef struct _relocationEntry { // Each entry indicates a location that has to be set to an address. // The location to be set is determined by adding "relocAddress" to the base address of // this segment (the one to which these relocations apply) and the value to store // by adding "targetAddress" to the base address of the segment indicated by "targetSegment". POLYUNSIGNED relocAddress; // The (byte) offset in this segment that we will set POLYUNSIGNED targetAddress; // The value to add to the base of the destination segment unsigned targetSegment; // The base segment. 0 is IO segment. ScanRelocationKind relKind; // The kind of relocation (processor dependent). } RelocationEntry; #define SAVE(x) taskData->saveVec.push(x) /* * Hierarchy table: contains information about last loaded or saved state. */ // Pointer to list of files loaded in last load. // There's no need for a lock since the update is only made when all // the ML threads have stopped. class HierarchyTable { public: HierarchyTable(const TCHAR *file, time_t time): fileName(_tcsdup(file)), timeStamp(time) { } AutoFree fileName; time_t timeStamp; }; HierarchyTable **hierarchyTable; static unsigned hierarchyDepth; static bool AddHierarchyEntry(const TCHAR *fileName, time_t timeStamp) { // Add an entry to the hierarchy table for this file. HierarchyTable *newEntry = new HierarchyTable(fileName, timeStamp); if (newEntry == 0) return false; HierarchyTable **newTable = (HierarchyTable **)realloc(hierarchyTable, sizeof(HierarchyTable *)*(hierarchyDepth+1)); if (newTable == 0) return false; hierarchyTable = newTable; hierarchyTable[hierarchyDepth++] = newEntry; return true; } // Test whether we're overwriting a parent of ourself. #if (defined(_WIN32) || defined(__CYGWIN__)) static bool sameFile(const TCHAR *x, const TCHAR *y) { HANDLE hXFile = INVALID_HANDLE_VALUE, hYFile = INVALID_HANDLE_VALUE; bool result = false; hXFile = CreateFile(x, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hXFile == INVALID_HANDLE_VALUE) goto closeAndExit; hYFile = CreateFile(y, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hYFile == INVALID_HANDLE_VALUE) goto closeAndExit; BY_HANDLE_FILE_INFORMATION fileInfoX, fileInfoY; if (! GetFileInformationByHandle(hXFile, &fileInfoX)) goto closeAndExit; if (! GetFileInformationByHandle(hYFile, &fileInfoY)) goto closeAndExit; result = fileInfoX.dwVolumeSerialNumber == fileInfoY.dwVolumeSerialNumber && fileInfoX.nFileIndexLow == fileInfoY.nFileIndexLow && fileInfoX.nFileIndexHigh == fileInfoY.nFileIndexHigh; closeAndExit: if (hXFile != INVALID_HANDLE_VALUE) CloseHandle(hXFile); if (hYFile != INVALID_HANDLE_VALUE) CloseHandle(hYFile); return result; } #else static bool sameFile(const char *x, const char *y) { struct stat xStat, yStat; // If either file does not exist that's fine. if (stat(x, &xStat) != 0 || stat(y, &yStat) != 0) return false; return (xStat.st_dev == yStat.st_dev && xStat.st_ino == yStat.st_ino); } #endif /* * Saving state. */ // This class is used to create the relocations. It uses Exporter // for this but this may perhaps be too heavyweight. class SaveStateExport: public Exporter, public ScanAddress { public: SaveStateExport(unsigned int h=0): Exporter(h), relocationCount(0) {} public: virtual void exportStore(void) {} // Not used. private: // ScanAddress overrides virtual void ScanConstant(PolyObject *base, byte *addrOfConst, ScanRelocationKind code); // At the moment we should only get calls to ScanConstant. virtual PolyObject *ScanObjectAddress(PolyObject *base) { return base; } protected: void setRelocationAddress(void *p, POLYUNSIGNED *reloc); PolyWord createRelocation(PolyWord p, void *relocAddr); unsigned relocationCount; friend class SaveRequest; }; // Generate the address relative to the start of the segment. void SaveStateExport::setRelocationAddress(void *p, POLYUNSIGNED *reloc) { unsigned area = findArea(p); POLYUNSIGNED offset = (POLYUNSIGNED)((char*)p - (char*)memTable[area].mtOriginalAddr); *reloc = offset; } // Create a relocation entry for an address at a given location. PolyWord SaveStateExport::createRelocation(PolyWord p, void *relocAddr) { RelocationEntry reloc; // Set the offset within the section we're scanning. setRelocationAddress(relocAddr, &reloc.relocAddress); void *addr = p.AsAddress(); unsigned addrArea = findArea(addr); reloc.targetAddress = (POLYUNSIGNED)((char*)addr - (char*)memTable[addrArea].mtOriginalAddr); reloc.targetSegment = (unsigned)memTable[addrArea].mtIndex; reloc.relKind = PROCESS_RELOC_DIRECT; fwrite(&reloc, sizeof(reloc), 1, exportFile); relocationCount++; return p; // Don't change the contents } /* This is called for each constant within the code. Print a relocation entry for the word and return a value that means that the offset is saved in original word. */ void SaveStateExport::ScanConstant(PolyObject *base, byte *addr, ScanRelocationKind code) { PolyObject *p = GetConstantValue(addr, code); if (p == 0) return; void *a = p; unsigned aArea = findArea(a); // We don't need a relocation if this is relative to the current segment // since the relative address will already be right. if (code == PROCESS_RELOC_I386RELATIVE && aArea == findArea(addr)) return; // Set the value at the address to the offset relative to the symbol. RelocationEntry reloc; setRelocationAddress(addr, &reloc.relocAddress); reloc.targetAddress = (POLYUNSIGNED)((char*)a - (char*)memTable[aArea].mtOriginalAddr); reloc.targetSegment = (unsigned)memTable[aArea].mtIndex; reloc.relKind = code; fwrite(&reloc, sizeof(reloc), 1, exportFile); relocationCount++; } // Request to the main thread to save data. class SaveRequest: public MainThreadRequest { public: SaveRequest(const TCHAR *name, unsigned h): MainThreadRequest(MTP_SAVESTATE), fileName(name), newHierarchy(h), errorMessage(0), errCode(0) {} virtual void Perform(); const TCHAR *fileName; unsigned newHierarchy; const char *errorMessage; int errCode; }; // This class is used to update references to objects that have moved. If // we have copied an object into the area to be exported we may still have references // to it from the stack or from RTS data structures. We have to ensure that these // are updated. // This is very similar to ProcessFixupAddress in sharedata.cpp class SaveFixupAddress: public ScanAddress { protected: virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt); virtual POLYUNSIGNED ScanCodeAddressAt(PolyObject **pt) { *pt = ScanObjectAddress(*pt); return 0; } virtual PolyObject *ScanObjectAddress(PolyObject *base); public: void ScanCodeSpace(CodeSpace *space); }; POLYUNSIGNED SaveFixupAddress::ScanAddressAt(PolyWord *pt) { PolyWord val = *pt; if (val.IsDataPtr() && val != PolyWord::FromUnsigned(0)) *pt = ScanObjectAddress(val.AsObjPtr()); return 0; } // Returns the new address if the argument is the address of an object that // has moved, otherwise returns the original. PolyObject *SaveFixupAddress::ScanObjectAddress(PolyObject *obj) { if (obj->ContainsForwardingPtr()) // tombstone is a pointer to a moved object { #ifdef POLYML32IN64 MemSpace *space = gMem.SpaceForAddress((PolyWord*)obj - 1); PolyObject *newp; if (space->isCode) newp = (PolyObject*)(globalCodeBase + ((obj->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else newp = obj->GetForwardingPtr(); #else PolyObject *newp = obj->GetForwardingPtr(); #endif ASSERT (newp->ContainsNormalLengthWord()); return newp; } ASSERT (obj->ContainsNormalLengthWord()); // object is not moved return obj; } // Fix up addresses in the code area. Unlike ScanAddressesInRegion this updates // cells that have been moved. We need to do that because we may still have // return addresses into those cells and we don't move return addresses. We // do want the code to see updated constant addresses. void SaveFixupAddress::ScanCodeSpace(CodeSpace *space) { for (PolyWord *pt = space->bottom; pt < space->top; ) { pt++; PolyObject *obj = (PolyObject*)pt; #ifdef POLYML32IN64 PolyObject *dest = obj; while (dest->ContainsForwardingPtr()) { MemSpace *space = gMem.SpaceForAddress((PolyWord*)dest - 1); if (space->isCode) dest = (PolyObject*)(globalCodeBase + ((dest->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else dest = dest->GetForwardingPtr(); } #else PolyObject *dest = obj->FollowForwardingChain(); #endif POLYUNSIGNED length = dest->Length(); if (length != 0) ScanAddressesInObject(obj, dest->LengthWord()); pt += length; } } // Called by the root thread to actually save the state and write the file. void SaveRequest::Perform() { if (debugOptions & DEBUG_SAVING) Log("SAVE: Beginning saving state.\n"); // Check that we aren't overwriting our own parent. for (unsigned q = 0; q < newHierarchy-1; q++) { if (sameFile(hierarchyTable[q]->fileName, fileName)) { errorMessage = "File being saved is used as a parent of this file"; errCode = 0; if (debugOptions & DEBUG_SAVING) Log("SAVE: File being saved is used as a parent of this file.\n"); return; } } SaveStateExport exports; // Open the file. This could quite reasonably fail if the path is wrong. exports.exportFile = _tfopen(fileName, _T("wb")); if (exports.exportFile == NULL) { errorMessage = "Cannot open save file"; errCode = ERRORNUMBER; if (debugOptions & DEBUG_SAVING) Log("SAVE: Cannot open save file.\n"); return; } // Scan over the permanent mutable area copying all reachable data that is // not in a lower hierarchy into new permanent segments. CopyScan copyScan(newHierarchy); copyScan.initialise(false); bool success = true; try { for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { PermanentMemSpace *space = *i; if (space->isMutable && !space->noOverwrite && !space->byteOnly) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Scanning permanent mutable area %p allocated at %p size %lu\n", space, space->bottom, space->spaceSize()); copyScan.ScanAddressesInRegion(space->bottom, space->top); } } } catch (MemoryException &) { success = false; if (debugOptions & DEBUG_SAVING) Log("SAVE: Scan of permanent mutable area raised memory exception.\n"); } // Copy the areas into the export object. Make sufficient space for // the largest possible number of entries. exports.memTable = new memoryTableEntry[gMem.eSpaces.size()+gMem.pSpaces.size()+1]; unsigned memTableCount = 0; // Permanent spaces at higher level. These have to have entries although // only the mutable entries will be written. for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { PermanentMemSpace *space = *i; if (space->hierarchy < newHierarchy) { memoryTableEntry *entry = &exports.memTable[memTableCount++]; entry->mtOriginalAddr = entry->mtCurrentAddr = space->bottom; entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord); entry->mtIndex = space->index; entry->mtFlags = 0; if (space->isMutable) { entry->mtFlags |= MTF_WRITEABLE; if (space->noOverwrite) entry->mtFlags |= MTF_NO_OVERWRITE; if (space->byteOnly) entry->mtFlags |= MTF_BYTES; } if (space->isCode) entry->mtFlags |= MTF_EXECUTABLE; } } unsigned permanentEntries = memTableCount; // Remember where new entries start. // Newly created spaces. for (std::vector::iterator i = gMem.eSpaces.begin(); i < gMem.eSpaces.end(); i++) { memoryTableEntry *entry = &exports.memTable[memTableCount++]; PermanentMemSpace *space = *i; entry->mtOriginalAddr = entry->mtCurrentAddr = space->bottom; entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord); entry->mtIndex = space->index; entry->mtFlags = 0; if (space->isMutable) { entry->mtFlags |= MTF_WRITEABLE; if (space->noOverwrite) entry->mtFlags |= MTF_NO_OVERWRITE; if (space->byteOnly) entry->mtFlags |= MTF_BYTES; } if (space->isCode) entry->mtFlags |= MTF_EXECUTABLE; } exports.memTableEntries = memTableCount; if (debugOptions & DEBUG_SAVING) Log("SAVE: Updating references to moved objects.\n"); // Update references to moved objects. SaveFixupAddress fixup; for (std::vector::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++) { LocalMemSpace *space = *i; fixup.ScanAddressesInRegion(space->bottom, space->lowerAllocPtr); fixup.ScanAddressesInRegion(space->upperAllocPtr, space->top); } for (std::vector::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++) fixup.ScanCodeSpace(*i); GCModules(&fixup); // Restore the length words in the code areas. // Although we've updated any pointers to the start of the code we could have return addresses // pointing to the original code. GCModules updates the stack but doesn't update return addresses. for (std::vector::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++) { CodeSpace *space = *i; for (PolyWord *pt = space->bottom; pt < space->top; ) { pt++; PolyObject *obj = (PolyObject*)pt; if (obj->ContainsForwardingPtr()) { #ifdef POLYML32IN64 PolyObject *forwardedTo = obj; while (forwardedTo->ContainsForwardingPtr()) forwardedTo = (PolyObject*)(globalCodeBase + ((forwardedTo->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); #else PolyObject *forwardedTo = obj->FollowForwardingChain(); #endif POLYUNSIGNED lengthWord = forwardedTo->LengthWord(); space->writeAble(obj)->SetLengthWord(lengthWord); } pt += obj->Length(); } } // Update the global memory space table. Old segments at the same level // or lower are removed. The new segments become permanent. // Try to promote the spaces even if we've had a failure because export // spaces are deleted in ~CopyScan and we may have already copied // some objects there. if (debugOptions & DEBUG_SAVING) Log("SAVE: Promoting export spaces to permanent spaces.\n"); if (! gMem.PromoteExportSpaces(newHierarchy) || ! success) { errorMessage = "Out of Memory"; errCode = NOMEMORY; if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to promote export spaces.\n"); return; } // Remove any deeper entries from the hierarchy table. while (hierarchyDepth > newHierarchy-1) { hierarchyDepth--; delete(hierarchyTable[hierarchyDepth]); hierarchyTable[hierarchyDepth] = 0; } if (debugOptions & DEBUG_SAVING) Log("SAVE: Writing out data.\n"); // Write out the file header. SavedStateHeader saveHeader; memset(&saveHeader, 0, sizeof(saveHeader)); saveHeader.headerLength = sizeof(saveHeader); memcpy(saveHeader.headerSignature, SAVEDSTATESIGNATURE, sizeof(saveHeader.headerSignature)); saveHeader.headerVersion = SAVEDSTATEVERSION; saveHeader.segmentDescrLength = sizeof(SavedStateSegmentDescr); if (newHierarchy == 1) saveHeader.parentTimeStamp = exportTimeStamp; else { saveHeader.parentTimeStamp = hierarchyTable[newHierarchy-2]->timeStamp; saveHeader.parentNameEntry = sizeof(TCHAR); // Always the first entry. } saveHeader.timeStamp = getBuildTime(); saveHeader.segmentDescrCount = exports.memTableEntries; // One segment for each space. #ifdef POLYML32IN64 saveHeader.originalBaseAddr = globalHeapBase; #endif // Write out the header. fwrite(&saveHeader, sizeof(saveHeader), 1, exports.exportFile); // We need a segment header for each permanent area whether it is // actually in this file or not. SavedStateSegmentDescr *descrs = new SavedStateSegmentDescr [exports.memTableEntries]; for (unsigned j = 0; j < exports.memTableEntries; j++) { memoryTableEntry *entry = &exports.memTable[j]; memset(&descrs[j], 0, sizeof(SavedStateSegmentDescr)); descrs[j].relocationSize = sizeof(RelocationEntry); descrs[j].segmentIndex = (unsigned)entry->mtIndex; descrs[j].segmentSize = entry->mtLength; // Set this even if we don't write it. descrs[j].originalAddress = entry->mtOriginalAddr; if (entry->mtFlags & MTF_WRITEABLE) { descrs[j].segmentFlags |= SSF_WRITABLE; if (entry->mtFlags & MTF_NO_OVERWRITE) descrs[j].segmentFlags |= SSF_NOOVERWRITE; if (j < permanentEntries && (entry->mtFlags & MTF_NO_OVERWRITE) == 0) descrs[j].segmentFlags |= SSF_OVERWRITE; if (entry->mtFlags & MTF_BYTES) descrs[j].segmentFlags |= SSF_BYTES; } if (entry->mtFlags & MTF_EXECUTABLE) descrs[j].segmentFlags |= SSF_CODE; } // Write out temporarily. Will be overwritten at the end. saveHeader.segmentDescr = ftell(exports.exportFile); fwrite(descrs, sizeof(SavedStateSegmentDescr), exports.memTableEntries, exports.exportFile); // Write out the relocations and the data. for (unsigned k = 1 /* Not IO area */; k < exports.memTableEntries; k++) { memoryTableEntry *entry = &exports.memTable[k]; // Write out the contents if this is new or if it is a normal, overwritable // mutable area. if (k >= permanentEntries || (entry->mtFlags & (MTF_WRITEABLE|MTF_NO_OVERWRITE)) == MTF_WRITEABLE) { descrs[k].relocations = ftell(exports.exportFile); // Have to write this out. exports.relocationCount = 0; // Create the relocation table. char *start = (char*)entry->mtOriginalAddr; char *end = start + entry->mtLength; for (PolyWord *p = (PolyWord*)start; p < (PolyWord*)end; ) { p++; PolyObject *obj = (PolyObject*)p; POLYUNSIGNED length = obj->Length(); // Most relocations can be computed when the saved state is // loaded so we only write out the difficult ones: those that // occur within compiled code. // exports.relocateObject(obj); if (length != 0 && obj->IsCodeObject()) machineDependent->ScanConstantsWithinCode(obj, &exports); p += length; } descrs[k].relocationCount = exports.relocationCount; // Write out the data. descrs[k].segmentData = ftell(exports.exportFile); fwrite(entry->mtOriginalAddr, entry->mtLength, 1, exports.exportFile); } } // If this is a child we need to write a string table containing the parent name. if (newHierarchy > 1) { saveHeader.stringTable = ftell(exports.exportFile); _fputtc(0, exports.exportFile); // First byte of string table is zero _fputts(hierarchyTable[newHierarchy-2]->fileName, exports.exportFile); _fputtc(0, exports.exportFile); // A terminating null. saveHeader.stringTableSize = (_tcslen(hierarchyTable[newHierarchy-2]->fileName) + 2)*sizeof(TCHAR); } // Rewrite the header and the segment tables now they're complete. fseek(exports.exportFile, 0, SEEK_SET); fwrite(&saveHeader, sizeof(saveHeader), 1, exports.exportFile); fwrite(descrs, sizeof(SavedStateSegmentDescr), exports.memTableEntries, exports.exportFile); if (debugOptions & DEBUG_SAVING) Log("SAVE: Writing complete.\n"); // Add an entry to the hierarchy table for this file. (void)AddHierarchyEntry(fileName, saveHeader.timeStamp); delete[](descrs); CheckMemory(); } // Write a saved state file. POLYUNSIGNED PolySaveState(PolyObject *threadId, PolyWord fileName, PolyWord depth) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); try { TempString fileNameBuff(Poly_string_to_T_alloc(fileName)); // The value of depth is zero for top-level save so we need to add one for hierarchy. unsigned newHierarchy = get_C_unsigned(taskData, depth) + 1; if (newHierarchy > hierarchyDepth + 1) raise_fail(taskData, "Depth must be no more than the current hierarchy plus one"); // Request a full GC first. The main reason is to avoid running out of memory as a // result of repeated saves. Old export spaces are turned into local spaces and // the GC will delete them if they are completely empty FullGC(taskData); SaveRequest request(fileNameBuff, newHierarchy); processes->MakeRootRequest(taskData, &request); if (request.errorMessage) raise_syscall(taskData, request.errorMessage, request.errCode); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); } /* * Loading saved state files. */ class StateLoader: public MainThreadRequest { public: StateLoader(bool isH, Handle files): MainThreadRequest(MTP_LOADSTATE), isHierarchy(isH), fileNameList(files), errorResult(0), errNumber(0) { } virtual void Perform(void); bool LoadFile(bool isInitial, time_t requiredStamp, PolyWord tail); bool isHierarchy; Handle fileNameList; const char *errorResult; // The fileName here is the last file loaded. As well as using it // to load the name can also be printed out at the end to identify the // particular file in the hierarchy that failed. AutoFree fileName; int errNumber; }; // Called by the main thread once all the ML threads have stopped. void StateLoader::Perform(void) { // Copy the first file name into the buffer. if (isHierarchy) { if (ML_Cons_Cell::IsNull(fileNameList->Word())) { errorResult = "Hierarchy list is empty"; return; } ML_Cons_Cell *p = DEREFLISTHANDLE(fileNameList); fileName = Poly_string_to_T_alloc(p->h); if (fileName == NULL) { errorResult = "Insufficient memory"; errNumber = NOMEMORY; return; } (void)LoadFile(true, 0, p->t); } else { fileName = Poly_string_to_T_alloc(fileNameList->Word()); if (fileName == NULL) { errorResult = "Insufficient memory"; errNumber = NOMEMORY; return; } (void)LoadFile(true, 0, TAGGED(0)); } } -class ClearWeakByteRef: public ScanAddress +class ClearVolatile: public ScanAddress { public: - ClearWeakByteRef() {} + ClearVolatile() {} virtual PolyObject *ScanObjectAddress(PolyObject *base) { return base; } virtual void ScanAddressesInObject(PolyObject *base, POLYUNSIGNED lengthWord); }; // Set the values of external references and clear the values of other weak byte refs. -void ClearWeakByteRef::ScanAddressesInObject(PolyObject *base, POLYUNSIGNED lengthWord) +void ClearVolatile::ScanAddressesInObject(PolyObject *base, POLYUNSIGNED lengthWord) { - if (OBJ_IS_MUTABLE_OBJECT(lengthWord) && OBJ_IS_BYTE_OBJECT(lengthWord) && OBJ_IS_WEAKREF_OBJECT(lengthWord)) + if (OBJ_IS_MUTABLE_OBJECT(lengthWord) && OBJ_IS_NO_OVERWRITE(lengthWord)) { - POLYUNSIGNED len = OBJ_OBJECT_LENGTH(lengthWord); - if (len > 0) base->Set(0, PolyWord::FromSigned(0)); - setEntryPoint(base); + if (OBJ_IS_BYTE_OBJECT(lengthWord)) + { + if (OBJ_IS_WEAKREF_OBJECT(lengthWord)) + { + POLYUNSIGNED len = OBJ_OBJECT_LENGTH(lengthWord); + if (len >= sizeof(uintptr_t) / sizeof(PolyWord)) + *((uintptr_t*)base) = 0; + setEntryPoint(base); + } + } + else + { + // Clear volatile refs + POLYUNSIGNED len = OBJ_OBJECT_LENGTH(lengthWord); + for (POLYUNSIGNED i = 0; i < len; i++) + base->Set(i, TAGGED(0)); + } } } // This is copied from the B-tree in MemMgr. It probably should be // merged but will do for the moment. It's intended to reduce the // cost of finding the segment for relocation. class SpaceBTree { public: SpaceBTree(bool is, unsigned i = 0) : isLeaf(is), index(i) { } virtual ~SpaceBTree() {} bool isLeaf; unsigned index; // The index if this is a leaf }; // A non-leaf node in the B-tree class SpaceBTreeTree : public SpaceBTree { public: SpaceBTreeTree(); virtual ~SpaceBTreeTree(); SpaceBTree *tree[256]; }; SpaceBTreeTree::SpaceBTreeTree() : SpaceBTree(false) { for (unsigned i = 0; i < 256; i++) tree[i] = 0; } SpaceBTreeTree::~SpaceBTreeTree() { for (unsigned i = 0; i < 256; i++) delete(tree[i]); } // This class is used to relocate addresses in areas that have been loaded. class LoadRelocate: public ScanAddress { public: LoadRelocate(bool pcc = false): processCodeConstants(pcc), originalBaseAddr(0), descrs(0), targetAddresses(0), nDescrs(0), spaceTree(0) {} ~LoadRelocate(); void RelocateObject(PolyObject *p); virtual PolyObject *ScanObjectAddress(PolyObject *base) { ASSERT(0); return base; } // Not used virtual void ScanConstant(PolyObject *base, byte *addressOfConstant, ScanRelocationKind code); void RelocateAddressAt(PolyWord *pt); PolyObject *RelocateAddress(PolyObject *obj); void AddTreeRange(SpaceBTree **t, unsigned index, uintptr_t startS, uintptr_t endS); bool processCodeConstants; PolyWord *originalBaseAddr; SavedStateSegmentDescr *descrs; PolyWord **targetAddresses; unsigned nDescrs; SpaceBTree *spaceTree; intptr_t relativeOffset; }; LoadRelocate::~LoadRelocate() { if (descrs) delete[](descrs); if (targetAddresses) delete[](targetAddresses); delete(spaceTree); } // Add an entry to the space B-tree. void LoadRelocate::AddTreeRange(SpaceBTree **tt, unsigned index, uintptr_t startS, uintptr_t endS) { if (*tt == 0) *tt = new SpaceBTreeTree; ASSERT(!(*tt)->isLeaf); SpaceBTreeTree *t = (SpaceBTreeTree*)*tt; const unsigned shift = (sizeof(void*) - 1) * 8; // Takes the high-order byte uintptr_t r = startS >> shift; ASSERT(r < 256); const uintptr_t s = endS == 0 ? 256 : endS >> shift; ASSERT(s >= r && s <= 256); if (r == s) // Wholly within this entry AddTreeRange(&(t->tree[r]), index, startS << 8, endS << 8); else { // Deal with any remainder at the start. if ((r << shift) != startS) { AddTreeRange(&(t->tree[r]), index, startS << 8, 0 /*End of range*/); r++; } // Whole entries. while (r < s) { ASSERT(t->tree[r] == 0); t->tree[r] = new SpaceBTree(true, index); r++; } // Remainder at the end. if ((s << shift) != endS) AddTreeRange(&(t->tree[r]), index, 0, endS << 8); } } // Update the addresses in a group of words. void LoadRelocate::RelocateAddressAt(PolyWord *pt) { PolyWord val = *pt; if (! val.IsTagged()) *gMem.SpaceForAddress(pt)->writeAble(pt) = RelocateAddress(val.AsObjPtr(originalBaseAddr)); } PolyObject *LoadRelocate::RelocateAddress(PolyObject *obj) { // Which segment is this address in? // N.B. As with SpaceForAddress we need to subtract 1 to point to the length word. uintptr_t t = (uintptr_t)((PolyWord*)obj - 1); SpaceBTree *tr = spaceTree; // Each level of the tree is either a leaf or a vector of trees. unsigned j = sizeof(void *) * 8; for (;;) { if (tr == 0) break; if (tr->isLeaf) { // It's in this segment: relocate it to the current position. unsigned i = tr->index; SavedStateSegmentDescr *descr = &descrs[i]; PolyWord *newAddress = targetAddresses[descr->segmentIndex]; ASSERT((char*)obj > descr->originalAddress && (char*)obj <= (char*)descr->originalAddress + descr->segmentSize); ASSERT(newAddress != 0); byte *setAddress = (byte*)newAddress + ((char*)obj - (char*)descr->originalAddress); return (PolyObject*)setAddress; } j -= 8; tr = ((SpaceBTreeTree*)tr)->tree[(t >> j) & 0xff]; } // This should never happen. ASSERT(0); return 0; } // This is based on Exporter::relocateObject but does the reverse. // It attempts to adjust all the addresses in the object when it has // been read in. void LoadRelocate::RelocateObject(PolyObject *p) { if (p->IsByteObject()) { } else if (p->IsCodeObject()) { POLYUNSIGNED constCount; PolyWord *cp; ASSERT(! p->IsMutable() ); p->GetConstSegmentForCode(cp, constCount); /* Now the constant area. */ for (POLYUNSIGNED i = 0; i < constCount; i++) RelocateAddressAt(&(cp[i])); // Saved states and modules have relocation entries for constants in the code. // We can't use them when loading object files in 32-in-64 so have to process the // constants here. if (processCodeConstants) { POLYUNSIGNED length = p->Length(); machineDependent->ScanConstantsWithinCode(p, p, length, this); } } else if (p->IsClosureObject()) { // The first word is the address of the code. POLYUNSIGNED length = p->Length(); *(PolyObject**)p = RelocateAddress(*(PolyObject**)p); for (POLYUNSIGNED i = sizeof(PolyObject*)/sizeof(PolyWord); i < length; i++) RelocateAddressAt(p->Offset(i)); } else /* Ordinary objects, essentially tuples. */ { POLYUNSIGNED length = p->Length(); for (POLYUNSIGNED i = 0; i < length; i++) RelocateAddressAt(p->Offset(i)); } } // Update addresses as constants within the code. void LoadRelocate::ScanConstant(PolyObject *base, byte *addressOfConstant, ScanRelocationKind code) { PolyObject *p = GetConstantValue(addressOfConstant, code, originalBaseAddr); if (p != 0) { // Relative addresses are computed by adding the CURRENT address. // We have to convert them into addresses in original space before we // can relocate them. if (code == PROCESS_RELOC_I386RELATIVE) p = (PolyObject*)((PolyWord*)p + relativeOffset); PolyObject *newValue = RelocateAddress(p); SetConstantValue(addressOfConstant, newValue, code); } } // Load a saved state file. Calls itself to handle parent files. bool StateLoader::LoadFile(bool isInitial, time_t requiredStamp, PolyWord tail) { LoadRelocate relocate; AutoFree thisFile(_tcsdup(fileName)); AutoClose loadFile(_tfopen(fileName, _T("rb"))); if ((FILE*)loadFile == NULL) { errorResult = "Cannot open load file"; errNumber = ERRORNUMBER; return false; } SavedStateHeader header; // Read the header and check the signature. if (fread(&header, sizeof(SavedStateHeader), 1, loadFile) != 1) { errorResult = "Unable to load header"; return false; } if (strncmp(header.headerSignature, SAVEDSTATESIGNATURE, sizeof(header.headerSignature)) != 0) { errorResult = "File is not a saved state"; return false; } if (header.headerVersion != SAVEDSTATEVERSION || header.headerLength != sizeof(SavedStateHeader) || header.segmentDescrLength != sizeof(SavedStateSegmentDescr)) { errorResult = "Unsupported version of saved state file"; return false; } // Check that we have the required stamp before loading any children. // If a parent has been overwritten we could get a loop. if (! isInitial && header.timeStamp != requiredStamp) { // Time-stamps don't match. errorResult = "The parent for this saved state does not match or has been changed"; return false; } // Have verified that this is a reasonable saved state file. If it isn't a // top-level file we have to load the parents first. if (header.parentNameEntry != 0) { if (isHierarchy) { // Take the file name from the list if (ML_Cons_Cell::IsNull(tail)) { errorResult = "Missing parent name in argument list"; return false; } ML_Cons_Cell *p = (ML_Cons_Cell *)tail.AsObjPtr(); fileName = Poly_string_to_T_alloc(p->h); if (fileName == NULL) { errorResult = "Insufficient memory"; errNumber = NOMEMORY; return false; } if (! LoadFile(false, header.parentTimeStamp, p->t)) return false; } else { size_t toRead = header.stringTableSize-header.parentNameEntry; size_t elems = ((toRead + sizeof(TCHAR) - 1) / sizeof(TCHAR)); // Always allow space for null terminator size_t roundedBytes = (elems + 1) * sizeof(TCHAR); TCHAR *newFileName = (TCHAR *)realloc(fileName, roundedBytes); if (newFileName == NULL) { errorResult = "Insufficient memory"; errNumber = NOMEMORY; return false; } fileName = newFileName; if (header.parentNameEntry >= header.stringTableSize /* Bad entry */ || fseek(loadFile, header.stringTable + header.parentNameEntry, SEEK_SET) != 0 || fread(fileName, 1, toRead, loadFile) != toRead) { errorResult = "Unable to read parent file name"; return false; } fileName[elems] = 0; // Should already be null-terminated, but just in case. if (! LoadFile(false, header.parentTimeStamp, TAGGED(0))) return false; } ASSERT(hierarchyDepth > 0 && hierarchyTable[hierarchyDepth-1] != 0); } else // Top-level file { if (isHierarchy && ! ML_Cons_Cell::IsNull(tail)) { // There should be no further file names if this is really the top. errorResult = "Too many file names in the list"; return false; } if (header.parentTimeStamp != exportTimeStamp) { // Time-stamp does not match executable. errorResult = "Saved state was exported from a different executable or the executable has changed"; return false; } // Any existing spaces at this level or greater must be turned // into local spaces. We may have references from the stack to objects that // have previously been imported but otherwise these spaces are no longer // needed. gMem.DemoteImportSpaces(); // Clean out the hierarchy table. for (unsigned h = 0; h < hierarchyDepth; h++) { delete(hierarchyTable[h]); hierarchyTable[h] = 0; } hierarchyDepth = 0; } // Now have a valid, matching saved state. // Load the segment descriptors. relocate.nDescrs = header.segmentDescrCount; relocate.descrs = new SavedStateSegmentDescr[relocate.nDescrs]; relocate.originalBaseAddr = (PolyWord*)header.originalBaseAddr; if (fseek(loadFile, header.segmentDescr, SEEK_SET) != 0 || fread(relocate.descrs, sizeof(SavedStateSegmentDescr), relocate.nDescrs, loadFile) != relocate.nDescrs) { errorResult = "Unable to read segment descriptors"; return false; } { unsigned maxIndex = 0; for (unsigned i = 0; i < relocate.nDescrs; i++) { if (relocate.descrs[i].segmentIndex > maxIndex) maxIndex = relocate.descrs[i].segmentIndex; relocate.AddTreeRange(&relocate.spaceTree, i, (uintptr_t)relocate.descrs[i].originalAddress, (uintptr_t)((char*)relocate.descrs[i].originalAddress + relocate.descrs[i].segmentSize-1)); } relocate.targetAddresses = new PolyWord*[maxIndex+1]; for (unsigned i = 0; i <= maxIndex; i++) relocate.targetAddresses[i] = 0; } // Read in and create the new segments first. If we have problems, // in particular if we have run out of memory, then it's easier to recover. for (unsigned i = 0; i < relocate.nDescrs; i++) { SavedStateSegmentDescr *descr = &relocate.descrs[i]; MemSpace *space = gMem.SpaceForIndex(descr->segmentIndex); if (space != NULL) relocate.targetAddresses[descr->segmentIndex] = space->bottom; if (descr->segmentData == 0) { // No data - just an entry in the index. if (space == NULL/* || descr->segmentSize != (size_t)((char*)space->top - (char*)space->bottom)*/) { errorResult = "Mismatch for existing memory space"; return false; } } else if ((descr->segmentFlags & SSF_OVERWRITE) == 0) { // New segment. if (space != NULL) { errorResult = "Segment already exists"; return false; } // Allocate memory for the new segment. unsigned mFlags = (descr->segmentFlags & SSF_WRITABLE ? MTF_WRITEABLE : 0) | (descr->segmentFlags & SSF_NOOVERWRITE ? MTF_NO_OVERWRITE : 0) | (descr->segmentFlags & SSF_BYTES ? MTF_BYTES : 0) | (descr->segmentFlags & SSF_CODE ? MTF_EXECUTABLE : 0); PermanentMemSpace *newSpace = gMem.AllocateNewPermanentSpace(descr->segmentSize, mFlags, descr->segmentIndex, hierarchyDepth + 1); if (newSpace == 0) { errorResult = "Unable to allocate memory"; return false; } PolyWord *mem = newSpace->bottom; PolyWord* writeAble = newSpace->writeAble(mem); if (fseek(loadFile, descr->segmentData, SEEK_SET) != 0 || fread(writeAble, descr->segmentSize, 1, loadFile) != 1) { errorResult = "Unable to read segment"; return false; } // Fill unused space to the top of the area. gMem.FillUnusedSpace(writeAble +descr->segmentSize/sizeof(PolyWord), newSpace->spaceSize() - descr->segmentSize/sizeof(PolyWord)); // Leave it writable until we've done the relocations. relocate.targetAddresses[descr->segmentIndex] = mem; - if (newSpace->isMutable && newSpace->byteOnly) + if (newSpace->noOverwrite) { - ClearWeakByteRef cwbr; + ClearVolatile cwbr; cwbr.ScanAddressesInRegion(newSpace->bottom, newSpace->topPointer); } } } // Now read in the mutable overwrites and relocate. for (unsigned j = 0; j < relocate.nDescrs; j++) { SavedStateSegmentDescr *descr = &relocate.descrs[j]; MemSpace *space = gMem.SpaceForIndex(descr->segmentIndex); ASSERT(space != NULL); // We should have created it. if (descr->segmentFlags & SSF_OVERWRITE) { if (fseek(loadFile, descr->segmentData, SEEK_SET) != 0 || fread(space->bottom, descr->segmentSize, 1, loadFile) != 1) { errorResult = "Unable to read segment"; return false; } } // Relocation. if (descr->segmentData != 0) { // Adjust the addresses in the loaded segment. for (PolyWord *p = space->bottom; p < space->top; ) { p++; PolyObject *obj = (PolyObject*)p; POLYUNSIGNED length = obj->Length(); relocate.RelocateObject(obj); p += length; } } // Process explicit relocations. // If we get errors just skip the error and continue rather than leave // everything in an unstable state. if (descr->relocations) { if (fseek(loadFile, descr->relocations, SEEK_SET) != 0) { errorResult = "Unable to read relocation segment"; return false; } for (unsigned k = 0; k < descr->relocationCount; k++) { RelocationEntry reloc; if (fread(&reloc, sizeof(reloc), 1, loadFile) != 1) { errorResult = "Unable to read relocation segment"; return false; } MemSpace *toSpace = gMem.SpaceForIndex(reloc.targetSegment); if (toSpace == NULL) { errorResult = "Unknown space reference in relocation"; continue; } byte *setAddress = (byte*)space->bottom + reloc.relocAddress; byte *targetAddress = (byte*)toSpace->bottom + reloc.targetAddress; if (setAddress >= (byte*)space->top || targetAddress >= (byte*)toSpace->top) { errorResult = "Bad relocation"; continue; } ScanAddress::SetConstantValue(setAddress, (PolyObject*)(targetAddress), reloc.relKind); } } } // Set the final permissions. for (unsigned j = 0; j < relocate.nDescrs; j++) { SavedStateSegmentDescr *descr = &relocate.descrs[j]; if (descr->segmentData != 0) { PermanentMemSpace* space = gMem.SpaceForIndex(descr->segmentIndex); gMem.CompletePermanentSpaceAllocation(space); } } // Add an entry to the hierarchy table for this file. if (! AddHierarchyEntry(thisFile, header.timeStamp)) return false; return true; // Succeeded } static void LoadState(TaskData *taskData, bool isHierarchy, Handle hFileList) // Load a saved state or a hierarchy. // hFileList is a list if this is a hierarchy and a single name if it is not. { StateLoader loader(isHierarchy, hFileList); // Request the main thread to do the load. This may set the error string if it failed. processes->MakeRootRequest(taskData, &loader); if (loader.errorResult != 0) { if (loader.errNumber == 0) raise_fail(taskData, loader.errorResult); else { AutoFree buff((char *)malloc(strlen(loader.errorResult) + 2 + _tcslen(loader.fileName) * sizeof(TCHAR) + 1)); #if (defined(_WIN32) && defined(UNICODE)) sprintf(buff, "%s: %S", loader.errorResult, (TCHAR *)loader.fileName); #else sprintf(buff, "%s: %s", loader.errorResult, (TCHAR *)loader.fileName); #endif raise_syscall(taskData, buff, loader.errNumber); } } } // Load a saved state file and any ancestors. POLYUNSIGNED PolyLoadState(PolyObject *threadId, PolyWord arg) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedArg = taskData->saveVec.push(arg); try { LoadState(taskData, false, pushedArg); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); } // Load hierarchy. This provides a complete list of children and parents. POLYUNSIGNED PolyLoadHierarchy(PolyObject *threadId, PolyWord arg) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedArg = taskData->saveVec.push(arg); try { LoadState(taskData, true, pushedArg); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); } /* * Additional functions to provide information or change saved-state files. */ // These functions do not affect the global state so can be executed by // the ML threads directly. static Handle ShowHierarchy(TaskData *taskData) // Return the list of files in the hierarchy. { Handle saved = taskData->saveVec.mark(); Handle list = SAVE(ListNull); // Process this in reverse order. for (unsigned i = hierarchyDepth; i > 0; i--) { Handle value = SAVE(C_string_to_Poly(taskData, hierarchyTable[i-1]->fileName)); Handle next = alloc_and_save(taskData, sizeof(ML_Cons_Cell)/sizeof(PolyWord)); DEREFLISTHANDLE(next)->h = value->Word(); DEREFLISTHANDLE(next)->t = list->Word(); taskData->saveVec.reset(saved); list = SAVE(next->Word()); } return list; } // Show the hierarchy. POLYUNSIGNED PolyShowHierarchy(PolyObject *threadId) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle result = 0; try { result = ShowHierarchy(taskData); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } static void RenameParent(TaskData *taskData, PolyWord childName, PolyWord parentName) // Change the name of the immediate parent stored in a child { // The name of the file to modify. AutoFree fileNameBuff(Poly_string_to_T_alloc(childName)); if (fileNameBuff == NULL) raise_syscall(taskData, "Insufficient memory", NOMEMORY); // The new parent name to insert. AutoFree parentNameBuff(Poly_string_to_T_alloc(parentName)); if (parentNameBuff == NULL) raise_syscall(taskData, "Insufficient memory", NOMEMORY); AutoClose loadFile(_tfopen(fileNameBuff, _T("r+b"))); // Open for reading and writing if ((FILE*)loadFile == NULL) { AutoFree buff((char *)malloc(23 + _tcslen(fileNameBuff) * sizeof(TCHAR) + 1)); #if (defined(_WIN32) && defined(UNICODE)) sprintf(buff, "Cannot open load file: %S", (TCHAR *)fileNameBuff); #else sprintf(buff, "Cannot open load file: %s", (TCHAR *)fileNameBuff); #endif raise_syscall(taskData, buff, ERRORNUMBER); } SavedStateHeader header; // Read the header and check the signature. if (fread(&header, sizeof(SavedStateHeader), 1, loadFile) != 1) raise_fail(taskData, "Unable to load header"); if (strncmp(header.headerSignature, SAVEDSTATESIGNATURE, sizeof(header.headerSignature)) != 0) raise_fail(taskData, "File is not a saved state"); if (header.headerVersion != SAVEDSTATEVERSION || header.headerLength != sizeof(SavedStateHeader) || header.segmentDescrLength != sizeof(SavedStateSegmentDescr)) { raise_fail(taskData, "Unsupported version of saved state file"); } // Does this actually have a parent? if (header.parentNameEntry == 0) raise_fail(taskData, "File does not have a parent"); // At the moment the only entry in the string table is the parent // name so we can simply write a new one on the end of the file. // This makes the file grow slightly each time but it shouldn't be // significant. fseek(loadFile, 0, SEEK_END); header.stringTable = ftell(loadFile); // Remember where this is _fputtc(0, loadFile); // First byte of string table is zero _fputts(parentNameBuff, loadFile); _fputtc(0, loadFile); // A terminating null. header.stringTableSize = (_tcslen(parentNameBuff) + 2)*sizeof(TCHAR); // Now rewind and write the header with the revised string table. fseek(loadFile, 0, SEEK_SET); fwrite(&header, sizeof(header), 1, loadFile); } POLYUNSIGNED PolyRenameParent(PolyObject *threadId, PolyWord childName, PolyWord parentName) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); try { RenameParent(taskData, childName, parentName); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); } static Handle ShowParent(TaskData *taskData, Handle hFileName) // Return the name of the immediate parent stored in a child { AutoFree fileNameBuff(Poly_string_to_T_alloc(hFileName->Word())); if (fileNameBuff == NULL) raise_syscall(taskData, "Insufficient memory", NOMEMORY); AutoClose loadFile(_tfopen(fileNameBuff, _T("rb"))); if ((FILE*)loadFile == NULL) { AutoFree buff((char *)malloc(23 + _tcslen(fileNameBuff) * sizeof(TCHAR) + 1)); if (buff == NULL) raise_syscall(taskData, "Insufficient memory", NOMEMORY); #if (defined(_WIN32) && defined(UNICODE)) sprintf(buff, "Cannot open load file: %S", (TCHAR *)fileNameBuff); #else sprintf(buff, "Cannot open load file: %s", (TCHAR *)fileNameBuff); #endif raise_syscall(taskData, buff, ERRORNUMBER); } SavedStateHeader header; // Read the header and check the signature. if (fread(&header, sizeof(SavedStateHeader), 1, loadFile) != 1) raise_fail(taskData, "Unable to load header"); if (strncmp(header.headerSignature, SAVEDSTATESIGNATURE, sizeof(header.headerSignature)) != 0) raise_fail(taskData, "File is not a saved state"); if (header.headerVersion != SAVEDSTATEVERSION || header.headerLength != sizeof(SavedStateHeader) || header.segmentDescrLength != sizeof(SavedStateSegmentDescr)) { raise_fail(taskData, "Unsupported version of saved state file"); } // Does this have a parent? if (header.parentNameEntry != 0) { size_t toRead = header.stringTableSize-header.parentNameEntry; size_t elems = ((toRead + sizeof(TCHAR) - 1) / sizeof(TCHAR)); // Always allow space for null terminator size_t roundedBytes = (elems + 1) * sizeof(TCHAR); AutoFree parentFileName((TCHAR *)malloc(roundedBytes)); if (parentFileName == NULL) raise_syscall(taskData, "Insufficient memory", NOMEMORY); if (header.parentNameEntry >= header.stringTableSize /* Bad entry */ || fseek(loadFile, header.stringTable + header.parentNameEntry, SEEK_SET) != 0 || fread(parentFileName, 1, toRead, loadFile) != toRead) { raise_fail(taskData, "Unable to read parent file name"); } parentFileName[elems] = 0; // Should already be null-terminated, but just in case. // Convert the name into a Poly string and then build a "Some" value. // It's possible, although silly, to have the empty string as a parent name. Handle resVal = SAVE(C_string_to_Poly(taskData, parentFileName)); Handle result = alloc_and_save(taskData, 1); DEREFHANDLE(result)->Set(0, resVal->Word()); return result; } else return SAVE(NONE_VALUE); } // Return the name of the immediate parent stored in a child POLYUNSIGNED PolyShowParent(PolyObject *threadId, PolyWord arg) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedArg = taskData->saveVec.push(arg); Handle result = 0; try { result = ShowParent(taskData, pushedArg); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // Module system #define MODULESIGNATURE "POLYMODU" #define MODULEVERSION 2 typedef struct _moduleHeader { // These entries are primarily to check that we have a valid // saved state file before we try to interpret anything else. char headerSignature[8]; // Should contain MODULESIGNATURE unsigned headerVersion; // Should contain MODULEVERSION unsigned headerLength; // Number of bytes in the header unsigned segmentDescrLength; // Number of bytes in a descriptor // These entries contain the real data. off_t segmentDescr; // Position of segment descriptor table unsigned segmentDescrCount; // Number of segment descriptors in the table time_t timeStamp; // The time stamp for this file. time_t executableTimeStamp; // The time stamp for the parent executable. // Root uintptr_t rootSegment; POLYUNSIGNED rootOffset; } ModuleHeader; // Store a module class ModuleStorer: public MainThreadRequest { public: ModuleStorer(const TCHAR *file, Handle r): MainThreadRequest(MTP_STOREMODULE), fileName(file), root(r), errorMessage(0), errCode(0) {} virtual void Perform(); const TCHAR *fileName; Handle root; const char *errorMessage; int errCode; }; class ModuleExport: public SaveStateExport { public: ModuleExport(): SaveStateExport(1/* Everything EXCEPT the executable. */) {} virtual void exportStore(void); // Write the data out. }; void ModuleStorer::Perform() { ModuleExport exporter; #if (defined(_WIN32) && defined(UNICODE)) exporter.exportFile = _wfopen(fileName, L"wb"); #else exporter.exportFile = fopen(fileName, "wb"); #endif if (exporter.exportFile == NULL) { errorMessage = "Cannot open export file"; errCode = ERRORNUMBER; return; } // RunExport copies everything reachable from the root, except data from // the executable because we've set the hierarchy to 1, using CopyScan. // It builds the tables in the export data structure then calls exportStore // to actually write the data. if (! root->Word().IsDataPtr()) { // If we have a completely empty module the list may be null. // This needs to be dealt with at a higher level. errorMessage = "Module root is not an address"; return; } exporter.RunExport(root->WordP()); errorMessage = exporter.errorMessage; // This will be null unless there's been an error. } void ModuleExport::exportStore(void) { // What we need to do here is implement the export in a similar way to e.g. PECOFFExport::exportStore // This is copied from SaveRequest::Perform and should be common code. ModuleHeader modHeader; memset(&modHeader, 0, sizeof(modHeader)); modHeader.headerLength = sizeof(modHeader); memcpy(modHeader.headerSignature, MODULESIGNATURE, sizeof(modHeader.headerSignature)); modHeader.headerVersion = MODULEVERSION; modHeader.segmentDescrLength = sizeof(SavedStateSegmentDescr); modHeader.executableTimeStamp = exportTimeStamp; { unsigned rootArea = findArea(this->rootFunction); struct _memTableEntry *mt = &memTable[rootArea]; modHeader.rootSegment = mt->mtIndex; modHeader.rootOffset = (POLYUNSIGNED)((char*)this->rootFunction - (char*)mt->mtOriginalAddr); } modHeader.timeStamp = getBuildTime(); modHeader.segmentDescrCount = this->memTableEntries; // One segment for each space. // Write out the header. fwrite(&modHeader, sizeof(modHeader), 1, this->exportFile); SavedStateSegmentDescr *descrs = new SavedStateSegmentDescr [this->memTableEntries]; // We need an entry in the descriptor tables for each segment in the executable because // we may have relocations that refer to addresses in it. for (unsigned j = 0; j < this->memTableEntries; j++) { SavedStateSegmentDescr *thisDescr = &descrs[j]; memoryTableEntry *entry = &this->memTable[j]; memset(thisDescr, 0, sizeof(SavedStateSegmentDescr)); thisDescr->relocationSize = sizeof(RelocationEntry); thisDescr->segmentIndex = (unsigned)entry->mtIndex; thisDescr->segmentSize = entry->mtLength; // Set this even if we don't write it. thisDescr->originalAddress = entry->mtOriginalAddr; if (entry->mtFlags & MTF_WRITEABLE) { thisDescr->segmentFlags |= SSF_WRITABLE; if (entry->mtFlags & MTF_NO_OVERWRITE) thisDescr->segmentFlags |= SSF_NOOVERWRITE; if ((entry->mtFlags & MTF_NO_OVERWRITE) == 0) thisDescr->segmentFlags |= SSF_OVERWRITE; if (entry->mtFlags & MTF_BYTES) thisDescr->segmentFlags |= SSF_BYTES; } if (entry->mtFlags & MTF_EXECUTABLE) thisDescr->segmentFlags |= SSF_CODE; } // Write out temporarily. Will be overwritten at the end. modHeader.segmentDescr = ftell(this->exportFile); fwrite(descrs, sizeof(SavedStateSegmentDescr), this->memTableEntries, this->exportFile); // Write out the relocations and the data. for (unsigned k = 0; k < this->memTableEntries; k++) { SavedStateSegmentDescr *thisDescr = &descrs[k]; memoryTableEntry *entry = &this->memTable[k]; if (k >= newAreas) // Not permanent areas { thisDescr->relocations = ftell(this->exportFile); // Have to write this out. this->relocationCount = 0; // Create the relocation table. char *start = (char*)entry->mtOriginalAddr; char *end = start + entry->mtLength; for (PolyWord *p = (PolyWord*)start; p < (PolyWord*)end; ) { p++; PolyObject *obj = (PolyObject*)p; POLYUNSIGNED length = obj->Length(); // For saved states we don't include explicit relocations except // in code but it's easier if we do for modules. if (length != 0 && obj->IsCodeObject()) machineDependent->ScanConstantsWithinCode(obj, this); relocateObject(obj); p += length; } thisDescr->relocationCount = this->relocationCount; // Write out the data. thisDescr->segmentData = ftell(exportFile); fwrite(entry->mtOriginalAddr, entry->mtLength, 1, exportFile); } } // Rewrite the header and the segment tables now they're complete. fseek(exportFile, 0, SEEK_SET); fwrite(&modHeader, sizeof(modHeader), 1, exportFile); fwrite(descrs, sizeof(SavedStateSegmentDescr), this->memTableEntries, exportFile); delete[](descrs); fclose(exportFile); exportFile = NULL; } // Store a module POLYUNSIGNED PolyStoreModule(PolyObject *threadId, PolyWord name, PolyWord contents) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedContents = taskData->saveVec.push(contents); try { TempString fileName(name); ModuleStorer storer(fileName, pushedContents); processes->MakeRootRequest(taskData, &storer); if (storer.errorMessage) raise_syscall(taskData, storer.errorMessage, storer.errCode); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); } // Load a module. class ModuleLoader: public MainThreadRequest { public: ModuleLoader(TaskData *taskData, const TCHAR *file): MainThreadRequest(MTP_LOADMODULE), callerTaskData(taskData), fileName(file), errorResult(NULL), errNumber(0), rootHandle(0) {} virtual void Perform(); TaskData *callerTaskData; const TCHAR *fileName; const char *errorResult; int errNumber; Handle rootHandle; }; void ModuleLoader::Perform() { AutoClose loadFile(_tfopen(fileName, _T("rb"))); if ((FILE*)loadFile == NULL) { errorResult = "Cannot open load file"; errNumber = ERRORNUMBER; return; } ModuleHeader header; // Read the header and check the signature. if (fread(&header, sizeof(ModuleHeader), 1, loadFile) != 1) { errorResult = "Unable to load header"; return; } if (strncmp(header.headerSignature, MODULESIGNATURE, sizeof(header.headerSignature)) != 0) { errorResult = "File is not a Poly/ML module"; return; } if (header.headerVersion != MODULEVERSION || header.headerLength != sizeof(ModuleHeader) || header.segmentDescrLength != sizeof(SavedStateSegmentDescr)) { errorResult = "Unsupported version of module file"; return; } if (header.executableTimeStamp != exportTimeStamp) { // Time-stamp does not match executable. errorResult = "Module was exported from a different executable or the executable has changed"; return; } LoadRelocate relocate; relocate.nDescrs = header.segmentDescrCount; relocate.descrs = new SavedStateSegmentDescr[relocate.nDescrs]; if (fseek(loadFile, header.segmentDescr, SEEK_SET) != 0 || fread(relocate.descrs, sizeof(SavedStateSegmentDescr), relocate.nDescrs, loadFile) != relocate.nDescrs) { errorResult = "Unable to read segment descriptors"; return; } { unsigned maxIndex = 0; for (unsigned i = 0; i < relocate.nDescrs; i++) if (relocate.descrs[i].segmentIndex > maxIndex) maxIndex = relocate.descrs[i].segmentIndex; relocate.targetAddresses = new PolyWord*[maxIndex+1]; for (unsigned i = 0; i <= maxIndex; i++) relocate.targetAddresses[i] = 0; } // Read in and create the new segments first. If we have problems, // in particular if we have run out of memory, then it's easier to recover. for (unsigned i = 0; i < relocate.nDescrs; i++) { SavedStateSegmentDescr *descr = &relocate.descrs[i]; MemSpace *space = gMem.SpaceForIndex(descr->segmentIndex); if (descr->segmentData == 0) { // No data - just an entry in the index. if (space == NULL/* || descr->segmentSize != (size_t)((char*)space->top - (char*)space->bottom)*/) { errorResult = "Mismatch for existing memory space"; return; } else relocate.targetAddresses[descr->segmentIndex] = space->bottom; } else { // New segment. if (space != NULL) { errorResult = "Segment already exists"; return; } // Allocate memory for the new segment. size_t actualSize = descr->segmentSize; MemSpace *space; if (descr->segmentFlags & SSF_CODE) { CodeSpace *cSpace = gMem.NewCodeSpace(actualSize); if (cSpace == 0) { errorResult = "Unable to allocate memory"; return; } space = cSpace; cSpace->firstFree = (PolyWord*)((byte*)space->bottom + descr->segmentSize); if (cSpace->firstFree != cSpace->top) gMem.FillUnusedSpace(cSpace->firstFree, cSpace->top - cSpace->firstFree); } else { LocalMemSpace *lSpace = gMem.NewLocalSpace(actualSize, descr->segmentFlags & SSF_WRITABLE); if (lSpace == 0) { errorResult = "Unable to allocate memory"; return; } space = lSpace; lSpace->lowerAllocPtr = (PolyWord*)((byte*)lSpace->bottom + descr->segmentSize); } if (fseek(loadFile, descr->segmentData, SEEK_SET) != 0 || fread(space->bottom, descr->segmentSize, 1, loadFile) != 1) { errorResult = "Unable to read segment"; return; } relocate.targetAddresses[descr->segmentIndex] = space->bottom; if (space->isMutable && (descr->segmentFlags & SSF_BYTES) != 0) { - ClearWeakByteRef cwbr; + ClearVolatile cwbr; cwbr.ScanAddressesInRegion(space->bottom, (PolyWord*)((byte*)space->bottom + descr->segmentSize)); } } } // Now deal with relocation. for (unsigned j = 0; j < relocate.nDescrs; j++) { SavedStateSegmentDescr *descr = &relocate.descrs[j]; PolyWord *baseAddr = relocate.targetAddresses[descr->segmentIndex]; ASSERT(baseAddr != NULL); // We should have created it. // Process explicit relocations. // If we get errors just skip the error and continue rather than leave // everything in an unstable state. if (descr->relocations) { if (fseek(loadFile, descr->relocations, SEEK_SET) != 0) errorResult = "Unable to read relocation segment"; for (unsigned k = 0; k < descr->relocationCount; k++) { RelocationEntry reloc; if (fread(&reloc, sizeof(reloc), 1, loadFile) != 1) errorResult = "Unable to read relocation segment"; byte *setAddress = (byte*)baseAddr + reloc.relocAddress; byte *targetAddress = (byte*)relocate.targetAddresses[reloc.targetSegment] + reloc.targetAddress; ScanAddress::SetConstantValue(setAddress, (PolyObject*)(targetAddress), reloc.relKind); } } } // Get the root address. Push this to the caller's save vec. If we put the // newly created areas into local memory we could get a GC as soon as we // complete this root request. { PolyWord *baseAddr = relocate.targetAddresses[header.rootSegment]; rootHandle = callerTaskData->saveVec.push((PolyObject*)((byte*)baseAddr + header.rootOffset)); } } static Handle LoadModule(TaskData *taskData, Handle args) { TempString fileName(args->Word()); ModuleLoader loader(taskData, fileName); processes->MakeRootRequest(taskData, &loader); if (loader.errorResult != 0) { if (loader.errNumber == 0) raise_fail(taskData, loader.errorResult); else { AutoFree buff((char *)malloc(strlen(loader.errorResult) + 2 + _tcslen(loader.fileName) * sizeof(TCHAR) + 1)); #if (defined(_WIN32) && defined(UNICODE)) sprintf(buff, "%s: %S", loader.errorResult, loader.fileName); #else sprintf(buff, "%s: %s", loader.errorResult, loader.fileName); #endif raise_syscall(taskData, buff, loader.errNumber); } } return loader.rootHandle; } // Load a module POLYUNSIGNED PolyLoadModule(PolyObject *threadId, PolyWord arg) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedArg = taskData->saveVec.push(arg); Handle result = 0; try { result = LoadModule(taskData, pushedArg); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } PolyObject *InitHeaderFromExport(struct _exportDescription *exports) { // Check the structure sizes stored in the export structure match the versions // used in this library. if (exports->structLength != sizeof(exportDescription) || exports->memTableSize != sizeof(memoryTableEntry) || exports->rtsVersion < FIRST_supported_version || exports->rtsVersion > LAST_supported_version) { #if (FIRST_supported_version == LAST_supported_version) Exit("The exported object file has version %0.2f but this library supports %0.2f", ((float)exports->rtsVersion) / 100.0, ((float)FIRST_supported_version) / 100.0); #else Exit("The exported object file has version %0.2f but this library supports %0.2f-%0.2f", ((float)exports->rtsVersion) / 100.0, ((float)FIRST_supported_version) / 100.0, ((float)LAST_supported_version) / 100.0); #endif } // We could also check the RTS version and the architecture. exportTimeStamp = exports->timeStamp; // Needed for load and save. memoryTableEntry *memTable = exports->memTable; #ifdef POLYML32IN64 // We need to copy this into the heap before beginning execution. // This is very like loading a saved state and the code should probably // be merged. LoadRelocate relocate(true); relocate.nDescrs = exports->memTableEntries; relocate.descrs = new SavedStateSegmentDescr[relocate.nDescrs]; relocate.targetAddresses = new PolyWord*[exports->memTableEntries]; relocate.originalBaseAddr = (PolyWord*)exports->originalBaseAddr; PolyObject *root = 0; for (unsigned i = 0; i < exports->memTableEntries; i++) { relocate.descrs[i].segmentIndex = memTable[i].mtIndex; relocate.descrs[i].originalAddress = memTable[i].mtOriginalAddr; relocate.descrs[i].segmentSize = memTable[i].mtLength; PermanentMemSpace *newSpace = gMem.AllocateNewPermanentSpace(memTable[i].mtLength, (unsigned)memTable[i].mtFlags, (unsigned)memTable[i].mtIndex); if (newSpace == 0) Exit("Unable to initialise a permanent memory space"); PolyWord *mem = newSpace->bottom; memcpy(newSpace->writeAble(mem), memTable[i].mtCurrentAddr, memTable[i].mtLength); PolyWord* unused = mem + memTable[i].mtLength / sizeof(PolyWord); gMem.FillUnusedSpace(newSpace->writeAble(unused), newSpace->spaceSize() - memTable[i].mtLength / sizeof(PolyWord)); if (newSpace == 0) Exit("Unable to initialise a permanent memory space"); relocate.targetAddresses[i] = mem; relocate.AddTreeRange(&relocate.spaceTree, i, (uintptr_t)relocate.descrs[i].originalAddress, (uintptr_t)((char*)relocate.descrs[i].originalAddress + relocate.descrs[i].segmentSize - 1)); // Relocate the root function. if (exports->rootFunction >= memTable[i].mtCurrentAddr && exports->rootFunction < (char*)memTable[i].mtCurrentAddr + memTable[i].mtLength) { root = (PolyObject*)((char*)mem + ((char*)exports->rootFunction - (char*)memTable[i].mtCurrentAddr)); } } // Now relocate the addresses for (unsigned j = 0; j < exports->memTableEntries; j++) { SavedStateSegmentDescr *descr = &relocate.descrs[j]; MemSpace *space = gMem.SpaceForIndex(descr->segmentIndex); // Any relative addresses have to be corrected by adding this. relocate.relativeOffset = (PolyWord*)descr->originalAddress - space->bottom; for (PolyWord *p = space->bottom; p < space->top; ) { #ifdef POLYML32IN64 if ((((uintptr_t)p) & 4) == 0) { // Skip any padding. The length word should be on an odd-word boundary. p++; continue; } #endif p++; PolyObject *obj = (PolyObject*)p; POLYUNSIGNED length = obj->Length(); relocate.RelocateObject(obj); p += length; } } // Set the final permissions. for (unsigned j = 0; j < exports->memTableEntries; j++) { PermanentMemSpace *space = gMem.SpaceForIndex(memTable[j].mtIndex); gMem.CompletePermanentSpaceAllocation(space); } return root; #else for (unsigned i = 0; i < exports->memTableEntries; i++) { // Construct a new space for each of the entries. if (gMem.NewPermanentSpace( (PolyWord*)memTable[i].mtCurrentAddr, memTable[i].mtLength / sizeof(PolyWord), (unsigned)memTable[i].mtFlags, (unsigned)memTable[i].mtIndex) == 0) Exit("Unable to initialise a permanent memory space"); } return (PolyObject *)exports->rootFunction; #endif } // Return the system directory for modules. This is configured differently // in Unix and in Windows. POLYUNSIGNED PolyGetModuleDirectory(PolyObject *threadId) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle result = 0; try { #if (defined(MODULEDIR)) result = SAVE(C_string_to_Poly(taskData, MODULEDIR)); #elif (defined(_WIN32)) { // This registry key is configured when Poly/ML is installed using the installer. // It gives the path to the Poly/ML installation directory. We return the // Modules subdirectory. HKEY hk; if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, _T("SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\App Paths\\PolyML.exe"), 0, KEY_QUERY_VALUE, &hk) == ERROR_SUCCESS) { DWORD valSize; if (RegQueryValueEx(hk, _T("Path"), 0, NULL, NULL, &valSize) == ERROR_SUCCESS) { #define MODULEDIR _T("Modules") TempString buff((TCHAR*)malloc(valSize + (_tcslen(MODULEDIR) + 1) * sizeof(TCHAR))); DWORD dwType; if (RegQueryValueEx(hk, _T("Path"), 0, &dwType, (LPBYTE)(LPTSTR)buff, &valSize) == ERROR_SUCCESS) { // The registry entry should end with a backslash. _tcscat(buff, MODULEDIR); result = SAVE(C_string_to_Poly(taskData, buff)); } } RegCloseKey(hk); } result = SAVE(C_string_to_Poly(taskData, "")); } #else result = SAVE(C_string_to_Poly(taskData, "")); #endif } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } struct _entrypts savestateEPT[] = { { "PolySaveState", (polyRTSFunction)&PolySaveState }, { "PolyLoadState", (polyRTSFunction)&PolyLoadState }, { "PolyShowHierarchy", (polyRTSFunction)&PolyShowHierarchy }, { "PolyRenameParent", (polyRTSFunction)&PolyRenameParent }, { "PolyShowParent", (polyRTSFunction)&PolyShowParent }, { "PolyStoreModule", (polyRTSFunction)&PolyStoreModule }, { "PolyLoadModule", (polyRTSFunction)&PolyLoadModule }, { "PolyLoadHierarchy", (polyRTSFunction)&PolyLoadHierarchy }, { "PolyGetModuleDirectory", (polyRTSFunction)&PolyGetModuleDirectory }, { NULL, NULL } // End of list. };