diff --git a/src/HOL/Groups_Big.thy b/src/HOL/Groups_Big.thy --- a/src/HOL/Groups_Big.thy +++ b/src/HOL/Groups_Big.thy @@ -1,1611 +1,1634 @@ (* Title: HOL/Groups_Big.thy Author: Tobias Nipkow Author: Lawrence C Paulson Author: Markus Wenzel Author: Jeremy Avigad *) section \Big sum and product over finite (non-empty) sets\ theory Groups_Big imports Power begin subsection \Generic monoid operation over a set\ locale comm_monoid_set = comm_monoid begin subsubsection \Standard sum or product indexed by a finite set\ interpretation comp_fun_commute f by standard (simp add: fun_eq_iff left_commute) interpretation comp?: comp_fun_commute "f \ g" by (fact comp_comp_fun_commute) definition F :: "('b \ 'a) \ 'b set \ 'a" where eq_fold: "F g A = Finite_Set.fold (f \ g) \<^bold>1 A" lemma infinite [simp]: "\ finite A \ F g A = \<^bold>1" by (simp add: eq_fold) lemma empty [simp]: "F g {} = \<^bold>1" by (simp add: eq_fold) lemma insert [simp]: "finite A \ x \ A \ F g (insert x A) = g x \<^bold>* F g A" by (simp add: eq_fold) lemma remove: assumes "finite A" and "x \ A" shows "F g A = g x \<^bold>* F g (A - {x})" proof - from \x \ A\ obtain B where B: "A = insert x B" and "x \ B" by (auto dest: mk_disjoint_insert) moreover from \finite A\ B have "finite B" by simp ultimately show ?thesis by simp qed lemma insert_remove: "finite A \ F g (insert x A) = g x \<^bold>* F g (A - {x})" by (cases "x \ A") (simp_all add: remove insert_absorb) lemma insert_if: "finite A \ F g (insert x A) = (if x \ A then F g A else g x \<^bold>* F g A)" by (cases "x \ A") (simp_all add: insert_absorb) lemma neutral: "\x\A. g x = \<^bold>1 \ F g A = \<^bold>1" by (induct A rule: infinite_finite_induct) simp_all lemma neutral_const [simp]: "F (\_. \<^bold>1) A = \<^bold>1" by (simp add: neutral) lemma union_inter: assumes "finite A" and "finite B" shows "F g (A \ B) \<^bold>* F g (A \ B) = F g A \<^bold>* F g B" \ \The reversed orientation looks more natural, but LOOPS as a simprule!\ using assms proof (induct A) case empty then show ?case by simp next case (insert x A) then show ?case by (auto simp: insert_absorb Int_insert_left commute [of _ "g x"] assoc left_commute) qed corollary union_inter_neutral: assumes "finite A" and "finite B" and "\x \ A \ B. g x = \<^bold>1" shows "F g (A \ B) = F g A \<^bold>* F g B" using assms by (simp add: union_inter [symmetric] neutral) corollary union_disjoint: assumes "finite A" and "finite B" assumes "A \ B = {}" shows "F g (A \ B) = F g A \<^bold>* F g B" using assms by (simp add: union_inter_neutral) lemma union_diff2: assumes "finite A" and "finite B" shows "F g (A \ B) = F g (A - B) \<^bold>* F g (B - A) \<^bold>* F g (A \ B)" proof - have "A \ B = A - B \ (B - A) \ A \ B" by auto with assms show ?thesis by simp (subst union_disjoint, auto)+ qed lemma subset_diff: assumes "B \ A" and "finite A" shows "F g A = F g (A - B) \<^bold>* F g B" proof - from assms have "finite (A - B)" by auto moreover from assms have "finite B" by (rule finite_subset) moreover from assms have "(A - B) \ B = {}" by auto ultimately have "F g (A - B \ B) = F g (A - B) \<^bold>* F g B" by (rule union_disjoint) moreover from assms have "A \ B = A" by auto ultimately show ?thesis by simp qed lemma Int_Diff: assumes "finite A" shows "F g A = F g (A \ B) \<^bold>* F g (A - B)" by (subst subset_diff [where B = "A - B"]) (auto simp: Diff_Diff_Int assms) lemma setdiff_irrelevant: assumes "finite A" shows "F g (A - {x. g x = z}) = F g A" using assms by (induct A) (simp_all add: insert_Diff_if) lemma not_neutral_contains_not_neutral: assumes "F g A \ \<^bold>1" obtains a where "a \ A" and "g a \ \<^bold>1" proof - from assms have "\a\A. g a \ \<^bold>1" proof (induct A rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case (insert a A) then show ?case by fastforce qed with that show thesis by blast qed lemma reindex: assumes "inj_on h A" shows "F g (h ` A) = F (g \ h) A" proof (cases "finite A") case True with assms show ?thesis by (simp add: eq_fold fold_image comp_assoc) next case False with assms have "\ finite (h ` A)" by (blast dest: finite_imageD) with False show ?thesis by simp qed lemma cong [fundef_cong]: assumes "A = B" assumes g_h: "\x. x \ B \ g x = h x" shows "F g A = F h B" using g_h unfolding \A = B\ by (induct B rule: infinite_finite_induct) auto lemma cong_simp [cong]: "\ A = B; \x. x \ B =simp=> g x = h x \ \ F (\x. g x) A = F (\x. h x) B" by (rule cong) (simp_all add: simp_implies_def) lemma reindex_cong: assumes "inj_on l B" assumes "A = l ` B" assumes "\x. x \ B \ g (l x) = h x" shows "F g A = F h B" using assms by (simp add: reindex) lemma UNION_disjoint: assumes "finite I" and "\i\I. finite (A i)" and "\i\I. \j\I. i \ j \ A i \ A j = {}" shows "F g (\(A ` I)) = F (\x. F g (A x)) I" using assms proof (induction rule: finite_induct) case (insert i I) then have "\j\I. j \ i" by blast with insert.prems have "A i \ \(A ` I) = {}" by blast with insert show ?case by (simp add: union_disjoint) qed auto lemma Union_disjoint: assumes "\A\C. finite A" "\A\C. \B\C. A \ B \ A \ B = {}" shows "F g (\C) = (F \ F) g C" proof (cases "finite C") case True from UNION_disjoint [OF this assms] show ?thesis by simp next case False then show ?thesis by (auto dest: finite_UnionD intro: infinite) qed lemma distrib: "F (\x. g x \<^bold>* h x) A = F g A \<^bold>* F h A" by (induct A rule: infinite_finite_induct) (simp_all add: assoc commute left_commute) lemma Sigma: assumes "finite A" "\x\A. finite (B x)" shows "F (\x. F (g x) (B x)) A = F (case_prod g) (SIGMA x:A. B x)" unfolding Sigma_def proof (subst UNION_disjoint) show "F (\x. F (g x) (B x)) A = F (\x. F (\(x, y). g x y) (\y\B x. {(x, y)})) A" proof (rule cong [OF refl]) show "F (g x) (B x) = F (\(x, y). g x y) (\y\B x. {(x, y)})" if "x \ A" for x using that assms by (simp add: UNION_disjoint) qed qed (use assms in auto) lemma related: assumes Re: "R \<^bold>1 \<^bold>1" and Rop: "\x1 y1 x2 y2. R x1 x2 \ R y1 y2 \ R (x1 \<^bold>* y1) (x2 \<^bold>* y2)" and fin: "finite S" and R_h_g: "\x\S. R (h x) (g x)" shows "R (F h S) (F g S)" using fin by (rule finite_subset_induct) (use assms in auto) lemma mono_neutral_cong_left: assumes "finite T" and "S \ T" and "\i \ T - S. h i = \<^bold>1" and "\x. x \ S \ g x = h x" shows "F g S = F h T" proof- have eq: "T = S \ (T - S)" using \S \ T\ by blast have d: "S \ (T - S) = {}" using \S \ T\ by blast from \finite T\ \S \ T\ have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) show ?thesis using assms(4) by (simp add: union_disjoint [OF f d, unfolded eq [symmetric]] neutral [OF assms(3)]) qed lemma mono_neutral_cong_right: "finite T \ S \ T \ \i \ T - S. g i = \<^bold>1 \ (\x. x \ S \ g x = h x) \ F g T = F h S" by (auto intro!: mono_neutral_cong_left [symmetric]) lemma mono_neutral_left: "finite T \ S \ T \ \i \ T - S. g i = \<^bold>1 \ F g S = F g T" by (blast intro: mono_neutral_cong_left) lemma mono_neutral_right: "finite T \ S \ T \ \i \ T - S. g i = \<^bold>1 \ F g T = F g S" by (blast intro!: mono_neutral_left [symmetric]) lemma mono_neutral_cong: assumes [simp]: "finite T" "finite S" and *: "\i. i \ T - S \ h i = \<^bold>1" "\i. i \ S - T \ g i = \<^bold>1" and gh: "\x. x \ S \ T \ g x = h x" shows "F g S = F h T" proof- have "F g S = F g (S \ T)" by(rule mono_neutral_right)(auto intro: *) also have "\ = F h (S \ T)" using refl gh by(rule cong) also have "\ = F h T" by(rule mono_neutral_left)(auto intro: *) finally show ?thesis . qed lemma reindex_bij_betw: "bij_betw h S T \ F (\x. g (h x)) S = F g T" by (auto simp: bij_betw_def reindex) lemma reindex_bij_witness: assumes witness: "\a. a \ S \ i (j a) = a" "\a. a \ S \ j a \ T" "\b. b \ T \ j (i b) = b" "\b. b \ T \ i b \ S" assumes eq: "\a. a \ S \ h (j a) = g a" shows "F g S = F h T" proof - have "bij_betw j S T" using bij_betw_byWitness[where A=S and f=j and f'=i and A'=T] witness by auto moreover have "F g S = F (\x. h (j x)) S" by (intro cong) (auto simp: eq) ultimately show ?thesis by (simp add: reindex_bij_betw) qed lemma reindex_bij_betw_not_neutral: assumes fin: "finite S'" "finite T'" assumes bij: "bij_betw h (S - S') (T - T')" assumes nn: "\a. a \ S' \ g (h a) = z" "\b. b \ T' \ g b = z" shows "F (\x. g (h x)) S = F g T" proof - have [simp]: "finite S \ finite T" using bij_betw_finite[OF bij] fin by auto show ?thesis proof (cases "finite S") case True with nn have "F (\x. g (h x)) S = F (\x. g (h x)) (S - S')" by (intro mono_neutral_cong_right) auto also have "\ = F g (T - T')" using bij by (rule reindex_bij_betw) also have "\ = F g T" using nn \finite S\ by (intro mono_neutral_cong_left) auto finally show ?thesis . next case False then show ?thesis by simp qed qed lemma reindex_nontrivial: assumes "finite A" and nz: "\x y. x \ A \ y \ A \ x \ y \ h x = h y \ g (h x) = \<^bold>1" shows "F g (h ` A) = F (g \ h) A" proof (subst reindex_bij_betw_not_neutral [symmetric]) show "bij_betw h (A - {x \ A. (g \ h) x = \<^bold>1}) (h ` A - h ` {x \ A. (g \ h) x = \<^bold>1})" using nz by (auto intro!: inj_onI simp: bij_betw_def) qed (use \finite A\ in auto) lemma reindex_bij_witness_not_neutral: assumes fin: "finite S'" "finite T'" assumes witness: "\a. a \ S - S' \ i (j a) = a" "\a. a \ S - S' \ j a \ T - T'" "\b. b \ T - T' \ j (i b) = b" "\b. b \ T - T' \ i b \ S - S'" assumes nn: "\a. a \ S' \ g a = z" "\b. b \ T' \ h b = z" assumes eq: "\a. a \ S \ h (j a) = g a" shows "F g S = F h T" proof - have bij: "bij_betw j (S - (S' \ S)) (T - (T' \ T))" using witness by (intro bij_betw_byWitness[where f'=i]) auto have F_eq: "F g S = F (\x. h (j x)) S" by (intro cong) (auto simp: eq) show ?thesis unfolding F_eq using fin nn eq by (intro reindex_bij_betw_not_neutral[OF _ _ bij]) auto qed lemma delta_remove: assumes fS: "finite S" shows "F (\k. if k = a then b k else c k) S = (if a \ S then b a \<^bold>* F c (S-{a}) else F c (S-{a}))" proof - let ?f = "(\k. if k = a then b k else c k)" show ?thesis proof (cases "a \ S") case False then have "\k\S. ?f k = c k" by simp with False show ?thesis by simp next case True let ?A = "S - {a}" let ?B = "{a}" from True have eq: "S = ?A \ ?B" by blast have dj: "?A \ ?B = {}" by simp from fS have fAB: "finite ?A" "finite ?B" by auto have "F ?f S = F ?f ?A \<^bold>* F ?f ?B" using union_disjoint [OF fAB dj, of ?f, unfolded eq [symmetric]] by simp with True show ?thesis using comm_monoid_set.remove comm_monoid_set_axioms fS by fastforce qed qed lemma delta [simp]: assumes fS: "finite S" shows "F (\k. if k = a then b k else \<^bold>1) S = (if a \ S then b a else \<^bold>1)" by (simp add: delta_remove [OF assms]) lemma delta' [simp]: assumes fin: "finite S" shows "F (\k. if a = k then b k else \<^bold>1) S = (if a \ S then b a else \<^bold>1)" using delta [OF fin, of a b, symmetric] by (auto intro: cong) lemma If_cases: fixes P :: "'b \ bool" and g h :: "'b \ 'a" assumes fin: "finite A" shows "F (\x. if P x then h x else g x) A = F h (A \ {x. P x}) \<^bold>* F g (A \ - {x. P x})" proof - have a: "A = A \ {x. P x} \ A \ -{x. P x}" "(A \ {x. P x}) \ (A \ -{x. P x}) = {}" by blast+ from fin have f: "finite (A \ {x. P x})" "finite (A \ -{x. P x})" by auto let ?g = "\x. if P x then h x else g x" from union_disjoint [OF f a(2), of ?g] a(1) show ?thesis by (subst (1 2) cong) simp_all qed lemma cartesian_product: "F (\x. F (g x) B) A = F (case_prod g) (A \ B)" proof (cases "A = {} \ B = {}") case True then show ?thesis by auto next case False then have "A \ {}" "B \ {}" by auto show ?thesis proof (cases "finite A \ finite B") case True then show ?thesis by (simp add: Sigma) next case False then consider "infinite A" | "infinite B" by auto then have "infinite (A \ B)" by cases (use \A \ {}\ \B \ {}\ in \auto dest: finite_cartesian_productD1 finite_cartesian_productD2\) then show ?thesis using False by auto qed qed lemma inter_restrict: assumes "finite A" shows "F g (A \ B) = F (\x. if x \ B then g x else \<^bold>1) A" proof - let ?g = "\x. if x \ A \ B then g x else \<^bold>1" have "\i\A - A \ B. (if i \ A \ B then g i else \<^bold>1) = \<^bold>1" by simp moreover have "A \ B \ A" by blast ultimately have "F ?g (A \ B) = F ?g A" using \finite A\ by (intro mono_neutral_left) auto then show ?thesis by simp qed lemma inter_filter: "finite A \ F g {x \ A. P x} = F (\x. if P x then g x else \<^bold>1) A" by (simp add: inter_restrict [symmetric, of A "{x. P x}" g, simplified mem_Collect_eq] Int_def) lemma Union_comp: assumes "\A \ B. finite A" and "\A1 A2 x. A1 \ B \ A2 \ B \ A1 \ A2 \ x \ A1 \ x \ A2 \ g x = \<^bold>1" shows "F g (\B) = (F \ F) g B" using assms proof (induct B rule: infinite_finite_induct) case (infinite A) then have "\ finite (\A)" by (blast dest: finite_UnionD) with infinite show ?case by simp next case empty then show ?case by simp next case (insert A B) then have "finite A" "finite B" "finite (\B)" "A \ B" and "\x\A \ \B. g x = \<^bold>1" and H: "F g (\B) = (F \ F) g B" by auto then have "F g (A \ \B) = F g A \<^bold>* F g (\B)" by (simp add: union_inter_neutral) with \finite B\ \A \ B\ show ?case by (simp add: H) qed lemma swap: "F (\i. F (g i) B) A = F (\j. F (\i. g i j) A) B" unfolding cartesian_product by (rule reindex_bij_witness [where i = "\(i, j). (j, i)" and j = "\(i, j). (j, i)"]) auto lemma swap_restrict: "finite A \ finite B \ F (\x. F (g x) {y. y \ B \ R x y}) A = F (\y. F (\x. g x y) {x. x \ A \ R x y}) B" by (simp add: inter_filter) (rule swap) lemma image_gen: assumes fin: "finite S" shows "F h S = F (\y. F h {x. x \ S \ g x = y}) (g ` S)" proof - have "{y. y\ g`S \ g x = y} = {g x}" if "x \ S" for x using that by auto then have "F h S = F (\x. F (\y. h x) {y. y\ g`S \ g x = y}) S" by simp also have "\ = F (\y. F h {x. x \ S \ g x = y}) (g ` S)" by (rule swap_restrict [OF fin finite_imageI [OF fin]]) finally show ?thesis . qed lemma group: assumes fS: "finite S" and fT: "finite T" and fST: "g ` S \ T" shows "F (\y. F h {x. x \ S \ g x = y}) T = F h S" unfolding image_gen[OF fS, of h g] by (auto intro: neutral mono_neutral_right[OF fT fST]) lemma Plus: fixes A :: "'b set" and B :: "'c set" assumes fin: "finite A" "finite B" shows "F g (A <+> B) = F (g \ Inl) A \<^bold>* F (g \ Inr) B" proof - have "A <+> B = Inl ` A \ Inr ` B" by auto moreover from fin have "finite (Inl ` A)" "finite (Inr ` B)" by auto moreover have "Inl ` A \ Inr ` B = {}" by auto moreover have "inj_on Inl A" "inj_on Inr B" by (auto intro: inj_onI) ultimately show ?thesis using fin by (simp add: union_disjoint reindex) qed lemma same_carrier: assumes "finite C" assumes subset: "A \ C" "B \ C" assumes trivial: "\a. a \ C - A \ g a = \<^bold>1" "\b. b \ C - B \ h b = \<^bold>1" shows "F g A = F h B \ F g C = F h C" proof - have "finite A" and "finite B" and "finite (C - A)" and "finite (C - B)" using \finite C\ subset by (auto elim: finite_subset) from subset have [simp]: "A - (C - A) = A" by auto from subset have [simp]: "B - (C - B) = B" by auto from subset have "C = A \ (C - A)" by auto then have "F g C = F g (A \ (C - A))" by simp also have "\ = F g (A - (C - A)) \<^bold>* F g (C - A - A) \<^bold>* F g (A \ (C - A))" using \finite A\ \finite (C - A)\ by (simp only: union_diff2) finally have *: "F g C = F g A" using trivial by simp from subset have "C = B \ (C - B)" by auto then have "F h C = F h (B \ (C - B))" by simp also have "\ = F h (B - (C - B)) \<^bold>* F h (C - B - B) \<^bold>* F h (B \ (C - B))" using \finite B\ \finite (C - B)\ by (simp only: union_diff2) finally have "F h C = F h B" using trivial by simp with * show ?thesis by simp qed lemma same_carrierI: assumes "finite C" assumes subset: "A \ C" "B \ C" assumes trivial: "\a. a \ C - A \ g a = \<^bold>1" "\b. b \ C - B \ h b = \<^bold>1" assumes "F g C = F h C" shows "F g A = F h B" using assms same_carrier [of C A B] by simp lemma eq_general: assumes B: "\y. y \ B \ \!x. x \ A \ h x = y" and A: "\x. x \ A \ h x \ B \ \(h x) = \ x" shows "F \ A = F \ B" proof - have eq: "B = h ` A" by (auto dest: assms) have h: "inj_on h A" using assms by (blast intro: inj_onI) have "F \ A = F (\ \ h) A" using A by auto also have "\ = F \ B" by (simp add: eq reindex h) finally show ?thesis . qed lemma eq_general_inverses: assumes B: "\y. y \ B \ k y \ A \ h(k y) = y" and A: "\x. x \ A \ h x \ B \ k(h x) = x \ \(h x) = \ x" shows "F \ A = F \ B" by (rule eq_general [where h=h]) (force intro: dest: A B)+ subsubsection \HOL Light variant: sum/product indexed by the non-neutral subset\ text \NB only a subset of the properties above are proved\ definition G :: "['b \ 'a,'b set] \ 'a" where "G p I \ if finite {x \ I. p x \ \<^bold>1} then F p {x \ I. p x \ \<^bold>1} else \<^bold>1" lemma finite_Collect_op: shows "\finite {i \ I. x i \ \<^bold>1}; finite {i \ I. y i \ \<^bold>1}\ \ finite {i \ I. x i \<^bold>* y i \ \<^bold>1}" apply (rule finite_subset [where B = "{i \ I. x i \ \<^bold>1} \ {i \ I. y i \ \<^bold>1}"]) using left_neutral by force+ lemma empty' [simp]: "G p {} = \<^bold>1" by (auto simp: G_def) lemma eq_sum [simp]: "finite I \ G p I = F p I" by (auto simp: G_def intro: mono_neutral_cong_left) lemma insert' [simp]: assumes "finite {x \ I. p x \ \<^bold>1}" shows "G p (insert i I) = (if i \ I then G p I else p i \<^bold>* G p I)" proof - have "{x. x = i \ p x \ \<^bold>1 \ x \ I \ p x \ \<^bold>1} = (if p i = \<^bold>1 then {x \ I. p x \ \<^bold>1} else insert i {x \ I. p x \ \<^bold>1})" by auto then show ?thesis using assms by (simp add: G_def conj_disj_distribR insert_absorb) qed lemma distrib_triv': assumes "finite I" shows "G (\i. g i \<^bold>* h i) I = G g I \<^bold>* G h I" by (simp add: assms local.distrib) lemma non_neutral': "G g {x \ I. g x \ \<^bold>1} = G g I" by (simp add: G_def) lemma distrib': assumes "finite {x \ I. g x \ \<^bold>1}" "finite {x \ I. h x \ \<^bold>1}" shows "G (\i. g i \<^bold>* h i) I = G g I \<^bold>* G h I" proof - have "a \<^bold>* a \ a \ a \ \<^bold>1" for a by auto then have "G (\i. g i \<^bold>* h i) I = G (\i. g i \<^bold>* h i) ({i \ I. g i \ \<^bold>1} \ {i \ I. h i \ \<^bold>1})" using assms by (force simp: G_def finite_Collect_op intro!: mono_neutral_cong) also have "\ = G g I \<^bold>* G h I" proof - have "F g ({i \ I. g i \ \<^bold>1} \ {i \ I. h i \ \<^bold>1}) = G g I" "F h ({i \ I. g i \ \<^bold>1} \ {i \ I. h i \ \<^bold>1}) = G h I" by (auto simp: G_def assms intro: mono_neutral_right) then show ?thesis using assms by (simp add: distrib) qed finally show ?thesis . qed lemma cong': assumes "A = B" assumes g_h: "\x. x \ B \ g x = h x" shows "G g A = G h B" using assms by (auto simp: G_def cong: conj_cong intro: cong) lemma mono_neutral_cong_left': assumes "S \ T" and "\i. i \ T - S \ h i = \<^bold>1" and "\x. x \ S \ g x = h x" shows "G g S = G h T" proof - have *: "{x \ S. g x \ \<^bold>1} = {x \ T. h x \ \<^bold>1}" using assms by (metis DiffI subset_eq) then have "finite {x \ S. g x \ \<^bold>1} = finite {x \ T. h x \ \<^bold>1}" by simp then show ?thesis using assms by (auto simp add: G_def * intro: cong) qed lemma mono_neutral_cong_right': "S \ T \ \i \ T - S. g i = \<^bold>1 \ (\x. x \ S \ g x = h x) \ G g T = G h S" by (auto intro!: mono_neutral_cong_left' [symmetric]) lemma mono_neutral_left': "S \ T \ \i \ T - S. g i = \<^bold>1 \ G g S = G g T" by (blast intro: mono_neutral_cong_left') lemma mono_neutral_right': "S \ T \ \i \ T - S. g i = \<^bold>1 \ G g T = G g S" by (blast intro!: mono_neutral_left' [symmetric]) end subsection \Generalized summation over a set\ context comm_monoid_add begin sublocale sum: comm_monoid_set plus 0 defines sum = sum.F and sum' = sum.G .. abbreviation Sum ("\") where "\ \ sum (\x. x)" end text \Now: lots of fancy syntax. First, \<^term>\sum (\x. e) A\ is written \\x\A. e\.\ syntax (ASCII) "_sum" :: "pttrn \ 'a set \ 'b \ 'b::comm_monoid_add" ("(3SUM (_/:_)./ _)" [0, 51, 10] 10) syntax "_sum" :: "pttrn \ 'a set \ 'b \ 'b::comm_monoid_add" ("(2\(_/\_)./ _)" [0, 51, 10] 10) translations \ \Beware of argument permutation!\ "\i\A. b" \ "CONST sum (\i. b) A" text \Instead of \<^term>\\x\{x. P}. e\ we introduce the shorter \\x|P. e\.\ syntax (ASCII) "_qsum" :: "pttrn \ bool \ 'a \ 'a" ("(3SUM _ |/ _./ _)" [0, 0, 10] 10) syntax "_qsum" :: "pttrn \ bool \ 'a \ 'a" ("(2\_ | (_)./ _)" [0, 0, 10] 10) translations "\x|P. t" => "CONST sum (\x. t) {x. P}" print_translation \ let fun sum_tr' [Abs (x, Tx, t), Const (\<^const_syntax>\Collect\, _) $ Abs (y, Ty, P)] = if x <> y then raise Match else let val x' = Syntax_Trans.mark_bound_body (x, Tx); val t' = subst_bound (x', t); val P' = subst_bound (x', P); in Syntax.const \<^syntax_const>\_qsum\ $ Syntax_Trans.mark_bound_abs (x, Tx) $ P' $ t' end | sum_tr' _ = raise Match; in [(\<^const_syntax>\sum\, K sum_tr')] end \ subsubsection \Properties in more restricted classes of structures\ lemma sum_Un: "finite A \ finite B \ sum f (A \ B) = sum f A + sum f B - sum f (A \ B)" for f :: "'b \ 'a::ab_group_add" by (subst sum.union_inter [symmetric]) (auto simp add: algebra_simps) lemma sum_Un2: assumes "finite (A \ B)" shows "sum f (A \ B) = sum f (A - B) + sum f (B - A) + sum f (A \ B)" proof - have "A \ B = A - B \ (B - A) \ A \ B" by auto with assms show ?thesis by simp (subst sum.union_disjoint, auto)+ qed lemma sum_diff1: fixes f :: "'b \ 'a::ab_group_add" assumes "finite A" shows "sum f (A - {a}) = (if a \ A then sum f A - f a else sum f A)" using assms by induct (auto simp: insert_Diff_if) lemma sum_diff: fixes f :: "'b \ 'a::ab_group_add" assumes "finite A" "B \ A" shows "sum f (A - B) = sum f A - sum f B" proof - from assms(2,1) have "finite B" by (rule finite_subset) from this \B \ A\ show ?thesis proof induct case empty thus ?case by simp next case (insert x F) with \finite A\ \finite B\ show ?case by (simp add: Diff_insert[where a=x and B=F] sum_diff1 insert_absorb) qed qed lemma sum_diff1'_aux: fixes f :: "'a \ 'b::ab_group_add" assumes "finite F" "{i \ I. f i \ 0} \ F" shows "sum' f (I - {i}) = (if i \ I then sum' f I - f i else sum' f I)" using assms proof induct case (insert x F) have 1: "finite {x \ I. f x \ 0} \ finite {x \ I. x \ i \ f x \ 0}" by (erule rev_finite_subset) auto have 2: "finite {x \ I. x \ i \ f x \ 0} \ finite {x \ I. f x \ 0}" apply (drule finite_insert [THEN iffD2]) by (erule rev_finite_subset) auto have 3: "finite {i \ I. f i \ 0}" using finite_subset insert by blast show ?case using insert sum_diff1 [of "{i \ I. f i \ 0}" f i] by (auto simp: sum.G_def 1 2 3 set_diff_eq conj_ac) qed (simp add: sum.G_def) lemma sum_diff1': fixes f :: "'a \ 'b::ab_group_add" assumes "finite {i \ I. f i \ 0}" shows "sum' f (I - {i}) = (if i \ I then sum' f I - f i else sum' f I)" by (rule sum_diff1'_aux [OF assms order_refl]) lemma (in ordered_comm_monoid_add) sum_mono: "(\i. i\K \ f i \ g i) \ (\i\K. f i) \ (\i\K. g i)" by (induct K rule: infinite_finite_induct) (use add_mono in auto) lemma (in strict_ordered_comm_monoid_add) sum_strict_mono: assumes "finite A" "A \ {}" and "\x. x \ A \ f x < g x" shows "sum f A < sum g A" using assms proof (induct rule: finite_ne_induct) case singleton then show ?case by simp next case insert then show ?case by (auto simp: add_strict_mono) qed lemma sum_strict_mono_ex1: fixes f g :: "'i \ 'a::ordered_cancel_comm_monoid_add" assumes "finite A" and "\x\A. f x \ g x" and "\a\A. f a < g a" shows "sum f A < sum g A" proof- from assms(3) obtain a where a: "a \ A" "f a < g a" by blast have "sum f A = sum f ((A - {a}) \ {a})" by(simp add: insert_absorb[OF \a \ A\]) also have "\ = sum f (A - {a}) + sum f {a}" using \finite A\ by(subst sum.union_disjoint) auto also have "sum f (A - {a}) \ sum g (A - {a})" by (rule sum_mono) (simp add: assms(2)) also from a have "sum f {a} < sum g {a}" by simp also have "sum g (A - {a}) + sum g {a} = sum g((A - {a}) \ {a})" using \finite A\ by (subst sum.union_disjoint[symmetric]) auto also have "\ = sum g A" by (simp add: insert_absorb[OF \a \ A\]) finally show ?thesis by (auto simp add: add_right_mono add_strict_left_mono) qed lemma sum_mono_inv: fixes f g :: "'i \ 'a :: ordered_cancel_comm_monoid_add" assumes eq: "sum f I = sum g I" assumes le: "\i. i \ I \ f i \ g i" assumes i: "i \ I" assumes I: "finite I" shows "f i = g i" proof (rule ccontr) assume "\ ?thesis" with le[OF i] have "f i < g i" by simp with i have "\i\I. f i < g i" .. from sum_strict_mono_ex1[OF I _ this] le have "sum f I < sum g I" by blast with eq show False by simp qed lemma member_le_sum: fixes f :: "_ \ 'b::{semiring_1, ordered_comm_monoid_add}" assumes "i \ A" and le: "\x. x \ A - {i} \ 0 \ f x" and "finite A" shows "f i \ sum f A" proof - have "f i \ sum f (A \ {i})" by (simp add: assms) also have "... = (\x\A. if x \ {i} then f x else 0)" using assms sum.inter_restrict by blast also have "... \ sum f A" apply (rule sum_mono) apply (auto simp: le) done finally show ?thesis . qed lemma sum_negf: "(\x\A. - f x) = - (\x\A. f x)" for f :: "'b \ 'a::ab_group_add" by (induct A rule: infinite_finite_induct) auto lemma sum_subtractf: "(\x\A. f x - g x) = (\x\A. f x) - (\x\A. g x)" for f g :: "'b \'a::ab_group_add" using sum.distrib [of f "- g" A] by (simp add: sum_negf) lemma sum_subtractf_nat: "(\x. x \ A \ g x \ f x) \ (\x\A. f x - g x) = (\x\A. f x) - (\x\A. g x)" for f g :: "'a \ nat" by (induct A rule: infinite_finite_induct) (auto simp: sum_mono) context ordered_comm_monoid_add begin lemma sum_nonneg: "(\x. x \ A \ 0 \ f x) \ 0 \ sum f A" proof (induct A rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case (insert x F) then have "0 + 0 \ f x + sum f F" by (blast intro: add_mono) with insert show ?case by simp qed lemma sum_nonpos: "(\x. x \ A \ f x \ 0) \ sum f A \ 0" proof (induct A rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case (insert x F) then have "f x + sum f F \ 0 + 0" by (blast intro: add_mono) with insert show ?case by simp qed lemma sum_nonneg_eq_0_iff: "finite A \ (\x. x \ A \ 0 \ f x) \ sum f A = 0 \ (\x\A. f x = 0)" by (induct set: finite) (simp_all add: add_nonneg_eq_0_iff sum_nonneg) lemma sum_nonneg_0: "finite s \ (\i. i \ s \ f i \ 0) \ (\ i \ s. f i) = 0 \ i \ s \ f i = 0" by (simp add: sum_nonneg_eq_0_iff) lemma sum_nonneg_leq_bound: assumes "finite s" "\i. i \ s \ f i \ 0" "(\i \ s. f i) = B" "i \ s" shows "f i \ B" proof - from assms have "f i \ f i + (\i \ s - {i}. f i)" by (intro add_increasing2 sum_nonneg) auto also have "\ = B" using sum.remove[of s i f] assms by simp finally show ?thesis by auto qed lemma sum_mono2: assumes fin: "finite B" and sub: "A \ B" and nn: "\b. b \ B-A \ 0 \ f b" shows "sum f A \ sum f B" proof - have "sum f A \ sum f A + sum f (B-A)" by (auto intro: add_increasing2 [OF sum_nonneg] nn) also from fin finite_subset[OF sub fin] have "\ = sum f (A \ (B-A))" by (simp add: sum.union_disjoint del: Un_Diff_cancel) also from sub have "A \ (B-A) = B" by blast finally show ?thesis . qed lemma sum_le_included: assumes "finite s" "finite t" and "\y\t. 0 \ g y" "(\x\s. \y\t. i y = x \ f x \ g y)" shows "sum f s \ sum g t" proof - have "sum f s \ sum (\y. sum g {x. x\t \ i x = y}) s" proof (rule sum_mono) fix y assume "y \ s" with assms obtain z where z: "z \ t" "y = i z" "f y \ g z" by auto with assms show "f y \ sum g {x \ t. i x = y}" (is "?A y \ ?B y") using order_trans[of "?A (i z)" "sum g {z}" "?B (i z)", intro] by (auto intro!: sum_mono2) qed also have "\ \ sum (\y. sum g {x. x\t \ i x = y}) (i ` t)" using assms(2-4) by (auto intro!: sum_mono2 sum_nonneg) also have "\ \ sum g t" using assms by (auto simp: sum.image_gen[symmetric]) finally show ?thesis . qed end lemma (in canonically_ordered_monoid_add) sum_eq_0_iff [simp]: "finite F \ (sum f F = 0) = (\a\F. f a = 0)" by (intro ballI sum_nonneg_eq_0_iff zero_le) context semiring_0 begin lemma sum_distrib_left: "r * sum f A = (\n\A. r * f n)" by (induct A rule: infinite_finite_induct) (simp_all add: algebra_simps) lemma sum_distrib_right: "sum f A * r = (\n\A. f n * r)" by (induct A rule: infinite_finite_induct) (simp_all add: algebra_simps) end lemma sum_divide_distrib: "sum f A / r = (\n\A. f n / r)" for r :: "'a::field" proof (induct A rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case insert then show ?case by (simp add: add_divide_distrib) qed lemma sum_abs[iff]: "\sum f A\ \ sum (\i. \f i\) A" for f :: "'a \ 'b::ordered_ab_group_add_abs" proof (induct A rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case insert then show ?case by (auto intro: abs_triangle_ineq order_trans) qed lemma sum_abs_ge_zero[iff]: "0 \ sum (\i. \f i\) A" for f :: "'a \ 'b::ordered_ab_group_add_abs" by (simp add: sum_nonneg) lemma abs_sum_abs[simp]: "\\a\A. \f a\\ = (\a\A. \f a\)" for f :: "'a \ 'b::ordered_ab_group_add_abs" proof (induct A rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case (insert a A) then have "\\a\insert a A. \f a\\ = \\f a\ + (\a\A. \f a\)\" by simp also from insert have "\ = \\f a\ + \\a\A. \f a\\\" by simp also have "\ = \f a\ + \\a\A. \f a\\" by (simp del: abs_of_nonneg) also from insert have "\ = (\a\insert a A. \f a\)" by simp finally show ?case . qed lemma sum_product: fixes f :: "'a \ 'b::semiring_0" shows "sum f A * sum g B = (\i\A. \j\B. f i * g j)" by (simp add: sum_distrib_left sum_distrib_right) (rule sum.swap) lemma sum_mult_sum_if_inj: fixes f :: "'a \ 'b::semiring_0" shows "inj_on (\(a, b). f a * g b) (A \ B) \ sum f A * sum g B = sum id {f a * g b |a b. a \ A \ b \ B}" by(auto simp: sum_product sum.cartesian_product intro!: sum.reindex_cong[symmetric]) lemma sum_SucD: "sum f A = Suc n \ \a\A. 0 < f a" by (induct A rule: infinite_finite_induct) auto lemma sum_eq_Suc0_iff: "finite A \ sum f A = Suc 0 \ (\a\A. f a = Suc 0 \ (\b\A. a \ b \ f b = 0))" by (induct A rule: finite_induct) (auto simp add: add_is_1) lemmas sum_eq_1_iff = sum_eq_Suc0_iff[simplified One_nat_def[symmetric]] lemma sum_Un_nat: "finite A \ finite B \ sum f (A \ B) = sum f A + sum f B - sum f (A \ B)" for f :: "'a \ nat" \ \For the natural numbers, we have subtraction.\ by (subst sum.union_inter [symmetric]) (auto simp: algebra_simps) lemma sum_diff1_nat: "sum f (A - {a}) = (if a \ A then sum f A - f a else sum f A)" for f :: "'a \ nat" proof (induct A rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case insert then show ?case apply (auto simp: insert_Diff_if) apply (drule mk_disjoint_insert) apply auto done qed lemma sum_diff_nat: fixes f :: "'a \ nat" assumes "finite B" and "B \ A" shows "sum f (A - B) = sum f A - sum f B" using assms proof induct case empty then show ?case by simp next case (insert x F) note IH = \F \ A \ sum f (A - F) = sum f A - sum f F\ from \x \ F\ \insert x F \ A\ have "x \ A - F" by simp then have A: "sum f ((A - F) - {x}) = sum f (A - F) - f x" by (simp add: sum_diff1_nat) from \insert x F \ A\ have "F \ A" by simp with IH have "sum f (A - F) = sum f A - sum f F" by simp with A have B: "sum f ((A - F) - {x}) = sum f A - sum f F - f x" by simp from \x \ F\ have "A - insert x F = (A - F) - {x}" by auto with B have C: "sum f (A - insert x F) = sum f A - sum f F - f x" by simp from \finite F\ \x \ F\ have "sum f (insert x F) = sum f F + f x" by simp with C have "sum f (A - insert x F) = sum f A - sum f (insert x F)" by simp then show ?case by simp qed lemma sum_comp_morphism: "h 0 = 0 \ (\x y. h (x + y) = h x + h y) \ sum (h \ g) A = h (sum g A)" by (induct A rule: infinite_finite_induct) simp_all lemma (in comm_semiring_1) dvd_sum: "(\a. a \ A \ d dvd f a) \ d dvd sum f A" by (induct A rule: infinite_finite_induct) simp_all lemma (in ordered_comm_monoid_add) sum_pos: "finite I \ I \ {} \ (\i. i \ I \ 0 < f i) \ 0 < sum f I" by (induct I rule: finite_ne_induct) (auto intro: add_pos_pos) lemma (in ordered_comm_monoid_add) sum_pos2: assumes I: "finite I" "i \ I" "0 < f i" "\i. i \ I \ 0 \ f i" shows "0 < sum f I" proof - have "0 < f i + sum f (I - {i})" using assms by (intro add_pos_nonneg sum_nonneg) auto also have "\ = sum f I" using assms by (simp add: sum.remove) finally show ?thesis . qed lemma sum_cong_Suc: assumes "0 \ A" "\x. Suc x \ A \ f (Suc x) = g (Suc x)" shows "sum f A = sum g A" proof (rule sum.cong) fix x assume "x \ A" with assms(1) show "f x = g x" by (cases x) (auto intro!: assms(2)) qed simp_all subsubsection \Cardinality as special case of \<^const>\sum\\ lemma card_eq_sum: "card A = sum (\x. 1) A" proof - have "plus \ (\_. Suc 0) = (\_. Suc)" by (simp add: fun_eq_iff) then have "Finite_Set.fold (plus \ (\_. Suc 0)) = Finite_Set.fold (\_. Suc)" by (rule arg_cong) then have "Finite_Set.fold (plus \ (\_. Suc 0)) 0 A = Finite_Set.fold (\_. Suc) 0 A" by (blast intro: fun_cong) then show ?thesis by (simp add: card.eq_fold sum.eq_fold) qed context semiring_1 begin lemma sum_constant [simp]: "(\x \ A. y) = of_nat (card A) * y" by (induct A rule: infinite_finite_induct) (simp_all add: algebra_simps) end lemma sum_Suc: "sum (\x. Suc(f x)) A = sum f A + card A" using sum.distrib[of f "\_. 1" A] by simp lemma sum_bounded_above: fixes K :: "'a::{semiring_1,ordered_comm_monoid_add}" assumes le: "\i. i\A \ f i \ K" shows "sum f A \ of_nat (card A) * K" proof (cases "finite A") case True then show ?thesis using le sum_mono[where K=A and g = "\x. K"] by simp next case False then show ?thesis by simp qed lemma sum_bounded_above_divide: fixes K :: "'a::linordered_field" assumes le: "\i. i\A \ f i \ K / of_nat (card A)" and fin: "finite A" "A \ {}" shows "sum f A \ K" using sum_bounded_above [of A f "K / of_nat (card A)", OF le] fin by simp lemma sum_bounded_above_strict: fixes K :: "'a::{ordered_cancel_comm_monoid_add,semiring_1}" assumes "\i. i\A \ f i < K" "card A > 0" shows "sum f A < of_nat (card A) * K" using assms sum_strict_mono[where A=A and g = "\x. K"] by (simp add: card_gt_0_iff) lemma sum_bounded_below: fixes K :: "'a::{semiring_1,ordered_comm_monoid_add}" assumes le: "\i. i\A \ K \ f i" shows "of_nat (card A) * K \ sum f A" proof (cases "finite A") case True then show ?thesis using le sum_mono[where K=A and f = "\x. K"] by simp next case False then show ?thesis by simp qed lemma convex_sum_bound_le: fixes x :: "'a \ 'b::linordered_idom" assumes 0: "\i. i \ I \ 0 \ x i" and 1: "sum x I = 1" and \: "\i. i \ I \ \a i - b\ \ \" shows "\(\i\I. a i * x i) - b\ \ \" proof - have [simp]: "(\i\I. c * x i) = c" for c by (simp flip: sum_distrib_left 1) then have "\(\i\I. a i * x i) - b\ = \\i\I. (a i - b) * x i\" by (simp add: sum_subtractf left_diff_distrib) also have "\ \ (\i\I. \(a i - b) * x i\)" using abs_abs abs_of_nonneg by blast also have "\ \ (\i\I. \(a i - b)\ * x i)" by (simp add: abs_mult 0) also have "\ \ (\i\I. \ * x i)" by (rule sum_mono) (use \ "0" mult_right_mono in blast) also have "\ = \" by simp finally show ?thesis . qed lemma card_UN_disjoint: assumes "finite I" and "\i\I. finite (A i)" and "\i\I. \j\I. i \ j \ A i \ A j = {}" shows "card (\(A ` I)) = (\i\I. card(A i))" proof - have "(\i\I. card (A i)) = (\i\I. \x\A i. 1)" by simp with assms show ?thesis by (simp add: card_eq_sum sum.UNION_disjoint del: sum_constant) qed lemma card_Union_disjoint: assumes "pairwise disjnt C" and fin: "\A. A \ C \ finite A" shows "card (\C) = sum card C" proof (cases "finite C") case True then show ?thesis using card_UN_disjoint [OF True, of "\x. x"] assms by (simp add: disjnt_def fin pairwise_def) next case False then show ?thesis using assms card_eq_0_iff finite_UnionD by fastforce qed +lemma card_Union_le_sum_card: + fixes U :: "'a set set" + assumes "\u \ U. finite u" + shows "card (\U) \ sum card U" +proof (cases "finite U") + case False + then show "card (\U) \ sum card U" + using card_eq_0_iff finite_UnionD by auto +next + case True + then show "card (\U) \ sum card U" + proof (induct U rule: finite_induct) + case empty + then show ?case by auto + next + case (insert x F) + then have "card(\(insert x F)) \ card(x) + card (\F)" using card_Un_le by auto + also have "... \ card(x) + sum card F" using insert.hyps by auto + also have "... = sum card (insert x F)" using sum.insert_if and insert.hyps by auto + finally show ?case . + qed +qed + lemma card_UN_le: assumes "finite I" shows "card(\i\I. A i) \ (\i\I. card(A i))" using assms proof induction case (insert i I) then show ?case using card_Un_le nat_add_left_cancel_le by (force intro: order_trans) qed auto lemma sum_multicount_gen: assumes "finite s" "finite t" "\j\t. (card {i\s. R i j} = k j)" shows "sum (\i. (card {j\t. R i j})) s = sum k t" (is "?l = ?r") proof- have "?l = sum (\i. sum (\x.1) {j\t. R i j}) s" by auto also have "\ = ?r" unfolding sum.swap_restrict [OF assms(1-2)] using assms(3) by auto finally show ?thesis . qed lemma sum_multicount: assumes "finite S" "finite T" "\j\T. (card {i\S. R i j} = k)" shows "sum (\i. card {j\T. R i j}) S = k * card T" (is "?l = ?r") proof- have "?l = sum (\i. k) T" by (rule sum_multicount_gen) (auto simp: assms) also have "\ = ?r" by (simp add: mult.commute) finally show ?thesis by auto qed lemma sum_card_image: assumes "finite A" assumes "pairwise (\s t. disjnt (f s) (f t)) A" shows "sum card (f ` A) = sum (\a. card (f a)) A" using assms proof (induct A) case (insert a A) show ?case proof cases assume "f a = {}" with insert show ?case by (subst sum.mono_neutral_right[where S="f ` A"]) (auto simp: pairwise_insert) next assume "f a \ {}" then have "sum card (insert (f a) (f ` A)) = card (f a) + sum card (f ` A)" using insert by (subst sum.insert) (auto simp: pairwise_insert) with insert show ?case by (simp add: pairwise_insert) qed qed simp subsubsection \Cardinality of products\ lemma card_SigmaI [simp]: "finite A \ \a\A. finite (B a) \ card (SIGMA x: A. B x) = (\a\A. card (B a))" by (simp add: card_eq_sum sum.Sigma del: sum_constant) (* lemma SigmaI_insert: "y \ A ==> (SIGMA x:(insert y A). B x) = (({y} \ (B y)) \ (SIGMA x: A. B x))" by auto *) lemma card_cartesian_product: "card (A \ B) = card A * card B" by (cases "finite A \ finite B") (auto simp add: card_eq_0_iff dest: finite_cartesian_productD1 finite_cartesian_productD2) lemma card_cartesian_product_singleton: "card ({x} \ A) = card A" by (simp add: card_cartesian_product) subsection \Generalized product over a set\ context comm_monoid_mult begin sublocale prod: comm_monoid_set times 1 defines prod = prod.F and prod' = prod.G .. abbreviation Prod ("\_" [1000] 999) where "\A \ prod (\x. x) A" end syntax (ASCII) "_prod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(4PROD (_/:_)./ _)" [0, 51, 10] 10) syntax "_prod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(2\(_/\_)./ _)" [0, 51, 10] 10) translations \ \Beware of argument permutation!\ "\i\A. b" == "CONST prod (\i. b) A" text \Instead of \<^term>\\x\{x. P}. e\ we introduce the shorter \\x|P. e\.\ syntax (ASCII) "_qprod" :: "pttrn \ bool \ 'a \ 'a" ("(4PROD _ |/ _./ _)" [0, 0, 10] 10) syntax "_qprod" :: "pttrn \ bool \ 'a \ 'a" ("(2\_ | (_)./ _)" [0, 0, 10] 10) translations "\x|P. t" => "CONST prod (\x. t) {x. P}" context comm_monoid_mult begin lemma prod_dvd_prod: "(\a. a \ A \ f a dvd g a) \ prod f A dvd prod g A" proof (induct A rule: infinite_finite_induct) case infinite then show ?case by (auto intro: dvdI) next case empty then show ?case by (auto intro: dvdI) next case (insert a A) then have "f a dvd g a" and "prod f A dvd prod g A" by simp_all then obtain r s where "g a = f a * r" and "prod g A = prod f A * s" by (auto elim!: dvdE) then have "g a * prod g A = f a * prod f A * (r * s)" by (simp add: ac_simps) with insert.hyps show ?case by (auto intro: dvdI) qed lemma prod_dvd_prod_subset: "finite B \ A \ B \ prod f A dvd prod f B" by (auto simp add: prod.subset_diff ac_simps intro: dvdI) end subsubsection \Properties in more restricted classes of structures\ context linordered_nonzero_semiring begin lemma prod_ge_1: "(\x. x \ A \ 1 \ f x) \ 1 \ prod f A" proof (induct A rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case (insert x F) have "1 * 1 \ f x * prod f F" by (rule mult_mono') (use insert in auto) with insert show ?case by simp qed lemma prod_le_1: fixes f :: "'b \ 'a" assumes "\x. x \ A \ 0 \ f x \ f x \ 1" shows "prod f A \ 1" using assms proof (induct A rule: infinite_finite_induct) case infinite then show ?case by simp next case empty then show ?case by simp next case (insert x F) then show ?case by (force simp: mult.commute intro: dest: mult_le_one) qed end context comm_semiring_1 begin lemma dvd_prod_eqI [intro]: assumes "finite A" and "a \ A" and "b = f a" shows "b dvd prod f A" proof - from \finite A\ have "prod f (insert a (A - {a})) = f a * prod f (A - {a})" by (intro prod.insert) auto also from \a \ A\ have "insert a (A - {a}) = A" by blast finally have "prod f A = f a * prod f (A - {a})" . with \b = f a\ show ?thesis by simp qed lemma dvd_prodI [intro]: "finite A \ a \ A \ f a dvd prod f A" by auto lemma prod_zero: assumes "finite A" and "\a\A. f a = 0" shows "prod f A = 0" using assms proof (induct A) case empty then show ?case by simp next case (insert a A) then have "f a = 0 \ (\a\A. f a = 0)" by simp then have "f a * prod f A = 0" by rule (simp_all add: insert) with insert show ?case by simp qed lemma prod_dvd_prod_subset2: assumes "finite B" and "A \ B" and "\a. a \ A \ f a dvd g a" shows "prod f A dvd prod g B" proof - from assms have "prod f A dvd prod g A" by (auto intro: prod_dvd_prod) moreover from assms have "prod g A dvd prod g B" by (auto intro: prod_dvd_prod_subset) ultimately show ?thesis by (rule dvd_trans) qed end lemma (in semidom) prod_zero_iff [simp]: fixes f :: "'b \ 'a" assumes "finite A" shows "prod f A = 0 \ (\a\A. f a = 0)" using assms by (induct A) (auto simp: no_zero_divisors) lemma (in semidom_divide) prod_diff1: assumes "finite A" and "f a \ 0" shows "prod f (A - {a}) = (if a \ A then prod f A div f a else prod f A)" proof (cases "a \ A") case True then show ?thesis by simp next case False with assms show ?thesis proof induct case empty then show ?case by simp next case (insert b B) then show ?case proof (cases "a = b") case True with insert show ?thesis by simp next case False with insert have "a \ B" by simp define C where "C = B - {a}" with \finite B\ \a \ B\ have "B = insert a C" "finite C" "a \ C" by auto with insert show ?thesis by (auto simp add: insert_commute ac_simps) qed qed qed lemma sum_zero_power [simp]: "(\i\A. c i * 0^i) = (if finite A \ 0 \ A then c 0 else 0)" for c :: "nat \ 'a::division_ring" by (induct A rule: infinite_finite_induct) auto lemma sum_zero_power' [simp]: "(\i\A. c i * 0^i / d i) = (if finite A \ 0 \ A then c 0 / d 0 else 0)" for c :: "nat \ 'a::field" using sum_zero_power [of "\i. c i / d i" A] by auto lemma (in field) prod_inversef: "prod (inverse \ f) A = inverse (prod f A)" proof (cases "finite A") case True then show ?thesis by (induct A rule: finite_induct) simp_all next case False then show ?thesis by auto qed lemma (in field) prod_dividef: "(\x\A. f x / g x) = prod f A / prod g A" using prod_inversef [of g A] by (simp add: divide_inverse prod.distrib) lemma prod_Un: fixes f :: "'b \ 'a :: field" assumes "finite A" and "finite B" and "\x\A \ B. f x \ 0" shows "prod f (A \ B) = prod f A * prod f B / prod f (A \ B)" proof - from assms have "prod f A * prod f B = prod f (A \ B) * prod f (A \ B)" by (simp add: prod.union_inter [symmetric, of A B]) with assms show ?thesis by simp qed context linordered_semidom begin lemma prod_nonneg: "(\a\A. 0 \ f a) \ 0 \ prod f A" by (induct A rule: infinite_finite_induct) simp_all lemma prod_pos: "(\a\A. 0 < f a) \ 0 < prod f A" by (induct A rule: infinite_finite_induct) simp_all lemma prod_mono: "(\i. i \ A \ 0 \ f i \ f i \ g i) \ prod f A \ prod g A" by (induct A rule: infinite_finite_induct) (force intro!: prod_nonneg mult_mono)+ lemma prod_mono_strict: assumes "finite A" "\i. i \ A \ 0 \ f i \ f i < g i" "A \ {}" shows "prod f A < prod g A" using assms proof (induct A rule: finite_induct) case empty then show ?case by simp next case insert then show ?case by (force intro: mult_strict_mono' prod_nonneg) qed end lemma prod_mono2: fixes f :: "'a \ 'b :: linordered_idom" assumes fin: "finite B" and sub: "A \ B" and nn: "\b. b \ B-A \ 1 \ f b" and A: "\a. a \ A \ 0 \ f a" shows "prod f A \ prod f B" proof - have "prod f A \ prod f A * prod f (B-A)" by (metis prod_ge_1 A mult_le_cancel_left1 nn not_less prod_nonneg) also from fin finite_subset[OF sub fin] have "\ = prod f (A \ (B-A))" by (simp add: prod.union_disjoint del: Un_Diff_cancel) also from sub have "A \ (B-A) = B" by blast finally show ?thesis . qed lemma less_1_prod: fixes f :: "'a \ 'b::linordered_idom" shows "finite I \ I \ {} \ (\i. i \ I \ 1 < f i) \ 1 < prod f I" by (induct I rule: finite_ne_induct) (auto intro: less_1_mult) lemma less_1_prod2: fixes f :: "'a \ 'b::linordered_idom" assumes I: "finite I" "i \ I" "1 < f i" "\i. i \ I \ 1 \ f i" shows "1 < prod f I" proof - have "1 < f i * prod f (I - {i})" using assms by (meson DiffD1 leI less_1_mult less_le_trans mult_le_cancel_left1 prod_ge_1) also have "\ = prod f I" using assms by (simp add: prod.remove) finally show ?thesis . qed lemma (in linordered_field) abs_prod: "\prod f A\ = (\x\A. \f x\)" by (induct A rule: infinite_finite_induct) (simp_all add: abs_mult) lemma prod_eq_1_iff [simp]: "finite A \ prod f A = 1 \ (\a\A. f a = 1)" for f :: "'a \ nat" by (induct A rule: finite_induct) simp_all lemma prod_pos_nat_iff [simp]: "finite A \ prod f A > 0 \ (\a\A. f a > 0)" for f :: "'a \ nat" using prod_zero_iff by (simp del: neq0_conv add: zero_less_iff_neq_zero) lemma prod_constant [simp]: "(\x\ A. y) = y ^ card A" for y :: "'a::comm_monoid_mult" by (induct A rule: infinite_finite_induct) simp_all lemma prod_power_distrib: "prod f A ^ n = prod (\x. (f x) ^ n) A" for f :: "'a \ 'b::comm_semiring_1" by (induct A rule: infinite_finite_induct) (auto simp add: power_mult_distrib) lemma power_sum: "c ^ (\a\A. f a) = (\a\A. c ^ f a)" by (induct A rule: infinite_finite_induct) (simp_all add: power_add) lemma prod_gen_delta: fixes b :: "'b \ 'a::comm_monoid_mult" assumes fin: "finite S" shows "prod (\k. if k = a then b k else c) S = (if a \ S then b a * c ^ (card S - 1) else c ^ card S)" proof - let ?f = "(\k. if k=a then b k else c)" show ?thesis proof (cases "a \ S") case False then have "\ k\ S. ?f k = c" by simp with False show ?thesis by (simp add: prod_constant) next case True let ?A = "S - {a}" let ?B = "{a}" from True have eq: "S = ?A \ ?B" by blast have disjoint: "?A \ ?B = {}" by simp from fin have fin': "finite ?A" "finite ?B" by auto have f_A0: "prod ?f ?A = prod (\i. c) ?A" by (rule prod.cong) auto from fin True have card_A: "card ?A = card S - 1" by auto have f_A1: "prod ?f ?A = c ^ card ?A" unfolding f_A0 by (rule prod_constant) have "prod ?f ?A * prod ?f ?B = prod ?f S" using prod.union_disjoint[OF fin' disjoint, of ?f, unfolded eq[symmetric]] by simp with True card_A show ?thesis by (simp add: f_A1 field_simps cong add: prod.cong cong del: if_weak_cong) qed qed lemma sum_image_le: fixes g :: "'a \ 'b::ordered_comm_monoid_add" assumes "finite I" "\i. i \ I \ 0 \ g(f i)" shows "sum g (f ` I) \ sum (g \ f) I" using assms proof induction case empty then show ?case by auto next case (insert x F) from insertI1 have "0 \ g (f x)" by (rule insert) hence 1: "sum g (f ` F) \ g (f x) + sum g (f ` F)" using add_increasing by blast have 2: "sum g (f ` F) \ sum (g \ f) F" using insert by blast have "sum g (f ` insert x F) = sum g (insert (f x) (f ` F))" by simp also have "\ \ g (f x) + sum g (f ` F)" by (simp add: 1 insert sum.insert_if) also from 2 have "\ \ g (f x) + sum (g \ f) F" by (rule add_left_mono) also from insert(1, 2) have "\ = sum (g \ f) (insert x F)" by (simp add: sum.insert_if) finally show ?case . qed end