diff --git a/src/ZF/ZF.thy b/src/ZF/ZF.thy --- a/src/ZF/ZF.thy +++ b/src/ZF/ZF.thy @@ -1,632 +1,628 @@ (* Title: ZF/ZF.thy Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory Copyright 1993 University of Cambridge *) section\Zermelo-Fraenkel Set Theory\ theory ZF imports "~~/src/FOL/FOL" begin declare [[eta_contract = false]] typedecl i instance i :: "term" .. axiomatization zero :: "i" ("0") \\the empty set\ and Pow :: "i => i" \\power sets\ and Inf :: "i" \\infinite set\ text \Bounded Quantifiers\ consts Ball :: "[i, i => o] => o" Bex :: "[i, i => o] => o" text \General Union and Intersection\ -axiomatization Union :: "i => i" -consts Inter :: "i => i" +axiomatization Union :: "i => i" ("\_" [90] 90) +consts Inter :: "i => i" ("\_" [90] 90) text \Variations on Replacement\ axiomatization PrimReplace :: "[i, [i, i] => o] => i" consts Replace :: "[i, [i, i] => o] => i" RepFun :: "[i, i => i] => i" Collect :: "[i, i => o] => i" text\Definite descriptions -- via Replace over the set "1"\ consts The :: "(i => o) => i" (binder "THE " 10) If :: "[o, i, i] => i" ("(if (_)/ then (_)/ else (_))" [10] 10) abbreviation (input) old_if :: "[o, i, i] => i" ("if '(_,_,_')") where "if(P,a,b) == If(P,a,b)" text \Finite Sets\ consts Upair :: "[i, i] => i" cons :: "[i, i] => i" succ :: "i => i" text \Ordered Pairing\ consts Pair :: "[i, i] => i" fst :: "i => i" snd :: "i => i" split :: "[[i, i] => 'a, i] => 'a::{}" \\for pattern-matching\ text \Sigma and Pi Operators\ consts Sigma :: "[i, i => i] => i" Pi :: "[i, i => i] => i" text \Relations and Functions\ consts "domain" :: "i => i" range :: "i => i" field :: "i => i" converse :: "i => i" relation :: "i => o" \\recognizes sets of pairs\ "function" :: "i => o" \\recognizes functions; can have non-pairs\ Lambda :: "[i, i => i] => i" restrict :: "[i, i] => i" text \Infixes in order of decreasing precedence\ consts - Image :: "[i, i] => i" (infixl "``" 90) \\image\ vimage :: "[i, i] => i" (infixl "-``" 90) \\inverse image\ "apply" :: "[i, i] => i" (infixl "`" 90) \\function application\ - "Int" :: "[i, i] => i" (infixl "Int" 70) \\binary intersection\ - "Un" :: "[i, i] => i" (infixl "Un" 65) \\binary union\ + "Int" :: "[i, i] => i" (infixl "\" 70) \\binary intersection\ + "Un" :: "[i, i] => i" (infixl "\" 65) \\binary union\ Diff :: "[i, i] => i" (infixl "-" 65) \\set difference\ - Subset :: "[i, i] => o" (infixl "<=" 50) \\subset relation\ + Subset :: "[i, i] => o" (infixl "\" 50) \\subset relation\ axiomatization - mem :: "[i, i] => o" (infixl ":" 50) \\membership relation\ + mem :: "[i, i] => o" (infixl "\" 50) \\membership relation\ abbreviation - not_mem :: "[i, i] => o" (infixl "~:" 50) \\negated membership relation\ - where "x ~: y == ~ (x : y)" + not_mem :: "[i, i] => o" (infixl "\" 50) \\negated membership relation\ + where "x \ y \ \ (x \ y)" abbreviation - cart_prod :: "[i, i] => i" (infixr "*" 80) \\Cartesian product\ - where "A * B == Sigma(A, %_. B)" + cart_prod :: "[i, i] => i" (infixr "\" 80) \\Cartesian product\ + where "A \ B \ Sigma(A, \_. B)" abbreviation function_space :: "[i, i] => i" (infixr "->" 60) \\function space\ - where "A -> B == Pi(A, %_. B)" + where "A -> B \ Pi(A, \_. B)" nonterminal "is" and patterns syntax "" :: "i => is" ("_") "_Enum" :: "[i, is] => is" ("_,/ _") "_Finset" :: "is => i" ("{(_)}") - "_Tuple" :: "[i, is] => i" ("<(_,/ _)>") - "_Collect" :: "[pttrn, i, o] => i" ("(1{_: _ ./ _})") - "_Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})") - "_RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _: _})" [51,0,51]) - "_INTER" :: "[pttrn, i, i] => i" ("(3INT _:_./ _)" 10) - "_UNION" :: "[pttrn, i, i] => i" ("(3UN _:_./ _)" 10) - "_PROD" :: "[pttrn, i, i] => i" ("(3PROD _:_./ _)" 10) - "_SUM" :: "[pttrn, i, i] => i" ("(3SUM _:_./ _)" 10) - "_lam" :: "[pttrn, i, i] => i" ("(3lam _:_./ _)" 10) - "_Ball" :: "[pttrn, i, o] => o" ("(3ALL _:_./ _)" 10) - "_Bex" :: "[pttrn, i, o] => o" ("(3EX _:_./ _)" 10) + "_Tuple" :: "[i, is] => i" ("\(_,/ _)\") + "_Collect" :: "[pttrn, i, o] => i" ("(1{_ \ _ ./ _})") + "_Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ \ _, _})") + "_RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _ \ _})" [51,0,51]) + "_UNION" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) + "_INTER" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) + "_PROD" :: "[pttrn, i, i] => i" ("(3\ _\_./ _)" 10) + "_SUM" :: "[pttrn, i, i] => i" ("(3\ _\_./ _)" 10) + "_lam" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) + "_Ball" :: "[pttrn, i, o] => o" ("(3\_\_./ _)" 10) + "_Bex" :: "[pttrn, i, o] => o" ("(3\_\_./ _)" 10) (** Patterns -- extends pre-defined type "pttrn" used in abstractions **) - "_pattern" :: "patterns => pttrn" ("<_>") + "_pattern" :: "patterns => pttrn" ("\_\") "" :: "pttrn => patterns" ("_") "_patterns" :: "[pttrn, patterns] => patterns" ("_,/_") translations "{x, xs}" == "CONST cons(x, {xs})" "{x}" == "CONST cons(x, 0)" - "{x:A. P}" == "CONST Collect(A, %x. P)" - "{y. x:A, Q}" == "CONST Replace(A, %x y. Q)" - "{b. x:A}" == "CONST RepFun(A, %x. b)" - "INT x:A. B" == "CONST Inter({B. x:A})" - "UN x:A. B" == "CONST Union({B. x:A})" - "PROD x:A. B" == "CONST Pi(A, %x. B)" - "SUM x:A. B" == "CONST Sigma(A, %x. B)" - "lam x:A. f" == "CONST Lambda(A, %x. f)" - "ALL x:A. P" == "CONST Ball(A, %x. P)" - "EX x:A. P" == "CONST Bex(A, %x. P)" + "{x\A. P}" == "CONST Collect(A, \x. P)" + "{y. x\A, Q}" == "CONST Replace(A, \x y. Q)" + "{b. x\A}" == "CONST RepFun(A, \x. b)" + "\x\A. B" == "CONST Inter({B. x\A})" + "\x\A. B" == "CONST Union({B. x\A})" + "\ x\A. B" == "CONST Pi(A, \x. B)" + "\ x\A. B" == "CONST Sigma(A, \x. B)" + "\x\A. f" == "CONST Lambda(A, \x. f)" + "\x\A. P" == "CONST Ball(A, \x. P)" + "\x\A. P" == "CONST Bex(A, \x. P)" - "" == ">" - "" == "CONST Pair(x, y)" - "%.b" == "CONST split(%x .b)" - "%.b" == "CONST split(%x y. b)" + "\x, y, z\" == "\x, \y, z\\" + "\x, y\" == "CONST Pair(x, y)" + "\\x,y,zs\.b" == "CONST split(\x \y,zs\.b)" + "\\x,y\.b" == "CONST split(\x y. b)" -notation (xsymbols) - cart_prod (infixr "\" 80) and - Int (infixl "\" 70) and - Un (infixl "\" 65) and +notation (ASCII) + cart_prod (infixr "*" 80) and + Int (infixl "Int" 70) and + Un (infixl "Un" 65) and function_space (infixr "\" 60) and - Subset (infixl "\" 50) and - mem (infixl "\" 50) and - not_mem (infixl "\" 50) and - Union ("\_" [90] 90) and - Inter ("\_" [90] 90) + Subset (infixl "<=" 50) and + mem (infixl ":" 50) and + not_mem (infixl "~:" 50) -syntax (xsymbols) - "_Collect" :: "[pttrn, i, o] => i" ("(1{_ \ _ ./ _})") - "_Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ \ _, _})") - "_RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _ \ _})" [51,0,51]) - "_UNION" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) - "_INTER" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) - "_PROD" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) - "_SUM" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) - "_lam" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) - "_Ball" :: "[pttrn, i, o] => o" ("(3\_\_./ _)" 10) - "_Bex" :: "[pttrn, i, o] => o" ("(3\_\_./ _)" 10) - "_Tuple" :: "[i, is] => i" ("\(_,/ _)\") - "_pattern" :: "patterns => pttrn" ("\_\") +syntax (ASCII) + "_Collect" :: "[pttrn, i, o] => i" ("(1{_: _ ./ _})") + "_Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})") + "_RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _: _})" [51,0,51]) + "_UNION" :: "[pttrn, i, i] => i" ("(3UN _:_./ _)" 10) + "_INTER" :: "[pttrn, i, i] => i" ("(3INT _:_./ _)" 10) + "_PROD" :: "[pttrn, i, i] => i" ("(3PROD _:_./ _)" 10) + "_SUM" :: "[pttrn, i, i] => i" ("(3SUM _:_./ _)" 10) + "_lam" :: "[pttrn, i, i] => i" ("(3lam _:_./ _)" 10) + "_Ball" :: "[pttrn, i, o] => o" ("(3ALL _:_./ _)" 10) + "_Bex" :: "[pttrn, i, o] => o" ("(3EX _:_./ _)" 10) + "_Tuple" :: "[i, is] => i" ("<(_,/ _)>") + "_pattern" :: "patterns => pttrn" ("<_>") defs (* Bounded Quantifiers *) Ball_def: "Ball(A, P) == \x. x\A \ P(x)" Bex_def: "Bex(A, P) == \x. x\A & P(x)" subset_def: "A \ B == \x\A. x\B" axiomatization where (* ZF axioms -- see Suppes p.238 Axioms for Union, Pow and Replace state existence only, uniqueness is derivable using extensionality. *) extension: "A = B <-> A \ B & B \ A" and Union_iff: "A \ \(C) <-> (\B\C. A\B)" and Pow_iff: "A \ Pow(B) <-> A \ B" and (*We may name this set, though it is not uniquely defined.*) infinity: "0\Inf & (\y\Inf. succ(y): Inf)" and (*This formulation facilitates case analysis on A.*) foundation: "A=0 | (\x\A. \y\x. y\A)" and (*Schema axiom since predicate P is a higher-order variable*) replacement: "(\x\A. \y z. P(x,y) & P(x,z) \ y=z) ==> b \ PrimReplace(A,P) <-> (\x\A. P(x,b))" defs (* Derived form of replacement, restricting P to its functional part. The resulting set (for functional P) is the same as with PrimReplace, but the rules are simpler. *) Replace_def: "Replace(A,P) == PrimReplace(A, %x y. (EX!z. P(x,z)) & P(x,y))" (* Functional form of replacement -- analgous to ML's map functional *) RepFun_def: "RepFun(A,f) == {y . x\A, y=f(x)}" (* Separation and Pairing can be derived from the Replacement and Powerset Axioms using the following definitions. *) Collect_def: "Collect(A,P) == {y . x\A, x=y & P(x)}" (*Unordered pairs (Upair) express binary union/intersection and cons; set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*) Upair_def: "Upair(a,b) == {y. x\Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}" cons_def: "cons(a,A) == Upair(a,a) \ A" succ_def: "succ(i) == cons(i, i)" (* Difference, general intersection, binary union and small intersection *) Diff_def: "A - B == { x\A . ~(x\B) }" Inter_def: "\(A) == { x\\(A) . \y\A. x\y}" Un_def: "A \ B == \(Upair(A,B))" Int_def: "A \ B == \(Upair(A,B))" (* definite descriptions *) the_def: "The(P) == \({y . x \ {0}, P(y)})" if_def: "if(P,a,b) == THE z. P & z=a | ~P & z=b" (* this "symmetric" definition works better than {{a}, {a,b}} *) Pair_def: " == {{a,a}, {a,b}}" fst_def: "fst(p) == THE a. \b. p=" snd_def: "snd(p) == THE b. \a. p=" split_def: "split(c) == %p. c(fst(p), snd(p))" Sigma_def: "Sigma(A,B) == \x\A. \y\B(x). {}" (* Operations on relations *) (*converse of relation r, inverse of function*) converse_def: "converse(r) == {z. w\r, \x y. w= & z=}" domain_def: "domain(r) == {x. w\r, \y. w=}" range_def: "range(r) == domain(converse(r))" field_def: "field(r) == domain(r) \ range(r)" relation_def: "relation(r) == \z\r. \x y. z = " function_def: "function(r) == \x y. :r \ (\y'. :r \ y=y')" image_def: "r `` A == {y \ range(r) . \x\A. \ r}" vimage_def: "r -`` A == converse(r)``A" (* Abstraction, application and Cartesian product of a family of sets *) lam_def: "Lambda(A,b) == { . x\A}" apply_def: "f`a == \(f``{a})" Pi_def: "Pi(A,B) == {f\Pow(Sigma(A,B)). A<=domain(f) & function(f)}" (* Restrict the relation r to the domain A *) restrict_def: "restrict(r,A) == {z \ r. \x\A. \y. z = }" subsection \Substitution\ (*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *) lemma subst_elem: "[| b\A; a=b |] ==> a\A" by (erule ssubst, assumption) subsection\Bounded universal quantifier\ lemma ballI [intro!]: "[| !!x. x\A ==> P(x) |] ==> \x\A. P(x)" by (simp add: Ball_def) lemmas strip = impI allI ballI lemma bspec [dest?]: "[| \x\A. P(x); x: A |] ==> P(x)" by (simp add: Ball_def) (*Instantiates x first: better for automatic theorem proving?*) lemma rev_ballE [elim]: "[| \x\A. P(x); x\A ==> Q; P(x) ==> Q |] ==> Q" by (simp add: Ball_def, blast) lemma ballE: "[| \x\A. P(x); P(x) ==> Q; x\A ==> Q |] ==> Q" by blast (*Used in the datatype package*) lemma rev_bspec: "[| x: A; \x\A. P(x) |] ==> P(x)" by (simp add: Ball_def) (*Trival rewrite rule; @{term"(\x\A.P)<->P"} holds only if A is nonempty!*) lemma ball_triv [simp]: "(\x\A. P) <-> ((\x. x\A) \ P)" by (simp add: Ball_def) (*Congruence rule for rewriting*) lemma ball_cong [cong]: "[| A=A'; !!x. x\A' ==> P(x) <-> P'(x) |] ==> (\x\A. P(x)) <-> (\x\A'. P'(x))" by (simp add: Ball_def) lemma atomize_ball: "(!!x. x \ A ==> P(x)) == Trueprop (\x\A. P(x))" by (simp only: Ball_def atomize_all atomize_imp) lemmas [symmetric, rulify] = atomize_ball and [symmetric, defn] = atomize_ball subsection\Bounded existential quantifier\ lemma bexI [intro]: "[| P(x); x: A |] ==> \x\A. P(x)" by (simp add: Bex_def, blast) (*The best argument order when there is only one @{term"x\A"}*) lemma rev_bexI: "[| x\A; P(x) |] ==> \x\A. P(x)" by blast (*Not of the general form for such rules. The existential quanitifer becomes universal. *) lemma bexCI: "[| \x\A. ~P(x) ==> P(a); a: A |] ==> \x\A. P(x)" by blast lemma bexE [elim!]: "[| \x\A. P(x); !!x. [| x\A; P(x) |] ==> Q |] ==> Q" by (simp add: Bex_def, blast) (*We do not even have @{term"(\x\A. True) <-> True"} unless @{term"A" is nonempty!!*) lemma bex_triv [simp]: "(\x\A. P) <-> ((\x. x\A) & P)" by (simp add: Bex_def) lemma bex_cong [cong]: "[| A=A'; !!x. x\A' ==> P(x) <-> P'(x) |] ==> (\x\A. P(x)) <-> (\x\A'. P'(x))" by (simp add: Bex_def cong: conj_cong) subsection\Rules for subsets\ lemma subsetI [intro!]: "(!!x. x\A ==> x\B) ==> A \ B" by (simp add: subset_def) (*Rule in Modus Ponens style [was called subsetE] *) lemma subsetD [elim]: "[| A \ B; c\A |] ==> c\B" apply (unfold subset_def) apply (erule bspec, assumption) done (*Classical elimination rule*) lemma subsetCE [elim]: "[| A \ B; c\A ==> P; c\B ==> P |] ==> P" by (simp add: subset_def, blast) (*Sometimes useful with premises in this order*) lemma rev_subsetD: "[| c\A; A<=B |] ==> c\B" by blast lemma contra_subsetD: "[| A \ B; c \ B |] ==> c \ A" by blast lemma rev_contra_subsetD: "[| c \ B; A \ B |] ==> c \ A" by blast lemma subset_refl [simp]: "A \ A" by blast lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C" by blast (*Useful for proving A<=B by rewriting in some cases*) lemma subset_iff: "A<=B <-> (\x. x\A \ x\B)" apply (unfold subset_def Ball_def) apply (rule iff_refl) done text\For calculations\ declare subsetD [trans] rev_subsetD [trans] subset_trans [trans] subsection\Rules for equality\ (*Anti-symmetry of the subset relation*) lemma equalityI [intro]: "[| A \ B; B \ A |] ==> A = B" by (rule extension [THEN iffD2], rule conjI) lemma equality_iffI: "(!!x. x\A <-> x\B) ==> A = B" by (rule equalityI, blast+) lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1] lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2] lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P" by (blast dest: equalityD1 equalityD2) lemma equalityCE: "[| A = B; [| c\A; c\B |] ==> P; [| c\A; c\B |] ==> P |] ==> P" by (erule equalityE, blast) lemma equality_iffD: "A = B ==> (!!x. x \ A <-> x \ B)" by auto subsection\Rules for Replace -- the derived form of replacement\ lemma Replace_iff: "b \ {y. x\A, P(x,y)} <-> (\x\A. P(x,b) & (\y. P(x,y) \ y=b))" apply (unfold Replace_def) apply (rule replacement [THEN iff_trans], blast+) done (*Introduction; there must be a unique y such that P(x,y), namely y=b. *) lemma ReplaceI [intro]: "[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==> b \ {y. x\A, P(x,y)}" by (rule Replace_iff [THEN iffD2], blast) (*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *) lemma ReplaceE: "[| b \ {y. x\A, P(x,y)}; !!x. [| x: A; P(x,b); \y. P(x,y)\y=b |] ==> R |] ==> R" by (rule Replace_iff [THEN iffD1, THEN bexE], simp+) (*As above but without the (generally useless) 3rd assumption*) lemma ReplaceE2 [elim!]: "[| b \ {y. x\A, P(x,y)}; !!x. [| x: A; P(x,b) |] ==> R |] ==> R" by (erule ReplaceE, blast) lemma Replace_cong [cong]: "[| A=B; !!x y. x\B ==> P(x,y) <-> Q(x,y) |] ==> Replace(A,P) = Replace(B,Q)" apply (rule equality_iffI) apply (simp add: Replace_iff) done subsection\Rules for RepFun\ lemma RepFunI: "a \ A ==> f(a) \ {f(x). x\A}" by (simp add: RepFun_def Replace_iff, blast) (*Useful for coinduction proofs*) lemma RepFun_eqI [intro]: "[| b=f(a); a \ A |] ==> b \ {f(x). x\A}" apply (erule ssubst) apply (erule RepFunI) done lemma RepFunE [elim!]: "[| b \ {f(x). x\A}; !!x.[| x\A; b=f(x) |] ==> P |] ==> P" by (simp add: RepFun_def Replace_iff, blast) lemma RepFun_cong [cong]: "[| A=B; !!x. x\B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)" by (simp add: RepFun_def) lemma RepFun_iff [simp]: "b \ {f(x). x\A} <-> (\x\A. b=f(x))" by (unfold Bex_def, blast) lemma triv_RepFun [simp]: "{x. x\A} = A" by blast subsection\Rules for Collect -- forming a subset by separation\ (*Separation is derivable from Replacement*) lemma separation [simp]: "a \ {x\A. P(x)} <-> a\A & P(a)" by (unfold Collect_def, blast) lemma CollectI [intro!]: "[| a\A; P(a) |] ==> a \ {x\A. P(x)}" by simp lemma CollectE [elim!]: "[| a \ {x\A. P(x)}; [| a\A; P(a) |] ==> R |] ==> R" by simp lemma CollectD1: "a \ {x\A. P(x)} ==> a\A" by (erule CollectE, assumption) lemma CollectD2: "a \ {x\A. P(x)} ==> P(a)" by (erule CollectE, assumption) lemma Collect_cong [cong]: "[| A=B; !!x. x\B ==> P(x) <-> Q(x) |] ==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))" by (simp add: Collect_def) subsection\Rules for Unions\ declare Union_iff [simp] (*The order of the premises presupposes that C is rigid; A may be flexible*) lemma UnionI [intro]: "[| B: C; A: B |] ==> A: \(C)" by (simp, blast) lemma UnionE [elim!]: "[| A \ \(C); !!B.[| A: B; B: C |] ==> R |] ==> R" by (simp, blast) subsection\Rules for Unions of families\ (* @{term"\x\A. B(x)"} abbreviates @{term"\({B(x). x\A})"} *) lemma UN_iff [simp]: "b \ (\x\A. B(x)) <-> (\x\A. b \ B(x))" by (simp add: Bex_def, blast) (*The order of the premises presupposes that A is rigid; b may be flexible*) lemma UN_I: "[| a: A; b: B(a) |] ==> b: (\x\A. B(x))" by (simp, blast) lemma UN_E [elim!]: "[| b \ (\x\A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R" by blast lemma UN_cong: "[| A=B; !!x. x\B ==> C(x)=D(x) |] ==> (\x\A. C(x)) = (\x\B. D(x))" by simp (*No "Addcongs [UN_cong]" because @{term\} is a combination of constants*) (* UN_E appears before UnionE so that it is tried first, to avoid expensive calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge the search space.*) subsection\Rules for the empty set\ (*The set @{term"{x\0. False}"} is empty; by foundation it equals 0 See Suppes, page 21.*) lemma not_mem_empty [simp]: "a \ 0" apply (cut_tac foundation) apply (best dest: equalityD2) done lemmas emptyE [elim!] = not_mem_empty [THEN notE] lemma empty_subsetI [simp]: "0 \ A" by blast lemma equals0I: "[| !!y. y\A ==> False |] ==> A=0" by blast lemma equals0D [dest]: "A=0 ==> a \ A" by blast declare sym [THEN equals0D, dest] lemma not_emptyI: "a\A ==> A \ 0" by blast lemma not_emptyE: "[| A \ 0; !!x. x\A ==> R |] ==> R" by blast subsection\Rules for Inter\ (*Not obviously useful for proving InterI, InterD, InterE*) lemma Inter_iff: "A \ \(C) <-> (\x\C. A: x) & C\0" by (simp add: Inter_def Ball_def, blast) (* Intersection is well-behaved only if the family is non-empty! *) lemma InterI [intro!]: "[| !!x. x: C ==> A: x; C\0 |] ==> A \ \(C)" by (simp add: Inter_iff) (*A "destruct" rule -- every B in C contains A as an element, but A\B can hold when B\C does not! This rule is analogous to "spec". *) lemma InterD [elim, Pure.elim]: "[| A \ \(C); B \ C |] ==> A \ B" by (unfold Inter_def, blast) (*"Classical" elimination rule -- does not require exhibiting @{term"B\C"} *) lemma InterE [elim]: "[| A \ \(C); B\C ==> R; A\B ==> R |] ==> R" by (simp add: Inter_def, blast) subsection\Rules for Intersections of families\ (* @{term"\x\A. B(x)"} abbreviates @{term"\({B(x). x\A})"} *) lemma INT_iff: "b \ (\x\A. B(x)) <-> (\x\A. b \ B(x)) & A\0" by (force simp add: Inter_def) lemma INT_I: "[| !!x. x: A ==> b: B(x); A\0 |] ==> b: (\x\A. B(x))" by blast lemma INT_E: "[| b \ (\x\A. B(x)); a: A |] ==> b \ B(a)" by blast lemma INT_cong: "[| A=B; !!x. x\B ==> C(x)=D(x) |] ==> (\x\A. C(x)) = (\x\B. D(x))" by simp (*No "Addcongs [INT_cong]" because @{term\} is a combination of constants*) subsection\Rules for Powersets\ lemma PowI: "A \ B ==> A \ Pow(B)" by (erule Pow_iff [THEN iffD2]) lemma PowD: "A \ Pow(B) ==> A<=B" by (erule Pow_iff [THEN iffD1]) declare Pow_iff [iff] lemmas Pow_bottom = empty_subsetI [THEN PowI] \\@{term"0 \ Pow(B)"}\ lemmas Pow_top = subset_refl [THEN PowI] \\@{term"A \ Pow(A)"}\ subsection\Cantor's Theorem: There is no surjection from a set to its powerset.\ (*The search is undirected. Allowing redundant introduction rules may make it diverge. Variable b represents ANY map, such as (lam x\A.b(x)): A->Pow(A). *) lemma cantor: "\S \ Pow(A). \x\A. b(x) \ S" by (best elim!: equalityCE del: ReplaceI RepFun_eqI) end -