diff --git a/libpolyml/bytecode.cpp b/libpolyml/bytecode.cpp index 42b387d1..c32dda37 100644 --- a/libpolyml/bytecode.cpp +++ b/libpolyml/bytecode.cpp @@ -1,2670 +1,2673 @@ /* Title: An interpreter for a compact instruction set. Author: Dave Matthews, Cambridge University Computer Laboratory Copyright (c) 2000-7 Cambridge University Technical Services Limited Further development Copyright David C.J. Matthews 2015-18, 2020. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #elif defined(_WIN32) #include "winconfig.h" #else #error "No configuration file" #endif #ifdef HAVE_STDIO_H #include #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) 0 #endif #ifdef HAVE_STRING_H #include #endif /* #ifdef HAVE_FLOAT_H #include #endif #ifdef HAVE_MATH_H #include #endif */ #include // Currently just for isnan. #include "globals.h" #include "int_opcodes.h" #include "sys.h" #include "profiling.h" #include "arb.h" #include "reals.h" #include "run_time.h" #include "gc.h" #include "diagnostics.h" #include "polystring.h" #include "scanaddrs.h" #include "rtsentry.h" #include "bytecode.h" #if (SIZEOF_VOIDP == 8 && !defined(POLYML32IN64)) #define IS64BITS 1 #endif #define arg1 (pc[0] + pc[1]*256) #define arg2 (pc[2] + pc[3]*256) const PolyWord True = TAGGED(1); const PolyWord False = TAGGED(0); const PolyWord Zero = TAGGED(0); // This duplicates some code in reals.cpp but is now updated. #define DOUBLESIZE (sizeof(double)/sizeof(POLYUNSIGNED)) union realdb { double dble; POLYUNSIGNED puns[DOUBLESIZE]; }; #define LGWORDSIZE (sizeof(uintptr_t) / sizeof(PolyWord)) // We're using float for Real32 so it needs to be 32-bits. // Assume that's true for the moment. #if (SIZEOF_FLOAT != 4) #error "Float is not 32-bits. Please report this" #endif union flt { float fl; int32_t i; }; -ByteCodeInterpreter::ByteCodeInterpreter(stackItem** spAddr) : mixedCode(false), - stackPointerAddress(spAddr), overflowPacket(0), dividePacket(0) +ByteCodeInterpreter::ByteCodeInterpreter(stackItem** spAddr, stackItem** slAddr) : mixedCode(false), + stackPointerAddress(spAddr), stackLimitAddress(slAddr), overflowPacket(0), dividePacket(0) { #ifdef PROFILEOPCODES memset(frequency, 0, sizeof(frequency)); memset(arg1Value, 0, sizeof(arg1Value)); memset(arg2Value, 0, sizeof(arg2Value)); #endif } ByteCodeInterpreter::~ByteCodeInterpreter() { #ifdef PROFILEOPCODES OutputDebugStringA("Frequency\n"); for (unsigned i = 0; i < 256; i++) { if (frequency[i] != 0) { char buffer[100]; sprintf(buffer, "%02X: %u\n", i, frequency[i]); OutputDebugStringA(buffer); } } OutputDebugStringA("Arg1\n"); for (unsigned i = 0; i < 256; i++) { if (arg1Value[i] != 0) { char buffer[100]; sprintf(buffer, "%02X: %u\n", i, arg1Value[i]); OutputDebugStringA(buffer); } } OutputDebugStringA("Arg2\n"); for (unsigned i = 0; i < 256; i++) { if (arg2Value[i] != 0) { char buffer[100]; sprintf(buffer, "%02X: %u\n", i, arg2Value[i]); OutputDebugStringA(buffer); } } #endif } extern "C" { typedef POLYUNSIGNED(*callFastRts0)(); typedef POLYUNSIGNED(*callFastRts1)(intptr_t); typedef POLYUNSIGNED(*callFastRts2)(intptr_t, intptr_t); typedef POLYUNSIGNED(*callFastRts3)(intptr_t, intptr_t, intptr_t); typedef POLYUNSIGNED(*callFastRts4)(intptr_t, intptr_t, intptr_t, intptr_t); typedef POLYUNSIGNED(*callFastRts5)(intptr_t, intptr_t, intptr_t, intptr_t, intptr_t); typedef POLYUNSIGNED(*callFullRts0)(PolyObject *); typedef POLYUNSIGNED(*callFullRts1)(PolyObject *, intptr_t); typedef POLYUNSIGNED(*callFullRts2)(PolyObject *, intptr_t, intptr_t); typedef POLYUNSIGNED(*callFullRts3)(PolyObject *, intptr_t, intptr_t, intptr_t); typedef double (*callRTSRtoR) (double); typedef double (*callRTSRRtoR) (double, double); typedef double (*callRTSGtoR) (intptr_t); typedef double (*callRTSRGtoR) (double, intptr_t); typedef float(*callRTSFtoF) (float); typedef float(*callRTSFFtoF) (float, float); typedef float(*callRTSGtoF) (intptr_t); typedef float(*callRTSFGtoF) (float, intptr_t); } // Allocate memory on the heap. Returns with the address of the cell. Does not set the // length word or any of the data. PolyObject* ByteCodeInterpreter::allocateMemory(TaskData * taskData, POLYUNSIGNED words, POLYCODEPTR& pc, stackItem*& sp) { words++; // Add the size of the length word. // N.B. The allocation area may be empty so that both of these are zero. if (taskData->allocPointer >= taskData->allocLimit + words + 1) { #ifdef POLYML32IN64 if (words & 1) words++; #endif taskData->allocPointer -= words; return (PolyObject*)(taskData->allocPointer + 1); } // Insufficient space. SaveInterpreterState(pc, sp); // Find some space to allocate in. Returns a pointer to the newly allocated space. // N.B. This may return zero if the heap is exhausted and it has set this // up for an exception. Generally it allocates by decrementing allocPointer // but if the required memory is large it may allocate in a separate area. PolyWord* space = processes->FindAllocationSpace(taskData, words, true); LoadInterpreterState(pc, sp); if (space == 0) return 0; return (PolyObject*)(space + 1); } // Put a real result in a "box" PolyObject* ByteCodeInterpreter::boxDouble(TaskData* taskData, double d, POLYCODEPTR& pc, stackItem*& sp) { PolyObject* mem = this->allocateMemory(taskData, DOUBLESIZE, pc, sp); if (mem == 0) return 0; mem->SetLengthWord(DOUBLESIZE, F_BYTE_OBJ); union realdb uniondb; uniondb.dble = d; // Copy the words. Depending on the word length this may copy one or more words. for (unsigned i = 0; i < DOUBLESIZE; i++) mem->Set(i, PolyWord::FromUnsigned(uniondb.puns[i])); return mem; } // Extract a double value from a box. double ByteCodeInterpreter::unboxDouble(PolyWord p) { union realdb uniondb; for (unsigned i = 0; i < DOUBLESIZE; i++) uniondb.puns[i] = p.AsObjPtr()->Get(i).AsUnsigned(); return uniondb.dble; } // Largely copied from reals.cpp #if (SIZEOF_FLOAT < SIZEOF_POLYWORD) // Typically for 64-bit mode. Use a tagged representation. // The code-generator on the X86/64 assumes the float is in the // high order word. #define FLT_SHIFT ((SIZEOF_POLYWORD-SIZEOF_FLOAT)*8) float ByteCodeInterpreter::unboxFloat(PolyWord p) { union flt argx; argx.i = p.AsSigned() >> FLT_SHIFT; return argx.fl; } PolyObject* ByteCodeInterpreter::boxFloat(TaskData* taskData, float f, POLYCODEPTR& pc, stackItem*& sp) { union flt argx; argx.fl = f; PolyWord p = PolyWord::FromSigned(((POLYSIGNED)argx.i << FLT_SHIFT) + 1); return p.AsObjPtr(); // Temporarily cast it to this even though it isn't really } #else // Typically for 32-bit mode. Use a boxed representation. PolyObject* ByteCodeInterpreter::boxFloat(TaskData* taskData, float f, POLYCODEPTR& pc, stackItem*& sp) { PolyObject* mem = this->allocateMemory(taskData, 1, pc, sp); if (mem == 0) return 0; mem->SetLengthWord(1, F_BYTE_OBJ); union flt argx; argx.fl = f; mem->Set(0, PolyWord::FromSigned(argx.i)); return mem; } // Extract a double value from a box. float ByteCodeInterpreter::unboxFloat(PolyWord p) { union flt argx; argx.i = (int32_t)p.AsObjPtr()->Get(0).AsSigned(); return argx.fl; } #endif enum ByteCodeInterpreter::_returnValue ByteCodeInterpreter::RunInterpreter(TaskData *taskData) /* (Re)-enter the Poly code from C. */ { // Make packets for exceptions. if (overflowPacket == 0) overflowPacket = makeExceptionPacket(taskData, EXC_overflow); if (dividePacket == 0) dividePacket = makeExceptionPacket(taskData, EXC_divide); // Local values. These are copies of member variables but are used so frequently that // it is important that access should be fast. POLYCODEPTR pc; stackItem*sp; LoadInterpreterState(pc, sp); // We may have taken an interrupt which has set an exception. if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; for(;;){ /* Each instruction */ #if (0) char buff[1000]; sprintf(buff, "addr = %p sp=%p instr=%02x *sp=%p\n", pc, sp, *pc, (*sp).stackAddr); OutputDebugStringA(buff); #endif // These are temporary values used where one instruction jumps to // common code. POLYUNSIGNED tailCount; stackItem* tailPtr; POLYUNSIGNED returnCount; POLYUNSIGNED storeWords; POLYUNSIGNED stackCheck; PolyObject *closure; double dv; #ifdef PROFILEOPCODES frequency[*pc]++; #endif switch(*pc++) { case INSTR_jump8false: { PolyWord u = *sp++; if (u == True) pc += 1; else pc += *pc + 1; break; } case INSTR_jump8: pc += *pc + 1; break; case INSTR_jump8True: { PolyWord u = *sp++; if (u == False) pc += 1; else pc += *pc + 1; break; } case INSTR_jump16True: // Invert the sense of the test and fall through. *sp = ((*sp).w() == True) ? False : True; case INSTR_jump16false: { PolyWord u = *sp++; /* Pop argument */ if (u == True) { pc += 2; break; } /* else - false - take the jump */ } case INSTR_jump16: pc += arg1 + 2; break; case INSTR_push_handler: /* Save the old handler value. */ (*(--sp)).stackAddr = GetHandlerRegister(); /* Push old handler */ break; case INSTR_setHandler8: /* Set up a handler */ (*(--sp)).codeAddr = pc + *pc + 1; /* Address of handler */ SetHandlerRegister(sp); pc += 1; break; case INSTR_setHandler16: /* Set up a handler */ (*(--sp)).codeAddr = pc + arg1 + 2; /* Address of handler */ SetHandlerRegister(sp); pc += 2; break; case INSTR_deleteHandler: /* Delete handler retaining the result. */ { stackItem u = *sp++; sp = GetHandlerRegister(); sp++; // Remove handler entry point SetHandlerRegister((*sp).stackAddr); // Restore old handler *sp = u; // Put back the result break; } case INSTR_case16: { // arg1 is the largest value that is in the range POLYSIGNED u = UNTAGGED(*sp++); /* Get the value */ if (u >= arg1 || u < 0) pc += 2 + arg1*2; /* Out of range */ else { pc += 2; pc += /* Index */pc[u*2]+pc[u*2 + 1]*256; } break; } case INSTR_tail_3_bLegacy: tailCount = 3; tailPtr = sp + tailCount; sp = tailPtr + *pc; goto TAIL_CALL; case INSTR_tail_3_2Legacy: tailCount = 3; tailPtr = sp + tailCount; sp = tailPtr + 2; goto TAIL_CALL; case INSTR_tail_3_3Legacy: tailCount = 3; tailPtr = sp + tailCount; sp = tailPtr + 3; goto TAIL_CALL; case INSTR_tail_4_bLegacy: tailCount = 4; tailPtr = sp + tailCount; sp = tailPtr + *pc; goto TAIL_CALL; case INSTR_tail_b_b: tailCount = *pc; tailPtr = sp + tailCount; sp = tailPtr + pc[1]; TAIL_CALL: /* For general case. */ if (tailCount < 2) Crash("Invalid argument\n"); numTailArguments = (unsigned)(tailCount - 2); for (; tailCount > 0; tailCount--) *(--sp) = *(--tailPtr); pc = (*sp++).codeAddr; /* Pop the original return address. */ closure = (*sp++).w().AsObjPtr(); if (mixedCode) { // Return to the caller in case the function we're calling is machine code. // The number of arguments we're passing is given in the tail-count. There's // no enter-int after this because we're not coming back. (--sp)->codeAddr = pc; *(--sp) = (PolyWord)closure; SaveInterpreterState(pc, sp); return ReturnTailCall; } goto CALL_CLOSURE; /* And drop through. */ case INSTR_call_closure: /* Closure call. */ { closure = (*sp++).w().AsObjPtr(); CALL_CLOSURE: (--sp)->codeAddr = pc; /* Save return address. */ *(--sp) = (PolyWord)closure; if (mixedCode) { SaveInterpreterState(pc, sp); return ReturnCall; // Caller must look at enter-int to determine number of args } pc = *(POLYCODEPTR*)closure; /* Get entry point. */ SaveInterpreterState(pc, sp); // Update in case we're profiling // Check that there at least 128 words on the stack stackCheck = 128; goto STACKCHECK; } case INSTR_callConstAddr8: closure = (*(PolyWord*)(pc + pc[0] + 1)).AsObjPtr(); pc += 1; goto CALL_CLOSURE; case INSTR_callConstAddr16: closure = (*(PolyWord*)(pc + arg1 + 2)).AsObjPtr(); pc += 2; goto CALL_CLOSURE; case INSTR_callLocalB: { closure = (sp[*pc++]).w().AsObjPtr(); goto CALL_CLOSURE; } case INSTR_return_w: returnCount = arg1; /* Get no. of args to remove. */ RETURN: /* Common code for return. */ { stackItem result = *sp++; /* Result */ sp++; /* Remove the link/closure */ pc = (*sp++).codeAddr; /* Return address */ sp += returnCount; /* Add on number of args. */ *(--sp) = result; /* Result */ SaveInterpreterState(pc, sp); // Update in case we're profiling or if returning if (mixedCode) return ReturnReturn; } break; case INSTR_return_b: returnCount = *pc; goto RETURN; case INSTR_return_0Legacy: returnCount = 0; goto RETURN; case INSTR_return_1: returnCount = 1; goto RETURN; case INSTR_return_2: returnCount = 2; goto RETURN; case INSTR_return_3: returnCount = 3; goto RETURN; case INSTR_stackSize8Legacy: stackCheck = *pc++; goto STACKCHECK; case INSTR_stackSize16: { stackCheck = arg1; pc += 2; STACKCHECK: // Check stack space. This is combined with interrupts on the native code version. - SaveInterpreterState(pc, sp); - CheckStackAndInterrupt(stackCheck); - LoadInterpreterState(pc, sp); + if (sp - stackCheck < *stackLimitAddress) + { + SaveInterpreterState(pc, sp); + HandleStackOverflow(stackCheck); + LoadInterpreterState(pc, sp); + } break; } case INSTR_raise_ex: { { PolyException *exn = (PolyException*)((*sp).w().AsObjPtr()); taskData->SetException(exn); } RAISE_EXCEPTION: sp = GetHandlerRegister(); pc = (*sp++).codeAddr; // It is possible we could raise an exception to be // handled by native code but that does not currently happen // during the bootstrap. SetHandlerRegister((*sp++).stackAddr); break; } case INSTR_tuple_2: storeWords = 2; goto TUPLE; case INSTR_tuple_3: storeWords = 3; goto TUPLE; case INSTR_tuple_4: storeWords = 4; goto TUPLE; case INSTR_tuple_b: storeWords = *pc; pc++; goto TUPLE; case INSTR_closureB: storeWords = *pc++; goto CREATE_CLOSURE; break; case INSTR_local_w: { stackItem u = sp[arg1]; *(--sp) = u; pc += 2; break; } case INSTR_constAddr8: *(--sp) = *(PolyWord*)(pc + pc[0] + 1); pc += 1; break; case INSTR_constAddr16: *(--sp) = *(PolyWord*)(pc + arg1 + 2); pc += 2; break; case INSTR_const_int_w: *(--sp) = TAGGED(arg1); pc += 2; break; case INSTR_jump_back8: pc -= *pc + 1; // Check for interrupt in case we're in a loop - if (TestInterrupt()) + if (sp < *stackLimitAddress) { SaveInterpreterState(pc, sp); - CheckStackAndInterrupt(0); + HandleStackOverflow(stackCheck); LoadInterpreterState(pc, sp); } break; case INSTR_jump_back16: pc -= arg1 + 1; // Check for interrupt in case we're in a loop - if (TestInterrupt()) + if (sp < *stackLimitAddress) { SaveInterpreterState(pc, sp); - CheckStackAndInterrupt(0); + HandleStackOverflow(stackCheck); LoadInterpreterState(pc, sp); } break; case INSTR_lock: { PolyObject *obj = (*sp).w().AsObjPtr(); obj->SetLengthWord(obj->LengthWord() & ~_OBJ_MUTABLE_BIT); break; } case INSTR_ldexc: *(--sp) = GetExceptionPacket(); break; case INSTR_local_b: { stackItem u = sp[*pc]; *(--sp) = u; pc += 1; break; } case INSTR_indirect_b: *sp = (*sp).w().AsObjPtr()->Get(*pc); pc += 1; break; case INSTR_indirectLocalBB: { PolyWord u = sp[*pc++]; *(--sp) = u.AsObjPtr()->Get(*pc++); break; } case INSTR_indirectLocalB0: { PolyWord u = sp[*pc++]; *(--sp) = u.AsObjPtr()->Get(0); break; } case INSTR_indirect0Local0: { PolyWord u = sp[0]; *(--sp) = u.AsObjPtr()->Get(0); break; } case INSTR_indirectLocalB1: { PolyWord u = sp[*pc++]; *(--sp) = u.AsObjPtr()->Get(1); break; } case INSTR_moveToContainerB: { PolyWord u = *sp++; (*sp).stackAddr[*pc] = u; pc += 1; break; } case INSTR_moveToMutClosureB: { PolyWord u = *sp++; (*sp).w().AsObjPtr()->Set(*pc++ + sizeof(uintptr_t) / sizeof(PolyWord), u); break; } case INSTR_indirectContainerB: *sp = (*sp).stackAddr[*pc]; pc += 1; break; case INSTR_indirectClosureBB: { PolyWord u = sp[*pc++]; *(--sp) = u.AsObjPtr()->Get(*pc++ + sizeof(uintptr_t) / sizeof(PolyWord)); break; } case INSTR_indirectClosureB0: { PolyWord u = sp[*pc++]; *(--sp) = u.AsObjPtr()->Get(sizeof(uintptr_t) / sizeof(PolyWord)); break; } case INSTR_indirectClosureB1: { PolyWord u = sp[*pc++]; *(--sp) = u.AsObjPtr()->Get(sizeof(uintptr_t) / sizeof(PolyWord) + 1); break; } case INSTR_indirectClosureB2: { PolyWord u = sp[*pc++]; *(--sp) = u.AsObjPtr()->Get(sizeof(uintptr_t) / sizeof(PolyWord) + 2); break; } case INSTR_set_stack_val_b: { PolyWord u = *sp++; sp[*pc-1] = u; pc += 1; break; } case INSTR_reset_b: sp += *pc; pc += 1; break; case INSTR_reset_r_b: { PolyWord u = *sp; sp += *pc; *sp = u; pc += 1; break; } case INSTR_const_int_b: *(--sp) = TAGGED(*pc); pc += 1; break; case INSTR_local_0: { stackItem u = sp[0]; *(--sp) = u; break; } case INSTR_local_1: { stackItem u = sp[1]; *(--sp) = u; break; } case INSTR_local_2: { stackItem u = sp[2]; *(--sp) = u; break; } case INSTR_local_3: { stackItem u = sp[3]; *(--sp) = u; break; } case INSTR_local_4: { stackItem u = sp[4]; *(--sp) = u; break; } case INSTR_local_5: { stackItem u = sp[5]; *(--sp) = u; break; } case INSTR_local_6: { stackItem u = sp[6]; *(--sp) = u; break; } case INSTR_local_7: { stackItem u = sp[7]; *(--sp) = u; break; } case INSTR_local_8: { stackItem u = sp[8]; *(--sp) = u; break; } case INSTR_local_9: { stackItem u = sp[9]; *(--sp) = u; break; } case INSTR_local_10: { stackItem u = sp[10]; *(--sp) = u; break; } case INSTR_local_11: { stackItem u = sp[11]; *(--sp) = u; break; } case INSTR_local_12: { stackItem u = sp[12]; *(--sp) = u; break; } case INSTR_local_13: { stackItem u = sp[13]; *(--sp) = u; break; } case INSTR_local_14: { stackItem u = sp[14]; *(--sp) = u; break; } case INSTR_local_15: { stackItem u = sp[15]; *(--sp) = u; break; } case INSTR_indirect_0: *sp = (*sp).w().AsObjPtr()->Get(0); break; case INSTR_indirect_1: *sp = (*sp).w().AsObjPtr()->Get(1); break; case INSTR_indirect_2: *sp = (*sp).w().AsObjPtr()->Get(2); break; case INSTR_indirect_3: *sp = (*sp).w().AsObjPtr()->Get(3); break; case INSTR_indirect_4: *sp = (*sp).w().AsObjPtr()->Get(4); break; case INSTR_indirect_5: *sp = (*sp).w().AsObjPtr()->Get(5); break; case INSTR_const_0: *(--sp) = Zero; break; case INSTR_const_1: *(--sp) = TAGGED(1); break; case INSTR_const_2: *(--sp) = TAGGED(2); break; case INSTR_const_3: *(--sp) = TAGGED(3); break; case INSTR_const_4: *(--sp) = TAGGED(4); break; case INSTR_const_10: *(--sp) = TAGGED(10); break; case INSTR_reset_r_1: { PolyWord u = *sp; sp += 1; *sp = u; break; } case INSTR_reset_r_2: { PolyWord u = *sp; sp += 2; *sp = u; break; } case INSTR_reset_r_3: { PolyWord u = *sp; sp += 3; *sp = u; break; } case INSTR_reset_1: sp += 1; break; case INSTR_reset_2: sp += 2; break; case INSTR_stack_containerB: { POLYUNSIGNED words = *pc++; while (words-- > 0) *(--sp) = Zero; sp--; (*sp).stackAddr = sp + 1; break; } case INSTR_tuple_containerLegacy: /* Create a tuple from a container. */ { storeWords = arg1; PolyObject *t = this->allocateMemory(taskData, storeWords, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(storeWords, 0); for(; storeWords > 0; ) { storeWords--; t->Set(storeWords, (*sp).stackAddr[storeWords]); } *sp = (PolyWord)t; pc += 2; break; } case INSTR_callFastRTS0: { callFastRts0 doCall = *(callFastRts0*)(*sp++).w().AsObjPtr(); ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp) = PolyWord::FromUnsigned(result); break; } case INSTR_callFastRTS1: { callFastRts1 doCall = *(callFastRts1*)(*sp++).w().AsObjPtr(); intptr_t rtsArg1 = (*sp++).argValue; ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(rtsArg1); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp) = PolyWord::FromUnsigned(result); break; } case INSTR_callFastRTS2: { callFastRts2 doCall = *(callFastRts2*)(*sp++).w().AsObjPtr(); intptr_t rtsArg2 = (*sp++).argValue; // Pop off the args, last arg first. intptr_t rtsArg1 = (*sp++).argValue; ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(rtsArg1, rtsArg2); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp) = PolyWord::FromUnsigned(result); break; } case INSTR_callFastRTS3: { callFastRts3 doCall = *(callFastRts3*)(*sp++).w().AsObjPtr(); intptr_t rtsArg3 = (*sp++).argValue; // Pop off the args, last arg first. intptr_t rtsArg2 = (*sp++).argValue; intptr_t rtsArg1 = (*sp++).argValue; ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(rtsArg1, rtsArg2, rtsArg3); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp) = PolyWord::FromUnsigned(result); break; } case INSTR_callFastRTS4: { callFastRts4 doCall = *(callFastRts4*)(*sp++).w().AsObjPtr(); intptr_t rtsArg4 = (*sp++).argValue; // Pop off the args, last arg first. intptr_t rtsArg3 = (*sp++).argValue; intptr_t rtsArg2 = (*sp++).argValue; intptr_t rtsArg1 = (*sp++).argValue; ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(rtsArg1, rtsArg2, rtsArg3, rtsArg4); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp) = PolyWord::FromUnsigned(result); break; } case INSTR_callFastRTS5: { callFastRts5 doCall = *(callFastRts5*)(*sp++).w().AsObjPtr(); intptr_t rtsArg5 = (*sp++).argValue; // Pop off the args, last arg first. intptr_t rtsArg4 = (*sp++).argValue; intptr_t rtsArg3 = (*sp++).argValue; intptr_t rtsArg2 = (*sp++).argValue; intptr_t rtsArg1 = (*sp++).argValue; ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(rtsArg1, rtsArg2, rtsArg3, rtsArg4, rtsArg5); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp) = PolyWord::FromUnsigned(result); break; } case INSTR_callFullRTS0: { callFullRts0 doCall = *(callFullRts0*)(*sp++).w().AsObjPtr(); ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(taskData->threadObject); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp)= PolyWord::FromUnsigned(result); break; } case INSTR_callFullRTS1: { callFullRts1 doCall = *(callFullRts1*)(*sp++).w().AsObjPtr(); intptr_t rtsArg1 = (*sp++).argValue; ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(taskData->threadObject, rtsArg1); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp) = PolyWord::FromUnsigned(result); break; } case INSTR_callFullRTS2: { callFullRts2 doCall = *(callFullRts2*)(*sp++).w().AsObjPtr(); intptr_t rtsArg2 = (*sp++).argValue; // Pop off the args, last arg first. intptr_t rtsArg1 = (*sp++).argValue; ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(taskData->threadObject, rtsArg1, rtsArg2); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp) = PolyWord::FromUnsigned(result); break; } case INSTR_callFullRTS3: { callFullRts3 doCall = *(callFullRts3*)(*sp++).w().AsObjPtr(); intptr_t rtsArg3 = (*sp++).argValue; // Pop off the args, last arg first. intptr_t rtsArg2 = (*sp++).argValue; intptr_t rtsArg1 = (*sp++).argValue; ClearExceptionPacket(); SaveInterpreterState(pc, sp); POLYUNSIGNED result = doCall(taskData->threadObject, rtsArg1, rtsArg2, rtsArg3); LoadInterpreterState(pc, sp); // If this raised an exception if (GetExceptionPacket().IsDataPtr()) goto RAISE_EXCEPTION; *(--sp) = PolyWord::FromUnsigned(result); break; } case INSTR_notBoolean: *sp = ((*sp).w() == True) ? False : True; break; case INSTR_isTagged: *sp = (*sp).w().IsTagged() ? True : False; break; case INSTR_cellLength: /* Return the length word. */ *sp = TAGGED((*sp).w().AsObjPtr()->Length()); break; case INSTR_cellFlags: { PolyObject *p = (*sp).w().AsObjPtr(); POLYUNSIGNED f = (p->LengthWord()) >> OBJ_PRIVATE_FLAGS_SHIFT; *sp = TAGGED(f); break; } case INSTR_clearMutable: { PolyObject *obj = (*sp).w().AsObjPtr(); POLYUNSIGNED lengthW = obj->LengthWord(); /* Clear the mutable bit. */ obj->SetLengthWord(lengthW & ~_OBJ_MUTABLE_BIT); *sp = Zero; break; } // case INSTR_stringLength: // Now replaced by loadUntagged // *sp = TAGGED(((PolyStringObject*)(*sp).AsObjPtr())->length); // break; case INSTR_atomicIncr: { PolyObject* p = (*sp).w().AsObjPtr(); POLYUNSIGNED newValue = taskData->AtomicIncrement(p); *sp = PolyWord::FromUnsigned(newValue); break; } case INSTR_atomicDecr: { PolyObject *p = (*sp).w().AsObjPtr(); POLYUNSIGNED newValue = taskData->AtomicDecrement(p); *sp = PolyWord::FromUnsigned(newValue); break; } case INSTR_equalWord: { PolyWord u = *sp++; *sp = u == (*sp) ? True : False; break; } case INSTR_jumpNEqLocal: { // Compare a local with a constant and jump if not equal. PolyWord u = sp[pc[0]]; if (u.IsTagged() && u.UnTagged() == pc[1]) pc += 3; else pc += pc[2] + 3; break; } case INSTR_jumpNEqLocalInd: { // Test the union tag value in the first word of a tuple. PolyWord u = sp[pc[0]]; u = u.AsObjPtr()->Get(0); if (u.IsTagged() && u.UnTagged() == pc[1]) pc += 3; else pc += pc[2] + 3; break; } case INSTR_isTaggedLocalB: { PolyWord u = sp[*pc++]; *(--sp) = u.IsTagged() ? True : False; break; } case INSTR_jumpTaggedLocal: { PolyWord u = sp[*pc]; // Jump if the value is tagged. if (u.IsTagged()) pc += pc[1] + 2; else pc += 2; break; } case INSTR_lessSigned: { PolyWord u = *sp++; *sp = ((*sp).w().AsSigned() < u.AsSigned()) ? True : False; break; } case INSTR_lessUnsigned: { PolyWord u = *sp++; *sp = ((*sp).w().AsUnsigned() < u.AsUnsigned()) ? True : False; break; } case INSTR_lessEqSigned: { PolyWord u = *sp++; *sp = ((*sp).w().AsSigned() <= u.AsSigned()) ? True : False; break; } case INSTR_lessEqUnsigned: { PolyWord u = *sp++; *sp = ((*sp).w().AsUnsigned() <= u.AsUnsigned()) ? True : False; break; } case INSTR_greaterSigned: { PolyWord u = *sp++; *sp = ((*sp).w().AsSigned() > u.AsSigned()) ? True : False; break; } case INSTR_greaterUnsigned: { PolyWord u = *sp++; *sp = ((*sp).w().AsUnsigned() > u.AsUnsigned()) ? True : False; break; } case INSTR_greaterEqSigned: { PolyWord u = *sp++; *sp = ((*sp).w().AsSigned() >= u.AsSigned()) ? True : False; break; } case INSTR_greaterEqUnsigned: { PolyWord u = *sp++; *sp = ((*sp).w().AsUnsigned() >= u.AsUnsigned()) ? True : False; break; } case INSTR_fixedAdd: { PolyWord x = *sp++; PolyWord y = (*sp); POLYSIGNED t = UNTAGGED(x) + UNTAGGED(y); if (t <= MAXTAGGED && t >= -MAXTAGGED-1) *sp = TAGGED(t); else { *(--sp) = (PolyWord)overflowPacket; goto RAISE_EXCEPTION; } break; } case INSTR_fixedSub: { PolyWord x = *sp++; PolyWord y = (*sp); POLYSIGNED t = UNTAGGED(y) - UNTAGGED(x); if (t <= MAXTAGGED && t >= -MAXTAGGED-1) *sp = TAGGED(t); else { *(--sp) = (PolyWord)overflowPacket; goto RAISE_EXCEPTION; } break; } case INSTR_fixedMult: { POLYSIGNED x = UNTAGGED(*sp++); POLYSIGNED y = (*sp).w().AsSigned() - 1; // Just remove the tag POLYSIGNED t = x * y; if (x != 0 && t / x != y) { *(--sp) = (PolyWord)overflowPacket; goto RAISE_EXCEPTION; } *sp = PolyWord::FromSigned(t+1); // Add back the tag break; } case INSTR_fixedQuot: { // Zero and overflow are checked for in ML. POLYSIGNED u = UNTAGGED(*sp++); PolyWord y = (*sp); *sp = TAGGED(UNTAGGED(y) / u); break; } case INSTR_fixedRem: { // Zero and overflow are checked for in ML. POLYSIGNED u = UNTAGGED(*sp++); PolyWord y = (*sp); *sp = TAGGED(UNTAGGED(y) % u); break; } case INSTR_wordAdd: { PolyWord u = *sp++; // Because we're not concerned with overflow we can just add the values and subtract the tag. *sp = PolyWord::FromUnsigned((*sp).w().AsUnsigned() + u.AsUnsigned() - TAGGED(0).AsUnsigned()); break; } case INSTR_wordSub: { PolyWord u = *sp++; *sp = PolyWord::FromUnsigned((*sp).w().AsUnsigned() - u.AsUnsigned() + TAGGED(0).AsUnsigned()); break; } case INSTR_wordMult: { PolyWord u = *sp++; *sp = TAGGED(UNTAGGED_UNSIGNED(*sp) * UNTAGGED_UNSIGNED(u)); break; } case INSTR_wordDiv: { POLYUNSIGNED u = UNTAGGED_UNSIGNED(*sp++); // Detection of zero is done in ML *sp = TAGGED(UNTAGGED_UNSIGNED(*sp) / u); break; } case INSTR_wordMod: { POLYUNSIGNED u = UNTAGGED_UNSIGNED(*sp++); *sp = TAGGED(UNTAGGED_UNSIGNED(*sp) % u); break; } case INSTR_wordAnd: { PolyWord u = *sp++; // Since both of these should be tagged the tag bit will be preserved. *sp = PolyWord::FromUnsigned((*sp).w().AsUnsigned() & u.AsUnsigned()); break; } case INSTR_wordOr: { PolyWord u = *sp++; // Since both of these should be tagged the tag bit will be preserved. *sp = PolyWord::FromUnsigned((*sp).w().AsUnsigned() | u.AsUnsigned()); break; } case INSTR_wordXor: { PolyWord u = *sp++; // This will remove the tag bit so it has to be reinstated. *sp = PolyWord::FromUnsigned(((*sp).w().AsUnsigned() ^ u.AsUnsigned()) | TAGGED(0).AsUnsigned()); break; } case INSTR_wordShiftLeft: { // ML requires shifts greater than a word to return zero. // That's dealt with at the higher level. PolyWord u = *sp++; *sp = TAGGED(UNTAGGED_UNSIGNED(*sp) << UNTAGGED_UNSIGNED(u)); break; } case INSTR_wordShiftRLog: { PolyWord u = *sp++; *sp = TAGGED(UNTAGGED_UNSIGNED(*sp) >> UNTAGGED_UNSIGNED(u)); break; } case INSTR_allocByteMem: { // Allocate byte segment. This does not need to be initialised. POLYUNSIGNED flags = UNTAGGED_UNSIGNED(*sp++); POLYUNSIGNED length = UNTAGGED_UNSIGNED(*sp); PolyObject *t = this->allocateMemory(taskData, length, pc, sp); if (t == 0) goto RAISE_EXCEPTION; // Exception t->SetLengthWord(length, (byte)flags); *sp = (PolyWord)t; break; } case INSTR_getThreadId: *(--sp) = (PolyWord)taskData->threadObject; break; case INSTR_allocWordMemory: { // Allocate word segment. This must be initialised. // We mustn't pop the initialiser until after any potential GC. POLYUNSIGNED length = UNTAGGED_UNSIGNED(sp[2]); PolyObject *t = this->allocateMemory(taskData, length, pc, sp); if (t == 0) goto RAISE_EXCEPTION; PolyWord initialiser = *sp++; POLYUNSIGNED flags = UNTAGGED_UNSIGNED(*sp++); t->SetLengthWord(length, (byte)flags); *sp = (PolyWord)t; // Have to initialise the data. for (; length > 0; ) t->Set(--length, initialiser); break; } case INSTR_alloc_ref: { // Allocate a single word mutable cell. This is more common than allocWordMemory on its own. PolyObject *t = this->allocateMemory(taskData, 1, pc, sp); if (t == 0) goto RAISE_EXCEPTION; PolyWord initialiser = (*sp); t->SetLengthWord(1, F_MUTABLE_BIT); t->Set(0, initialiser); *sp = (PolyWord)t; break; } case INSTR_allocMutClosureB: { // Allocate memory for a mutable closure and copy in the code address. POLYUNSIGNED length = *pc++ + sizeof(uintptr_t) / sizeof(PolyWord); PolyObject* t = this->allocateMemory(taskData, length, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(length, F_CLOSURE_OBJ | F_MUTABLE_BIT); PolyObject* srcClosure = (*sp).w().AsObjPtr(); *(uintptr_t*)t = *(uintptr_t*)srcClosure; *sp = (PolyWord)t; break; } case INSTR_loadMLWordLegacy: { // The values on the stack are base, index and offset. POLYUNSIGNED offset = UNTAGGED(*sp++); POLYUNSIGNED index = UNTAGGED(*sp++); PolyObject *p = (PolyObject*)((*sp).w().AsCodePtr() + offset); *sp = p->Get(index); break; } case INSTR_loadMLWord: { POLYUNSIGNED index = UNTAGGED(*sp++); PolyObject* p = (PolyObject*)((*sp).w().AsCodePtr()); *sp = p->Get(index); break; } case INSTR_loadMLByte: { // The values on the stack are base and index. POLYUNSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = (*sp).w().AsCodePtr(); *sp = TAGGED(p[index]); // Have to tag the result break; } case INSTR_loadUntaggedLegacy: { // The values on the stack are base, index and offset. POLYUNSIGNED offset = UNTAGGED(*sp++); POLYUNSIGNED index = UNTAGGED(*sp++); PolyObject *p = (PolyObject*)((*sp).w().AsCodePtr() + offset); *sp = TAGGED(p->Get(index).AsUnsigned()); break; } case INSTR_loadUntagged: { POLYUNSIGNED index = UNTAGGED(*sp++); PolyObject* p = (PolyObject*)((*sp).w().AsCodePtr()); *sp = TAGGED(p->Get(index).AsUnsigned()); break; } case INSTR_storeMLWordLegacy: { PolyWord toStore = *sp++; POLYUNSIGNED offset = UNTAGGED(*sp++); POLYUNSIGNED index = UNTAGGED(*sp++); PolyObject *p = (PolyObject*)((*sp).w().AsCodePtr() + offset); p->Set(index, toStore); *sp = Zero; break; } case INSTR_storeMLWord: { PolyWord toStore = *sp++; POLYUNSIGNED index = UNTAGGED(*sp++); PolyObject* p = (PolyObject*)((*sp).w().AsCodePtr()); p->Set(index, toStore); *sp = Zero; break; } case INSTR_storeMLByte: { POLYUNSIGNED toStore = UNTAGGED(*sp++); POLYUNSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = (*sp).w().AsCodePtr(); p[index] = (byte)toStore; *sp = Zero; break; } case INSTR_storeUntaggedLegacy: { PolyWord toStore = PolyWord::FromUnsigned(UNTAGGED_UNSIGNED(*sp++)); POLYUNSIGNED offset = UNTAGGED(*sp++); POLYUNSIGNED index = UNTAGGED(*sp++); PolyObject *p = (PolyObject*)((*sp).w().AsCodePtr() + offset); p->Set(index, toStore); *sp = Zero; break; } case INSTR_storeUntagged: { PolyWord toStore = PolyWord::FromUnsigned(UNTAGGED_UNSIGNED(*sp++)); POLYUNSIGNED index = UNTAGGED(*sp++); PolyObject* p = (PolyObject*)((*sp).w().AsCodePtr()); p->Set(index, toStore); *sp = Zero; break; } case INSTR_blockMoveWordLegacy: { // The offsets are byte counts but the the indexes are in words. POLYUNSIGNED length = UNTAGGED_UNSIGNED(*sp++); POLYUNSIGNED destOffset = UNTAGGED_UNSIGNED(*sp++); POLYUNSIGNED destIndex = UNTAGGED_UNSIGNED(*sp++); PolyObject *dest = (PolyObject*)((*sp++).w().AsCodePtr() + destOffset); POLYUNSIGNED srcOffset = UNTAGGED_UNSIGNED(*sp++); POLYUNSIGNED srcIndex = UNTAGGED_UNSIGNED(*sp++); PolyObject *src = (PolyObject*)((*sp).w().AsCodePtr() + srcOffset); for (POLYUNSIGNED u = 0; u < length; u++) dest->Set(destIndex+u, src->Get(srcIndex+u)); *sp = Zero; break; } case INSTR_blockMoveWord: { POLYUNSIGNED length = UNTAGGED_UNSIGNED(*sp++); POLYUNSIGNED destIndex = UNTAGGED_UNSIGNED(*sp++); PolyObject* dest = (PolyObject*)((*sp++).w().AsCodePtr()); POLYUNSIGNED srcIndex = UNTAGGED_UNSIGNED(*sp++); PolyObject* src = (PolyObject*)((*sp).w().AsCodePtr()); for (POLYUNSIGNED u = 0; u < length; u++) dest->Set(destIndex + u, src->Get(srcIndex + u)); *sp = Zero; break; } case INSTR_blockMoveByte: { POLYUNSIGNED length = UNTAGGED_UNSIGNED(*sp++); POLYUNSIGNED destOffset = UNTAGGED_UNSIGNED(*sp++); POLYCODEPTR dest = (*sp++).w().AsCodePtr(); POLYUNSIGNED srcOffset = UNTAGGED_UNSIGNED(*sp++); POLYCODEPTR src = (*sp).w().AsCodePtr(); memcpy(dest+destOffset, src+srcOffset, length); *sp = Zero; break; } case INSTR_blockEqualByte: { POLYUNSIGNED length = UNTAGGED_UNSIGNED(*sp++); POLYUNSIGNED arg2Offset = UNTAGGED_UNSIGNED(*sp++); POLYCODEPTR arg2Ptr = (*sp++).w().AsCodePtr(); POLYUNSIGNED arg1Offset = UNTAGGED_UNSIGNED(*sp++); POLYCODEPTR arg1Ptr = (*sp).w().AsCodePtr(); *sp = memcmp(arg1Ptr+arg1Offset, arg2Ptr+arg2Offset, length) == 0 ? True : False; break; } case INSTR_blockCompareByte: { POLYUNSIGNED length = UNTAGGED_UNSIGNED(*sp++); POLYUNSIGNED arg2Offset = UNTAGGED_UNSIGNED(*sp++); POLYCODEPTR arg2Ptr = (*sp++).w().AsCodePtr(); POLYUNSIGNED arg1Offset = UNTAGGED_UNSIGNED(*sp++); POLYCODEPTR arg1Ptr = (*sp).w().AsCodePtr(); int result = memcmp(arg1Ptr+arg1Offset, arg2Ptr+arg2Offset, length); *sp = result == 0 ? TAGGED(0) : result < 0 ? TAGGED(-1) : TAGGED(1); break; } // Backwards compatibility. // These are either used in the current compiler or compiled by it // while building the basis library. case EXTINSTR_stack_containerW: case EXTINSTR_reset_r_w: case EXTINSTR_tuple_w: case EXTINSTR_unsignedToLongW: case EXTINSTR_signedToLongW: case EXTINSTR_longWToTagged: case EXTINSTR_lgWordShiftLeft: case EXTINSTR_fixedIntToReal: case EXTINSTR_callFastRtoR: case EXTINSTR_realMult: case EXTINSTR_realDiv: case EXTINSTR_realNeg: case EXTINSTR_realAbs: case EXTINSTR_realToFloat: case EXTINSTR_floatDiv: case EXTINSTR_floatNeg: case EXTINSTR_floatAbs: case EXTINSTR_callFastFtoF: case EXTINSTR_floatMult: case EXTINSTR_callFastGtoR: case EXTINSTR_realUnordered: case EXTINSTR_realEqual: case EXTINSTR_lgWordEqual: case EXTINSTR_lgWordOr: case EXTINSTR_wordShiftRArith: case EXTINSTR_lgWordLess: // Back up and handle them as though they were escaped. pc--; case INSTR_escape: { switch (*pc++) { case EXTINSTR_callFastRRtoR: { // Floating point call. callRTSRRtoR doCall = *(callRTSRRtoR*)(*sp++).w().AsObjPtr(); PolyWord rtsArg2 = *sp++; PolyWord rtsArg1 = *sp++; double argument1 = unboxDouble(rtsArg1); double argument2 = unboxDouble(rtsArg2); // Allocate memory for the result. double result = doCall(argument1, argument2); PolyObject* t = boxDouble(taskData, result, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *(--sp) = (PolyWord)t; break; } case EXTINSTR_callFastRGtoR: { // Call that takes a POLYUNSIGNED argument and returns a double. callRTSRGtoR doCall = *(callRTSRGtoR*)(*sp++).w().AsObjPtr(); intptr_t rtsArg2 = (*sp++).w().AsSigned(); PolyWord rtsArg1 = *sp++; double argument1 = unboxDouble(rtsArg1); // Allocate memory for the result. double result = doCall(argument1, rtsArg2); PolyObject* t = boxDouble(taskData, result, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *(--sp) = (PolyWord)t; break; } case EXTINSTR_callFastGtoR: { // Call that takes a POLYUNSIGNED argument and returns a double. callRTSGtoR doCall = *(callRTSGtoR*)(*sp++).w().AsObjPtr(); intptr_t rtsArg1 = (*sp++).w().AsSigned(); // Allocate memory for the result. double result = doCall(rtsArg1); PolyObject* t = boxDouble(taskData, result, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *(--sp) = (PolyWord)t; break; } case EXTINSTR_callFastFtoF: { // Floating point call. The call itself does not allocate but we // need to put the result into a "box". callRTSFtoF doCall = *(callRTSFtoF*)(*sp++).w().AsObjPtr(); PolyWord rtsArg1 = *sp++; float argument = unboxFloat(rtsArg1); // Allocate memory for the result. float result = doCall(argument); PolyObject* t = boxFloat(taskData, result, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *(--sp) = (PolyWord)t; break; } case EXTINSTR_callFastFFtoF: { // Floating point call. callRTSFFtoF doCall = *(callRTSFFtoF*)(*sp++).w().AsObjPtr(); PolyWord rtsArg2 = *sp++; PolyWord rtsArg1 = *sp++; float argument1 = unboxFloat(rtsArg1); float argument2 = unboxFloat(rtsArg2); // Allocate memory for the result. float result = doCall(argument1, argument2); PolyObject* t = boxFloat(taskData, result, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *(--sp) = (PolyWord)t; break; } case EXTINSTR_callFastGtoF: { // Call that takes a POLYUNSIGNED argument and returns a double. callRTSGtoF doCall = *(callRTSGtoF*)(*sp++).w().AsObjPtr(); intptr_t rtsArg1 = (*sp++).w().AsSigned(); // Allocate memory for the result. float result = doCall(rtsArg1); PolyObject* t = boxFloat(taskData, result, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *(--sp) = (PolyWord)t; break; } case EXTINSTR_callFastFGtoF: { // Call that takes a POLYUNSIGNED argument and returns a double. callRTSFGtoF doCall = *(callRTSFGtoF*)(*sp++).w().AsObjPtr(); intptr_t rtsArg2 = (*sp++).w().AsSigned(); PolyWord rtsArg1 = *sp++; float argument1 = unboxFloat(rtsArg1); // Allocate memory for the result. float result = doCall(argument1, rtsArg2); PolyObject* t = boxFloat(taskData, result, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *(--sp) = (PolyWord)t; break; } case EXTINSTR_callFastRtoR: { // Floating point call. The call itself does not allocate but we // need to put the result into a "box". callRTSRtoR doCall = *(callRTSRtoR*)(*sp++).w().AsObjPtr(); PolyWord rtsArg1 = *sp++; double argument = unboxDouble(rtsArg1); // Allocate memory for the result. double result = doCall(argument); PolyObject* t = boxDouble(taskData, result, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *(--sp) = (PolyWord)t; break; } case EXTINSTR_atomicReset: { // This is needed in the interpreted version otherwise there // is a chance that we could set the value to zero while another // thread is between getting the old value and setting it to the new value. PolyObject* p = (*sp).w().AsObjPtr(); taskData->AtomicReset(p); *sp = TAGGED(0); // Push the unit result break; } case EXTINSTR_longWToTagged: { // Extract the first word and return it as a tagged value. This loses the top-bit POLYUNSIGNED wx = (*sp).w().AsObjPtr()->Get(0).AsUnsigned(); *sp = TAGGED(wx); break; } case EXTINSTR_signedToLongW: { // Shift the tagged value to remove the tag and put it into the first word. // The original sign bit is copied in the shift. intptr_t wx = (*sp).w().UnTagged(); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(intptr_t*)t = wx; *sp = (PolyWord)t; break; } case EXTINSTR_unsignedToLongW: { // As with the above except the value is treated as an unsigned // value and the top bit is zero. uintptr_t wx = (*sp).w().UnTaggedUnsigned(); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wx; *sp = (PolyWord)t; break; } case EXTINSTR_realAbs: { PolyObject* t = this->boxDouble(taskData, fabs(unboxDouble(*sp)), pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_realNeg: { PolyObject* t = this->boxDouble(taskData, -(unboxDouble(*sp)), pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_floatAbs: { PolyObject* t = this->boxFloat(taskData, fabs(unboxFloat(*sp)), pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_floatNeg: { PolyObject* t = this->boxFloat(taskData, -(unboxFloat(*sp)), pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_fixedIntToReal: { POLYSIGNED u = UNTAGGED(*sp); PolyObject* t = this->boxDouble(taskData, (double)u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_fixedIntToFloat: { POLYSIGNED u = UNTAGGED(*sp); PolyObject* t = this->boxFloat(taskData, (float)u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_floatToReal: { float u = unboxFloat(*sp); PolyObject* t = this->boxDouble(taskData, (double)u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_wordShiftRArith: { PolyWord u = *sp++; // Strictly speaking, C does not require that this uses // arithmetic shifting so we really ought to set the // high-order bits explicitly. *sp = TAGGED(UNTAGGED(*sp) >> UNTAGGED(u)); break; } case EXTINSTR_lgWordEqual: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); *sp = wx == wy ? True : False; break; } case EXTINSTR_lgWordLess: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); *sp = (wy < wx) ? True : False; break; } case EXTINSTR_lgWordLessEq: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); *sp = (wy <= wx) ? True : False; break; } case EXTINSTR_lgWordGreater: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); *sp = (wy > wx) ? True : False; break; } case EXTINSTR_lgWordGreaterEq: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); *sp = (wy >= wx) ? True : False; break; } case EXTINSTR_lgWordAdd: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy + wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordSub: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy - wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordMult: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy * wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordDiv: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy / wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordMod: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy % wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordAnd: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy & wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordOr: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy | wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordXor: { uintptr_t wx = *(uintptr_t*)((*sp++).w().AsObjPtr()); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy ^ wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordShiftLeft: { // The shift amount is a tagged word not a boxed large word POLYUNSIGNED wx = UNTAGGED_UNSIGNED(*sp++); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy << wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordShiftRLog: { // The shift amount is a tagged word not a boxed large word POLYUNSIGNED wx = UNTAGGED_UNSIGNED(*sp++); uintptr_t wy = *(uintptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = wy >> wx; *sp = (PolyWord)t; break; } case EXTINSTR_lgWordShiftRArith: { // The shift amount is a tagged word not a boxed large word POLYUNSIGNED wx = UNTAGGED_UNSIGNED(*sp++); intptr_t wy = *(intptr_t*)((*sp).w().AsObjPtr()); PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(intptr_t*)t = wy >> wx; *sp = (PolyWord)t; break; } case EXTINSTR_realEqual: { double u = unboxDouble(*sp++); *sp = u == unboxDouble(*sp) ? True : False; break; } case EXTINSTR_realLess: { double u = unboxDouble(*sp++); *sp = unboxDouble(*sp) < u ? True : False; break; } case EXTINSTR_realLessEq: { double u = unboxDouble(*sp++); *sp = unboxDouble(*sp) <= u ? True : False; break; } case EXTINSTR_realGreater: { double u = unboxDouble(*sp++); *sp = unboxDouble(*sp) > u ? True : False; break; } case EXTINSTR_realGreaterEq: { double u = unboxDouble(*sp++); *sp = unboxDouble(*sp) >= u ? True : False; break; } case EXTINSTR_realUnordered: { double u = unboxDouble(*sp++); double v = unboxDouble(*sp); *sp = (std::isnan(u) || std::isnan(v)) ? True : False; break; } case EXTINSTR_realAdd: { double u = unboxDouble(*sp++); double v = unboxDouble(*sp); PolyObject* t = this->boxDouble(taskData, v + u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_realSub: { double u = unboxDouble(*sp++); double v = unboxDouble(*sp); PolyObject* t = this->boxDouble(taskData, v - u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_realMult: { double u = unboxDouble(*sp++); double v = unboxDouble(*sp); PolyObject* t = this->boxDouble(taskData, v * u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_realDiv: { double u = unboxDouble(*sp++); double v = unboxDouble(*sp); PolyObject* t = this->boxDouble(taskData, v / u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_floatEqual: { float u = unboxFloat(*sp++); *sp = u == unboxFloat(*sp) ? True : False; break; } case EXTINSTR_floatLess: { float u = unboxFloat(*sp++); *sp = unboxFloat(*sp) < u ? True : False; break; } case EXTINSTR_floatLessEq: { float u = unboxFloat(*sp++); *sp = unboxFloat(*sp) <= u ? True : False; break; } case EXTINSTR_floatGreater: { float u = unboxFloat(*sp++); *sp = unboxFloat(*sp) > u ? True : False; break; } case EXTINSTR_floatGreaterEq: { float u = unboxFloat(*sp++); *sp = unboxFloat(*sp) >= u ? True : False; break; } case EXTINSTR_floatUnordered: { float u = unboxFloat(*sp++); float v = unboxFloat(*sp); *sp = (std::isnan(u) || std::isnan(v)) ? True : False; break; } case EXTINSTR_floatAdd: { float u = unboxFloat(*sp++); float v = unboxFloat(*sp); PolyObject* t = this->boxFloat(taskData, v + u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_floatSub: { float u = unboxFloat(*sp++); float v = unboxFloat(*sp); PolyObject* t = this->boxFloat(taskData, v - u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_floatMult: { float u = unboxFloat(*sp++); float v = unboxFloat(*sp); PolyObject* t = this->boxFloat(taskData, v * u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_floatDiv: { float u = unboxFloat(*sp++); float v = unboxFloat(*sp); PolyObject* t = this->boxFloat(taskData, v / u, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_realToFloat: { // Convert a double to a float. It's complicated because it depends on the rounding mode. int rMode = *pc++; int current = getrounding(); // If the rounding is 4 it means "use current rounding". // Don't call unboxDouble until we're set the rounding. GCC seems to convert it // before the actual float cast. if (rMode < 4) setrounding(rMode); double d = unboxDouble(*sp); float v = (float)d; // Convert with the appropriate rounding. setrounding(current); PolyObject* t = this->boxFloat(taskData, v, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_realToInt: dv = unboxDouble(*sp); goto realtoint; case EXTINSTR_floatToInt: dv = (double)unboxFloat(*sp); realtoint: { // Convert a double or a float to a tagged integer. int rMode = *pc++; // We mustn't try converting a value that will overflow the conversion // but we need to be careful that we don't raise overflow incorrectly due // to rounding. if (dv > (double)(MAXTAGGED + MAXTAGGED / 2) || dv < -(double)(MAXTAGGED + MAXTAGGED / 2)) { *(--sp) = (PolyWord)overflowPacket; goto RAISE_EXCEPTION; } POLYSIGNED p; switch (rMode) { case POLY_ROUND_TONEAREST: p = (POLYSIGNED)round(dv); break; case POLY_ROUND_DOWNWARD: p = (POLYSIGNED)floor(dv); break; case POLY_ROUND_UPWARD: p = (POLYSIGNED)ceil(dv); break; case POLY_ROUND_TOZERO: default: // Truncation is the default for C. p = (POLYSIGNED)dv; } // Check that the value can be tagged. if (p > MAXTAGGED || p < -MAXTAGGED - 1) { *(--sp) = (PolyWord)overflowPacket; goto RAISE_EXCEPTION; } *sp = TAGGED(p); break; } case EXTINSTR_loadC8: { // This is similar to loadMLByte except that the base address is a boxed large-word. // Also the index is SIGNED. POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; *sp = TAGGED(p[index]); // Have to tag the result break; } case EXTINSTR_loadC16: { // This and the other loads are similar to loadMLWord with separate // index and offset values. POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; POLYUNSIGNED r = ((uint16_t*)p)[index]; *sp = TAGGED(r); break; } case EXTINSTR_loadC32: { POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; uintptr_t r = ((uint32_t*)p)[index]; #ifdef IS64BITS // This is tagged in 64-bit mode * sp = TAGGED(r); #else // But boxed in 32-bit mode. PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = r; *sp = (PolyWord)t; #endif break; } #if (defined(IS64BITS) || defined(POLYML32IN64)) case EXTINSTR_loadC64: { POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; uintptr_t r = ((uint64_t*)p)[index]; // This must be boxed. PolyObject* t = this->allocateMemory(taskData, LGWORDSIZE, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(LGWORDSIZE, F_BYTE_OBJ); *(uintptr_t*)t = r; *sp = (PolyWord)t; break; } #endif case EXTINSTR_loadCFloat: { POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; double r = ((float*)p)[index]; // This must be boxed. PolyObject* t = this->boxDouble(taskData, r, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_loadCDouble: { POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; double r = ((double*)p)[index]; // This must be boxed. PolyObject* t = this->boxDouble(taskData, r, pc, sp); if (t == 0) goto RAISE_EXCEPTION; *sp = (PolyWord)t; break; } case EXTINSTR_storeC8: { // Similar to storeMLByte except that the base address is a boxed large-word. POLYUNSIGNED toStore = UNTAGGED(*sp++); POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; p[index] = (byte)toStore; *sp = Zero; break; } case EXTINSTR_storeC16: { uint16_t toStore = (uint16_t)UNTAGGED(*sp++); POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; ((uint16_t*)p)[index] = toStore; *sp = Zero; break; } case EXTINSTR_storeC32: { #ifdef IS64BITS // This is a tagged value in 64-bit mode. uint32_t toStore = (uint32_t)UNTAGGED(*sp++); #else // but a boxed value in 32-bit mode. uint32_t toStore = (uint32_t)(*(uintptr_t*)((*sp++).w().AsObjPtr())); #endif POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; ((uint32_t*)p)[index] = toStore; *sp = Zero; break; } #if (defined(IS64BITS) || defined(POLYML32IN64)) case EXTINSTR_storeC64: { // This is a boxed value. uint64_t toStore = *(uintptr_t*)((*sp++).w().AsObjPtr()); POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; ((uint64_t*)p)[index] = toStore; *sp = Zero; break; } #endif case EXTINSTR_storeCFloat: { // This is a boxed value. float toStore = (float)unboxDouble(*sp++); POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; ((float*)p)[index] = toStore; *sp = Zero; break; } case EXTINSTR_storeCDouble: { // This is a boxed value. double toStore = unboxDouble(*sp++); POLYSIGNED offset = UNTAGGED(*sp++); POLYSIGNED index = UNTAGGED(*sp++); POLYCODEPTR p = *((byte**)((*sp).w().AsObjPtr())) + offset; ((double*)p)[index] = toStore; *sp = Zero; break; } case EXTINSTR_jump32True: // Invert the sense of the test and fall through. *sp = ((*sp).w() == True) ? False : True; case EXTINSTR_jump32False: { PolyWord u = *sp++; /* Pop argument */ if (u == True) { pc += 4; break; } /* else - false - take the jump */ } case EXTINSTR_jump32: { // This is a 32-bit signed quantity on both 64-bits and 32-bits. POLYSIGNED offset = pc[3] & 0x80 ? -1 : 0; offset = (offset << 8) | pc[3]; offset = (offset << 8) | pc[2]; offset = (offset << 8) | pc[1]; offset = (offset << 8) | pc[0]; pc += offset + 4; break; } case EXTINSTR_setHandler32: /* Set up a handler */ { POLYUNSIGNED offset = pc[0] + (pc[1] << 8) + (pc[2] << 16) + (pc[3] << 24); (--sp)->codeAddr = pc + offset + 4; /* Address of handler */ SetHandlerRegister(sp); pc += 4; break; } case EXTINSTR_case32: { // arg1 is the number of cases i.e. one more than the largest value // This is followed by that number of 32-bit offsets. // If the value is out of range the default case is immediately after the table. POLYSIGNED u = UNTAGGED(*sp++); /* Get the value */ if (u >= arg1 || u < 0) pc += 2 + arg1 * 4; /* Out of range */ else { pc += 2; pc += /* Index */pc[u * 4] + (pc[u * 4 + 1] << 8) + (pc[u * 4 + 2] << 16) + (pc[u * 4 + 3] << 24); } break; } case EXTINSTR_tuple_w: { storeWords = arg1; pc += 2; TUPLE: /* Common code for tupling. */ PolyObject* p = this->allocateMemory(taskData, storeWords, pc, sp); if (p == 0) goto RAISE_EXCEPTION; // Exception p->SetLengthWord(storeWords, 0); for (; storeWords > 0; ) p->Set(--storeWords, *sp++); *(--sp) = (PolyWord)p; break; } case EXTINSTR_indirect_w: *sp = (*sp).w().AsObjPtr()->Get(arg1); pc += 2; break; case EXTINSTR_moveToContainerW: { PolyWord u = *sp++; (*sp).stackAddr[arg1] =u; pc += 2; break; } case EXTINSTR_moveToMutClosureW: { PolyWord u = *sp++; (*sp).w().AsObjPtr()->Set(arg1 + sizeof(uintptr_t)/sizeof(PolyWord), u); pc += 2; break; } case EXTINSTR_indirectContainerW: *sp = (*sp).stackAddr[arg1]; pc += 2; break; case EXTINSTR_indirectClosureW: *sp = (*sp).w().AsObjPtr()->Get(arg1+sizeof(uintptr_t)/sizeof(PolyWord)); pc += 2; break; case EXTINSTR_set_stack_val_w: { PolyWord u = *sp++; sp[arg1 - 1] = u; pc += 2; break; } case EXTINSTR_reset_w: sp += arg1; pc += 2; break; case EXTINSTR_reset_r_w: { PolyWord u = *sp; sp += arg1; *sp = u; pc += 2; break; } case EXTINSTR_stack_containerW: { POLYUNSIGNED words = arg1; pc += 2; while (words-- > 0) *(--sp) = Zero; sp--; (*sp).stackAddr = sp + 1; break; } case EXTINSTR_constAddr32: { POLYUNSIGNED offset = pc[0] + (pc[1] << 8) + (pc[2] << 16) + (pc[3] << 24); *(--sp) = *(PolyWord*)(pc + offset + 4); pc += 4; break; } case EXTINSTR_allocCSpace: { // Allocate this on the C heap. POLYUNSIGNED length = UNTAGGED_UNSIGNED(*sp); void* memory = malloc(length); *sp = Make_sysword(taskData, (uintptr_t)memory)->Word(); break; } case EXTINSTR_freeCSpace: { // Both the address and the size are passed as arguments. sp++; // Size PolyWord addr = *sp; free(*(void**)(addr.AsObjPtr())); *sp = TAGGED(0); break; } case EXTINSTR_tail: /* Tail recursive call. */ /* Move items up the stack. */ /* There may be an overlap if the function we are calling has more args than this one. */ tailCount = arg1; tailPtr = sp + tailCount; sp = tailPtr + arg2; goto TAIL_CALL; case EXTINSTR_allocMutClosureW: { // Allocate memory for a mutable closure and copy in the code address. POLYUNSIGNED length = arg1 + sizeof(uintptr_t) / sizeof(PolyWord); pc += 2; PolyObject* t = this->allocateMemory(taskData, length, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(length, F_CLOSURE_OBJ | F_MUTABLE_BIT); PolyObject* srcClosure = (*sp).w().AsObjPtr(); *(uintptr_t*)t = *(uintptr_t*)srcClosure; *sp = (PolyWord)t; break; } case EXTINSTR_closureW: { storeWords = arg1; pc += 2; CREATE_CLOSURE: // Allocate a closure. storeWords is the number of non-locals. POLYUNSIGNED length = storeWords + sizeof(uintptr_t) / sizeof(PolyWord); PolyObject* t = this->allocateMemory(taskData, length, pc, sp); if (t == 0) goto RAISE_EXCEPTION; t->SetLengthWord(length, F_CLOSURE_OBJ); for (; storeWords > 0; ) t->Set(--storeWords + sizeof(uintptr_t) / sizeof(PolyWord), *sp++); PolyObject* srcClosure = (*sp).w().AsObjPtr(); *(uintptr_t*)t = *(uintptr_t*)srcClosure; *sp = (PolyWord)t; break; } default: Crash("Unknown extended instruction %x\n", pc[-1]); } break; } case INSTR_enterIntX86: // This is a no-op if we are already interpreting. pc += 3; break; default: Crash("Unknown instruction %x\n", pc[-1]); } /* switch */ } /* for */ return ReturnReturn; // Never actually reached } void ByteCodeInterpreter::GarbageCollect(ScanAddress* process) { if (overflowPacket != 0) overflowPacket = process->ScanObjectAddress(overflowPacket); if (dividePacket != 0) dividePacket = process->ScanObjectAddress(dividePacket); } extern "C" { POLYEXTERNALSYMBOL POLYUNSIGNED PolyInterpretedGetAbiList(FirstArgument threadId); POLYEXTERNALSYMBOL POLYUNSIGNED PolyInterpretedCreateCIF(FirstArgument threadId, PolyWord abiValue, PolyWord resultType, PolyWord argTypes); POLYEXTERNALSYMBOL POLYUNSIGNED PolyInterpretedCallFunction(FirstArgument threadId, PolyWord cifAddr, PolyWord cFunAddr, PolyWord resAddr, PolyWord argVec); } // FFI #if (defined(HAVE_LIBFFI) && defined(HAVE_FFI_H)) #ifdef HAVE_ERRNO_H #include #endif #include static struct _abiTable { const char* abiName; ffi_abi abiCode; } abiTable[] = { // Unfortunately the ABI entries are enums rather than #defines so we // can't test individual entries. #ifdef X86_WIN32 {"sysv", FFI_SYSV}, {"stdcall", FFI_STDCALL}, {"thiscall", FFI_THISCALL}, {"fastcall", FFI_FASTCALL}, {"ms_cdecl", FFI_MS_CDECL}, #elif defined(X86_WIN64) {"win64", FFI_WIN64}, #elif defined(X86_64) || (defined (__x86_64__) && defined (X86_DARWIN)) {"unix64", FFI_UNIX64}, #elif defined(X86_ANY) {"sysv", FFI_SYSV}, #endif { "default", FFI_DEFAULT_ABI} }; static Handle mkAbitab(TaskData* taskData, void*, char* p); static Handle toSysWord(TaskData* taskData, void* p) { return Make_sysword(taskData, (uintptr_t)p); } // Convert the Poly type info into ffi_type values. /* datatype cTypeForm = CTypeFloatingPt | CTypePointer | CTypeSignedInt | CTypeUnsignedInt | CTypeStruct of cType list | CTypeVoid withtype cType = { typeForm: cTypeForm, align: word, size: word } */ static ffi_type* decodeType(PolyWord pType) { PolyWord typeForm = pType.AsObjPtr()->Get(2); PolyWord typeSize = pType.AsObjPtr()->Get(0); if (typeForm.IsDataPtr()) { // Struct size_t size = typeSize.UnTaggedUnsigned(); unsigned short align = (unsigned short)pType.AsObjPtr()->Get(1).UnTaggedUnsigned(); unsigned nElems = 0; PolyWord listStart = typeForm.AsObjPtr()->Get(0); for (PolyWord p = listStart; !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) nElems++; size_t space = sizeof(ffi_type); // Add space for the elements plus one extra for the zero terminator. space += (nElems + 1) * sizeof(ffi_type*); ffi_type* result = (ffi_type*)calloc(1, space); // Raise an exception rather than returning zero. if (result == 0) return 0; ffi_type** elem = (ffi_type**)(result + 1); result->size = size; result->alignment = align; result->type = FFI_TYPE_STRUCT; result->elements = elem; if (elem != 0) { for (PolyWord p = listStart; !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) { PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h; ffi_type* t = decodeType(e); if (t == 0) return 0; *elem++ = t; } *elem = 0; // Null terminator } return result; } else { switch (typeForm.UnTaggedUnsigned()) { case 0: { // Floating point if (typeSize.UnTaggedUnsigned() == ffi_type_float.size) return &ffi_type_float; else if (typeSize.UnTaggedUnsigned() == ffi_type_double.size) return &ffi_type_double; ASSERT(0); } case 1: // FFI type poiner return &ffi_type_pointer; case 2: // Signed integer. { switch (typeSize.UnTaggedUnsigned()) { case 1: return &ffi_type_sint8; case 2: return &ffi_type_sint16; case 4: return &ffi_type_sint32; case 8: return &ffi_type_sint64; default: ASSERT(0); } } case 3: // Unsigned integer. { switch (typeSize.UnTaggedUnsigned()) { case 1: return &ffi_type_uint8; case 2: return &ffi_type_uint16; case 4: return &ffi_type_uint32; case 8: return &ffi_type_uint64; default: ASSERT(0); } } case 4: // Void return &ffi_type_void; } ASSERT(0); } return 0; } // Create a CIF. This contains all the types and some extra information. // The arguments are the raw ML values. That does make this dependent on the // representations used by the compiler. // This mallocs space for the CIF and the types. The space is never freed. // POLYUNSIGNED PolyInterpretedCreateCIF(FirstArgument threadId, PolyWord abiValue, PolyWord resultType, PolyWord argTypes) { TaskData* taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle result = 0; ffi_abi abi = (ffi_abi)get_C_ushort(taskData, abiValue); try { unsigned nArgs = 0; for (PolyWord p = argTypes; !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) nArgs++; // Allocate space for the cif followed by the argument type vector size_t space = sizeof(ffi_cif) + nArgs * sizeof(ffi_type*); ffi_cif* cif = (ffi_cif*)malloc(space); if (cif == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM); ffi_type* rtype = decodeType(resultType); if (rtype == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM); ffi_type** atypes = (ffi_type**)(cif + 1); // Copy the arguments types. ffi_type** at = atypes; for (PolyWord p = argTypes; !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) { PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h; ffi_type* atype = decodeType(e); if (atype == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM); *at++ = atype; } ffi_status status = ffi_prep_cif(cif, abi, nArgs, rtype, atypes); if (status == FFI_BAD_TYPEDEF) raise_exception_string(taskData, EXC_foreign, "Bad typedef in ffi_prep_cif"); else if (status == FFI_BAD_ABI) raise_exception_string(taskData, EXC_foreign, "Bad ABI in ffi_prep_cif"); else if (status != FFI_OK) raise_exception_string(taskData, EXC_foreign, "Error in ffi_prep_cif"); result = toSysWord(taskData, cif); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // Call a function. POLYUNSIGNED PolyInterpretedCallFunction(FirstArgument threadId, PolyWord cifAddr, PolyWord cFunAddr, PolyWord resAddr, PolyWord argVec) { ffi_cif* cif = *(ffi_cif**)cifAddr.AsAddress(); void* f = *(void**)cFunAddr.AsAddress(); void* res = *(void**)resAddr.AsAddress(); void* arg = *(void**)argVec.AsAddress(); // Poly passes the arguments as values, effectively a single struct. // Libffi wants a vector of addresses. void** argVector = (void**)calloc(cif->nargs + 1, sizeof(void*)); unsigned n = 0; uintptr_t p = (uintptr_t)arg; while (n < cif->nargs) { uintptr_t align = cif->arg_types[n]->alignment; p = (p + align - 1) & (0 - align); argVector[n] = (void*)p; p += cif->arg_types[n]->size; n++; } // The result area we have provided is only as big as required. // Libffi may need a larger area. if (cif->rtype->size < FFI_SIZEOF_ARG) { char result[FFI_SIZEOF_ARG]; ffi_call(cif, FFI_FN(f), &result, argVector); if (cif->rtype->type != FFI_TYPE_VOID) memcpy(res, result, cif->rtype->size); } else ffi_call(cif, FFI_FN(f), res, argVector); free(argVector); return TAGGED(0).AsUnsigned(); } #else // Libffi is not present. // A basic table so that the Foreign structure will compile static struct _abiTable { const char* abiName; int abiCode; } abiTable[] = { { "default", 0} }; // Don't raise an exception at this point so we can build calls. POLYUNSIGNED PolyInterpretedCreateCIF(FirstArgument threadId, PolyWord abiValue, PolyWord resultType, PolyWord argTypes) { return TAGGED(0).AsUnsigned(); } POLYUNSIGNED PolyInterpretedCallFunction(FirstArgument threadId, PolyWord cifAddr, PolyWord cFunAddr, PolyWord resAddr, PolyWord argVec) { TaskData* taskData = TaskData::FindTaskForId(threadId); try { raise_exception_string(taskData, EXC_foreign, "Foreign function calling is not available. Libffi is not installled."); } catch (...) {} // Handle the IOException return TAGGED(0).AsUnsigned(); } #endif // Construct an entry in the ABI table. static Handle mkAbitab(TaskData* taskData, void* arg, char* p) { struct _abiTable* ab = (struct _abiTable*)p; // Construct a pair of the string and the code Handle name = taskData->saveVec.push(C_string_to_Poly(taskData, ab->abiName)); Handle code = Make_arbitrary_precision(taskData, ab->abiCode); Handle result = alloc_and_save(taskData, 2); result->WordP()->Set(0, name->Word()); result->WordP()->Set(1, code->Word()); return result; } // Get ABI list. This is called once only before the basis library is built. POLYUNSIGNED PolyInterpretedGetAbiList(FirstArgument threadId) { TaskData* taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle result = 0; try { result = makeList(taskData, sizeof(abiTable) / sizeof(abiTable[0]), (char*)abiTable, sizeof(abiTable[0]), 0, mkAbitab); } catch (...) {} // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); if (result == 0) return TAGGED(0).AsUnsigned(); else return result->Word().AsUnsigned(); } // No machine-specific calls in the interpreter. struct _entrypts byteCodeEPT[] = { { "PolyInterpretedGetAbiList", (polyRTSFunction)&PolyInterpretedGetAbiList }, { "PolyInterpretedCreateCIF", (polyRTSFunction)&PolyInterpretedCreateCIF }, { "PolyInterpretedCallFunction", (polyRTSFunction)&PolyInterpretedCallFunction }, { NULL, NULL} // End of list. }; diff --git a/libpolyml/bytecode.h b/libpolyml/bytecode.h index 39cf6093..0493f535 100644 --- a/libpolyml/bytecode.h +++ b/libpolyml/bytecode.h @@ -1,85 +1,84 @@ #pragma once /* Title: bytecode.h - Header for common code for the byte-code interpreter Copyright (c) 2006, 2015-17, 2020 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef BYTECODE_H_INCLUDED #define BYTECODE_H_INCLUDED #include "globals.h" class TaskData; class ByteCodeInterpreter { protected: - ByteCodeInterpreter(stackItem **spAddr); + ByteCodeInterpreter(stackItem **spAddr, stackItem **slAddr); ~ByteCodeInterpreter(); enum _returnValue { ReturnTailCall, ReturnCall, ReturnReturn }; enum _returnValue RunInterpreter(TaskData* taskData); virtual void ClearExceptionPacket() = 0; virtual PolyWord GetExceptionPacket() = 0; // Exception packet is set via TaskData::SetException virtual stackItem* GetHandlerRegister() = 0; virtual void SetHandlerRegister(stackItem* hr) = 0; - virtual void CheckStackAndInterrupt(POLYUNSIGNED space) = 0; - virtual bool TestInterrupt() = 0; + virtual void HandleStackOverflow(uintptr_t space) = 0; void GarbageCollect(ScanAddress* process); bool mixedCode; int numTailArguments; POLYCODEPTR interpreterPc; - stackItem **stackPointerAddress; + stackItem **stackPointerAddress, **stackLimitAddress; private: PolyObject *overflowPacket, *dividePacket; // Update the copies in the task object virtual void SaveInterpreterState(POLYCODEPTR pc, stackItem* sp) { interpreterPc = pc; *stackPointerAddress = sp; } // Update the local state virtual void LoadInterpreterState(POLYCODEPTR& pc, stackItem*& sp) { pc = interpreterPc; sp = *stackPointerAddress; } private: inline PolyObject* allocateMemory(TaskData* taskData, POLYUNSIGNED words, POLYCODEPTR& pc, stackItem*& sp); inline PolyObject* boxDouble(TaskData* taskData, double d, POLYCODEPTR& pc, stackItem*& sp); inline double unboxDouble(PolyWord p); inline float unboxFloat(PolyWord p); inline PolyObject* boxFloat(TaskData* taskData, float f, POLYCODEPTR& pc, stackItem*& sp); #ifdef PROFILEOPCODES unsigned frequency[256], arg1Value[256], arg2Value[256]; #endif }; extern struct _entrypts byteCodeEPT[]; #endif diff --git a/libpolyml/interpreter.cpp b/libpolyml/interpreter.cpp index 3841af46..517d0f17 100644 --- a/libpolyml/interpreter.cpp +++ b/libpolyml/interpreter.cpp @@ -1,425 +1,422 @@ /* Architecture independent wrapper for the byte-code interpreter. Copyright David C.J. Matthews 2020. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #elif defined(_WIN32) #include "winconfig.h" #else #error "No configuration file" #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) 0 #endif #ifdef HAVE_STRING_H #include #endif #include "globals.h" #include "machine_dep.h" #include "sys.h" #include "profiling.h" #include "arb.h" #include "processes.h" #include "run_time.h" #include "gc.h" #include "diagnostics.h" #include "polystring.h" #include "save_vec.h" #include "memmgr.h" #include "scanaddrs.h" #include "rtsentry.h" #include "bytecode.h" #if (SIZEOF_VOIDP == 8 && !defined(POLYML32IN64)) #define IS64BITS 1 #endif #define CHECKED_REGS 2 #define UNCHECKED_REGS 0 #define EXTRA_STACK 0 // Don't need any extra - signals aren't handled on the Poly stack. /* the amount of ML stack space to reserve for registers, C exception handling etc. The compiler requires us to reserve 2 stack-frames worth (2 * 20 words) plus whatever we require for the register save area. We actually reserve slightly more than this. SPF 3/3/97 */ #define OVERFLOW_STACK_SIZE \ (50 + \ CHECKED_REGS + \ UNCHECKED_REGS + \ EXTRA_STACK) // This duplicates some code in reals.cpp but is now updated. #define DOUBLESIZE (sizeof(double)/sizeof(POLYUNSIGNED)) union realdb { double dble; POLYUNSIGNED puns[DOUBLESIZE]; }; class IntTaskData: public TaskData, ByteCodeInterpreter { public: - IntTaskData() : ByteCodeInterpreter(&taskSp), interrupt_requested(false) {} + IntTaskData() : ByteCodeInterpreter(&taskSp, &sl) {} ~IntTaskData() {} virtual void GarbageCollect(ScanAddress *process); void ScanStackAddress(ScanAddress *process, stackItem& val, StackSpace *stack); virtual void EnterPolyCode(); // Start running ML virtual void SetException(poly_exn *exc) { exception_arg = exc; } virtual void InterruptCode(); // AddTimeProfileCount is used in time profiling. virtual bool AddTimeProfileCount(SIGNALCONTEXT *context); virtual void InitStackFrame(TaskData *newTask, Handle proc); // Increment or decrement the first word of the object pointed to by the // mutex argument and return the new value. virtual POLYUNSIGNED AtomicDecrement(PolyObject* mutexp); // Set a mutex to zero. virtual void AtomicReset(PolyObject* mutexp); virtual POLYUNSIGNED AtomicIncrement(PolyObject* mutexp); // Return the minimum space occupied by the stack. Used when setting a limit. virtual uintptr_t currentStackSpace(void) const { return ((stackItem*)this->stack->top - this->taskSp) + OVERFLOW_STACK_SIZE; } virtual void addProfileCount(POLYUNSIGNED words) { addSynchronousCount(interpreterPc, words); } virtual void CopyStackFrame(StackObject *old_stack, uintptr_t old_length, StackObject *new_stack, uintptr_t new_length); PLock interruptLock; - bool interrupt_requested; virtual void ClearExceptionPacket() { exception_arg = TAGGED(0); } virtual PolyWord GetExceptionPacket() { return exception_arg; } virtual stackItem* GetHandlerRegister() { return hr; } virtual void SetHandlerRegister(stackItem* newHr) { hr = newHr; } - virtual void CheckStackAndInterrupt(POLYUNSIGNED space); - virtual bool TestInterrupt() { return interrupt_requested; } - bool WasInterrupted(); + virtual void HandleStackOverflow(uintptr_t space); stackItem *taskSp; /* Stack pointer. */ stackItem *hr; PolyWord exception_arg; stackItem *sl; /* Stack limit register. */ }; class Interpreter : public MachineDependent { public: Interpreter() {} // Create a task data object. virtual TaskData *CreateTaskData(void) { return new IntTaskData(); } virtual Architectures MachineArchitecture(void) { return MA_Interpreted; } }; void IntTaskData::InitStackFrame(TaskData *parentTask, Handle proc) /* Initialise stack frame. */ { StackSpace *space = this->stack; StackObject *stack = (StackObject *)space->stack(); PolyObject *closure = DEREFWORDHANDLE(proc); uintptr_t stack_size = space->spaceSize() * sizeof(PolyWord) / sizeof(stackItem); this->taskSp = (stackItem*)stack + stack_size; this->hr = this->taskSp; *(--this->taskSp) = (PolyWord)closure; /* Closure address */ this->interpreterPc = *(POLYCODEPTR*)closure; this->exception_arg = TAGGED(0); /* Used for exception argument. */ } -void IntTaskData::CheckStackAndInterrupt(POLYUNSIGNED space) +void IntTaskData::HandleStackOverflow(POLYUNSIGNED space) { - // Check there is space on the stack - if (taskSp - space < sl) - { - uintptr_t min_size = (this->stack->top - (PolyWord*)taskSp) + OVERFLOW_STACK_SIZE + space; + uintptr_t min_size = (this->stack->top - (PolyWord*)taskSp) + OVERFLOW_STACK_SIZE + space; + try { + // The stack check has failed. This may either be because we really have + // overflowed the stack or because the stack limit value has been adjusted + // to result in a call here. CheckAndGrowStack(this, min_size); - sl = (stackItem*)this->stack->stack() + OVERFLOW_STACK_SIZE; } - // Also check for interrupts. - // Check interrupt_requested first before getting the lock and - // checking it again. We may delay seeing an interrupt but taking - // the lock seems to be expensive. - if (interrupt_requested && WasInterrupted()) + catch (IOException&) { + // We may get an exception while handling this if we run out of store + } { - try { - processes->ProcessAsynchRequests(this); - // Release and re-acquire use of the ML memory to allow another thread - // to GC. - processes->ThreadReleaseMLMemory(this); - processes->ThreadUseMLMemory(this); - } - catch (IOException&) { - } + PLocker l(&interruptLock); + // Set the stack limit. This clears any interrupt and also sets the + // correct value if we've grown the stack. + sl = (stackItem*)stack->bottom + OVERFLOW_STACK_SIZE; } -} -// This may be called on a different thread. -void IntTaskData::InterruptCode() -{ - PLocker l(&interruptLock); - interrupt_requested = true; -} + try { + processes->ProcessAsynchRequests(this); + // Release and re-acquire use of the ML memory to allow another thread + // to GC. + processes->ThreadReleaseMLMemory(this); + processes->ThreadUseMLMemory(this); + } + catch (IOException&) { + } -// Check and clear the "interrupt". -bool IntTaskData::WasInterrupted() -{ - PLocker l(&interruptLock); - bool was = interrupt_requested; - interrupt_requested = false; - return was; } void IntTaskData::GarbageCollect(ScanAddress *process) { TaskData::GarbageCollect(process); ByteCodeInterpreter::GarbageCollect(process); if (exception_arg.IsDataPtr()) { PolyObject* obj = exception_arg.AsObjPtr(); obj = process->ScanObjectAddress(obj); exception_arg = obj; } if (stack != 0) { stackItem*stackPtr = this->taskSp; // Now the values on the stack. for (stackItem* q = stackPtr; q < (stackItem*)stack->top; q++) ScanStackAddress(process, *q, stack); } } // Process a value within the stack. void IntTaskData::ScanStackAddress(ScanAddress *process, stackItem& stackItem, StackSpace *stack) { // We may have return addresses on the stack which could look like // tagged values. Check whether the value is in the code area before // checking whether it is untagged. #ifdef POLYML32IN64 // In 32-in-64 return addresses always have the top 32 bits non-zero. if (stackItem.argValue < ((uintptr_t)1 << 32)) { // It's either a tagged integer or an object pointer. if (stackItem.w().IsDataPtr()) { PolyWord val = process->ScanObjectAddress(stackItem.w().AsObjPtr()); stackItem = val; } } else { // Could be a code address or a stack address. MemSpace* space = gMem.SpaceForAddress(stackItem.codeAddr - 1); if (space == 0 || space->spaceType != ST_CODE) return; PolyObject* obj = gMem.FindCodeObject(stackItem.codeAddr); ASSERT(obj != 0); // Process the address of the start. Don't update anything. process->ScanObjectAddress(obj); } #else // The -1 here is because we may have a zero-sized cell in the last // word of a space. MemSpace* space = gMem.SpaceForAddress(stackItem.codeAddr - 1); if (space == 0) return; // In particular we may have one of the assembly code addresses. if (space->spaceType == ST_CODE) { PolyObject* obj = gMem.FindCodeObject(stackItem.codeAddr); // If it is actually an integer it might be outside a valid code object. if (obj == 0) { ASSERT(stackItem.w().IsTagged()); // It must be an integer } else // Process the address of the start. Don't update anything. process->ScanObjectAddress(obj); } else if (space->spaceType == ST_LOCAL && stackItem.w().IsDataPtr()) // Local values must be word addresses. { PolyWord val = process->ScanObjectAddress(stackItem.w().AsObjPtr()); stackItem = val; } #endif } // Copy a stack void IntTaskData::CopyStackFrame(StackObject *old_stack, uintptr_t old_length, StackObject *new_stack, uintptr_t new_length) { #ifdef POLYML32IN64 old_length = old_length / 2; new_length = new_length / 2; #endif /* Moves a stack, updating all references within the stack */ stackItem*old_base = (stackItem*)old_stack; stackItem*new_base = (stackItem*)new_stack; stackItem*old_top = old_base + old_length; /* Calculate the offset of the new stack from the old. If the frame is being extended objects in the new frame will be further up the stack than in the old one. */ uintptr_t offset = new_base - old_base + new_length - old_length; stackItem *oldSp = this->taskSp; this->taskSp = oldSp + offset; this->hr = this->hr + offset; /* Skip the unused part of the stack. */ uintptr_t i = oldSp - old_base; ASSERT(i <= old_length); i = old_length - i; stackItem *old = oldSp; stackItem *newp = this->taskSp; while (i--) { stackItem old_word = *old++; if (old_word.w().IsDataPtr() && old_word.stackAddr >= old_base && old_word.stackAddr <= old_top) old_word.stackAddr = old_word.stackAddr + offset; else if (old_word.w().IsDataPtr() && IsHeapAddress(old_word.stackAddr)) { stackItem* addr = (stackItem*)old_word.w().AsStackAddr(); if (addr >= old_base && addr <= old_top) { addr += offset; old_word = PolyWord::FromStackAddr((PolyWord*)addr); } } *newp++ = old_word; } ASSERT(old == ((stackItem*)old_stack) + old_length); ASSERT(newp == ((stackItem*)new_stack) + new_length); } void IntTaskData::EnterPolyCode() /* Called from "main" to enter the code. */ { sl = (stackItem*)((PolyWord*)this->stack->stack() + OVERFLOW_STACK_SIZE); // Run the interpreter. Currently this can never return. // Callbacks are not currently implemented which is the only case that could // occur in the pure interpreted version. (void)RunInterpreter(this); exitThread(this); // This thread is exiting. ASSERT(0); // We should never get here. } +// This is called from a different thread so we have to be careful. +void IntTaskData::InterruptCode() +{ + PLocker l(&interruptLock); + // Set the stack limit pointer to the top of the stack to cause + // a trap when we next check for stack overflow. + // We use a lock here to ensure that we always use the current value of the + // stack. The thread we're interrupting could be growing the stack at this point. + if (stack != 0) + sl = (stackItem*)(stack->top - 1); +} + // As far as possible we want locking and unlocking an ML mutex to be fast so // we try to implement the code in the assembly code using appropriate // interlocked instructions. That does mean that if we need to lock and // unlock an ML mutex in this code we have to use the same, machine-dependent, // code to do it. These are defaults that are used where there is no // machine-specific code. // This lock is used to synchronise all atomic operations. // It is not needed in the X86 version because that can use a global // memory lock. static PLock mutexLock; POLYUNSIGNED IntTaskData::AtomicIncrement(PolyObject* mutexp) { PLocker l(&mutexLock); // A thread can only call this once so the values will be short PolyWord newValue = TAGGED(UNTAGGED(mutexp->Get(0)) + 1); mutexp->Set(0, newValue); return newValue.AsUnsigned(); } POLYUNSIGNED IntTaskData::AtomicDecrement(PolyObject* mutexp) { PLocker l(&mutexLock); // A thread can only call this once so the values will be short PolyWord newValue = TAGGED(UNTAGGED(mutexp->Get(0)) - 1); mutexp->Set(0, newValue); return newValue.AsUnsigned(); } // Release a mutex. We need to lock the mutex to ensure we don't // reset it in the time between one of atomic operations reading // and writing the mutex. void IntTaskData::AtomicReset(PolyObject* mutexp) { PLocker l(&mutexLock); mutexp->Set(0, TAGGED(0)); // Set this to released. } bool IntTaskData::AddTimeProfileCount(SIGNALCONTEXT *context) { if (interpreterPc != 0) { // See if the PC we've got is an ML code address. MemSpace *space = gMem.SpaceForAddress(interpreterPc); if (space != 0 && (space->spaceType == ST_CODE || space->spaceType == ST_PERMANENT)) { incrementCountAsynch(interpreterPc); return true; } } return false; } extern "C" { POLYEXTERNALSYMBOL POLYUNSIGNED PolyInterpretedEnterIntMode(); POLYEXTERNALSYMBOL POLYUNSIGNED PolyEndBootstrapMode(FirstArgument threadId, PolyWord function); } // Do we require EnterInt instructions and if so for which architecture? // 0 = > None; 1 => X86_32, 2 => X86_64. 3 => X86_32_in_64. POLYUNSIGNED PolyInterpretedEnterIntMode() { return TAGGED(0).AsUnsigned(); } // This has no effect in the interpreted version. POLYUNSIGNED PolyEndBootstrapMode(FirstArgument threadId, PolyWord function) { TaskData* taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle pushedFunction = taskData->saveVec.push(function); taskData->InitStackFrame(taskData, pushedFunction); taskData->EnterPolyCode(); // Should never return. ASSERT(0); return TAGGED(0).AsUnsigned(); } static Interpreter interpreterObject; MachineDependent *machineDependent = &interpreterObject; // No machine-specific calls in the interpreter. struct _entrypts machineSpecificEPT[] = { { "PolyInterpretedEnterIntMode", (polyRTSFunction)&PolyInterpretedEnterIntMode }, { "PolyEndBootstrapMode", (polyRTSFunction)&PolyEndBootstrapMode }, { NULL, NULL} // End of list. }; diff --git a/libpolyml/x86_dep.cpp b/libpolyml/x86_dep.cpp index 1a6c16ed..4d2f7dff 100644 --- a/libpolyml/x86_dep.cpp +++ b/libpolyml/x86_dep.cpp @@ -1,1502 +1,1492 @@ /* Title: Machine dependent code for i386 and X64 under Windows and Unix Copyright (c) 2000-7 Cambridge University Technical Services Limited Further work copyright David C. J. Matthews 2011-20 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #elif defined(_WIN32) #include "winconfig.h" #else #error "No configuration file" #endif #ifdef HAVE_STDLIB_H #include #endif #include #ifdef HAVE_SIGNAL_H #include #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #if (defined(_WIN32)) #include #include #endif #include "globals.h" #include "run_time.h" #include "diagnostics.h" #include "processes.h" #include "profiling.h" #include "machine_dep.h" #include "scanaddrs.h" #include "memmgr.h" #include "rtsentry.h" #include "bytecode.h" #include "sys.h" // Temporary /********************************************************************** * * Register usage: * * %Reax: First argument to function. Result of function call. * %Rebx: Second argument to function. * %Recx: General register * %Redx: Closure pointer in call. * %Rebp: Points to memory used for extra registers * %Resi: General register. * %Redi: General register. * %Resp: Stack pointer. * The following apply only on the X64 * %R8: Third argument to function * %R9: Fourth argument to function * %R10: Fifth argument to function * %R11: General register * %R12: General register * %R13: General register * %R14: General register * %R15: Memory allocation pointer * **********************************************************************/ #ifdef HOSTARCHITECTURE_X86_64 struct fpSaveArea { double fpregister[7]; // Save area for xmm0-6 }; #else // Structure of floating point save area. // This is dictated by the hardware. typedef byte fpregister[10]; struct fpSaveArea { unsigned short cw; unsigned short _unused0; unsigned short sw; unsigned short _unused1; unsigned short tw; unsigned short _unused2; unsigned fip; unsigned short fcs0; unsigned short _unused3; unsigned foo; unsigned short fcs1; unsigned short _unused4; fpregister registers[8]; }; #endif /* the amount of ML stack space to reserve for registers, C exception handling etc. The compiler requires us to reserve 2 stack-frames worth (2 * 20 words). We actually reserve slightly more than this. */ #if (!defined(_WIN32) && !defined(HAVE_SIGALTSTACK)) // If we can't handle signals on a separate stack make sure there's space // on the Poly stack. #define OVERFLOW_STACK_SIZE (50+1024) #else #define OVERFLOW_STACK_SIZE 50 #endif class X86TaskData; // This is passed as the argument vector to X86AsmSwitchToPoly. // The offsets are built into the assembly code and the code-generator. // localMpointer and stackPtr are updated before control returns to C. typedef struct _AssemblyArgs { public: PolyWord *localMpointer; // Allocation ptr + 1 word stackItem *handlerRegister; // Current exception handler PolyWord *localMbottom; // Base of memory + 1 word stackItem *stackLimit; // Lower limit of stack stackItem exceptionPacket; // Set if there is an exception byte unusedRequestCode; // No longer used. byte unusedFlag; // No longer used byte returnReason; // Reason for returning from ML. byte unusedRestore; // No longer used. uintptr_t saveCStack; // Saved C stack frame. PolyWord threadId; // My thread id. Saves having to call into RTS for it. stackItem *stackPtr; // Current stack pointer byte *enterInterpreter; // These are filled in with the functions. byte *heapOverFlowCall; byte *stackOverFlowCall; byte *stackOverFlowCallEx; byte *trapHandlerEntry; // Saved registers, where applicable. stackItem p_rax; stackItem p_rbx; stackItem p_rcx; stackItem p_rdx; stackItem p_rsi; stackItem p_rdi; #ifdef HOSTARCHITECTURE_X86_64 stackItem p_r8; stackItem p_r9; stackItem p_r10; stackItem p_r11; stackItem p_r12; stackItem p_r13; stackItem p_r14; #endif struct fpSaveArea p_fp; } AssemblyArgs; // These next few are temporarily added for the interpreter // This duplicates some code in reals.cpp but is now updated. #define DOUBLESIZE (sizeof(double)/sizeof(POLYUNSIGNED)) union realdb { double dble; POLYUNSIGNED puns[DOUBLESIZE]; }; #define LGWORDSIZE (sizeof(uintptr_t) / sizeof(PolyWord)) class X86TaskData: public TaskData, ByteCodeInterpreter { public: X86TaskData(); unsigned allocReg; // The register to take the allocated space. POLYUNSIGNED allocWords; // The words to allocate. AssemblyArgs assemblyInterface; int saveRegisterMask; // Registers that need to be updated by a GC. virtual void GarbageCollect(ScanAddress *process); void ScanStackAddress(ScanAddress *process, stackItem &val, StackSpace *stack); virtual void EnterPolyCode(); // Start running ML virtual void InterruptCode(); virtual bool AddTimeProfileCount(SIGNALCONTEXT *context); virtual void InitStackFrame(TaskData *parentTask, Handle proc); virtual void SetException(poly_exn *exc); // Release a mutex in exactly the same way as compiler code virtual POLYUNSIGNED AtomicDecrement(PolyObject* mutexp); // Reset a mutex to one. This needs to be atomic with respect to the // atomic increment and decrement instructions. virtual void AtomicReset(PolyObject* mutexp); // This is actually only used in the interpreter. virtual POLYUNSIGNED AtomicIncrement(PolyObject* mutexp); // Return the minimum space occupied by the stack. Used when setting a limit. // N.B. This is PolyWords not native words. virtual uintptr_t currentStackSpace(void) const { return (this->stack->top - (PolyWord*)assemblyInterface.stackPtr) + OVERFLOW_STACK_SIZE*sizeof(uintptr_t)/sizeof(PolyWord); } // Increment the profile count for an allocation. Also now used for mutex contention. virtual void addProfileCount(POLYUNSIGNED words) { addSynchronousCount(assemblyInterface.stackPtr[0].codeAddr, words); } // PreRTSCall: After calling from ML to the RTS we need to save the current heap pointer virtual void PreRTSCall(void) { TaskData::PreRTSCall(); SaveMemRegisters(); } // PostRTSCall: Before returning we need to restore the heap pointer. // If there has been a GC in the RTS call we need to create a new heap area. virtual void PostRTSCall(void) { SetMemRegisters(); TaskData::PostRTSCall(); } virtual void CopyStackFrame(StackObject *old_stack, uintptr_t old_length, StackObject *new_stack, uintptr_t new_length); void HeapOverflowTrap(byte *pcPtr); void StackOverflowTrap(uintptr_t space); void SetMemRegisters(); void SaveMemRegisters(); void SetRegisterMask(); void HandleTrap(); // ByteCode overrides. The interpreter and native code states need to be in sync. // The interpreter is only used during the initial bootstrap. virtual void ClearExceptionPacket() { assemblyInterface.exceptionPacket = TAGGED(0); } virtual PolyWord GetExceptionPacket() { return assemblyInterface.exceptionPacket; } virtual stackItem* GetHandlerRegister() { return assemblyInterface.handlerRegister; } virtual void SetHandlerRegister(stackItem* hr) { assemblyInterface.handlerRegister = hr; } // Check and grow the stack if necessary. Process any interupts. - virtual void CheckStackAndInterrupt(POLYUNSIGNED space); - // The stack limit register is modified if there is an interrupt - virtual bool TestInterrupt() { return assemblyInterface.stackPtr < assemblyInterface.stackLimit; } + virtual void HandleStackOverflow(uintptr_t space) { StackOverflowTrap(space); } void Interpret(); void EndBootStrap() { mixedCode = true; } PLock interruptLock; stackItem *get_reg(int n); stackItem *®SP() { return assemblyInterface.stackPtr; } stackItem ®AX() { return assemblyInterface.p_rax; } stackItem ®BX() { return assemblyInterface.p_rbx; } stackItem ®CX() { return assemblyInterface.p_rcx; } stackItem ®DX() { return assemblyInterface.p_rdx; } stackItem ®SI() { return assemblyInterface.p_rsi; } stackItem ®DI() { return assemblyInterface.p_rdi; } #ifdef HOSTARCHITECTURE_X86_64 stackItem ®8() { return assemblyInterface.p_r8; } stackItem ®9() { return assemblyInterface.p_r9; } stackItem ®10() { return assemblyInterface.p_r10; } stackItem ®11() { return assemblyInterface.p_r11; } stackItem ®12() { return assemblyInterface.p_r12; } stackItem ®13() { return assemblyInterface.p_r13; } stackItem ®14() { return assemblyInterface.p_r14; } #endif #if (defined(_WIN32)) DWORD savedErrno; #else int savedErrno; #endif }; class X86Dependent: public MachineDependent { public: X86Dependent(): mustInterpret(false) {} // Create a task data object. virtual TaskData *CreateTaskData(void) { return new X86TaskData(); } // Initial size of stack in PolyWords virtual unsigned InitialStackSize(void) { return (128+OVERFLOW_STACK_SIZE) * sizeof(uintptr_t) / sizeof(PolyWord); } virtual void ScanConstantsWithinCode(PolyObject *addr, PolyObject *oldAddr, POLYUNSIGNED length, ScanAddress *process); virtual void SetBootArchitecture(char arch, unsigned wordLength); virtual Architectures MachineArchitecture(void); // During the first bootstrap phase this is interpreted. bool mustInterpret; }; static X86Dependent x86Dependent; MachineDependent* machineDependent = &x86Dependent; Architectures X86Dependent::MachineArchitecture(void) { if (mustInterpret) return MA_Interpreted; #ifndef HOSTARCHITECTURE_X86_64 return MA_I386; #elif defined(POLYML32IN64) return MA_X86_64_32; #else return MA_X86_64; #endif } void X86Dependent::SetBootArchitecture(char arch, unsigned wordLength) { if (arch == 'I') mustInterpret = true; else if (arch != 'X') Crash("Boot file has unexpected architecture code: %c", arch); } // Values for the returnReason byte enum RETURN_REASON { RETURN_HEAP_OVERFLOW = 1, RETURN_STACK_OVERFLOW = 2, RETURN_STACK_OVERFLOWEX = 3, RETURN_ENTER_INTERPRETER = 4 }; extern "C" { // These are declared in the assembly code segment. void X86AsmSwitchToPoly(void *); int X86AsmCallExtraRETURN_ENTER_INTERPRETER(void); int X86AsmCallExtraRETURN_HEAP_OVERFLOW(void); int X86AsmCallExtraRETURN_STACK_OVERFLOW(void); int X86AsmCallExtraRETURN_STACK_OVERFLOWEX(void); void X86TrapHandler(PolyWord threadId); }; -X86TaskData::X86TaskData(): ByteCodeInterpreter(&assemblyInterface.stackPtr), allocReg(0), allocWords(0), saveRegisterMask(0) +X86TaskData::X86TaskData(): ByteCodeInterpreter(&assemblyInterface.stackPtr, &assemblyInterface.stackLimit), + allocReg(0), allocWords(0), saveRegisterMask(0) { assemblyInterface.enterInterpreter = (byte*)X86AsmCallExtraRETURN_ENTER_INTERPRETER; assemblyInterface.heapOverFlowCall = (byte*)X86AsmCallExtraRETURN_HEAP_OVERFLOW; assemblyInterface.stackOverFlowCall = (byte*)X86AsmCallExtraRETURN_STACK_OVERFLOW; assemblyInterface.stackOverFlowCallEx = (byte*)X86AsmCallExtraRETURN_STACK_OVERFLOWEX; assemblyInterface.trapHandlerEntry = (byte*)X86TrapHandler; savedErrno = 0; interpreterPc = 0; mixedCode = !x86Dependent.mustInterpret; } void X86TaskData::GarbageCollect(ScanAddress *process) { TaskData::GarbageCollect(process); // Process the parent first ByteCodeInterpreter::GarbageCollect(process); assemblyInterface.threadId = threadObject; if (stack != 0) { ASSERT(assemblyInterface.stackPtr >= (stackItem*)stack->bottom && assemblyInterface.stackPtr <= (stackItem*)stack->top); // Now the values on the stack. for (stackItem *q = assemblyInterface.stackPtr; q < (stackItem*)stack->top; q++) ScanStackAddress(process, *q, stack); } // Register mask for (int i = 0; i < 16; i++) { if (saveRegisterMask & (1 << i)) ScanStackAddress(process, *get_reg(i), stack); } } // Process a value within the stack. void X86TaskData::ScanStackAddress(ScanAddress *process, stackItem &stackItem, StackSpace *stack) { // We may have return addresses on the stack which could look like // tagged values. Check whether the value is in the code area before // checking whether it is untagged. #ifdef POLYML32IN64 // In 32-in-64 return addresses always have the top 32 bits non-zero. if (stackItem.argValue < ((uintptr_t)1 << 32)) { // It's either a tagged integer or an object pointer. if (stackItem.w().IsDataPtr()) { PolyWord val = process->ScanObjectAddress(stackItem.w().AsObjPtr()); stackItem = val; } } else { // Could be a code address or a stack address. MemSpace *space = gMem.SpaceForAddress(stackItem.codeAddr - 1); if (space == 0 || space->spaceType != ST_CODE) return; PolyObject *obj = gMem.FindCodeObject(stackItem.codeAddr); ASSERT(obj != 0); // Process the address of the start. Don't update anything. process->ScanObjectAddress(obj); } #else // The -1 here is because we may have a zero-sized cell in the last // word of a space. MemSpace *space = gMem.SpaceForAddress(stackItem.codeAddr-1); if (space == 0) return; // In particular we may have one of the assembly code addresses. if (space->spaceType == ST_CODE) { PolyObject *obj = gMem.FindCodeObject(stackItem.codeAddr); // If it is actually an integer it might be outside a valid code object. if (obj == 0) { ASSERT(stackItem.w().IsTagged()); // It must be an integer } else // Process the address of the start. Don't update anything. process->ScanObjectAddress(obj); } else if (space->spaceType == ST_LOCAL && stackItem.w().IsDataPtr()) // Local values must be word addresses. { PolyWord val = process->ScanObjectAddress(stackItem.w().AsObjPtr()); stackItem = val; } #endif } // Copy a stack void X86TaskData::CopyStackFrame(StackObject *old_stack, uintptr_t old_length, StackObject *new_stack, uintptr_t new_length) { /* Moves a stack, updating all references within the stack */ #ifdef POLYML32IN64 old_length = old_length / 2; new_length = new_length / 2; #endif stackItem *old_base = (stackItem *)old_stack; stackItem *new_base = (stackItem*)new_stack; stackItem *old_top = old_base + old_length; /* Calculate the offset of the new stack from the old. If the frame is being extended objects in the new frame will be further up the stack than in the old one. */ uintptr_t offset = new_base - old_base + new_length - old_length; stackItem *oldStackPtr = assemblyInterface.stackPtr; // Adjust the stack pointer and handler pointer since these point into the stack. assemblyInterface.stackPtr = assemblyInterface.stackPtr + offset; assemblyInterface.handlerRegister = assemblyInterface.handlerRegister + offset; // We need to adjust any values on the stack that are pointers within the stack. // Skip the unused part of the stack. size_t i = oldStackPtr - old_base; ASSERT (i <= old_length); i = old_length - i; stackItem *old = oldStackPtr; stackItem *newp = assemblyInterface.stackPtr; while (i--) { stackItem old_word = *old++; if (old_word.w().IsDataPtr() && old_word.stackAddr >= old_base && old_word.stackAddr <= old_top) old_word.stackAddr = old_word.stackAddr + offset; else if (old_word.w().IsDataPtr() && IsHeapAddress(old_word.stackAddr)) { stackItem *addr = (stackItem*)old_word.w().AsStackAddr(); if (addr >= old_base && addr <= old_top) { addr += offset; old_word = PolyWord::FromStackAddr((PolyWord*)addr); } } *newp++ = old_word; } ASSERT(old == ((stackItem*)old_stack)+old_length); ASSERT(newp == ((stackItem*)new_stack)+new_length); // And change any registers that pointed into the old stack for (int j = 0; j < 16; j++) { if (saveRegisterMask & (1 << j)) { stackItem *regAddr = get_reg(j); stackItem old_word = *regAddr; if (old_word.w().IsDataPtr() && old_word.stackAddr >= old_base && old_word.stackAddr <= old_top) old_word.stackAddr = old_word.stackAddr + offset; else if (old_word.w().IsDataPtr() && IsHeapAddress(old_word.stackAddr)) { stackItem *addr = (stackItem*)old_word.w().AsStackAddr(); if (addr >= old_base && addr <= old_top) { addr += offset; old_word = PolyWord::FromStackAddr((PolyWord*)addr); } } *regAddr = old_word; } } } void X86TaskData::EnterPolyCode() /* Called from "main" to enter the code. */ { if (x86Dependent.mustInterpret) { PolyWord closure = assemblyInterface.p_rdx; *(--assemblyInterface.stackPtr) = closure; /* Closure address */ interpreterPc = *(POLYCODEPTR*)closure.AsObjPtr(); Interpret(); ASSERT(0); // Should never return } SetMemRegisters(); // Enter the ML code. X86AsmSwitchToPoly(&this->assemblyInterface); // This should never return ASSERT(0); } void X86TaskData::Interpret() { while (true) { switch (RunInterpreter(this)) { case ReturnCall: // After the call there will be an enter-int instruction so that when this // returns we will re-enter the interpreter. The number of arguments for // this call is after that. ASSERT(interpreterPc[0] == 0xff); numTailArguments = interpreterPc[3]; case ReturnTailCall: { ClearExceptionPacket(); // Pop the closure. PolyWord closureWord = *assemblyInterface.stackPtr++; PolyObject* closure = closureWord.AsObjPtr(); interpreterPc = *(POLYCODEPTR*)closure; if (interpreterPc[0] == 0xff && interpreterPc[1] == 0x55 && (interpreterPc[2] == 0x48 || interpreterPc[2] == 0x24)) { // If the code we're going to is interpreted push back the closure and // continue. assemblyInterface.stackPtr--; continue; } assemblyInterface.p_rdx = closureWord; // Put closure in the closure reg. // Pop the return address. POLYCODEPTR originalReturn = (assemblyInterface.stackPtr++)->codeAddr; // Because of the way the build process works we only ever call functions with a single argument. ASSERT(numTailArguments == 1); assemblyInterface.p_rax = *(assemblyInterface.stackPtr++); (*(--assemblyInterface.stackPtr)).codeAddr = originalReturn; // Push return address to caller (*(--assemblyInterface.stackPtr)).codeAddr = *(POLYCODEPTR*)closure; // Entry point to callee interpreterPc = 0; // No longer in the interpreter (See SaveMemRegs) return; } case ReturnReturn: { ClearExceptionPacket(); if (interpreterPc[0] == 0xff && interpreterPc[1] == 0x55 && (interpreterPc[2] == 0x48 || interpreterPc[2] == 0x24)) continue; // Get the return value from the stack and replace it by the // address we're going to. assemblyInterface.p_rax = assemblyInterface.stackPtr[0]; assemblyInterface.stackPtr[0].codeAddr = interpreterPc; interpreterPc = 0; // No longer in the interpreter (See SaveMemRegs) return; } } } } // Called from the assembly code as a result of a trap i.e. a request for // a GC or to extend the stack. void X86TrapHandler(PolyWord threadId) { X86TaskData* taskData = (X86TaskData*)TaskData::FindTaskForId(threadId); taskData->HandleTrap(); } void X86TaskData::HandleTrap() { SaveMemRegisters(); // Update globals from the memory registers. switch (this->assemblyInterface.returnReason) { case RETURN_HEAP_OVERFLOW: // The heap has overflowed. SetRegisterMask(); this->HeapOverflowTrap(assemblyInterface.stackPtr[0].codeAddr); // Computes a value for allocWords only break; case RETURN_STACK_OVERFLOW: case RETURN_STACK_OVERFLOWEX: { SetRegisterMask(); uintptr_t min_size; // Size in PolyWords if (assemblyInterface.returnReason == RETURN_STACK_OVERFLOW) { min_size = (this->stack->top - (PolyWord*)assemblyInterface.stackPtr) + OVERFLOW_STACK_SIZE * sizeof(uintptr_t) / sizeof(PolyWord); } else { // Stack limit overflow. If the required stack space is larger than // the fixed overflow size the code will calculate the limit in %EDI. stackItem* stackP = regDI().stackAddr; min_size = (this->stack->top - (PolyWord*)stackP) + OVERFLOW_STACK_SIZE * sizeof(uintptr_t) / sizeof(PolyWord); } StackOverflowTrap(min_size); break; } case RETURN_ENTER_INTERPRETER: { interpreterPc = assemblyInterface.stackPtr[0].codeAddr; assemblyInterface.stackPtr++; // Pop return address. byte reasonCode = *interpreterPc++; // Sort out arguments. assemblyInterface.exceptionPacket = TAGGED(0); if (reasonCode == 0xff) { // Exception handler. ASSERT(0); // Not used assemblyInterface.exceptionPacket = assemblyInterface.p_rax; // Get the exception packet // We're already in the exception handler but we still have to // adjust the stack pointer and pop the current exception handler. assemblyInterface.stackPtr = assemblyInterface.handlerRegister; assemblyInterface.stackPtr++; assemblyInterface.handlerRegister = (assemblyInterface.stackPtr++)[0].stackAddr; } else if (reasonCode >= 128) { // Start of function. unsigned numArgs = reasonCode - 128; // We need the stack to contain: // The closure, the return address, the arguments. // First pop the original return address. POLYCODEPTR returnAddr = (assemblyInterface.stackPtr++)[0].codeAddr; // Push the register args. ASSERT(numArgs == 1); // We only ever call functions with one argument. #ifdef HOSTARCHITECTURE_X86_64 ASSERT(numArgs <= 5); if (numArgs >= 1) *(--assemblyInterface.stackPtr) = assemblyInterface.p_rax; #ifdef POLYML32IN64 if (numArgs >= 2) *(--assemblyInterface.stackPtr) = assemblyInterface.p_rsi; #else if (numArgs >= 2) *(--assemblyInterface.stackPtr) = assemblyInterface.p_rbx; #endif if (numArgs >= 3) *(--assemblyInterface.stackPtr) = assemblyInterface.p_r8; if (numArgs >= 4) *(--assemblyInterface.stackPtr) = assemblyInterface.p_r9; if (numArgs >= 5) *(--assemblyInterface.stackPtr) = assemblyInterface.p_r10; #else ASSERT(numArgs <= 2); if (numArgs >= 1) *(--assemblyInterface.stackPtr) = assemblyInterface.p_rax; if (numArgs >= 2) *(--assemblyInterface.stackPtr) = assemblyInterface.p_rbx; #endif (--assemblyInterface.stackPtr)[0].codeAddr = returnAddr; *(--assemblyInterface.stackPtr) = assemblyInterface.p_rdx; // Closure } else { // Return from call. Push RAX *(--assemblyInterface.stackPtr) = assemblyInterface.p_rax; } Interpret(); break; } default: Crash("Unknown return reason code %u", this->assemblyInterface.returnReason); } SetMemRegisters(); } -void X86TaskData::CheckStackAndInterrupt(POLYUNSIGNED space) -{ - // Check there is space on the stack. This may also be used to signal for an interrupt. - if (assemblyInterface.stackPtr - space < assemblyInterface.stackLimit) - { - StackOverflowTrap(space); - } -} - void X86TaskData::StackOverflowTrap(uintptr_t space) { uintptr_t min_size = (this->stack->top - (PolyWord*)assemblyInterface.stackPtr) + OVERFLOW_STACK_SIZE + space; try { // The stack check has failed. This may either be because we really have // overflowed the stack or because the stack limit value has been adjusted // to result in a call here. CheckAndGrowStack(this, min_size); } catch (IOException&) { // We may get an exception while handling this if we run out of store } { PLocker l(&interruptLock); // Set the stack limit. This clears any interrupt and also sets the // correct value if we've grown the stack. assemblyInterface.stackLimit = (stackItem*)this->stack->bottom + OVERFLOW_STACK_SIZE; } try { processes->ProcessAsynchRequests(this); // Release and re-acquire use of the ML memory to allow another thread // to GC. processes->ThreadReleaseMLMemory(this); processes->ThreadUseMLMemory(this); } catch (IOException&) { } } void X86TaskData::InitStackFrame(TaskData *parentTaskData, Handle proc) /* Initialise stack frame. */ { StackSpace *space = this->stack; StackObject * newStack = space->stack(); uintptr_t stack_size = space->spaceSize() * sizeof(PolyWord) / sizeof(stackItem); // Set the top of the stack inside the stack rather than at the end. This wastes // a word but if sp is actually at the end OpenBSD segfaults because it isn't in // a MAP_STACK area. uintptr_t topStack = stack_size - 1; stackItem* stackTop = (stackItem*)newStack + topStack; *stackTop = TAGGED(0); // Set it to non-zero. assemblyInterface.stackPtr = stackTop; assemblyInterface.stackLimit = (stackItem*)space->bottom + OVERFLOW_STACK_SIZE; assemblyInterface.handlerRegister = stackTop; // Floating point save area. memset(&assemblyInterface.p_fp, 0, sizeof(struct fpSaveArea)); #ifndef HOSTARCHITECTURE_X86_64 // Set the control word for 64-bit precision otherwise we get inconsistent results. assemblyInterface.p_fp.cw = 0x027f ; // Control word assemblyInterface.p_fp.tw = 0xffff; // Tag registers - all unused #endif // Store the argument and the closure. assemblyInterface.p_rdx = proc->Word(); // Closure assemblyInterface.p_rax = TAGGED(0); // Argument // Have to set the register mask in case we get a GC before the thread starts. saveRegisterMask = (1 << 2) | 1; // Rdx and rax #ifdef POLYML32IN64 // In 32-in-64 RBX always contains the heap base address. assemblyInterface.p_rbx.stackAddr = (stackItem*)globalHeapBase; #endif } // In Solaris-x86 the registers are named EIP and ESP. #if (!defined(REG_EIP) && defined(EIP)) #define REG_EIP EIP #endif #if (!defined(REG_ESP) && defined(ESP)) #define REG_ESP ESP #endif // Get the PC and SP(stack) from a signal context. This is needed for profiling. // This version gets the actual sp and pc if we are in ML. // N.B. This must not call malloc since we're in a signal handler. bool X86TaskData::AddTimeProfileCount(SIGNALCONTEXT *context) { stackItem * sp = 0; POLYCODEPTR pc = 0; if (context != 0) { // The tests for HAVE_UCONTEXT_T, HAVE_STRUCT_SIGCONTEXT and HAVE_WINDOWS_H need // to follow the tests in processes.h. #if defined(HAVE_WINDOWS_H) #ifdef _WIN64 sp = (stackItem *)context->Rsp; pc = (POLYCODEPTR)context->Rip; #else // Windows 32 including cygwin. sp = (stackItem *)context->Esp; pc = (POLYCODEPTR)context->Eip; #endif #elif defined(HAVE_UCONTEXT_T) #ifdef HAVE_MCONTEXT_T_GREGS // Linux #ifndef HOSTARCHITECTURE_X86_64 pc = (byte*)context->uc_mcontext.gregs[REG_EIP]; sp = (stackItem*)context->uc_mcontext.gregs[REG_ESP]; #else /* HOSTARCHITECTURE_X86_64 */ pc = (byte*)context->uc_mcontext.gregs[REG_RIP]; sp = (stackItem*)context->uc_mcontext.gregs[REG_RSP]; #endif /* HOSTARCHITECTURE_X86_64 */ #elif defined(HAVE_MCONTEXT_T_MC_ESP) // FreeBSD #ifndef HOSTARCHITECTURE_X86_64 pc = (byte*)context->uc_mcontext.mc_eip; sp = (stackItem*)context->uc_mcontext.mc_esp; #else /* HOSTARCHITECTURE_X86_64 */ pc = (byte*)context->uc_mcontext.mc_rip; sp = (stackItem*)context->uc_mcontext.mc_rsp; #endif /* HOSTARCHITECTURE_X86_64 */ #else // Mac OS X #ifndef HOSTARCHITECTURE_X86_64 #if(defined(HAVE_STRUCT_MCONTEXT_SS)||defined(HAVE_STRUCT___DARWIN_MCONTEXT32_SS)) pc = (byte*)context->uc_mcontext->ss.eip; sp = (stackItem*)context->uc_mcontext->ss.esp; #elif(defined(HAVE_STRUCT___DARWIN_MCONTEXT32___SS)) pc = (byte*)context->uc_mcontext->__ss.__eip; sp = (stackItem*)context->uc_mcontext->__ss.__esp; #endif #else /* HOSTARCHITECTURE_X86_64 */ #if(defined(HAVE_STRUCT_MCONTEXT_SS)||defined(HAVE_STRUCT___DARWIN_MCONTEXT64_SS)) pc = (byte*)context->uc_mcontext->ss.rip; sp = (stackItem*)context->uc_mcontext->ss.rsp; #elif(defined(HAVE_STRUCT___DARWIN_MCONTEXT64___SS)) pc = (byte*)context->uc_mcontext->__ss.__rip; sp = (stackItem*)context->uc_mcontext->__ss.__rsp; #endif #endif /* HOSTARCHITECTURE_X86_64 */ #endif #elif defined(HAVE_STRUCT_SIGCONTEXT) #if defined(HOSTARCHITECTURE_X86_64) && defined(__OpenBSD__) // CPP defines missing in amd64/signal.h in OpenBSD pc = (byte*)context->sc_rip; sp = (stackItem*)context->sc_rsp; #else // !HOSTARCHITEXTURE_X86_64 || !defined(__OpenBSD__) pc = (byte*)context->sc_pc; sp = (stackItem*)context->sc_sp; #endif #endif } if (pc != 0) { // See if the PC we've got is an ML code address. MemSpace *space = gMem.SpaceForAddress(pc); if (space != 0 && (space->spaceType == ST_CODE || space->spaceType == ST_PERMANENT)) { incrementCountAsynch(pc); return true; } } // See if the sp value is in the current stack. if (sp >= (stackItem*)this->stack->bottom && sp < (stackItem*)this->stack->top) { // We may be in the assembly code. The top of the stack will be a return address. pc = sp[0].w().AsCodePtr(); MemSpace *space = gMem.SpaceForAddress(pc); if (space != 0 && (space->spaceType == ST_CODE || space->spaceType == ST_PERMANENT)) { incrementCountAsynch(pc); return true; } } // See if the value of regSP is a valid stack pointer. // This works if we happen to be in an RTS call using a "Full" call. // It doesn't work if we've used a "Fast" call because that doesn't save the SP. sp = assemblyInterface.stackPtr; if (sp >= (stackItem*)this->stack->bottom && sp < (stackItem*)this->stack->top) { // We may be in the run-time system. pc = sp[0].w().AsCodePtr(); MemSpace *space = gMem.SpaceForAddress(pc); if (space != 0 && (space->spaceType == ST_CODE || space->spaceType == ST_PERMANENT)) { incrementCountAsynch(pc); return true; } } // None of those worked return false; } // This is called from a different thread so we have to be careful. void X86TaskData::InterruptCode() { PLocker l(&interruptLock); // Set the stack limit pointer to the top of the stack to cause // a trap when we next check for stack overflow. // We use a lock here to ensure that we always use the current value of the // stack. The thread we're interrupting could be growing the stack at this point. if (this->stack != 0) this->assemblyInterface.stackLimit = (stackItem*)(this->stack->top-1); } // This is called from SwitchToPoly before we enter the ML code. void X86TaskData::SetMemRegisters() { // Copy the current store limits into variables before we go into the assembly code. // If we haven't yet set the allocation area or we don't have enough we need // to create one (or a new one). if (this->allocPointer <= this->allocLimit + this->allocWords) { if (this->allocPointer < this->allocLimit) Crash ("Bad length in heap overflow trap"); // Find some space to allocate in. Updates taskData->allocPointer and // returns a pointer to the newly allocated space (if allocWords != 0) PolyWord *space = processes->FindAllocationSpace(this, this->allocWords, true); if (space == 0) { // We will now raise an exception instead of returning. // Set allocWords to zero so we don't set the allocation register // since that could be holding the exception packet. this->allocWords = 0; } // Undo the allocation just now. this->allocPointer += this->allocWords; } if (this->allocWords != 0) { // If we have had a heap trap we actually do the allocation here. // We will have already garbage collected and recovered sufficient space. // This also happens if we have just trapped because of store profiling. this->allocPointer -= this->allocWords; // Now allocate // Set the allocation register to this area. N.B. This is an absolute address. if (this->allocReg < 15) get_reg(this->allocReg)[0].codeAddr = (POLYCODEPTR)(this->allocPointer + 1); /* remember: it's off-by-one */ this->allocWords = 0; } // If we have run out of store, either just above or while allocating in the RTS, // allocPointer and allocLimit will have been set to zero as part of the GC. We will // now be raising an exception which may free some store but we need to come back here // before we allocate anything. The compiled code uses unsigned arithmetic to check for // heap overflow but only after subtracting the space required. We need to make sure // that the values are still non-negative after substracting any object size. if (this->allocPointer == 0) this->allocPointer += MAX_OBJECT_SIZE; if (this->allocLimit == 0) this->allocLimit += MAX_OBJECT_SIZE; this->assemblyInterface.localMbottom = this->allocLimit + 1; this->assemblyInterface.localMpointer = this->allocPointer + 1; // If we are profiling store allocation we set mem_hl so that a trap // will be generated. if (profileMode == kProfileStoreAllocation) this->assemblyInterface.localMbottom = this->assemblyInterface.localMpointer; this->assemblyInterface.threadId = this->threadObject; } // This is called whenever we have returned from ML to C. void X86TaskData::SaveMemRegisters() { if (interpreterPc == 0) // Not if we're already in the interpreter this->allocPointer = this->assemblyInterface.localMpointer - 1; this->allocWords = 0; this->assemblyInterface.exceptionPacket = TAGGED(0); this->saveRegisterMask = 0; } // Called on a GC or stack overflow trap. The register mask // is in the bytes after the trap call. void X86TaskData::SetRegisterMask() { byte *pc = assemblyInterface.stackPtr[0].codeAddr; if (*pc == 0xcd) // CD - INT n is used for a single byte { pc++; saveRegisterMask = *pc++; } else if (*pc == 0xca) // CA - FAR RETURN is used for a two byte mask { pc++; saveRegisterMask = pc[0] | (pc[1] << 8); pc += 2; } assemblyInterface.stackPtr[0].codeAddr = pc; } stackItem *X86TaskData::get_reg(int n) /* Returns a pointer to the register given by n. */ { switch (n) { case 0: return &assemblyInterface.p_rax; case 1: return &assemblyInterface.p_rcx; case 2: return &assemblyInterface.p_rdx; case 3: return &assemblyInterface.p_rbx; // Should not have rsp or rbp. case 6: return &assemblyInterface.p_rsi; case 7: return &assemblyInterface.p_rdi; #ifdef HOSTARCHITECTURE_X86_64 case 8: return &assemblyInterface.p_r8; case 9: return &assemblyInterface.p_r9; case 10: return &assemblyInterface.p_r10; case 11: return &assemblyInterface.p_r11; case 12: return &assemblyInterface.p_r12; case 13: return &assemblyInterface.p_r13; case 14: return &assemblyInterface.p_r14; // R15 is the heap pointer so shouldn't occur here. #endif /* HOSTARCHITECTURE_X86_64 */ default: Crash("Unknown register %d\n", n); } } // Called as a result of a heap overflow trap void X86TaskData::HeapOverflowTrap(byte *pcPtr) { X86TaskData *mdTask = this; POLYUNSIGNED wordsNeeded = 0; // The next instruction, after any branches round forwarding pointers or pop // instructions, will be a store of register containing the adjusted heap pointer. // We need to find that register and the value in it in order to find out how big // the area we actually wanted is. N.B. The code-generator and assembly code // must generate the correct instruction sequence. // byte *pcPtr = assemblyInterface.programCtr; while (true) { if (pcPtr[0] == 0xeb) { // Forwarding pointer if (pcPtr[1] >= 128) pcPtr += 256 - pcPtr[1] + 2; else pcPtr += pcPtr[1] + 2; } else if ((pcPtr[0] & 0xf8) == 0x58) // Pop instruction. pcPtr++; else if (pcPtr[0] == 0x41 && ((pcPtr[1] & 0xf8) == 0x58)) // Pop with Rex prefix pcPtr += 2; else break; } #ifndef HOSTARCHITECTURE_X86_64 // This should be movl REG,0[%ebp]. ASSERT(pcPtr[0] == 0x89); mdTask->allocReg = (pcPtr[1] >> 3) & 7; // Remember this until we allocate the memory stackItem *reg = get_reg(mdTask->allocReg); stackItem reg_val = *reg; // The space we need is the difference between this register // and the current value of newptr. // The +1 here is because assemblyInterface.localMpointer is A.M.pointer +1. The reason // is that after the allocation we have the register pointing at the address we will // actually use. wordsNeeded = (this->allocPointer - (PolyWord*)reg_val.stackAddr) + 1; *reg = TAGGED(0); // Clear this - it's not a valid address. /* length in words, including length word */ ASSERT (wordsNeeded <= (1<<24)); /* Max object size including length/flag word is 2^24 words. */ #else /* HOSTARCHITECTURE_X86_64 */ ASSERT(pcPtr[1] == 0x89 || pcPtr[1] == 0x8b); if (pcPtr[1] == 0x89) { // New (5.4) format. This should be movq REG,%r15 ASSERT(pcPtr[0] == 0x49 || pcPtr[0] == 0x4d); mdTask->allocReg = (pcPtr[2] >> 3) & 7; // Remember this until we allocate the memory if (pcPtr[0] & 0x4) mdTask->allocReg += 8; } else { // Alternative form of movq REG,%r15 ASSERT(pcPtr[0] == 0x4c || pcPtr[0] == 0x4d); mdTask->allocReg = pcPtr[2] & 7; // Remember this until we allocate the memory if (pcPtr[0] & 0x1) mdTask->allocReg += 8; } stackItem *reg = get_reg(this->allocReg); stackItem reg_val = *reg; wordsNeeded = (POLYUNSIGNED)((this->allocPointer - (PolyWord*)reg_val.stackAddr) + 1); *reg = TAGGED(0); // Clear this - it's not a valid address. #endif /* HOSTARCHITECTURE_X86_64 */ if (profileMode == kProfileStoreAllocation) addProfileCount(wordsNeeded); mdTask->allocWords = wordsNeeded; // The actual allocation is done in SetMemRegisters. } void X86TaskData::SetException(poly_exn *exc) // The RTS wants to raise an exception packet. Normally this is as the // result of an RTS call in which case the caller will check this. It can // also happen in a trap. { assemblyInterface.exceptionPacket = (PolyWord)exc; // Set for direct calls. } // Decode and process an effective address. There may // be a constant address in here but in any case we need // to decode it to work out where the next instruction starts. // If this is an lea instruction any addresses are just constants // so must not be treated as addresses. static void skipea(PolyObject *base, byte **pt, ScanAddress *process, bool lea) { unsigned int modrm = *((*pt)++); unsigned int md = modrm >> 6; unsigned int rm = modrm & 7; if (md == 3) { } /* Register. */ else if (rm == 4) { /* s-i-b present. */ unsigned int sib = *((*pt)++); if (md == 0) { if ((sib & 7) == 5) { if (! lea) { #ifndef HOSTARCHITECTURE_X86_64 process->ScanConstant(base, *pt, PROCESS_RELOC_DIRECT); #endif /* HOSTARCHITECTURE_X86_64 */ } (*pt) += 4; } } else if (md == 1) (*pt)++; else if (md == 2) (*pt) += 4; } else if (md == 0 && rm == 5) { if (!lea) { #ifndef HOSTARCHITECTURE_X86_64 /* Absolute address. */ process->ScanConstant(base, *pt, PROCESS_RELOC_DIRECT); #endif /* HOSTARCHITECTURE_X86_64 */ } *pt += 4; } else { if (md == 1) *pt += 1; else if (md == 2) *pt += 4; } } /* Added to deal with constants within the code rather than in the constant area. The constant area is still needed for the function name. DCJM 2/1/2001 */ void X86Dependent::ScanConstantsWithinCode(PolyObject *addr, PolyObject *old, POLYUNSIGNED length, ScanAddress *process) { byte *pt = (byte*)addr; PolyWord *end = addr->Offset(length - 1); // If this begins with enter-int it's interpreted code - ignore if (pt[0] == 0xff && pt[1] == 0x55 && (pt[2] == 0x48 || pt[2] == 0x24)) return; while (true) { // Escape prefixes come before any Rex byte if (*pt == 0xf2 || *pt == 0xf3 || *pt == 0x66) pt++; #ifdef HOSTARCHITECTURE_X86_64 // REX prefixes. Set this first. byte lastRex; if (*pt >= 0x40 && *pt <= 0x4f) lastRex = *pt++; else lastRex = 0; //printf("pt=%p *pt=%x\n", pt, *pt); #endif /* HOSTARCHITECTURE_X86_64 */ switch (*pt) { case 0x00: return; // This is actually the first byte of the old "marker" word. case 0xf4: return; // Halt - now used as a marker. case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: /* Push */ case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: /* Pop */ case 0x90: /* nop */ case 0xc3: /* ret */ case 0xf9: /* stc */ case 0xce: /* into */ case 0xf0: /* lock. */ case 0xf3: /* rep/repe */ case 0xa4: case 0xa5: case 0xaa: case 0xab: /* movs/stos */ case 0xa6: /* cmpsb */ case 0x9e: /* sahf */ case 0x99: /* cqo/cdq */ pt++; break; case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f: case 0xeb: /* short jumps. */ case 0xcd: /* INT - now used for a register mask */ case 0xa8: /* TEST_ACC8 */ case 0x6a: /* PUSH_8 */ pt += 2; break; case 0xc2: /* RET_16 */ case 0xca: /* FAR RET 16 - used for a register mask */ pt += 3; break; case 0x8d: /* leal. */ pt++; skipea(addr, &pt, process, true); break; case 0x03: case 0x0b: case 0x13: case 0x1b: case 0x23: case 0x2b: case 0x33: case 0x3b: /* Add r,ea etc. */ case 0x88: /* MOVB_R_A */ case 0x89: /* MOVL_R_A */ case 0x8b: /* MOVL_A_R */ case 0x62: /* BOUNDL */ case 0xff: /* Group5 */ case 0xd1: /* Group2_1_A */ case 0x8f: /* POP_A */ case 0xd3: /* Group2_CL_A */ case 0x87: // XCHNG case 0x63: // MOVSXD pt++; skipea(addr, &pt, process, false); break; case 0xf6: /* Group3_a */ { int isTest = 0; pt++; /* The test instruction has an immediate operand. */ if ((*pt & 0x38) == 0) isTest = 1; skipea(addr, &pt, process, false); if (isTest) pt++; break; } case 0xf7: /* Group3_A */ { int isTest = 0; pt++; /* The test instruction has an immediate operand. */ if ((*pt & 0x38) == 0) isTest = 1; skipea(addr, &pt, process, false); if (isTest) pt += 4; break; } case 0xc1: /* Group2_8_A */ case 0xc6: /* MOVB_8_A */ case 0x83: /* Group1_8_A */ case 0x80: /* Group1_8_a */ case 0x6b: // IMUL Ev,Ib pt++; skipea(addr, &pt, process, false); pt++; break; case 0x69: // IMUL Ev,Iv pt++; skipea(addr, &pt, process, false); pt += 4; break; case 0x81: /* Group1_32_A */ { pt ++; #ifndef HOSTARCHITECTURE_X86_64 unsigned opCode = *pt; #endif skipea(addr, &pt, process, false); // Only check the 32 bit constant if this is a comparison. // For other operations this may be untagged and shouldn't be an address. #ifndef HOSTARCHITECTURE_X86_64 if ((opCode & 0x38) == 0x38) process->ScanConstant(addr, pt, PROCESS_RELOC_DIRECT); #endif pt += 4; break; } case 0xe8: case 0xe9: // Long jump and call. These are used to call constant (known) functions // and also long jumps within the function. { pt++; POLYSIGNED disp = (pt[3] & 0x80) ? -1 : 0; // Set the sign just in case. for(unsigned i = 4; i > 0; i--) disp = (disp << 8) | pt[i-1]; byte *absAddr = pt + disp + 4; // The address is relative to AFTER the constant // If the new address is within the current piece of code we don't do anything if (absAddr >= (byte*)addr && absAddr < (byte*)end) {} else { #ifdef HOSTARCHITECTURE_X86_64 ASSERT(sizeof(PolyWord) == 4); // Should only be used internally on x64 #endif /* HOSTARCHITECTURE_X86_64 */ if (addr != old) { // The old value of the displacement was relative to the old address before // we copied this code segment. // We have to correct it back to the original address. absAddr = absAddr - (byte*)addr + (byte*)old; // We have to correct the displacement for the new location and store // that away before we call ScanConstant. size_t newDisp = absAddr - pt - 4; byte* wr = gMem.SpaceForAddress(pt)->writeAble(pt); for (unsigned i = 0; i < 4; i++) { wr[i] = (byte)(newDisp & 0xff); newDisp >>= 8; } } process->ScanConstant(addr, pt, PROCESS_RELOC_I386RELATIVE); } pt += 4; break; } case 0xc7:/* MOVL_32_A */ { pt++; if ((*pt & 0xc0) == 0x40 /* Byte offset or sib present */ && ((*pt & 7) != 4) /* But not sib present */ && pt[1] == 256-sizeof(PolyWord)) { /* We may use a move instruction to set the length word on a new segment. We mustn't try to treat this as a constant. */ pt += 6; /* Skip the modrm byte, the offset and the constant. */ } else { skipea(addr, &pt, process, false); #ifndef HOSTARCHITECTURE_X86_64 // This isn't used for addresses even in 32-in-64 process->ScanConstant(addr, pt, PROCESS_RELOC_DIRECT); #endif /* HOSTARCHITECTURE_X86_64 */ pt += 4; } break; } case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf: /* MOVL_32_64_R */ pt ++; #ifdef HOSTARCHITECTURE_X86_64 if ((lastRex & 8) == 0) pt += 4; // 32-bit mode on 64-bits else #endif /* HOSTARCHITECTURE_X86_64 */ { // This is used in native 32-bit for constants and in // 32-in-64 for the special case of an absolute address. process->ScanConstant(addr, pt, PROCESS_RELOC_DIRECT); pt += sizeof(uintptr_t); } break; case 0x68: /* PUSH_32 */ pt ++; #if (!defined(HOSTARCHITECTURE_X86_64)) process->ScanConstant(addr, pt, PROCESS_RELOC_DIRECT); #endif pt += 4; break; case 0x0f: /* ESCAPE */ { pt++; switch (*pt) { case 0xb6: /* movzl */ case 0xb7: // movzw case 0xbe: // movsx case 0xbf: // movsx case 0xc1: /* xaddl */ case 0xae: // ldmxcsr/stmxcsr case 0xaf: // imul case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: // cmov pt++; skipea(addr, &pt, process, false); break; case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f: /* Conditional branches with 32-bit displacement. */ pt += 5; break; case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f: /* SetCC. */ pt++; skipea(addr, &pt, process, false); break; // These are SSE2 instructions case 0x10: case 0x11: case 0x58: case 0x5c: case 0x59: case 0x5e: case 0x2e: case 0x2a: case 0x54: case 0x57: case 0x5a: case 0x6e: case 0x7e: case 0x2c: case 0x2d: pt++; skipea(addr, &pt, process, false); break; case 0x73: // PSRLDQ - EA,imm pt++; skipea(addr, &pt, process, false); pt++; break; default: Crash("Unknown opcode %d at %p\n", *pt, pt); } break; } case 0xd8: case 0xd9: case 0xda: case 0xdb: case 0xdc: case 0xdd: case 0xde: case 0xdf: // Floating point escape instructions { pt++; if ((*pt & 0xe0) == 0xe0) pt++; else skipea(addr, &pt, process, false); break; } default: Crash("Unknown opcode %d at %p\n", *pt, pt); } } } #if defined(_MSC_VER) // This saves having to define it in the MASM assembly code. static POLYUNSIGNED X86AsmAtomicExchangeAndAdd(PolyObject* mutexp, POLYSIGNED addend) { # if (SIZEOF_POLYWORD == 8) return InterlockedExchangeAdd64((LONG64*)mutexp, addend); # else return InterlockedExchangeAdd((LONG*)mutexp, addend); # endif } #else extern "C" { // This is only defined in the GAS assembly code POLYUNSIGNED X86AsmAtomicExchangeAndAdd(PolyObject*, POLYSIGNED); } #endif // Decrement the value contained in the first word of the mutex. // The addend is TAGGED(+/-1) - 1 POLYUNSIGNED X86TaskData::AtomicDecrement(PolyObject *mutexp) { return X86AsmAtomicExchangeAndAdd(mutexp, -2) - 2; } // Increment the value contained in the first word of the mutex. POLYUNSIGNED X86TaskData::AtomicIncrement(PolyObject* mutexp) { return X86AsmAtomicExchangeAndAdd(mutexp, 2) + 2; } // Release a mutex. Because the atomic increment and decrement // use the hardware LOCK prefix we can simply set this to zero. void X86TaskData::AtomicReset(PolyObject* mutexp) { mutexp->Set(0, TAGGED(0)); } extern "C" { POLYEXTERNALSYMBOL void *PolyX86GetThreadData(); POLYEXTERNALSYMBOL POLYUNSIGNED PolyInterpretedEnterIntMode(); POLYEXTERNALSYMBOL POLYUNSIGNED PolyEndBootstrapMode(FirstArgument threadId, PolyWord function); } // Return the address of assembly data for the current thread. This is normally in // RBP except if we are in a callback. void *PolyX86GetThreadData() { // We should get the task data for the thread that is running this code. // If this thread has been created by the foreign code we will have to // create a new one here. TaskData* taskData = processes->GetTaskDataForThread(); if (taskData == 0) { try { taskData = processes->CreateNewTaskData(); } catch (std::bad_alloc&) { ::Exit("Unable to create thread data - insufficient memory"); } catch (MemoryException&) { ::Exit("Unable to create thread data - insufficient memory"); } } return &((X86TaskData*)taskData)->assemblyInterface; } // Do we require EnterInt instructions and if so for which architecture? // 0 = > None; 1 => X86_32, 2 => X86_64. 3 => X86_32_in_64. POLYUNSIGNED PolyInterpretedEnterIntMode() { #ifdef POLYML32IN64 return TAGGED(3).AsUnsigned(); #elif defined(HOSTARCHITECTURE_X86_64) return TAGGED(2).AsUnsigned(); #else return TAGGED(1).AsUnsigned(); #endif } // End bootstrap mode and run a new function. POLYUNSIGNED PolyEndBootstrapMode(FirstArgument threadId, PolyWord function) { TaskData* taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle pushedFunction = taskData->saveVec.push(function); x86Dependent.mustInterpret = false; ((X86TaskData*)taskData)->EndBootStrap(); taskData->InitStackFrame(taskData, pushedFunction); taskData->EnterPolyCode(); // Should never return. ASSERT(0); return TAGGED(0).AsUnsigned(); } struct _entrypts machineSpecificEPT[] = { { "PolyX86GetThreadData", (polyRTSFunction)&PolyX86GetThreadData }, { "PolyInterpretedEnterIntMode", (polyRTSFunction)&PolyInterpretedEnterIntMode }, { "PolyEndBootstrapMode", (polyRTSFunction)&PolyEndBootstrapMode }, { NULL, NULL} // End of list. };