diff --git a/libpolyml/elfexport.cpp b/libpolyml/elfexport.cpp index a39dee52..e16c7971 100644 --- a/libpolyml/elfexport.cpp +++ b/libpolyml/elfexport.cpp @@ -1,789 +1,819 @@ /* Title: Write out a database as an ELF object file Author: David Matthews. Copyright (c) 2006-7, 2011, 2016-18, 2020 David C. J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR H PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_STDIO_H #include #endif #ifdef HAVE_STDDEF_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_TIME_H #include #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) #endif #ifdef HAVE_ELF_H #include #elif defined(HAVE_ELF_ABI_H) #include #endif #ifdef HAVE_MACHINE_RELOC_H #include #ifndef EM_X86_64 #define EM_X86_64 EM_AMD64 #endif #if defined(HOSTARCHITECTURE_X86_64) #ifndef R_386_PC32 #define R_386_PC32 R_X86_64_PC32 #endif #ifndef R_386_32 #define R_386_32 R_X86_64_32 #endif #ifndef R_X86_64_64 #define R_X86_64_64 R_X86_64_64 #endif #endif /* HOSTARCHITECTURE_X86_64 */ #endif // Solaris seems to put processor-specific constants in separate files #ifdef HAVE_SYS_ELF_SPARC_H #include #endif #ifdef HAVE_SYS_ELF_386_H #include #endif #ifdef HAVE_SYS_ELF_AMD64_H #include #endif // Android has the ARM relocation symbol here #ifdef HAVE_ASM_ELF_H #include #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_SYS_UTSNAME_H #include #endif #include "globals.h" #include "diagnostics.h" #include "sys.h" #include "machine_dep.h" #include "gc.h" #include "mpoly.h" #include "scanaddrs.h" #include "elfexport.h" #include "run_time.h" #include "version.h" #include "polystring.h" #include "timing.h" #define sym_last_local_sym sym_data_section #if defined(HOSTARCHITECTURE_X86) # define HOST_E_MACHINE EM_386 # define HOST_DIRECT_DATA_RELOC R_386_32 # define HOST_DIRECT_FPTR_RELOC R_386_32 # define USE_RELA 0 #elif defined(HOSTARCHITECTURE_PPC) # define HOST_E_MACHINE EM_PPC # define HOST_DIRECT_DATA_RELOC R_PPC_ADDR32 # define HOST_DIRECT_FPTR_RELOC R_PPC_ADDR32 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_PPC64) # define HOST_E_MACHINE EM_PPC64 # define HOST_DIRECT_DATA_RELOC R_PPC64_ADDR64 # define HOST_DIRECT_FPTR_RELOC R_PPC64_ADDR64 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_S390) # define HOST_E_MACHINE EM_S390 # define HOST_DIRECT_DATA_RELOC R_390_32 # define HOST_DIRECT_FPTR_RELOC R_390_32 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_S390X) # define HOST_E_MACHINE EM_S390 # define HOST_DIRECT_DATA_RELOC R_390_64 # define HOST_DIRECT_FPTR_RELOC R_390_64 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_SH) # define HOST_E_MACHINE EM_SH # define HOST_DIRECT_DATA_RELOC R_SH_DIR32 # define HOST_DIRECT_FPTR_RELOC R_SH_DIR32 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_SPARC) # define HOST_E_MACHINE EM_SPARC # define HOST_DIRECT_DATA_RELOC R_SPARC_32 # define HOST_DIRECT_FPTR_RELOC R_SPARC_32 # define USE_RELA 1 /* Sparc/Solaris, at least 2.8, requires ELF32_Rela relocations. For some reason, though, it adds the value in the location being relocated (as with ELF32_Rel relocations) as well as the addend. To be safe, whenever we use an ELF32_Rela relocation we always zero the location to be relocated. */ #elif defined(HOSTARCHITECTURE_SPARC64) # define HOST_E_MACHINE EM_SPARCV9 # define HOST_DIRECT_DATA_RELOC R_SPARC_64 # define HOST_DIRECT_FPTR_RELOC R_SPARC_64 /* Use the most relaxed memory model. At link time, the most restrictive one is chosen, so it does no harm to be as permissive as possible here. */ # define HOST_E_FLAGS EF_SPARCV9_RMO # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_X86_64) /* It seems Solaris/X86-64 only supports ELF64_Rela relocations. It appears that Linux will support either so we now use Rela on X86-64. */ # define HOST_E_MACHINE EM_X86_64 # define HOST_DIRECT_DATA_RELOC R_X86_64_64 # define HOST_DIRECT_FPTR_RELOC R_X86_64_64 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_X32) # define HOST_E_MACHINE EM_X86_64 # define HOST_DIRECT_DATA_RELOC R_X86_64_32 # define HOST_DIRECT_FPTR_RELOC R_X86_64_32 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_ARM) # ifndef EF_ARM_EABI_VER4 # define EF_ARM_EABI_VER4 0x04000000 # endif // When linking ARM binaries the linker checks the ABI version. We // need to set the version to the same as the libraries. // GCC currently uses version 4. # define HOST_E_MACHINE EM_ARM # define HOST_DIRECT_DATA_RELOC R_ARM_ABS32 # define HOST_DIRECT_FPTR_RELOC R_ARM_ABS32 # define USE_RELA 0 # define HOST_E_FLAGS EF_ARM_EABI_VER4 #elif defined(HOSTARCHITECTURE_HPPA) # if defined(__hpux) # define HOST_OSABI ELFOSABI_HPUX # elif defined(__NetBSD__) # define HOST_OSABI ELFOSABI_NETBSD # elif defined(__linux__) # define HOST_OSABI ELFOSABI_GNU # endif # define HOST_E_MACHINE EM_PARISC # define HOST_DIRECT_DATA_RELOC R_PARISC_DIR32 # define HOST_DIRECT_FPTR_RELOC R_PARISC_PLABEL32 # define HOST_E_FLAGS EFA_PARISC_1_0 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_IA64) # define HOST_E_MACHINE EM_IA_64 # define HOST_DIRECT_DATA_RELOC R_IA64_DIR64LSB # define HOST_DIRECT_FPTR_RELOC R_IA64_FPTR64LSB # define HOST_E_FLAGS EF_IA_64_ABI64 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_AARCH64) # define HOST_E_MACHINE EM_AARCH64 # define HOST_DIRECT_DATA_RELOC R_AARCH64_ABS64 # define HOST_DIRECT_FPTR_RELOC R_AARCH64_ABS64 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_M68K) # define HOST_E_MACHINE EM_68K # define HOST_DIRECT_DATA_RELOC R_68K_32 # define HOST_DIRECT_FPTR_RELOC R_68K_32 # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_MIPS) # define HOST_E_MACHINE EM_MIPS # define HOST_DIRECT_DATA_RELOC R_MIPS_32 # define HOST_DIRECT_FPTR_RELOC R_MIPS_32 # ifdef __PIC__ # define HOST_E_FLAGS EF_MIPS_CPIC # endif # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_MIPS64) # define HOST_E_MACHINE EM_MIPS # define HOST_DIRECT_DATA_RELOC R_MIPS_64 # define HOST_DIRECT_FPTR_RELOC R_MIPS_64 # ifdef __PIC__ # define HOST_E_FLAGS (EF_MIPS_ARCH_64 | EF_MIPS_CPIC) # else # define HOST_E_FLAGS EF_MIPS_ARCH_64 # endif # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_ALPHA) # define HOST_E_MACHINE EM_ALPHA # define HOST_DIRECT_DATA_RELOC R_ALPHA_REFQUAD # define HOST_DIRECT_FPTR_RELOC R_ALPHA_REFQUAD # define USE_RELA 1 #elif defined(HOSTARCHITECTURE_RISCV32) || defined(HOSTARCHITECTURE_RISCV64) # define HOST_E_MACHINE EM_RISCV # if defined(HOSTARCHITECTURE_RISCV32) # define HOST_DIRECT_DATA_RELOC R_RISCV_32 # define HOST_DIRECT_FPTR_RELOC R_RISCV_32 # else # define HOST_DIRECT_DATA_RELOC R_RISCV_64 # define HOST_DIRECT_FPTR_RELOC R_RISCV_64 # endif # if defined(__riscv_float_abi_soft) # define HOST_E_FLAGS_FLOAT_ABI EF_RISCV_FLOAT_ABI_SOFT # elif defined(__riscv_float_abi_single) # define HOST_E_FLAGS_FLOAT_ABI EF_RISCV_FLOAT_ABI_SINGLE # elif defined(__riscv_float_abi_double) # define HOST_E_FLAGS_FLOAT_ABI EF_RISCV_FLOAT_ABI_DOUBLE # elif defined(__riscv_float_abi_quad) # define HOST_E_FLAGS_FLOAT_ABI EF_RISCV_FLOAT_ABI_QUAD # else # error "Unknown RISC-V float ABI" # endif # ifdef __riscv_32e # define HOST_E_FLAGS_RVE __riscv_32e # else # define HOST_E_FLAGS_RVE 0 # endif # define HOST_E_FLAGS (HOST_E_FLAGS_FLOAT_ABI | HOST_E_FLAGS_RVE) # define USE_RELA 1 #else # error "No support for exporting on this architecture" #endif // The first two symbols are special: // Zero is always special in ELF // 1 is used for the data section #define EXTRA_SYMBOLS 2 static unsigned AreaToSym(unsigned area) { return area+EXTRA_SYMBOLS; } // Section table entries enum { sect_initial = 0, sect_sectionnametable, sect_stringtable, // Data and relocation entries come in here. sect_data // Finally the symbol table }; // Add an external reference to the RTS void ELFExport::addExternalReference(void *relocAddr, const char *name, bool isFuncPtr) { externTable.makeEntry(name); // The symbol is added after the memory table entries and poly_exports writeRelocation(0, relocAddr, symbolNum++, isFuncPtr); } // Generate the address relative to the start of the segment. void ELFExport::setRelocationAddress(void *p, ElfXX_Addr *reloc) { unsigned area = findArea(p); POLYUNSIGNED offset = (char*)p - (char*)memTable[area].mtOriginalAddr; *reloc = offset; } /* Get the index corresponding to an address. */ PolyWord ELFExport::createRelocation(PolyWord p, void *relocAddr) { void *addr = p.AsAddress(); unsigned addrArea = findArea(addr); POLYUNSIGNED offset = (char*)addr - (char*)memTable[addrArea].mtOriginalAddr; return writeRelocation(offset, relocAddr, AreaToSym(addrArea), false); } PolyWord ELFExport::writeRelocation(POLYUNSIGNED offset, void *relocAddr, unsigned symbolNum, bool isFuncPtr) { #if USE_RELA ElfXX_Rela reloc; reloc.r_addend = offset; offset = 0; #else ElfXX_Rel reloc; #endif // Set the offset within the section we're scanning. setRelocationAddress(relocAddr, &reloc.r_offset); #ifdef HOSTARCHITECTURE_MIPS64 reloc.r_sym = symbolNum; reloc.r_ssym = 0; reloc.r_type = isFuncPtr ? HOST_DIRECT_FPTR_RELOC : HOST_DIRECT_DATA_RELOC; reloc.r_type2 = 0; reloc.r_type3 = 0; #else reloc.r_info = ELFXX_R_INFO(symbolNum, isFuncPtr ? HOST_DIRECT_FPTR_RELOC : HOST_DIRECT_DATA_RELOC); #endif fwrite(&reloc, sizeof(reloc), 1, exportFile); relocationCount++; return PolyWord::FromUnsigned(offset); } /* This is called for each constant within the code. Print a relocation entry for the word and return a value that means that the offset is saved in original word. */ void ELFExport::ScanConstant(PolyObject *base, byte *addr, ScanRelocationKind code) { #ifndef POLYML32IN64 PolyObject *p = GetConstantValue(addr, code); if (p == 0) return; void *a = p; unsigned aArea = findArea(a); // We don't need a relocation if this is relative to the current segment // since the relative address will already be right. if (code == PROCESS_RELOC_I386RELATIVE && aArea == findArea(addr)) return; // Set the value at the address to the offset relative to the symbol. POLYUNSIGNED offset = (char*)a - (char*)memTable[aArea].mtOriginalAddr; switch (code) { case PROCESS_RELOC_DIRECT: // 32 or 64 bit address of target { PolyWord r = createRelocation(p, addr); POLYUNSIGNED w = r.AsUnsigned(); for (unsigned i = 0; i < sizeof(PolyWord); i++) { addr[i] = (byte)(w & 0xff); w >>= 8; } } break; #if(defined(HOSTARCHITECTURE_X86) || defined(HOSTARCHITECTURE_X86_64) || \ defined(HOSTARCHITECTURE_X32)) #ifdef HOSTARCHITECTURE_X86 #define R_PC_RELATIVE R_386_PC32 #else #define R_PC_RELATIVE R_X86_64_PC32 #endif case PROCESS_RELOC_I386RELATIVE: // 32 bit relative address { #if USE_RELA ElfXX_Rela reloc; reloc.r_addend = offset; #else ElfXX_Rel reloc; #endif setRelocationAddress(addr, &reloc.r_offset); // We seem to need to subtract 4 bytes to get the correct offset in ELF offset -= 4; reloc.r_info = ELFXX_R_INFO(AreaToSym(aArea), R_PC_RELATIVE); #if USE_RELA // Clear the field. Even though it's not supposed to be used with Rela the // Linux linker at least seems to add the value in here sometimes. memset(addr, 0, 4); #else for (unsigned i = 0; i < 4; i++) { addr[i] = (byte)(offset & 0xff); offset >>= 8; } #endif fwrite(&reloc, sizeof(reloc), 1, exportFile); relocationCount++; } break; #endif default: ASSERT(0); // Wrong type of relocation for this architecture. } #endif } unsigned long ELFExport::makeStringTableEntry(const char *str, ExportStringTable *stab) { if (str == NULL || str[0] == 0) return 0; // First entry is the null string. else return stab->makeEntry(str); } void ELFExport::writeSymbol(const char *symbolName, long value, long size, int binding, int sttype, int section) { ElfXX_Sym symbol; memset(&symbol, 0, sizeof(symbol)); // Zero unused fields symbol.st_name = makeStringTableEntry(symbolName, &symStrings); symbol.st_value = value; symbol.st_size = size; symbol.st_info = ELFXX_ST_INFO(binding, sttype); symbol.st_other = 0; symbol.st_shndx = section; fwrite(&symbol, sizeof(symbol), 1, exportFile); } // Set the file alignment. void ELFExport::alignFile(int align) { char pad[32] = {0}; // Maximum alignment int offset = ftell(exportFile); if ((offset % align) == 0) return; fwrite(&pad, align - (offset % align), 1, exportFile); } void ELFExport::createStructsRelocation(unsigned sym, size_t offset, size_t addend) { #if USE_RELA ElfXX_Rela reloc; reloc.r_addend = addend; #else ElfXX_Rel reloc; #endif reloc.r_offset = offset; #ifdef HOSTARCHITECTURE_MIPS64 reloc.r_sym = sym; reloc.r_ssym = 0; reloc.r_type = HOST_DIRECT_DATA_RELOC; reloc.r_type2 = 0; reloc.r_type3 = 0; #else reloc.r_info = ELFXX_R_INFO(sym, HOST_DIRECT_DATA_RELOC); #endif fwrite(&reloc, sizeof(reloc), 1, exportFile); relocationCount++; } void ELFExport::exportStore(void) { PolyWord *p; ElfXX_Ehdr fhdr; ElfXX_Shdr *sections = 0; #ifdef __linux__ unsigned extraSections = 1; // Extra section for .note.GNU-stack #else unsigned extraSections = 0; #endif - unsigned numSections = 6 + 2*memTableEntries /*- 1*/ + extraSections; - // The symbol table comes at the end. - unsigned sect_symtab = sect_data + 2*memTableEntries + 2/* - 1*/; - - unsigned i; + unsigned numSections = 0; + for (unsigned j = 0; j < memTableEntries; j++) + { + if ((memTable[j].mtFlags & (MTF_BYTES|MTF_WRITEABLE)) == MTF_BYTES) + numSections += 1; + else numSections += 2; + } + // The symbol table comes at the end. + unsigned sect_symtab = sect_data + numSections + 2; + numSections += 6 + extraSections; // External symbols start after the memory table entries and "poly_exports". symbolNum = EXTRA_SYMBOLS+memTableEntries+1; // Both the string tables have an initial null entry. symStrings.makeEntry(""); sectionStrings.makeEntry(""); // Write out initial values for the headers. These are overwritten at the end. // File header memset(&fhdr, 0, sizeof(fhdr)); fhdr.e_ident[EI_MAG0] = 0x7f; fhdr.e_ident[EI_MAG1] = 'E'; fhdr.e_ident[EI_MAG2] = 'L'; fhdr.e_ident[EI_MAG3] = 'F'; fhdr.e_ident[EI_CLASS] = ELFCLASSXX; // ELFCLASS32 or ELFCLASS64 fhdr.e_ident[EI_VERSION] = EV_CURRENT; #ifdef HOST_OSABI fhdr.e_ident[EI_OSABI] = HOST_OSABI; #endif { union { unsigned long wrd; char chrs[sizeof(unsigned long)]; } endian; endian.wrd = 1; if (endian.chrs[0] == 0) fhdr.e_ident[EI_DATA] = ELFDATA2MSB; // Big endian else fhdr.e_ident[EI_DATA] = ELFDATA2LSB; // Little endian } fhdr.e_type = ET_REL; // The machine needs to match the machine we're compiling for // even if this is actually portable code. fhdr.e_machine = HOST_E_MACHINE; #ifdef HOST_E_FLAGS fhdr.e_flags = HOST_E_FLAGS; #endif fhdr.e_version = EV_CURRENT; fhdr.e_shoff = sizeof(fhdr); // Offset to section header - immediately follows fhdr.e_ehsize = sizeof(fhdr); fhdr.e_shentsize = sizeof(ElfXX_Shdr); fhdr.e_shnum = numSections; fhdr.e_shstrndx = sect_sectionnametable; // Section name table section index; fwrite(&fhdr, sizeof(fhdr), 1, exportFile); // Write it for the moment. sections = new ElfXX_Shdr[numSections]; memset(sections, 0, sizeof(ElfXX_Shdr) * numSections); // Necessary? // Set up the section header but don't write it yet. // Section 0 - all zeros sections[sect_initial].sh_type = SHT_NULL; sections[sect_initial].sh_link = SHN_UNDEF; // Section name table. sections[sect_sectionnametable].sh_name = makeStringTableEntry(".shstrtab", §ionStrings); sections[sect_sectionnametable].sh_type = SHT_STRTAB; sections[sect_sectionnametable].sh_addralign = sizeof(char); // sections[sect_sectionnametable].sh_offset is set later // sections[sect_sectionnametable].sh_size is set later // Symbol name table. sections[sect_stringtable].sh_name = makeStringTableEntry(".strtab", §ionStrings); sections[sect_stringtable].sh_type = SHT_STRTAB; sections[sect_stringtable].sh_addralign = sizeof(char); // sections[sect_stringtable].sh_offset is set later // sections[sect_stringtable].sh_size is set later unsigned long dataName = makeStringTableEntry(".data", §ionStrings); unsigned long dataRelName = makeStringTableEntry(USE_RELA ? ".rela.data" : ".rel.data", §ionStrings); #ifndef CODEISNOTEXECUTABLE unsigned long textName = makeStringTableEntry(".text", §ionStrings); unsigned long textRelName = makeStringTableEntry(USE_RELA ? ".rela.text" : ".rel.text", §ionStrings); #endif // The Linux linker does not like relocations in the .rodata section and marks the executable // as containing text relocations. Putting the data in a .data.rel.ro section seems to work. - unsigned long rodataName = makeStringTableEntry(".data.rel.ro", §ionStrings); - unsigned long rodataRelName = makeStringTableEntry(USE_RELA ? ".rela.data.ro" : ".rel.data.ro", §ionStrings); + unsigned long relDataName = makeStringTableEntry(".data.rel.ro", §ionStrings); + unsigned long relDataRelName = makeStringTableEntry(USE_RELA ? ".rela.data.rel.ro" : ".rel.data.rel.ro", §ionStrings); + // Byte and other leaf data that do not require relocation can go in the .rodata section + unsigned long nRelDataName = makeStringTableEntry(".rodata", §ionStrings); // Main data sections. Each one has a relocation section. - for (i=0; i < memTableEntries; i++) + unsigned s = sect_data; + for (unsigned i=0; i < memTableEntries; i++) { - unsigned s = sect_data + i*2; sections[s].sh_addralign = 8; // 8-byte alignment sections[s].sh_type = SHT_PROGBITS; if (memTable[i].mtFlags & MTF_WRITEABLE) { // Mutable areas ASSERT(!(memTable[i].mtFlags & MTF_EXECUTABLE)); // Executable areas can't be writable. sections[s].sh_name = dataName; sections[s].sh_flags = SHF_WRITE | SHF_ALLOC; - sections[s+1].sh_name = dataRelName; // Name of relocation section + s++; + // Mutable byte areas can contain external references so need relocation + sections[s].sh_name = dataRelName; // Name of relocation section } #ifndef CODEISNOTEXECUTABLE // Not if we're building the interpreted version. else if (memTable[i].mtFlags & MTF_EXECUTABLE) { // Code areas are marked as executable. sections[s].sh_name = textName; sections[s].sh_flags = SHF_ALLOC | SHF_EXECINSTR; - sections[s+1].sh_name = textRelName; // Name of relocation section + s++; + sections[s].sh_name = textRelName; // Name of relocation section } #endif + else if (memTable[i].mtFlags & MTF_BYTES) + { + // Data that does not require relocation. + // Non-code immutable areas + sections[s].sh_name = nRelDataName; + sections[s].sh_flags = SHF_ALLOC; + s++; + continue; // Skip the relocation section for this + } else { // Non-code immutable areas - sections[s].sh_name = rodataName; + sections[s].sh_name = relDataName; // The .data.rel.ro has to be writable in order to be relocated. // It is set to read-only after relocation. sections[s].sh_flags = SHF_WRITE | SHF_ALLOC; - sections[s+1].sh_name = rodataRelName; // Name of relocation section + s++; + sections[s].sh_name = relDataRelName; // Name of relocation section } // sections[s].sh_size is set later // sections[s].sh_offset is set later. // sections[s].sh_size is set later. // Relocation section - sections[s+1].sh_type = USE_RELA ? SHT_RELA : SHT_REL; // Contains relocation with/out explicit addends (ElfXX_Rel) - sections[s+1].sh_link = sect_symtab; // Index to symbol table - sections[s+1].sh_info = s; // Applies to the data section - sections[s+1].sh_addralign = sizeof(long); // Align to a word - sections[s+1].sh_entsize = USE_RELA ? sizeof(ElfXX_Rela) : sizeof(ElfXX_Rel); + sections[s].sh_type = USE_RELA ? SHT_RELA : SHT_REL; // Contains relocation with/out explicit addends (ElfXX_Rel) + sections[s].sh_link = sect_symtab; // Index to symbol table + sections[s].sh_info = s-1; // Applies to the data section + sections[s].sh_addralign = sizeof(long); // Align to a word + sections[s].sh_entsize = USE_RELA ? sizeof(ElfXX_Rela) : sizeof(ElfXX_Rel); + s++; // sections[s+1].sh_offset is set later. // sections[s+1].sh_size is set later. } // Table data - Poly tables that describe the memory layout. - unsigned sect_table_data = sect_data + 2*memTableEntries; + unsigned sect_table_data = s; sections[sect_table_data].sh_name = dataName; sections[sect_table_data].sh_type = SHT_PROGBITS; sections[sect_table_data].sh_flags = SHF_WRITE | SHF_ALLOC; sections[sect_table_data].sh_addralign = 8; // 8-byte alignment // Table relocation sections[sect_table_data+1].sh_name = dataRelName; sections[sect_table_data+1].sh_type = USE_RELA ? SHT_RELA : SHT_REL; // Contains relocation with/out explicit addends (ElfXX_Rel) sections[sect_table_data+1].sh_link = sect_symtab; // Index to symbol table sections[sect_table_data+1].sh_info = sect_table_data; // Applies to table section sections[sect_table_data+1].sh_addralign = sizeof(long); // Align to a word sections[sect_table_data+1].sh_entsize = USE_RELA ? sizeof(ElfXX_Rela) : sizeof(ElfXX_Rel); // Symbol table. sections[sect_symtab].sh_name = makeStringTableEntry(".symtab", §ionStrings); sections[sect_symtab].sh_type = SHT_SYMTAB; sections[sect_symtab].sh_link = sect_stringtable; // String table to use sections[sect_symtab].sh_addralign = sizeof(long); // Align to a word sections[sect_symtab].sh_entsize = sizeof(ElfXX_Sym); // sections[sect_symtab].sh_info is set later // sections[sect_symtab].sh_size is set later // sections[sect_symtab].sh_offset is set later #ifdef __linux__ // Add a .note.GNU-stack section to indicate this does not require executable stack sections[numSections-1].sh_name = makeStringTableEntry(".note.GNU-stack", §ionStrings); sections[numSections - 1].sh_type = SHT_PROGBITS; #endif // Write the relocations. - - for (i = 0; i < memTableEntries; i++) + unsigned relocSection = sect_data; + for (unsigned i = 0; i < memTableEntries; i++) { - unsigned relocSection = sect_data + i*2 + 1; + relocSection++; + if ((memTable[i].mtFlags & (MTF_BYTES|MTF_WRITEABLE)) == MTF_BYTES) + continue; alignFile(sections[relocSection].sh_addralign); sections[relocSection].sh_offset = ftell(exportFile); relocationCount = 0; // Create the relocation table and turn all addresses into offsets. char *start = (char*)memTable[i].mtOriginalAddr; char *end = start + memTable[i].mtLength; for (p = (PolyWord*)start; p < (PolyWord*)end; ) { p++; PolyObject *obj = (PolyObject*)p; POLYUNSIGNED length = obj->Length(); // Update any constants before processing the object // We need that for relative jumps/calls in X86/64. if (length != 0 && obj->IsCodeObject()) machineDependent->ScanConstantsWithinCode(obj, this); relocateObject(obj); p += length; } sections[relocSection].sh_size = relocationCount * (USE_RELA ? sizeof(ElfXX_Rela) : sizeof(ElfXX_Rel)); + relocSection++; } // Relocations for "exports" and "memTable"; alignFile(sections[sect_table_data+1].sh_addralign); sections[sect_table_data+1].sh_offset = ftell(exportFile); relocationCount = 0; // TODO: This won't be needed if we put these in a separate section. POLYUNSIGNED areaSpace = 0; - for (i = 0; i < memTableEntries; i++) + for (unsigned i = 0; i < memTableEntries; i++) areaSpace += memTable[i].mtLength; // Address of "memTable" within "exports". We can't use createRelocation because // the position of the relocation is not in either the mutable or the immutable area. size_t memTableOffset = sizeof(exportDescription); // It follows immediately after this. createStructsRelocation(AreaToSym(memTableEntries), offsetof(exportDescription, memTable), memTableOffset); // Address of "rootFunction" within "exports" unsigned rootAddrArea = findArea(rootFunction); size_t rootOffset = (char*)rootFunction - (char*)memTable[rootAddrArea].mtOriginalAddr; createStructsRelocation(AreaToSym(rootAddrArea), offsetof(exportDescription, rootFunction), rootOffset); // Addresses of the areas within memtable. - for (i = 0; i < memTableEntries; i++) + for (unsigned i = 0; i < memTableEntries; i++) { createStructsRelocation(AreaToSym(i), sizeof(exportDescription) + i * sizeof(memoryTableEntry) + offsetof(memoryTableEntry, mtCurrentAddr), 0 /* No offset relative to base symbol*/); } sections[sect_table_data+1].sh_size = relocationCount * (USE_RELA ? sizeof(ElfXX_Rela) : sizeof(ElfXX_Rel)); // Now the symbol table. alignFile(sections[sect_symtab].sh_addralign); sections[sect_symtab].sh_offset = ftell(exportFile); writeSymbol("", 0, 0, 0, 0, 0); // Initial symbol // Write the local symbols first. writeSymbol("", 0, 0, STB_LOCAL, STT_SECTION, sect_data); // .data section // Create symbols for the address areas. AreaToSym assumes these come first. - for (i = 0; i < memTableEntries; i++) + s = sect_data; + for (unsigned i = 0; i < memTableEntries; i++) { - unsigned s = sect_data + i*2; char buff[50]; sprintf(buff, "area%1u", i); writeSymbol(buff, 0, 0, STB_LOCAL, STT_OBJECT, s); + if ((memTable[i].mtFlags & (MTF_BYTES|MTF_WRITEABLE)) == MTF_BYTES) + s += 1; + else s += 2; } // Global symbols - Exported symbol for table. writeSymbol("poly_exports", 0, sizeof(exportDescription)+sizeof(memoryTableEntry)*memTableEntries, STB_GLOBAL, STT_OBJECT, sect_table_data); // External references for (unsigned i = 0; i < externTable.stringSize; i += (unsigned)strlen(externTable.strings+i) + 1) writeSymbol(externTable.strings+i, 0, 0, STB_GLOBAL, STT_FUNC, SHN_UNDEF); sections[sect_symtab].sh_info = EXTRA_SYMBOLS+memTableEntries; // One more than last local sym sections[sect_symtab].sh_size = sizeof(ElfXX_Sym) * symbolNum; // Now the binary data. - for (i = 0; i < memTableEntries; i++) + unsigned dataSection = sect_data; + for (unsigned i = 0; i < memTableEntries; i++) { - unsigned dataSection = sect_data + i*2; sections[dataSection].sh_size = memTable[i].mtLength; alignFile(sections[dataSection].sh_addralign); sections[dataSection].sh_offset = ftell(exportFile); fwrite(memTable[i].mtOriginalAddr, 1, memTable[i].mtLength, exportFile); + if ((memTable[i].mtFlags & (MTF_BYTES|MTF_WRITEABLE)) == MTF_BYTES) + dataSection += 1; + else dataSection += 2; } exportDescription exports; memset(&exports, 0, sizeof(exports)); exports.structLength = sizeof(exportDescription); exports.memTableSize = sizeof(memoryTableEntry); exports.memTableEntries = memTableEntries; exports.memTable = USE_RELA ? 0 : (memoryTableEntry *)memTableOffset; // Set the value to be the offset relative to the base of the area. We have set a relocation // already which will add the base of the area. exports.rootFunction = USE_RELA ? 0 : (void*)rootOffset; exports.timeStamp = getBuildTime(); exports.architecture = machineDependent->MachineArchitecture(); exports.rtsVersion = POLY_version_number; #ifdef POLYML32IN64 exports.originalBaseAddr = globalHeapBase; #else exports.originalBaseAddr = 0; #endif // Set the address values to zero before we write. They will always // be relative to their base symbol. - for (i = 0; i < memTableEntries; i++) + for (unsigned i = 0; i < memTableEntries; i++) memTable[i].mtCurrentAddr = 0; // Now the binary data. alignFile(sections[sect_table_data].sh_addralign); sections[sect_table_data].sh_offset = ftell(exportFile); sections[sect_table_data].sh_size = sizeof(exportDescription) + memTableEntries*sizeof(memoryTableEntry); fwrite(&exports, sizeof(exports), 1, exportFile); fwrite(memTable, sizeof(memoryTableEntry), memTableEntries, exportFile); // The section name table sections[sect_sectionnametable].sh_offset = ftell(exportFile); fwrite(sectionStrings.strings, sectionStrings.stringSize, 1, exportFile); sections[sect_sectionnametable].sh_size = sectionStrings.stringSize; // The symbol name table sections[sect_stringtable].sh_offset = ftell(exportFile); fwrite(symStrings.strings, symStrings.stringSize, 1, exportFile); sections[sect_stringtable].sh_size = symStrings.stringSize; // Finally the section headers. alignFile(4); fhdr.e_shoff = ftell(exportFile); fwrite(sections, sizeof(ElfXX_Shdr) * numSections, 1, exportFile); // Rewind to rewrite the file header with the offset of the section headers. rewind(exportFile); fwrite(&fhdr, sizeof(fhdr), 1, exportFile); fclose(exportFile); exportFile = NULL; delete[]sections; } diff --git a/libpolyml/exporter.cpp b/libpolyml/exporter.cpp index 861534a0..cd065600 100644 --- a/libpolyml/exporter.cpp +++ b/libpolyml/exporter.cpp @@ -1,936 +1,933 @@ /* Title: exporter.cpp - Export a function as an object or C file Copyright (c) 2006-7, 2015, 2016-20 David C.J. Matthews This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #elif defined(_WIN32) #include "winconfig.h" #else #error "No configuration file" #endif #ifdef HAVE_ASSERT_H #include #define ASSERT(x) assert(x) #else #define ASSERT(x) #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_SYS_PARAM_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #if (defined(_WIN32)) #include #else #define _T(x) x #define _tcslen strlen #define _tcscmp strcmp #define _tcscat strcat #endif #include "exporter.h" #include "save_vec.h" #include "polystring.h" #include "run_time.h" #include "osmem.h" #include "scanaddrs.h" #include "gc.h" #include "machine_dep.h" #include "diagnostics.h" #include "memmgr.h" #include "processes.h" // For IO_SPACING #include "sys.h" // For EXC_Fail #include "rtsentry.h" #include "pexport.h" #ifdef HAVE_PECOFF #include "pecoffexport.h" #elif defined(HAVE_ELF_H) || defined(HAVE_ELF_ABI_H) #include "elfexport.h" #elif defined(HAVE_MACH_O_RELOC_H) #include "machoexport.h" #endif #if (defined(_WIN32)) #define NOMEMORY ERROR_NOT_ENOUGH_MEMORY #define ERRORNUMBER _doserrno #else #define NOMEMORY ENOMEM #define ERRORNUMBER errno #endif extern "C" { POLYEXTERNALSYMBOL POLYUNSIGNED PolyExport(FirstArgument threadId, PolyWord fileName, PolyWord root); POLYEXTERNALSYMBOL POLYUNSIGNED PolyExportPortable(FirstArgument threadId, PolyWord fileName, PolyWord root); } /* To export the function and everything reachable from it we need to copy all the objects into a new area. We leave tombstones in the original objects by overwriting the length word. That prevents us from copying an object twice and breaks loops. Once we've copied the objects we then have to go back over the memory and turn the tombstones back into length words. */ GraveYard::~GraveYard() { free(graves); } // Used to calculate the space required for the ordinary mutables // and the no-overwrite mutables. They are interspersed in local space. class MutSizes : public ScanAddress { public: MutSizes() : mutSize(0), noOverSize(0) {} virtual PolyObject *ScanObjectAddress(PolyObject *base) { return base; }// No Actually used virtual void ScanAddressesInObject(PolyObject *base, POLYUNSIGNED lengthWord) { const POLYUNSIGNED words = OBJ_OBJECT_LENGTH(lengthWord) + 1; // Include length word if (OBJ_IS_NO_OVERWRITE(lengthWord)) noOverSize += words; else mutSize += words; } POLYUNSIGNED mutSize, noOverSize; }; CopyScan::CopyScan(unsigned h/*=0*/): hierarchy(h) { defaultImmSize = defaultMutSize = defaultCodeSize = defaultNoOverSize = 0; tombs = 0; graveYard = 0; } void CopyScan::initialise(bool isExport/*=true*/) { ASSERT(gMem.eSpaces.size() == 0); // Set the space sizes to a proportion of the space currently in use. // Computing these sizes is not obvious because CopyScan is used both // for export and for saved states. For saved states in particular we // want to use a smaller size because they are retained after we save // the state and if we have many child saved states it's important not // to waste memory. if (hierarchy == 0) { graveYard = new GraveYard[gMem.pSpaces.size()]; if (graveYard == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to allocate graveyard, size: %lu.\n", gMem.pSpaces.size()); throw MemoryException(); } } for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { PermanentMemSpace *space = *i; if (space->hierarchy >= hierarchy) { // Include this if we're exporting (hierarchy=0) or if we're saving a state // and will include this in the new state. size_t size = (space->top-space->bottom)/4; if (space->noOverwrite) defaultNoOverSize += size; else if (space->isMutable) defaultMutSize += size; else if (space->isCode) defaultCodeSize += size; else defaultImmSize += size; if (space->hierarchy == 0 && ! space->isMutable) { // We need a separate area for the tombstones because this is read-only graveYard[tombs].graves = (PolyWord*)calloc(space->spaceSize(), sizeof(PolyWord)); if (graveYard[tombs].graves == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to allocate graveyard for permanent space, size: %lu.\n", space->spaceSize() * sizeof(PolyWord)); throw MemoryException(); } if (debugOptions & DEBUG_SAVING) Log("SAVE: Allocated graveyard for permanent space, %p size: %lu.\n", graveYard[tombs].graves, space->spaceSize() * sizeof(PolyWord)); graveYard[tombs].startAddr = space->bottom; graveYard[tombs].endAddr = space->top; tombs++; } } } for (std::vector::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++) { LocalMemSpace *space = *i; uintptr_t size = space->allocatedSpace(); // It looks as though the mutable size generally gets // overestimated while the immutable size is correct. if (space->isMutable) { MutSizes sizeMut; sizeMut.ScanAddressesInRegion(space->bottom, space->lowerAllocPtr); sizeMut.ScanAddressesInRegion(space->upperAllocPtr, space->top); defaultNoOverSize += sizeMut.noOverSize / 4; defaultMutSize += sizeMut.mutSize / 4; } else defaultImmSize += size/2; } for (std::vector::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++) { CodeSpace *space = *i; uintptr_t size = space->spaceSize(); defaultCodeSize += size/2; } if (isExport) { // Minimum 1M words. if (defaultMutSize < 1024*1024) defaultMutSize = 1024*1024; if (defaultImmSize < 1024*1024) defaultImmSize = 1024*1024; if (defaultCodeSize < 1024*1024) defaultCodeSize = 1024*1024; #ifdef MACOSX // Limit the segment size for Mac OS X. The linker has a limit of 2^24 relocations // in a segment so this is a crude way of ensuring the limit isn't exceeded. // It's unlikely to be exceeded by the code itself. // Actually, from trial-and-error, the limit seems to be around 6M. if (defaultMutSize > 6 * 1024 * 1024) defaultMutSize = 6 * 1024 * 1024; if (defaultImmSize > 6 * 1024 * 1024) defaultImmSize = 6 * 1024 * 1024; #endif if (defaultNoOverSize < 4096) defaultNoOverSize = 4096; // Except for the no-overwrite area } else { // Much smaller minimum sizes for saved states. if (defaultMutSize < 1024) defaultMutSize = 1024; if (defaultImmSize < 4096) defaultImmSize = 4096; if (defaultCodeSize < 4096) defaultCodeSize = 4096; if (defaultNoOverSize < 4096) defaultNoOverSize = 4096; // Set maximum sizes as well. We may have insufficient contiguous space for // very large areas. if (defaultMutSize > 1024 * 1024) defaultMutSize = 1024 * 1024; if (defaultImmSize > 1024 * 1024) defaultImmSize = 1024 * 1024; if (defaultCodeSize > 1024 * 1024) defaultCodeSize = 1024 * 1024; if (defaultNoOverSize > 1024 * 1024) defaultNoOverSize = 1024 * 1024; } if (debugOptions & DEBUG_SAVING) Log("SAVE: Copyscan default sizes: Immutable: %" POLYUFMT ", Mutable: %" POLYUFMT ", Code: %" POLYUFMT ", No-overwrite %" POLYUFMT ".\n", defaultImmSize, defaultMutSize, defaultCodeSize, defaultNoOverSize); } CopyScan::~CopyScan() { gMem.DeleteExportSpaces(); if (graveYard) delete[](graveYard); } // This function is called for each address in an object // once it has been copied to its new location. We copy first // then scan to update the addresses. POLYUNSIGNED CopyScan::ScanAddressAt(PolyWord *pt) { PolyWord val = *pt; // Ignore integers. if (IS_INT(val) || val == PolyWord::FromUnsigned(0)) return 0; PolyObject *obj = val.AsObjPtr(); POLYUNSIGNED l = ScanAddress(&obj); *pt = obj; return l; } // This function is called for each address in an object // once it has been copied to its new location. We copy first // then scan to update the addresses. POLYUNSIGNED CopyScan::ScanAddress(PolyObject **pt) { PolyObject *obj = *pt; MemSpace *space = gMem.SpaceForObjectAddress(obj); ASSERT(space != 0); // We may sometimes get addresses that have already been updated // to point to the new area. e.g. (only?) in the case of constants // that have been updated in ScanConstantsWithinCode. if (space->spaceType == ST_EXPORT) return 0; // If this is at a lower level than the hierarchy we are saving // then leave it untouched. if (space->spaceType == ST_PERMANENT) { PermanentMemSpace *pmSpace = (PermanentMemSpace*)space; if (pmSpace->hierarchy < hierarchy) return 0; } // Have we already scanned this? if (obj->ContainsForwardingPtr()) { // Update the address to the new value. #ifdef POLYML32IN64 PolyObject *newAddr; if (space->isCode) newAddr = (PolyObject*)(globalCodeBase + ((obj->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else newAddr = obj->GetForwardingPtr(); #else PolyObject *newAddr = obj->GetForwardingPtr(); #endif *pt = newAddr; return 0; // No need to scan it again. } else if (space->spaceType == ST_PERMANENT) { // See if we have this in the grave-yard. for (unsigned i = 0; i < tombs; i++) { GraveYard *g = &graveYard[i]; if ((PolyWord*)obj >= g->startAddr && (PolyWord*)obj < g->endAddr) { PolyWord *tombAddr = g->graves + ((PolyWord*)obj - g->startAddr); PolyObject *tombObject = (PolyObject*)tombAddr; if (tombObject->ContainsForwardingPtr()) { #ifdef POLYML32IN64 PolyObject *newAddr; if (space->isCode) newAddr = (PolyObject*)(globalCodeBase + ((tombObject->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else newAddr = tombObject->GetForwardingPtr(); #else PolyObject *newAddr = tombObject->GetForwardingPtr(); #endif *pt = newAddr; return 0; } break; // No need to look further } } } // No, we need to copy it. ASSERT(space->spaceType == ST_LOCAL || space->spaceType == ST_PERMANENT || space->spaceType == ST_CODE); POLYUNSIGNED lengthWord = obj->LengthWord(); POLYUNSIGNED words = OBJ_OBJECT_LENGTH(lengthWord); PolyObject *newObj = 0; - PolyObject* writeAble = 0; + PolyObject* writAble = 0; bool isMutableObj = obj->IsMutable(); bool isNoOverwrite = false; - bool isByteObj = false; + bool isByteObj = obj->IsByteObject(); bool isCodeObj = false; if (isMutableObj) - { isNoOverwrite = obj->IsNoOverwriteObject(); - isByteObj = obj->IsByteObject(); - } else isCodeObj = obj->IsCodeObject(); // Allocate a new address for the object. for (std::vector::iterator i = gMem.eSpaces.begin(); i < gMem.eSpaces.end(); i++) { PermanentMemSpace *space = *i; if (isMutableObj == space->isMutable && isNoOverwrite == space->noOverwrite && isByteObj == space->byteOnly && isCodeObj == space->isCode) { ASSERT(space->topPointer <= space->top && space->topPointer >= space->bottom); size_t spaceLeft = space->top - space->topPointer; if (spaceLeft > words) { newObj = (PolyObject*)(space->topPointer + 1); - writeAble = space->writeAble(newObj); + writAble = space->writeAble(newObj); space->topPointer += words + 1; #ifdef POLYML32IN64 // Maintain the odd-word alignment of topPointer if ((words & 1) == 0 && space->topPointer < space->top) { *space->writeAble(space->topPointer) = PolyWord::FromUnsigned(0); space->topPointer++; } #endif break; } } } if (newObj == 0) { // Didn't find room in the existing spaces. Create a new space. uintptr_t spaceWords; if (isMutableObj) { if (isNoOverwrite) spaceWords = defaultNoOverSize; else spaceWords = defaultMutSize; } else { if (isCodeObj) spaceWords = defaultCodeSize; else spaceWords = defaultImmSize; } if (spaceWords <= words) spaceWords = words + 1; // Make sure there's space for this object. PermanentMemSpace *space = gMem.NewExportSpace(spaceWords, isMutableObj, isNoOverwrite, isCodeObj); if (isByteObj) space->byteOnly = true; if (space == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to allocate export space, size: %lu.\n", spaceWords); // Unable to allocate this. throw MemoryException(); } newObj = (PolyObject*)(space->topPointer + 1); - writeAble = space->writeAble(newObj); + writAble = space->writeAble(newObj); space->topPointer += words + 1; #ifdef POLYML32IN64 // Maintain the odd-word alignment of topPointer if ((words & 1) == 0 && space->topPointer < space->top) { *space->writeAble(space->topPointer) = PolyWord::FromUnsigned(0); space->topPointer++; } #endif ASSERT(space->topPointer <= space->top && space->topPointer >= space->bottom); } - writeAble->SetLengthWord(lengthWord); // copy length word + writAble->SetLengthWord(lengthWord); // copy length word if (hierarchy == 0 /* Exporting object module */ && isNoOverwrite && isMutableObj && !isByteObj) { // These are not exported. They are used for special values e.g. mutexes // that should be set to 0/nil/NONE at start-up. // Weak+No-overwrite byte objects are used for entry points and volatiles // in the foreign-function interface and have to be treated specially. // Note: this must not be done when exporting a saved state because the // copied version is used as the local data for the rest of the session. for (POLYUNSIGNED i = 0; i < words; i++) - writeAble->Set(i, TAGGED(0)); + writAble->Set(i, TAGGED(0)); } - else memcpy(writeAble, obj, words * sizeof(PolyWord)); + else memcpy(writAble, obj, words * sizeof(PolyWord)); if (space->spaceType == ST_PERMANENT && !space->isMutable && ((PermanentMemSpace*)space)->hierarchy == 0) { // The immutable permanent areas are read-only. unsigned m; for (m = 0; m < tombs; m++) { GraveYard *g = &graveYard[m]; if ((PolyWord*)obj >= g->startAddr && (PolyWord*)obj < g->endAddr) { PolyWord *tombAddr = g->graves + ((PolyWord*)obj - g->startAddr); PolyObject *tombObject = (PolyObject*)tombAddr; #ifdef POLYML32IN64 if (isCodeObj) { POLYUNSIGNED ll = (POLYUNSIGNED)(((PolyWord*)newObj - globalCodeBase) >> 1 | _OBJ_TOMBSTONE_BIT); tombObject->SetLengthWord(ll); } else tombObject->SetForwardingPtr(newObj); #else tombObject->SetForwardingPtr(newObj); #endif break; // No need to look further } } ASSERT(m < tombs); // Should be there. } else if (isCodeObj) #ifdef POLYML32IN64 // If this is a code address we can't use the usual forwarding pointer format. // Instead we have to compute the offset relative to the base of the code. { POLYUNSIGNED ll = (POLYUNSIGNED)(((PolyWord*)newObj-globalCodeBase) >> 1 | _OBJ_TOMBSTONE_BIT); gMem.SpaceForObjectAddress(obj)->writeAble(obj)->SetLengthWord(ll); } #else gMem.SpaceForObjectAddress(obj)->writeAble(obj)->SetForwardingPtr(newObj); #endif else obj->SetForwardingPtr(newObj); // Put forwarding pointer in old object. if (OBJ_IS_CODE_OBJECT(lengthWord)) { // We don't need to worry about flushing the instruction cache // since we're not going to execute this code here. // We do have to update any relative addresses within the code // to take account of its new position. We have to do that now // even though ScanAddressesInObject will do it again because this // is the only point where we have both the old and the new addresses. machineDependent->ScanConstantsWithinCode(newObj, obj, words, this); } *pt = newObj; // Update it to the newly copied object. return lengthWord; // This new object needs to be scanned. } // The address of code in the code area. We treat this as a normal heap cell. // We will probably need to copy this and to process addresses within it. POLYUNSIGNED CopyScan::ScanCodeAddressAt(PolyObject **pt) { POLYUNSIGNED lengthWord = ScanAddress(pt); if (lengthWord) ScanAddressesInObject(*pt, lengthWord); return 0; } PolyObject *CopyScan::ScanObjectAddress(PolyObject *base) { PolyWord val = base; // Scan this as an address. POLYUNSIGNED lengthWord = CopyScan::ScanAddressAt(&val); if (lengthWord) ScanAddressesInObject(val.AsObjPtr(), lengthWord); return val.AsObjPtr(); } #define MAX_EXTENSION 4 // The longest extension we may need to add is ".obj" // Convert the forwarding pointers in a region back into length words. // Generally if this object has a forwarding pointer that's // because we've moved it into the export region. We can, // though, get multiple levels of forwarding if there is an object // that has been shifted up by a garbage collection, leaving a forwarding // pointer and then that object has been moved to the export region. // We mustn't turn locally forwarded values back into ordinary objects // because they could contain addresses that are no longer valid. static POLYUNSIGNED GetObjLength(PolyObject *obj) { if (obj->ContainsForwardingPtr()) { PolyObject *forwardedTo; #ifdef POLYML32IN64 { MemSpace *space = gMem.SpaceForObjectAddress(obj); if (space->isCode) forwardedTo = (PolyObject*)(globalCodeBase + ((obj->LengthWord() & ~_OBJ_TOMBSTONE_BIT) << 1)); else forwardedTo = obj->GetForwardingPtr(); } #else forwardedTo = obj->GetForwardingPtr(); #endif POLYUNSIGNED length = GetObjLength(forwardedTo); MemSpace *space = gMem.SpaceForObjectAddress(forwardedTo); if (space->spaceType == ST_EXPORT) gMem.SpaceForObjectAddress(obj)->writeAble(obj)->SetLengthWord(length); return length; } else { ASSERT(obj->ContainsNormalLengthWord()); return obj->LengthWord(); } } static void FixForwarding(PolyWord *pt, size_t space) { while (space) { pt++; PolyObject *obj = (PolyObject*)pt; #ifdef POLYML32IN64 if ((uintptr_t)obj & 4) { // Skip filler words needed to align to an even word space--; continue; // We've added 1 to pt so just loop. } #endif size_t length = OBJ_OBJECT_LENGTH(GetObjLength(obj)); pt += length; ASSERT(space > length); space -= length+1; } } class ExportRequest: public MainThreadRequest { public: ExportRequest(Handle root, Exporter *exp): MainThreadRequest(MTP_EXPORTING), exportRoot(root), exporter(exp) {} virtual void Perform() { exporter->RunExport(exportRoot->WordP()); } Handle exportRoot; Exporter *exporter; }; static void exporter(TaskData *taskData, Handle fileName, Handle root, const TCHAR *extension, Exporter *exports) { size_t extLen = _tcslen(extension); TempString fileNameBuff(Poly_string_to_T_alloc(fileName->Word(), extLen)); if (fileNameBuff == NULL) raise_syscall(taskData, "Insufficient memory", NOMEMORY); size_t length = _tcslen(fileNameBuff); // Does it already have the extension? If not add it on. if (length < extLen || _tcscmp(fileNameBuff + length - extLen, extension) != 0) _tcscat(fileNameBuff, extension); #if (defined(_WIN32) && defined(UNICODE)) exports->exportFile = _wfopen(fileNameBuff, L"wb"); #else exports->exportFile = fopen(fileNameBuff, "wb"); #endif if (exports->exportFile == NULL) raise_syscall(taskData, "Cannot open export file", ERRORNUMBER); // Request a full GC to reduce the size of fix-ups. FullGC(taskData); // Request the main thread to do the export. ExportRequest request(root, exports); processes->MakeRootRequest(taskData, &request); if (exports->errorMessage) raise_fail(taskData, exports->errorMessage); } // This is called by the initial thread to actually do the export. void Exporter::RunExport(PolyObject *rootFunction) { Exporter *exports = this; PolyObject *copiedRoot = 0; CopyScan copyScan(hierarchy); try { copyScan.initialise(); // Copy the root and everything reachable from it into the temporary area. copiedRoot = copyScan.ScanObjectAddress(rootFunction); } catch (MemoryException &) { // If we ran out of memory. copiedRoot = 0; } // Fix the forwarding pointers. for (std::vector::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++) { LocalMemSpace *space = *i; // Local areas only have objects from the allocation pointer to the top. FixForwarding(space->bottom, space->lowerAllocPtr - space->bottom); FixForwarding(space->upperAllocPtr, space->top - space->upperAllocPtr); } for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { MemSpace *space = *i; // Permanent areas are filled with objects from the bottom. FixForwarding(space->bottom, space->top - space->bottom); } for (std::vector::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++) { MemSpace *space = *i; // Code areas are filled with objects from the bottom. FixForwarding(space->bottom, space->top - space->bottom); } // Reraise the exception after cleaning up the forwarding pointers. if (copiedRoot == 0) { exports->errorMessage = "Insufficient Memory"; return; } // Copy the areas into the export object. size_t tableEntries = gMem.eSpaces.size(); unsigned memEntry = 0; if (hierarchy != 0) tableEntries += gMem.pSpaces.size(); exports->memTable = new memoryTableEntry[tableEntries]; // If we're constructing a module we need to include the global spaces. if (hierarchy != 0) { // Permanent spaces from the executable. for (std::vector::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++) { PermanentMemSpace *space = *i; if (space->hierarchy < hierarchy) { memoryTableEntry *entry = &exports->memTable[memEntry++]; entry->mtOriginalAddr = entry->mtCurrentAddr = space->bottom; entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord); entry->mtIndex = space->index; entry->mtFlags = 0; if (space->isMutable) entry->mtFlags |= MTF_WRITEABLE; if (space->isCode) entry->mtFlags |= MTF_EXECUTABLE; } } newAreas = memEntry; } for (std::vector::iterator i = gMem.eSpaces.begin(); i < gMem.eSpaces.end(); i++) { memoryTableEntry *entry = &exports->memTable[memEntry++]; PermanentMemSpace *space = *i; entry->mtOriginalAddr = entry->mtCurrentAddr = space->bottom; entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord); entry->mtIndex = hierarchy == 0 ? memEntry-1 : space->index; entry->mtFlags = 0; if (space->isMutable) { entry->mtFlags = MTF_WRITEABLE; if (space->noOverwrite) entry->mtFlags |= MTF_NO_OVERWRITE; } if (space->isCode) entry->mtFlags |= MTF_EXECUTABLE; if (space->byteOnly) entry->mtFlags |= MTF_BYTES; } ASSERT(memEntry == tableEntries); exports->memTableEntries = memEntry; exports->rootFunction = copiedRoot; try { // This can raise MemoryException at least in PExport::exportStore. exports->exportStore(); } catch (MemoryException &) { exports->errorMessage = "Insufficient Memory"; } } // Functions called via the RTS call. Handle exportNative(TaskData *taskData, Handle args) { #ifdef HAVE_PECOFF // Windows including Cygwin #if (defined(_WIN32)) const TCHAR *extension = _T(".obj"); // Windows #else const char *extension = ".o"; // Cygwin #endif PECOFFExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), extension, &exports); #elif defined(HAVE_ELF_H) || defined(HAVE_ELF_ABI_H) // Most Unix including Linux, FreeBSD and Solaris. const char *extension = ".o"; ELFExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), extension, &exports); #elif defined(HAVE_MACH_O_RELOC_H) // Mac OS-X const char *extension = ".o"; MachoExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), extension, &exports); #else raise_exception_string (taskData, EXC_Fail, "Native export not available for this platform"); #endif return taskData->saveVec.push(TAGGED(0)); } Handle exportPortable(TaskData *taskData, Handle args) { PExport exports; exporter(taskData, taskData->saveVec.push(args->WordP()->Get(0)), taskData->saveVec.push(args->WordP()->Get(1)), _T(".txt"), &exports); return taskData->saveVec.push(TAGGED(0)); } POLYUNSIGNED PolyExport(FirstArgument threadId, PolyWord fileName, PolyWord root) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedName = taskData->saveVec.push(fileName); Handle pushedRoot = taskData->saveVec.push(root); try { #ifdef HAVE_PECOFF // Windows including Cygwin #if (defined(_WIN32)) const TCHAR *extension = _T(".obj"); // Windows #else const char *extension = ".o"; // Cygwin #endif PECOFFExport exports; exporter(taskData, pushedName, pushedRoot, extension, &exports); #elif defined(HAVE_ELF_H) || defined(HAVE_ELF_ABI_H) // Most Unix including Linux, FreeBSD and Solaris. const char *extension = ".o"; ELFExport exports; exporter(taskData, pushedName, pushedRoot, extension, &exports); #elif defined(HAVE_MACH_O_RELOC_H) // Mac OS-X const char *extension = ".o"; MachoExport exports; exporter(taskData, pushedName, pushedRoot, extension, &exports); #else raise_exception_string (taskData, EXC_Fail, "Native export not available for this platform"); #endif } catch (...) { } // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); // Returns unit } POLYUNSIGNED PolyExportPortable(FirstArgument threadId, PolyWord fileName, PolyWord root) { TaskData *taskData = TaskData::FindTaskForId(threadId); ASSERT(taskData != 0); taskData->PreRTSCall(); Handle reset = taskData->saveVec.mark(); Handle pushedName = taskData->saveVec.push(fileName); Handle pushedRoot = taskData->saveVec.push(root); try { PExport exports; exporter(taskData, pushedName, pushedRoot, _T(".txt"), &exports); } catch (...) { } // If an ML exception is raised taskData->saveVec.reset(reset); taskData->PostRTSCall(); return TAGGED(0).AsUnsigned(); // Returns unit } // Helper functions for exporting. We need to produce relocation information // and this code is common to every method. Exporter::Exporter(unsigned int h): exportFile(NULL), errorMessage(0), hierarchy(h), memTable(0), newAreas(0) { } Exporter::~Exporter() { delete[](memTable); if (exportFile) fclose(exportFile); } void Exporter::relocateValue(PolyWord *pt) { #ifndef POLYML32IN64 PolyWord q = *pt; if (IS_INT(q) || q == PolyWord::FromUnsigned(0)) {} else createRelocation(pt); #endif } void Exporter::createRelocation(PolyWord* pt) { *gMem.SpaceForAddress(pt)->writeAble(pt) = createRelocation(*pt, pt); } // Check through the areas to see where the address is. It must be // in one of them. unsigned Exporter::findArea(void *p) { for (unsigned i = 0; i < memTableEntries; i++) { if (p > memTable[i].mtOriginalAddr && p <= (char*)memTable[i].mtOriginalAddr + memTable[i].mtLength) return i; } { ASSERT(0); } return 0; } void Exporter::relocateObject(PolyObject *p) { if (p->IsByteObject()) { if (p->IsMutable() && p->IsWeakRefObject()) { // Weak mutable byte refs are used for external references and // also in the FFI for non-persistent values. bool isFuncPtr = true; const char *entryName = getEntryPointName(p, &isFuncPtr); if (entryName != 0) addExternalReference(p, entryName, isFuncPtr); // Clear the first word of the data. ASSERT(p->Length() >= sizeof(uintptr_t)/sizeof(PolyWord)); *(uintptr_t*)p = 0; } } else if (p->IsCodeObject()) { POLYUNSIGNED constCount; PolyWord *cp; ASSERT(! p->IsMutable() ); p->GetConstSegmentForCode(cp, constCount); /* Now the constants. */ for (POLYUNSIGNED i = 0; i < constCount; i++) relocateValue(&(cp[i])); } else if (p->IsClosureObject()) { #ifndef POLYML32IN64 ASSERT(0); #endif // This should only be used in 32-in-64 where we don't use relocations. } else /* Ordinary objects, essentially tuples. */ { POLYUNSIGNED length = p->Length(); for (POLYUNSIGNED i = 0; i < length; i++) relocateValue(p->Offset(i)); } } ExportStringTable::ExportStringTable(): strings(0), stringSize(0), stringAvailable(0) { } ExportStringTable::~ExportStringTable() { free(strings); } // Add a string to the string table, growing it if necessary. unsigned long ExportStringTable::makeEntry(const char *str) { unsigned len = (unsigned)strlen(str); unsigned long entry = stringSize; if (stringSize + len + 1 > stringAvailable) { stringAvailable = stringAvailable+stringAvailable/2; if (stringAvailable < stringSize + len + 1) stringAvailable = stringSize + len + 1 + 500; char* newStrings = (char*)realloc(strings, stringAvailable); if (newStrings == 0) { if (debugOptions & DEBUG_SAVING) Log("SAVE: Unable to realloc string table, size: %lu.\n", stringAvailable); throw MemoryException(); } else strings = newStrings; } strcpy(strings + stringSize, str); stringSize += len + 1; return entry; } struct _entrypts exporterEPT[] = { { "PolyExport", (polyRTSFunction)&PolyExport}, { "PolyExportPortable", (polyRTSFunction)&PolyExportPortable}, { NULL, NULL} // End of list. };