diff --git a/src/HOL/Analysis/Elementary_Topology.thy b/src/HOL/Analysis/Elementary_Topology.thy --- a/src/HOL/Analysis/Elementary_Topology.thy +++ b/src/HOL/Analysis/Elementary_Topology.thy @@ -1,2660 +1,2693 @@ (* Author: L C Paulson, University of Cambridge Author: Amine Chaieb, University of Cambridge Author: Robert Himmelmann, TU Muenchen Author: Brian Huffman, Portland State University *) chapter \Topology\ theory Elementary_Topology imports "HOL-Library.Set_Idioms" "HOL-Library.Disjoint_Sets" Product_Vector begin section \Elementary Topology\ subsubsection\<^marker>\tag unimportant\ \Affine transformations of intervals\ lemma real_affinity_le: "0 < m \ m * x + c \ y \ x \ inverse m * y + - (c / m)" for m :: "'a::linordered_field" by (simp add: field_simps) lemma real_le_affinity: "0 < m \ y \ m * x + c \ inverse m * y + - (c / m) \ x" for m :: "'a::linordered_field" by (simp add: field_simps) lemma real_affinity_lt: "0 < m \ m * x + c < y \ x < inverse m * y + - (c / m)" for m :: "'a::linordered_field" by (simp add: field_simps) lemma real_lt_affinity: "0 < m \ y < m * x + c \ inverse m * y + - (c / m) < x" for m :: "'a::linordered_field" by (simp add: field_simps) lemma real_affinity_eq: "m \ 0 \ m * x + c = y \ x = inverse m * y + - (c / m)" for m :: "'a::linordered_field" by (simp add: field_simps) lemma real_eq_affinity: "m \ 0 \ y = m * x + c \ inverse m * y + - (c / m) = x" for m :: "'a::linordered_field" by (simp add: field_simps) subsection \Topological Basis\ context topological_space begin definition\<^marker>\tag important\ "topological_basis B \ (\b\B. open b) \ (\x. open x \ (\B'. B' \ B \ \B' = x))" lemma topological_basis: "topological_basis B \ (\x. open x \ (\B'. B' \ B \ \B' = x))" unfolding topological_basis_def apply safe apply fastforce apply fastforce apply (erule_tac x=x in allE, simp) apply (rule_tac x="{x}" in exI, auto) done lemma topological_basis_iff: assumes "\B'. B' \ B \ open B'" shows "topological_basis B \ (\O'. open O' \ (\x\O'. \B'\B. x \ B' \ B' \ O'))" (is "_ \ ?rhs") proof safe fix O' and x::'a assume H: "topological_basis B" "open O'" "x \ O'" then have "(\B'\B. \B' = O')" by (simp add: topological_basis_def) then obtain B' where "B' \ B" "O' = \B'" by auto then show "\B'\B. x \ B' \ B' \ O'" using H by auto next assume H: ?rhs show "topological_basis B" using assms unfolding topological_basis_def proof safe fix O' :: "'a set" assume "open O'" with H obtain f where "\x\O'. f x \ B \ x \ f x \ f x \ O'" by (force intro: bchoice simp: Bex_def) then show "\B'\B. \B' = O'" by (auto intro: exI[where x="{f x |x. x \ O'}"]) qed qed lemma topological_basisI: assumes "\B'. B' \ B \ open B'" and "\O' x. open O' \ x \ O' \ \B'\B. x \ B' \ B' \ O'" shows "topological_basis B" using assms by (subst topological_basis_iff) auto lemma topological_basisE: fixes O' assumes "topological_basis B" and "open O'" and "x \ O'" obtains B' where "B' \ B" "x \ B'" "B' \ O'" proof atomize_elim from assms have "\B'. B'\B \ open B'" by (simp add: topological_basis_def) with topological_basis_iff assms show "\B'. B' \ B \ x \ B' \ B' \ O'" using assms by (simp add: Bex_def) qed lemma topological_basis_open: assumes "topological_basis B" and "X \ B" shows "open X" using assms by (simp add: topological_basis_def) lemma topological_basis_imp_subbasis: assumes B: "topological_basis B" shows "open = generate_topology B" proof (intro ext iffI) fix S :: "'a set" assume "open S" with B obtain B' where "B' \ B" "S = \B'" unfolding topological_basis_def by blast then show "generate_topology B S" by (auto intro: generate_topology.intros dest: topological_basis_open) next fix S :: "'a set" assume "generate_topology B S" then show "open S" by induct (auto dest: topological_basis_open[OF B]) qed lemma basis_dense: fixes B :: "'a set set" and f :: "'a set \ 'a" assumes "topological_basis B" and choosefrom_basis: "\B'. B' \ {} \ f B' \ B'" shows "\X. open X \ X \ {} \ (\B' \ B. f B' \ X)" proof (intro allI impI) fix X :: "'a set" assume "open X" and "X \ {}" from topological_basisE[OF \topological_basis B\ \open X\ choosefrom_basis[OF \X \ {}\]] obtain B' where "B' \ B" "f X \ B'" "B' \ X" . then show "\B'\B. f B' \ X" by (auto intro!: choosefrom_basis) qed end lemma topological_basis_prod: assumes A: "topological_basis A" and B: "topological_basis B" shows "topological_basis ((\(a, b). a \ b) ` (A \ B))" unfolding topological_basis_def proof (safe, simp_all del: ex_simps add: subset_image_iff ex_simps(1)[symmetric]) fix S :: "('a \ 'b) set" assume "open S" then show "\X\A \ B. (\(a,b)\X. a \ b) = S" proof (safe intro!: exI[of _ "{x\A \ B. fst x \ snd x \ S}"]) fix x y assume "(x, y) \ S" from open_prod_elim[OF \open S\ this] obtain a b where a: "open a""x \ a" and b: "open b" "y \ b" and "a \ b \ S" by (metis mem_Sigma_iff) moreover from A a obtain A0 where "A0 \ A" "x \ A0" "A0 \ a" by (rule topological_basisE) moreover from B b obtain B0 where "B0 \ B" "y \ B0" "B0 \ b" by (rule topological_basisE) ultimately show "(x, y) \ (\(a, b)\{X \ A \ B. fst X \ snd X \ S}. a \ b)" by (intro UN_I[of "(A0, B0)"]) auto qed auto qed (metis A B topological_basis_open open_Times) subsection \Countable Basis\ locale\<^marker>\tag important\ countable_basis = topological_space p for p::"'a set \ bool" + fixes B :: "'a set set" assumes is_basis: "topological_basis B" and countable_basis: "countable B" begin lemma open_countable_basis_ex: assumes "p X" shows "\B' \ B. X = \B'" using assms countable_basis is_basis unfolding topological_basis_def by blast lemma open_countable_basisE: assumes "p X" obtains B' where "B' \ B" "X = \B'" using assms open_countable_basis_ex by atomize_elim simp lemma countable_dense_exists: "\D::'a set. countable D \ (\X. p X \ X \ {} \ (\d \ D. d \ X))" proof - let ?f = "(\B'. SOME x. x \ B')" have "countable (?f ` B)" using countable_basis by simp with basis_dense[OF is_basis, of ?f] show ?thesis by (intro exI[where x="?f ` B"]) (metis (mono_tags) all_not_in_conv imageI someI) qed lemma countable_dense_setE: obtains D :: "'a set" where "countable D" "\X. p X \ X \ {} \ \d \ D. d \ X" using countable_dense_exists by blast end lemma countable_basis_openI: "countable_basis open B" if "countable B" "topological_basis B" using that by unfold_locales (simp_all add: topological_basis topological_space.topological_basis topological_space_axioms) lemma (in first_countable_topology) first_countable_basisE: fixes x :: 'a obtains \ where "countable \" "\A. A \ \ \ x \ A" "\A. A \ \ \ open A" "\S. open S \ x \ S \ (\A\\. A \ S)" proof - obtain \ where \: "(\i::nat. x \ \ i \ open (\ i))" "(\S. open S \ x \ S \ (\i. \ i \ S))" using first_countable_basis[of x] by metis show thesis proof show "countable (range \)" by simp qed (use \ in auto) qed lemma (in first_countable_topology) first_countable_basis_Int_stableE: obtains \ where "countable \" "\A. A \ \ \ x \ A" "\A. A \ \ \ open A" "\S. open S \ x \ S \ (\A\\. A \ S)" "\A B. A \ \ \ B \ \ \ A \ B \ \" proof atomize_elim obtain \ where \: "countable \" "\B. B \ \ \ x \ B" "\B. B \ \ \ open B" "\S. open S \ x \ S \ \B\\. B \ S" by (rule first_countable_basisE) blast define \ where [abs_def]: "\ = (\N. \((\n. from_nat_into \ n) ` N)) ` (Collect finite::nat set set)" then show "\\. countable \ \ (\A. A \ \ \ x \ A) \ (\A. A \ \ \ open A) \ (\S. open S \ x \ S \ (\A\\. A \ S)) \ (\A B. A \ \ \ B \ \ \ A \ B \ \)" proof (safe intro!: exI[where x=\]) show "countable \" unfolding \_def by (intro countable_image countable_Collect_finite) fix A assume "A \ \" then show "x \ A" "open A" using \(4)[OF open_UNIV] by (auto simp: \_def intro: \ from_nat_into) next let ?int = "\N. \(from_nat_into \ ` N)" fix A B assume "A \ \" "B \ \" then obtain N M where "A = ?int N" "B = ?int M" "finite (N \ M)" by (auto simp: \_def) then show "A \ B \ \" by (auto simp: \_def intro!: image_eqI[where x="N \ M"]) next fix S assume "open S" "x \ S" then obtain a where a: "a\\" "a \ S" using \ by blast then show "\a\\. a \ S" using a \ by (intro bexI[where x=a]) (auto simp: \_def intro: image_eqI[where x="{to_nat_on \ a}"]) qed qed lemma (in topological_space) first_countableI: assumes "countable \" and 1: "\A. A \ \ \ x \ A" "\A. A \ \ \ open A" and 2: "\S. open S \ x \ S \ \A\\. A \ S" shows "\\::nat \ 'a set. (\i. x \ \ i \ open (\ i)) \ (\S. open S \ x \ S \ (\i. \ i \ S))" proof (safe intro!: exI[of _ "from_nat_into \"]) fix i have "\ \ {}" using 2[of UNIV] by auto show "x \ from_nat_into \ i" "open (from_nat_into \ i)" using range_from_nat_into_subset[OF \\ \ {}\] 1 by auto next fix S assume "open S" "x\S" from 2[OF this] show "\i. from_nat_into \ i \ S" using subset_range_from_nat_into[OF \countable \\] by auto qed instance prod :: (first_countable_topology, first_countable_topology) first_countable_topology proof fix x :: "'a \ 'b" obtain \ where \: "countable \" "\a. a \ \ \ fst x \ a" "\a. a \ \ \ open a" "\S. open S \ fst x \ S \ \a\\. a \ S" by (rule first_countable_basisE[of "fst x"]) blast obtain B where B: "countable B" "\a. a \ B \ snd x \ a" "\a. a \ B \ open a" "\S. open S \ snd x \ S \ \a\B. a \ S" by (rule first_countable_basisE[of "snd x"]) blast show "\\::nat \ ('a \ 'b) set. (\i. x \ \ i \ open (\ i)) \ (\S. open S \ x \ S \ (\i. \ i \ S))" proof (rule first_countableI[of "(\(a, b). a \ b) ` (\ \ B)"], safe) fix a b assume x: "a \ \" "b \ B" show "x \ a \ b" by (simp add: \(2) B(2) mem_Times_iff x) show "open (a \ b)" by (simp add: \(3) B(3) open_Times x) next fix S assume "open S" "x \ S" then obtain a' b' where a'b': "open a'" "open b'" "x \ a' \ b'" "a' \ b' \ S" by (rule open_prod_elim) moreover from a'b' \(4)[of a'] B(4)[of b'] obtain a b where "a \ \" "a \ a'" "b \ B" "b \ b'" by auto ultimately show "\a\(\(a, b). a \ b) ` (\ \ B). a \ S" by (auto intro!: bexI[of _ "a \ b"] bexI[of _ a] bexI[of _ b]) qed (simp add: \ B) qed class second_countable_topology = topological_space + assumes ex_countable_subbasis: "\B::'a set set. countable B \ open = generate_topology B" begin lemma ex_countable_basis: "\B::'a set set. countable B \ topological_basis B" proof - from ex_countable_subbasis obtain B where B: "countable B" "open = generate_topology B" by blast let ?B = "Inter ` {b. finite b \ b \ B }" show ?thesis proof (intro exI conjI) show "countable ?B" by (intro countable_image countable_Collect_finite_subset B) { fix S assume "open S" then have "\B'\{b. finite b \ b \ B}. (\b\B'. \b) = S" unfolding B proof induct case UNIV show ?case by (intro exI[of _ "{{}}"]) simp next case (Int a b) then obtain x y where x: "a = \(Inter ` x)" "\i. i \ x \ finite i \ i \ B" and y: "b = \(Inter ` y)" "\i. i \ y \ finite i \ i \ B" by blast show ?case unfolding x y Int_UN_distrib2 by (intro exI[of _ "{i \ j| i j. i \ x \ j \ y}"]) (auto dest: x(2) y(2)) next case (UN K) then have "\k\K. \B'\{b. finite b \ b \ B}. \ (Inter ` B') = k" by auto then obtain k where "\ka\K. k ka \ {b. finite b \ b \ B} \ \(Inter ` (k ka)) = ka" unfolding bchoice_iff .. then show "\B'\{b. finite b \ b \ B}. \ (Inter ` B') = \K" by (intro exI[of _ "\(k ` K)"]) auto next case (Basis S) then show ?case by (intro exI[of _ "{{S}}"]) auto qed then have "(\B'\Inter ` {b. finite b \ b \ B}. \B' = S)" unfolding subset_image_iff by blast } then show "topological_basis ?B" unfolding topological_basis_def by (safe intro!: open_Inter) (simp_all add: B generate_topology.Basis subset_eq) qed qed end lemma univ_second_countable: obtains \ :: "'a::second_countable_topology set set" where "countable \" "\C. C \ \ \ open C" "\S. open S \ \U. U \ \ \ S = \U" by (metis ex_countable_basis topological_basis_def) proposition Lindelof: fixes \ :: "'a::second_countable_topology set set" assumes \: "\S. S \ \ \ open S" obtains \' where "\' \ \" "countable \'" "\\' = \\" proof - obtain \ :: "'a set set" where "countable \" "\C. C \ \ \ open C" and \: "\S. open S \ \U. U \ \ \ S = \U" using univ_second_countable by blast define \ where "\ \ {S. S \ \ \ (\U. U \ \ \ S \ U)}" have "countable \" apply (rule countable_subset [OF _ \countable \\]) apply (force simp: \_def) done have "\S. \U. S \ \ \ U \ \ \ S \ U" by (simp add: \_def) then obtain G where G: "\S. S \ \ \ G S \ \ \ S \ G S" by metis have "\\ \ \\" unfolding \_def by (blast dest: \ \) moreover have "\\ \ \\" using \_def by blast ultimately have eq1: "\\ = \\" .. have eq2: "\\ = \ (G ` \)" using G eq1 by auto show ?thesis apply (rule_tac \' = "G ` \" in that) using G \countable \\ by (auto simp: eq1 eq2) qed lemma countable_disjoint_open_subsets: fixes \ :: "'a::second_countable_topology set set" assumes "\S. S \ \ \ open S" and pw: "pairwise disjnt \" shows "countable \" proof - obtain \' where "\' \ \" "countable \'" "\\' = \\" by (meson assms Lindelof) with pw have "\ \ insert {} \'" by (fastforce simp add: pairwise_def disjnt_iff) then show ?thesis by (simp add: \countable \'\ countable_subset) qed sublocale second_countable_topology < countable_basis "open" "SOME B. countable B \ topological_basis B" using someI_ex[OF ex_countable_basis] by unfold_locales safe instance prod :: (second_countable_topology, second_countable_topology) second_countable_topology proof obtain A :: "'a set set" where "countable A" "topological_basis A" using ex_countable_basis by auto moreover obtain B :: "'b set set" where "countable B" "topological_basis B" using ex_countable_basis by auto ultimately show "\B::('a \ 'b) set set. countable B \ open = generate_topology B" by (auto intro!: exI[of _ "(\(a, b). a \ b) ` (A \ B)"] topological_basis_prod topological_basis_imp_subbasis) qed instance second_countable_topology \ first_countable_topology proof fix x :: 'a define B :: "'a set set" where "B = (SOME B. countable B \ topological_basis B)" then have B: "countable B" "topological_basis B" using countable_basis is_basis by (auto simp: countable_basis is_basis) then show "\A::nat \ 'a set. (\i. x \ A i \ open (A i)) \ (\S. open S \ x \ S \ (\i. A i \ S))" by (intro first_countableI[of "{b\B. x \ b}"]) (fastforce simp: topological_space_class.topological_basis_def)+ qed instance nat :: second_countable_topology proof show "\B::nat set set. countable B \ open = generate_topology B" by (intro exI[of _ "range lessThan \ range greaterThan"]) (auto simp: open_nat_def) qed lemma countable_separating_set_linorder1: shows "\B::('a::{linorder_topology, second_countable_topology} set). countable B \ (\x y. x < y \ (\b \ B. x < b \ b \ y))" proof - obtain A::"'a set set" where "countable A" "topological_basis A" using ex_countable_basis by auto define B1 where "B1 = {(LEAST x. x \ U)| U. U \ A}" then have "countable B1" using \countable A\ by (simp add: Setcompr_eq_image) define B2 where "B2 = {(SOME x. x \ U)| U. U \ A}" then have "countable B2" using \countable A\ by (simp add: Setcompr_eq_image) have "\b \ B1 \ B2. x < b \ b \ y" if "x < y" for x y proof (cases) assume "\z. x < z \ z < y" then obtain z where z: "x < z \ z < y" by auto define U where "U = {x<.. U" using z U_def by simp ultimately obtain V where "V \ A" "z \ V" "V \ U" using topological_basisE[OF \topological_basis A\] by auto define w where "w = (SOME x. x \ V)" then have "w \ V" using \z \ V\ by (metis someI2) then have "x < w \ w \ y" using \w \ V\ \V \ U\ U_def by fastforce moreover have "w \ B1 \ B2" using w_def B2_def \V \ A\ by auto ultimately show ?thesis by auto next assume "\(\z. x < z \ z < y)" then have *: "\z. z > x \ z \ y" by auto define U where "U = {x<..}" then have "open U" by simp moreover have "y \ U" using \x < y\ U_def by simp ultimately obtain "V" where "V \ A" "y \ V" "V \ U" using topological_basisE[OF \topological_basis A\] by auto have "U = {y..}" unfolding U_def using * \x < y\ by auto then have "V \ {y..}" using \V \ U\ by simp then have "(LEAST w. w \ V) = y" using \y \ V\ by (meson Least_equality atLeast_iff subsetCE) then have "y \ B1 \ B2" using \V \ A\ B1_def by auto moreover have "x < y \ y \ y" using \x < y\ by simp ultimately show ?thesis by auto qed moreover have "countable (B1 \ B2)" using \countable B1\ \countable B2\ by simp ultimately show ?thesis by auto qed lemma countable_separating_set_linorder2: shows "\B::('a::{linorder_topology, second_countable_topology} set). countable B \ (\x y. x < y \ (\b \ B. x \ b \ b < y))" proof - obtain A::"'a set set" where "countable A" "topological_basis A" using ex_countable_basis by auto define B1 where "B1 = {(GREATEST x. x \ U) | U. U \ A}" then have "countable B1" using \countable A\ by (simp add: Setcompr_eq_image) define B2 where "B2 = {(SOME x. x \ U)| U. U \ A}" then have "countable B2" using \countable A\ by (simp add: Setcompr_eq_image) have "\b \ B1 \ B2. x \ b \ b < y" if "x < y" for x y proof (cases) assume "\z. x < z \ z < y" then obtain z where z: "x < z \ z < y" by auto define U where "U = {x<.. U" using z U_def by simp ultimately obtain "V" where "V \ A" "z \ V" "V \ U" using topological_basisE[OF \topological_basis A\] by auto define w where "w = (SOME x. x \ V)" then have "w \ V" using \z \ V\ by (metis someI2) then have "x \ w \ w < y" using \w \ V\ \V \ U\ U_def by fastforce moreover have "w \ B1 \ B2" using w_def B2_def \V \ A\ by auto ultimately show ?thesis by auto next assume "\(\z. x < z \ z < y)" then have *: "\z. z < y \ z \ x" using leI by blast define U where "U = {.. U" using \x < y\ U_def by simp ultimately obtain "V" where "V \ A" "x \ V" "V \ U" using topological_basisE[OF \topological_basis A\] by auto have "U = {..x}" unfolding U_def using * \x < y\ by auto then have "V \ {..x}" using \V \ U\ by simp then have "(GREATEST x. x \ V) = x" using \x \ V\ by (meson Greatest_equality atMost_iff subsetCE) then have "x \ B1 \ B2" using \V \ A\ B1_def by auto moreover have "x \ x \ x < y" using \x < y\ by simp ultimately show ?thesis by auto qed moreover have "countable (B1 \ B2)" using \countable B1\ \countable B2\ by simp ultimately show ?thesis by auto qed lemma countable_separating_set_dense_linorder: shows "\B::('a::{linorder_topology, dense_linorder, second_countable_topology} set). countable B \ (\x y. x < y \ (\b \ B. x < b \ b < y))" proof - obtain B::"'a set" where B: "countable B" "\x y. x < y \ (\b \ B. x < b \ b \ y)" using countable_separating_set_linorder1 by auto have "\b \ B. x < b \ b < y" if "x < y" for x y proof - obtain z where "x < z" "z < y" using \x < y\ dense by blast then obtain b where "b \ B" "x < b \ b \ z" using B(2) by auto then have "x < b \ b < y" using \z < y\ by auto then show ?thesis using \b \ B\ by auto qed then show ?thesis using B(1) by auto qed subsection \Polish spaces\ text \Textbooks define Polish spaces as completely metrizable. We assume the topology to be complete for a given metric.\ class polish_space = complete_space + second_countable_topology subsection \Limit Points\ definition\<^marker>\tag important\ (in topological_space) islimpt:: "'a \ 'a set \ bool" (infixr "islimpt" 60) where "x islimpt S \ (\T. x\T \ open T \ (\y\S. y\T \ y\x))" lemma islimptI: assumes "\T. x \ T \ open T \ \y\S. y \ T \ y \ x" shows "x islimpt S" using assms unfolding islimpt_def by auto lemma islimptE: assumes "x islimpt S" and "x \ T" and "open T" obtains y where "y \ S" and "y \ T" and "y \ x" using assms unfolding islimpt_def by auto lemma islimpt_iff_eventually: "x islimpt S \ \ eventually (\y. y \ S) (at x)" unfolding islimpt_def eventually_at_topological by auto lemma islimpt_subset: "x islimpt S \ S \ T \ x islimpt T" unfolding islimpt_def by fast lemma islimpt_UNIV_iff: "x islimpt UNIV \ \ open {x}" unfolding islimpt_def by (safe, fast, case_tac "T = {x}", fast, fast) lemma islimpt_punctured: "x islimpt S = x islimpt (S-{x})" unfolding islimpt_def by blast text \A perfect space has no isolated points.\ lemma islimpt_UNIV [simp, intro]: "x islimpt UNIV" for x :: "'a::perfect_space" unfolding islimpt_UNIV_iff by (rule not_open_singleton) lemma closed_limpt: "closed S \ (\x. x islimpt S \ x \ S)" unfolding closed_def apply (subst open_subopen) apply (simp add: islimpt_def subset_eq) apply (metis ComplE ComplI) done lemma islimpt_EMPTY[simp]: "\ x islimpt {}" by (auto simp: islimpt_def) lemma islimpt_Un: "x islimpt (S \ T) \ x islimpt S \ x islimpt T" by (simp add: islimpt_iff_eventually eventually_conj_iff) lemma islimpt_insert: fixes x :: "'a::t1_space" shows "x islimpt (insert a s) \ x islimpt s" proof assume *: "x islimpt (insert a s)" show "x islimpt s" proof (rule islimptI) fix t assume t: "x \ t" "open t" show "\y\s. y \ t \ y \ x" proof (cases "x = a") case True obtain y where "y \ insert a s" "y \ t" "y \ x" using * t by (rule islimptE) with \x = a\ show ?thesis by auto next case False with t have t': "x \ t - {a}" "open (t - {a})" by (simp_all add: open_Diff) obtain y where "y \ insert a s" "y \ t - {a}" "y \ x" using * t' by (rule islimptE) then show ?thesis by auto qed qed next assume "x islimpt s" then show "x islimpt (insert a s)" by (rule islimpt_subset) auto qed lemma islimpt_finite: fixes x :: "'a::t1_space" shows "finite s \ \ x islimpt s" by (induct set: finite) (simp_all add: islimpt_insert) lemma islimpt_Un_finite: fixes x :: "'a::t1_space" shows "finite s \ x islimpt (s \ t) \ x islimpt t" by (simp add: islimpt_Un islimpt_finite) lemma islimpt_eq_acc_point: fixes l :: "'a :: t1_space" shows "l islimpt S \ (\U. l\U \ open U \ infinite (U \ S))" proof (safe intro!: islimptI) fix U assume "l islimpt S" "l \ U" "open U" "finite (U \ S)" then have "l islimpt S" "l \ (U - (U \ S - {l}))" "open (U - (U \ S - {l}))" by (auto intro: finite_imp_closed) then show False by (rule islimptE) auto next fix T assume *: "\U. l\U \ open U \ infinite (U \ S)" "l \ T" "open T" then have "infinite (T \ S - {l})" by auto then have "\x. x \ (T \ S - {l})" unfolding ex_in_conv by (intro notI) simp then show "\y\S. y \ T \ y \ l" by auto qed lemma acc_point_range_imp_convergent_subsequence: fixes l :: "'a :: first_countable_topology" assumes l: "\U. l\U \ open U \ infinite (U \ range f)" shows "\r::nat\nat. strict_mono r \ (f \ r) \ l" proof - from countable_basis_at_decseq[of l] obtain A where A: "\i. open (A i)" "\i. l \ A i" "\S. open S \ l \ S \ eventually (\i. A i \ S) sequentially" by blast define s where "s n i = (SOME j. i < j \ f j \ A (Suc n))" for n i { fix n i have "infinite (A (Suc n) \ range f - f`{.. i})" using l A by auto then have "\x. x \ A (Suc n) \ range f - f`{.. i}" unfolding ex_in_conv by (intro notI) simp then have "\j. f j \ A (Suc n) \ j \ {.. i}" by auto then have "\a. i < a \ f a \ A (Suc n)" by (auto simp: not_le) then have "i < s n i" "f (s n i) \ A (Suc n)" unfolding s_def by (auto intro: someI2_ex) } note s = this define r where "r = rec_nat (s 0 0) s" have "strict_mono r" by (auto simp: r_def s strict_mono_Suc_iff) moreover have "(\n. f (r n)) \ l" proof (rule topological_tendstoI) fix S assume "open S" "l \ S" with A(3) have "eventually (\i. A i \ S) sequentially" by auto moreover { fix i assume "Suc 0 \ i" then have "f (r i) \ A i" by (cases i) (simp_all add: r_def s) } then have "eventually (\i. f (r i) \ A i) sequentially" by (auto simp: eventually_sequentially) ultimately show "eventually (\i. f (r i) \ S) sequentially" by eventually_elim auto qed ultimately show "\r::nat\nat. strict_mono r \ (f \ r) \ l" by (auto simp: convergent_def comp_def) qed lemma islimpt_range_imp_convergent_subsequence: fixes l :: "'a :: {t1_space, first_countable_topology}" assumes l: "l islimpt (range f)" shows "\r::nat\nat. strict_mono r \ (f \ r) \ l" using l unfolding islimpt_eq_acc_point by (rule acc_point_range_imp_convergent_subsequence) lemma sequence_unique_limpt: fixes f :: "nat \ 'a::t2_space" assumes "(f \ l) sequentially" and "l' islimpt (range f)" shows "l' = l" proof (rule ccontr) assume "l' \ l" obtain s t where "open s" "open t" "l' \ s" "l \ t" "s \ t = {}" using hausdorff [OF \l' \ l\] by auto have "eventually (\n. f n \ t) sequentially" using assms(1) \open t\ \l \ t\ by (rule topological_tendstoD) then obtain N where "\n\N. f n \ t" unfolding eventually_sequentially by auto have "UNIV = {.. {N..}" by auto then have "l' islimpt (f ` ({.. {N..}))" using assms(2) by simp then have "l' islimpt (f ` {.. f ` {N..})" by (simp add: image_Un) then have "l' islimpt (f ` {N..})" by (simp add: islimpt_Un_finite) then obtain y where "y \ f ` {N..}" "y \ s" "y \ l'" using \l' \ s\ \open s\ by (rule islimptE) then obtain n where "N \ n" "f n \ s" "f n \ l'" by auto with \\n\N. f n \ t\ have "f n \ s \ t" by simp with \s \ t = {}\ show False by simp qed subsection \Interior of a Set\ definition\<^marker>\tag important\ interior :: "('a::topological_space) set \ 'a set" where "interior S = \{T. open T \ T \ S}" lemma interiorI [intro?]: assumes "open T" and "x \ T" and "T \ S" shows "x \ interior S" using assms unfolding interior_def by fast lemma interiorE [elim?]: assumes "x \ interior S" obtains T where "open T" and "x \ T" and "T \ S" using assms unfolding interior_def by fast lemma open_interior [simp, intro]: "open (interior S)" by (simp add: interior_def open_Union) lemma interior_subset: "interior S \ S" by (auto simp: interior_def) lemma interior_maximal: "T \ S \ open T \ T \ interior S" by (auto simp: interior_def) lemma interior_open: "open S \ interior S = S" by (intro equalityI interior_subset interior_maximal subset_refl) lemma interior_eq: "interior S = S \ open S" by (metis open_interior interior_open) lemma open_subset_interior: "open S \ S \ interior T \ S \ T" by (metis interior_maximal interior_subset subset_trans) lemma interior_empty [simp]: "interior {} = {}" using open_empty by (rule interior_open) lemma interior_UNIV [simp]: "interior UNIV = UNIV" using open_UNIV by (rule interior_open) lemma interior_interior [simp]: "interior (interior S) = interior S" using open_interior by (rule interior_open) lemma interior_mono: "S \ T \ interior S \ interior T" by (auto simp: interior_def) lemma interior_unique: assumes "T \ S" and "open T" assumes "\T'. T' \ S \ open T' \ T' \ T" shows "interior S = T" by (intro equalityI assms interior_subset open_interior interior_maximal) lemma interior_singleton [simp]: "interior {a} = {}" for a :: "'a::perfect_space" apply (rule interior_unique, simp_all) using not_open_singleton subset_singletonD apply fastforce done lemma interior_Int [simp]: "interior (S \ T) = interior S \ interior T" by (intro equalityI Int_mono Int_greatest interior_mono Int_lower1 Int_lower2 interior_maximal interior_subset open_Int open_interior) lemma eventually_nhds_in_nhd: "x \ interior s \ eventually (\y. y \ s) (nhds x)" using interior_subset[of s] by (subst eventually_nhds) blast lemma interior_limit_point [intro]: fixes x :: "'a::perfect_space" assumes x: "x \ interior S" shows "x islimpt S" using x islimpt_UNIV [of x] unfolding interior_def islimpt_def apply (clarsimp, rename_tac T T') apply (drule_tac x="T \ T'" in spec) apply (auto simp: open_Int) done lemma interior_closed_Un_empty_interior: assumes cS: "closed S" and iT: "interior T = {}" shows "interior (S \ T) = interior S" proof show "interior S \ interior (S \ T)" by (rule interior_mono) (rule Un_upper1) show "interior (S \ T) \ interior S" proof fix x assume "x \ interior (S \ T)" then obtain R where "open R" "x \ R" "R \ S \ T" .. show "x \ interior S" proof (rule ccontr) assume "x \ interior S" with \x \ R\ \open R\ obtain y where "y \ R - S" unfolding interior_def by fast from \open R\ \closed S\ have "open (R - S)" by (rule open_Diff) from \R \ S \ T\ have "R - S \ T" by fast from \y \ R - S\ \open (R - S)\ \R - S \ T\ \interior T = {}\ show False unfolding interior_def by fast qed qed qed lemma interior_Times: "interior (A \ B) = interior A \ interior B" proof (rule interior_unique) show "interior A \ interior B \ A \ B" by (intro Sigma_mono interior_subset) show "open (interior A \ interior B)" by (intro open_Times open_interior) fix T assume "T \ A \ B" and "open T" then show "T \ interior A \ interior B" proof safe fix x y assume "(x, y) \ T" then obtain C D where "open C" "open D" "C \ D \ T" "x \ C" "y \ D" using \open T\ unfolding open_prod_def by fast then have "open C" "open D" "C \ A" "D \ B" "x \ C" "y \ D" using \T \ A \ B\ by auto then show "x \ interior A" and "y \ interior B" by (auto intro: interiorI) qed qed lemma interior_Ici: fixes x :: "'a :: {dense_linorder,linorder_topology}" assumes "b < x" shows "interior {x ..} = {x <..}" proof (rule interior_unique) fix T assume "T \ {x ..}" "open T" moreover have "x \ T" proof assume "x \ T" obtain y where "y < x" "{y <.. x} \ T" using open_left[OF \open T\ \x \ T\ \b < x\] by auto with dense[OF \y < x\] obtain z where "z \ T" "z < x" by (auto simp: subset_eq Ball_def) with \T \ {x ..}\ show False by auto qed ultimately show "T \ {x <..}" by (auto simp: subset_eq less_le) qed auto lemma interior_Iic: fixes x :: "'a ::{dense_linorder,linorder_topology}" assumes "x < b" shows "interior {.. x} = {..< x}" proof (rule interior_unique) fix T assume "T \ {.. x}" "open T" moreover have "x \ T" proof assume "x \ T" obtain y where "x < y" "{x ..< y} \ T" using open_right[OF \open T\ \x \ T\ \x < b\] by auto with dense[OF \x < y\] obtain z where "z \ T" "x < z" by (auto simp: subset_eq Ball_def less_le) with \T \ {.. x}\ show False by auto qed ultimately show "T \ {..< x}" by (auto simp: subset_eq less_le) qed auto lemma countable_disjoint_nonempty_interior_subsets: fixes \ :: "'a::second_countable_topology set set" assumes pw: "pairwise disjnt \" and int: "\S. \S \ \; interior S = {}\ \ S = {}" shows "countable \" proof (rule countable_image_inj_on) have "disjoint (interior ` \)" using pw by (simp add: disjoint_image_subset interior_subset) then show "countable (interior ` \)" by (auto intro: countable_disjoint_open_subsets) show "inj_on interior \" using pw apply (clarsimp simp: inj_on_def pairwise_def) apply (metis disjnt_def disjnt_subset1 inf.orderE int interior_subset) done qed subsection \Closure of a Set\ definition\<^marker>\tag important\ closure :: "('a::topological_space) set \ 'a set" where "closure S = S \ {x . x islimpt S}" lemma interior_closure: "interior S = - (closure (- S))" by (auto simp: interior_def closure_def islimpt_def) lemma closure_interior: "closure S = - interior (- S)" by (simp add: interior_closure) lemma closed_closure[simp, intro]: "closed (closure S)" by (simp add: closure_interior closed_Compl) lemma closure_subset: "S \ closure S" by (simp add: closure_def) lemma closure_hull: "closure S = closed hull S" by (auto simp: hull_def closure_interior interior_def) lemma closure_eq: "closure S = S \ closed S" unfolding closure_hull using closed_Inter by (rule hull_eq) lemma closure_closed [simp]: "closed S \ closure S = S" by (simp only: closure_eq) lemma closure_closure [simp]: "closure (closure S) = closure S" unfolding closure_hull by (rule hull_hull) lemma closure_mono: "S \ T \ closure S \ closure T" unfolding closure_hull by (rule hull_mono) lemma closure_minimal: "S \ T \ closed T \ closure S \ T" unfolding closure_hull by (rule hull_minimal) lemma closure_unique: assumes "S \ T" and "closed T" and "\T'. S \ T' \ closed T' \ T \ T'" shows "closure S = T" using assms unfolding closure_hull by (rule hull_unique) lemma closure_empty [simp]: "closure {} = {}" using closed_empty by (rule closure_closed) lemma closure_UNIV [simp]: "closure UNIV = UNIV" using closed_UNIV by (rule closure_closed) lemma closure_Un [simp]: "closure (S \ T) = closure S \ closure T" by (simp add: closure_interior) lemma closure_eq_empty [iff]: "closure S = {} \ S = {}" using closure_empty closure_subset[of S] by blast lemma closure_subset_eq: "closure S \ S \ closed S" using closure_eq[of S] closure_subset[of S] by simp lemma open_Int_closure_eq_empty: "open S \ (S \ closure T) = {} \ S \ T = {}" using open_subset_interior[of S "- T"] using interior_subset[of "- T"] by (auto simp: closure_interior) lemma open_Int_closure_subset: "open S \ S \ closure T \ closure (S \ T)" proof fix x assume *: "open S" "x \ S \ closure T" have "x islimpt (S \ T)" if **: "x islimpt T" proof (rule islimptI) fix A assume "x \ A" "open A" with * have "x \ A \ S" "open (A \ S)" by (simp_all add: open_Int) with ** obtain y where "y \ T" "y \ A \ S" "y \ x" by (rule islimptE) then have "y \ S \ T" "y \ A \ y \ x" by simp_all then show "\y\(S \ T). y \ A \ y \ x" .. qed with * show "x \ closure (S \ T)" unfolding closure_def by blast qed lemma closure_complement: "closure (- S) = - interior S" by (simp add: closure_interior) lemma interior_complement: "interior (- S) = - closure S" by (simp add: closure_interior) lemma interior_diff: "interior(S - T) = interior S - closure T" by (simp add: Diff_eq interior_complement) lemma closure_Times: "closure (A \ B) = closure A \ closure B" proof (rule closure_unique) show "A \ B \ closure A \ closure B" by (intro Sigma_mono closure_subset) show "closed (closure A \ closure B)" by (intro closed_Times closed_closure) fix T assume "A \ B \ T" and "closed T" then show "closure A \ closure B \ T" apply (simp add: closed_def open_prod_def, clarify) apply (rule ccontr) apply (drule_tac x="(a, b)" in bspec, simp, clarify, rename_tac C D) apply (simp add: closure_interior interior_def) apply (drule_tac x=C in spec) apply (drule_tac x=D in spec, auto) done qed +lemma closure_open_Int_superset: + assumes "open S" "S \ closure T" + shows "closure(S \ T) = closure S" +proof - + have "closure S \ closure(S \ T)" + by (metis assms closed_closure closure_minimal inf.orderE open_Int_closure_subset) + then show ?thesis + by (simp add: closure_mono dual_order.antisym) +qed + +lemma closure_Int: "closure (\I) \ \{closure S |S. S \ I}" +proof - + { + fix y + assume "y \ \I" + then have y: "\S \ I. y \ S" by auto + { + fix S + assume "S \ I" + then have "y \ closure S" + using closure_subset y by auto + } + then have "y \ \{closure S |S. S \ I}" + by auto + } + then have "\I \ \{closure S |S. S \ I}" + by auto + moreover have "closed (\{closure S |S. S \ I})" + unfolding closed_Inter closed_closure by auto + ultimately show ?thesis using closure_hull[of "\I"] + hull_minimal[of "\I" "\{closure S |S. S \ I}" "closed"] by auto +qed + lemma islimpt_in_closure: "(x islimpt S) = (x\closure(S-{x}))" unfolding closure_def using islimpt_punctured by blast lemma connected_imp_connected_closure: "connected S \ connected (closure S)" by (rule connectedI) (meson closure_subset open_Int open_Int_closure_eq_empty subset_trans connectedD) lemma bdd_below_closure: fixes A :: "real set" assumes "bdd_below A" shows "bdd_below (closure A)" proof - from assms obtain m where "\x. x \ A \ m \ x" by (auto simp: bdd_below_def) then have "A \ {m..}" by auto then have "closure A \ {m..}" using closed_real_atLeast by (rule closure_minimal) then show ?thesis by (auto simp: bdd_below_def) qed subsection \Frontier (also known as boundary)\ definition\<^marker>\tag important\ frontier :: "('a::topological_space) set \ 'a set" where "frontier S = closure S - interior S" lemma frontier_closed [iff]: "closed (frontier S)" by (simp add: frontier_def closed_Diff) lemma frontier_closures: "frontier S = closure S \ closure (- S)" by (auto simp: frontier_def interior_closure) lemma frontier_Int: "frontier(S \ T) = closure(S \ T) \ (frontier S \ frontier T)" proof - have "closure (S \ T) \ closure S" "closure (S \ T) \ closure T" by (simp_all add: closure_mono) then show ?thesis by (auto simp: frontier_closures) qed lemma frontier_Int_subset: "frontier(S \ T) \ frontier S \ frontier T" by (auto simp: frontier_Int) lemma frontier_Int_closed: assumes "closed S" "closed T" shows "frontier(S \ T) = (frontier S \ T) \ (S \ frontier T)" proof - have "closure (S \ T) = T \ S" using assms by (simp add: Int_commute closed_Int) moreover have "T \ (closure S \ closure (- S)) = frontier S \ T" by (simp add: Int_commute frontier_closures) ultimately show ?thesis by (simp add: Int_Un_distrib Int_assoc Int_left_commute assms frontier_closures) qed lemma frontier_subset_closed: "closed S \ frontier S \ S" by (metis frontier_def closure_closed Diff_subset) lemma frontier_empty [simp]: "frontier {} = {}" by (simp add: frontier_def) lemma frontier_subset_eq: "frontier S \ S \ closed S" proof - { assume "frontier S \ S" then have "closure S \ S" using interior_subset unfolding frontier_def by auto then have "closed S" using closure_subset_eq by auto } then show ?thesis using frontier_subset_closed[of S] .. qed lemma frontier_complement [simp]: "frontier (- S) = frontier S" by (auto simp: frontier_def closure_complement interior_complement) lemma frontier_Un_subset: "frontier(S \ T) \ frontier S \ frontier T" by (metis compl_sup frontier_Int_subset frontier_complement) lemma frontier_disjoint_eq: "frontier S \ S = {} \ open S" using frontier_complement frontier_subset_eq[of "- S"] unfolding open_closed by auto lemma frontier_UNIV [simp]: "frontier UNIV = {}" using frontier_complement frontier_empty by fastforce lemma frontier_interiors: "frontier s = - interior(s) - interior(-s)" by (simp add: Int_commute frontier_def interior_closure) lemma frontier_interior_subset: "frontier(interior S) \ frontier S" by (simp add: Diff_mono frontier_interiors interior_mono interior_subset) lemma closure_Un_frontier: "closure S = S \ frontier S" proof - have "S \ interior S = S" using interior_subset by auto then show ?thesis using closure_subset by (auto simp: frontier_def) qed subsection\<^marker>\tag unimportant\ \Filters and the ``eventually true'' quantifier\ text \Identify Trivial limits, where we can't approach arbitrarily closely.\ lemma trivial_limit_within: "trivial_limit (at a within S) \ \ a islimpt S" proof assume "trivial_limit (at a within S)" then show "\ a islimpt S" unfolding trivial_limit_def unfolding eventually_at_topological unfolding islimpt_def apply (clarsimp simp add: set_eq_iff) apply (rename_tac T, rule_tac x=T in exI) apply (clarsimp, drule_tac x=y in bspec, simp_all) done next assume "\ a islimpt S" then show "trivial_limit (at a within S)" unfolding trivial_limit_def eventually_at_topological islimpt_def by metis qed lemma trivial_limit_at_iff: "trivial_limit (at a) \ \ a islimpt UNIV" using trivial_limit_within [of a UNIV] by simp lemma trivial_limit_at: "\ trivial_limit (at a)" for a :: "'a::perfect_space" by (rule at_neq_bot) lemma not_trivial_limit_within: "\ trivial_limit (at x within S) = (x \ closure (S - {x}))" using islimpt_in_closure by (metis trivial_limit_within) lemma not_in_closure_trivial_limitI: "x \ closure s \ trivial_limit (at x within s)" using not_trivial_limit_within[of x s] by safe (metis Diff_empty Diff_insert0 closure_subset contra_subsetD) lemma filterlim_at_within_closure_implies_filterlim: "filterlim f l (at x within s)" if "x \ closure s \ filterlim f l (at x within s)" by (metis bot.extremum filterlim_filtercomap filterlim_mono not_in_closure_trivial_limitI that) lemma at_within_eq_bot_iff: "at c within A = bot \ c \ closure (A - {c})" using not_trivial_limit_within[of c A] by blast text \Some property holds "sufficiently close" to the limit point.\ lemma trivial_limit_eventually: "trivial_limit net \ eventually P net" by simp lemma trivial_limit_eq: "trivial_limit net \ (\P. eventually P net)" by (simp add: filter_eq_iff) lemma Lim_topological: "(f \ l) net \ trivial_limit net \ (\S. open S \ l \ S \ eventually (\x. f x \ S) net)" unfolding tendsto_def trivial_limit_eq by auto lemma eventually_within_Un: "eventually P (at x within (s \ t)) \ eventually P (at x within s) \ eventually P (at x within t)" unfolding eventually_at_filter by (auto elim!: eventually_rev_mp) lemma Lim_within_union: "(f \ l) (at x within (s \ t)) \ (f \ l) (at x within s) \ (f \ l) (at x within t)" unfolding tendsto_def by (auto simp: eventually_within_Un) subsection \Limits\ text \The expected monotonicity property.\ lemma Lim_Un: assumes "(f \ l) (at x within S)" "(f \ l) (at x within T)" shows "(f \ l) (at x within (S \ T))" using assms unfolding at_within_union by (rule filterlim_sup) lemma Lim_Un_univ: "(f \ l) (at x within S) \ (f \ l) (at x within T) \ S \ T = UNIV \ (f \ l) (at x)" by (metis Lim_Un) text \Interrelations between restricted and unrestricted limits.\ lemma Lim_at_imp_Lim_at_within: "(f \ l) (at x) \ (f \ l) (at x within S)" by (metis order_refl filterlim_mono subset_UNIV at_le) lemma eventually_within_interior: assumes "x \ interior S" shows "eventually P (at x within S) \ eventually P (at x)" (is "?lhs = ?rhs") proof from assms obtain T where T: "open T" "x \ T" "T \ S" .. { assume ?lhs then obtain A where "open A" and "x \ A" and "\y\A. y \ x \ y \ S \ P y" by (auto simp: eventually_at_topological) with T have "open (A \ T)" and "x \ A \ T" and "\y \ A \ T. y \ x \ P y" by auto then show ?rhs by (auto simp: eventually_at_topological) next assume ?rhs then show ?lhs by (auto elim: eventually_mono simp: eventually_at_filter) } qed lemma at_within_interior: "x \ interior S \ at x within S = at x" unfolding filter_eq_iff by (intro allI eventually_within_interior) lemma Lim_within_LIMSEQ: fixes a :: "'a::first_countable_topology" assumes "\S. (\n. S n \ a \ S n \ T) \ S \ a \ (\n. X (S n)) \ L" shows "(X \ L) (at a within T)" using assms unfolding tendsto_def [where l=L] by (simp add: sequentially_imp_eventually_within) lemma Lim_right_bound: fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder, no_top} \ 'b::{linorder_topology, conditionally_complete_linorder}" assumes mono: "\a b. a \ I \ b \ I \ x < a \ a \ b \ f a \ f b" and bnd: "\a. a \ I \ x < a \ K \ f a" shows "(f \ Inf (f ` ({x<..} \ I))) (at x within ({x<..} \ I))" proof (cases "{x<..} \ I = {}") case True then show ?thesis by simp next case False show ?thesis proof (rule order_tendstoI) fix a assume a: "a < Inf (f ` ({x<..} \ I))" { fix y assume "y \ {x<..} \ I" with False bnd have "Inf (f ` ({x<..} \ I)) \ f y" by (auto intro!: cInf_lower bdd_belowI2) with a have "a < f y" by (blast intro: less_le_trans) } then show "eventually (\x. a < f x) (at x within ({x<..} \ I))" by (auto simp: eventually_at_filter intro: exI[of _ 1] zero_less_one) next fix a assume "Inf (f ` ({x<..} \ I)) < a" from cInf_lessD[OF _ this] False obtain y where y: "x < y" "y \ I" "f y < a" by auto then have "eventually (\x. x \ I \ f x < a) (at_right x)" unfolding eventually_at_right[OF \x < y\] by (metis less_imp_le le_less_trans mono) then show "eventually (\x. f x < a) (at x within ({x<..} \ I))" unfolding eventually_at_filter by eventually_elim simp qed qed (*could prove directly from islimpt_sequential_inj, but only for metric spaces*) lemma islimpt_sequential: fixes x :: "'a::first_countable_topology" shows "x islimpt S \ (\f. (\n::nat. f n \ S - {x}) \ (f \ x) sequentially)" (is "?lhs = ?rhs") proof assume ?lhs from countable_basis_at_decseq[of x] obtain A where A: "\i. open (A i)" "\i. x \ A i" "\S. open S \ x \ S \ eventually (\i. A i \ S) sequentially" by blast define f where "f n = (SOME y. y \ S \ y \ A n \ x \ y)" for n { fix n from \?lhs\ have "\y. y \ S \ y \ A n \ x \ y" unfolding islimpt_def using A(1,2)[of n] by auto then have "f n \ S \ f n \ A n \ x \ f n" unfolding f_def by (rule someI_ex) then have "f n \ S" "f n \ A n" "x \ f n" by auto } then have "\n. f n \ S - {x}" by auto moreover have "(\n. f n) \ x" proof (rule topological_tendstoI) fix S assume "open S" "x \ S" from A(3)[OF this] \\n. f n \ A n\ show "eventually (\x. f x \ S) sequentially" by (auto elim!: eventually_mono) qed ultimately show ?rhs by fast next assume ?rhs then obtain f :: "nat \ 'a" where f: "\n. f n \ S - {x}" and lim: "f \ x" by auto show ?lhs unfolding islimpt_def proof safe fix T assume "open T" "x \ T" from lim[THEN topological_tendstoD, OF this] f show "\y\S. y \ T \ y \ x" unfolding eventually_sequentially by auto qed qed text\These are special for limits out of the same topological space.\ lemma Lim_within_id: "(id \ a) (at a within s)" unfolding id_def by (rule tendsto_ident_at) lemma Lim_at_id: "(id \ a) (at a)" unfolding id_def by (rule tendsto_ident_at) text\It's also sometimes useful to extract the limit point from the filter.\ abbreviation netlimit :: "'a::t2_space filter \ 'a" where "netlimit F \ Lim F (\x. x)" lemma netlimit_at [simp]: fixes a :: "'a::{perfect_space,t2_space}" shows "netlimit (at a) = a" using Lim_ident_at [of a UNIV] by simp lemma lim_within_interior: "x \ interior S \ (f \ l) (at x within S) \ (f \ l) (at x)" by (metis at_within_interior) lemma netlimit_within_interior: fixes x :: "'a::{t2_space,perfect_space}" assumes "x \ interior S" shows "netlimit (at x within S) = x" using assms by (metis at_within_interior netlimit_at) text\Useful lemmas on closure and set of possible sequential limits.\ lemma closure_sequential: fixes l :: "'a::first_countable_topology" shows "l \ closure S \ (\x. (\n. x n \ S) \ (x \ l) sequentially)" (is "?lhs = ?rhs") proof assume "?lhs" moreover { assume "l \ S" then have "?rhs" using tendsto_const[of l sequentially] by auto } moreover { assume "l islimpt S" then have "?rhs" unfolding islimpt_sequential by auto } ultimately show "?rhs" unfolding closure_def by auto next assume "?rhs" then show "?lhs" unfolding closure_def islimpt_sequential by auto qed lemma closed_sequential_limits: fixes S :: "'a::first_countable_topology set" shows "closed S \ (\x l. (\n. x n \ S) \ (x \ l) sequentially \ l \ S)" by (metis closure_sequential closure_subset_eq subset_iff) lemma tendsto_If_within_closures: assumes f: "x \ s \ (closure s \ closure t) \ (f \ l x) (at x within s \ (closure s \ closure t))" assumes g: "x \ t \ (closure s \ closure t) \ (g \ l x) (at x within t \ (closure s \ closure t))" assumes "x \ s \ t" shows "((\x. if x \ s then f x else g x) \ l x) (at x within s \ t)" proof - have *: "(s \ t) \ {x. x \ s} = s" "(s \ t) \ {x. x \ s} = t - s" by auto have "(f \ l x) (at x within s)" by (rule filterlim_at_within_closure_implies_filterlim) (use \x \ _\ in \auto simp: inf_commute closure_def intro: tendsto_within_subset[OF f]\) moreover have "(g \ l x) (at x within t - s)" by (rule filterlim_at_within_closure_implies_filterlim) (use \x \ _\ in \auto intro!: tendsto_within_subset[OF g] simp: closure_def intro: islimpt_subset\) ultimately show ?thesis by (intro filterlim_at_within_If) (simp_all only: *) qed subsection \Compactness\ lemma brouwer_compactness_lemma: fixes f :: "'a::topological_space \ 'b::real_normed_vector" assumes "compact s" and "continuous_on s f" and "\ (\x\s. f x = 0)" obtains d where "0 < d" and "\x\s. d \ norm (f x)" proof (cases "s = {}") case True show thesis by (rule that [of 1]) (auto simp: True) next case False have "continuous_on s (norm \ f)" by (rule continuous_intros continuous_on_norm assms(2))+ with False obtain x where x: "x \ s" "\y\s. (norm \ f) x \ (norm \ f) y" using continuous_attains_inf[OF assms(1), of "norm \ f"] unfolding o_def by auto have "(norm \ f) x > 0" using assms(3) and x(1) by auto then show ?thesis by (rule that) (insert x(2), auto simp: o_def) qed subsubsection \Bolzano-Weierstrass property\ proposition Heine_Borel_imp_Bolzano_Weierstrass: assumes "compact s" and "infinite t" and "t \ s" shows "\x \ s. x islimpt t" proof (rule ccontr) assume "\ (\x \ s. x islimpt t)" then obtain f where f: "\x\s. x \ f x \ open (f x) \ (\y\t. y \ f x \ y = x)" unfolding islimpt_def using bchoice[of s "\ x T. x \ T \ open T \ (\y\t. y \ T \ y = x)"] by auto obtain g where g: "g \ {t. \x. x \ s \ t = f x}" "finite g" "s \ \g" using assms(1)[unfolded compact_eq_Heine_Borel, THEN spec[where x="{t. \x. x\s \ t = f x}"]] using f by auto from g(1,3) have g':"\x\g. \xa \ s. x = f xa" by auto { fix x y assume "x \ t" "y \ t" "f x = f y" then have "x \ f x" "y \ f x \ y = x" using f[THEN bspec[where x=x]] and \t \ s\ by auto then have "x = y" using \f x = f y\ and f[THEN bspec[where x=y]] and \y \ t\ and \t \ s\ by auto } then have "inj_on f t" unfolding inj_on_def by simp then have "infinite (f ` t)" using assms(2) using finite_imageD by auto moreover { fix x assume "x \ t" "f x \ g" from g(3) assms(3) \x \ t\ obtain h where "h \ g" and "x \ h" by auto then obtain y where "y \ s" "h = f y" using g'[THEN bspec[where x=h]] by auto then have "y = x" using f[THEN bspec[where x=y]] and \x\t\ and \x\h\[unfolded \h = f y\] by auto then have False using \f x \ g\ \h \ g\ unfolding \h = f y\ by auto } then have "f ` t \ g" by auto ultimately show False using g(2) using finite_subset by auto qed lemma sequence_infinite_lemma: fixes f :: "nat \ 'a::t1_space" assumes "\n. f n \ l" and "(f \ l) sequentially" shows "infinite (range f)" proof assume "finite (range f)" then have "closed (range f)" by (rule finite_imp_closed) then have "open (- range f)" by (rule open_Compl) from assms(1) have "l \ - range f" by auto from assms(2) have "eventually (\n. f n \ - range f) sequentially" using \open (- range f)\ \l \ - range f\ by (rule topological_tendstoD) then show False unfolding eventually_sequentially by auto qed lemma Bolzano_Weierstrass_imp_closed: fixes s :: "'a::{first_countable_topology,t2_space} set" assumes "\t. infinite t \ t \ s --> (\x \ s. x islimpt t)" shows "closed s" proof - { fix x l assume as: "\n::nat. x n \ s" "(x \ l) sequentially" then have "l \ s" proof (cases "\n. x n \ l") case False then show "l\s" using as(1) by auto next case True note cas = this with as(2) have "infinite (range x)" using sequence_infinite_lemma[of x l] by auto then obtain l' where "l'\s" "l' islimpt (range x)" using assms[THEN spec[where x="range x"]] as(1) by auto then show "l\s" using sequence_unique_limpt[of x l l'] using as cas by auto qed } then show ?thesis unfolding closed_sequential_limits by fast qed lemma closure_insert: fixes x :: "'a::t1_space" shows "closure (insert x s) = insert x (closure s)" apply (rule closure_unique) apply (rule insert_mono [OF closure_subset]) apply (rule closed_insert [OF closed_closure]) apply (simp add: closure_minimal) done text\In particular, some common special cases.\ lemma compact_Un [intro]: assumes "compact s" and "compact t" shows " compact (s \ t)" proof (rule compactI) fix f assume *: "Ball f open" "s \ t \ \f" from * \compact s\ obtain s' where "s' \ f \ finite s' \ s \ \s'" unfolding compact_eq_Heine_Borel by (auto elim!: allE[of _ f]) moreover from * \compact t\ obtain t' where "t' \ f \ finite t' \ t \ \t'" unfolding compact_eq_Heine_Borel by (auto elim!: allE[of _ f]) ultimately show "\f'\f. finite f' \ s \ t \ \f'" by (auto intro!: exI[of _ "s' \ t'"]) qed lemma compact_Union [intro]: "finite S \ (\T. T \ S \ compact T) \ compact (\S)" by (induct set: finite) auto lemma compact_UN [intro]: "finite A \ (\x. x \ A \ compact (B x)) \ compact (\x\A. B x)" by (rule compact_Union) auto lemma closed_Int_compact [intro]: assumes "closed s" and "compact t" shows "compact (s \ t)" using compact_Int_closed [of t s] assms by (simp add: Int_commute) lemma compact_Int [intro]: fixes s t :: "'a :: t2_space set" assumes "compact s" and "compact t" shows "compact (s \ t)" using assms by (intro compact_Int_closed compact_imp_closed) lemma compact_sing [simp]: "compact {a}" unfolding compact_eq_Heine_Borel by auto lemma compact_insert [simp]: assumes "compact s" shows "compact (insert x s)" proof - have "compact ({x} \ s)" using compact_sing assms by (rule compact_Un) then show ?thesis by simp qed lemma finite_imp_compact: "finite s \ compact s" by (induct set: finite) simp_all lemma open_delete: fixes s :: "'a::t1_space set" shows "open s \ open (s - {x})" by (simp add: open_Diff) text\Compactness expressed with filters\ lemma closure_iff_nhds_not_empty: "x \ closure X \ (\A. \S\A. open S \ x \ S \ X \ A \ {})" proof safe assume x: "x \ closure X" fix S A assume "open S" "x \ S" "X \ A = {}" "S \ A" then have "x \ closure (-S)" by (auto simp: closure_complement subset_eq[symmetric] intro: interiorI) with x have "x \ closure X - closure (-S)" by auto also have "\ \ closure (X \ S)" using \open S\ open_Int_closure_subset[of S X] by (simp add: closed_Compl ac_simps) finally have "X \ S \ {}" by auto then show False using \X \ A = {}\ \S \ A\ by auto next assume "\A S. S \ A \ open S \ x \ S \ X \ A \ {}" from this[THEN spec, of "- X", THEN spec, of "- closure X"] show "x \ closure X" by (simp add: closure_subset open_Compl) qed lemma compact_filter: "compact U \ (\F. F \ bot \ eventually (\x. x \ U) F \ (\x\U. inf (nhds x) F \ bot))" proof (intro allI iffI impI compact_fip[THEN iffD2] notI) fix F assume "compact U" assume F: "F \ bot" "eventually (\x. x \ U) F" then have "U \ {}" by (auto simp: eventually_False) define Z where "Z = closure ` {A. eventually (\x. x \ A) F}" then have "\z\Z. closed z" by auto moreover have ev_Z: "\z. z \ Z \ eventually (\x. x \ z) F" unfolding Z_def by (auto elim: eventually_mono intro: subsetD[OF closure_subset]) have "(\B \ Z. finite B \ U \ \B \ {})" proof (intro allI impI) fix B assume "finite B" "B \ Z" with \finite B\ ev_Z F(2) have "eventually (\x. x \ U \ (\B)) F" by (auto simp: eventually_ball_finite_distrib eventually_conj_iff) with F show "U \ \B \ {}" by (intro notI) (simp add: eventually_False) qed ultimately have "U \ \Z \ {}" using \compact U\ unfolding compact_fip by blast then obtain x where "x \ U" and x: "\z. z \ Z \ x \ z" by auto have "\P. eventually P (inf (nhds x) F) \ P \ bot" unfolding eventually_inf eventually_nhds proof safe fix P Q R S assume "eventually R F" "open S" "x \ S" with open_Int_closure_eq_empty[of S "{x. R x}"] x[of "closure {x. R x}"] have "S \ {x. R x} \ {}" by (auto simp: Z_def) moreover assume "Ball S Q" "\x. Q x \ R x \ bot x" ultimately show False by (auto simp: set_eq_iff) qed with \x \ U\ show "\x\U. inf (nhds x) F \ bot" by (metis eventually_bot) next fix A assume A: "\a\A. closed a" "\B\A. finite B \ U \ \B \ {}" "U \ \A = {}" define F where "F = (INF a\insert U A. principal a)" have "F \ bot" unfolding F_def proof (rule INF_filter_not_bot) fix X assume X: "X \ insert U A" "finite X" with A(2)[THEN spec, of "X - {U}"] have "U \ \(X - {U}) \ {}" by auto with X show "(INF a\X. principal a) \ bot" by (auto simp: INF_principal_finite principal_eq_bot_iff) qed moreover have "F \ principal U" unfolding F_def by auto then have "eventually (\x. x \ U) F" by (auto simp: le_filter_def eventually_principal) moreover assume "\F. F \ bot \ eventually (\x. x \ U) F \ (\x\U. inf (nhds x) F \ bot)" ultimately obtain x where "x \ U" and x: "inf (nhds x) F \ bot" by auto { fix V assume "V \ A" then have "F \ principal V" unfolding F_def by (intro INF_lower2[of V]) auto then have V: "eventually (\x. x \ V) F" by (auto simp: le_filter_def eventually_principal) have "x \ closure V" unfolding closure_iff_nhds_not_empty proof (intro impI allI) fix S A assume "open S" "x \ S" "S \ A" then have "eventually (\x. x \ A) (nhds x)" by (auto simp: eventually_nhds) with V have "eventually (\x. x \ V \ A) (inf (nhds x) F)" by (auto simp: eventually_inf) with x show "V \ A \ {}" by (auto simp del: Int_iff simp add: trivial_limit_def) qed then have "x \ V" using \V \ A\ A(1) by simp } with \x\U\ have "x \ U \ \A" by auto with \U \ \A = {}\ show False by auto qed definition\<^marker>\tag important\ countably_compact :: "('a::topological_space) set \ bool" where "countably_compact U \ (\A. countable A \ (\a\A. open a) \ U \ \A \ (\T\A. finite T \ U \ \T))" lemma countably_compactE: assumes "countably_compact s" and "\t\C. open t" and "s \ \C" "countable C" obtains C' where "C' \ C" and "finite C'" and "s \ \C'" using assms unfolding countably_compact_def by metis lemma countably_compactI: assumes "\C. \t\C. open t \ s \ \C \ countable C \ (\C'\C. finite C' \ s \ \C')" shows "countably_compact s" using assms unfolding countably_compact_def by metis lemma compact_imp_countably_compact: "compact U \ countably_compact U" by (auto simp: compact_eq_Heine_Borel countably_compact_def) lemma countably_compact_imp_compact: assumes "countably_compact U" and ccover: "countable B" "\b\B. open b" and basis: "\T x. open T \ x \ T \ x \ U \ \b\B. x \ b \ b \ U \ T" shows "compact U" using \countably_compact U\ unfolding compact_eq_Heine_Borel countably_compact_def proof safe fix A assume A: "\a\A. open a" "U \ \A" assume *: "\A. countable A \ (\a\A. open a) \ U \ \A \ (\T\A. finite T \ U \ \T)" moreover define C where "C = {b\B. \a\A. b \ U \ a}" ultimately have "countable C" "\a\C. open a" unfolding C_def using ccover by auto moreover have "\A \ U \ \C" proof safe fix x a assume "x \ U" "x \ a" "a \ A" with basis[of a x] A obtain b where "b \ B" "x \ b" "b \ U \ a" by blast with \a \ A\ show "x \ \C" unfolding C_def by auto qed then have "U \ \C" using \U \ \A\ by auto ultimately obtain T where T: "T\C" "finite T" "U \ \T" using * by metis then have "\t\T. \a\A. t \ U \ a" by (auto simp: C_def) then obtain f where "\t\T. f t \ A \ t \ U \ f t" unfolding bchoice_iff Bex_def .. with T show "\T\A. finite T \ U \ \T" unfolding C_def by (intro exI[of _ "f`T"]) fastforce qed proposition countably_compact_imp_compact_second_countable: "countably_compact U \ compact (U :: 'a :: second_countable_topology set)" proof (rule countably_compact_imp_compact) fix T and x :: 'a assume "open T" "x \ T" from topological_basisE[OF is_basis this] obtain b where "b \ (SOME B. countable B \ topological_basis B)" "x \ b" "b \ T" . then show "\b\SOME B. countable B \ topological_basis B. x \ b \ b \ U \ T" by blast qed (insert countable_basis topological_basis_open[OF is_basis], auto) lemma countably_compact_eq_compact: "countably_compact U \ compact (U :: 'a :: second_countable_topology set)" using countably_compact_imp_compact_second_countable compact_imp_countably_compact by blast subsubsection\Sequential compactness\ definition\<^marker>\tag important\ seq_compact :: "'a::topological_space set \ bool" where "seq_compact S \ (\f. (\n. f n \ S) \ (\l\S. \r::nat\nat. strict_mono r \ ((f \ r) \ l) sequentially))" lemma seq_compactI: assumes "\f. \n. f n \ S \ \l\S. \r::nat\nat. strict_mono r \ ((f \ r) \ l) sequentially" shows "seq_compact S" unfolding seq_compact_def using assms by fast lemma seq_compactE: assumes "seq_compact S" "\n. f n \ S" obtains l r where "l \ S" "strict_mono (r :: nat \ nat)" "((f \ r) \ l) sequentially" using assms unfolding seq_compact_def by fast lemma closed_sequentially: (* TODO: move upwards *) assumes "closed s" and "\n. f n \ s" and "f \ l" shows "l \ s" proof (rule ccontr) assume "l \ s" with \closed s\ and \f \ l\ have "eventually (\n. f n \ - s) sequentially" by (fast intro: topological_tendstoD) with \\n. f n \ s\ show "False" by simp qed lemma seq_compact_Int_closed: assumes "seq_compact s" and "closed t" shows "seq_compact (s \ t)" proof (rule seq_compactI) fix f assume "\n::nat. f n \ s \ t" hence "\n. f n \ s" and "\n. f n \ t" by simp_all from \seq_compact s\ and \\n. f n \ s\ obtain l r where "l \ s" and r: "strict_mono r" and l: "(f \ r) \ l" by (rule seq_compactE) from \\n. f n \ t\ have "\n. (f \ r) n \ t" by simp from \closed t\ and this and l have "l \ t" by (rule closed_sequentially) with \l \ s\ and r and l show "\l\s \ t. \r. strict_mono r \ (f \ r) \ l" by fast qed lemma seq_compact_closed_subset: assumes "closed s" and "s \ t" and "seq_compact t" shows "seq_compact s" using assms seq_compact_Int_closed [of t s] by (simp add: Int_absorb1) lemma seq_compact_imp_countably_compact: fixes U :: "'a :: first_countable_topology set" assumes "seq_compact U" shows "countably_compact U" proof (safe intro!: countably_compactI) fix A assume A: "\a\A. open a" "U \ \A" "countable A" have subseq: "\X. range X \ U \ \r x. x \ U \ strict_mono (r :: nat \ nat) \ (X \ r) \ x" using \seq_compact U\ by (fastforce simp: seq_compact_def subset_eq) show "\T\A. finite T \ U \ \T" proof cases assume "finite A" with A show ?thesis by auto next assume "infinite A" then have "A \ {}" by auto show ?thesis proof (rule ccontr) assume "\ (\T\A. finite T \ U \ \T)" then have "\T. \x. T \ A \ finite T \ (x \ U - \T)" by auto then obtain X' where T: "\T. T \ A \ finite T \ X' T \ U - \T" by metis define X where "X n = X' (from_nat_into A ` {.. n})" for n have X: "\n. X n \ U - (\i\n. from_nat_into A i)" using \A \ {}\ unfolding X_def by (intro T) (auto intro: from_nat_into) then have "range X \ U" by auto with subseq[of X] obtain r x where "x \ U" and r: "strict_mono r" "(X \ r) \ x" by auto from \x\U\ \U \ \A\ from_nat_into_surj[OF \countable A\] obtain n where "x \ from_nat_into A n" by auto with r(2) A(1) from_nat_into[OF \A \ {}\, of n] have "eventually (\i. X (r i) \ from_nat_into A n) sequentially" unfolding tendsto_def by (auto simp: comp_def) then obtain N where "\i. N \ i \ X (r i) \ from_nat_into A n" by (auto simp: eventually_sequentially) moreover from X have "\i. n \ r i \ X (r i) \ from_nat_into A n" by auto moreover from \strict_mono r\[THEN seq_suble, of "max n N"] have "\i. n \ r i \ N \ i" by (auto intro!: exI[of _ "max n N"]) ultimately show False by auto qed qed qed lemma compact_imp_seq_compact: fixes U :: "'a :: first_countable_topology set" assumes "compact U" shows "seq_compact U" unfolding seq_compact_def proof safe fix X :: "nat \ 'a" assume "\n. X n \ U" then have "eventually (\x. x \ U) (filtermap X sequentially)" by (auto simp: eventually_filtermap) moreover have "filtermap X sequentially \ bot" by (simp add: trivial_limit_def eventually_filtermap) ultimately obtain x where "x \ U" and x: "inf (nhds x) (filtermap X sequentially) \ bot" (is "?F \ _") using \compact U\ by (auto simp: compact_filter) from countable_basis_at_decseq[of x] obtain A where A: "\i. open (A i)" "\i. x \ A i" "\S. open S \ x \ S \ eventually (\i. A i \ S) sequentially" by blast define s where "s n i = (SOME j. i < j \ X j \ A (Suc n))" for n i { fix n i have "\a. i < a \ X a \ A (Suc n)" proof (rule ccontr) assume "\ (\a>i. X a \ A (Suc n))" then have "\a. Suc i \ a \ X a \ A (Suc n)" by auto then have "eventually (\x. x \ A (Suc n)) (filtermap X sequentially)" by (auto simp: eventually_filtermap eventually_sequentially) moreover have "eventually (\x. x \ A (Suc n)) (nhds x)" using A(1,2)[of "Suc n"] by (auto simp: eventually_nhds) ultimately have "eventually (\x. False) ?F" by (auto simp: eventually_inf) with x show False by (simp add: eventually_False) qed then have "i < s n i" "X (s n i) \ A (Suc n)" unfolding s_def by (auto intro: someI2_ex) } note s = this define r where "r = rec_nat (s 0 0) s" have "strict_mono r" by (auto simp: r_def s strict_mono_Suc_iff) moreover have "(\n. X (r n)) \ x" proof (rule topological_tendstoI) fix S assume "open S" "x \ S" with A(3) have "eventually (\i. A i \ S) sequentially" by auto moreover { fix i assume "Suc 0 \ i" then have "X (r i) \ A i" by (cases i) (simp_all add: r_def s) } then have "eventually (\i. X (r i) \ A i) sequentially" by (auto simp: eventually_sequentially) ultimately show "eventually (\i. X (r i) \ S) sequentially" by eventually_elim auto qed ultimately show "\x \ U. \r. strict_mono r \ (X \ r) \ x" using \x \ U\ by (auto simp: convergent_def comp_def) qed lemma countably_compact_imp_acc_point: assumes "countably_compact s" and "countable t" and "infinite t" and "t \ s" shows "\x\s. \U. x\U \ open U \ infinite (U \ t)" proof (rule ccontr) define C where "C = (\F. interior (F \ (- t))) ` {F. finite F \ F \ t }" note \countably_compact s\ moreover have "\t\C. open t" by (auto simp: C_def) moreover assume "\ (\x\s. \U. x\U \ open U \ infinite (U \ t))" then have s: "\x. x \ s \ \U. x\U \ open U \ finite (U \ t)" by metis have "s \ \C" using \t \ s\ unfolding C_def apply (safe dest!: s) apply (rule_tac a="U \ t" in UN_I) apply (auto intro!: interiorI simp add: finite_subset) done moreover from \countable t\ have "countable C" unfolding C_def by (auto intro: countable_Collect_finite_subset) ultimately obtain D where "D \ C" "finite D" "s \ \D" by (rule countably_compactE) then obtain E where E: "E \ {F. finite F \ F \ t }" "finite E" and s: "s \ (\F\E. interior (F \ (- t)))" by (metis (lifting) finite_subset_image C_def) from s \t \ s\ have "t \ \E" using interior_subset by blast moreover have "finite (\E)" using E by auto ultimately show False using \infinite t\ by (auto simp: finite_subset) qed lemma countable_acc_point_imp_seq_compact: fixes s :: "'a::first_countable_topology set" assumes "\t. infinite t \ countable t \ t \ s \ (\x\s. \U. x\U \ open U \ infinite (U \ t))" shows "seq_compact s" proof - { fix f :: "nat \ 'a" assume f: "\n. f n \ s" have "\l\s. \r. strict_mono r \ ((f \ r) \ l) sequentially" proof (cases "finite (range f)") case True obtain l where "infinite {n. f n = f l}" using pigeonhole_infinite[OF _ True] by auto then obtain r :: "nat \ nat" where "strict_mono r" and fr: "\n. f (r n) = f l" using infinite_enumerate by blast then have "strict_mono r \ (f \ r) \ f l" by (simp add: fr o_def) with f show "\l\s. \r. strict_mono r \ (f \ r) \ l" by auto next case False with f assms have "\x\s. \U. x\U \ open U \ infinite (U \ range f)" by auto then obtain l where "l \ s" "\U. l\U \ open U \ infinite (U \ range f)" .. from this(2) have "\r. strict_mono r \ ((f \ r) \ l) sequentially" using acc_point_range_imp_convergent_subsequence[of l f] by auto with \l \ s\ show "\l\s. \r. strict_mono r \ ((f \ r) \ l) sequentially" .. qed } then show ?thesis unfolding seq_compact_def by auto qed lemma seq_compact_eq_countably_compact: fixes U :: "'a :: first_countable_topology set" shows "seq_compact U \ countably_compact U" using countable_acc_point_imp_seq_compact countably_compact_imp_acc_point seq_compact_imp_countably_compact by metis lemma seq_compact_eq_acc_point: fixes s :: "'a :: first_countable_topology set" shows "seq_compact s \ (\t. infinite t \ countable t \ t \ s --> (\x\s. \U. x\U \ open U \ infinite (U \ t)))" using countable_acc_point_imp_seq_compact[of s] countably_compact_imp_acc_point[of s] seq_compact_imp_countably_compact[of s] by metis lemma seq_compact_eq_compact: fixes U :: "'a :: second_countable_topology set" shows "seq_compact U \ compact U" using seq_compact_eq_countably_compact countably_compact_eq_compact by blast proposition Bolzano_Weierstrass_imp_seq_compact: fixes s :: "'a::{t1_space, first_countable_topology} set" shows "\t. infinite t \ t \ s \ (\x \ s. x islimpt t) \ seq_compact s" by (rule countable_acc_point_imp_seq_compact) (metis islimpt_eq_acc_point) subsection\<^marker>\tag unimportant\ \Cartesian products\ lemma seq_compact_Times: "seq_compact s \ seq_compact t \ seq_compact (s \ t)" unfolding seq_compact_def apply clarify apply (drule_tac x="fst \ f" in spec) apply (drule mp, simp add: mem_Times_iff) apply (clarify, rename_tac l1 r1) apply (drule_tac x="snd \ f \ r1" in spec) apply (drule mp, simp add: mem_Times_iff) apply (clarify, rename_tac l2 r2) apply (rule_tac x="(l1, l2)" in rev_bexI, simp) apply (rule_tac x="r1 \ r2" in exI) apply (rule conjI, simp add: strict_mono_def) apply (drule_tac f=r2 in LIMSEQ_subseq_LIMSEQ, assumption) apply (drule (1) tendsto_Pair) back apply (simp add: o_def) done lemma compact_Times: assumes "compact s" "compact t" shows "compact (s \ t)" proof (rule compactI) fix C assume C: "\t\C. open t" "s \ t \ \C" have "\x\s. \a. open a \ x \ a \ (\d\C. finite d \ a \ t \ \d)" proof fix x assume "x \ s" have "\y\t. \a b c. c \ C \ open a \ open b \ x \ a \ y \ b \ a \ b \ c" (is "\y\t. ?P y") proof fix y assume "y \ t" with \x \ s\ C obtain c where "c \ C" "(x, y) \ c" "open c" by auto then show "?P y" by (auto elim!: open_prod_elim) qed then obtain a b c where b: "\y. y \ t \ open (b y)" and c: "\y. y \ t \ c y \ C \ open (a y) \ open (b y) \ x \ a y \ y \ b y \ a y \ b y \ c y" by metis then have "\y\t. open (b y)" "t \ (\y\t. b y)" by auto with compactE_image[OF \compact t\] obtain D where D: "D \ t" "finite D" "t \ (\y\D. b y)" by metis moreover from D c have "(\y\D. a y) \ t \ (\y\D. c y)" by (fastforce simp: subset_eq) ultimately show "\a. open a \ x \ a \ (\d\C. finite d \ a \ t \ \d)" using c by (intro exI[of _ "c`D"] exI[of _ "\(a`D)"] conjI) (auto intro!: open_INT) qed then obtain a d where a: "\x. x\s \ open (a x)" "s \ (\x\s. a x)" and d: "\x. x \ s \ d x \ C \ finite (d x) \ a x \ t \ \(d x)" unfolding subset_eq UN_iff by metis moreover from compactE_image[OF \compact s\ a] obtain e where e: "e \ s" "finite e" and s: "s \ (\x\e. a x)" by auto moreover { from s have "s \ t \ (\x\e. a x \ t)" by auto also have "\ \ (\x\e. \(d x))" using d \e \ s\ by (intro UN_mono) auto finally have "s \ t \ (\x\e. \(d x))" . } ultimately show "\C'\C. finite C' \ s \ t \ \C'" by (intro exI[of _ "(\x\e. d x)"]) (auto simp: subset_eq) qed lemma tube_lemma: assumes "compact K" assumes "open W" assumes "{x0} \ K \ W" shows "\X0. x0 \ X0 \ open X0 \ X0 \ K \ W" proof - { fix y assume "y \ K" then have "(x0, y) \ W" using assms by auto with \open W\ have "\X0 Y. open X0 \ open Y \ x0 \ X0 \ y \ Y \ X0 \ Y \ W" by (rule open_prod_elim) blast } then obtain X0 Y where *: "\y \ K. open (X0 y) \ open (Y y) \ x0 \ X0 y \ y \ Y y \ X0 y \ Y y \ W" by metis from * have "\t\Y ` K. open t" "K \ \(Y ` K)" by auto with \compact K\ obtain CC where CC: "CC \ Y ` K" "finite CC" "K \ \CC" by (meson compactE) then obtain c where c: "\C. C \ CC \ c C \ K \ C = Y (c C)" by (force intro!: choice) with * CC show ?thesis by (force intro!: exI[where x="\C\CC. X0 (c C)"]) (* SLOW *) qed lemma continuous_on_prod_compactE: fixes fx::"'a::topological_space \ 'b::topological_space \ 'c::metric_space" and e::real assumes cont_fx: "continuous_on (U \ C) fx" assumes "compact C" assumes [intro]: "x0 \ U" notes [continuous_intros] = continuous_on_compose2[OF cont_fx] assumes "e > 0" obtains X0 where "x0 \ X0" "open X0" "\x\X0 \ U. \t \ C. dist (fx (x, t)) (fx (x0, t)) \ e" proof - define psi where "psi = (\(x, t). dist (fx (x, t)) (fx (x0, t)))" define W0 where "W0 = {(x, t) \ U \ C. psi (x, t) < e}" have W0_eq: "W0 = psi -` {.. U \ C" by (auto simp: vimage_def W0_def) have "open {.. C) psi" by (auto intro!: continuous_intros simp: psi_def split_beta') from this[unfolded continuous_on_open_invariant, rule_format, OF \open {..] obtain W where W: "open W" "W \ U \ C = W0 \ U \ C" unfolding W0_eq by blast have "{x0} \ C \ W \ U \ C" unfolding W by (auto simp: W0_def psi_def \0 < e\) then have "{x0} \ C \ W" by blast from tube_lemma[OF \compact C\ \open W\ this] obtain X0 where X0: "x0 \ X0" "open X0" "X0 \ C \ W" by blast have "\x\X0 \ U. \t \ C. dist (fx (x, t)) (fx (x0, t)) \ e" proof safe fix x assume x: "x \ X0" "x \ U" fix t assume t: "t \ C" have "dist (fx (x, t)) (fx (x0, t)) = psi (x, t)" by (auto simp: psi_def) also { have "(x, t) \ X0 \ C" using t x by auto also note \\ \ W\ finally have "(x, t) \ W" . with t x have "(x, t) \ W \ U \ C" by blast also note \W \ U \ C = W0 \ U \ C\ finally have "psi (x, t) < e" by (auto simp: W0_def) } finally show "dist (fx (x, t)) (fx (x0, t)) \ e" by simp qed from X0(1,2) this show ?thesis .. qed subsection \Continuity\ lemma continuous_at_imp_continuous_within: "continuous (at x) f \ continuous (at x within s) f" unfolding continuous_within continuous_at using Lim_at_imp_Lim_at_within by auto lemma Lim_trivial_limit: "trivial_limit net \ (f \ l) net" by simp lemmas continuous_on = continuous_on_def \ \legacy theorem name\ lemma continuous_within_subset: "continuous (at x within s) f \ t \ s \ continuous (at x within t) f" unfolding continuous_within by(metis tendsto_within_subset) lemma continuous_on_interior: "continuous_on s f \ x \ interior s \ continuous (at x) f" by (metis continuous_on_eq_continuous_at continuous_on_subset interiorE) lemma continuous_on_eq: "\continuous_on s f; \x. x \ s \ f x = g x\ \ continuous_on s g" unfolding continuous_on_def tendsto_def eventually_at_topological by simp text \Characterization of various kinds of continuity in terms of sequences.\ lemma continuous_within_sequentiallyI: fixes f :: "'a::{first_countable_topology, t2_space} \ 'b::topological_space" assumes "\u::nat \ 'a. u \ a \ (\n. u n \ s) \ (\n. f (u n)) \ f a" shows "continuous (at a within s) f" using assms unfolding continuous_within tendsto_def[where l = "f a"] by (auto intro!: sequentially_imp_eventually_within) lemma continuous_within_tendsto_compose: fixes f::"'a::t2_space \ 'b::topological_space" assumes "continuous (at a within s) f" "eventually (\n. x n \ s) F" "(x \ a) F " shows "((\n. f (x n)) \ f a) F" proof - have *: "filterlim x (inf (nhds a) (principal s)) F" using assms(2) assms(3) unfolding at_within_def filterlim_inf by (auto simp: filterlim_principal eventually_mono) show ?thesis by (auto simp: assms(1) continuous_within[symmetric] tendsto_at_within_iff_tendsto_nhds[symmetric] intro!: filterlim_compose[OF _ *]) qed lemma continuous_within_tendsto_compose': fixes f::"'a::t2_space \ 'b::topological_space" assumes "continuous (at a within s) f" "\n. x n \ s" "(x \ a) F " shows "((\n. f (x n)) \ f a) F" by (auto intro!: continuous_within_tendsto_compose[OF assms(1)] simp add: assms) lemma continuous_within_sequentially: fixes f :: "'a::{first_countable_topology, t2_space} \ 'b::topological_space" shows "continuous (at a within s) f \ (\x. (\n::nat. x n \ s) \ (x \ a) sequentially \ ((f \ x) \ f a) sequentially)" using continuous_within_tendsto_compose'[of a s f _ sequentially] continuous_within_sequentiallyI[of a s f] by (auto simp: o_def) lemma continuous_at_sequentiallyI: fixes f :: "'a::{first_countable_topology, t2_space} \ 'b::topological_space" assumes "\u. u \ a \ (\n. f (u n)) \ f a" shows "continuous (at a) f" using continuous_within_sequentiallyI[of a UNIV f] assms by auto lemma continuous_at_sequentially: fixes f :: "'a::metric_space \ 'b::topological_space" shows "continuous (at a) f \ (\x. (x \ a) sequentially --> ((f \ x) \ f a) sequentially)" using continuous_within_sequentially[of a UNIV f] by simp lemma continuous_on_sequentiallyI: fixes f :: "'a::{first_countable_topology, t2_space} \ 'b::topological_space" assumes "\u a. (\n. u n \ s) \ a \ s \ u \ a \ (\n. f (u n)) \ f a" shows "continuous_on s f" using assms unfolding continuous_on_eq_continuous_within using continuous_within_sequentiallyI[of _ s f] by auto lemma continuous_on_sequentially: fixes f :: "'a::{first_countable_topology, t2_space} \ 'b::topological_space" shows "continuous_on s f \ (\x. \a \ s. (\n. x(n) \ s) \ (x \ a) sequentially --> ((f \ x) \ f a) sequentially)" (is "?lhs = ?rhs") proof assume ?rhs then show ?lhs using continuous_within_sequentially[of _ s f] unfolding continuous_on_eq_continuous_within by auto next assume ?lhs then show ?rhs unfolding continuous_on_eq_continuous_within using continuous_within_sequentially[of _ s f] by auto qed text \Continuity in terms of open preimages.\ lemma continuous_at_open: "continuous (at x) f \ (\t. open t \ f x \ t --> (\s. open s \ x \ s \ (\x' \ s. (f x') \ t)))" unfolding continuous_within_topological [of x UNIV f] unfolding imp_conjL by (intro all_cong imp_cong ex_cong conj_cong refl) auto lemma continuous_imp_tendsto: assumes "continuous (at x0) f" and "x \ x0" shows "(f \ x) \ (f x0)" proof (rule topological_tendstoI) fix S assume "open S" "f x0 \ S" then obtain T where T_def: "open T" "x0 \ T" "\x\T. f x \ S" using assms continuous_at_open by metis then have "eventually (\n. x n \ T) sequentially" using assms T_def by (auto simp: tendsto_def) then show "eventually (\n. (f \ x) n \ S) sequentially" using T_def by (auto elim!: eventually_mono) qed subsection \Homeomorphisms\ definition\<^marker>\tag important\ "homeomorphism s t f g \ (\x\s. (g(f x) = x)) \ (f ` s = t) \ continuous_on s f \ (\y\t. (f(g y) = y)) \ (g ` t = s) \ continuous_on t g" lemma homeomorphismI [intro?]: assumes "continuous_on S f" "continuous_on T g" "f ` S \ T" "g ` T \ S" "\x. x \ S \ g(f x) = x" "\y. y \ T \ f(g y) = y" shows "homeomorphism S T f g" using assms by (force simp: homeomorphism_def) lemma homeomorphism_translation: fixes a :: "'a :: real_normed_vector" shows "homeomorphism ((+) a ` S) S ((+) (- a)) ((+) a)" unfolding homeomorphism_def by (auto simp: algebra_simps continuous_intros) lemma homeomorphism_ident: "homeomorphism T T (\a. a) (\a. a)" by (rule homeomorphismI) auto lemma homeomorphism_compose: assumes "homeomorphism S T f g" "homeomorphism T U h k" shows "homeomorphism S U (h o f) (g o k)" using assms unfolding homeomorphism_def by (intro conjI ballI continuous_on_compose) (auto simp: image_iff) lemma homeomorphism_cong: "homeomorphism X' Y' f' g'" if "homeomorphism X Y f g" "X' = X" "Y' = Y" "\x. x \ X \ f' x = f x" "\y. y \ Y \ g' y = g y" using that by (auto simp add: homeomorphism_def) lemma homeomorphism_empty [simp]: "homeomorphism {} {} f g" unfolding homeomorphism_def by auto lemma homeomorphism_symD: "homeomorphism S t f g \ homeomorphism t S g f" by (simp add: homeomorphism_def) lemma homeomorphism_sym: "homeomorphism S t f g = homeomorphism t S g f" by (force simp: homeomorphism_def) definition\<^marker>\tag important\ homeomorphic :: "'a::topological_space set \ 'b::topological_space set \ bool" (infixr "homeomorphic" 60) where "s homeomorphic t \ (\f g. homeomorphism s t f g)" lemma homeomorphic_empty [iff]: "S homeomorphic {} \ S = {}" "{} homeomorphic S \ S = {}" by (auto simp: homeomorphic_def homeomorphism_def) lemma homeomorphic_refl: "s homeomorphic s" unfolding homeomorphic_def homeomorphism_def using continuous_on_id apply (rule_tac x = "(\x. x)" in exI) apply (rule_tac x = "(\x. x)" in exI) apply blast done lemma homeomorphic_sym: "s homeomorphic t \ t homeomorphic s" unfolding homeomorphic_def homeomorphism_def by blast lemma homeomorphic_trans [trans]: assumes "S homeomorphic T" and "T homeomorphic U" shows "S homeomorphic U" using assms unfolding homeomorphic_def by (metis homeomorphism_compose) lemma homeomorphic_minimal: "s homeomorphic t \ (\f g. (\x\s. f(x) \ t \ (g(f(x)) = x)) \ (\y\t. g(y) \ s \ (f(g(y)) = y)) \ continuous_on s f \ continuous_on t g)" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs by (fastforce simp: homeomorphic_def homeomorphism_def) next assume ?rhs then show ?lhs apply clarify unfolding homeomorphic_def homeomorphism_def by (metis equalityI image_subset_iff subsetI) qed lemma homeomorphicI [intro?]: "\f ` S = T; g ` T = S; continuous_on S f; continuous_on T g; \x. x \ S \ g(f(x)) = x; \y. y \ T \ f(g(y)) = y\ \ S homeomorphic T" unfolding homeomorphic_def homeomorphism_def by metis lemma homeomorphism_of_subsets: "\homeomorphism S T f g; S' \ S; T'' \ T; f ` S' = T'\ \ homeomorphism S' T' f g" apply (auto simp: homeomorphism_def elim!: continuous_on_subset) by (metis subsetD imageI) lemma homeomorphism_apply1: "\homeomorphism S T f g; x \ S\ \ g(f x) = x" by (simp add: homeomorphism_def) lemma homeomorphism_apply2: "\homeomorphism S T f g; x \ T\ \ f(g x) = x" by (simp add: homeomorphism_def) lemma homeomorphism_image1: "homeomorphism S T f g \ f ` S = T" by (simp add: homeomorphism_def) lemma homeomorphism_image2: "homeomorphism S T f g \ g ` T = S" by (simp add: homeomorphism_def) lemma homeomorphism_cont1: "homeomorphism S T f g \ continuous_on S f" by (simp add: homeomorphism_def) lemma homeomorphism_cont2: "homeomorphism S T f g \ continuous_on T g" by (simp add: homeomorphism_def) lemma continuous_on_no_limpt: "(\x. \ x islimpt S) \ continuous_on S f" unfolding continuous_on_def by (metis UNIV_I empty_iff eventually_at_topological islimptE open_UNIV tendsto_def trivial_limit_within) lemma continuous_on_finite: fixes S :: "'a::t1_space set" shows "finite S \ continuous_on S f" by (metis continuous_on_no_limpt islimpt_finite) lemma homeomorphic_finite: fixes S :: "'a::t1_space set" and T :: "'b::t1_space set" assumes "finite T" shows "S homeomorphic T \ finite S \ finite T \ card S = card T" (is "?lhs = ?rhs") proof assume "S homeomorphic T" with assms show ?rhs apply (auto simp: homeomorphic_def homeomorphism_def) apply (metis finite_imageI) by (metis card_image_le finite_imageI le_antisym) next assume R: ?rhs with finite_same_card_bij obtain h where "bij_betw h S T" by auto with R show ?lhs apply (auto simp: homeomorphic_def homeomorphism_def continuous_on_finite) apply (rule_tac x=h in exI) apply (rule_tac x="inv_into S h" in exI) apply (auto simp: bij_betw_inv_into_left bij_betw_inv_into_right bij_betw_imp_surj_on inv_into_into bij_betwE) apply (metis bij_betw_def bij_betw_inv_into) done qed text \Relatively weak hypotheses if a set is compact.\ lemma homeomorphism_compact: fixes f :: "'a::topological_space \ 'b::t2_space" assumes "compact s" "continuous_on s f" "f ` s = t" "inj_on f s" shows "\g. homeomorphism s t f g" proof - define g where "g x = (SOME y. y\s \ f y = x)" for x have g: "\x\s. g (f x) = x" using assms(3) assms(4)[unfolded inj_on_def] unfolding g_def by auto { fix y assume "y \ t" then obtain x where x:"f x = y" "x\s" using assms(3) by auto then have "g (f x) = x" using g by auto then have "f (g y) = y" unfolding x(1)[symmetric] by auto } then have g':"\x\t. f (g x) = x" by auto moreover { fix x have "x\s \ x \ g ` t" using g[THEN bspec[where x=x]] unfolding image_iff using assms(3) by (auto intro!: bexI[where x="f x"]) moreover { assume "x\g ` t" then obtain y where y:"y\t" "g y = x" by auto then obtain x' where x':"x'\s" "f x' = y" using assms(3) by auto then have "x \ s" unfolding g_def using someI2[of "\b. b\s \ f b = y" x' "\x. x\s"] unfolding y(2)[symmetric] and g_def by auto } ultimately have "x\s \ x \ g ` t" .. } then have "g ` t = s" by auto ultimately show ?thesis unfolding homeomorphism_def homeomorphic_def apply (rule_tac x=g in exI) using g and assms(3) and continuous_on_inv[OF assms(2,1), of g, unfolded assms(3)] and assms(2) apply auto done qed lemma homeomorphic_compact: fixes f :: "'a::topological_space \ 'b::t2_space" shows "compact s \ continuous_on s f \ (f ` s = t) \ inj_on f s \ s homeomorphic t" unfolding homeomorphic_def by (metis homeomorphism_compact) text\Preservation of topological properties.\ lemma homeomorphic_compactness: "s homeomorphic t \ (compact s \ compact t)" unfolding homeomorphic_def homeomorphism_def by (metis compact_continuous_image) subsection\<^marker>\tag unimportant\ \On Linorder Topologies\ lemma islimpt_greaterThanLessThan1: fixes a b::"'a::{linorder_topology, dense_order}" assumes "a < b" shows "a islimpt {a<.. T" from open_right[OF this \a < b\] obtain c where c: "a < c" "{a.. T" by auto with assms dense[of a "min c b"] show "\y\{a<.. T \ y \ a" by (metis atLeastLessThan_iff greaterThanLessThan_iff min_less_iff_conj not_le order.strict_implies_order subset_eq) qed lemma islimpt_greaterThanLessThan2: fixes a b::"'a::{linorder_topology, dense_order}" assumes "a < b" shows "b islimpt {a<.. T" from open_left[OF this \a < b\] obtain c where c: "c < b" "{c<..b} \ T" by auto with assms dense[of "max a c" b] show "\y\{a<.. T \ y \ b" by (metis greaterThanAtMost_iff greaterThanLessThan_iff max_less_iff_conj not_le order.strict_implies_order subset_eq) qed lemma closure_greaterThanLessThan[simp]: fixes a b::"'a::{linorder_topology, dense_order}" shows "a < b \ closure {a <..< b} = {a .. b}" (is "_ \ ?l = ?r") proof have "?l \ closure ?r" by (rule closure_mono) auto thus "closure {a<.. {a..b}" by simp qed (auto simp: closure_def order.order_iff_strict islimpt_greaterThanLessThan1 islimpt_greaterThanLessThan2) lemma closure_greaterThan[simp]: fixes a b::"'a::{no_top, linorder_topology, dense_order}" shows "closure {a<..} = {a..}" proof - from gt_ex obtain b where "a < b" by auto hence "{a<..} = {a<.. {b..}" by auto also have "closure \ = {a..}" using \a < b\ unfolding closure_Un by auto finally show ?thesis . qed lemma closure_lessThan[simp]: fixes b::"'a::{no_bot, linorder_topology, dense_order}" shows "closure {.. {..a}" by auto also have "closure \ = {..b}" using \a < b\ unfolding closure_Un by auto finally show ?thesis . qed lemma closure_atLeastLessThan[simp]: fixes a b::"'a::{linorder_topology, dense_order}" assumes "a < b" shows "closure {a ..< b} = {a .. b}" proof - from assms have "{a ..< b} = {a} \ {a <..< b}" by auto also have "closure \ = {a .. b}" unfolding closure_Un by (auto simp: assms less_imp_le) finally show ?thesis . qed lemma closure_greaterThanAtMost[simp]: fixes a b::"'a::{linorder_topology, dense_order}" assumes "a < b" shows "closure {a <.. b} = {a .. b}" proof - from assms have "{a <.. b} = {b} \ {a <..< b}" by auto also have "closure \ = {a .. b}" unfolding closure_Un by (auto simp: assms less_imp_le) finally show ?thesis . qed end \ No newline at end of file diff --git a/src/HOL/Analysis/Starlike.thy b/src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy +++ b/src/HOL/Analysis/Starlike.thy @@ -1,6917 +1,6884 @@ (* Title: HOL/Analysis/Starlike.thy Author: L C Paulson, University of Cambridge Author: Robert Himmelmann, TU Muenchen Author: Bogdan Grechuk, University of Edinburgh Author: Armin Heller, TU Muenchen Author: Johannes Hoelzl, TU Muenchen *) chapter \Unsorted\ theory Starlike imports Convex_Euclidean_Space Abstract_Limits Line_Segment begin subsection\Starlike sets\ definition\<^marker>\tag important\ "starlike S \ (\a\S. \x\S. closed_segment a x \ S)" lemma starlike_UNIV [simp]: "starlike UNIV" by (simp add: starlike_def) lemma convex_imp_starlike: "convex S \ S \ {} \ starlike S" unfolding convex_contains_segment starlike_def by auto lemma affine_hull_closed_segment [simp]: "affine hull (closed_segment a b) = affine hull {a,b}" by (simp add: segment_convex_hull) lemma affine_hull_open_segment [simp]: fixes a :: "'a::euclidean_space" shows "affine hull (open_segment a b) = (if a = b then {} else affine hull {a,b})" by (metis affine_hull_convex_hull affine_hull_empty closure_open_segment closure_same_affine_hull segment_convex_hull) lemma rel_interior_closure_convex_segment: fixes S :: "_::euclidean_space set" assumes "convex S" "a \ rel_interior S" "b \ closure S" shows "open_segment a b \ rel_interior S" proof fix x have [simp]: "(1 - u) *\<^sub>R a + u *\<^sub>R b = b - (1 - u) *\<^sub>R (b - a)" for u by (simp add: algebra_simps) assume "x \ open_segment a b" then show "x \ rel_interior S" unfolding closed_segment_def open_segment_def using assms by (auto intro: rel_interior_closure_convex_shrink) qed lemma convex_hull_insert_segments: "convex hull (insert a S) = (if S = {} then {a} else \x \ convex hull S. closed_segment a x)" by (force simp add: convex_hull_insert_alt in_segment) lemma Int_convex_hull_insert_rel_exterior: fixes z :: "'a::euclidean_space" assumes "convex C" "T \ C" and z: "z \ rel_interior C" and dis: "disjnt S (rel_interior C)" shows "S \ (convex hull (insert z T)) = S \ (convex hull T)" (is "?lhs = ?rhs") proof have "T = {} \ z \ S" using dis z by (auto simp add: disjnt_def) then show "?lhs \ ?rhs" proof (clarsimp simp add: convex_hull_insert_segments) fix x y assume "x \ S" and y: "y \ convex hull T" and "x \ closed_segment z y" have "y \ closure C" by (metis y \convex C\ \T \ C\ closure_subset contra_subsetD convex_hull_eq hull_mono) moreover have "x \ rel_interior C" by (meson \x \ S\ dis disjnt_iff) moreover have "x \ open_segment z y \ {z, y}" using \x \ closed_segment z y\ closed_segment_eq_open by blast ultimately show "x \ convex hull T" using rel_interior_closure_convex_segment [OF \convex C\ z] using y z by blast qed show "?rhs \ ?lhs" by (meson hull_mono inf_mono subset_insertI subset_refl) qed subsection\<^marker>\tag unimportant\\More results about segments\ lemma dist_half_times2: fixes a :: "'a :: real_normed_vector" shows "dist ((1 / 2) *\<^sub>R (a + b)) x * 2 = dist (a+b) (2 *\<^sub>R x)" proof - have "norm ((1 / 2) *\<^sub>R (a + b) - x) * 2 = norm (2 *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x))" by simp also have "... = norm ((a + b) - 2 *\<^sub>R x)" by (simp add: real_vector.scale_right_diff_distrib) finally show ?thesis by (simp only: dist_norm) qed lemma closed_segment_as_ball: "closed_segment a b = affine hull {a,b} \ cball(inverse 2 *\<^sub>R (a + b))(norm(b - a) / 2)" proof (cases "b = a") case True then show ?thesis by (auto simp: hull_inc) next case False then have *: "((\u v. x = u *\<^sub>R a + v *\<^sub>R b \ u + v = 1) \ dist ((1 / 2) *\<^sub>R (a + b)) x * 2 \ norm (b - a)) = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ 0 \ u \ u \ 1)" for x proof - have "((\u v. x = u *\<^sub>R a + v *\<^sub>R b \ u + v = 1) \ dist ((1 / 2) *\<^sub>R (a + b)) x * 2 \ norm (b - a)) = ((\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b) \ dist ((1 / 2) *\<^sub>R (a + b)) x * 2 \ norm (b - a))" unfolding eq_diff_eq [symmetric] by simp also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ norm ((a+b) - (2 *\<^sub>R x)) \ norm (b - a))" by (simp add: dist_half_times2) (simp add: dist_norm) also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ norm ((a+b) - (2 *\<^sub>R ((1 - u) *\<^sub>R a + u *\<^sub>R b))) \ norm (b - a))" by auto also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ norm ((1 - u * 2) *\<^sub>R (b - a)) \ norm (b - a))" by (simp add: algebra_simps scaleR_2) also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ \1 - u * 2\ * norm (b - a) \ norm (b - a))" by simp also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ \1 - u * 2\ \ 1)" by (simp add: mult_le_cancel_right2 False) also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ 0 \ u \ u \ 1)" by auto finally show ?thesis . qed show ?thesis by (simp add: affine_hull_2 Set.set_eq_iff closed_segment_def *) qed lemma open_segment_as_ball: "open_segment a b = affine hull {a,b} \ ball(inverse 2 *\<^sub>R (a + b))(norm(b - a) / 2)" proof (cases "b = a") case True then show ?thesis by (auto simp: hull_inc) next case False then have *: "((\u v. x = u *\<^sub>R a + v *\<^sub>R b \ u + v = 1) \ dist ((1 / 2) *\<^sub>R (a + b)) x * 2 < norm (b - a)) = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ 0 < u \ u < 1)" for x proof - have "((\u v. x = u *\<^sub>R a + v *\<^sub>R b \ u + v = 1) \ dist ((1 / 2) *\<^sub>R (a + b)) x * 2 < norm (b - a)) = ((\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b) \ dist ((1 / 2) *\<^sub>R (a + b)) x * 2 < norm (b - a))" unfolding eq_diff_eq [symmetric] by simp also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ norm ((a+b) - (2 *\<^sub>R x)) < norm (b - a))" by (simp add: dist_half_times2) (simp add: dist_norm) also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ norm ((a+b) - (2 *\<^sub>R ((1 - u) *\<^sub>R a + u *\<^sub>R b))) < norm (b - a))" by auto also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ norm ((1 - u * 2) *\<^sub>R (b - a)) < norm (b - a))" by (simp add: algebra_simps scaleR_2) also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ \1 - u * 2\ * norm (b - a) < norm (b - a))" by simp also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ \1 - u * 2\ < 1)" by (simp add: mult_le_cancel_right2 False) also have "... = (\u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \ 0 < u \ u < 1)" by auto finally show ?thesis . qed show ?thesis using False by (force simp: affine_hull_2 Set.set_eq_iff open_segment_image_interval *) qed lemmas segment_as_ball = closed_segment_as_ball open_segment_as_ball lemma closed_segment_neq_empty [simp]: "closed_segment a b \ {}" by auto lemma open_segment_eq_empty [simp]: "open_segment a b = {} \ a = b" proof - { assume a1: "open_segment a b = {}" have "{} \ {0::real<..<1}" by simp then have "a = b" using a1 open_segment_image_interval by fastforce } then show ?thesis by auto qed lemma open_segment_eq_empty' [simp]: "{} = open_segment a b \ a = b" using open_segment_eq_empty by blast lemmas segment_eq_empty = closed_segment_neq_empty open_segment_eq_empty lemma inj_segment: fixes a :: "'a :: real_vector" assumes "a \ b" shows "inj_on (\u. (1 - u) *\<^sub>R a + u *\<^sub>R b) I" proof fix x y assume "(1 - x) *\<^sub>R a + x *\<^sub>R b = (1 - y) *\<^sub>R a + y *\<^sub>R b" then have "x *\<^sub>R (b - a) = y *\<^sub>R (b - a)" by (simp add: algebra_simps) with assms show "x = y" by (simp add: real_vector.scale_right_imp_eq) qed lemma finite_closed_segment [simp]: "finite(closed_segment a b) \ a = b" apply auto apply (rule ccontr) apply (simp add: segment_image_interval) using infinite_Icc [OF zero_less_one] finite_imageD [OF _ inj_segment] apply blast done lemma finite_open_segment [simp]: "finite(open_segment a b) \ a = b" by (auto simp: open_segment_def) lemmas finite_segment = finite_closed_segment finite_open_segment lemma closed_segment_eq_sing: "closed_segment a b = {c} \ a = c \ b = c" by auto lemma open_segment_eq_sing: "open_segment a b \ {c}" by (metis finite_insert finite_open_segment insert_not_empty open_segment_image_interval) lemmas segment_eq_sing = closed_segment_eq_sing open_segment_eq_sing lemma subset_closed_segment: "closed_segment a b \ closed_segment c d \ a \ closed_segment c d \ b \ closed_segment c d" by auto (meson contra_subsetD convex_closed_segment convex_contains_segment) lemma subset_co_segment: "closed_segment a b \ open_segment c d \ a \ open_segment c d \ b \ open_segment c d" using closed_segment_subset by blast lemma subset_open_segment: fixes a :: "'a::euclidean_space" shows "open_segment a b \ open_segment c d \ a = b \ a \ closed_segment c d \ b \ closed_segment c d" (is "?lhs = ?rhs") proof (cases "a = b") case True then show ?thesis by simp next case False show ?thesis proof assume rhs: ?rhs with \a \ b\ have "c \ d" using closed_segment_idem singleton_iff by auto have "\uc. (1 - u) *\<^sub>R ((1 - ua) *\<^sub>R c + ua *\<^sub>R d) + u *\<^sub>R ((1 - ub) *\<^sub>R c + ub *\<^sub>R d) = (1 - uc) *\<^sub>R c + uc *\<^sub>R d \ 0 < uc \ uc < 1" if neq: "(1 - ua) *\<^sub>R c + ua *\<^sub>R d \ (1 - ub) *\<^sub>R c + ub *\<^sub>R d" "c \ d" and "a = (1 - ua) *\<^sub>R c + ua *\<^sub>R d" "b = (1 - ub) *\<^sub>R c + ub *\<^sub>R d" and u: "0 < u" "u < 1" and uab: "0 \ ua" "ua \ 1" "0 \ ub" "ub \ 1" for u ua ub proof - have "ua \ ub" using neq by auto moreover have "(u - 1) * ua \ 0" using u uab by (simp add: mult_nonpos_nonneg) ultimately have lt: "(u - 1) * ua < u * ub" using u uab by (metis antisym_conv diff_ge_0_iff_ge le_less_trans mult_eq_0_iff mult_le_0_iff not_less) have "p * ua + q * ub < p+q" if p: "0 < p" and q: "0 < q" for p q proof - have "\ p \ 0" "\ q \ 0" using p q not_less by blast+ then show ?thesis by (metis \ua \ ub\ add_less_cancel_left add_less_cancel_right add_mono_thms_linordered_field(5) less_eq_real_def mult_cancel_left1 mult_less_cancel_left2 uab(2) uab(4)) qed then have "(1 - u) * ua + u * ub < 1" using u \ua \ ub\ by (metis diff_add_cancel diff_gt_0_iff_gt) with lt show ?thesis by (rule_tac x="ua + u*(ub-ua)" in exI) (simp add: algebra_simps) qed with rhs \a \ b\ \c \ d\ show ?lhs unfolding open_segment_image_interval closed_segment_def by (fastforce simp add:) next assume lhs: ?lhs with \a \ b\ have "c \ d" by (meson finite_open_segment rev_finite_subset) have "closure (open_segment a b) \ closure (open_segment c d)" using lhs closure_mono by blast then have "closed_segment a b \ closed_segment c d" by (simp add: \a \ b\ \c \ d\) then show ?rhs by (force simp: \a \ b\) qed qed lemma subset_oc_segment: fixes a :: "'a::euclidean_space" shows "open_segment a b \ closed_segment c d \ a = b \ a \ closed_segment c d \ b \ closed_segment c d" apply (simp add: subset_open_segment [symmetric]) apply (rule iffI) apply (metis closure_closed_segment closure_mono closure_open_segment subset_closed_segment subset_open_segment) apply (meson dual_order.trans segment_open_subset_closed) done lemmas subset_segment = subset_closed_segment subset_co_segment subset_oc_segment subset_open_segment subsection\<^marker>\tag unimportant\ \Shrinking towards the interior of a convex set\ lemma mem_interior_convex_shrink: fixes S :: "'a::euclidean_space set" assumes "convex S" and "c \ interior S" and "x \ S" and "0 < e" and "e \ 1" shows "x - e *\<^sub>R (x - c) \ interior S" proof - obtain d where "d > 0" and d: "ball c d \ S" using assms(2) unfolding mem_interior by auto show ?thesis unfolding mem_interior proof (intro exI subsetI conjI) fix y assume "y \ ball (x - e *\<^sub>R (x - c)) (e*d)" then have as: "dist (x - e *\<^sub>R (x - c)) y < e * d" by simp have *: "y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using \e > 0\ by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib) have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = \1/e\ * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)" unfolding dist_norm unfolding norm_scaleR[symmetric] apply (rule arg_cong[where f=norm]) using \e > 0\ by (auto simp add: euclidean_eq_iff[where 'a='a] field_simps inner_simps) also have "\ = \1/e\ * norm (x - e *\<^sub>R (x - c) - y)" by (auto intro!:arg_cong[where f=norm] simp add: algebra_simps) also have "\ < d" using as[unfolded dist_norm] and \e > 0\ by (auto simp add:pos_divide_less_eq[OF \e > 0\] mult.commute) finally show "y \ S" apply (subst *) apply (rule assms(1)[unfolded convex_alt,rule_format]) apply (rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) apply auto done qed (insert \e>0\ \d>0\, auto) qed lemma mem_interior_closure_convex_shrink: fixes S :: "'a::euclidean_space set" assumes "convex S" and "c \ interior S" and "x \ closure S" and "0 < e" and "e \ 1" shows "x - e *\<^sub>R (x - c) \ interior S" proof - obtain d where "d > 0" and d: "ball c d \ S" using assms(2) unfolding mem_interior by auto have "\y\S. norm (y - x) * (1 - e) < e * d" proof (cases "x \ S") case True then show ?thesis using \e > 0\ \d > 0\ apply (rule_tac bexI[where x=x]) apply (auto) done next case False then have x: "x islimpt S" using assms(3)[unfolded closure_def] by auto show ?thesis proof (cases "e = 1") case True obtain y where "y \ S" "y \ x" "dist y x < 1" using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto then show ?thesis apply (rule_tac x=y in bexI) unfolding True using \d > 0\ apply auto done next case False then have "0 < e * d / (1 - e)" and *: "1 - e > 0" using \e \ 1\ \e > 0\ \d > 0\ by auto then obtain y where "y \ S" "y \ x" "dist y x < e * d / (1 - e)" using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto then show ?thesis apply (rule_tac x=y in bexI) unfolding dist_norm using pos_less_divide_eq[OF *] apply auto done qed qed then obtain y where "y \ S" and y: "norm (y - x) * (1 - e) < e * d" by auto define z where "z = c + ((1 - e) / e) *\<^sub>R (x - y)" have *: "x - e *\<^sub>R (x - c) = y - e *\<^sub>R (y - z)" unfolding z_def using \e > 0\ by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib) have "z \ interior S" apply (rule interior_mono[OF d,unfolded subset_eq,rule_format]) unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5) by simp (simp add: field_simps norm_minus_commute) then show ?thesis unfolding * using mem_interior_convex_shrink \y \ S\ assms by blast qed lemma in_interior_closure_convex_segment: fixes S :: "'a::euclidean_space set" assumes "convex S" and a: "a \ interior S" and b: "b \ closure S" shows "open_segment a b \ interior S" proof (clarsimp simp: in_segment) fix u::real assume u: "0 < u" "u < 1" have "(1 - u) *\<^sub>R a + u *\<^sub>R b = b - (1 - u) *\<^sub>R (b - a)" by (simp add: algebra_simps) also have "... \ interior S" using mem_interior_closure_convex_shrink [OF assms] u by simp finally show "(1 - u) *\<^sub>R a + u *\<^sub>R b \ interior S" . qed -lemma closure_open_Int_superset: - assumes "open S" "S \ closure T" - shows "closure(S \ T) = closure S" -proof - - have "closure S \ closure(S \ T)" - by (metis assms closed_closure closure_minimal inf.orderE open_Int_closure_subset) - then show ?thesis - by (simp add: closure_mono dual_order.antisym) -qed - lemma convex_closure_interior: fixes S :: "'a::euclidean_space set" assumes "convex S" and int: "interior S \ {}" shows "closure(interior S) = closure S" proof - obtain a where a: "a \ interior S" using int by auto have "closure S \ closure(interior S)" proof fix x assume x: "x \ closure S" show "x \ closure (interior S)" proof (cases "x=a") case True then show ?thesis using \a \ interior S\ closure_subset by blast next case False show ?thesis proof (clarsimp simp add: closure_def islimpt_approachable) fix e::real assume xnotS: "x \ interior S" and "0 < e" show "\x'\interior S. x' \ x \ dist x' x < e" proof (intro bexI conjI) show "x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a) \ x" using False \0 < e\ by (auto simp: algebra_simps min_def) show "dist (x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a)) x < e" using \0 < e\ by (auto simp: dist_norm min_def) show "x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a) \ interior S" apply (clarsimp simp add: min_def a) apply (rule mem_interior_closure_convex_shrink [OF \convex S\ a x]) using \0 < e\ False apply (auto simp: field_split_simps) done qed qed qed qed then show ?thesis by (simp add: closure_mono interior_subset subset_antisym) qed lemma closure_convex_Int_superset: fixes S :: "'a::euclidean_space set" assumes "convex S" "interior S \ {}" "interior S \ closure T" shows "closure(S \ T) = closure S" proof - have "closure S \ closure(interior S)" by (simp add: convex_closure_interior assms) also have "... \ closure (S \ T)" using interior_subset [of S] assms by (metis (no_types, lifting) Int_assoc Int_lower2 closure_mono closure_open_Int_superset inf.orderE open_interior) finally show ?thesis by (simp add: closure_mono dual_order.antisym) qed subsection\<^marker>\tag unimportant\ \Some obvious but surprisingly hard simplex lemmas\ lemma simplex: assumes "finite S" and "0 \ S" shows "convex hull (insert 0 S) = {y. \u. (\x\S. 0 \ u x) \ sum u S \ 1 \ sum (\x. u x *\<^sub>R x) S = y}" proof (simp add: convex_hull_finite set_eq_iff assms, safe) fix x and u :: "'a \ real" assume "0 \ u 0" "\x\S. 0 \ u x" "u 0 + sum u S = 1" then show "\v. (\x\S. 0 \ v x) \ sum v S \ 1 \ (\x\S. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)" by force next fix x and u :: "'a \ real" assume "\x\S. 0 \ u x" "sum u S \ 1" then show "\v. 0 \ v 0 \ (\x\S. 0 \ v x) \ v 0 + sum v S = 1 \ (\x\S. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)" by (rule_tac x="\x. if x = 0 then 1 - sum u S else u x" in exI) (auto simp: sum_delta_notmem assms if_smult) qed lemma substd_simplex: assumes d: "d \ Basis" shows "convex hull (insert 0 d) = {x. (\i\Basis. 0 \ x\i) \ (\i\d. x\i) \ 1 \ (\i\Basis. i \ d \ x\i = 0)}" (is "convex hull (insert 0 ?p) = ?s") proof - let ?D = d have "0 \ ?p" using assms by (auto simp: image_def) from d have "finite d" by (blast intro: finite_subset finite_Basis) show ?thesis unfolding simplex[OF \finite d\ \0 \ ?p\] proof (intro set_eqI; safe) fix u :: "'a \ real" assume as: "\x\?D. 0 \ u x" "sum u ?D \ 1" let ?x = "(\x\?D. u x *\<^sub>R x)" have ind: "\i\Basis. i \ d \ u i = ?x \ i" and notind: "(\i\Basis. i \ d \ ?x \ i = 0)" using substdbasis_expansion_unique[OF assms] by blast+ then have **: "sum u ?D = sum ((\) ?x) ?D" using assms by (auto intro!: sum.cong) show "0 \ ?x \ i" if "i \ Basis" for i using as(1) ind notind that by fastforce show "sum ((\) ?x) ?D \ 1" using "**" as(2) by linarith show "?x \ i = 0" if "i \ Basis" "i \ d" for i using notind that by blast next fix x assume "\i\Basis. 0 \ x \ i" "sum ((\) x) ?D \ 1" "(\i\Basis. i \ d \ x \ i = 0)" with d show "\u. (\x\?D. 0 \ u x) \ sum u ?D \ 1 \ (\x\?D. u x *\<^sub>R x) = x" unfolding substdbasis_expansion_unique[OF assms] by (rule_tac x="inner x" in exI) auto qed qed lemma std_simplex: "convex hull (insert 0 Basis) = {x::'a::euclidean_space. (\i\Basis. 0 \ x\i) \ sum (\i. x\i) Basis \ 1}" using substd_simplex[of Basis] by auto lemma interior_std_simplex: "interior (convex hull (insert 0 Basis)) = {x::'a::euclidean_space. (\i\Basis. 0 < x\i) \ sum (\i. x\i) Basis < 1}" unfolding set_eq_iff mem_interior std_simplex proof (intro allI iffI CollectI; clarify) fix x :: 'a fix e assume "e > 0" and as: "ball x e \ {x. (\i\Basis. 0 \ x \ i) \ sum ((\) x) Basis \ 1}" show "(\i\Basis. 0 < x \ i) \ sum ((\) x) Basis < 1" proof safe fix i :: 'a assume i: "i \ Basis" then show "0 < x \ i" using as[THEN subsetD[where c="x - (e / 2) *\<^sub>R i"]] and \e > 0\ by (force simp add: inner_simps) next have **: "dist x (x + (e / 2) *\<^sub>R (SOME i. i\Basis)) < e" using \e > 0\ unfolding dist_norm by (auto intro!: mult_strict_left_mono simp: SOME_Basis) have "\i. i \ Basis \ (x + (e / 2) *\<^sub>R (SOME i. i\Basis)) \ i = x\i + (if i = (SOME i. i\Basis) then e/2 else 0)" by (auto simp: SOME_Basis inner_Basis inner_simps) then have *: "sum ((\) (x + (e / 2) *\<^sub>R (SOME i. i\Basis))) Basis = sum (\i. x\i + (if (SOME i. i\Basis) = i then e/2 else 0)) Basis" by (auto simp: intro!: sum.cong) have "sum ((\) x) Basis < sum ((\) (x + (e / 2) *\<^sub>R (SOME i. i\Basis))) Basis" using \e > 0\ DIM_positive by (auto simp: SOME_Basis sum.distrib *) also have "\ \ 1" using ** as by force finally show "sum ((\) x) Basis < 1" by auto qed next fix x :: 'a assume as: "\i\Basis. 0 < x \ i" "sum ((\) x) Basis < 1" obtain a :: 'b where "a \ UNIV" using UNIV_witness .. let ?d = "(1 - sum ((\) x) Basis) / real (DIM('a))" show "\e>0. ball x e \ {x. (\i\Basis. 0 \ x \ i) \ sum ((\) x) Basis \ 1}" proof (rule_tac x="min (Min (((\) x) ` Basis)) D" for D in exI, intro conjI subsetI CollectI) fix y assume y: "y \ ball x (min (Min ((\) x ` Basis)) ?d)" have "sum ((\) y) Basis \ sum (\i. x\i + ?d) Basis" proof (rule sum_mono) fix i :: 'a assume i: "i \ Basis" have "\y\i - x\i\ \ norm (y - x)" by (metis Basis_le_norm i inner_commute inner_diff_right) also have "... < ?d" using y by (simp add: dist_norm norm_minus_commute) finally have "\y\i - x\i\ < ?d" . then show "y \ i \ x \ i + ?d" by auto qed also have "\ \ 1" unfolding sum.distrib sum_constant by (auto simp add: Suc_le_eq) finally show "sum ((\) y) Basis \ 1" . show "(\i\Basis. 0 \ y \ i)" proof safe fix i :: 'a assume i: "i \ Basis" have "norm (x - y) < Min (((\) x) ` Basis)" using y by (auto simp: dist_norm less_eq_real_def) also have "... \ x\i" using i by auto finally have "norm (x - y) < x\i" . then show "0 \ y\i" using Basis_le_norm[OF i, of "x - y"] and as(1)[rule_format, OF i] by (auto simp: inner_simps) qed next have "Min (((\) x) ` Basis) > 0" using as by simp moreover have "?d > 0" using as by (auto simp: Suc_le_eq) ultimately show "0 < min (Min ((\) x ` Basis)) ((1 - sum ((\) x) Basis) / real DIM('a))" by linarith qed qed lemma interior_std_simplex_nonempty: obtains a :: "'a::euclidean_space" where "a \ interior(convex hull (insert 0 Basis))" proof - let ?D = "Basis :: 'a set" let ?a = "sum (\b::'a. inverse (2 * real DIM('a)) *\<^sub>R b) Basis" { fix i :: 'a assume i: "i \ Basis" have "?a \ i = inverse (2 * real DIM('a))" by (rule trans[of _ "sum (\j. if i = j then inverse (2 * real DIM('a)) else 0) ?D"]) (simp_all add: sum.If_cases i) } note ** = this show ?thesis apply (rule that[of ?a]) unfolding interior_std_simplex mem_Collect_eq proof safe fix i :: 'a assume i: "i \ Basis" show "0 < ?a \ i" unfolding **[OF i] by (auto simp add: Suc_le_eq) next have "sum ((\) ?a) ?D = sum (\i. inverse (2 * real DIM('a))) ?D" apply (rule sum.cong) apply rule apply auto done also have "\ < 1" unfolding sum_constant divide_inverse[symmetric] by (auto simp add: field_simps) finally show "sum ((\) ?a) ?D < 1" by auto qed qed lemma rel_interior_substd_simplex: assumes D: "D \ Basis" shows "rel_interior (convex hull (insert 0 D)) = {x::'a::euclidean_space. (\i\D. 0 < x\i) \ (\i\D. x\i) < 1 \ (\i\Basis. i \ D \ x\i = 0)}" (is "rel_interior (convex hull (insert 0 ?p)) = ?s") proof - have "finite D" using D finite_Basis finite_subset by blast show ?thesis proof (cases "D = {}") case True then show ?thesis using rel_interior_sing using euclidean_eq_iff[of _ 0] by auto next case False have h0: "affine hull (convex hull (insert 0 ?p)) = {x::'a::euclidean_space. (\i\Basis. i \ D \ x\i = 0)}" using affine_hull_convex_hull affine_hull_substd_basis assms by auto have aux: "\x::'a. \i\Basis. (\i\D. 0 \ x\i) \ (\i\Basis. i \ D \ x\i = 0) \ 0 \ x\i" by auto { fix x :: "'a::euclidean_space" assume x: "x \ rel_interior (convex hull (insert 0 ?p))" then obtain e where "e > 0" and "ball x e \ {xa. (\i\Basis. i \ D \ xa\i = 0)} \ convex hull (insert 0 ?p)" using mem_rel_interior_ball[of x "convex hull (insert 0 ?p)"] h0 by auto then have as [rule_format]: "\y. dist x y < e \ (\i\Basis. i \ D \ y\i = 0) \ (\i\D. 0 \ y \ i) \ sum ((\) y) D \ 1" unfolding ball_def unfolding substd_simplex[OF assms] using assms by auto have x0: "(\i\Basis. i \ D \ x\i = 0)" using x rel_interior_subset substd_simplex[OF assms] by auto have "(\i\D. 0 < x \ i) \ sum ((\) x) D < 1 \ (\i\Basis. i \ D \ x\i = 0)" proof (intro conjI ballI) fix i :: 'a assume "i \ D" then have "\j\D. 0 \ (x - (e / 2) *\<^sub>R i) \ j" apply - apply (rule as[THEN conjunct1]) using D \e > 0\ x0 apply (auto simp: dist_norm inner_simps inner_Basis) done then show "0 < x \ i" using \e > 0\ \i \ D\ D by (force simp: inner_simps inner_Basis) next obtain a where a: "a \ D" using \D \ {}\ by auto then have **: "dist x (x + (e / 2) *\<^sub>R a) < e" using \e > 0\ norm_Basis[of a] D unfolding dist_norm by auto have "\i. i \ Basis \ (x + (e / 2) *\<^sub>R a) \ i = x\i + (if i = a then e/2 else 0)" using a D by (auto simp: inner_simps inner_Basis) then have *: "sum ((\) (x + (e / 2) *\<^sub>R a)) D = sum (\i. x\i + (if a = i then e/2 else 0)) D" using D by (intro sum.cong) auto have "a \ Basis" using \a \ D\ D by auto then have h1: "(\i\Basis. i \ D \ (x + (e / 2) *\<^sub>R a) \ i = 0)" using x0 D \a\D\ by (auto simp add: inner_add_left inner_Basis) have "sum ((\) x) D < sum ((\) (x + (e / 2) *\<^sub>R a)) D" using \e > 0\ \a \ D\ \finite D\ by (auto simp add: * sum.distrib) also have "\ \ 1" using ** h1 as[rule_format, of "x + (e / 2) *\<^sub>R a"] by auto finally show "sum ((\) x) D < 1" "\i. i\Basis \ i \ D \ x\i = 0" using x0 by auto qed } moreover { fix x :: "'a::euclidean_space" assume as: "x \ ?s" have "\i. 0 < x\i \ 0 = x\i \ 0 \ x\i" by auto moreover have "\i. i \ D \ i \ D" by auto ultimately have "\i. (\i\D. 0 < x\i) \ (\i. i \ D \ x\i = 0) \ 0 \ x\i" by metis then have h2: "x \ convex hull (insert 0 ?p)" using as assms unfolding substd_simplex[OF assms] by fastforce obtain a where a: "a \ D" using \D \ {}\ by auto let ?d = "(1 - sum ((\) x) D) / real (card D)" have "0 < card D" using \D \ {}\ \finite D\ by (simp add: card_gt_0_iff) have "Min (((\) x) ` D) > 0" using as \D \ {}\ \finite D\ by (simp) moreover have "?d > 0" using as using \0 < card D\ by auto ultimately have h3: "min (Min (((\) x) ` D)) ?d > 0" by auto have "x \ rel_interior (convex hull (insert 0 ?p))" unfolding rel_interior_ball mem_Collect_eq h0 apply (rule,rule h2) unfolding substd_simplex[OF assms] apply (rule_tac x="min (Min (((\) x) ` D)) ?d" in exI) apply (rule, rule h3) apply safe unfolding mem_ball proof - fix y :: 'a assume y: "dist x y < min (Min ((\) x ` D)) ?d" assume y2: "\i\Basis. i \ D \ y\i = 0" have "sum ((\) y) D \ sum (\i. x\i + ?d) D" proof (rule sum_mono) fix i assume "i \ D" with D have i: "i \ Basis" by auto have "\y\i - x\i\ \ norm (y - x)" by (metis i inner_commute inner_diff_right norm_bound_Basis_le order_refl) also have "... < ?d" by (metis dist_norm min_less_iff_conj norm_minus_commute y) finally have "\y\i - x\i\ < ?d" . then show "y \ i \ x \ i + ?d" by auto qed also have "\ \ 1" unfolding sum.distrib sum_constant using \0 < card D\ by auto finally show "sum ((\) y) D \ 1" . fix i :: 'a assume i: "i \ Basis" then show "0 \ y\i" proof (cases "i\D") case True have "norm (x - y) < x\i" using y[unfolded min_less_iff_conj dist_norm, THEN conjunct1] using Min_gr_iff[of "(\) x ` D" "norm (x - y)"] \0 < card D\ \i \ D\ by (simp add: card_gt_0_iff) then show "0 \ y\i" using Basis_le_norm[OF i, of "x - y"] and as(1)[rule_format] by (auto simp: inner_simps) qed (insert y2, auto) qed } ultimately have "\x. x \ rel_interior (convex hull insert 0 D) \ x \ {x. (\i\D. 0 < x \ i) \ sum ((\) x) D < 1 \ (\i\Basis. i \ D \ x \ i = 0)}" by blast then show ?thesis by (rule set_eqI) qed qed lemma rel_interior_substd_simplex_nonempty: assumes "D \ {}" and "D \ Basis" obtains a :: "'a::euclidean_space" where "a \ rel_interior (convex hull (insert 0 D))" proof - let ?D = D let ?a = "sum (\b::'a::euclidean_space. inverse (2 * real (card D)) *\<^sub>R b) ?D" have "finite D" apply (rule finite_subset) using assms(2) apply auto done then have d1: "0 < real (card D)" using \D \ {}\ by auto { fix i assume "i \ D" have "?a \ i = inverse (2 * real (card D))" apply (rule trans[of _ "sum (\j. if i = j then inverse (2 * real (card D)) else 0) ?D"]) unfolding inner_sum_left apply (rule sum.cong) using \i \ D\ \finite D\ sum.delta'[of D i "(\k. inverse (2 * real (card D)))"] d1 assms(2) by (auto simp: inner_Basis rev_subsetD[OF _ assms(2)]) } note ** = this show ?thesis apply (rule that[of ?a]) unfolding rel_interior_substd_simplex[OF assms(2)] mem_Collect_eq proof safe fix i assume "i \ D" have "0 < inverse (2 * real (card D))" using d1 by auto also have "\ = ?a \ i" using **[of i] \i \ D\ by auto finally show "0 < ?a \ i" by auto next have "sum ((\) ?a) ?D = sum (\i. inverse (2 * real (card D))) ?D" by (rule sum.cong) (rule refl, rule **) also have "\ < 1" unfolding sum_constant divide_real_def[symmetric] by (auto simp add: field_simps) finally show "sum ((\) ?a) ?D < 1" by auto next fix i assume "i \ Basis" and "i \ D" have "?a \ span D" proof (rule span_sum[of D "(\b. b /\<^sub>R (2 * real (card D)))" D]) { fix x :: "'a::euclidean_space" assume "x \ D" then have "x \ span D" using span_base[of _ "D"] by auto then have "x /\<^sub>R (2 * real (card D)) \ span D" using span_mul[of x "D" "(inverse (real (card D)) / 2)"] by auto } then show "\x. x\D \ x /\<^sub>R (2 * real (card D)) \ span D" by auto qed then show "?a \ i = 0 " using \i \ D\ unfolding span_substd_basis[OF assms(2)] using \i \ Basis\ by auto qed qed subsection\<^marker>\tag unimportant\ \Relative interior of convex set\ lemma rel_interior_convex_nonempty_aux: fixes S :: "'n::euclidean_space set" assumes "convex S" and "0 \ S" shows "rel_interior S \ {}" proof (cases "S = {0}") case True then show ?thesis using rel_interior_sing by auto next case False obtain B where B: "independent B \ B \ S \ S \ span B \ card B = dim S" using basis_exists[of S] by metis then have "B \ {}" using B assms \S \ {0}\ span_empty by auto have "insert 0 B \ span B" using subspace_span[of B] subspace_0[of "span B"] span_superset by auto then have "span (insert 0 B) \ span B" using span_span[of B] span_mono[of "insert 0 B" "span B"] by blast then have "convex hull insert 0 B \ span B" using convex_hull_subset_span[of "insert 0 B"] by auto then have "span (convex hull insert 0 B) \ span B" using span_span[of B] span_mono[of "convex hull insert 0 B" "span B"] by blast then have *: "span (convex hull insert 0 B) = span B" using span_mono[of B "convex hull insert 0 B"] hull_subset[of "insert 0 B"] by auto then have "span (convex hull insert 0 B) = span S" using B span_mono[of B S] span_mono[of S "span B"] span_span[of B] by auto moreover have "0 \ affine hull (convex hull insert 0 B)" using hull_subset[of "convex hull insert 0 B"] hull_subset[of "insert 0 B"] by auto ultimately have **: "affine hull (convex hull insert 0 B) = affine hull S" using affine_hull_span_0[of "convex hull insert 0 B"] affine_hull_span_0[of "S"] assms hull_subset[of S] by auto obtain d and f :: "'n \ 'n" where fd: "card d = card B" "linear f" "f ` B = d" "f ` span B = {x. \i\Basis. i \ d \ x \ i = (0::real)} \ inj_on f (span B)" and d: "d \ Basis" using basis_to_substdbasis_subspace_isomorphism[of B,OF _ ] B by auto then have "bounded_linear f" using linear_conv_bounded_linear by auto have "d \ {}" using fd B \B \ {}\ by auto have "insert 0 d = f ` (insert 0 B)" using fd linear_0 by auto then have "(convex hull (insert 0 d)) = f ` (convex hull (insert 0 B))" using convex_hull_linear_image[of f "(insert 0 d)"] convex_hull_linear_image[of f "(insert 0 B)"] \linear f\ by auto moreover have "rel_interior (f ` (convex hull insert 0 B)) = f ` rel_interior (convex hull insert 0 B)" apply (rule rel_interior_injective_on_span_linear_image[of f "(convex hull insert 0 B)"]) using \bounded_linear f\ fd * apply auto done ultimately have "rel_interior (convex hull insert 0 B) \ {}" using rel_interior_substd_simplex_nonempty[OF \d \ {}\ d] apply auto apply blast done moreover have "convex hull (insert 0 B) \ S" using B assms hull_mono[of "insert 0 B" "S" "convex"] convex_hull_eq by auto ultimately show ?thesis using subset_rel_interior[of "convex hull insert 0 B" S] ** by auto qed lemma rel_interior_eq_empty: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_interior S = {} \ S = {}" proof - { assume "S \ {}" then obtain a where "a \ S" by auto then have "0 \ (+) (-a) ` S" using assms exI[of "(\x. x \ S \ - a + x = 0)" a] by auto then have "rel_interior ((+) (-a) ` S) \ {}" using rel_interior_convex_nonempty_aux[of "(+) (-a) ` S"] convex_translation[of S "-a"] assms by auto then have "rel_interior S \ {}" using rel_interior_translation [of "- a"] by simp } then show ?thesis by auto qed lemma interior_simplex_nonempty: fixes S :: "'N :: euclidean_space set" assumes "independent S" "finite S" "card S = DIM('N)" obtains a where "a \ interior (convex hull (insert 0 S))" proof - have "affine hull (insert 0 S) = UNIV" by (simp add: hull_inc affine_hull_span_0 dim_eq_full[symmetric] assms(1) assms(3) dim_eq_card_independent) moreover have "rel_interior (convex hull insert 0 S) \ {}" using rel_interior_eq_empty [of "convex hull (insert 0 S)"] by auto ultimately have "interior (convex hull insert 0 S) \ {}" by (simp add: rel_interior_interior) with that show ?thesis by auto qed lemma convex_rel_interior: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "convex (rel_interior S)" proof - { fix x y and u :: real assume assm: "x \ rel_interior S" "y \ rel_interior S" "0 \ u" "u \ 1" then have "x \ S" using rel_interior_subset by auto have "x - u *\<^sub>R (x-y) \ rel_interior S" proof (cases "0 = u") case False then have "0 < u" using assm by auto then show ?thesis using assm rel_interior_convex_shrink[of S y x u] assms \x \ S\ by auto next case True then show ?thesis using assm by auto qed then have "(1 - u) *\<^sub>R x + u *\<^sub>R y \ rel_interior S" by (simp add: algebra_simps) } then show ?thesis unfolding convex_alt by auto qed lemma convex_closure_rel_interior: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "closure (rel_interior S) = closure S" proof - have h1: "closure (rel_interior S) \ closure S" using closure_mono[of "rel_interior S" S] rel_interior_subset[of S] by auto show ?thesis proof (cases "S = {}") case False then obtain a where a: "a \ rel_interior S" using rel_interior_eq_empty assms by auto { fix x assume x: "x \ closure S" { assume "x = a" then have "x \ closure (rel_interior S)" using a unfolding closure_def by auto } moreover { assume "x \ a" { fix e :: real assume "e > 0" define e1 where "e1 = min 1 (e/norm (x - a))" then have e1: "e1 > 0" "e1 \ 1" "e1 * norm (x - a) \ e" using \x \ a\ \e > 0\ le_divide_eq[of e1 e "norm (x - a)"] by simp_all then have *: "x - e1 *\<^sub>R (x - a) \ rel_interior S" using rel_interior_closure_convex_shrink[of S a x e1] assms x a e1_def by auto have "\y. y \ rel_interior S \ y \ x \ dist y x \ e" apply (rule_tac x="x - e1 *\<^sub>R (x - a)" in exI) using * e1 dist_norm[of "x - e1 *\<^sub>R (x - a)" x] \x \ a\ apply simp done } then have "x islimpt rel_interior S" unfolding islimpt_approachable_le by auto then have "x \ closure(rel_interior S)" unfolding closure_def by auto } ultimately have "x \ closure(rel_interior S)" by auto } then show ?thesis using h1 by auto next case True then have "rel_interior S = {}" by auto then have "closure (rel_interior S) = {}" using closure_empty by auto with True show ?thesis by auto qed qed lemma rel_interior_same_affine_hull: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "affine hull (rel_interior S) = affine hull S" by (metis assms closure_same_affine_hull convex_closure_rel_interior) lemma rel_interior_aff_dim: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "aff_dim (rel_interior S) = aff_dim S" by (metis aff_dim_affine_hull2 assms rel_interior_same_affine_hull) lemma rel_interior_rel_interior: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_interior (rel_interior S) = rel_interior S" proof - have "openin (top_of_set (affine hull (rel_interior S))) (rel_interior S)" using openin_rel_interior[of S] rel_interior_same_affine_hull[of S] assms by auto then show ?thesis using rel_interior_def by auto qed lemma rel_interior_rel_open: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_open (rel_interior S)" unfolding rel_open_def using rel_interior_rel_interior assms by auto lemma convex_rel_interior_closure_aux: fixes x y z :: "'n::euclidean_space" assumes "0 < a" "0 < b" "(a + b) *\<^sub>R z = a *\<^sub>R x + b *\<^sub>R y" obtains e where "0 < e" "e \ 1" "z = y - e *\<^sub>R (y - x)" proof - define e where "e = a / (a + b)" have "z = (1 / (a + b)) *\<^sub>R ((a + b) *\<^sub>R z)" using assms by (simp add: eq_vector_fraction_iff) also have "\ = (1 / (a + b)) *\<^sub>R (a *\<^sub>R x + b *\<^sub>R y)" using assms scaleR_cancel_left[of "1/(a+b)" "(a + b) *\<^sub>R z" "a *\<^sub>R x + b *\<^sub>R y"] by auto also have "\ = y - e *\<^sub>R (y-x)" using e_def apply (simp add: algebra_simps) using scaleR_left_distrib[of "a/(a+b)" "b/(a+b)" y] assms add_divide_distrib[of a b "a+b"] apply auto done finally have "z = y - e *\<^sub>R (y-x)" by auto moreover have "e > 0" using e_def assms by auto moreover have "e \ 1" using e_def assms by auto ultimately show ?thesis using that[of e] by auto qed lemma convex_rel_interior_closure: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_interior (closure S) = rel_interior S" proof (cases "S = {}") case True then show ?thesis using assms rel_interior_eq_empty by auto next case False have "rel_interior (closure S) \ rel_interior S" using subset_rel_interior[of S "closure S"] closure_same_affine_hull closure_subset by auto moreover { fix z assume z: "z \ rel_interior (closure S)" obtain x where x: "x \ rel_interior S" using \S \ {}\ assms rel_interior_eq_empty by auto have "z \ rel_interior S" proof (cases "x = z") case True then show ?thesis using x by auto next case False obtain e where e: "e > 0" "cball z e \ affine hull closure S \ closure S" using z rel_interior_cball[of "closure S"] by auto hence *: "0 < e/norm(z-x)" using e False by auto define y where "y = z + (e/norm(z-x)) *\<^sub>R (z-x)" have yball: "y \ cball z e" using y_def dist_norm[of z y] e by auto have "x \ affine hull closure S" using x rel_interior_subset_closure hull_inc[of x "closure S"] by blast moreover have "z \ affine hull closure S" using z rel_interior_subset hull_subset[of "closure S"] by blast ultimately have "y \ affine hull closure S" using y_def affine_affine_hull[of "closure S"] mem_affine_3_minus [of "affine hull closure S" z z x "e/norm(z-x)"] by auto then have "y \ closure S" using e yball by auto have "(1 + (e/norm(z-x))) *\<^sub>R z = (e/norm(z-x)) *\<^sub>R x + y" using y_def by (simp add: algebra_simps) then obtain e1 where "0 < e1" "e1 \ 1" "z = y - e1 *\<^sub>R (y - x)" using * convex_rel_interior_closure_aux[of "e / norm (z - x)" 1 z x y] by (auto simp add: algebra_simps) then show ?thesis using rel_interior_closure_convex_shrink assms x \y \ closure S\ by auto qed } ultimately show ?thesis by auto qed lemma convex_interior_closure: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "interior (closure S) = interior S" using closure_aff_dim[of S] interior_rel_interior_gen[of S] interior_rel_interior_gen[of "closure S"] convex_rel_interior_closure[of S] assms by auto lemma closure_eq_rel_interior_eq: fixes S1 S2 :: "'n::euclidean_space set" assumes "convex S1" and "convex S2" shows "closure S1 = closure S2 \ rel_interior S1 = rel_interior S2" by (metis convex_rel_interior_closure convex_closure_rel_interior assms) lemma closure_eq_between: fixes S1 S2 :: "'n::euclidean_space set" assumes "convex S1" and "convex S2" shows "closure S1 = closure S2 \ rel_interior S1 \ S2 \ S2 \ closure S1" (is "?A \ ?B") proof assume ?A then show ?B by (metis assms closure_subset convex_rel_interior_closure rel_interior_subset) next assume ?B then have "closure S1 \ closure S2" by (metis assms(1) convex_closure_rel_interior closure_mono) moreover from \?B\ have "closure S1 \ closure S2" by (metis closed_closure closure_minimal) ultimately show ?A .. qed lemma open_inter_closure_rel_interior: fixes S A :: "'n::euclidean_space set" assumes "convex S" and "open A" shows "A \ closure S = {} \ A \ rel_interior S = {}" by (metis assms convex_closure_rel_interior open_Int_closure_eq_empty) lemma rel_interior_open_segment: fixes a :: "'a :: euclidean_space" shows "rel_interior(open_segment a b) = open_segment a b" proof (cases "a = b") case True then show ?thesis by auto next case False then show ?thesis apply (simp add: rel_interior_eq openin_open) apply (rule_tac x="ball (inverse 2 *\<^sub>R (a + b)) (norm(b - a) / 2)" in exI) apply (simp add: open_segment_as_ball) done qed lemma rel_interior_closed_segment: fixes a :: "'a :: euclidean_space" shows "rel_interior(closed_segment a b) = (if a = b then {a} else open_segment a b)" proof (cases "a = b") case True then show ?thesis by auto next case False then show ?thesis by simp (metis closure_open_segment convex_open_segment convex_rel_interior_closure rel_interior_open_segment) qed lemmas rel_interior_segment = rel_interior_closed_segment rel_interior_open_segment lemma starlike_convex_tweak_boundary_points: fixes S :: "'a::euclidean_space set" assumes "convex S" "S \ {}" and ST: "rel_interior S \ T" and TS: "T \ closure S" shows "starlike T" proof - have "rel_interior S \ {}" by (simp add: assms rel_interior_eq_empty) then obtain a where a: "a \ rel_interior S" by blast with ST have "a \ T" by blast have *: "\x. x \ T \ open_segment a x \ rel_interior S" apply (rule rel_interior_closure_convex_segment [OF \convex S\ a]) using assms by blast show ?thesis unfolding starlike_def apply (rule bexI [OF _ \a \ T\]) apply (simp add: closed_segment_eq_open) apply (intro conjI ballI a \a \ T\ rel_interior_closure_convex_segment [OF \convex S\ a]) apply (simp add: order_trans [OF * ST]) done qed subsection\The relative frontier of a set\ definition\<^marker>\tag important\ "rel_frontier S = closure S - rel_interior S" lemma rel_frontier_empty [simp]: "rel_frontier {} = {}" by (simp add: rel_frontier_def) lemma rel_frontier_eq_empty: fixes S :: "'n::euclidean_space set" shows "rel_frontier S = {} \ affine S" unfolding rel_frontier_def using rel_interior_subset_closure by (auto simp add: rel_interior_eq_closure [symmetric]) lemma rel_frontier_sing [simp]: fixes a :: "'n::euclidean_space" shows "rel_frontier {a} = {}" by (simp add: rel_frontier_def) lemma rel_frontier_affine_hull: fixes S :: "'a::euclidean_space set" shows "rel_frontier S \ affine hull S" using closure_affine_hull rel_frontier_def by fastforce lemma rel_frontier_cball [simp]: fixes a :: "'n::euclidean_space" shows "rel_frontier(cball a r) = (if r = 0 then {} else sphere a r)" proof (cases rule: linorder_cases [of r 0]) case less then show ?thesis by (force simp: sphere_def) next case equal then show ?thesis by simp next case greater then show ?thesis apply simp by (metis centre_in_ball empty_iff frontier_cball frontier_def interior_cball interior_rel_interior_gen rel_frontier_def) qed lemma rel_frontier_translation: fixes a :: "'a::euclidean_space" shows "rel_frontier((\x. a + x) ` S) = (\x. a + x) ` (rel_frontier S)" by (simp add: rel_frontier_def translation_diff rel_interior_translation closure_translation) lemma rel_frontier_nonempty_interior: fixes S :: "'n::euclidean_space set" shows "interior S \ {} \ rel_frontier S = frontier S" by (metis frontier_def interior_rel_interior_gen rel_frontier_def) lemma rel_frontier_frontier: fixes S :: "'n::euclidean_space set" shows "affine hull S = UNIV \ rel_frontier S = frontier S" by (simp add: frontier_def rel_frontier_def rel_interior_interior) lemma closest_point_in_rel_frontier: "\closed S; S \ {}; x \ affine hull S - rel_interior S\ \ closest_point S x \ rel_frontier S" by (simp add: closest_point_in_rel_interior closest_point_in_set rel_frontier_def) lemma closed_rel_frontier [iff]: fixes S :: "'n::euclidean_space set" shows "closed (rel_frontier S)" proof - have *: "closedin (top_of_set (affine hull S)) (closure S - rel_interior S)" by (simp add: closed_subset closedin_diff closure_affine_hull openin_rel_interior) show ?thesis apply (rule closedin_closed_trans[of "affine hull S" "rel_frontier S"]) unfolding rel_frontier_def using * closed_affine_hull apply auto done qed lemma closed_rel_boundary: fixes S :: "'n::euclidean_space set" shows "closed S \ closed(S - rel_interior S)" by (metis closed_rel_frontier closure_closed rel_frontier_def) lemma compact_rel_boundary: fixes S :: "'n::euclidean_space set" shows "compact S \ compact(S - rel_interior S)" by (metis bounded_diff closed_rel_boundary closure_eq compact_closure compact_imp_closed) lemma bounded_rel_frontier: fixes S :: "'n::euclidean_space set" shows "bounded S \ bounded(rel_frontier S)" by (simp add: bounded_closure bounded_diff rel_frontier_def) lemma compact_rel_frontier_bounded: fixes S :: "'n::euclidean_space set" shows "bounded S \ compact(rel_frontier S)" using bounded_rel_frontier closed_rel_frontier compact_eq_bounded_closed by blast lemma compact_rel_frontier: fixes S :: "'n::euclidean_space set" shows "compact S \ compact(rel_frontier S)" by (meson compact_eq_bounded_closed compact_rel_frontier_bounded) lemma convex_same_rel_interior_closure: fixes S :: "'n::euclidean_space set" shows "\convex S; convex T\ \ rel_interior S = rel_interior T \ closure S = closure T" by (simp add: closure_eq_rel_interior_eq) lemma convex_same_rel_interior_closure_straddle: fixes S :: "'n::euclidean_space set" shows "\convex S; convex T\ \ rel_interior S = rel_interior T \ rel_interior S \ T \ T \ closure S" by (simp add: closure_eq_between convex_same_rel_interior_closure) lemma convex_rel_frontier_aff_dim: fixes S1 S2 :: "'n::euclidean_space set" assumes "convex S1" and "convex S2" and "S2 \ {}" and "S1 \ rel_frontier S2" shows "aff_dim S1 < aff_dim S2" proof - have "S1 \ closure S2" using assms unfolding rel_frontier_def by auto then have *: "affine hull S1 \ affine hull S2" using hull_mono[of "S1" "closure S2"] closure_same_affine_hull[of S2] by blast then have "aff_dim S1 \ aff_dim S2" using * aff_dim_affine_hull[of S1] aff_dim_affine_hull[of S2] aff_dim_subset[of "affine hull S1" "affine hull S2"] by auto moreover { assume eq: "aff_dim S1 = aff_dim S2" then have "S1 \ {}" using aff_dim_empty[of S1] aff_dim_empty[of S2] \S2 \ {}\ by auto have **: "affine hull S1 = affine hull S2" apply (rule affine_dim_equal) using * affine_affine_hull apply auto using \S1 \ {}\ hull_subset[of S1] apply auto using eq aff_dim_affine_hull[of S1] aff_dim_affine_hull[of S2] apply auto done obtain a where a: "a \ rel_interior S1" using \S1 \ {}\ rel_interior_eq_empty assms by auto obtain T where T: "open T" "a \ T \ S1" "T \ affine hull S1 \ S1" using mem_rel_interior[of a S1] a by auto then have "a \ T \ closure S2" using a assms unfolding rel_frontier_def by auto then obtain b where b: "b \ T \ rel_interior S2" using open_inter_closure_rel_interior[of S2 T] assms T by auto then have "b \ affine hull S1" using rel_interior_subset hull_subset[of S2] ** by auto then have "b \ S1" using T b by auto then have False using b assms unfolding rel_frontier_def by auto } ultimately show ?thesis using less_le by auto qed lemma convex_rel_interior_if: fixes S :: "'n::euclidean_space set" assumes "convex S" and "z \ rel_interior S" shows "\x\affine hull S. \m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" proof - obtain e1 where e1: "e1 > 0 \ cball z e1 \ affine hull S \ S" using mem_rel_interior_cball[of z S] assms by auto { fix x assume x: "x \ affine hull S" { assume "x \ z" define m where "m = 1 + e1/norm(x-z)" hence "m > 1" using e1 \x \ z\ by auto { fix e assume e: "e > 1 \ e \ m" have "z \ affine hull S" using assms rel_interior_subset hull_subset[of S] by auto then have *: "(1 - e)*\<^sub>R x + e *\<^sub>R z \ affine hull S" using mem_affine[of "affine hull S" x z "(1-e)" e] affine_affine_hull[of S] x by auto have "norm (z + e *\<^sub>R x - (x + e *\<^sub>R z)) = norm ((e - 1) *\<^sub>R (x - z))" by (simp add: algebra_simps) also have "\ = (e - 1) * norm (x-z)" using norm_scaleR e by auto also have "\ \ (m - 1) * norm (x - z)" using e mult_right_mono[of _ _ "norm(x-z)"] by auto also have "\ = (e1 / norm (x - z)) * norm (x - z)" using m_def by auto also have "\ = e1" using \x \ z\ e1 by simp finally have **: "norm (z + e *\<^sub>R x - (x + e *\<^sub>R z)) \ e1" by auto have "(1 - e)*\<^sub>R x+ e *\<^sub>R z \ cball z e1" using m_def ** unfolding cball_def dist_norm by (auto simp add: algebra_simps) then have "(1 - e) *\<^sub>R x+ e *\<^sub>R z \ S" using e * e1 by auto } then have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S )" using \m> 1 \ by auto } moreover { assume "x = z" define m where "m = 1 + e1" then have "m > 1" using e1 by auto { fix e assume e: "e > 1 \ e \ m" then have "(1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using e1 x \x = z\ by (auto simp add: algebra_simps) then have "(1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using e by auto } then have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" using \m > 1\ by auto } ultimately have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S )" by blast } then show ?thesis by auto qed lemma convex_rel_interior_if2: fixes S :: "'n::euclidean_space set" assumes "convex S" assumes "z \ rel_interior S" shows "\x\affine hull S. \e. e > 1 \ (1 - e)*\<^sub>R x + e *\<^sub>R z \ S" using convex_rel_interior_if[of S z] assms by auto lemma convex_rel_interior_only_if: fixes S :: "'n::euclidean_space set" assumes "convex S" and "S \ {}" assumes "\x\S. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" shows "z \ rel_interior S" proof - obtain x where x: "x \ rel_interior S" using rel_interior_eq_empty assms by auto then have "x \ S" using rel_interior_subset by auto then obtain e where e: "e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using assms by auto define y where [abs_def]: "y = (1 - e) *\<^sub>R x + e *\<^sub>R z" then have "y \ S" using e by auto define e1 where "e1 = 1/e" then have "0 < e1 \ e1 < 1" using e by auto then have "z =y - (1 - e1) *\<^sub>R (y - x)" using e1_def y_def by (auto simp add: algebra_simps) then show ?thesis using rel_interior_convex_shrink[of S x y "1-e1"] \0 < e1 \ e1 < 1\ \y \ S\ x assms by auto qed lemma convex_rel_interior_iff: fixes S :: "'n::euclidean_space set" assumes "convex S" and "S \ {}" shows "z \ rel_interior S \ (\x\S. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" using assms hull_subset[of S "affine"] convex_rel_interior_if[of S z] convex_rel_interior_only_if[of S z] by auto lemma convex_rel_interior_iff2: fixes S :: "'n::euclidean_space set" assumes "convex S" and "S \ {}" shows "z \ rel_interior S \ (\x\affine hull S. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" using assms hull_subset[of S] convex_rel_interior_if2[of S z] convex_rel_interior_only_if[of S z] by auto lemma convex_interior_iff: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "z \ interior S \ (\x. \e. e > 0 \ z + e *\<^sub>R x \ S)" proof (cases "aff_dim S = int DIM('n)") case False { assume "z \ interior S" then have False using False interior_rel_interior_gen[of S] by auto } moreover { assume r: "\x. \e. e > 0 \ z + e *\<^sub>R x \ S" { fix x obtain e1 where e1: "e1 > 0 \ z + e1 *\<^sub>R (x - z) \ S" using r by auto obtain e2 where e2: "e2 > 0 \ z + e2 *\<^sub>R (z - x) \ S" using r by auto define x1 where [abs_def]: "x1 = z + e1 *\<^sub>R (x - z)" then have x1: "x1 \ affine hull S" using e1 hull_subset[of S] by auto define x2 where [abs_def]: "x2 = z + e2 *\<^sub>R (z - x)" then have x2: "x2 \ affine hull S" using e2 hull_subset[of S] by auto have *: "e1/(e1+e2) + e2/(e1+e2) = 1" using add_divide_distrib[of e1 e2 "e1+e2"] e1 e2 by simp then have "z = (e2/(e1+e2)) *\<^sub>R x1 + (e1/(e1+e2)) *\<^sub>R x2" using x1_def x2_def apply (auto simp add: algebra_simps) using scaleR_left_distrib[of "e1/(e1+e2)" "e2/(e1+e2)" z] apply auto done then have z: "z \ affine hull S" using mem_affine[of "affine hull S" x1 x2 "e2/(e1+e2)" "e1/(e1+e2)"] x1 x2 affine_affine_hull[of S] * by auto have "x1 - x2 = (e1 + e2) *\<^sub>R (x - z)" using x1_def x2_def by (auto simp add: algebra_simps) then have "x = z+(1/(e1+e2)) *\<^sub>R (x1-x2)" using e1 e2 by simp then have "x \ affine hull S" using mem_affine_3_minus[of "affine hull S" z x1 x2 "1/(e1+e2)"] x1 x2 z affine_affine_hull[of S] by auto } then have "affine hull S = UNIV" by auto then have "aff_dim S = int DIM('n)" using aff_dim_affine_hull[of S] by (simp) then have False using False by auto } ultimately show ?thesis by auto next case True then have "S \ {}" using aff_dim_empty[of S] by auto have *: "affine hull S = UNIV" using True affine_hull_UNIV by auto { assume "z \ interior S" then have "z \ rel_interior S" using True interior_rel_interior_gen[of S] by auto then have **: "\x. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using convex_rel_interior_iff2[of S z] assms \S \ {}\ * by auto fix x obtain e1 where e1: "e1 > 1" "(1 - e1) *\<^sub>R (z - x) + e1 *\<^sub>R z \ S" using **[rule_format, of "z-x"] by auto define e where [abs_def]: "e = e1 - 1" then have "(1 - e1) *\<^sub>R (z - x) + e1 *\<^sub>R z = z + e *\<^sub>R x" by (simp add: algebra_simps) then have "e > 0" "z + e *\<^sub>R x \ S" using e1 e_def by auto then have "\e. e > 0 \ z + e *\<^sub>R x \ S" by auto } moreover { assume r: "\x. \e. e > 0 \ z + e *\<^sub>R x \ S" { fix x obtain e1 where e1: "e1 > 0" "z + e1 *\<^sub>R (z - x) \ S" using r[rule_format, of "z-x"] by auto define e where "e = e1 + 1" then have "z + e1 *\<^sub>R (z - x) = (1 - e) *\<^sub>R x + e *\<^sub>R z" by (simp add: algebra_simps) then have "e > 1" "(1 - e)*\<^sub>R x + e *\<^sub>R z \ S" using e1 e_def by auto then have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" by auto } then have "z \ rel_interior S" using convex_rel_interior_iff2[of S z] assms \S \ {}\ by auto then have "z \ interior S" using True interior_rel_interior_gen[of S] by auto } ultimately show ?thesis by auto qed subsubsection\<^marker>\tag unimportant\ \Relative interior and closure under common operations\ lemma rel_interior_inter_aux: "\{rel_interior S |S. S \ I} \ \I" proof - { fix y assume "y \ \{rel_interior S |S. S \ I}" then have y: "\S \ I. y \ rel_interior S" by auto { fix S assume "S \ I" then have "y \ S" using rel_interior_subset y by auto } then have "y \ \I" by auto } then show ?thesis by auto qed -lemma closure_Int: "closure (\I) \ \{closure S |S. S \ I}" -proof - - { - fix y - assume "y \ \I" - then have y: "\S \ I. y \ S" by auto - { - fix S - assume "S \ I" - then have "y \ closure S" - using closure_subset y by auto - } - then have "y \ \{closure S |S. S \ I}" - by auto - } - then have "\I \ \{closure S |S. S \ I}" - by auto - moreover have "closed (\{closure S |S. S \ I})" - unfolding closed_Inter closed_closure by auto - ultimately show ?thesis using closure_hull[of "\I"] - hull_minimal[of "\I" "\{closure S |S. S \ I}" "closed"] by auto -qed - lemma convex_closure_rel_interior_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" proof - obtain x where x: "\S\I. x \ rel_interior S" using assms by auto { fix y assume "y \ \{closure S |S. S \ I}" then have y: "\S \ I. y \ closure S" by auto { assume "y = x" then have "y \ closure (\{rel_interior S |S. S \ I})" using x closure_subset[of "\{rel_interior S |S. S \ I}"] by auto } moreover { assume "y \ x" { fix e :: real assume e: "e > 0" define e1 where "e1 = min 1 (e/norm (y - x))" then have e1: "e1 > 0" "e1 \ 1" "e1 * norm (y - x) \ e" using \y \ x\ \e > 0\ le_divide_eq[of e1 e "norm (y - x)"] by simp_all define z where "z = y - e1 *\<^sub>R (y - x)" { fix S assume "S \ I" then have "z \ rel_interior S" using rel_interior_closure_convex_shrink[of S x y e1] assms x y e1 z_def by auto } then have *: "z \ \{rel_interior S |S. S \ I}" by auto have "\z. z \ \{rel_interior S |S. S \ I} \ z \ y \ dist z y \ e" apply (rule_tac x="z" in exI) using \y \ x\ z_def * e1 e dist_norm[of z y] apply simp done } then have "y islimpt \{rel_interior S |S. S \ I}" unfolding islimpt_approachable_le by blast then have "y \ closure (\{rel_interior S |S. S \ I})" unfolding closure_def by auto } ultimately have "y \ closure (\{rel_interior S |S. S \ I})" by auto } then show ?thesis by auto qed lemma convex_closure_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "closure (\I) = \{closure S |S. S \ I}" proof - have "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" using convex_closure_rel_interior_inter assms by auto moreover have "closure (\{rel_interior S |S. S \ I}) \ closure (\I)" using rel_interior_inter_aux closure_mono[of "\{rel_interior S |S. S \ I}" "\I"] by auto ultimately show ?thesis using closure_Int[of I] by auto qed lemma convex_inter_rel_interior_same_closure: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "closure (\{rel_interior S |S. S \ I}) = closure (\I)" proof - have "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" using convex_closure_rel_interior_inter assms by auto moreover have "closure (\{rel_interior S |S. S \ I}) \ closure (\I)" using rel_interior_inter_aux closure_mono[of "\{rel_interior S |S. S \ I}" "\I"] by auto ultimately show ?thesis using closure_Int[of I] by auto qed lemma convex_rel_interior_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "rel_interior (\I) \ \{rel_interior S |S. S \ I}" proof - have "convex (\I)" using assms convex_Inter by auto moreover have "convex (\{rel_interior S |S. S \ I})" apply (rule convex_Inter) using assms convex_rel_interior apply auto done ultimately have "rel_interior (\{rel_interior S |S. S \ I}) = rel_interior (\I)" using convex_inter_rel_interior_same_closure assms closure_eq_rel_interior_eq[of "\{rel_interior S |S. S \ I}" "\I"] by blast then show ?thesis using rel_interior_subset[of "\{rel_interior S |S. S \ I}"] by auto qed lemma convex_rel_interior_finite_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" and "finite I" shows "rel_interior (\I) = \{rel_interior S |S. S \ I}" proof - have "\I \ {}" using assms rel_interior_inter_aux[of I] by auto have "convex (\I)" using convex_Inter assms by auto show ?thesis proof (cases "I = {}") case True then show ?thesis using Inter_empty rel_interior_UNIV by auto next case False { fix z assume z: "z \ \{rel_interior S |S. S \ I}" { fix x assume x: "x \ \I" { fix S assume S: "S \ I" then have "z \ rel_interior S" "x \ S" using z x by auto then have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e)*\<^sub>R x + e *\<^sub>R z \ S)" using convex_rel_interior_if[of S z] S assms hull_subset[of S] by auto } then obtain mS where mS: "\S\I. mS S > 1 \ (\e. e > 1 \ e \ mS S \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" by metis define e where "e = Min (mS ` I)" then have "e \ mS ` I" using assms \I \ {}\ by simp then have "e > 1" using mS by auto moreover have "\S\I. e \ mS S" using e_def assms by auto ultimately have "\e > 1. (1 - e) *\<^sub>R x + e *\<^sub>R z \ \I" using mS by auto } then have "z \ rel_interior (\I)" using convex_rel_interior_iff[of "\I" z] \\I \ {}\ \convex (\I)\ by auto } then show ?thesis using convex_rel_interior_inter[of I] assms by auto qed qed lemma convex_closure_inter_two: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" assumes "rel_interior S \ rel_interior T \ {}" shows "closure (S \ T) = closure S \ closure T" using convex_closure_inter[of "{S,T}"] assms by auto lemma convex_rel_interior_inter_two: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" and "rel_interior S \ rel_interior T \ {}" shows "rel_interior (S \ T) = rel_interior S \ rel_interior T" using convex_rel_interior_finite_inter[of "{S,T}"] assms by auto lemma convex_affine_closure_Int: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "affine T" and "rel_interior S \ T \ {}" shows "closure (S \ T) = closure S \ T" proof - have "affine hull T = T" using assms by auto then have "rel_interior T = T" using rel_interior_affine_hull[of T] by metis moreover have "closure T = T" using assms affine_closed[of T] by auto ultimately show ?thesis using convex_closure_inter_two[of S T] assms affine_imp_convex by auto qed lemma connected_component_1_gen: fixes S :: "'a :: euclidean_space set" assumes "DIM('a) = 1" shows "connected_component S a b \ closed_segment a b \ S" unfolding connected_component_def by (metis (no_types, lifting) assms subsetD subsetI convex_contains_segment convex_segment(1) ends_in_segment connected_convex_1_gen) lemma connected_component_1: fixes S :: "real set" shows "connected_component S a b \ closed_segment a b \ S" by (simp add: connected_component_1_gen) lemma convex_affine_rel_interior_Int: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "affine T" and "rel_interior S \ T \ {}" shows "rel_interior (S \ T) = rel_interior S \ T" proof - have "affine hull T = T" using assms by auto then have "rel_interior T = T" using rel_interior_affine_hull[of T] by metis moreover have "closure T = T" using assms affine_closed[of T] by auto ultimately show ?thesis using convex_rel_interior_inter_two[of S T] assms affine_imp_convex by auto qed lemma convex_affine_rel_frontier_Int: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "affine T" and "interior S \ T \ {}" shows "rel_frontier(S \ T) = frontier S \ T" using assms apply (simp add: rel_frontier_def convex_affine_closure_Int frontier_def) by (metis Diff_Int_distrib2 Int_emptyI convex_affine_closure_Int convex_affine_rel_interior_Int empty_iff interior_rel_interior_gen) lemma rel_interior_convex_Int_affine: fixes S :: "'a::euclidean_space set" assumes "convex S" "affine T" "interior S \ T \ {}" shows "rel_interior(S \ T) = interior S \ T" proof - obtain a where aS: "a \ interior S" and aT:"a \ T" using assms by force have "rel_interior S = interior S" by (metis (no_types) aS affine_hull_nonempty_interior equals0D rel_interior_interior) then show ?thesis by (metis (no_types) affine_imp_convex assms convex_rel_interior_inter_two hull_same rel_interior_affine_hull) qed lemma closure_convex_Int_affine: fixes S :: "'a::euclidean_space set" assumes "convex S" "affine T" "rel_interior S \ T \ {}" shows "closure(S \ T) = closure S \ T" proof have "closure (S \ T) \ closure T" by (simp add: closure_mono) also have "... \ T" by (simp add: affine_closed assms) finally show "closure(S \ T) \ closure S \ T" by (simp add: closure_mono) next obtain a where "a \ rel_interior S" "a \ T" using assms by auto then have ssT: "subspace ((\x. (-a)+x) ` T)" and "a \ S" using affine_diffs_subspace rel_interior_subset assms by blast+ show "closure S \ T \ closure (S \ T)" proof fix x assume "x \ closure S \ T" show "x \ closure (S \ T)" proof (cases "x = a") case True then show ?thesis using \a \ S\ \a \ T\ closure_subset by fastforce next case False then have "x \ closure(open_segment a x)" by auto then show ?thesis using \x \ closure S \ T\ assms convex_affine_closure_Int by blast qed qed qed lemma subset_rel_interior_convex: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" and "S \ closure T" and "\ S \ rel_frontier T" shows "rel_interior S \ rel_interior T" proof - have *: "S \ closure T = S" using assms by auto have "\ rel_interior S \ rel_frontier T" using closure_mono[of "rel_interior S" "rel_frontier T"] closed_rel_frontier[of T] closure_closed[of S] convex_closure_rel_interior[of S] closure_subset[of S] assms by auto then have "rel_interior S \ rel_interior (closure T) \ {}" using assms rel_frontier_def[of T] rel_interior_subset convex_rel_interior_closure[of T] by auto then have "rel_interior S \ rel_interior T = rel_interior (S \ closure T)" using assms convex_closure convex_rel_interior_inter_two[of S "closure T"] convex_rel_interior_closure[of T] by auto also have "\ = rel_interior S" using * by auto finally show ?thesis by auto qed lemma rel_interior_convex_linear_image: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" shows "f ` (rel_interior S) = rel_interior (f ` S)" proof (cases "S = {}") case True then show ?thesis using assms by auto next case False interpret linear f by fact have *: "f ` (rel_interior S) \ f ` S" unfolding image_mono using rel_interior_subset by auto have "f ` S \ f ` (closure S)" unfolding image_mono using closure_subset by auto also have "\ = f ` (closure (rel_interior S))" using convex_closure_rel_interior assms by auto also have "\ \ closure (f ` (rel_interior S))" using closure_linear_image_subset assms by auto finally have "closure (f ` S) = closure (f ` rel_interior S)" using closure_mono[of "f ` S" "closure (f ` rel_interior S)"] closure_closure closure_mono[of "f ` rel_interior S" "f ` S"] * by auto then have "rel_interior (f ` S) = rel_interior (f ` rel_interior S)" using assms convex_rel_interior linear_conv_bounded_linear[of f] convex_linear_image[of _ S] convex_linear_image[of _ "rel_interior S"] closure_eq_rel_interior_eq[of "f ` S" "f ` rel_interior S"] by auto then have "rel_interior (f ` S) \ f ` rel_interior S" using rel_interior_subset by auto moreover { fix z assume "z \ f ` rel_interior S" then obtain z1 where z1: "z1 \ rel_interior S" "f z1 = z" by auto { fix x assume "x \ f ` S" then obtain x1 where x1: "x1 \ S" "f x1 = x" by auto then obtain e where e: "e > 1" "(1 - e) *\<^sub>R x1 + e *\<^sub>R z1 \ S" using convex_rel_interior_iff[of S z1] \convex S\ x1 z1 by auto moreover have "f ((1 - e) *\<^sub>R x1 + e *\<^sub>R z1) = (1 - e) *\<^sub>R x + e *\<^sub>R z" using x1 z1 by (simp add: linear_add linear_scale \linear f\) ultimately have "(1 - e) *\<^sub>R x + e *\<^sub>R z \ f ` S" using imageI[of "(1 - e) *\<^sub>R x1 + e *\<^sub>R z1" S f] by auto then have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ f ` S" using e by auto } then have "z \ rel_interior (f ` S)" using convex_rel_interior_iff[of "f ` S" z] \convex S\ \linear f\ \S \ {}\ convex_linear_image[of f S] linear_conv_bounded_linear[of f] by auto } ultimately show ?thesis by auto qed lemma rel_interior_convex_linear_preimage: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" and "f -` (rel_interior S) \ {}" shows "rel_interior (f -` S) = f -` (rel_interior S)" proof - interpret linear f by fact have "S \ {}" using assms by auto have nonemp: "f -` S \ {}" by (metis assms(3) rel_interior_subset subset_empty vimage_mono) then have "S \ (range f) \ {}" by auto have conv: "convex (f -` S)" using convex_linear_vimage assms by auto then have "convex (S \ range f)" by (simp add: assms(2) convex_Int convex_linear_image linear_axioms) { fix z assume "z \ f -` (rel_interior S)" then have z: "f z \ rel_interior S" by auto { fix x assume "x \ f -` S" then have "f x \ S" by auto then obtain e where e: "e > 1" "(1 - e) *\<^sub>R f x + e *\<^sub>R f z \ S" using convex_rel_interior_iff[of S "f z"] z assms \S \ {}\ by auto moreover have "(1 - e) *\<^sub>R f x + e *\<^sub>R f z = f ((1 - e) *\<^sub>R x + e *\<^sub>R z)" using \linear f\ by (simp add: linear_iff) ultimately have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ f -` S" using e by auto } then have "z \ rel_interior (f -` S)" using convex_rel_interior_iff[of "f -` S" z] conv nonemp by auto } moreover { fix z assume z: "z \ rel_interior (f -` S)" { fix x assume "x \ S \ range f" then obtain y where y: "f y = x" "y \ f -` S" by auto then obtain e where e: "e > 1" "(1 - e) *\<^sub>R y + e *\<^sub>R z \ f -` S" using convex_rel_interior_iff[of "f -` S" z] z conv by auto moreover have "(1 - e) *\<^sub>R x + e *\<^sub>R f z = f ((1 - e) *\<^sub>R y + e *\<^sub>R z)" using \linear f\ y by (simp add: linear_iff) ultimately have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R f z \ S \ range f" using e by auto } then have "f z \ rel_interior (S \ range f)" using \convex (S \ (range f))\ \S \ range f \ {}\ convex_rel_interior_iff[of "S \ (range f)" "f z"] by auto moreover have "affine (range f)" by (simp add: linear_axioms linear_subspace_image subspace_imp_affine) ultimately have "f z \ rel_interior S" using convex_affine_rel_interior_Int[of S "range f"] assms by auto then have "z \ f -` (rel_interior S)" by auto } ultimately show ?thesis by auto qed lemma rel_interior_Times: fixes S :: "'n::euclidean_space set" and T :: "'m::euclidean_space set" assumes "convex S" and "convex T" shows "rel_interior (S \ T) = rel_interior S \ rel_interior T" proof - { assume "S = {}" then have ?thesis by auto } moreover { assume "T = {}" then have ?thesis by auto } moreover { assume "S \ {}" "T \ {}" then have ri: "rel_interior S \ {}" "rel_interior T \ {}" using rel_interior_eq_empty assms by auto then have "fst -` rel_interior S \ {}" using fst_vimage_eq_Times[of "rel_interior S"] by auto then have "rel_interior ((fst :: 'n * 'm \ 'n) -` S) = fst -` rel_interior S" using fst_linear \convex S\ rel_interior_convex_linear_preimage[of fst S] by auto then have s: "rel_interior (S \ (UNIV :: 'm set)) = rel_interior S \ UNIV" by (simp add: fst_vimage_eq_Times) from ri have "snd -` rel_interior T \ {}" using snd_vimage_eq_Times[of "rel_interior T"] by auto then have "rel_interior ((snd :: 'n * 'm \ 'm) -` T) = snd -` rel_interior T" using snd_linear \convex T\ rel_interior_convex_linear_preimage[of snd T] by auto then have t: "rel_interior ((UNIV :: 'n set) \ T) = UNIV \ rel_interior T" by (simp add: snd_vimage_eq_Times) from s t have *: "rel_interior (S \ (UNIV :: 'm set)) \ rel_interior ((UNIV :: 'n set) \ T) = rel_interior S \ rel_interior T" by auto have "S \ T = S \ (UNIV :: 'm set) \ (UNIV :: 'n set) \ T" by auto then have "rel_interior (S \ T) = rel_interior ((S \ (UNIV :: 'm set)) \ ((UNIV :: 'n set) \ T))" by auto also have "\ = rel_interior (S \ (UNIV :: 'm set)) \ rel_interior ((UNIV :: 'n set) \ T)" apply (subst convex_rel_interior_inter_two[of "S \ (UNIV :: 'm set)" "(UNIV :: 'n set) \ T"]) using * ri assms convex_Times apply auto done finally have ?thesis using * by auto } ultimately show ?thesis by blast qed lemma rel_interior_scaleR: fixes S :: "'n::euclidean_space set" assumes "c \ 0" shows "((*\<^sub>R) c) ` (rel_interior S) = rel_interior (((*\<^sub>R) c) ` S)" using rel_interior_injective_linear_image[of "((*\<^sub>R) c)" S] linear_conv_bounded_linear[of "(*\<^sub>R) c"] linear_scaleR injective_scaleR[of c] assms by auto lemma rel_interior_convex_scaleR: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "((*\<^sub>R) c) ` (rel_interior S) = rel_interior (((*\<^sub>R) c) ` S)" by (metis assms linear_scaleR rel_interior_convex_linear_image) lemma convex_rel_open_scaleR: fixes S :: "'n::euclidean_space set" assumes "convex S" and "rel_open S" shows "convex (((*\<^sub>R) c) ` S) \ rel_open (((*\<^sub>R) c) ` S)" by (metis assms convex_scaling rel_interior_convex_scaleR rel_open_def) lemma convex_rel_open_finite_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set) \ rel_open S" and "finite I" shows "convex (\I) \ rel_open (\I)" proof (cases "\{rel_interior S |S. S \ I} = {}") case True then have "\I = {}" using assms unfolding rel_open_def by auto then show ?thesis unfolding rel_open_def by auto next case False then have "rel_open (\I)" using assms unfolding rel_open_def using convex_rel_interior_finite_inter[of I] by auto then show ?thesis using convex_Inter assms by auto qed lemma convex_rel_open_linear_image: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" and "rel_open S" shows "convex (f ` S) \ rel_open (f ` S)" by (metis assms convex_linear_image rel_interior_convex_linear_image rel_open_def) lemma convex_rel_open_linear_preimage: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" and "rel_open S" shows "convex (f -` S) \ rel_open (f -` S)" proof (cases "f -` (rel_interior S) = {}") case True then have "f -` S = {}" using assms unfolding rel_open_def by auto then show ?thesis unfolding rel_open_def by auto next case False then have "rel_open (f -` S)" using assms unfolding rel_open_def using rel_interior_convex_linear_preimage[of f S] by auto then show ?thesis using convex_linear_vimage assms by auto qed lemma rel_interior_projection: fixes S :: "('m::euclidean_space \ 'n::euclidean_space) set" and f :: "'m::euclidean_space \ 'n::euclidean_space set" assumes "convex S" and "f = (\y. {z. (y, z) \ S})" shows "(y, z) \ rel_interior S \ (y \ rel_interior {y. (f y \ {})} \ z \ rel_interior (f y))" proof - { fix y assume "y \ {y. f y \ {}}" then obtain z where "(y, z) \ S" using assms by auto then have "\x. x \ S \ y = fst x" apply (rule_tac x="(y, z)" in exI) apply auto done then obtain x where "x \ S" "y = fst x" by blast then have "y \ fst ` S" unfolding image_def by auto } then have "fst ` S = {y. f y \ {}}" unfolding fst_def using assms by auto then have h1: "fst ` rel_interior S = rel_interior {y. f y \ {}}" using rel_interior_convex_linear_image[of fst S] assms fst_linear by auto { fix y assume "y \ rel_interior {y. f y \ {}}" then have "y \ fst ` rel_interior S" using h1 by auto then have *: "rel_interior S \ fst -` {y} \ {}" by auto moreover have aff: "affine (fst -` {y})" unfolding affine_alt by (simp add: algebra_simps) ultimately have **: "rel_interior (S \ fst -` {y}) = rel_interior S \ fst -` {y}" using convex_affine_rel_interior_Int[of S "fst -` {y}"] assms by auto have conv: "convex (S \ fst -` {y})" using convex_Int assms aff affine_imp_convex by auto { fix x assume "x \ f y" then have "(y, x) \ S \ (fst -` {y})" using assms by auto moreover have "x = snd (y, x)" by auto ultimately have "x \ snd ` (S \ fst -` {y})" by blast } then have "snd ` (S \ fst -` {y}) = f y" using assms by auto then have ***: "rel_interior (f y) = snd ` rel_interior (S \ fst -` {y})" using rel_interior_convex_linear_image[of snd "S \ fst -` {y}"] snd_linear conv by auto { fix z assume "z \ rel_interior (f y)" then have "z \ snd ` rel_interior (S \ fst -` {y})" using *** by auto moreover have "{y} = fst ` rel_interior (S \ fst -` {y})" using * ** rel_interior_subset by auto ultimately have "(y, z) \ rel_interior (S \ fst -` {y})" by force then have "(y,z) \ rel_interior S" using ** by auto } moreover { fix z assume "(y, z) \ rel_interior S" then have "(y, z) \ rel_interior (S \ fst -` {y})" using ** by auto then have "z \ snd ` rel_interior (S \ fst -` {y})" by (metis Range_iff snd_eq_Range) then have "z \ rel_interior (f y)" using *** by auto } ultimately have "\z. (y, z) \ rel_interior S \ z \ rel_interior (f y)" by auto } then have h2: "\y z. y \ rel_interior {t. f t \ {}} \ (y, z) \ rel_interior S \ z \ rel_interior (f y)" by auto { fix y z assume asm: "(y, z) \ rel_interior S" then have "y \ fst ` rel_interior S" by (metis Domain_iff fst_eq_Domain) then have "y \ rel_interior {t. f t \ {}}" using h1 by auto then have "y \ rel_interior {t. f t \ {}}" and "(z \ rel_interior (f y))" using h2 asm by auto } then show ?thesis using h2 by blast qed lemma rel_frontier_Times: fixes S :: "'n::euclidean_space set" and T :: "'m::euclidean_space set" assumes "convex S" and "convex T" shows "rel_frontier S \ rel_frontier T \ rel_frontier (S \ T)" by (force simp: rel_frontier_def rel_interior_Times assms closure_Times) subsubsection\<^marker>\tag unimportant\ \Relative interior of convex cone\ lemma cone_rel_interior: fixes S :: "'m::euclidean_space set" assumes "cone S" shows "cone ({0} \ rel_interior S)" proof (cases "S = {}") case True then show ?thesis by (simp add: cone_0) next case False then have *: "0 \ S \ (\c. c > 0 \ (*\<^sub>R) c ` S = S)" using cone_iff[of S] assms by auto then have *: "0 \ ({0} \ rel_interior S)" and "\c. c > 0 \ (*\<^sub>R) c ` ({0} \ rel_interior S) = ({0} \ rel_interior S)" by (auto simp add: rel_interior_scaleR) then show ?thesis using cone_iff[of "{0} \ rel_interior S"] by auto qed lemma rel_interior_convex_cone_aux: fixes S :: "'m::euclidean_space set" assumes "convex S" shows "(c, x) \ rel_interior (cone hull ({(1 :: real)} \ S)) \ c > 0 \ x \ (((*\<^sub>R) c) ` (rel_interior S))" proof (cases "S = {}") case True then show ?thesis by (simp add: cone_hull_empty) next case False then obtain s where "s \ S" by auto have conv: "convex ({(1 :: real)} \ S)" using convex_Times[of "{(1 :: real)}" S] assms convex_singleton[of "1 :: real"] by auto define f where "f y = {z. (y, z) \ cone hull ({1 :: real} \ S)}" for y then have *: "(c, x) \ rel_interior (cone hull ({(1 :: real)} \ S)) = (c \ rel_interior {y. f y \ {}} \ x \ rel_interior (f c))" apply (subst rel_interior_projection[of "cone hull ({(1 :: real)} \ S)" f c x]) using convex_cone_hull[of "{(1 :: real)} \ S"] conv apply auto done { fix y :: real assume "y \ 0" then have "y *\<^sub>R (1,s) \ cone hull ({1 :: real} \ S)" using cone_hull_expl[of "{(1 :: real)} \ S"] \s \ S\ by auto then have "f y \ {}" using f_def by auto } then have "{y. f y \ {}} = {0..}" using f_def cone_hull_expl[of "{1 :: real} \ S"] by auto then have **: "rel_interior {y. f y \ {}} = {0<..}" using rel_interior_real_semiline by auto { fix c :: real assume "c > 0" then have "f c = ((*\<^sub>R) c ` S)" using f_def cone_hull_expl[of "{1 :: real} \ S"] by auto then have "rel_interior (f c) = (*\<^sub>R) c ` rel_interior S" using rel_interior_convex_scaleR[of S c] assms by auto } then show ?thesis using * ** by auto qed lemma rel_interior_convex_cone: fixes S :: "'m::euclidean_space set" assumes "convex S" shows "rel_interior (cone hull ({1 :: real} \ S)) = {(c, c *\<^sub>R x) | c x. c > 0 \ x \ rel_interior S}" (is "?lhs = ?rhs") proof - { fix z assume "z \ ?lhs" have *: "z = (fst z, snd z)" by auto then have "z \ ?rhs" using rel_interior_convex_cone_aux[of S "fst z" "snd z"] assms \z \ ?lhs\ by fastforce } moreover { fix z assume "z \ ?rhs" then have "z \ ?lhs" using rel_interior_convex_cone_aux[of S "fst z" "snd z"] assms by auto } ultimately show ?thesis by blast qed lemma convex_hull_finite_union: assumes "finite I" assumes "\i\I. convex (S i) \ (S i) \ {}" shows "convex hull (\(S ` I)) = {sum (\i. c i *\<^sub>R s i) I | c s. (\i\I. c i \ 0) \ sum c I = 1 \ (\i\I. s i \ S i)}" (is "?lhs = ?rhs") proof - have "?lhs \ ?rhs" proof fix x assume "x \ ?rhs" then obtain c s where *: "sum (\i. c i *\<^sub>R s i) I = x" "sum c I = 1" "(\i\I. c i \ 0) \ (\i\I. s i \ S i)" by auto then have "\i\I. s i \ convex hull (\(S ` I))" using hull_subset[of "\(S ` I)" convex] by auto then show "x \ ?lhs" unfolding *(1)[symmetric] apply (subst convex_sum[of I "convex hull \(S ` I)" c s]) using * assms convex_convex_hull apply auto done qed { fix i assume "i \ I" with assms have "\p. p \ S i" by auto } then obtain p where p: "\i\I. p i \ S i" by metis { fix i assume "i \ I" { fix x assume "x \ S i" define c where "c j = (if j = i then 1::real else 0)" for j then have *: "sum c I = 1" using \finite I\ \i \ I\ sum.delta[of I i "\j::'a. 1::real"] by auto define s where "s j = (if j = i then x else p j)" for j then have "\j. c j *\<^sub>R s j = (if j = i then x else 0)" using c_def by (auto simp add: algebra_simps) then have "x = sum (\i. c i *\<^sub>R s i) I" using s_def c_def \finite I\ \i \ I\ sum.delta[of I i "\j::'a. x"] by auto then have "x \ ?rhs" apply auto apply (rule_tac x = c in exI) apply (rule_tac x = s in exI) using * c_def s_def p \x \ S i\ apply auto done } then have "?rhs \ S i" by auto } then have *: "?rhs \ \(S ` I)" by auto { fix u v :: real assume uv: "u \ 0 \ v \ 0 \ u + v = 1" fix x y assume xy: "x \ ?rhs \ y \ ?rhs" from xy obtain c s where xc: "x = sum (\i. c i *\<^sub>R s i) I \ (\i\I. c i \ 0) \ sum c I = 1 \ (\i\I. s i \ S i)" by auto from xy obtain d t where yc: "y = sum (\i. d i *\<^sub>R t i) I \ (\i\I. d i \ 0) \ sum d I = 1 \ (\i\I. t i \ S i)" by auto define e where "e i = u * c i + v * d i" for i have ge0: "\i\I. e i \ 0" using e_def xc yc uv by simp have "sum (\i. u * c i) I = u * sum c I" by (simp add: sum_distrib_left) moreover have "sum (\i. v * d i) I = v * sum d I" by (simp add: sum_distrib_left) ultimately have sum1: "sum e I = 1" using e_def xc yc uv by (simp add: sum.distrib) define q where "q i = (if e i = 0 then p i else (u * c i / e i) *\<^sub>R s i + (v * d i / e i) *\<^sub>R t i)" for i { fix i assume i: "i \ I" have "q i \ S i" proof (cases "e i = 0") case True then show ?thesis using i p q_def by auto next case False then show ?thesis using mem_convex_alt[of "S i" "s i" "t i" "u * (c i)" "v * (d i)"] mult_nonneg_nonneg[of u "c i"] mult_nonneg_nonneg[of v "d i"] assms q_def e_def i False xc yc uv by (auto simp del: mult_nonneg_nonneg) qed } then have qs: "\i\I. q i \ S i" by auto { fix i assume i: "i \ I" have "(u * c i) *\<^sub>R s i + (v * d i) *\<^sub>R t i = e i *\<^sub>R q i" proof (cases "e i = 0") case True have ge: "u * (c i) \ 0 \ v * d i \ 0" using xc yc uv i by simp moreover from ge have "u * c i \ 0 \ v * d i \ 0" using True e_def i by simp ultimately have "u * c i = 0 \ v * d i = 0" by auto with True show ?thesis by auto next case False then have "(u * (c i)/(e i))*\<^sub>R (s i)+(v * (d i)/(e i))*\<^sub>R (t i) = q i" using q_def by auto then have "e i *\<^sub>R ((u * (c i)/(e i))*\<^sub>R (s i)+(v * (d i)/(e i))*\<^sub>R (t i)) = (e i) *\<^sub>R (q i)" by auto with False show ?thesis by (simp add: algebra_simps) qed } then have *: "\i\I. (u * c i) *\<^sub>R s i + (v * d i) *\<^sub>R t i = e i *\<^sub>R q i" by auto have "u *\<^sub>R x + v *\<^sub>R y = sum (\i. (u * c i) *\<^sub>R s i + (v * d i) *\<^sub>R t i) I" using xc yc by (simp add: algebra_simps scaleR_right.sum sum.distrib) also have "\ = sum (\i. e i *\<^sub>R q i) I" using * by auto finally have "u *\<^sub>R x + v *\<^sub>R y = sum (\i. (e i) *\<^sub>R (q i)) I" by auto then have "u *\<^sub>R x + v *\<^sub>R y \ ?rhs" using ge0 sum1 qs by auto } then have "convex ?rhs" unfolding convex_def by auto then show ?thesis using \?lhs \ ?rhs\ * hull_minimal[of "\(S ` I)" ?rhs convex] by blast qed lemma convex_hull_union_two: fixes S T :: "'m::euclidean_space set" assumes "convex S" and "S \ {}" and "convex T" and "T \ {}" shows "convex hull (S \ T) = {u *\<^sub>R s + v *\<^sub>R t | u v s t. u \ 0 \ v \ 0 \ u + v = 1 \ s \ S \ t \ T}" (is "?lhs = ?rhs") proof define I :: "nat set" where "I = {1, 2}" define s where "s i = (if i = (1::nat) then S else T)" for i have "\(s ` I) = S \ T" using s_def I_def by auto then have "convex hull (\(s ` I)) = convex hull (S \ T)" by auto moreover have "convex hull \(s ` I) = {\ i\I. c i *\<^sub>R sa i | c sa. (\i\I. 0 \ c i) \ sum c I = 1 \ (\i\I. sa i \ s i)}" apply (subst convex_hull_finite_union[of I s]) using assms s_def I_def apply auto done moreover have "{\i\I. c i *\<^sub>R sa i | c sa. (\i\I. 0 \ c i) \ sum c I = 1 \ (\i\I. sa i \ s i)} \ ?rhs" using s_def I_def by auto ultimately show "?lhs \ ?rhs" by auto { fix x assume "x \ ?rhs" then obtain u v s t where *: "x = u *\<^sub>R s + v *\<^sub>R t \ u \ 0 \ v \ 0 \ u + v = 1 \ s \ S \ t \ T" by auto then have "x \ convex hull {s, t}" using convex_hull_2[of s t] by auto then have "x \ convex hull (S \ T)" using * hull_mono[of "{s, t}" "S \ T"] by auto } then show "?lhs \ ?rhs" by blast qed proposition ray_to_rel_frontier: fixes a :: "'a::real_inner" assumes "bounded S" and a: "a \ rel_interior S" and aff: "(a + l) \ affine hull S" and "l \ 0" obtains d where "0 < d" "(a + d *\<^sub>R l) \ rel_frontier S" "\e. \0 \ e; e < d\ \ (a + e *\<^sub>R l) \ rel_interior S" proof - have aaff: "a \ affine hull S" by (meson a hull_subset rel_interior_subset rev_subsetD) let ?D = "{d. 0 < d \ a + d *\<^sub>R l \ rel_interior S}" obtain B where "B > 0" and B: "S \ ball a B" using bounded_subset_ballD [OF \bounded S\] by blast have "a + (B / norm l) *\<^sub>R l \ ball a B" by (simp add: dist_norm \l \ 0\) with B have "a + (B / norm l) *\<^sub>R l \ rel_interior S" using rel_interior_subset subsetCE by blast with \B > 0\ \l \ 0\ have nonMT: "?D \ {}" using divide_pos_pos zero_less_norm_iff by fastforce have bdd: "bdd_below ?D" by (metis (no_types, lifting) bdd_belowI le_less mem_Collect_eq) have relin_Ex: "\x. x \ rel_interior S \ \e>0. \x'\affine hull S. dist x' x < e \ x' \ rel_interior S" using openin_rel_interior [of S] by (simp add: openin_euclidean_subtopology_iff) define d where "d = Inf ?D" obtain \ where "0 < \" and \: "\\. \0 \ \; \ < \\ \ (a + \ *\<^sub>R l) \ rel_interior S" proof - obtain e where "e>0" and e: "\x'. x' \ affine hull S \ dist x' a < e \ x' \ rel_interior S" using relin_Ex a by blast show thesis proof (rule_tac \ = "e / norm l" in that) show "0 < e / norm l" by (simp add: \0 < e\ \l \ 0\) next show "a + \ *\<^sub>R l \ rel_interior S" if "0 \ \" "\ < e / norm l" for \ proof (rule e) show "a + \ *\<^sub>R l \ affine hull S" by (metis (no_types) add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus aaff) show "dist (a + \ *\<^sub>R l) a < e" using that by (simp add: \l \ 0\ dist_norm pos_less_divide_eq) qed qed qed have inint: "\e. \0 \ e; e < d\ \ a + e *\<^sub>R l \ rel_interior S" unfolding d_def using cInf_lower [OF _ bdd] by (metis (no_types, lifting) a add.right_neutral le_less mem_Collect_eq not_less real_vector.scale_zero_left) have "\ \ d" unfolding d_def apply (rule cInf_greatest [OF nonMT]) using \ dual_order.strict_implies_order le_less_linear by blast with \0 < \\ have "0 < d" by simp have "a + d *\<^sub>R l \ rel_interior S" proof assume adl: "a + d *\<^sub>R l \ rel_interior S" obtain e where "e > 0" and e: "\x'. x' \ affine hull S \ dist x' (a + d *\<^sub>R l) < e \ x' \ rel_interior S" using relin_Ex adl by blast have "d + e / norm l \ Inf {d. 0 < d \ a + d *\<^sub>R l \ rel_interior S}" proof (rule cInf_greatest [OF nonMT], clarsimp) fix x::real assume "0 < x" and nonrel: "a + x *\<^sub>R l \ rel_interior S" show "d + e / norm l \ x" proof (cases "x < d") case True with inint nonrel \0 < x\ show ?thesis by auto next case False then have dle: "x < d + e / norm l \ dist (a + x *\<^sub>R l) (a + d *\<^sub>R l) < e" by (simp add: field_simps \l \ 0\) have ain: "a + x *\<^sub>R l \ affine hull S" by (metis add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus aaff) show ?thesis using e [OF ain] nonrel dle by force qed qed then show False using \0 < e\ \l \ 0\ by (simp add: d_def [symmetric] field_simps) qed moreover have "a + d *\<^sub>R l \ closure S" proof (clarsimp simp: closure_approachable) fix \::real assume "0 < \" have 1: "a + (d - min d (\ / 2 / norm l)) *\<^sub>R l \ S" apply (rule subsetD [OF rel_interior_subset inint]) using \l \ 0\ \0 < d\ \0 < \\ by auto have "norm l * min d (\ / (norm l * 2)) \ norm l * (\ / (norm l * 2))" by (metis min_def mult_left_mono norm_ge_zero order_refl) also have "... < \" using \l \ 0\ \0 < \\ by (simp add: field_simps) finally have 2: "norm l * min d (\ / (norm l * 2)) < \" . show "\y\S. dist y (a + d *\<^sub>R l) < \" apply (rule_tac x="a + (d - min d (\ / 2 / norm l)) *\<^sub>R l" in bexI) using 1 2 \0 < d\ \0 < \\ apply (auto simp: algebra_simps) done qed ultimately have infront: "a + d *\<^sub>R l \ rel_frontier S" by (simp add: rel_frontier_def) show ?thesis by (rule that [OF \0 < d\ infront inint]) qed corollary ray_to_frontier: fixes a :: "'a::euclidean_space" assumes "bounded S" and a: "a \ interior S" and "l \ 0" obtains d where "0 < d" "(a + d *\<^sub>R l) \ frontier S" "\e. \0 \ e; e < d\ \ (a + e *\<^sub>R l) \ interior S" proof - have "interior S = rel_interior S" using a rel_interior_nonempty_interior by auto then have "a \ rel_interior S" using a by simp then show ?thesis apply (rule ray_to_rel_frontier [OF \bounded S\ _ _ \l \ 0\]) using a affine_hull_nonempty_interior apply blast by (simp add: \interior S = rel_interior S\ frontier_def rel_frontier_def that) qed lemma segment_to_rel_frontier_aux: fixes x :: "'a::euclidean_space" assumes "convex S" "bounded S" and x: "x \ rel_interior S" and y: "y \ S" and xy: "x \ y" obtains z where "z \ rel_frontier S" "y \ closed_segment x z" "open_segment x z \ rel_interior S" proof - have "x + (y - x) \ affine hull S" using hull_inc [OF y] by auto then obtain d where "0 < d" and df: "(x + d *\<^sub>R (y-x)) \ rel_frontier S" and di: "\e. \0 \ e; e < d\ \ (x + e *\<^sub>R (y-x)) \ rel_interior S" by (rule ray_to_rel_frontier [OF \bounded S\ x]) (use xy in auto) show ?thesis proof show "x + d *\<^sub>R (y - x) \ rel_frontier S" by (simp add: df) next have "open_segment x y \ rel_interior S" using rel_interior_closure_convex_segment [OF \convex S\ x] closure_subset y by blast moreover have "x + d *\<^sub>R (y - x) \ open_segment x y" if "d < 1" using xy apply (auto simp: in_segment) apply (rule_tac x="d" in exI) using \0 < d\ that apply (auto simp: algebra_simps) done ultimately have "1 \ d" using df rel_frontier_def by fastforce moreover have "x = (1 / d) *\<^sub>R x + ((d - 1) / d) *\<^sub>R x" by (metis \0 < d\ add.commute add_divide_distrib diff_add_cancel divide_self_if less_irrefl scaleR_add_left scaleR_one) ultimately show "y \ closed_segment x (x + d *\<^sub>R (y - x))" apply (auto simp: in_segment) apply (rule_tac x="1/d" in exI) apply (auto simp: algebra_simps) done next show "open_segment x (x + d *\<^sub>R (y - x)) \ rel_interior S" apply (rule rel_interior_closure_convex_segment [OF \convex S\ x]) using df rel_frontier_def by auto qed qed lemma segment_to_rel_frontier: fixes x :: "'a::euclidean_space" assumes S: "convex S" "bounded S" and x: "x \ rel_interior S" and y: "y \ S" and xy: "\(x = y \ S = {x})" obtains z where "z \ rel_frontier S" "y \ closed_segment x z" "open_segment x z \ rel_interior S" proof (cases "x=y") case True with xy have "S \ {x}" by blast with True show ?thesis by (metis Set.set_insert all_not_in_conv ends_in_segment(1) insert_iff segment_to_rel_frontier_aux[OF S x] that y) next case False then show ?thesis using segment_to_rel_frontier_aux [OF S x y] that by blast qed proposition rel_frontier_not_sing: fixes a :: "'a::euclidean_space" assumes "bounded S" shows "rel_frontier S \ {a}" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain z where "z \ S" by blast then show ?thesis proof (cases "S = {z}") case True then show ?thesis by simp next case False then obtain w where "w \ S" "w \ z" using \z \ S\ by blast show ?thesis proof assume "rel_frontier S = {a}" then consider "w \ rel_frontier S" | "z \ rel_frontier S" using \w \ z\ by auto then show False proof cases case 1 then have w: "w \ rel_interior S" using \w \ S\ closure_subset rel_frontier_def by fastforce have "w + (w - z) \ affine hull S" by (metis \w \ S\ \z \ S\ affine_affine_hull hull_inc mem_affine_3_minus scaleR_one) then obtain e where "0 < e" "(w + e *\<^sub>R (w - z)) \ rel_frontier S" using \w \ z\ \z \ S\ by (metis assms ray_to_rel_frontier right_minus_eq w) moreover obtain d where "0 < d" "(w + d *\<^sub>R (z - w)) \ rel_frontier S" using ray_to_rel_frontier [OF \bounded S\ w, of "1 *\<^sub>R (z - w)"] \w \ z\ \z \ S\ by (metis add.commute add.right_neutral diff_add_cancel hull_inc scaleR_one) ultimately have "d *\<^sub>R (z - w) = e *\<^sub>R (w - z)" using \rel_frontier S = {a}\ by force moreover have "e \ -d " using \0 < e\ \0 < d\ by force ultimately show False by (metis (no_types, lifting) \w \ z\ eq_iff_diff_eq_0 minus_diff_eq real_vector.scale_cancel_right real_vector.scale_minus_right scaleR_left.minus) next case 2 then have z: "z \ rel_interior S" using \z \ S\ closure_subset rel_frontier_def by fastforce have "z + (z - w) \ affine hull S" by (metis \z \ S\ \w \ S\ affine_affine_hull hull_inc mem_affine_3_minus scaleR_one) then obtain e where "0 < e" "(z + e *\<^sub>R (z - w)) \ rel_frontier S" using \w \ z\ \w \ S\ by (metis assms ray_to_rel_frontier right_minus_eq z) moreover obtain d where "0 < d" "(z + d *\<^sub>R (w - z)) \ rel_frontier S" using ray_to_rel_frontier [OF \bounded S\ z, of "1 *\<^sub>R (w - z)"] \w \ z\ \w \ S\ by (metis add.commute add.right_neutral diff_add_cancel hull_inc scaleR_one) ultimately have "d *\<^sub>R (w - z) = e *\<^sub>R (z - w)" using \rel_frontier S = {a}\ by force moreover have "e \ -d " using \0 < e\ \0 < d\ by force ultimately show False by (metis (no_types, lifting) \w \ z\ eq_iff_diff_eq_0 minus_diff_eq real_vector.scale_cancel_right real_vector.scale_minus_right scaleR_left.minus) qed qed qed qed subsection\<^marker>\tag unimportant\ \Convexity on direct sums\ lemma closure_sum: fixes S T :: "'a::real_normed_vector set" shows "closure S + closure T \ closure (S + T)" unfolding set_plus_image closure_Times [symmetric] split_def by (intro closure_bounded_linear_image_subset bounded_linear_add bounded_linear_fst bounded_linear_snd) lemma rel_interior_sum: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" shows "rel_interior (S + T) = rel_interior S + rel_interior T" proof - have "rel_interior S + rel_interior T = (\(x,y). x + y) ` (rel_interior S \ rel_interior T)" by (simp add: set_plus_image) also have "\ = (\(x,y). x + y) ` rel_interior (S \ T)" using rel_interior_Times assms by auto also have "\ = rel_interior (S + T)" using fst_snd_linear convex_Times assms rel_interior_convex_linear_image[of "(\(x,y). x + y)" "S \ T"] by (auto simp add: set_plus_image) finally show ?thesis .. qed lemma rel_interior_sum_gen: fixes S :: "'a \ 'n::euclidean_space set" assumes "\i\I. convex (S i)" shows "rel_interior (sum S I) = sum (\i. rel_interior (S i)) I" apply (subst sum_set_cond_linear[of convex]) using rel_interior_sum rel_interior_sing[of "0"] assms apply (auto simp add: convex_set_plus) done lemma convex_rel_open_direct_sum: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "rel_open S" and "convex T" and "rel_open T" shows "convex (S \ T) \ rel_open (S \ T)" by (metis assms convex_Times rel_interior_Times rel_open_def) lemma convex_rel_open_sum: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "rel_open S" and "convex T" and "rel_open T" shows "convex (S + T) \ rel_open (S + T)" by (metis assms convex_set_plus rel_interior_sum rel_open_def) lemma convex_hull_finite_union_cones: assumes "finite I" and "I \ {}" assumes "\i\I. convex (S i) \ cone (S i) \ S i \ {}" shows "convex hull (\(S ` I)) = sum S I" (is "?lhs = ?rhs") proof - { fix x assume "x \ ?lhs" then obtain c xs where x: "x = sum (\i. c i *\<^sub>R xs i) I \ (\i\I. c i \ 0) \ sum c I = 1 \ (\i\I. xs i \ S i)" using convex_hull_finite_union[of I S] assms by auto define s where "s i = c i *\<^sub>R xs i" for i { fix i assume "i \ I" then have "s i \ S i" using s_def x assms mem_cone[of "S i" "xs i" "c i"] by auto } then have "\i\I. s i \ S i" by auto moreover have "x = sum s I" using x s_def by auto ultimately have "x \ ?rhs" using set_sum_alt[of I S] assms by auto } moreover { fix x assume "x \ ?rhs" then obtain s where x: "x = sum s I \ (\i\I. s i \ S i)" using set_sum_alt[of I S] assms by auto define xs where "xs i = of_nat(card I) *\<^sub>R s i" for i then have "x = sum (\i. ((1 :: real) / of_nat(card I)) *\<^sub>R xs i) I" using x assms by auto moreover have "\i\I. xs i \ S i" using x xs_def assms by (simp add: cone_def) moreover have "\i\I. (1 :: real) / of_nat (card I) \ 0" by auto moreover have "sum (\i. (1 :: real) / of_nat (card I)) I = 1" using assms by auto ultimately have "x \ ?lhs" apply (subst convex_hull_finite_union[of I S]) using assms apply blast using assms apply blast apply rule apply (rule_tac x = "(\i. (1 :: real) / of_nat (card I))" in exI) apply auto done } ultimately show ?thesis by auto qed lemma convex_hull_union_cones_two: fixes S T :: "'m::euclidean_space set" assumes "convex S" and "cone S" and "S \ {}" assumes "convex T" and "cone T" and "T \ {}" shows "convex hull (S \ T) = S + T" proof - define I :: "nat set" where "I = {1, 2}" define A where "A i = (if i = (1::nat) then S else T)" for i have "\(A ` I) = S \ T" using A_def I_def by auto then have "convex hull (\(A ` I)) = convex hull (S \ T)" by auto moreover have "convex hull \(A ` I) = sum A I" apply (subst convex_hull_finite_union_cones[of I A]) using assms A_def I_def apply auto done moreover have "sum A I = S + T" using A_def I_def unfolding set_plus_def apply auto unfolding set_plus_def apply auto done ultimately show ?thesis by auto qed lemma rel_interior_convex_hull_union: fixes S :: "'a \ 'n::euclidean_space set" assumes "finite I" and "\i\I. convex (S i) \ S i \ {}" shows "rel_interior (convex hull (\(S ` I))) = {sum (\i. c i *\<^sub>R s i) I | c s. (\i\I. c i > 0) \ sum c I = 1 \ (\i\I. s i \ rel_interior(S i))}" (is "?lhs = ?rhs") proof (cases "I = {}") case True then show ?thesis using convex_hull_empty by auto next case False define C0 where "C0 = convex hull (\(S ` I))" have "\i\I. C0 \ S i" unfolding C0_def using hull_subset[of "\(S ` I)"] by auto define K0 where "K0 = cone hull ({1 :: real} \ C0)" define K where "K i = cone hull ({1 :: real} \ S i)" for i have "\i\I. K i \ {}" unfolding K_def using assms by (simp add: cone_hull_empty_iff[symmetric]) { fix i assume "i \ I" then have "convex (K i)" unfolding K_def apply (subst convex_cone_hull) apply (subst convex_Times) using assms apply auto done } then have convK: "\i\I. convex (K i)" by auto { fix i assume "i \ I" then have "K0 \ K i" unfolding K0_def K_def apply (subst hull_mono) using \\i\I. C0 \ S i\ apply auto done } then have "K0 \ \(K ` I)" by auto moreover have "convex K0" unfolding K0_def apply (subst convex_cone_hull) apply (subst convex_Times) unfolding C0_def using convex_convex_hull apply auto done ultimately have geq: "K0 \ convex hull (\(K ` I))" using hull_minimal[of _ "K0" "convex"] by blast have "\i\I. K i \ {1 :: real} \ S i" using K_def by (simp add: hull_subset) then have "\(K ` I) \ {1 :: real} \ \(S ` I)" by auto then have "convex hull \(K ` I) \ convex hull ({1 :: real} \ \(S ` I))" by (simp add: hull_mono) then have "convex hull \(K ` I) \ {1 :: real} \ C0" unfolding C0_def using convex_hull_Times[of "{(1 :: real)}" "\(S ` I)"] convex_hull_singleton by auto moreover have "cone (convex hull (\(K ` I)))" apply (subst cone_convex_hull) using cone_Union[of "K ` I"] apply auto unfolding K_def using cone_cone_hull apply auto done ultimately have "convex hull (\(K ` I)) \ K0" unfolding K0_def using hull_minimal[of _ "convex hull (\(K ` I))" "cone"] by blast then have "K0 = convex hull (\(K ` I))" using geq by auto also have "\ = sum K I" apply (subst convex_hull_finite_union_cones[of I K]) using assms apply blast using False apply blast unfolding K_def apply rule apply (subst convex_cone_hull) apply (subst convex_Times) using assms cone_cone_hull \\i\I. K i \ {}\ K_def apply auto done finally have "K0 = sum K I" by auto then have *: "rel_interior K0 = sum (\i. (rel_interior (K i))) I" using rel_interior_sum_gen[of I K] convK by auto { fix x assume "x \ ?lhs" then have "(1::real, x) \ rel_interior K0" using K0_def C0_def rel_interior_convex_cone_aux[of C0 "1::real" x] convex_convex_hull by auto then obtain k where k: "(1::real, x) = sum k I \ (\i\I. k i \ rel_interior (K i))" using \finite I\ * set_sum_alt[of I "\i. rel_interior (K i)"] by auto { fix i assume "i \ I" then have "convex (S i) \ k i \ rel_interior (cone hull {1} \ S i)" using k K_def assms by auto then have "\ci si. k i = (ci, ci *\<^sub>R si) \ 0 < ci \ si \ rel_interior (S i)" using rel_interior_convex_cone[of "S i"] by auto } then obtain c s where cs: "\i\I. k i = (c i, c i *\<^sub>R s i) \ 0 < c i \ s i \ rel_interior (S i)" by metis then have "x = (\i\I. c i *\<^sub>R s i) \ sum c I = 1" using k by (simp add: sum_prod) then have "x \ ?rhs" using k cs by auto } moreover { fix x assume "x \ ?rhs" then obtain c s where cs: "x = sum (\i. c i *\<^sub>R s i) I \ (\i\I. c i > 0) \ sum c I = 1 \ (\i\I. s i \ rel_interior (S i))" by auto define k where "k i = (c i, c i *\<^sub>R s i)" for i { fix i assume "i \ I" then have "k i \ rel_interior (K i)" using k_def K_def assms cs rel_interior_convex_cone[of "S i"] by auto } then have "(1::real, x) \ rel_interior K0" using K0_def * set_sum_alt[of I "(\i. rel_interior (K i))"] assms k_def cs apply auto apply (rule_tac x = k in exI) apply (simp add: sum_prod) done then have "x \ ?lhs" using K0_def C0_def rel_interior_convex_cone_aux[of C0 1 x] by auto } ultimately show ?thesis by blast qed lemma convex_le_Inf_differential: fixes f :: "real \ real" assumes "convex_on I f" and "x \ interior I" and "y \ I" shows "f y \ f x + Inf ((\t. (f x - f t) / (x - t)) ` ({x<..} \ I)) * (y - x)" (is "_ \ _ + Inf (?F x) * (y - x)") proof (cases rule: linorder_cases) assume "x < y" moreover have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where e: "0 < e" "ball x e \ interior I" . moreover define t where "t = min (x + e / 2) ((x + y) / 2)" ultimately have "x < t" "t < y" "t \ ball x e" by (auto simp: dist_real_def field_simps split: split_min) with \x \ interior I\ e interior_subset[of I] have "t \ I" "x \ I" by auto have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where "0 < e" "ball x e \ interior I" . moreover define K where "K = x - e / 2" with \0 < e\ have "K \ ball x e" "K < x" by (auto simp: dist_real_def) ultimately have "K \ I" "K < x" "x \ I" using interior_subset[of I] \x \ interior I\ by auto have "Inf (?F x) \ (f x - f y) / (x - y)" proof (intro bdd_belowI cInf_lower2) show "(f x - f t) / (x - t) \ ?F x" using \t \ I\ \x < t\ by auto show "(f x - f t) / (x - t) \ (f x - f y) / (x - y)" using \convex_on I f\ \x \ I\ \y \ I\ \x < t\ \t < y\ by (rule convex_on_diff) next fix y assume "y \ ?F x" with order_trans[OF convex_on_diff[OF \convex_on I f\ \K \ I\ _ \K < x\ _]] show "(f K - f x) / (K - x) \ y" by auto qed then show ?thesis using \x < y\ by (simp add: field_simps) next assume "y < x" moreover have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where e: "0 < e" "ball x e \ interior I" . moreover define t where "t = x + e / 2" ultimately have "x < t" "t \ ball x e" by (auto simp: dist_real_def field_simps) with \x \ interior I\ e interior_subset[of I] have "t \ I" "x \ I" by auto have "(f x - f y) / (x - y) \ Inf (?F x)" proof (rule cInf_greatest) have "(f x - f y) / (x - y) = (f y - f x) / (y - x)" using \y < x\ by (auto simp: field_simps) also fix z assume "z \ ?F x" with order_trans[OF convex_on_diff[OF \convex_on I f\ \y \ I\ _ \y < x\]] have "(f y - f x) / (y - x) \ z" by auto finally show "(f x - f y) / (x - y) \ z" . next have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where e: "0 < e" "ball x e \ interior I" . then have "x + e / 2 \ ball x e" by (auto simp: dist_real_def) with e interior_subset[of I] have "x + e / 2 \ {x<..} \ I" by auto then show "?F x \ {}" by blast qed then show ?thesis using \y < x\ by (simp add: field_simps) qed simp subsection\<^marker>\tag unimportant\\Explicit formulas for interior and relative interior of convex hull\ lemma at_within_cbox_finite: assumes "x \ box a b" "x \ S" "finite S" shows "(at x within cbox a b - S) = at x" proof - have "interior (cbox a b - S) = box a b - S" using \finite S\ by (simp add: interior_diff finite_imp_closed) then show ?thesis using at_within_interior assms by fastforce qed lemma affine_independent_convex_affine_hull: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" "t \ s" shows "convex hull t = affine hull t \ convex hull s" proof - have fin: "finite s" "finite t" using assms aff_independent_finite finite_subset by auto { fix u v x assume uv: "sum u t = 1" "\x\s. 0 \ v x" "sum v s = 1" "(\x\s. v x *\<^sub>R x) = (\v\t. u v *\<^sub>R v)" "x \ t" then have s: "s = (s - t) \ t" \ \split into separate cases\ using assms by auto have [simp]: "(\x\t. v x *\<^sub>R x) + (\x\s - t. v x *\<^sub>R x) = (\x\t. u x *\<^sub>R x)" "sum v t + sum v (s - t) = 1" using uv fin s by (auto simp: sum.union_disjoint [symmetric] Un_commute) have "(\x\s. if x \ t then v x - u x else v x) = 0" "(\x\s. (if x \ t then v x - u x else v x) *\<^sub>R x) = 0" using uv fin by (subst s, subst sum.union_disjoint, auto simp: algebra_simps sum_subtractf)+ } note [simp] = this have "convex hull t \ affine hull t" using convex_hull_subset_affine_hull by blast moreover have "convex hull t \ convex hull s" using assms hull_mono by blast moreover have "affine hull t \ convex hull s \ convex hull t" using assms apply (simp add: convex_hull_finite affine_hull_finite fin affine_dependent_explicit) apply (drule_tac x=s in spec) apply (auto simp: fin) apply (rule_tac x=u in exI) apply (rename_tac v) apply (drule_tac x="\x. if x \ t then v x - u x else v x" in spec) apply (force)+ done ultimately show ?thesis by blast qed lemma affine_independent_span_eq: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" "card s = Suc (DIM ('a))" shows "affine hull s = UNIV" proof (cases "s = {}") case True then show ?thesis using assms by simp next case False then obtain a t where t: "a \ t" "s = insert a t" by blast then have fin: "finite t" using assms by (metis finite_insert aff_independent_finite) show ?thesis using assms t fin apply (simp add: affine_dependent_iff_dependent affine_hull_insert_span_gen) apply (rule subset_antisym) apply force apply (rule Fun.vimage_subsetD) apply (metis add.commute diff_add_cancel surj_def) apply (rule card_ge_dim_independent) apply (auto simp: card_image inj_on_def dim_subset_UNIV) done qed lemma affine_independent_span_gt: fixes s :: "'a::euclidean_space set" assumes ind: "\ affine_dependent s" and dim: "DIM ('a) < card s" shows "affine hull s = UNIV" apply (rule affine_independent_span_eq [OF ind]) apply (rule antisym) using assms apply auto apply (metis add_2_eq_Suc' not_less_eq_eq affine_dependent_biggerset aff_independent_finite) done lemma empty_interior_affine_hull: fixes s :: "'a::euclidean_space set" assumes "finite s" and dim: "card s \ DIM ('a)" shows "interior(affine hull s) = {}" using assms apply (induct s rule: finite_induct) apply (simp_all add: affine_dependent_iff_dependent affine_hull_insert_span_gen interior_translation) apply (rule empty_interior_lowdim) by (auto simp: Suc_le_lessD card_image_le dual_order.trans intro!: dim_le_card'[THEN le_less_trans]) lemma empty_interior_convex_hull: fixes s :: "'a::euclidean_space set" assumes "finite s" and dim: "card s \ DIM ('a)" shows "interior(convex hull s) = {}" by (metis Diff_empty Diff_eq_empty_iff convex_hull_subset_affine_hull interior_mono empty_interior_affine_hull [OF assms]) lemma explicit_subset_rel_interior_convex_hull: fixes s :: "'a::euclidean_space set" shows "finite s \ {y. \u. (\x \ s. 0 < u x \ u x < 1) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y} \ rel_interior (convex hull s)" by (force simp add: rel_interior_convex_hull_union [where S="\x. {x}" and I=s, simplified]) lemma explicit_subset_rel_interior_convex_hull_minimal: fixes s :: "'a::euclidean_space set" shows "finite s \ {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y} \ rel_interior (convex hull s)" by (force simp add: rel_interior_convex_hull_union [where S="\x. {x}" and I=s, simplified]) lemma rel_interior_convex_hull_explicit: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "rel_interior(convex hull s) = {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" (is "?lhs = ?rhs") proof show "?rhs \ ?lhs" by (simp add: aff_independent_finite explicit_subset_rel_interior_convex_hull_minimal assms) next show "?lhs \ ?rhs" proof (cases "\a. s = {a}") case True then show "?lhs \ ?rhs" by force next case False have fs: "finite s" using assms by (simp add: aff_independent_finite) { fix a b and d::real assume ab: "a \ s" "b \ s" "a \ b" then have s: "s = (s - {a,b}) \ {a,b}" \ \split into separate cases\ by auto have "(\x\s. if x = a then - d else if x = b then d else 0) = 0" "(\x\s. (if x = a then - d else if x = b then d else 0) *\<^sub>R x) = d *\<^sub>R b - d *\<^sub>R a" using ab fs by (subst s, subst sum.union_disjoint, auto)+ } note [simp] = this { fix y assume y: "y \ convex hull s" "y \ ?rhs" { fix u T a assume ua: "\x\s. 0 \ u x" "sum u s = 1" "\ 0 < u a" "a \ s" and yT: "y = (\x\s. u x *\<^sub>R x)" "y \ T" "open T" and sb: "T \ affine hull s \ {w. \u. (\x\s. 0 \ u x) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = w}" have ua0: "u a = 0" using ua by auto obtain b where b: "b\s" "a \ b" using ua False by auto obtain e where e: "0 < e" "ball (\x\s. u x *\<^sub>R x) e \ T" using yT by (auto elim: openE) with b obtain d where d: "0 < d" "norm(d *\<^sub>R (a-b)) < e" by (auto intro: that [of "e / 2 / norm(a-b)"]) have "(\x\s. u x *\<^sub>R x) \ affine hull s" using yT y by (metis affine_hull_convex_hull hull_redundant_eq) then have "(\x\s. u x *\<^sub>R x) - d *\<^sub>R (a - b) \ affine hull s" using ua b by (auto simp: hull_inc intro: mem_affine_3_minus2) then have "y - d *\<^sub>R (a - b) \ T \ affine hull s" using d e yT by auto then obtain v where "\x\s. 0 \ v x" "sum v s = 1" "(\x\s. v x *\<^sub>R x) = (\x\s. u x *\<^sub>R x) - d *\<^sub>R (a - b)" using subsetD [OF sb] yT by auto then have False using assms apply (simp add: affine_dependent_explicit_finite fs) apply (drule_tac x="\x. (v x - u x) - (if x = a then -d else if x = b then d else 0)" in spec) using ua b d apply (auto simp: algebra_simps sum_subtractf sum.distrib) done } note * = this have "y \ rel_interior (convex hull s)" using y apply (simp add: mem_rel_interior) apply (auto simp: convex_hull_finite [OF fs]) apply (drule_tac x=u in spec) apply (auto intro: *) done } with rel_interior_subset show "?lhs \ ?rhs" by blast qed qed lemma interior_convex_hull_explicit_minimal: fixes s :: "'a::euclidean_space set" shows "\ affine_dependent s ==> interior(convex hull s) = (if card(s) \ DIM('a) then {} else {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = y})" apply (simp add: aff_independent_finite empty_interior_convex_hull, clarify) apply (rule trans [of _ "rel_interior(convex hull s)"]) apply (simp add: affine_independent_span_gt rel_interior_interior) by (simp add: rel_interior_convex_hull_explicit) lemma interior_convex_hull_explicit: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "interior(convex hull s) = (if card(s) \ DIM('a) then {} else {y. \u. (\x \ s. 0 < u x \ u x < 1) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = y})" proof - { fix u :: "'a \ real" and a assume "card Basis < card s" and u: "\x. x\s \ 0 < u x" "sum u s = 1" and a: "a \ s" then have cs: "Suc 0 < card s" by (metis DIM_positive less_trans_Suc) obtain b where b: "b \ s" "a \ b" proof (cases "s \ {a}") case True then show thesis using cs subset_singletonD by fastforce next case False then show thesis by (blast intro: that) qed have "u a + u b \ sum u {a,b}" using a b by simp also have "... \ sum u s" apply (rule Groups_Big.sum_mono2) using a b u apply (auto simp: less_imp_le aff_independent_finite assms) done finally have "u a < 1" using \b \ s\ u by fastforce } note [simp] = this show ?thesis using assms apply (auto simp: interior_convex_hull_explicit_minimal) apply (rule_tac x=u in exI) apply (auto simp: not_le) done qed lemma interior_closed_segment_ge2: fixes a :: "'a::euclidean_space" assumes "2 \ DIM('a)" shows "interior(closed_segment a b) = {}" using assms unfolding segment_convex_hull proof - have "card {a, b} \ DIM('a)" using assms by (simp add: card_insert_if linear not_less_eq_eq numeral_2_eq_2) then show "interior (convex hull {a, b}) = {}" by (metis empty_interior_convex_hull finite.insertI finite.emptyI) qed lemma interior_open_segment: fixes a :: "'a::euclidean_space" shows "interior(open_segment a b) = (if 2 \ DIM('a) then {} else open_segment a b)" proof (simp add: not_le, intro conjI impI) assume "2 \ DIM('a)" then show "interior (open_segment a b) = {}" apply (simp add: segment_convex_hull open_segment_def) apply (metis Diff_subset interior_mono segment_convex_hull subset_empty interior_closed_segment_ge2) done next assume le2: "DIM('a) < 2" show "interior (open_segment a b) = open_segment a b" proof (cases "a = b") case True then show ?thesis by auto next case False with le2 have "affine hull (open_segment a b) = UNIV" apply simp apply (rule affine_independent_span_gt) apply (simp_all add: affine_dependent_def insert_Diff_if) done then show "interior (open_segment a b) = open_segment a b" using rel_interior_interior rel_interior_open_segment by blast qed qed lemma interior_closed_segment: fixes a :: "'a::euclidean_space" shows "interior(closed_segment a b) = (if 2 \ DIM('a) then {} else open_segment a b)" proof (cases "a = b") case True then show ?thesis by simp next case False then have "closure (open_segment a b) = closed_segment a b" by simp then show ?thesis by (metis (no_types) convex_interior_closure convex_open_segment interior_open_segment) qed lemmas interior_segment = interior_closed_segment interior_open_segment lemma closed_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "closed_segment a b = closed_segment c d \ {a,b} = {c,d}" proof assume abcd: "closed_segment a b = closed_segment c d" show "{a,b} = {c,d}" proof (cases "a=b \ c=d") case True with abcd show ?thesis by force next case False then have neq: "a \ b \ c \ d" by force have *: "closed_segment c d - {a, b} = rel_interior (closed_segment c d)" using neq abcd by (metis (no_types) open_segment_def rel_interior_closed_segment) have "b \ {c, d}" proof - have "insert b (closed_segment c d) = closed_segment c d" using abcd by blast then show ?thesis by (metis DiffD2 Diff_insert2 False * insertI1 insert_Diff_if open_segment_def rel_interior_closed_segment) qed moreover have "a \ {c, d}" by (metis Diff_iff False * abcd ends_in_segment(1) insertI1 open_segment_def rel_interior_closed_segment) ultimately show "{a, b} = {c, d}" using neq by fastforce qed next assume "{a,b} = {c,d}" then show "closed_segment a b = closed_segment c d" by (simp add: segment_convex_hull) qed lemma closed_open_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "closed_segment a b \ open_segment c d" by (metis DiffE closed_segment_neq_empty closure_closed_segment closure_open_segment ends_in_segment(1) insertI1 open_segment_def) lemma open_closed_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "open_segment a b \ closed_segment c d" using closed_open_segment_eq by blast lemma open_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "open_segment a b = open_segment c d \ a = b \ c = d \ {a,b} = {c,d}" (is "?lhs = ?rhs") proof assume abcd: ?lhs show ?rhs proof (cases "a=b \ c=d") case True with abcd show ?thesis using finite_open_segment by fastforce next case False then have a2: "a \ b \ c \ d" by force with abcd show ?rhs unfolding open_segment_def by (metis (no_types) abcd closed_segment_eq closure_open_segment) qed next assume ?rhs then show ?lhs by (metis Diff_cancel convex_hull_singleton insert_absorb2 open_segment_def segment_convex_hull) qed subsection\<^marker>\tag unimportant\\Similar results for closure and (relative or absolute) frontier\ lemma closure_convex_hull [simp]: fixes s :: "'a::euclidean_space set" shows "compact s ==> closure(convex hull s) = convex hull s" by (simp add: compact_imp_closed compact_convex_hull) lemma rel_frontier_convex_hull_explicit: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "rel_frontier(convex hull s) = {y. \u. (\x \ s. 0 \ u x) \ (\x \ s. u x = 0) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" proof - have fs: "finite s" using assms by (simp add: aff_independent_finite) show ?thesis apply (simp add: rel_frontier_def finite_imp_compact rel_interior_convex_hull_explicit assms fs) apply (auto simp: convex_hull_finite fs) apply (drule_tac x=u in spec) apply (rule_tac x=u in exI) apply force apply (rename_tac v) apply (rule notE [OF assms]) apply (simp add: affine_dependent_explicit) apply (rule_tac x=s in exI) apply (auto simp: fs) apply (rule_tac x = "\x. u x - v x" in exI) apply (force simp: sum_subtractf scaleR_diff_left) done qed lemma frontier_convex_hull_explicit: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "frontier(convex hull s) = {y. \u. (\x \ s. 0 \ u x) \ (DIM ('a) < card s \ (\x \ s. u x = 0)) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" proof - have fs: "finite s" using assms by (simp add: aff_independent_finite) show ?thesis proof (cases "DIM ('a) < card s") case True with assms fs show ?thesis by (simp add: rel_frontier_def frontier_def rel_frontier_convex_hull_explicit [symmetric] interior_convex_hull_explicit_minimal rel_interior_convex_hull_explicit) next case False then have "card s \ DIM ('a)" by linarith then show ?thesis using assms fs apply (simp add: frontier_def interior_convex_hull_explicit finite_imp_compact) apply (simp add: convex_hull_finite) done qed qed lemma rel_frontier_convex_hull_cases: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "rel_frontier(convex hull s) = \{convex hull (s - {x}) |x. x \ s}" proof - have fs: "finite s" using assms by (simp add: aff_independent_finite) { fix u a have "\x\s. 0 \ u x \ a \ s \ u a = 0 \ sum u s = 1 \ \x v. x \ s \ (\x\s - {x}. 0 \ v x) \ sum v (s - {x}) = 1 \ (\x\s - {x}. v x *\<^sub>R x) = (\x\s. u x *\<^sub>R x)" apply (rule_tac x=a in exI) apply (rule_tac x=u in exI) apply (simp add: Groups_Big.sum_diff1 fs) done } moreover { fix a u have "a \ s \ \x\s - {a}. 0 \ u x \ sum u (s - {a}) = 1 \ \v. (\x\s. 0 \ v x) \ (\x\s. v x = 0) \ sum v s = 1 \ (\x\s. v x *\<^sub>R x) = (\x\s - {a}. u x *\<^sub>R x)" apply (rule_tac x="\x. if x = a then 0 else u x" in exI) apply (auto simp: sum.If_cases Diff_eq if_smult fs) done } ultimately show ?thesis using assms apply (simp add: rel_frontier_convex_hull_explicit) apply (simp add: convex_hull_finite fs Union_SetCompr_eq, auto) done qed lemma frontier_convex_hull_eq_rel_frontier: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "frontier(convex hull s) = (if card s \ DIM ('a) then convex hull s else rel_frontier(convex hull s))" using assms unfolding rel_frontier_def frontier_def by (simp add: affine_independent_span_gt rel_interior_interior finite_imp_compact empty_interior_convex_hull aff_independent_finite) lemma frontier_convex_hull_cases: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "frontier(convex hull s) = (if card s \ DIM ('a) then convex hull s else \{convex hull (s - {x}) |x. x \ s})" by (simp add: assms frontier_convex_hull_eq_rel_frontier rel_frontier_convex_hull_cases) lemma in_frontier_convex_hull: fixes s :: "'a::euclidean_space set" assumes "finite s" "card s \ Suc (DIM ('a))" "x \ s" shows "x \ frontier(convex hull s)" proof (cases "affine_dependent s") case True with assms show ?thesis apply (auto simp: affine_dependent_def frontier_def finite_imp_compact hull_inc) by (metis card.insert_remove convex_hull_subset_affine_hull empty_interior_affine_hull finite_Diff hull_redundant insert_Diff insert_Diff_single insert_not_empty interior_mono not_less_eq_eq subset_empty) next case False { assume "card s = Suc (card Basis)" then have cs: "Suc 0 < card s" by (simp) with subset_singletonD have "\y \ s. y \ x" by (cases "s \ {x}") fastforce+ } note [dest!] = this show ?thesis using assms unfolding frontier_convex_hull_cases [OF False] Union_SetCompr_eq by (auto simp: le_Suc_eq hull_inc) qed lemma not_in_interior_convex_hull: fixes s :: "'a::euclidean_space set" assumes "finite s" "card s \ Suc (DIM ('a))" "x \ s" shows "x \ interior(convex hull s)" using in_frontier_convex_hull [OF assms] by (metis Diff_iff frontier_def) lemma interior_convex_hull_eq_empty: fixes s :: "'a::euclidean_space set" assumes "card s = Suc (DIM ('a))" shows "interior(convex hull s) = {} \ affine_dependent s" proof - { fix a b assume ab: "a \ interior (convex hull s)" "b \ s" "b \ affine hull (s - {b})" then have "interior(affine hull s) = {}" using assms by (metis DIM_positive One_nat_def Suc_mono card.remove card_infinite empty_interior_affine_hull eq_iff hull_redundant insert_Diff not_less zero_le_one) then have False using ab by (metis convex_hull_subset_affine_hull equals0D interior_mono subset_eq) } then show ?thesis using assms apply auto apply (metis UNIV_I affine_hull_convex_hull affine_hull_empty affine_independent_span_eq convex_convex_hull empty_iff rel_interior_interior rel_interior_same_affine_hull) apply (auto simp: affine_dependent_def) done qed subsection \Coplanarity, and collinearity in terms of affine hull\ definition\<^marker>\tag important\ coplanar where "coplanar s \ \u v w. s \ affine hull {u,v,w}" lemma collinear_affine_hull: "collinear s \ (\u v. s \ affine hull {u,v})" proof (cases "s={}") case True then show ?thesis by simp next case False then obtain x where x: "x \ s" by auto { fix u assume *: "\x y. \x\s; y\s\ \ \c. x - y = c *\<^sub>R u" have "\u v. s \ {a *\<^sub>R u + b *\<^sub>R v |a b. a + b = 1}" apply (rule_tac x=x in exI) apply (rule_tac x="x+u" in exI, clarify) apply (erule exE [OF * [OF x]]) apply (rename_tac c) apply (rule_tac x="1+c" in exI) apply (rule_tac x="-c" in exI) apply (simp add: algebra_simps) done } moreover { fix u v x y assume *: "s \ {a *\<^sub>R u + b *\<^sub>R v |a b. a + b = 1}" have "x\s \ y\s \ \c. x - y = c *\<^sub>R (v-u)" apply (drule subsetD [OF *])+ apply simp apply clarify apply (rename_tac r1 r2) apply (rule_tac x="r1-r2" in exI) apply (simp add: algebra_simps) apply (metis scaleR_left.add) done } ultimately show ?thesis unfolding collinear_def affine_hull_2 by blast qed lemma collinear_closed_segment [simp]: "collinear (closed_segment a b)" by (metis affine_hull_convex_hull collinear_affine_hull hull_subset segment_convex_hull) lemma collinear_open_segment [simp]: "collinear (open_segment a b)" unfolding open_segment_def by (metis convex_hull_subset_affine_hull segment_convex_hull dual_order.trans convex_hull_subset_affine_hull Diff_subset collinear_affine_hull) lemma collinear_between_cases: fixes c :: "'a::euclidean_space" shows "collinear {a,b,c} \ between (b,c) a \ between (c,a) b \ between (a,b) c" (is "?lhs = ?rhs") proof assume ?lhs then obtain u v where uv: "\x. x \ {a, b, c} \ \c. x = u + c *\<^sub>R v" by (auto simp: collinear_alt) show ?rhs using uv [of a] uv [of b] uv [of c] by (auto simp: between_1) next assume ?rhs then show ?lhs unfolding between_mem_convex_hull by (metis (no_types, hide_lams) collinear_closed_segment collinear_subset hull_redundant hull_subset insert_commute segment_convex_hull) qed lemma subset_continuous_image_segment_1: fixes f :: "'a::euclidean_space \ real" assumes "continuous_on (closed_segment a b) f" shows "closed_segment (f a) (f b) \ image f (closed_segment a b)" by (metis connected_segment convex_contains_segment ends_in_segment imageI is_interval_connected_1 is_interval_convex connected_continuous_image [OF assms]) lemma continuous_injective_image_segment_1: fixes f :: "'a::euclidean_space \ real" assumes contf: "continuous_on (closed_segment a b) f" and injf: "inj_on f (closed_segment a b)" shows "f ` (closed_segment a b) = closed_segment (f a) (f b)" proof show "closed_segment (f a) (f b) \ f ` closed_segment a b" by (metis subset_continuous_image_segment_1 contf) show "f ` closed_segment a b \ closed_segment (f a) (f b)" proof (cases "a = b") case True then show ?thesis by auto next case False then have fnot: "f a \ f b" using inj_onD injf by fastforce moreover have "f a \ open_segment (f c) (f b)" if c: "c \ closed_segment a b" for c proof (clarsimp simp add: open_segment_def) assume fa: "f a \ closed_segment (f c) (f b)" moreover have "closed_segment (f c) (f b) \ f ` closed_segment c b" by (meson closed_segment_subset contf continuous_on_subset convex_closed_segment ends_in_segment(2) subset_continuous_image_segment_1 that) ultimately have "f a \ f ` closed_segment c b" by blast then have a: "a \ closed_segment c b" by (meson ends_in_segment inj_on_image_mem_iff_alt injf subset_closed_segment that) have cb: "closed_segment c b \ closed_segment a b" by (simp add: closed_segment_subset that) show "f a = f c" proof (rule between_antisym) show "between (f c, f b) (f a)" by (simp add: between_mem_segment fa) show "between (f a, f b) (f c)" by (metis a cb between_antisym between_mem_segment between_triv1 subset_iff) qed qed moreover have "f b \ open_segment (f a) (f c)" if c: "c \ closed_segment a b" for c proof (clarsimp simp add: open_segment_def fnot eq_commute) assume fb: "f b \ closed_segment (f a) (f c)" moreover have "closed_segment (f a) (f c) \ f ` closed_segment a c" by (meson contf continuous_on_subset ends_in_segment(1) subset_closed_segment subset_continuous_image_segment_1 that) ultimately have "f b \ f ` closed_segment a c" by blast then have b: "b \ closed_segment a c" by (meson ends_in_segment inj_on_image_mem_iff_alt injf subset_closed_segment that) have ca: "closed_segment a c \ closed_segment a b" by (simp add: closed_segment_subset that) show "f b = f c" proof (rule between_antisym) show "between (f c, f a) (f b)" by (simp add: between_commute between_mem_segment fb) show "between (f b, f a) (f c)" by (metis b between_antisym between_commute between_mem_segment between_triv2 that) qed qed ultimately show ?thesis by (force simp: closed_segment_eq_real_ivl open_segment_eq_real_ivl split: if_split_asm) qed qed lemma continuous_injective_image_open_segment_1: fixes f :: "'a::euclidean_space \ real" assumes contf: "continuous_on (closed_segment a b) f" and injf: "inj_on f (closed_segment a b)" shows "f ` (open_segment a b) = open_segment (f a) (f b)" proof - have "f ` (open_segment a b) = f ` (closed_segment a b) - {f a, f b}" by (metis (no_types, hide_lams) empty_subsetI ends_in_segment image_insert image_is_empty inj_on_image_set_diff injf insert_subset open_segment_def segment_open_subset_closed) also have "... = open_segment (f a) (f b)" using continuous_injective_image_segment_1 [OF assms] by (simp add: open_segment_def inj_on_image_set_diff [OF injf]) finally show ?thesis . qed lemma collinear_imp_coplanar: "collinear s ==> coplanar s" by (metis collinear_affine_hull coplanar_def insert_absorb2) lemma collinear_small: assumes "finite s" "card s \ 2" shows "collinear s" proof - have "card s = 0 \ card s = 1 \ card s = 2" using assms by linarith then show ?thesis using assms using card_eq_SucD by auto (metis collinear_2 numeral_2_eq_2) qed lemma coplanar_small: assumes "finite s" "card s \ 3" shows "coplanar s" proof - have "card s \ 2 \ card s = Suc (Suc (Suc 0))" using assms by linarith then show ?thesis using assms apply safe apply (simp add: collinear_small collinear_imp_coplanar) apply (safe dest!: card_eq_SucD) apply (auto simp: coplanar_def) apply (metis hull_subset insert_subset) done qed lemma coplanar_empty: "coplanar {}" by (simp add: coplanar_small) lemma coplanar_sing: "coplanar {a}" by (simp add: coplanar_small) lemma coplanar_2: "coplanar {a,b}" by (auto simp: card_insert_if coplanar_small) lemma coplanar_3: "coplanar {a,b,c}" by (auto simp: card_insert_if coplanar_small) lemma collinear_affine_hull_collinear: "collinear(affine hull s) \ collinear s" unfolding collinear_affine_hull by (metis affine_affine_hull subset_hull hull_hull hull_mono) lemma coplanar_affine_hull_coplanar: "coplanar(affine hull s) \ coplanar s" unfolding coplanar_def by (metis affine_affine_hull subset_hull hull_hull hull_mono) lemma coplanar_linear_image: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes "coplanar s" "linear f" shows "coplanar(f ` s)" proof - { fix u v w assume "s \ affine hull {u, v, w}" then have "f ` s \ f ` (affine hull {u, v, w})" by (simp add: image_mono) then have "f ` s \ affine hull (f ` {u, v, w})" by (metis assms(2) linear_conv_bounded_linear affine_hull_linear_image) } then show ?thesis by auto (meson assms(1) coplanar_def) qed lemma coplanar_translation_imp: "coplanar s \ coplanar ((\x. a + x) ` s)" unfolding coplanar_def apply clarify apply (rule_tac x="u+a" in exI) apply (rule_tac x="v+a" in exI) apply (rule_tac x="w+a" in exI) using affine_hull_translation [of a "{u,v,w}" for u v w] apply (force simp: add.commute) done lemma coplanar_translation_eq: "coplanar((\x. a + x) ` s) \ coplanar s" by (metis (no_types) coplanar_translation_imp translation_galois) lemma coplanar_linear_image_eq: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "linear f" "inj f" shows "coplanar(f ` s) = coplanar s" proof assume "coplanar s" then show "coplanar (f ` s)" unfolding coplanar_def using affine_hull_linear_image [of f "{u,v,w}" for u v w] assms by (meson coplanar_def coplanar_linear_image) next obtain g where g: "linear g" "g \ f = id" using linear_injective_left_inverse [OF assms] by blast assume "coplanar (f ` s)" then obtain u v w where "f ` s \ affine hull {u, v, w}" by (auto simp: coplanar_def) then have "g ` f ` s \ g ` (affine hull {u, v, w})" by blast then have "s \ g ` (affine hull {u, v, w})" using g by (simp add: Fun.image_comp) then show "coplanar s" unfolding coplanar_def using affine_hull_linear_image [of g "{u,v,w}" for u v w] \linear g\ linear_conv_bounded_linear by fastforce qed (*The HOL Light proof is simply MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE COPLANAR_LINEAR_IMAGE));; *) lemma coplanar_subset: "\coplanar t; s \ t\ \ coplanar s" by (meson coplanar_def order_trans) lemma affine_hull_3_imp_collinear: "c \ affine hull {a,b} \ collinear {a,b,c}" by (metis collinear_2 collinear_affine_hull_collinear hull_redundant insert_commute) lemma collinear_3_imp_in_affine_hull: "\collinear {a,b,c}; a \ b\ \ c \ affine hull {a,b}" unfolding collinear_def apply clarify apply (frule_tac x=b in bspec, blast, drule_tac x=a in bspec, blast, erule exE) apply (drule_tac x=c in bspec, blast, drule_tac x=a in bspec, blast, erule exE) apply (rename_tac y x) apply (simp add: affine_hull_2) apply (rule_tac x="1 - x/y" in exI) apply (simp add: algebra_simps) done lemma collinear_3_affine_hull: assumes "a \ b" shows "collinear {a,b,c} \ c \ affine hull {a,b}" using affine_hull_3_imp_collinear assms collinear_3_imp_in_affine_hull by blast lemma collinear_3_eq_affine_dependent: "collinear{a,b,c} \ a = b \ a = c \ b = c \ affine_dependent {a,b,c}" apply (case_tac "a=b", simp) apply (case_tac "a=c") apply (simp add: insert_commute) apply (case_tac "b=c") apply (simp add: insert_commute) apply (auto simp: affine_dependent_def collinear_3_affine_hull insert_Diff_if) apply (metis collinear_3_affine_hull insert_commute)+ done lemma affine_dependent_imp_collinear_3: "affine_dependent {a,b,c} \ collinear{a,b,c}" by (simp add: collinear_3_eq_affine_dependent) lemma collinear_3: "NO_MATCH 0 x \ collinear {x,y,z} \ collinear {0, x-y, z-y}" by (auto simp add: collinear_def) lemma collinear_3_expand: "collinear{a,b,c} \ a = c \ (\u. b = u *\<^sub>R a + (1 - u) *\<^sub>R c)" proof - have "collinear{a,b,c} = collinear{a,c,b}" by (simp add: insert_commute) also have "... = collinear {0, a - c, b - c}" by (simp add: collinear_3) also have "... \ (a = c \ b = c \ (\ca. b - c = ca *\<^sub>R (a - c)))" by (simp add: collinear_lemma) also have "... \ a = c \ (\u. b = u *\<^sub>R a + (1 - u) *\<^sub>R c)" by (cases "a = c \ b = c") (auto simp: algebra_simps) finally show ?thesis . qed lemma collinear_aff_dim: "collinear S \ aff_dim S \ 1" proof assume "collinear S" then obtain u and v :: "'a" where "aff_dim S \ aff_dim {u,v}" by (metis \collinear S\ aff_dim_affine_hull aff_dim_subset collinear_affine_hull) then show "aff_dim S \ 1" using order_trans by fastforce next assume "aff_dim S \ 1" then have le1: "aff_dim (affine hull S) \ 1" by simp obtain B where "B \ S" and B: "\ affine_dependent B" "affine hull S = affine hull B" using affine_basis_exists [of S] by auto then have "finite B" "card B \ 2" using B le1 by (auto simp: affine_independent_iff_card) then have "collinear B" by (rule collinear_small) then show "collinear S" by (metis \affine hull S = affine hull B\ collinear_affine_hull_collinear) qed lemma collinear_midpoint: "collinear{a,midpoint a b,b}" apply (auto simp: collinear_3 collinear_lemma) apply (drule_tac x="-1" in spec) apply (simp add: algebra_simps) done lemma midpoint_collinear: fixes a b c :: "'a::real_normed_vector" assumes "a \ c" shows "b = midpoint a c \ collinear{a,b,c} \ dist a b = dist b c" proof - have *: "a - (u *\<^sub>R a + (1 - u) *\<^sub>R c) = (1 - u) *\<^sub>R (a - c)" "u *\<^sub>R a + (1 - u) *\<^sub>R c - c = u *\<^sub>R (a - c)" "\1 - u\ = \u\ \ u = 1/2" for u::real by (auto simp: algebra_simps) have "b = midpoint a c \ collinear{a,b,c} " using collinear_midpoint by blast moreover have "collinear{a,b,c} \ b = midpoint a c \ dist a b = dist b c" apply (auto simp: collinear_3_expand assms dist_midpoint) apply (simp add: dist_norm * assms midpoint_def del: divide_const_simps) apply (simp add: algebra_simps) done ultimately show ?thesis by blast qed lemma between_imp_collinear: fixes x :: "'a :: euclidean_space" assumes "between (a,b) x" shows "collinear {a,x,b}" proof (cases "x = a \ x = b \ a = b") case True with assms show ?thesis by (auto simp: dist_commute) next case False with assms show ?thesis apply (auto simp: collinear_3 collinear_lemma between_norm) apply (drule_tac x="-(norm(b - x) / norm(x - a))" in spec) apply (simp add: vector_add_divide_simps real_vector.scale_minus_right [symmetric]) done qed lemma midpoint_between: fixes a b :: "'a::euclidean_space" shows "b = midpoint a c \ between (a,c) b \ dist a b = dist b c" proof (cases "a = c") case True then show ?thesis by (auto simp: dist_commute) next case False show ?thesis apply (rule iffI) apply (simp add: between_midpoint(1) dist_midpoint) using False between_imp_collinear midpoint_collinear by blast qed lemma collinear_triples: assumes "a \ b" shows "collinear(insert a (insert b S)) \ (\x \ S. collinear{a,b,x})" (is "?lhs = ?rhs") proof safe fix x assume ?lhs and "x \ S" then show "collinear {a, b, x}" using collinear_subset by force next assume ?rhs then have "\x \ S. collinear{a,x,b}" by (simp add: insert_commute) then have *: "\u. x = u *\<^sub>R a + (1 - u) *\<^sub>R b" if "x \ (insert a (insert b S))" for x using that assms collinear_3_expand by fastforce+ show ?lhs unfolding collinear_def apply (rule_tac x="b-a" in exI) apply (clarify dest!: *) by (metis (no_types, hide_lams) add.commute diff_add_cancel diff_diff_eq2 real_vector.scale_right_diff_distrib scaleR_left.diff) qed lemma collinear_4_3: assumes "a \ b" shows "collinear {a,b,c,d} \ collinear{a,b,c} \ collinear{a,b,d}" using collinear_triples [OF assms, of "{c,d}"] by (force simp:) lemma collinear_3_trans: assumes "collinear{a,b,c}" "collinear{b,c,d}" "b \ c" shows "collinear{a,b,d}" proof - have "collinear{b,c,a,d}" by (metis (full_types) assms collinear_4_3 insert_commute) then show ?thesis by (simp add: collinear_subset) qed lemma affine_hull_eq_empty [simp]: "affine hull S = {} \ S = {}" using affine_hull_nonempty by blast lemma affine_hull_2_alt: fixes a b :: "'a::real_vector" shows "affine hull {a,b} = range (\u. a + u *\<^sub>R (b - a))" apply (simp add: affine_hull_2, safe) apply (rule_tac x=v in image_eqI) apply (simp add: algebra_simps) apply (metis scaleR_add_left scaleR_one, simp) apply (rule_tac x="1-u" in exI) apply (simp add: algebra_simps) done lemma interior_convex_hull_3_minimal: fixes a :: "'a::euclidean_space" shows "\\ collinear{a,b,c}; DIM('a) = 2\ \ interior(convex hull {a,b,c}) = {v. \x y z. 0 < x \ 0 < y \ 0 < z \ x + y + z = 1 \ x *\<^sub>R a + y *\<^sub>R b + z *\<^sub>R c = v}" apply (simp add: collinear_3_eq_affine_dependent interior_convex_hull_explicit_minimal, safe) apply (rule_tac x="u a" in exI, simp) apply (rule_tac x="u b" in exI, simp) apply (rule_tac x="u c" in exI, simp) apply (rename_tac uu x y z) apply (rule_tac x="\r. (if r=a then x else if r=b then y else if r=c then z else 0)" in exI) apply simp done subsection\<^marker>\tag unimportant\\Basic lemmas about hyperplanes and halfspaces\ lemma halfspace_Int_eq: "{x. a \ x \ b} \ {x. b \ a \ x} = {x. a \ x = b}" "{x. b \ a \ x} \ {x. a \ x \ b} = {x. a \ x = b}" by auto lemma hyperplane_eq_Ex: assumes "a \ 0" obtains x where "a \ x = b" by (rule_tac x = "(b / (a \ a)) *\<^sub>R a" in that) (simp add: assms) lemma hyperplane_eq_empty: "{x. a \ x = b} = {} \ a = 0 \ b \ 0" using hyperplane_eq_Ex apply auto[1] using inner_zero_right by blast lemma hyperplane_eq_UNIV: "{x. a \ x = b} = UNIV \ a = 0 \ b = 0" proof - have "UNIV \ {x. a \ x = b} \ a = 0 \ b = 0" apply (drule_tac c = "((b+1) / (a \ a)) *\<^sub>R a" in subsetD) apply simp_all by (metis add_cancel_right_right zero_neq_one) then show ?thesis by force qed lemma halfspace_eq_empty_lt: "{x. a \ x < b} = {} \ a = 0 \ b \ 0" proof - have "{x. a \ x < b} \ {} \ a = 0 \ b \ 0" apply (rule ccontr) apply (drule_tac c = "((b-1) / (a \ a)) *\<^sub>R a" in subsetD) apply force+ done then show ?thesis by force qed lemma halfspace_eq_empty_gt: "{x. a \ x > b} = {} \ a = 0 \ b \ 0" using halfspace_eq_empty_lt [of "-a" "-b"] by simp lemma halfspace_eq_empty_le: "{x. a \ x \ b} = {} \ a = 0 \ b < 0" proof - have "{x. a \ x \ b} \ {} \ a = 0 \ b < 0" apply (rule ccontr) apply (drule_tac c = "((b-1) / (a \ a)) *\<^sub>R a" in subsetD) apply force+ done then show ?thesis by force qed lemma halfspace_eq_empty_ge: "{x. a \ x \ b} = {} \ a = 0 \ b > 0" using halfspace_eq_empty_le [of "-a" "-b"] by simp subsection\<^marker>\tag unimportant\\Use set distance for an easy proof of separation properties\ proposition\<^marker>\tag unimportant\ separation_closures: fixes S :: "'a::euclidean_space set" assumes "S \ closure T = {}" "T \ closure S = {}" obtains U V where "U \ V = {}" "open U" "open V" "S \ U" "T \ V" proof (cases "S = {} \ T = {}") case True with that show ?thesis by auto next case False define f where "f \ \x. setdist {x} T - setdist {x} S" have contf: "continuous_on UNIV f" unfolding f_def by (intro continuous_intros continuous_on_setdist) show ?thesis proof (rule_tac U = "{x. f x > 0}" and V = "{x. f x < 0}" in that) show "{x. 0 < f x} \ {x. f x < 0} = {}" by auto show "open {x. 0 < f x}" by (simp add: open_Collect_less contf) show "open {x. f x < 0}" by (simp add: open_Collect_less contf) show "S \ {x. 0 < f x}" apply (clarsimp simp add: f_def setdist_sing_in_set) using assms by (metis False IntI empty_iff le_less setdist_eq_0_sing_2 setdist_pos_le setdist_sym) show "T \ {x. f x < 0}" apply (clarsimp simp add: f_def setdist_sing_in_set) using assms by (metis False IntI empty_iff le_less setdist_eq_0_sing_2 setdist_pos_le setdist_sym) qed qed lemma separation_normal: fixes S :: "'a::euclidean_space set" assumes "closed S" "closed T" "S \ T = {}" obtains U V where "open U" "open V" "S \ U" "T \ V" "U \ V = {}" using separation_closures [of S T] by (metis assms closure_closed disjnt_def inf_commute) lemma separation_normal_local: fixes S :: "'a::euclidean_space set" assumes US: "closedin (top_of_set U) S" and UT: "closedin (top_of_set U) T" and "S \ T = {}" obtains S' T' where "openin (top_of_set U) S'" "openin (top_of_set U) T'" "S \ S'" "T \ T'" "S' \ T' = {}" proof (cases "S = {} \ T = {}") case True with that show ?thesis using UT US by (blast dest: closedin_subset) next case False define f where "f \ \x. setdist {x} T - setdist {x} S" have contf: "continuous_on U f" unfolding f_def by (intro continuous_intros) show ?thesis proof (rule_tac S' = "(U \ f -` {0<..})" and T' = "(U \ f -` {..<0})" in that) show "(U \ f -` {0<..}) \ (U \ f -` {..<0}) = {}" by auto show "openin (top_of_set U) (U \ f -` {0<..})" by (rule continuous_openin_preimage [where T=UNIV]) (simp_all add: contf) next show "openin (top_of_set U) (U \ f -` {..<0})" by (rule continuous_openin_preimage [where T=UNIV]) (simp_all add: contf) next have "S \ U" "T \ U" using closedin_imp_subset assms by blast+ then show "S \ U \ f -` {0<..}" "T \ U \ f -` {..<0}" using assms False by (force simp add: f_def setdist_sing_in_set intro!: setdist_gt_0_closedin)+ qed qed lemma separation_normal_compact: fixes S :: "'a::euclidean_space set" assumes "compact S" "closed T" "S \ T = {}" obtains U V where "open U" "compact(closure U)" "open V" "S \ U" "T \ V" "U \ V = {}" proof - have "closed S" "bounded S" using assms by (auto simp: compact_eq_bounded_closed) then obtain r where "r>0" and r: "S \ ball 0 r" by (auto dest!: bounded_subset_ballD) have **: "closed (T \ - ball 0 r)" "S \ (T \ - ball 0 r) = {}" using assms r by blast+ then show ?thesis apply (rule separation_normal [OF \closed S\]) apply (rule_tac U=U and V=V in that) by auto (meson bounded_ball bounded_subset compl_le_swap2 disjoint_eq_subset_Compl) qed subsection\Connectedness of the intersection of a chain\ proposition connected_chain: fixes \ :: "'a :: euclidean_space set set" assumes cc: "\S. S \ \ \ compact S \ connected S" and linear: "\S T. S \ \ \ T \ \ \ S \ T \ T \ S" shows "connected(\\)" proof (cases "\ = {}") case True then show ?thesis by auto next case False then have cf: "compact(\\)" by (simp add: cc compact_Inter) have False if AB: "closed A" "closed B" "A \ B = {}" and ABeq: "A \ B = \\" and "A \ {}" "B \ {}" for A B proof - obtain U V where "open U" "open V" "A \ U" "B \ V" "U \ V = {}" using separation_normal [OF AB] by metis obtain K where "K \ \" "compact K" using cc False by blast then obtain N where "open N" and "K \ N" by blast let ?\ = "insert (U \ V) ((\S. N - S) ` \)" obtain \ where "\ \ ?\" "finite \" "K \ \\" proof (rule compactE [OF \compact K\]) show "K \ \(insert (U \ V) ((-) N ` \))" using \K \ N\ ABeq \A \ U\ \B \ V\ by auto show "\B. B \ insert (U \ V) ((-) N ` \) \ open B" by (auto simp: \open U\ \open V\ open_Un \open N\ cc compact_imp_closed open_Diff) qed then have "finite(\ - {U \ V})" by blast moreover have "\ - {U \ V} \ (\S. N - S) ` \" using \\ \ ?\\ by blast ultimately obtain \ where "\ \ \" "finite \" and Deq: "\ - {U \ V} = (\S. N-S) ` \" using finite_subset_image by metis obtain J where "J \ \" and J: "(\S\\. N - S) \ N - J" proof (cases "\ = {}") case True with \\ \ {}\ that show ?thesis by auto next case False have "\S T. \S \ \; T \ \\ \ S \ T \ T \ S" by (meson \\ \ \\ in_mono local.linear) with \finite \\ \\ \ {}\ have "\J \ \. (\S\\. N - S) \ N - J" proof induction case (insert X \) show ?case proof (cases "\ = {}") case True then show ?thesis by auto next case False then have "\S T. \S \ \; T \ \\ \ S \ T \ T \ S" by (simp add: insert.prems) with insert.IH False obtain J where "J \ \" and J: "(\Y\\. N - Y) \ N - J" by metis have "N - J \ N - X \ N - X \ N - J" by (meson Diff_mono \J \ \\ insert.prems(2) insert_iff order_refl) then show ?thesis proof assume "N - J \ N - X" with J show ?thesis by auto next assume "N - X \ N - J" with J have "N - X \ \ ((-) N ` \) \ N - J" by auto with \J \ \\ show ?thesis by blast qed qed qed simp with \\ \ \\ show ?thesis by (blast intro: that) qed have "K \ \(insert (U \ V) (\ - {U \ V}))" using \K \ \\\ by auto also have "... \ (U \ V) \ (N - J)" by (metis (no_types, hide_lams) Deq Un_subset_iff Un_upper2 J Union_insert order_trans sup_ge1) finally have "J \ K \ U \ V" by blast moreover have "connected(J \ K)" by (metis Int_absorb1 \J \ \\ \K \ \\ cc inf.orderE local.linear) moreover have "U \ (J \ K) \ {}" using ABeq \J \ \\ \K \ \\ \A \ {}\ \A \ U\ by blast moreover have "V \ (J \ K) \ {}" using ABeq \J \ \\ \K \ \\ \B \ {}\ \B \ V\ by blast ultimately show False using connectedD [of "J \ K" U V] \open U\ \open V\ \U \ V = {}\ by auto qed with cf show ?thesis by (auto simp: connected_closed_set compact_imp_closed) qed lemma connected_chain_gen: fixes \ :: "'a :: euclidean_space set set" assumes X: "X \ \" "compact X" and cc: "\T. T \ \ \ closed T \ connected T" and linear: "\S T. S \ \ \ T \ \ \ S \ T \ T \ S" shows "connected(\\)" proof - have "\\ = (\T\\. X \ T)" using X by blast moreover have "connected (\T\\. X \ T)" proof (rule connected_chain) show "\T. T \ (\) X ` \ \ compact T \ connected T" using cc X by auto (metis inf.absorb2 inf.orderE local.linear) show "\S T. S \ (\) X ` \ \ T \ (\) X ` \ \ S \ T \ T \ S" using local.linear by blast qed ultimately show ?thesis by metis qed lemma connected_nest: fixes S :: "'a::linorder \ 'b::euclidean_space set" assumes S: "\n. compact(S n)" "\n. connected(S n)" and nest: "\m n. m \ n \ S n \ S m" shows "connected(\ (range S))" apply (rule connected_chain) using S apply blast by (metis image_iff le_cases nest) lemma connected_nest_gen: fixes S :: "'a::linorder \ 'b::euclidean_space set" assumes S: "\n. closed(S n)" "\n. connected(S n)" "compact(S k)" and nest: "\m n. m \ n \ S n \ S m" shows "connected(\ (range S))" apply (rule connected_chain_gen [of "S k"]) using S apply auto by (meson le_cases nest subsetCE) subsection\Proper maps, including projections out of compact sets\ lemma finite_indexed_bound: assumes A: "finite A" "\x. x \ A \ \n::'a::linorder. P x n" shows "\m. \x \ A. \k\m. P x k" using A proof (induction A) case empty then show ?case by force next case (insert a A) then obtain m n where "\x \ A. \k\m. P x k" "P a n" by force then show ?case apply (rule_tac x="max m n" in exI, safe) using max.cobounded2 apply blast by (meson le_max_iff_disj) qed proposition proper_map: fixes f :: "'a::heine_borel \ 'b::heine_borel" assumes "closedin (top_of_set S) K" and com: "\U. \U \ T; compact U\ \ compact (S \ f -` U)" and "f ` S \ T" shows "closedin (top_of_set T) (f ` K)" proof - have "K \ S" using assms closedin_imp_subset by metis obtain C where "closed C" and Keq: "K = S \ C" using assms by (auto simp: closedin_closed) have *: "y \ f ` K" if "y \ T" and y: "y islimpt f ` K" for y proof - obtain h where "\n. (\x\K. h n = f x) \ h n \ y" "inj h" and hlim: "(h \ y) sequentially" using \y \ T\ y by (force simp: limpt_sequential_inj) then obtain X where X: "\n. X n \ K \ h n = f (X n) \ h n \ y" by metis then have fX: "\n. f (X n) = h n" by metis have "compact (C \ (S \ f -` insert y (range (\i. f(X(n + i))))))" for n apply (rule closed_Int_compact [OF \closed C\]) apply (rule com) using X \K \ S\ \f ` S \ T\ \y \ T\ apply blast apply (rule compact_sequence_with_limit) apply (simp add: fX add.commute [of n] LIMSEQ_ignore_initial_segment [OF hlim]) done then have comf: "compact {a \ K. f a \ insert y (range (\i. f(X(n + i))))}" for n by (simp add: Keq Int_def conj_commute) have ne: "\\ \ {}" if "finite \" and \: "\t. t \ \ \ (\n. t = {a \ K. f a \ insert y (range (\i. f (X (n + i))))})" for \ proof - obtain m where m: "\t. t \ \ \ \k\m. t = {a \ K. f a \ insert y (range (\i. f (X (k + i))))}" apply (rule exE) apply (rule finite_indexed_bound [OF \finite \\ \], assumption, force) done have "X m \ \\" using X le_Suc_ex by (fastforce dest: m) then show ?thesis by blast qed have "\{{a. a \ K \ f a \ insert y (range (\i. f(X(n + i))))} |n. n \ UNIV} \ {}" apply (rule compact_fip_Heine_Borel) using comf apply force using ne apply (simp add: subset_iff del: insert_iff) done then have "\x. x \ (\n. {a \ K. f a \ insert y (range (\i. f (X (n + i))))})" by blast then show ?thesis apply (simp add: image_iff fX) by (metis \inj h\ le_add1 not_less_eq_eq rangeI range_ex1_eq) qed with assms closedin_subset show ?thesis by (force simp: closedin_limpt) qed lemma compact_continuous_image_eq: fixes f :: "'a::heine_borel \ 'b::heine_borel" assumes f: "inj_on f S" shows "continuous_on S f \ (\T. compact T \ T \ S \ compact(f ` T))" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs by (metis continuous_on_subset compact_continuous_image) next assume RHS: ?rhs obtain g where gf: "\x. x \ S \ g (f x) = x" by (metis inv_into_f_f f) then have *: "(S \ f -` U) = g ` U" if "U \ f ` S" for U using that by fastforce have gfim: "g ` f ` S \ S" using gf by auto have **: "compact (f ` S \ g -` C)" if C: "C \ S" "compact C" for C proof - obtain h where "h C \ C \ h C \ S \ compact (f ` C)" by (force simp: C RHS) moreover have "f ` C = (f ` S \ g -` C)" using C gf by auto ultimately show ?thesis using C by auto qed show ?lhs using proper_map [OF _ _ gfim] ** by (simp add: continuous_on_closed * closedin_imp_subset) qed subsection\<^marker>\tag unimportant\\Trivial fact: convexity equals connectedness for collinear sets\ lemma convex_connected_collinear: fixes S :: "'a::euclidean_space set" assumes "collinear S" shows "convex S \ connected S" proof assume "convex S" then show "connected S" using convex_connected by blast next assume S: "connected S" show "convex S" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain a where "a \ S" by auto have "collinear (affine hull S)" by (simp add: assms collinear_affine_hull_collinear) then obtain z where "z \ 0" "\x. x \ affine hull S \ \c. x - a = c *\<^sub>R z" by (meson \a \ S\ collinear hull_inc) then obtain f where f: "\x. x \ affine hull S \ x - a = f x *\<^sub>R z" by metis then have inj_f: "inj_on f (affine hull S)" by (metis diff_add_cancel inj_onI) have diff: "x - y = (f x - f y) *\<^sub>R z" if x: "x \ affine hull S" and y: "y \ affine hull S" for x y proof - have "f x *\<^sub>R z = x - a" by (simp add: f hull_inc x) moreover have "f y *\<^sub>R z = y - a" by (simp add: f hull_inc y) ultimately show ?thesis by (simp add: scaleR_left.diff) qed have cont_f: "continuous_on (affine hull S) f" apply (clarsimp simp: dist_norm continuous_on_iff diff) by (metis \z \ 0\ mult.commute mult_less_cancel_left_pos norm_minus_commute real_norm_def zero_less_mult_iff zero_less_norm_iff) then have conn_fS: "connected (f ` S)" by (meson S connected_continuous_image continuous_on_subset hull_subset) show ?thesis proof (clarsimp simp: convex_contains_segment) fix x y z assume "x \ S" "y \ S" "z \ closed_segment x y" have False if "z \ S" proof - have "f ` (closed_segment x y) = closed_segment (f x) (f y)" apply (rule continuous_injective_image_segment_1) apply (meson \x \ S\ \y \ S\ convex_affine_hull convex_contains_segment hull_inc continuous_on_subset [OF cont_f]) by (meson \x \ S\ \y \ S\ convex_affine_hull convex_contains_segment hull_inc inj_on_subset [OF inj_f]) then have fz: "f z \ closed_segment (f x) (f y)" using \z \ closed_segment x y\ by blast have "z \ affine hull S" by (meson \x \ S\ \y \ S\ \z \ closed_segment x y\ convex_affine_hull convex_contains_segment hull_inc subset_eq) then have fz_notin: "f z \ f ` S" using hull_subset inj_f inj_onD that by fastforce moreover have "{.. f ` S \ {}" "{f z<..} \ f ` S \ {}" proof - have "{.. f ` {x,y} \ {}" "{f z<..} \ f ` {x,y} \ {}" using fz fz_notin \x \ S\ \y \ S\ apply (auto simp: closed_segment_eq_real_ivl split: if_split_asm) apply (metis image_eqI less_eq_real_def)+ done then show "{.. f ` S \ {}" "{f z<..} \ f ` S \ {}" using \x \ S\ \y \ S\ by blast+ qed ultimately show False using connectedD [OF conn_fS, of "{.. S" by meson qed qed qed lemma compact_convex_collinear_segment_alt: fixes S :: "'a::euclidean_space set" assumes "S \ {}" "compact S" "connected S" "collinear S" obtains a b where "S = closed_segment a b" proof - obtain \ where "\ \ S" using \S \ {}\ by auto have "collinear (affine hull S)" by (simp add: assms collinear_affine_hull_collinear) then obtain z where "z \ 0" "\x. x \ affine hull S \ \c. x - \ = c *\<^sub>R z" by (meson \\ \ S\ collinear hull_inc) then obtain f where f: "\x. x \ affine hull S \ x - \ = f x *\<^sub>R z" by metis let ?g = "\r. r *\<^sub>R z + \" have gf: "?g (f x) = x" if "x \ affine hull S" for x by (metis diff_add_cancel f that) then have inj_f: "inj_on f (affine hull S)" by (metis inj_onI) have diff: "x - y = (f x - f y) *\<^sub>R z" if x: "x \ affine hull S" and y: "y \ affine hull S" for x y proof - have "f x *\<^sub>R z = x - \" by (simp add: f hull_inc x) moreover have "f y *\<^sub>R z = y - \" by (simp add: f hull_inc y) ultimately show ?thesis by (simp add: scaleR_left.diff) qed have cont_f: "continuous_on (affine hull S) f" apply (clarsimp simp: dist_norm continuous_on_iff diff) by (metis \z \ 0\ mult.commute mult_less_cancel_left_pos norm_minus_commute real_norm_def zero_less_mult_iff zero_less_norm_iff) then have "connected (f ` S)" by (meson \connected S\ connected_continuous_image continuous_on_subset hull_subset) moreover have "compact (f ` S)" by (meson \compact S\ compact_continuous_image_eq cont_f hull_subset inj_f) ultimately obtain x y where "f ` S = {x..y}" by (meson connected_compact_interval_1) then have fS_eq: "f ` S = closed_segment x y" using \S \ {}\ closed_segment_eq_real_ivl by auto obtain a b where "a \ S" "f a = x" "b \ S" "f b = y" by (metis (full_types) ends_in_segment fS_eq imageE) have "f ` (closed_segment a b) = closed_segment (f a) (f b)" apply (rule continuous_injective_image_segment_1) apply (meson \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment hull_inc continuous_on_subset [OF cont_f]) by (meson \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment hull_inc inj_on_subset [OF inj_f]) then have "f ` (closed_segment a b) = f ` S" by (simp add: \f a = x\ \f b = y\ fS_eq) then have "?g ` f ` (closed_segment a b) = ?g ` f ` S" by simp moreover have "(\x. f x *\<^sub>R z + \) ` closed_segment a b = closed_segment a b" apply safe apply (metis (mono_tags, hide_lams) \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment gf hull_inc subsetCE) by (metis (mono_tags, lifting) \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment gf hull_subset image_iff subsetCE) ultimately have "closed_segment a b = S" using gf by (simp add: image_comp o_def hull_inc cong: image_cong) then show ?thesis using that by blast qed lemma compact_convex_collinear_segment: fixes S :: "'a::euclidean_space set" assumes "S \ {}" "compact S" "convex S" "collinear S" obtains a b where "S = closed_segment a b" using assms convex_connected_collinear compact_convex_collinear_segment_alt by blast lemma proper_map_from_compact: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes contf: "continuous_on S f" and imf: "f ` S \ T" and "compact S" "closedin (top_of_set T) K" shows "compact (S \ f -` K)" by (rule closedin_compact [OF \compact S\] continuous_closedin_preimage_gen assms)+ lemma proper_map_fst: assumes "compact T" "K \ S" "compact K" shows "compact (S \ T \ fst -` K)" proof - have "(S \ T \ fst -` K) = K \ T" using assms by auto then show ?thesis by (simp add: assms compact_Times) qed lemma closed_map_fst: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" assumes "compact T" "closedin (top_of_set (S \ T)) c" shows "closedin (top_of_set S) (fst ` c)" proof - have *: "fst ` (S \ T) \ S" by auto show ?thesis using proper_map [OF _ _ *] by (simp add: proper_map_fst assms) qed lemma proper_map_snd: assumes "compact S" "K \ T" "compact K" shows "compact (S \ T \ snd -` K)" proof - have "(S \ T \ snd -` K) = S \ K" using assms by auto then show ?thesis by (simp add: assms compact_Times) qed lemma closed_map_snd: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" assumes "compact S" "closedin (top_of_set (S \ T)) c" shows "closedin (top_of_set T) (snd ` c)" proof - have *: "snd ` (S \ T) \ T" by auto show ?thesis using proper_map [OF _ _ *] by (simp add: proper_map_snd assms) qed lemma closedin_compact_projection: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" assumes "compact S" and clo: "closedin (top_of_set (S \ T)) U" shows "closedin (top_of_set T) {y. \x. x \ S \ (x, y) \ U}" proof - have "U \ S \ T" by (metis clo closedin_imp_subset) then have "{y. \x. x \ S \ (x, y) \ U} = snd ` U" by force moreover have "closedin (top_of_set T) (snd ` U)" by (rule closed_map_snd [OF assms]) ultimately show ?thesis by simp qed lemma closed_compact_projection: fixes S :: "'a::euclidean_space set" and T :: "('a * 'b::euclidean_space) set" assumes "compact S" and clo: "closed T" shows "closed {y. \x. x \ S \ (x, y) \ T}" proof - have *: "{y. \x. x \ S \ Pair x y \ T} = {y. \x. x \ S \ Pair x y \ ((S \ UNIV) \ T)}" by auto show ?thesis apply (subst *) apply (rule closedin_closed_trans [OF _ closed_UNIV]) apply (rule closedin_compact_projection [OF \compact S\]) by (simp add: clo closedin_closed_Int) qed subsubsection\<^marker>\tag unimportant\\Representing affine hull as a finite intersection of hyperplanes\ proposition\<^marker>\tag unimportant\ affine_hull_convex_Int_nonempty_interior: fixes S :: "'a::real_normed_vector set" assumes "convex S" "S \ interior T \ {}" shows "affine hull (S \ T) = affine hull S" proof show "affine hull (S \ T) \ affine hull S" by (simp add: hull_mono) next obtain a where "a \ S" "a \ T" and at: "a \ interior T" using assms interior_subset by blast then obtain e where "e > 0" and e: "cball a e \ T" using mem_interior_cball by blast have *: "x \ (+) a ` span ((\x. x - a) ` (S \ T))" if "x \ S" for x proof (cases "x = a") case True with that span_0 eq_add_iff image_def mem_Collect_eq show ?thesis by blast next case False define k where "k = min (1/2) (e / norm (x-a))" have k: "0 < k" "k < 1" using \e > 0\ False by (auto simp: k_def) then have xa: "(x-a) = inverse k *\<^sub>R k *\<^sub>R (x-a)" by simp have "e / norm (x - a) \ k" using k_def by linarith then have "a + k *\<^sub>R (x - a) \ cball a e" using \0 < k\ False by (simp add: dist_norm) (simp add: field_simps) then have T: "a + k *\<^sub>R (x - a) \ T" using e by blast have S: "a + k *\<^sub>R (x - a) \ S" using k \a \ S\ convexD [OF \convex S\ \a \ S\ \x \ S\, of "1-k" k] by (simp add: algebra_simps) have "inverse k *\<^sub>R k *\<^sub>R (x-a) \ span ((\x. x - a) ` (S \ T))" apply (rule span_mul) apply (rule span_base) apply (rule image_eqI [where x = "a + k *\<^sub>R (x - a)"]) apply (auto simp: S T) done with xa image_iff show ?thesis by fastforce qed show "affine hull S \ affine hull (S \ T)" apply (simp add: subset_hull) apply (simp add: \a \ S\ \a \ T\ hull_inc affine_hull_span_gen [of a]) apply (force simp: *) done qed corollary affine_hull_convex_Int_open: fixes S :: "'a::real_normed_vector set" assumes "convex S" "open T" "S \ T \ {}" shows "affine hull (S \ T) = affine hull S" using affine_hull_convex_Int_nonempty_interior assms interior_eq by blast corollary affine_hull_affine_Int_nonempty_interior: fixes S :: "'a::real_normed_vector set" assumes "affine S" "S \ interior T \ {}" shows "affine hull (S \ T) = affine hull S" by (simp add: affine_hull_convex_Int_nonempty_interior affine_imp_convex assms) corollary affine_hull_affine_Int_open: fixes S :: "'a::real_normed_vector set" assumes "affine S" "open T" "S \ T \ {}" shows "affine hull (S \ T) = affine hull S" by (simp add: affine_hull_convex_Int_open affine_imp_convex assms) corollary affine_hull_convex_Int_openin: fixes S :: "'a::real_normed_vector set" assumes "convex S" "openin (top_of_set (affine hull S)) T" "S \ T \ {}" shows "affine hull (S \ T) = affine hull S" using assms unfolding openin_open by (metis affine_hull_convex_Int_open hull_subset inf.orderE inf_assoc) corollary affine_hull_openin: fixes S :: "'a::real_normed_vector set" assumes "openin (top_of_set (affine hull T)) S" "S \ {}" shows "affine hull S = affine hull T" using assms unfolding openin_open by (metis affine_affine_hull affine_hull_affine_Int_open hull_hull) corollary affine_hull_open: fixes S :: "'a::real_normed_vector set" assumes "open S" "S \ {}" shows "affine hull S = UNIV" by (metis affine_hull_convex_Int_nonempty_interior assms convex_UNIV hull_UNIV inf_top.left_neutral interior_open) lemma aff_dim_convex_Int_nonempty_interior: fixes S :: "'a::euclidean_space set" shows "\convex S; S \ interior T \ {}\ \ aff_dim(S \ T) = aff_dim S" using aff_dim_affine_hull2 affine_hull_convex_Int_nonempty_interior by blast lemma aff_dim_convex_Int_open: fixes S :: "'a::euclidean_space set" shows "\convex S; open T; S \ T \ {}\ \ aff_dim(S \ T) = aff_dim S" using aff_dim_convex_Int_nonempty_interior interior_eq by blast lemma affine_hull_Diff: fixes S:: "'a::real_normed_vector set" assumes ope: "openin (top_of_set (affine hull S)) S" and "finite F" "F \ S" shows "affine hull (S - F) = affine hull S" proof - have clo: "closedin (top_of_set S) F" using assms finite_imp_closedin by auto moreover have "S - F \ {}" using assms by auto ultimately show ?thesis by (metis ope closedin_def topspace_euclidean_subtopology affine_hull_openin openin_trans) qed lemma affine_hull_halfspace_lt: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x < r} = (if a = 0 \ r \ 0 then {} else UNIV)" using halfspace_eq_empty_lt [of a r] by (simp add: open_halfspace_lt affine_hull_open) lemma affine_hull_halfspace_le: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x \ r} = (if a = 0 \ r < 0 then {} else UNIV)" proof (cases "a = 0") case True then show ?thesis by simp next case False then have "affine hull closure {x. a \ x < r} = UNIV" using affine_hull_halfspace_lt closure_same_affine_hull by fastforce moreover have "{x. a \ x < r} \ {x. a \ x \ r}" by (simp add: Collect_mono) ultimately show ?thesis using False antisym_conv hull_mono top_greatest by (metis affine_hull_halfspace_lt) qed lemma affine_hull_halfspace_gt: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x > r} = (if a = 0 \ r \ 0 then {} else UNIV)" using halfspace_eq_empty_gt [of r a] by (simp add: open_halfspace_gt affine_hull_open) lemma affine_hull_halfspace_ge: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x \ r} = (if a = 0 \ r > 0 then {} else UNIV)" using affine_hull_halfspace_le [of "-a" "-r"] by simp lemma aff_dim_halfspace_lt: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x < r} = (if a = 0 \ r \ 0 then -1 else DIM('a))" by simp (metis aff_dim_open halfspace_eq_empty_lt open_halfspace_lt) lemma aff_dim_halfspace_le: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x \ r} = (if a = 0 \ r < 0 then -1 else DIM('a))" proof - have "int (DIM('a)) = aff_dim (UNIV::'a set)" by (simp) then have "aff_dim (affine hull {x. a \ x \ r}) = DIM('a)" if "(a = 0 \ r \ 0)" using that by (simp add: affine_hull_halfspace_le not_less) then show ?thesis by (force) qed lemma aff_dim_halfspace_gt: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x > r} = (if a = 0 \ r \ 0 then -1 else DIM('a))" by simp (metis aff_dim_open halfspace_eq_empty_gt open_halfspace_gt) lemma aff_dim_halfspace_ge: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x \ r} = (if a = 0 \ r > 0 then -1 else DIM('a))" using aff_dim_halfspace_le [of "-a" "-r"] by simp proposition aff_dim_eq_hyperplane: fixes S :: "'a::euclidean_space set" shows "aff_dim S = DIM('a) - 1 \ (\a b. a \ 0 \ affine hull S = {x. a \ x = b})" proof (cases "S = {}") case True then show ?thesis by (auto simp: dest: hyperplane_eq_Ex) next case False then obtain c where "c \ S" by blast show ?thesis proof (cases "c = 0") case True show ?thesis using span_zero [of S] apply (simp add: aff_dim_eq_dim [of c] affine_hull_span_gen [of c] \c \ S\ hull_inc dim_eq_hyperplane del: One_nat_def) apply (auto simp add: \c = 0\) done next case False have xc_im: "x \ (+) c ` {y. a \ y = 0}" if "a \ x = a \ c" for a x proof - have "\y. a \ y = 0 \ c + y = x" by (metis that add.commute diff_add_cancel inner_commute inner_diff_left right_minus_eq) then show "x \ (+) c ` {y. a \ y = 0}" by blast qed have 2: "span ((\x. x - c) ` S) = {x. a \ x = 0}" if "(+) c ` span ((\x. x - c) ` S) = {x. a \ x = b}" for a b proof - have "b = a \ c" using span_0 that by fastforce with that have "(+) c ` span ((\x. x - c) ` S) = {x. a \ x = a \ c}" by simp then have "span ((\x. x - c) ` S) = (\x. x - c) ` {x. a \ x = a \ c}" by (metis (no_types) image_cong translation_galois uminus_add_conv_diff) also have "... = {x. a \ x = 0}" by (force simp: inner_distrib inner_diff_right intro: image_eqI [where x="x+c" for x]) finally show ?thesis . qed show ?thesis apply (simp add: aff_dim_eq_dim [of c] affine_hull_span_gen [of c] \c \ S\ hull_inc dim_eq_hyperplane del: One_nat_def cong: image_cong_simp, safe) apply (fastforce simp add: inner_distrib intro: xc_im) apply (force simp: intro!: 2) done qed qed corollary aff_dim_hyperplane [simp]: fixes a :: "'a::euclidean_space" shows "a \ 0 \ aff_dim {x. a \ x = r} = DIM('a) - 1" by (metis aff_dim_eq_hyperplane affine_hull_eq affine_hyperplane) subsection\<^marker>\tag unimportant\\Some stepping theorems\ lemma aff_dim_insert: fixes a :: "'a::euclidean_space" shows "aff_dim (insert a S) = (if a \ affine hull S then aff_dim S else aff_dim S + 1)" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain x s' where S: "S = insert x s'" "x \ s'" by (meson Set.set_insert all_not_in_conv) show ?thesis using S apply (simp add: hull_redundant cong: aff_dim_affine_hull2) apply (simp add: affine_hull_insert_span_gen hull_inc) by (force simp add: span_zero insert_commute [of a] hull_inc aff_dim_eq_dim [of x] dim_insert cong: image_cong_simp) qed lemma affine_dependent_choose: fixes a :: "'a :: euclidean_space" assumes "\(affine_dependent S)" shows "affine_dependent(insert a S) \ a \ S \ a \ affine hull S" (is "?lhs = ?rhs") proof safe assume "affine_dependent (insert a S)" and "a \ S" then show "False" using \a \ S\ assms insert_absorb by fastforce next assume lhs: "affine_dependent (insert a S)" then have "a \ S" by (metis (no_types) assms insert_absorb) moreover have "finite S" using affine_independent_iff_card assms by blast moreover have "aff_dim (insert a S) \ int (card S)" using \finite S\ affine_independent_iff_card \a \ S\ lhs by fastforce ultimately show "a \ affine hull S" by (metis aff_dim_affine_independent aff_dim_insert assms) next assume "a \ S" and "a \ affine hull S" show "affine_dependent (insert a S)" by (simp add: \a \ affine hull S\ \a \ S\ affine_dependent_def) qed lemma affine_independent_insert: fixes a :: "'a :: euclidean_space" shows "\\ affine_dependent S; a \ affine hull S\ \ \ affine_dependent(insert a S)" by (simp add: affine_dependent_choose) lemma subspace_bounded_eq_trivial: fixes S :: "'a::real_normed_vector set" assumes "subspace S" shows "bounded S \ S = {0}" proof - have "False" if "bounded S" "x \ S" "x \ 0" for x proof - obtain B where B: "\y. y \ S \ norm y < B" "B > 0" using \bounded S\ by (force simp: bounded_pos_less) have "(B / norm x) *\<^sub>R x \ S" using assms subspace_mul \x \ S\ by auto moreover have "norm ((B / norm x) *\<^sub>R x) = B" using that B by (simp add: algebra_simps) ultimately show False using B by force qed then have "bounded S \ S = {0}" using assms subspace_0 by fastforce then show ?thesis by blast qed lemma affine_bounded_eq_trivial: fixes S :: "'a::real_normed_vector set" assumes "affine S" shows "bounded S \ S = {} \ (\a. S = {a})" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain b where "b \ S" by blast with False assms show ?thesis apply safe using affine_diffs_subspace [OF assms \b \ S\] apply (metis (no_types, lifting) subspace_bounded_eq_trivial ab_left_minus bounded_translation image_empty image_insert translation_invert) apply force done qed lemma affine_bounded_eq_lowdim: fixes S :: "'a::euclidean_space set" assumes "affine S" shows "bounded S \ aff_dim S \ 0" apply safe using affine_bounded_eq_trivial assms apply fastforce by (metis aff_dim_sing aff_dim_subset affine_dim_equal affine_sing all_not_in_conv assms bounded_empty bounded_insert dual_order.antisym empty_subsetI insert_subset) lemma bounded_hyperplane_eq_trivial_0: fixes a :: "'a::euclidean_space" assumes "a \ 0" shows "bounded {x. a \ x = 0} \ DIM('a) = 1" proof assume "bounded {x. a \ x = 0}" then have "aff_dim {x. a \ x = 0} \ 0" by (simp add: affine_bounded_eq_lowdim affine_hyperplane) with assms show "DIM('a) = 1" by (simp add: le_Suc_eq) next assume "DIM('a) = 1" then show "bounded {x. a \ x = 0}" by (simp add: affine_bounded_eq_lowdim affine_hyperplane assms) qed lemma bounded_hyperplane_eq_trivial: fixes a :: "'a::euclidean_space" shows "bounded {x. a \ x = r} \ (if a = 0 then r \ 0 else DIM('a) = 1)" proof (simp add: bounded_hyperplane_eq_trivial_0, clarify) assume "r \ 0" "a \ 0" have "aff_dim {x. y \ x = 0} = aff_dim {x. a \ x = r}" if "y \ 0" for y::'a by (metis that \a \ 0\ aff_dim_hyperplane) then show "bounded {x. a \ x = r} = (DIM('a) = Suc 0)" by (metis One_nat_def \a \ 0\ affine_bounded_eq_lowdim affine_hyperplane bounded_hyperplane_eq_trivial_0) qed subsection\<^marker>\tag unimportant\\General case without assuming closure and getting non-strict separation\ proposition\<^marker>\tag unimportant\ separating_hyperplane_closed_point_inset: fixes S :: "'a::euclidean_space set" assumes "convex S" "closed S" "S \ {}" "z \ S" obtains a b where "a \ S" "(a - z) \ z < b" "\x. x \ S \ b < (a - z) \ x" proof - obtain y where "y \ S" and y: "\u. u \ S \ dist z y \ dist z u" using distance_attains_inf [of S z] assms by auto then have *: "(y - z) \ z < (y - z) \ z + (norm (y - z))\<^sup>2 / 2" using \y \ S\ \z \ S\ by auto show ?thesis proof (rule that [OF \y \ S\ *]) fix x assume "x \ S" have yz: "0 < (y - z) \ (y - z)" using \y \ S\ \z \ S\ by auto { assume 0: "0 < ((z - y) \ (x - y))" with any_closest_point_dot [OF \convex S\ \closed S\] have False using y \x \ S\ \y \ S\ not_less by blast } then have "0 \ ((y - z) \ (x - y))" by (force simp: not_less inner_diff_left) with yz have "0 < 2 * ((y - z) \ (x - y)) + (y - z) \ (y - z)" by (simp add: algebra_simps) then show "(y - z) \ z + (norm (y - z))\<^sup>2 / 2 < (y - z) \ x" by (simp add: field_simps inner_diff_left inner_diff_right dot_square_norm [symmetric]) qed qed lemma separating_hyperplane_closed_0_inset: fixes S :: "'a::euclidean_space set" assumes "convex S" "closed S" "S \ {}" "0 \ S" obtains a b where "a \ S" "a \ 0" "0 < b" "\x. x \ S \ a \ x > b" using separating_hyperplane_closed_point_inset [OF assms] by simp (metis \0 \ S\) proposition\<^marker>\tag unimportant\ separating_hyperplane_set_0_inspan: fixes S :: "'a::euclidean_space set" assumes "convex S" "S \ {}" "0 \ S" obtains a where "a \ span S" "a \ 0" "\x. x \ S \ 0 \ a \ x" proof - define k where [abs_def]: "k c = {x. 0 \ c \ x}" for c :: 'a have *: "span S \ frontier (cball 0 1) \ \f' \ {}" if f': "finite f'" "f' \ k ` S" for f' proof - obtain C where "C \ S" "finite C" and C: "f' = k ` C" using finite_subset_image [OF f'] by blast obtain a where "a \ S" "a \ 0" using \S \ {}\ \0 \ S\ ex_in_conv by blast then have "norm (a /\<^sub>R (norm a)) = 1" by simp moreover have "a /\<^sub>R (norm a) \ span S" by (simp add: \a \ S\ span_scale span_base) ultimately have ass: "a /\<^sub>R (norm a) \ span S \ sphere 0 1" by simp show ?thesis proof (cases "C = {}") case True with C ass show ?thesis by auto next case False have "closed (convex hull C)" using \finite C\ compact_eq_bounded_closed finite_imp_compact_convex_hull by auto moreover have "convex hull C \ {}" by (simp add: False) moreover have "0 \ convex hull C" by (metis \C \ S\ \convex S\ \0 \ S\ convex_hull_subset hull_same insert_absorb insert_subset) ultimately obtain a b where "a \ convex hull C" "a \ 0" "0 < b" and ab: "\x. x \ convex hull C \ a \ x > b" using separating_hyperplane_closed_0_inset by blast then have "a \ S" by (metis \C \ S\ assms(1) subsetCE subset_hull) moreover have "norm (a /\<^sub>R (norm a)) = 1" using \a \ 0\ by simp moreover have "a /\<^sub>R (norm a) \ span S" by (simp add: \a \ S\ span_scale span_base) ultimately have ass: "a /\<^sub>R (norm a) \ span S \ sphere 0 1" by simp have aa: "a /\<^sub>R (norm a) \ (\c\C. {x. 0 \ c \ x})" apply (clarsimp simp add: field_split_simps) using ab \0 < b\ by (metis hull_inc inner_commute less_eq_real_def less_trans) show ?thesis apply (simp add: C k_def) using ass aa Int_iff empty_iff by blast qed qed have "(span S \ frontier(cball 0 1)) \ (\ (k ` S)) \ {}" apply (rule compact_imp_fip) apply (blast intro: compact_cball) using closed_halfspace_ge k_def apply blast apply (metis *) done then show ?thesis unfolding set_eq_iff k_def by simp (metis inner_commute norm_eq_zero that zero_neq_one) qed lemma separating_hyperplane_set_point_inaff: fixes S :: "'a::euclidean_space set" assumes "convex S" "S \ {}" and zno: "z \ S" obtains a b where "(z + a) \ affine hull (insert z S)" and "a \ 0" and "a \ z \ b" and "\x. x \ S \ a \ x \ b" proof - from separating_hyperplane_set_0_inspan [of "image (\x. -z + x) S"] have "convex ((+) (- z) ` S)" using \convex S\ by simp moreover have "(+) (- z) ` S \ {}" by (simp add: \S \ {}\) moreover have "0 \ (+) (- z) ` S" using zno by auto ultimately obtain a where "a \ span ((+) (- z) ` S)" "a \ 0" and a: "\x. x \ ((+) (- z) ` S) \ 0 \ a \ x" using separating_hyperplane_set_0_inspan [of "image (\x. -z + x) S"] by blast then have szx: "\x. x \ S \ a \ z \ a \ x" by (metis (no_types, lifting) imageI inner_minus_right inner_right_distrib minus_add neg_le_0_iff_le neg_le_iff_le real_add_le_0_iff) show ?thesis apply (rule_tac a=a and b = "a \ z" in that, simp_all) using \a \ span ((+) (- z) ` S)\ affine_hull_insert_span_gen apply blast apply (simp_all add: \a \ 0\ szx) done qed proposition\<^marker>\tag unimportant\ supporting_hyperplane_rel_boundary: fixes S :: "'a::euclidean_space set" assumes "convex S" "x \ S" and xno: "x \ rel_interior S" obtains a where "a \ 0" and "\y. y \ S \ a \ x \ a \ y" and "\y. y \ rel_interior S \ a \ x < a \ y" proof - obtain a b where aff: "(x + a) \ affine hull (insert x (rel_interior S))" and "a \ 0" and "a \ x \ b" and ageb: "\u. u \ (rel_interior S) \ a \ u \ b" using separating_hyperplane_set_point_inaff [of "rel_interior S" x] assms by (auto simp: rel_interior_eq_empty convex_rel_interior) have le_ay: "a \ x \ a \ y" if "y \ S" for y proof - have con: "continuous_on (closure (rel_interior S)) ((\) a)" by (rule continuous_intros continuous_on_subset | blast)+ have y: "y \ closure (rel_interior S)" using \convex S\ closure_def convex_closure_rel_interior \y \ S\ by fastforce show ?thesis using continuous_ge_on_closure [OF con y] ageb \a \ x \ b\ by fastforce qed have 3: "a \ x < a \ y" if "y \ rel_interior S" for y proof - obtain e where "0 < e" "y \ S" and e: "cball y e \ affine hull S \ S" using \y \ rel_interior S\ by (force simp: rel_interior_cball) define y' where "y' = y - (e / norm a) *\<^sub>R ((x + a) - x)" have "y' \ cball y e" unfolding y'_def using \0 < e\ by force moreover have "y' \ affine hull S" unfolding y'_def by (metis \x \ S\ \y \ S\ \convex S\ aff affine_affine_hull hull_redundant rel_interior_same_affine_hull hull_inc mem_affine_3_minus2) ultimately have "y' \ S" using e by auto have "a \ x \ a \ y" using le_ay \a \ 0\ \y \ S\ by blast moreover have "a \ x \ a \ y" using le_ay [OF \y' \ S\] \a \ 0\ apply (simp add: y'_def inner_diff dot_square_norm power2_eq_square) by (metis \0 < e\ add_le_same_cancel1 inner_commute inner_real_def inner_zero_left le_diff_eq norm_le_zero_iff real_mult_le_cancel_iff2) ultimately show ?thesis by force qed show ?thesis by (rule that [OF \a \ 0\ le_ay 3]) qed lemma supporting_hyperplane_relative_frontier: fixes S :: "'a::euclidean_space set" assumes "convex S" "x \ closure S" "x \ rel_interior S" obtains a where "a \ 0" and "\y. y \ closure S \ a \ x \ a \ y" and "\y. y \ rel_interior S \ a \ x < a \ y" using supporting_hyperplane_rel_boundary [of "closure S" x] by (metis assms convex_closure convex_rel_interior_closure) subsection\<^marker>\tag unimportant\\ Some results on decomposing convex hulls: intersections, simplicial subdivision\ lemma fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent(s \ t)" shows convex_hull_Int_subset: "convex hull s \ convex hull t \ convex hull (s \ t)" (is ?C) and affine_hull_Int_subset: "affine hull s \ affine hull t \ affine hull (s \ t)" (is ?A) proof - have [simp]: "finite s" "finite t" using aff_independent_finite assms by blast+ have "sum u (s \ t) = 1 \ (\v\s \ t. u v *\<^sub>R v) = (\v\s. u v *\<^sub>R v)" if [simp]: "sum u s = 1" "sum v t = 1" and eq: "(\x\t. v x *\<^sub>R x) = (\x\s. u x *\<^sub>R x)" for u v proof - define f where "f x = (if x \ s then u x else 0) - (if x \ t then v x else 0)" for x have "sum f (s \ t) = 0" apply (simp add: f_def sum_Un sum_subtractf) apply (simp add: sum.inter_restrict [symmetric] Int_commute) done moreover have "(\x\(s \ t). f x *\<^sub>R x) = 0" apply (simp add: f_def sum_Un scaleR_left_diff_distrib sum_subtractf) apply (simp add: if_smult sum.inter_restrict [symmetric] Int_commute eq cong del: if_weak_cong) done ultimately have "\v. v \ s \ t \ f v = 0" using aff_independent_finite assms unfolding affine_dependent_explicit by blast then have u [simp]: "\x. x \ s \ u x = (if x \ t then v x else 0)" by (simp add: f_def) presburger have "sum u (s \ t) = sum u s" by (simp add: sum.inter_restrict) then have "sum u (s \ t) = 1" using that by linarith moreover have "(\v\s \ t. u v *\<^sub>R v) = (\v\s. u v *\<^sub>R v)" by (auto simp: if_smult sum.inter_restrict intro: sum.cong) ultimately show ?thesis by force qed then show ?A ?C by (auto simp: convex_hull_finite affine_hull_finite) qed proposition\<^marker>\tag unimportant\ affine_hull_Int: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent(s \ t)" shows "affine hull (s \ t) = affine hull s \ affine hull t" apply (rule subset_antisym) apply (simp add: hull_mono) by (simp add: affine_hull_Int_subset assms) proposition\<^marker>\tag unimportant\ convex_hull_Int: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent(s \ t)" shows "convex hull (s \ t) = convex hull s \ convex hull t" apply (rule subset_antisym) apply (simp add: hull_mono) by (simp add: convex_hull_Int_subset assms) proposition\<^marker>\tag unimportant\ fixes s :: "'a::euclidean_space set set" assumes "\ affine_dependent (\s)" shows affine_hull_Inter: "affine hull (\s) = (\t\s. affine hull t)" (is "?A") and convex_hull_Inter: "convex hull (\s) = (\t\s. convex hull t)" (is "?C") proof - have "finite s" using aff_independent_finite assms finite_UnionD by blast then have "?A \ ?C" using assms proof (induction s rule: finite_induct) case empty then show ?case by auto next case (insert t F) then show ?case proof (cases "F={}") case True then show ?thesis by simp next case False with "insert.prems" have [simp]: "\ affine_dependent (t \ \F)" by (auto intro: affine_dependent_subset) have [simp]: "\ affine_dependent (\F)" using affine_independent_subset insert.prems by fastforce show ?thesis by (simp add: affine_hull_Int convex_hull_Int insert.IH) qed qed then show "?A" "?C" by auto qed proposition\<^marker>\tag unimportant\ in_convex_hull_exchange_unique: fixes S :: "'a::euclidean_space set" assumes naff: "\ affine_dependent S" and a: "a \ convex hull S" and S: "T \ S" "T' \ S" and x: "x \ convex hull (insert a T)" and x': "x \ convex hull (insert a T')" shows "x \ convex hull (insert a (T \ T'))" proof (cases "a \ S") case True then have "\ affine_dependent (insert a T \ insert a T')" using affine_dependent_subset assms by auto then have "x \ convex hull (insert a T \ insert a T')" by (metis IntI convex_hull_Int x x') then show ?thesis by simp next case False then have anot: "a \ T" "a \ T'" using assms by auto have [simp]: "finite S" by (simp add: aff_independent_finite assms) then obtain b where b0: "\s. s \ S \ 0 \ b s" and b1: "sum b S = 1" and aeq: "a = (\s\S. b s *\<^sub>R s)" using a by (auto simp: convex_hull_finite) have fin [simp]: "finite T" "finite T'" using assms infinite_super \finite S\ by blast+ then obtain c c' where c0: "\t. t \ insert a T \ 0 \ c t" and c1: "sum c (insert a T) = 1" and xeq: "x = (\t \ insert a T. c t *\<^sub>R t)" and c'0: "\t. t \ insert a T' \ 0 \ c' t" and c'1: "sum c' (insert a T') = 1" and x'eq: "x = (\t \ insert a T'. c' t *\<^sub>R t)" using x x' by (auto simp: convex_hull_finite) with fin anot have sumTT': "sum c T = 1 - c a" "sum c' T' = 1 - c' a" and wsumT: "(\t \ T. c t *\<^sub>R t) = x - c a *\<^sub>R a" by simp_all have wsumT': "(\t \ T'. c' t *\<^sub>R t) = x - c' a *\<^sub>R a" using x'eq fin anot by simp define cc where "cc \ \x. if x \ T then c x else 0" define cc' where "cc' \ \x. if x \ T' then c' x else 0" define dd where "dd \ \x. cc x - cc' x + (c a - c' a) * b x" have sumSS': "sum cc S = 1 - c a" "sum cc' S = 1 - c' a" unfolding cc_def cc'_def using S by (simp_all add: Int_absorb1 Int_absorb2 sum_subtractf sum.inter_restrict [symmetric] sumTT') have wsumSS: "(\t \ S. cc t *\<^sub>R t) = x - c a *\<^sub>R a" "(\t \ S. cc' t *\<^sub>R t) = x - c' a *\<^sub>R a" unfolding cc_def cc'_def using S by (simp_all add: Int_absorb1 Int_absorb2 if_smult sum.inter_restrict [symmetric] wsumT wsumT' cong: if_cong) have sum_dd0: "sum dd S = 0" unfolding dd_def using S by (simp add: sumSS' comm_monoid_add_class.sum.distrib sum_subtractf algebra_simps sum_distrib_right [symmetric] b1) have "(\v\S. (b v * x) *\<^sub>R v) = x *\<^sub>R (\v\S. b v *\<^sub>R v)" for x by (simp add: pth_5 real_vector.scale_sum_right mult.commute) then have *: "(\v\S. (b v * x) *\<^sub>R v) = x *\<^sub>R a" for x using aeq by blast have "(\v \ S. dd v *\<^sub>R v) = 0" unfolding dd_def using S by (simp add: * wsumSS sum.distrib sum_subtractf algebra_simps) then have dd0: "dd v = 0" if "v \ S" for v using naff that \finite S\ sum_dd0 unfolding affine_dependent_explicit apply (simp only: not_ex) apply (drule_tac x=S in spec) apply (drule_tac x=dd in spec, simp) done consider "c' a \ c a" | "c a \ c' a" by linarith then show ?thesis proof cases case 1 then have "sum cc S \ sum cc' S" by (simp add: sumSS') then have le: "cc x \ cc' x" if "x \ S" for x using dd0 [OF that] 1 b0 mult_left_mono that by (fastforce simp add: dd_def algebra_simps) have cc0: "cc x = 0" if "x \ S" "x \ T \ T'" for x using le [OF \x \ S\] that c0 by (force simp: cc_def cc'_def split: if_split_asm) show ?thesis proof (simp add: convex_hull_finite, intro exI conjI) show "\x\T \ T'. 0 \ (cc(a := c a)) x" by (simp add: c0 cc_def) show "0 \ (cc(a := c a)) a" by (simp add: c0) have "sum (cc(a := c a)) (insert a (T \ T')) = c a + sum (cc(a := c a)) (T \ T')" by (simp add: anot) also have "... = c a + sum (cc(a := c a)) S" apply simp apply (rule sum.mono_neutral_left) using \T \ S\ apply (auto simp: \a \ S\ cc0) done also have "... = c a + (1 - c a)" by (metis \a \ S\ fun_upd_other sum.cong sumSS') finally show "sum (cc(a := c a)) (insert a (T \ T')) = 1" by simp have "(\x\insert a (T \ T'). (cc(a := c a)) x *\<^sub>R x) = c a *\<^sub>R a + (\x \ T \ T'. (cc(a := c a)) x *\<^sub>R x)" by (simp add: anot) also have "... = c a *\<^sub>R a + (\x \ S. (cc(a := c a)) x *\<^sub>R x)" apply simp apply (rule sum.mono_neutral_left) using \T \ S\ apply (auto simp: \a \ S\ cc0) done also have "... = c a *\<^sub>R a + x - c a *\<^sub>R a" by (simp add: wsumSS \a \ S\ if_smult sum_delta_notmem) finally show "(\x\insert a (T \ T'). (cc(a := c a)) x *\<^sub>R x) = x" by simp qed next case 2 then have "sum cc' S \ sum cc S" by (simp add: sumSS') then have le: "cc' x \ cc x" if "x \ S" for x using dd0 [OF that] 2 b0 mult_left_mono that by (fastforce simp add: dd_def algebra_simps) have cc0: "cc' x = 0" if "x \ S" "x \ T \ T'" for x using le [OF \x \ S\] that c'0 by (force simp: cc_def cc'_def split: if_split_asm) show ?thesis proof (simp add: convex_hull_finite, intro exI conjI) show "\x\T \ T'. 0 \ (cc'(a := c' a)) x" by (simp add: c'0 cc'_def) show "0 \ (cc'(a := c' a)) a" by (simp add: c'0) have "sum (cc'(a := c' a)) (insert a (T \ T')) = c' a + sum (cc'(a := c' a)) (T \ T')" by (simp add: anot) also have "... = c' a + sum (cc'(a := c' a)) S" apply simp apply (rule sum.mono_neutral_left) using \T \ S\ apply (auto simp: \a \ S\ cc0) done also have "... = c' a + (1 - c' a)" by (metis \a \ S\ fun_upd_other sum.cong sumSS') finally show "sum (cc'(a := c' a)) (insert a (T \ T')) = 1" by simp have "(\x\insert a (T \ T'). (cc'(a := c' a)) x *\<^sub>R x) = c' a *\<^sub>R a + (\x \ T \ T'. (cc'(a := c' a)) x *\<^sub>R x)" by (simp add: anot) also have "... = c' a *\<^sub>R a + (\x \ S. (cc'(a := c' a)) x *\<^sub>R x)" apply simp apply (rule sum.mono_neutral_left) using \T \ S\ apply (auto simp: \a \ S\ cc0) done also have "... = c a *\<^sub>R a + x - c a *\<^sub>R a" by (simp add: wsumSS \a \ S\ if_smult sum_delta_notmem) finally show "(\x\insert a (T \ T'). (cc'(a := c' a)) x *\<^sub>R x) = x" by simp qed qed qed corollary\<^marker>\tag unimportant\ convex_hull_exchange_Int: fixes a :: "'a::euclidean_space" assumes "\ affine_dependent S" "a \ convex hull S" "T \ S" "T' \ S" shows "(convex hull (insert a T)) \ (convex hull (insert a T')) = convex hull (insert a (T \ T'))" apply (rule subset_antisym) using in_convex_hull_exchange_unique assms apply blast by (metis hull_mono inf_le1 inf_le2 insert_inter_insert le_inf_iff) lemma Int_closed_segment: fixes b :: "'a::euclidean_space" assumes "b \ closed_segment a c \ \ collinear{a,b,c}" shows "closed_segment a b \ closed_segment b c = {b}" proof (cases "c = a") case True then show ?thesis using assms collinear_3_eq_affine_dependent by fastforce next case False from assms show ?thesis proof assume "b \ closed_segment a c" moreover have "\ affine_dependent {a, c}" by (simp) ultimately show ?thesis using False convex_hull_exchange_Int [of "{a,c}" b "{a}" "{c}"] by (simp add: segment_convex_hull insert_commute) next assume ncoll: "\ collinear {a, b, c}" have False if "closed_segment a b \ closed_segment b c \ {b}" proof - have "b \ closed_segment a b" and "b \ closed_segment b c" by auto with that obtain d where "b \ d" "d \ closed_segment a b" "d \ closed_segment b c" by force then have d: "collinear {a, d, b}" "collinear {b, d, c}" by (auto simp: between_mem_segment between_imp_collinear) have "collinear {a, b, c}" apply (rule collinear_3_trans [OF _ _ \b \ d\]) using d by (auto simp: insert_commute) with ncoll show False .. qed then show ?thesis by blast qed qed lemma affine_hull_finite_intersection_hyperplanes: fixes s :: "'a::euclidean_space set" obtains f where "finite f" "of_nat (card f) + aff_dim s = DIM('a)" "affine hull s = \f" "\h. h \ f \ \a b. a \ 0 \ h = {x. a \ x = b}" proof - obtain b where "b \ s" and indb: "\ affine_dependent b" and eq: "affine hull s = affine hull b" using affine_basis_exists by blast obtain c where indc: "\ affine_dependent c" and "b \ c" and affc: "affine hull c = UNIV" by (metis extend_to_affine_basis affine_UNIV hull_same indb subset_UNIV) then have "finite c" by (simp add: aff_independent_finite) then have fbc: "finite b" "card b \ card c" using \b \ c\ infinite_super by (auto simp: card_mono) have imeq: "(\x. affine hull x) ` ((\a. c - {a}) ` (c - b)) = ((\a. affine hull (c - {a})) ` (c - b))" by blast have card1: "card ((\a. affine hull (c - {a})) ` (c - b)) = card (c - b)" apply (rule card_image [OF inj_onI]) by (metis Diff_eq_empty_iff Diff_iff indc affine_dependent_def hull_subset insert_iff) have card2: "(card (c - b)) + aff_dim s = DIM('a)" proof - have aff: "aff_dim (UNIV::'a set) = aff_dim c" by (metis aff_dim_affine_hull affc) have "aff_dim b = aff_dim s" by (metis (no_types) aff_dim_affine_hull eq) then have "int (card b) = 1 + aff_dim s" by (simp add: aff_dim_affine_independent indb) then show ?thesis using fbc aff by (simp add: \\ affine_dependent c\ \b \ c\ aff_dim_affine_independent card_Diff_subset of_nat_diff) qed show ?thesis proof (cases "c = b") case True show ?thesis apply (rule_tac f="{}" in that) using True affc apply (simp_all add: eq [symmetric]) by (metis aff_dim_UNIV aff_dim_affine_hull) next case False have ind: "\ affine_dependent (\a\c - b. c - {a})" by (rule affine_independent_subset [OF indc]) auto have affeq: "affine hull s = (\x\(\a. c - {a}) ` (c - b). affine hull x)" using \b \ c\ False apply (subst affine_hull_Inter [OF ind, symmetric]) apply (simp add: eq double_diff) done have *: "1 + aff_dim (c - {t}) = int (DIM('a))" if t: "t \ c" for t proof - have "insert t c = c" using t by blast then show ?thesis by (metis (full_types) add.commute aff_dim_affine_hull aff_dim_insert aff_dim_UNIV affc affine_dependent_def indc insert_Diff_single t) qed show ?thesis apply (rule_tac f = "(\x. affine hull x) ` ((\a. c - {a}) ` (c - b))" in that) using \finite c\ apply blast apply (simp add: imeq card1 card2) apply (simp add: affeq, clarify) apply (metis DIM_positive One_nat_def Suc_leI add_diff_cancel_left' of_nat_1 aff_dim_eq_hyperplane of_nat_diff *) done qed qed lemma affine_hyperplane_sums_eq_UNIV_0: fixes S :: "'a :: euclidean_space set" assumes "affine S" and "0 \ S" and "w \ S" and "a \ w \ 0" shows "{x + y| x y. x \ S \ a \ y = 0} = UNIV" proof - have "subspace S" by (simp add: assms subspace_affine) have span1: "span {y. a \ y = 0} \ span {x + y |x y. x \ S \ a \ y = 0}" apply (rule span_mono) using \0 \ S\ add.left_neutral by force have "w \ span {y. a \ y = 0}" using \a \ w \ 0\ span_induct subspace_hyperplane by auto moreover have "w \ span {x + y |x y. x \ S \ a \ y = 0}" using \w \ S\ by (metis (mono_tags, lifting) inner_zero_right mem_Collect_eq pth_d span_base) ultimately have span2: "span {y. a \ y = 0} \ span {x + y |x y. x \ S \ a \ y = 0}" by blast have "a \ 0" using assms inner_zero_left by blast then have "DIM('a) - 1 = dim {y. a \ y = 0}" by (simp add: dim_hyperplane) also have "... < dim {x + y |x y. x \ S \ a \ y = 0}" using span1 span2 by (blast intro: dim_psubset) finally have DIM_lt: "DIM('a) - 1 < dim {x + y |x y. x \ S \ a \ y = 0}" . have subs: "subspace {x + y| x y. x \ S \ a \ y = 0}" using subspace_sums [OF \subspace S\ subspace_hyperplane] by simp moreover have "span {x + y| x y. x \ S \ a \ y = 0} = UNIV" apply (rule dim_eq_full [THEN iffD1]) apply (rule antisym [OF dim_subset_UNIV]) using DIM_lt apply simp done ultimately show ?thesis by (simp add: subs) (metis (lifting) span_eq_iff subs) qed proposition\<^marker>\tag unimportant\ affine_hyperplane_sums_eq_UNIV: fixes S :: "'a :: euclidean_space set" assumes "affine S" and "S \ {v. a \ v = b} \ {}" and "S - {v. a \ v = b} \ {}" shows "{x + y| x y. x \ S \ a \ y = b} = UNIV" proof (cases "a = 0") case True with assms show ?thesis by (auto simp: if_splits) next case False obtain c where "c \ S" and c: "a \ c = b" using assms by force with affine_diffs_subspace [OF \affine S\] have "subspace ((+) (- c) ` S)" by blast then have aff: "affine ((+) (- c) ` S)" by (simp add: subspace_imp_affine) have 0: "0 \ (+) (- c) ` S" by (simp add: \c \ S\) obtain d where "d \ S" and "a \ d \ b" and dc: "d-c \ (+) (- c) ` S" using assms by auto then have adc: "a \ (d - c) \ 0" by (simp add: c inner_diff_right) let ?U = "(+) (c+c) ` {x + y |x y. x \ (+) (- c) ` S \ a \ y = 0}" have "u + v \ (+) (c + c) ` {x + v |x v. x \ (+) (- c) ` S \ a \ v = 0}" if "u \ S" "b = a \ v" for u v apply (rule_tac x="u+v-c-c" in image_eqI) apply (simp_all add: algebra_simps) apply (rule_tac x="u-c" in exI) apply (rule_tac x="v-c" in exI) apply (simp add: algebra_simps that c) done moreover have "\a \ v = 0; u \ S\ \ \x ya. v + (u + c) = x + ya \ x \ S \ a \ ya = b" for v u by (metis add.left_commute c inner_right_distrib pth_d) ultimately have "{x + y |x y. x \ S \ a \ y = b} = ?U" by (fastforce simp: algebra_simps) also have "... = range ((+) (c + c))" by (simp only: affine_hyperplane_sums_eq_UNIV_0 [OF aff 0 dc adc]) also have "... = UNIV" by simp finally show ?thesis . qed lemma aff_dim_sums_Int_0: assumes "affine S" and "affine T" and "0 \ S" "0 \ T" shows "aff_dim {x + y| x y. x \ S \ y \ T} = (aff_dim S + aff_dim T) - aff_dim(S \ T)" proof - have "0 \ {x + y |x y. x \ S \ y \ T}" using assms by force then have 0: "0 \ affine hull {x + y |x y. x \ S \ y \ T}" by (metis (lifting) hull_inc) have sub: "subspace S" "subspace T" using assms by (auto simp: subspace_affine) show ?thesis using dim_sums_Int [OF sub] by (simp add: aff_dim_zero assms 0 hull_inc) qed proposition aff_dim_sums_Int: assumes "affine S" and "affine T" and "S \ T \ {}" shows "aff_dim {x + y| x y. x \ S \ y \ T} = (aff_dim S + aff_dim T) - aff_dim(S \ T)" proof - obtain a where a: "a \ S" "a \ T" using assms by force have aff: "affine ((+) (-a) ` S)" "affine ((+) (-a) ` T)" using affine_translation [symmetric, of "- a"] assms by (simp_all cong: image_cong_simp) have zero: "0 \ ((+) (-a) ` S)" "0 \ ((+) (-a) ` T)" using a assms by auto have "{x + y |x y. x \ (+) (- a) ` S \ y \ (+) (- a) ` T} = (+) (- 2 *\<^sub>R a) ` {x + y| x y. x \ S \ y \ T}" by (force simp: algebra_simps scaleR_2) moreover have "(+) (- a) ` S \ (+) (- a) ` T = (+) (- a) ` (S \ T)" by auto ultimately show ?thesis using aff_dim_sums_Int_0 [OF aff zero] aff_dim_translation_eq by (metis (lifting)) qed lemma aff_dim_affine_Int_hyperplane: fixes a :: "'a::euclidean_space" assumes "affine S" shows "aff_dim(S \ {x. a \ x = b}) = (if S \ {v. a \ v = b} = {} then - 1 else if S \ {v. a \ v = b} then aff_dim S else aff_dim S - 1)" proof (cases "a = 0") case True with assms show ?thesis by auto next case False then have "aff_dim (S \ {x. a \ x = b}) = aff_dim S - 1" if "x \ S" "a \ x \ b" and non: "S \ {v. a \ v = b} \ {}" for x proof - have [simp]: "{x + y| x y. x \ S \ a \ y = b} = UNIV" using affine_hyperplane_sums_eq_UNIV [OF assms non] that by blast show ?thesis using aff_dim_sums_Int [OF assms affine_hyperplane non] by (simp add: of_nat_diff False) qed then show ?thesis by (metis (mono_tags, lifting) inf.orderE aff_dim_empty_eq mem_Collect_eq subsetI) qed lemma aff_dim_lt_full: fixes S :: "'a::euclidean_space set" shows "aff_dim S < DIM('a) \ (affine hull S \ UNIV)" by (metis (no_types) aff_dim_affine_hull aff_dim_le_DIM aff_dim_UNIV affine_hull_UNIV less_le) lemma aff_dim_openin: fixes S :: "'a::euclidean_space set" assumes ope: "openin (top_of_set T) S" and "affine T" "S \ {}" shows "aff_dim S = aff_dim T" proof - show ?thesis proof (rule order_antisym) show "aff_dim S \ aff_dim T" by (blast intro: aff_dim_subset [OF openin_imp_subset] ope) next obtain a where "a \ S" using \S \ {}\ by blast have "S \ T" using ope openin_imp_subset by auto then have "a \ T" using \a \ S\ by auto then have subT': "subspace ((\x. - a + x) ` T)" using affine_diffs_subspace \affine T\ by auto then obtain B where Bsub: "B \ ((\x. - a + x) ` T)" and po: "pairwise orthogonal B" and eq1: "\x. x \ B \ norm x = 1" and "independent B" and cardB: "card B = dim ((\x. - a + x) ` T)" and spanB: "span B = ((\x. - a + x) ` T)" by (rule orthonormal_basis_subspace) auto obtain e where "0 < e" and e: "cball a e \ T \ S" by (meson \a \ S\ openin_contains_cball ope) have "aff_dim T = aff_dim ((\x. - a + x) ` T)" by (metis aff_dim_translation_eq) also have "... = dim ((\x. - a + x) ` T)" using aff_dim_subspace subT' by blast also have "... = card B" by (simp add: cardB) also have "... = card ((\x. e *\<^sub>R x) ` B)" using \0 < e\ by (force simp: inj_on_def card_image) also have "... \ dim ((\x. - a + x) ` S)" proof (simp, rule independent_card_le_dim) have e': "cball 0 e \ (\x. x - a) ` T \ (\x. x - a) ` S" using e by (auto simp: dist_norm norm_minus_commute subset_eq) have "(\x. e *\<^sub>R x) ` B \ cball 0 e \ (\x. x - a) ` T" using Bsub \0 < e\ eq1 subT' \a \ T\ by (auto simp: subspace_def) then show "(\x. e *\<^sub>R x) ` B \ (\x. x - a) ` S" using e' by blast show "independent ((\x. e *\<^sub>R x) ` B)" using linear_scale_self \independent B\ apply (rule linear_independent_injective_image) using \0 < e\ inj_on_def by fastforce qed also have "... = aff_dim S" using \a \ S\ aff_dim_eq_dim hull_inc by (force cong: image_cong_simp) finally show "aff_dim T \ aff_dim S" . qed qed lemma dim_openin: fixes S :: "'a::euclidean_space set" assumes ope: "openin (top_of_set T) S" and "subspace T" "S \ {}" shows "dim S = dim T" proof (rule order_antisym) show "dim S \ dim T" by (metis ope dim_subset openin_subset topspace_euclidean_subtopology) next have "dim T = aff_dim S" using aff_dim_openin by (metis aff_dim_subspace \subspace T\ \S \ {}\ ope subspace_affine) also have "... \ dim S" by (metis aff_dim_subset aff_dim_subspace dim_span span_superset subspace_span) finally show "dim T \ dim S" by simp qed subsection\Lower-dimensional affine subsets are nowhere dense\ proposition dense_complement_subspace: fixes S :: "'a :: euclidean_space set" assumes dim_less: "dim T < dim S" and "subspace S" shows "closure(S - T) = S" proof - have "closure(S - U) = S" if "dim U < dim S" "U \ S" for U proof - have "span U \ span S" by (metis neq_iff psubsetI span_eq_dim span_mono that) then obtain a where "a \ 0" "a \ span S" and a: "\y. y \ span U \ orthogonal a y" using orthogonal_to_subspace_exists_gen by metis show ?thesis proof have "closed S" by (simp add: \subspace S\ closed_subspace) then show "closure (S - U) \ S" by (simp add: closure_minimal) show "S \ closure (S - U)" proof (clarsimp simp: closure_approachable) fix x and e::real assume "x \ S" "0 < e" show "\y\S - U. dist y x < e" proof (cases "x \ U") case True let ?y = "x + (e/2 / norm a) *\<^sub>R a" show ?thesis proof show "dist ?y x < e" using \0 < e\ by (simp add: dist_norm) next have "?y \ S" by (metis \a \ span S\ \x \ S\ assms(2) span_eq_iff subspace_add subspace_scale) moreover have "?y \ U" proof - have "e/2 / norm a \ 0" using \0 < e\ \a \ 0\ by auto then show ?thesis by (metis True \a \ 0\ a orthogonal_scaleR orthogonal_self real_vector.scale_eq_0_iff span_add_eq span_base) qed ultimately show "?y \ S - U" by blast qed next case False with \0 < e\ \x \ S\ show ?thesis by force qed qed qed qed moreover have "S - S \ T = S-T" by blast moreover have "dim (S \ T) < dim S" by (metis dim_less dim_subset inf.cobounded2 inf.orderE inf.strict_boundedE not_le) ultimately show ?thesis by force qed corollary\<^marker>\tag unimportant\ dense_complement_affine: fixes S :: "'a :: euclidean_space set" assumes less: "aff_dim T < aff_dim S" and "affine S" shows "closure(S - T) = S" proof (cases "S \ T = {}") case True then show ?thesis by (metis Diff_triv affine_hull_eq \affine S\ closure_same_affine_hull closure_subset hull_subset subset_antisym) next case False then obtain z where z: "z \ S \ T" by blast then have "subspace ((+) (- z) ` S)" by (meson IntD1 affine_diffs_subspace \affine S\) moreover have "int (dim ((+) (- z) ` T)) < int (dim ((+) (- z) ` S))" thm aff_dim_eq_dim using z less by (simp add: aff_dim_eq_dim_subtract [of z] hull_inc cong: image_cong_simp) ultimately have "closure(((+) (- z) ` S) - ((+) (- z) ` T)) = ((+) (- z) ` S)" by (simp add: dense_complement_subspace) then show ?thesis by (metis closure_translation translation_diff translation_invert) qed corollary\<^marker>\tag unimportant\ dense_complement_openin_affine_hull: fixes S :: "'a :: euclidean_space set" assumes less: "aff_dim T < aff_dim S" and ope: "openin (top_of_set (affine hull S)) S" shows "closure(S - T) = closure S" proof - have "affine hull S - T \ affine hull S" by blast then have "closure (S \ closure (affine hull S - T)) = closure (S \ (affine hull S - T))" by (rule closure_openin_Int_closure [OF ope]) then show ?thesis by (metis Int_Diff aff_dim_affine_hull affine_affine_hull dense_complement_affine hull_subset inf.orderE less) qed corollary\<^marker>\tag unimportant\ dense_complement_convex: fixes S :: "'a :: euclidean_space set" assumes "aff_dim T < aff_dim S" "convex S" shows "closure(S - T) = closure S" proof show "closure (S - T) \ closure S" by (simp add: closure_mono) have "closure (rel_interior S - T) = closure (rel_interior S)" apply (rule dense_complement_openin_affine_hull) apply (simp add: assms rel_interior_aff_dim) using \convex S\ rel_interior_rel_open rel_open by blast then show "closure S \ closure (S - T)" by (metis Diff_mono \convex S\ closure_mono convex_closure_rel_interior order_refl rel_interior_subset) qed corollary\<^marker>\tag unimportant\ dense_complement_convex_closed: fixes S :: "'a :: euclidean_space set" assumes "aff_dim T < aff_dim S" "convex S" "closed S" shows "closure(S - T) = S" by (simp add: assms dense_complement_convex) subsection\<^marker>\tag unimportant\\Parallel slices, etc\ text\ If we take a slice out of a set, we can do it perpendicularly, with the normal vector to the slice parallel to the affine hull.\ proposition\<^marker>\tag unimportant\ affine_parallel_slice: fixes S :: "'a :: euclidean_space set" assumes "affine S" and "S \ {x. a \ x \ b} \ {}" and "\ (S \ {x. a \ x \ b})" obtains a' b' where "a' \ 0" "S \ {x. a' \ x \ b'} = S \ {x. a \ x \ b}" "S \ {x. a' \ x = b'} = S \ {x. a \ x = b}" "\w. w \ S \ (w + a') \ S" proof (cases "S \ {x. a \ x = b} = {}") case True then obtain u v where "u \ S" "v \ S" "a \ u \ b" "a \ v > b" using assms by (auto simp: not_le) define \ where "\ = u + ((b - a \ u) / (a \ v - a \ u)) *\<^sub>R (v - u)" have "\ \ S" by (simp add: \_def \u \ S\ \v \ S\ \affine S\ mem_affine_3_minus) moreover have "a \ \ = b" using \a \ u \ b\ \b < a \ v\ by (simp add: \_def algebra_simps) (simp add: field_simps) ultimately have False using True by force then show ?thesis .. next case False then obtain z where "z \ S" and z: "a \ z = b" using assms by auto with affine_diffs_subspace [OF \affine S\] have sub: "subspace ((+) (- z) ` S)" by blast then have aff: "affine ((+) (- z) ` S)" and span: "span ((+) (- z) ` S) = ((+) (- z) ` S)" by (auto simp: subspace_imp_affine) obtain a' a'' where a': "a' \ span ((+) (- z) ` S)" and a: "a = a' + a''" and "\w. w \ span ((+) (- z) ` S) \ orthogonal a'' w" using orthogonal_subspace_decomp_exists [of "(+) (- z) ` S" "a"] by metis then have "\w. w \ S \ a'' \ (w-z) = 0" by (simp add: span_base orthogonal_def) then have a'': "\w. w \ S \ a'' \ w = (a - a') \ z" by (simp add: a inner_diff_right) then have ba'': "\w. w \ S \ a'' \ w = b - a' \ z" by (simp add: inner_diff_left z) have "\w. w \ (+) (- z) ` S \ (w + a') \ (+) (- z) ` S" by (metis subspace_add a' span_eq_iff sub) then have Sclo: "\w. w \ S \ (w + a') \ S" by fastforce show ?thesis proof (cases "a' = 0") case True with a assms True a'' diff_zero less_irrefl show ?thesis by auto next case False show ?thesis apply (rule_tac a' = "a'" and b' = "a' \ z" in that) apply (auto simp: a ba'' inner_left_distrib False Sclo) done qed qed lemma diffs_affine_hull_span: assumes "a \ S" shows "{x - a |x. x \ affine hull S} = span {x - a |x. x \ S}" proof - have *: "((\x. x - a) ` (S - {a})) = {x. x + a \ S} - {0}" by (auto simp: algebra_simps) show ?thesis apply (simp add: affine_hull_span2 [OF assms] *) apply (auto simp: algebra_simps) done qed lemma aff_dim_dim_affine_diffs: fixes S :: "'a :: euclidean_space set" assumes "affine S" "a \ S" shows "aff_dim S = dim {x - a |x. x \ S}" proof - obtain B where aff: "affine hull B = affine hull S" and ind: "\ affine_dependent B" and card: "of_nat (card B) = aff_dim S + 1" using aff_dim_basis_exists by blast then have "B \ {}" using assms by (metis affine_hull_eq_empty ex_in_conv) then obtain c where "c \ B" by auto then have "c \ S" by (metis aff affine_hull_eq \affine S\ hull_inc) have xy: "x - c = y - a \ y = x + 1 *\<^sub>R (a - c)" for x y c and a::'a by (auto simp: algebra_simps) have *: "{x - c |x. x \ S} = {x - a |x. x \ S}" apply safe apply (simp_all only: xy) using mem_affine_3_minus [OF \affine S\] \a \ S\ \c \ S\ apply blast+ done have affS: "affine hull S = S" by (simp add: \affine S\) have "aff_dim S = of_nat (card B) - 1" using card by simp also have "... = dim {x - c |x. x \ B}" by (simp add: affine_independent_card_dim_diffs [OF ind \c \ B\]) also have "... = dim {x - c | x. x \ affine hull B}" by (simp add: diffs_affine_hull_span \c \ B\) also have "... = dim {x - a |x. x \ S}" by (simp add: affS aff *) finally show ?thesis . qed lemma aff_dim_linear_image_le: assumes "linear f" shows "aff_dim(f ` S) \ aff_dim S" proof - have "aff_dim (f ` T) \ aff_dim T" if "affine T" for T proof (cases "T = {}") case True then show ?thesis by (simp add: aff_dim_geq) next case False then obtain a where "a \ T" by auto have 1: "((\x. x - f a) ` f ` T) = {x - f a |x. x \ f ` T}" by auto have 2: "{x - f a| x. x \ f ` T} = f ` {x - a| x. x \ T}" by (force simp: linear_diff [OF assms]) have "aff_dim (f ` T) = int (dim {x - f a |x. x \ f ` T})" by (simp add: \a \ T\ hull_inc aff_dim_eq_dim [of "f a"] 1 cong: image_cong_simp) also have "... = int (dim (f ` {x - a| x. x \ T}))" by (force simp: linear_diff [OF assms] 2) also have "... \ int (dim {x - a| x. x \ T})" by (simp add: dim_image_le [OF assms]) also have "... \ aff_dim T" by (simp add: aff_dim_dim_affine_diffs [symmetric] \a \ T\ \affine T\) finally show ?thesis . qed then have "aff_dim (f ` (affine hull S)) \ aff_dim (affine hull S)" using affine_affine_hull [of S] by blast then show ?thesis using affine_hull_linear_image assms linear_conv_bounded_linear by fastforce qed lemma aff_dim_injective_linear_image [simp]: assumes "linear f" "inj f" shows "aff_dim (f ` S) = aff_dim S" proof (rule antisym) show "aff_dim (f ` S) \ aff_dim S" by (simp add: aff_dim_linear_image_le assms(1)) next obtain g where "linear g" "g \ f = id" using assms(1) assms(2) linear_injective_left_inverse by blast then have "aff_dim S \ aff_dim(g ` f ` S)" by (simp add: image_comp) also have "... \ aff_dim (f ` S)" by (simp add: \linear g\ aff_dim_linear_image_le) finally show "aff_dim S \ aff_dim (f ` S)" . qed lemma choose_affine_subset: assumes "affine S" "-1 \ d" and dle: "d \ aff_dim S" obtains T where "affine T" "T \ S" "aff_dim T = d" proof (cases "d = -1 \ S={}") case True with assms show ?thesis by (metis aff_dim_empty affine_empty bot.extremum that eq_iff) next case False with assms obtain a where "a \ S" "0 \ d" by auto with assms have ss: "subspace ((+) (- a) ` S)" by (simp add: affine_diffs_subspace_subtract cong: image_cong_simp) have "nat d \ dim ((+) (- a) ` S)" by (metis aff_dim_subspace aff_dim_translation_eq dle nat_int nat_mono ss) then obtain T where "subspace T" and Tsb: "T \ span ((+) (- a) ` S)" and Tdim: "dim T = nat d" using choose_subspace_of_subspace [of "nat d" "(+) (- a) ` S"] by blast then have "affine T" using subspace_affine by blast then have "affine ((+) a ` T)" by (metis affine_hull_eq affine_hull_translation) moreover have "(+) a ` T \ S" proof - have "T \ (+) (- a) ` S" by (metis (no_types) span_eq_iff Tsb ss) then show "(+) a ` T \ S" using add_ac by auto qed moreover have "aff_dim ((+) a ` T) = d" by (simp add: aff_dim_subspace Tdim \0 \ d\ \subspace T\ aff_dim_translation_eq) ultimately show ?thesis by (rule that) qed subsection\Paracompactness\ proposition paracompact: fixes S :: "'a :: {metric_space,second_countable_topology} set" assumes "S \ \\" and opC: "\T. T \ \ \ open T" obtains \' where "S \ \ \'" and "\U. U \ \' \ open U \ (\T. T \ \ \ U \ T)" and "\x. x \ S \ \V. open V \ x \ V \ finite {U. U \ \' \ (U \ V \ {})}" proof (cases "S = {}") case True with that show ?thesis by blast next case False have "\T U. x \ U \ open U \ closure U \ T \ T \ \" if "x \ S" for x proof - obtain T where "x \ T" "T \ \" "open T" using assms \x \ S\ by blast then obtain e where "e > 0" "cball x e \ T" by (force simp: open_contains_cball) then show ?thesis apply (rule_tac x = T in exI) apply (rule_tac x = "ball x e" in exI) using \T \ \\ apply (simp add: closure_minimal) using closed_cball closure_minimal by blast qed then obtain F G where Gin: "x \ G x" and oG: "open (G x)" and clos: "closure (G x) \ F x" and Fin: "F x \ \" if "x \ S" for x by metis then obtain \ where "\ \ G ` S" "countable \" "\\ = \(G ` S)" using Lindelof [of "G ` S"] by (metis image_iff) then obtain K where K: "K \ S" "countable K" and eq: "\(G ` K) = \(G ` S)" by (metis countable_subset_image) with False Gin have "K \ {}" by force then obtain a :: "nat \ 'a" where "range a = K" by (metis range_from_nat_into \countable K\) then have odif: "\n. open (F (a n) - \{closure (G (a m)) |m. m < n})" using \K \ S\ Fin opC by (fastforce simp add:) let ?C = "range (\n. F(a n) - \{closure(G(a m)) |m. m < n})" have enum_S: "\n. x \ F(a n) \ x \ G(a n)" if "x \ S" for x proof - have "\y \ K. x \ G y" using eq that Gin by fastforce then show ?thesis using clos K \range a = K\ closure_subset by blast qed have 1: "S \ Union ?C" proof fix x assume "x \ S" define n where "n \ LEAST n. x \ F(a n)" have n: "x \ F(a n)" using enum_S [OF \x \ S\] by (force simp: n_def intro: LeastI) have notn: "x \ F(a m)" if "m < n" for m using that not_less_Least by (force simp: n_def) then have "x \ \{closure (G (a m)) |m. m < n}" using n \K \ S\ \range a = K\ clos notn by fastforce with n show "x \ Union ?C" by blast qed have 3: "\V. open V \ x \ V \ finite {U. U \ ?C \ (U \ V \ {})}" if "x \ S" for x proof - obtain n where n: "x \ F(a n)" "x \ G(a n)" using \x \ S\ enum_S by auto have "{U \ ?C. U \ G (a n) \ {}} \ (\n. F(a n) - \{closure(G(a m)) |m. m < n}) ` atMost n" proof clarsimp fix k assume "(F (a k) - \{closure (G (a m)) |m. m < k}) \ G (a n) \ {}" then have "k \ n" by auto (metis closure_subset not_le subsetCE) then show "F (a k) - \{closure (G (a m)) |m. m < k} \ (\n. F (a n) - \{closure (G (a m)) |m. m < n}) ` {..n}" by force qed moreover have "finite ((\n. F(a n) - \{closure(G(a m)) |m. m < n}) ` atMost n)" by force ultimately have *: "finite {U \ ?C. U \ G (a n) \ {}}" using finite_subset by blast show ?thesis apply (rule_tac x="G (a n)" in exI) apply (intro conjI oG n *) using \K \ S\ \range a = K\ apply blast done qed show ?thesis apply (rule that [OF 1 _ 3]) using Fin \K \ S\ \range a = K\ apply (auto simp: odif) done qed corollary paracompact_closedin: fixes S :: "'a :: {metric_space,second_countable_topology} set" assumes cin: "closedin (top_of_set U) S" and oin: "\T. T \ \ \ openin (top_of_set U) T" and "S \ \\" obtains \' where "S \ \ \'" and "\V. V \ \' \ openin (top_of_set U) V \ (\T. T \ \ \ V \ T)" and "\x. x \ U \ \V. openin (top_of_set U) V \ x \ V \ finite {X. X \ \' \ (X \ V \ {})}" proof - have "\Z. open Z \ (T = U \ Z)" if "T \ \" for T using oin [OF that] by (auto simp: openin_open) then obtain F where opF: "open (F T)" and intF: "U \ F T = T" if "T \ \" for T by metis obtain K where K: "closed K" "U \ K = S" using cin by (auto simp: closedin_closed) have 1: "U \ \(insert (- K) (F ` \))" by clarsimp (metis Int_iff Union_iff \U \ K = S\ \S \ \\\ subsetD intF) have 2: "\T. T \ insert (- K) (F ` \) \ open T" using \closed K\ by (auto simp: opF) obtain \ where "U \ \\" and D1: "\U. U \ \ \ open U \ (\T. T \ insert (- K) (F ` \) \ U \ T)" and D2: "\x. x \ U \ \V. open V \ x \ V \ finite {U \ \. U \ V \ {}}" by (blast intro: paracompact [OF 1 2]) let ?C = "{U \ V |V. V \ \ \ (V \ K \ {})}" show ?thesis proof (rule_tac \' = "{U \ V |V. V \ \ \ (V \ K \ {})}" in that) show "S \ \?C" using \U \ K = S\ \U \ \\\ K by (blast dest!: subsetD) show "\V. V \ ?C \ openin (top_of_set U) V \ (\T. T \ \ \ V \ T)" using D1 intF by fastforce have *: "{X. (\V. X = U \ V \ V \ \ \ V \ K \ {}) \ X \ (U \ V) \ {}} \ (\x. U \ x) ` {U \ \. U \ V \ {}}" for V by blast show "\V. openin (top_of_set U) V \ x \ V \ finite {X \ ?C. X \ V \ {}}" if "x \ U" for x using D2 [OF that] apply clarify apply (rule_tac x="U \ V" in exI) apply (auto intro: that finite_subset [OF *]) done qed qed corollary\<^marker>\tag unimportant\ paracompact_closed: fixes S :: "'a :: {metric_space,second_countable_topology} set" assumes "closed S" and opC: "\T. T \ \ \ open T" and "S \ \\" obtains \' where "S \ \\'" and "\U. U \ \' \ open U \ (\T. T \ \ \ U \ T)" and "\x. \V. open V \ x \ V \ finite {U. U \ \' \ (U \ V \ {})}" by (rule paracompact_closedin [of UNIV S \]) (auto simp: assms) subsection\<^marker>\tag unimportant\\Closed-graph characterization of continuity\ lemma continuous_closed_graph_gen: fixes T :: "'b::real_normed_vector set" assumes contf: "continuous_on S f" and fim: "f ` S \ T" shows "closedin (top_of_set (S \ T)) ((\x. Pair x (f x)) ` S)" proof - have eq: "((\x. Pair x (f x)) ` S) =(S \ T \ (\z. (f \ fst)z - snd z) -` {0})" using fim by auto show ?thesis apply (subst eq) apply (intro continuous_intros continuous_closedin_preimage continuous_on_subset [OF contf]) by auto qed lemma continuous_closed_graph_eq: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "compact T" and fim: "f ` S \ T" shows "continuous_on S f \ closedin (top_of_set (S \ T)) ((\x. Pair x (f x)) ` S)" (is "?lhs = ?rhs") proof - have "?lhs" if ?rhs proof (clarsimp simp add: continuous_on_closed_gen [OF fim]) fix U assume U: "closedin (top_of_set T) U" have eq: "(S \ f -` U) = fst ` (((\x. Pair x (f x)) ` S) \ (S \ U))" by (force simp: image_iff) show "closedin (top_of_set S) (S \ f -` U)" by (simp add: U closedin_Int closedin_Times closed_map_fst [OF \compact T\] that eq) qed with continuous_closed_graph_gen assms show ?thesis by blast qed lemma continuous_closed_graph: fixes f :: "'a::topological_space \ 'b::real_normed_vector" assumes "closed S" and contf: "continuous_on S f" shows "closed ((\x. Pair x (f x)) ` S)" apply (rule closedin_closed_trans) apply (rule continuous_closed_graph_gen [OF contf subset_UNIV]) by (simp add: \closed S\ closed_Times) lemma continuous_from_closed_graph: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "compact T" and fim: "f ` S \ T" and clo: "closed ((\x. Pair x (f x)) ` S)" shows "continuous_on S f" using fim clo by (auto intro: closed_subset simp: continuous_closed_graph_eq [OF \compact T\ fim]) lemma continuous_on_Un_local_open: assumes opS: "openin (top_of_set (S \ T)) S" and opT: "openin (top_of_set (S \ T)) T" and contf: "continuous_on S f" and contg: "continuous_on T f" shows "continuous_on (S \ T) f" using pasting_lemma [of "{S,T}" "top_of_set (S \ T)" id euclidean "\i. f" f] contf contg opS opT by (simp add: subtopology_subtopology) (metis inf.absorb2 openin_imp_subset) lemma continuous_on_cases_local_open: assumes opS: "openin (top_of_set (S \ T)) S" and opT: "openin (top_of_set (S \ T)) T" and contf: "continuous_on S f" and contg: "continuous_on T g" and fg: "\x. x \ S \ \P x \ x \ T \ P x \ f x = g x" shows "continuous_on (S \ T) (\x. if P x then f x else g x)" proof - have "\x. x \ S \ (if P x then f x else g x) = f x" "\x. x \ T \ (if P x then f x else g x) = g x" by (simp_all add: fg) then have "continuous_on S (\x. if P x then f x else g x)" "continuous_on T (\x. if P x then f x else g x)" by (simp_all add: contf contg cong: continuous_on_cong) then show ?thesis by (rule continuous_on_Un_local_open [OF opS opT]) qed lemma continuous_map_cases_le: assumes contp: "continuous_map X euclideanreal p" and contq: "continuous_map X euclideanreal q" and contf: "continuous_map (subtopology X {x. x \ topspace X \ p x \ q x}) Y f" and contg: "continuous_map (subtopology X {x. x \ topspace X \ q x \ p x}) Y g" and fg: "\x. \x \ topspace X; p x = q x\ \ f x = g x" shows "continuous_map X Y (\x. if p x \ q x then f x else g x)" proof - have "continuous_map X Y (\x. if q x - p x \ {0..} then f x else g x)" proof (rule continuous_map_cases_function) show "continuous_map X euclideanreal (\x. q x - p x)" by (intro contp contq continuous_intros) show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of {0..}}) Y f" by (simp add: contf) show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of (topspace euclideanreal - {0..})}) Y g" by (simp add: contg flip: Compl_eq_Diff_UNIV) qed (auto simp: fg) then show ?thesis by simp qed lemma continuous_map_cases_lt: assumes contp: "continuous_map X euclideanreal p" and contq: "continuous_map X euclideanreal q" and contf: "continuous_map (subtopology X {x. x \ topspace X \ p x \ q x}) Y f" and contg: "continuous_map (subtopology X {x. x \ topspace X \ q x \ p x}) Y g" and fg: "\x. \x \ topspace X; p x = q x\ \ f x = g x" shows "continuous_map X Y (\x. if p x < q x then f x else g x)" proof - have "continuous_map X Y (\x. if q x - p x \ {0<..} then f x else g x)" proof (rule continuous_map_cases_function) show "continuous_map X euclideanreal (\x. q x - p x)" by (intro contp contq continuous_intros) show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of {0<..}}) Y f" by (simp add: contf) show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of (topspace euclideanreal - {0<..})}) Y g" by (simp add: contg flip: Compl_eq_Diff_UNIV) qed (auto simp: fg) then show ?thesis by simp qed subsection\<^marker>\tag unimportant\\The union of two collinear segments is another segment\ proposition\<^marker>\tag unimportant\ in_convex_hull_exchange: fixes a :: "'a::euclidean_space" assumes a: "a \ convex hull S" and xS: "x \ convex hull S" obtains b where "b \ S" "x \ convex hull (insert a (S - {b}))" proof (cases "a \ S") case True with xS insert_Diff that show ?thesis by fastforce next case False show ?thesis proof (cases "finite S \ card S \ Suc (DIM('a))") case True then obtain u where u0: "\i. i \ S \ 0 \ u i" and u1: "sum u S = 1" and ua: "(\i\S. u i *\<^sub>R i) = a" using a by (auto simp: convex_hull_finite) obtain v where v0: "\i. i \ S \ 0 \ v i" and v1: "sum v S = 1" and vx: "(\i\S. v i *\<^sub>R i) = x" using True xS by (auto simp: convex_hull_finite) show ?thesis proof (cases "\b. b \ S \ v b = 0") case True then obtain b where b: "b \ S" "v b = 0" by blast show ?thesis proof have fin: "finite (insert a (S - {b}))" using sum.infinite v1 by fastforce show "x \ convex hull insert a (S - {b})" unfolding convex_hull_finite [OF fin] mem_Collect_eq proof (intro conjI exI ballI) have "(\x \ insert a (S - {b}). if x = a then 0 else v x) = (\x \ S - {b}. if x = a then 0 else v x)" apply (rule sum.mono_neutral_right) using fin by auto also have "... = (\x \ S - {b}. v x)" using b False by (auto intro!: sum.cong split: if_split_asm) also have "... = (\x\S. v x)" by (metis \v b = 0\ diff_zero sum.infinite sum_diff1 u1 zero_neq_one) finally show "(\x\insert a (S - {b}). if x = a then 0 else v x) = 1" by (simp add: v1) show "\x. x \ insert a (S - {b}) \ 0 \ (if x = a then 0 else v x)" by (auto simp: v0) have "(\x \ insert a (S - {b}). (if x = a then 0 else v x) *\<^sub>R x) = (\x \ S - {b}. (if x = a then 0 else v x) *\<^sub>R x)" apply (rule sum.mono_neutral_right) using fin by auto also have "... = (\x \ S - {b}. v x *\<^sub>R x)" using b False by (auto intro!: sum.cong split: if_split_asm) also have "... = (\x\S. v x *\<^sub>R x)" by (metis (no_types, lifting) b(2) diff_zero fin finite.emptyI finite_Diff2 finite_insert scale_eq_0_iff sum_diff1) finally show "(\x\insert a (S - {b}). (if x = a then 0 else v x) *\<^sub>R x) = x" by (simp add: vx) qed qed (rule \b \ S\) next case False have le_Max: "u i / v i \ Max ((\i. u i / v i) ` S)" if "i \ S" for i by (simp add: True that) have "Max ((\i. u i / v i) ` S) \ (\i. u i / v i) ` S" using True v1 by (auto intro: Max_in) then obtain b where "b \ S" and beq: "Max ((\b. u b / v b) ` S) = u b / v b" by blast then have "0 \ u b / v b" using le_Max beq divide_le_0_iff le_numeral_extra(2) sum_nonpos u1 by (metis False eq_iff v0) then have "0 < u b" "0 < v b" using False \b \ S\ u0 v0 by force+ have fin: "finite (insert a (S - {b}))" using sum.infinite v1 by fastforce show ?thesis proof show "x \ convex hull insert a (S - {b})" unfolding convex_hull_finite [OF fin] mem_Collect_eq proof (intro conjI exI ballI) have "(\x \ insert a (S - {b}). if x=a then v b / u b else v x - (v b / u b) * u x) = v b / u b + (\x \ S - {b}. v x - (v b / u b) * u x)" using \a \ S\ \b \ S\ True apply simp apply (rule sum.cong, auto) done also have "... = v b / u b + (\x \ S - {b}. v x) - (v b / u b) * (\x \ S - {b}. u x)" by (simp add: Groups_Big.sum_subtractf sum_distrib_left) also have "... = (\x\S. v x)" using \0 < u b\ True by (simp add: Groups_Big.sum_diff1 u1 field_simps) finally show "sum (\x. if x=a then v b / u b else v x - (v b / u b) * u x) (insert a (S - {b})) = 1" by (simp add: v1) show "0 \ (if i = a then v b / u b else v i - v b / u b * u i)" if "i \ insert a (S - {b})" for i using \0 < u b\ \0 < v b\ v0 [of i] le_Max [of i] beq that False by (auto simp: field_simps split: if_split_asm) have "(\x\insert a (S - {b}). (if x=a then v b / u b else v x - v b / u b * u x) *\<^sub>R x) = (v b / u b) *\<^sub>R a + (\x\S - {b}. (v x - v b / u b * u x) *\<^sub>R x)" using \a \ S\ \b \ S\ True apply simp apply (rule sum.cong, auto) done also have "... = (v b / u b) *\<^sub>R a + (\x \ S - {b}. v x *\<^sub>R x) - (v b / u b) *\<^sub>R (\x \ S - {b}. u x *\<^sub>R x)" by (simp add: Groups_Big.sum_subtractf scaleR_left_diff_distrib sum_distrib_left scale_sum_right) also have "... = (\x\S. v x *\<^sub>R x)" using \0 < u b\ True by (simp add: ua vx Groups_Big.sum_diff1 algebra_simps) finally show "(\x\insert a (S - {b}). (if x=a then v b / u b else v x - v b / u b * u x) *\<^sub>R x) = x" by (simp add: vx) qed qed (rule \b \ S\) qed next case False obtain T where "finite T" "T \ S" and caT: "card T \ Suc (DIM('a))" and xT: "x \ convex hull T" using xS by (auto simp: caratheodory [of S]) with False obtain b where b: "b \ S" "b \ T" by (metis antisym subsetI) show ?thesis proof show "x \ convex hull insert a (S - {b})" using \T \ S\ b by (blast intro: subsetD [OF hull_mono xT]) qed (rule \b \ S\) qed qed lemma convex_hull_exchange_Union: fixes a :: "'a::euclidean_space" assumes "a \ convex hull S" shows "convex hull S = (\b \ S. convex hull (insert a (S - {b})))" (is "?lhs = ?rhs") proof show "?lhs \ ?rhs" by (blast intro: in_convex_hull_exchange [OF assms]) show "?rhs \ ?lhs" proof clarify fix x b assume"b \ S" "x \ convex hull insert a (S - {b})" then show "x \ convex hull S" if "b \ S" by (metis (no_types) that assms order_refl hull_mono hull_redundant insert_Diff_single insert_subset subsetCE) qed qed lemma Un_closed_segment: fixes a :: "'a::euclidean_space" assumes "b \ closed_segment a c" shows "closed_segment a b \ closed_segment b c = closed_segment a c" proof (cases "c = a") case True with assms show ?thesis by simp next case False with assms have "convex hull {a, b} \ convex hull {b, c} = (\ba\{a, c}. convex hull insert b ({a, c} - {ba}))" by (auto simp: insert_Diff_if insert_commute) then show ?thesis using convex_hull_exchange_Union by (metis assms segment_convex_hull) qed lemma Un_open_segment: fixes a :: "'a::euclidean_space" assumes "b \ open_segment a c" shows "open_segment a b \ {b} \ open_segment b c = open_segment a c" proof - have b: "b \ closed_segment a c" by (simp add: assms open_closed_segment) have *: "open_segment a c \ insert b (open_segment a b \ open_segment b c)" if "{b,c,a} \ open_segment a b \ open_segment b c = {c,a} \ open_segment a c" proof - have "insert a (insert c (insert b (open_segment a b \ open_segment b c))) = insert a (insert c (open_segment a c))" using that by (simp add: insert_commute) then show ?thesis by (metis (no_types) Diff_cancel Diff_eq_empty_iff Diff_insert2 open_segment_def) qed show ?thesis using Un_closed_segment [OF b] apply (simp add: closed_segment_eq_open) apply (rule equalityI) using assms apply (simp add: b subset_open_segment) using * by (simp add: insert_commute) qed subsection\Covering an open set by a countable chain of compact sets\ proposition open_Union_compact_subsets: fixes S :: "'a::euclidean_space set" assumes "open S" obtains C where "\n. compact(C n)" "\n. C n \ S" "\n. C n \ interior(C(Suc n))" "\(range C) = S" "\K. \compact K; K \ S\ \ \N. \n\N. K \ (C n)" proof (cases "S = {}") case True then show ?thesis by (rule_tac C = "\n. {}" in that) auto next case False then obtain a where "a \ S" by auto let ?C = "\n. cball a (real n) - (\x \ -S. \e \ ball 0 (1 / real(Suc n)). {x + e})" have "\N. \n\N. K \ (f n)" if "\n. compact(f n)" and sub_int: "\n. f n \ interior (f(Suc n))" and eq: "\(range f) = S" and "compact K" "K \ S" for f K proof - have *: "\n. f n \ (\n. interior (f n))" by (meson Sup_upper2 UNIV_I \\n. f n \ interior (f (Suc n))\ image_iff) have mono: "\m n. m \ n \f m \ f n" by (meson dual_order.trans interior_subset lift_Suc_mono_le sub_int) obtain I where "finite I" and I: "K \ (\i\I. interior (f i))" proof (rule compactE_image [OF \compact K\]) show "K \ (\n. interior (f n))" using \K \ S\ \\(f ` UNIV) = S\ * by blast qed auto { fix n assume n: "Max I \ n" have "(\i\I. interior (f i)) \ f n" by (rule UN_least) (meson dual_order.trans interior_subset mono I Max_ge [OF \finite I\] n) then have "K \ f n" using I by auto } then show ?thesis by blast qed moreover have "\f. (\n. compact(f n)) \ (\n. (f n) \ S) \ (\n. (f n) \ interior(f(Suc n))) \ ((\(range f) = S))" proof (intro exI conjI allI) show "\n. compact (?C n)" by (auto simp: compact_diff open_sums) show "\n. ?C n \ S" by auto show "?C n \ interior (?C (Suc n))" for n proof (simp add: interior_diff, rule Diff_mono) show "cball a (real n) \ ball a (1 + real n)" by (simp add: cball_subset_ball_iff) have cl: "closed (\x\- S. \e\cball 0 (1 / (2 + real n)). {x + e})" using assms by (auto intro: closed_compact_sums) have "closure (\x\- S. \y\ball 0 (1 / (2 + real n)). {x + y}) \ (\x \ -S. \e \ cball 0 (1 / (2 + real n)). {x + e})" by (intro closure_minimal UN_mono ball_subset_cball order_refl cl) also have "... \ (\x \ -S. \y\ball 0 (1 / (1 + real n)). {x + y})" apply (intro UN_mono order_refl) apply (simp add: cball_subset_ball_iff field_split_simps) done finally show "closure (\x\- S. \y\ball 0 (1 / (2 + real n)). {x + y}) \ (\x \ -S. \y\ball 0 (1 / (1 + real n)). {x + y})" . qed have "S \ \ (range ?C)" proof fix x assume x: "x \ S" then obtain e where "e > 0" and e: "ball x e \ S" using assms open_contains_ball by blast then obtain N1 where "N1 > 0" and N1: "real N1 > 1/e" using reals_Archimedean2 by (metis divide_less_0_iff less_eq_real_def neq0_conv not_le of_nat_0 of_nat_1 of_nat_less_0_iff) obtain N2 where N2: "norm(x - a) \ real N2" by (meson real_arch_simple) have N12: "inverse((N1 + N2) + 1) \ inverse(N1)" using \N1 > 0\ by (auto simp: field_split_simps) have "x \ y + z" if "y \ S" "norm z < 1 / (1 + (real N1 + real N2))" for y z proof - have "e * real N1 < e * (1 + (real N1 + real N2))" by (simp add: \0 < e\) then have "1 / (1 + (real N1 + real N2)) < e" using N1 \e > 0\ by (metis divide_less_eq less_trans mult.commute of_nat_add of_nat_less_0_iff of_nat_Suc) then have "x - z \ ball x e" using that by simp then have "x - z \ S" using e by blast with that show ?thesis by auto qed with N2 show "x \ \ (range ?C)" by (rule_tac a = "N1+N2" in UN_I) (auto simp: dist_norm norm_minus_commute) qed then show "\ (range ?C) = S" by auto qed ultimately show ?thesis using that by metis qed subsection\Orthogonal complement\ definition\<^marker>\tag important\ orthogonal_comp ("_\<^sup>\" [80] 80) where "orthogonal_comp W \ {x. \y \ W. orthogonal y x}" proposition subspace_orthogonal_comp: "subspace (W\<^sup>\)" unfolding subspace_def orthogonal_comp_def orthogonal_def by (auto simp: inner_right_distrib) lemma orthogonal_comp_anti_mono: assumes "A \ B" shows "B\<^sup>\ \ A\<^sup>\" proof fix x assume x: "x \ B\<^sup>\" show "x \ orthogonal_comp A" using x unfolding orthogonal_comp_def by (simp add: orthogonal_def, metis assms in_mono) qed lemma orthogonal_comp_null [simp]: "{0}\<^sup>\ = UNIV" by (auto simp: orthogonal_comp_def orthogonal_def) lemma orthogonal_comp_UNIV [simp]: "UNIV\<^sup>\ = {0}" unfolding orthogonal_comp_def orthogonal_def by auto (use inner_eq_zero_iff in blast) lemma orthogonal_comp_subset: "U \ U\<^sup>\\<^sup>\" by (auto simp: orthogonal_comp_def orthogonal_def inner_commute) lemma subspace_sum_minimal: assumes "S \ U" "T \ U" "subspace U" shows "S + T \ U" proof fix x assume "x \ S + T" then obtain xs xt where "xs \ S" "xt \ T" "x = xs+xt" by (meson set_plus_elim) then show "x \ U" by (meson assms subsetCE subspace_add) qed proposition subspace_sum_orthogonal_comp: fixes U :: "'a :: euclidean_space set" assumes "subspace U" shows "U + U\<^sup>\ = UNIV" proof - obtain B where "B \ U" and ortho: "pairwise orthogonal B" "\x. x \ B \ norm x = 1" and "independent B" "card B = dim U" "span B = U" using orthonormal_basis_subspace [OF assms] by metis then have "finite B" by (simp add: indep_card_eq_dim_span) have *: "\x\B. \y\B. x \ y = (if x=y then 1 else 0)" using ortho norm_eq_1 by (auto simp: orthogonal_def pairwise_def) { fix v let ?u = "\b\B. (v \ b) *\<^sub>R b" have "v = ?u + (v - ?u)" by simp moreover have "?u \ U" by (metis (no_types, lifting) \span B = U\ assms subspace_sum span_base span_mul) moreover have "(v - ?u) \ U\<^sup>\" proof (clarsimp simp: orthogonal_comp_def orthogonal_def) fix y assume "y \ U" with \span B = U\ span_finite [OF \finite B\] obtain u where u: "y = (\b\B. u b *\<^sub>R b)" by auto have "b \ (v - ?u) = 0" if "b \ B" for b using that \finite B\ by (simp add: * algebra_simps inner_sum_right if_distrib [of "(*)v" for v] inner_commute cong: if_cong) then show "y \ (v - ?u) = 0" by (simp add: u inner_sum_left) qed ultimately have "v \ U + U\<^sup>\" using set_plus_intro by fastforce } then show ?thesis by auto qed lemma orthogonal_Int_0: assumes "subspace U" shows "U \ U\<^sup>\ = {0}" using orthogonal_comp_def orthogonal_self by (force simp: assms subspace_0 subspace_orthogonal_comp) lemma orthogonal_comp_self: fixes U :: "'a :: euclidean_space set" assumes "subspace U" shows "U\<^sup>\\<^sup>\ = U" proof have ssU': "subspace (U\<^sup>\)" by (simp add: subspace_orthogonal_comp) have "u \ U" if "u \ U\<^sup>\\<^sup>\" for u proof - obtain v w where "u = v+w" "v \ U" "w \ U\<^sup>\" using subspace_sum_orthogonal_comp [OF assms] set_plus_elim by blast then have "u-v \ U\<^sup>\" by simp moreover have "v \ U\<^sup>\\<^sup>\" using \v \ U\ orthogonal_comp_subset by blast then have "u-v \ U\<^sup>\\<^sup>\" by (simp add: subspace_diff subspace_orthogonal_comp that) ultimately have "u-v = 0" using orthogonal_Int_0 ssU' by blast with \v \ U\ show ?thesis by auto qed then show "U\<^sup>\\<^sup>\ \ U" by auto qed (use orthogonal_comp_subset in auto) lemma ker_orthogonal_comp_adjoint: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" shows "f -` {0} = (range (adjoint f))\<^sup>\" apply (auto simp: orthogonal_comp_def orthogonal_def) apply (simp add: adjoint_works assms(1) inner_commute) by (metis adjoint_works all_zero_iff assms(1) inner_commute) subsection\<^marker>\tag unimportant\ \A non-injective linear function maps into a hyperplane.\ lemma linear_surj_adj_imp_inj: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" "surj (adjoint f)" shows "inj f" proof - have "\x. y = adjoint f x" for y using assms by (simp add: surjD) then show "inj f" using assms unfolding inj_on_def image_def by (metis (no_types) adjoint_works euclidean_eqI) qed \ \\<^url>\https://mathonline.wikidot.com/injectivity-and-surjectivity-of-the-adjoint-of-a-linear-map\\ lemma surj_adjoint_iff_inj [simp]: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" shows "surj (adjoint f) \ inj f" proof assume "surj (adjoint f)" then show "inj f" by (simp add: assms linear_surj_adj_imp_inj) next assume "inj f" have "f -` {0} = {0}" using assms \inj f\ linear_0 linear_injective_0 by fastforce moreover have "f -` {0} = range (adjoint f)\<^sup>\" by (intro ker_orthogonal_comp_adjoint assms) ultimately have "range (adjoint f)\<^sup>\\<^sup>\ = UNIV" by (metis orthogonal_comp_null) then show "surj (adjoint f)" using adjoint_linear \linear f\ by (subst (asm) orthogonal_comp_self) (simp add: adjoint_linear linear_subspace_image) qed lemma inj_adjoint_iff_surj [simp]: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" shows "inj (adjoint f) \ surj f" proof assume "inj (adjoint f)" have "(adjoint f) -` {0} = {0}" by (metis \inj (adjoint f)\ adjoint_linear assms surj_adjoint_iff_inj ker_orthogonal_comp_adjoint orthogonal_comp_UNIV) then have "(range(f))\<^sup>\ = {0}" by (metis (no_types, hide_lams) adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint set_zero) then show "surj f" by (metis \inj (adjoint f)\ adjoint_adjoint adjoint_linear assms surj_adjoint_iff_inj) next assume "surj f" then have "range f = (adjoint f -` {0})\<^sup>\" by (simp add: adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint) then have "{0} = adjoint f -` {0}" using \surj f\ adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint by force then show "inj (adjoint f)" by (simp add: \surj f\ adjoint_adjoint adjoint_linear assms linear_surj_adj_imp_inj) qed lemma linear_singular_into_hyperplane: fixes f :: "'n::euclidean_space \ 'n" assumes "linear f" shows "\ inj f \ (\a. a \ 0 \ (\x. a \ f x = 0))" (is "_ = ?rhs") proof assume "\inj f" then show ?rhs using all_zero_iff by (metis (no_types, hide_lams) adjoint_clauses(2) adjoint_linear assms linear_injective_0 linear_injective_imp_surjective linear_surj_adj_imp_inj) next assume ?rhs then show "\inj f" by (metis assms linear_injective_isomorphism all_zero_iff) qed lemma linear_singular_image_hyperplane: fixes f :: "'n::euclidean_space \ 'n" assumes "linear f" "\inj f" obtains a where "a \ 0" "\S. f ` S \ {x. a \ x = 0}" using assms by (fastforce simp add: linear_singular_into_hyperplane) end