diff --git a/src/Pure/thm_deps.ML b/src/Pure/thm_deps.ML --- a/src/Pure/thm_deps.ML +++ b/src/Pure/thm_deps.ML @@ -1,135 +1,135 @@ (* Title: Pure/thm_deps.ML Author: Stefan Berghofer, TU Muenchen Author: Makarius Dependencies of theorems wrt. internal derivation. *) signature THM_DEPS = sig val all_oracles: thm list -> Proofterm.oracle list val has_skip_proof: thm list -> bool val pretty_thm_oracles: Proof.context -> thm list -> Pretty.T val thm_deps: theory -> thm list -> (Proofterm.thm_id * Thm_Name.T) list val pretty_thm_deps: theory -> thm list -> Pretty.T val unused_thms_cmd: theory list * theory list -> (string * thm) list end; structure Thm_Deps: THM_DEPS = struct (* oracles *) fun all_oracles thms = let fun collect (PBody {oracles, thms, ...}) = (if null oracles then I else apfst (cons oracles)) #> (tap Proofterm.join_thms thms |> fold (fn (i, thm_node) => fn (res, seen) => if Inttab.defined seen i then (res, seen) else let val body = Future.join (Proofterm.thm_node_body thm_node) in collect body (res, Inttab.update (i, ()) seen) end)); val bodies = map Thm.proof_body_of thms; in fold collect bodies ([], Inttab.empty) |> #1 |> Proofterm.unions_oracles end; fun has_skip_proof thms = all_oracles thms |> exists (fn ((name, _), _) => name = \<^oracle_name>\skip_proof\); fun pretty_thm_oracles ctxt thms = let val thy = Proof_Context.theory_of ctxt; fun prt_ora (name, pos) = Thm.pretty_oracle ctxt name :: Pretty.here pos; fun prt_oracle (ora, NONE) = prt_ora ora | prt_oracle (ora, SOME prop) = prt_ora ora @ [Pretty.str ":", Pretty.brk 1, Syntax.pretty_term_global thy prop]; in Pretty.big_list "oracles:" (map (Pretty.item o prt_oracle) (all_oracles thms)) end; (* thm_deps *) fun thm_deps thy = let val lookup = Global_Theory.lookup_thm_id thy; fun deps (i, thm_node) res = if Inttab.defined res i then res else let val thm_id = Proofterm.thm_id (i, thm_node) in (case lookup thm_id of SOME thm_name => Inttab.update (i, SOME (thm_id, thm_name)) res | NONE => Inttab.update (i, NONE) res |> fold deps (Proofterm.thm_node_thms thm_node)) end; in fn thms => (fold (fold deps o Thm.thm_deps o Thm.transfer thy) thms Inttab.empty, []) |-> Inttab.fold_rev (fn (_, SOME entry) => cons entry | _ => I) end; fun pretty_thm_deps thy thms = let val ctxt = Proof_Context.init_global thy; val items = map #2 (thm_deps thy thms) |> map (fn (name, i) => (Proof_Context.markup_extern_fact ctxt name, i)) |> sort_by (#2 o #1) |> map (fn ((marks, xname), i) => Pretty.item [Pretty.marks_str (marks, Thm_Name.print (xname, i))]); in Pretty.big_list ("dependencies: " ^ string_of_int (length items)) items end; (* unused_thms_cmd *) fun unused_thms_cmd (base_thys, thys) = let fun add_fact transfer space (name, ths) = if exists (fn thy => Global_Theory.defined_fact thy name) base_thys then I else let val {concealed, group, ...} = Name_Space.the_entry space name in - fold_rev (fn th => + fold_rev (transfer #> (fn th => (case Thm.derivation_name th of "" => I - | a => cons (a, (transfer th, concealed, group)))) ths + | a => cons (a, (th, concealed, group))))) ths end; fun add_facts thy = let val transfer = Global_Theory.transfer_theories thy; val facts = Global_Theory.facts_of thy; in Facts.fold_static (add_fact transfer (Facts.space_of facts)) facts end; val new_thms = fold add_facts thys [] |> sort_distinct (string_ord o apply2 #1); val used = Proofterm.fold_body_thms (fn {name = a, ...} => a <> "" ? Symtab.update (a, ())) (map Proofterm.strip_thm_body (Thm.proof_bodies_of (map (#1 o #2) new_thms))) Symtab.empty; fun is_unused a = not (Symtab.defined used a); (*groups containing at least one used theorem*) val used_groups = fold (fn (a, (_, _, group)) => if is_unused a then I else (case group of NONE => I | SOME grp => Inttab.update (grp, ()))) new_thms Inttab.empty; val (thms', _) = fold (fn (a, (th, concealed, group)) => fn q as (thms, seen_groups) => if not concealed andalso (* FIXME replace by robust treatment of thm groups *) Thm.legacy_get_kind th = Thm.theoremK andalso is_unused a then (case group of NONE => ((a, th) :: thms, seen_groups) | SOME grp => if Inttab.defined used_groups grp orelse Inttab.defined seen_groups grp then q else ((a, th) :: thms, Inttab.update (grp, ()) seen_groups)) else q) new_thms ([], Inttab.empty); in rev thms' end; end;