diff --git a/src/HOL/Library/Bit_Operations.thy b/src/HOL/Library/Bit_Operations.thy --- a/src/HOL/Library/Bit_Operations.thy +++ b/src/HOL/Library/Bit_Operations.thy @@ -1,1795 +1,1795 @@ (* Author: Florian Haftmann, TUM *) section \Bit operations in suitable algebraic structures\ theory Bit_Operations imports Main "HOL-Library.Boolean_Algebra" begin subsection \Bit operations\ class semiring_bit_operations = semiring_bit_shifts + fixes "and" :: \'a \ 'a \ 'a\ (infixr \AND\ 64) and or :: \'a \ 'a \ 'a\ (infixr \OR\ 59) and xor :: \'a \ 'a \ 'a\ (infixr \XOR\ 59) and mask :: \nat \ 'a\ - assumes bit_and_iff: \\n. bit (a AND b) n \ bit a n \ bit b n\ - and bit_or_iff: \\n. bit (a OR b) n \ bit a n \ bit b n\ - and bit_xor_iff: \\n. bit (a XOR b) n \ bit a n \ bit b n\ + assumes bit_and_iff [bit_simps]: \\n. bit (a AND b) n \ bit a n \ bit b n\ + and bit_or_iff [bit_simps]: \\n. bit (a OR b) n \ bit a n \ bit b n\ + and bit_xor_iff [bit_simps]: \\n. bit (a XOR b) n \ bit a n \ bit b n\ and mask_eq_exp_minus_1: \mask n = 2 ^ n - 1\ begin text \ We want the bitwise operations to bind slightly weaker than \+\ and \-\. For the sake of code generation the operations \<^const>\and\, \<^const>\or\ and \<^const>\xor\ are specified as definitional class operations. \ sublocale "and": semilattice \(AND)\ by standard (auto simp add: bit_eq_iff bit_and_iff) sublocale or: semilattice_neutr \(OR)\ 0 by standard (auto simp add: bit_eq_iff bit_or_iff) sublocale xor: comm_monoid \(XOR)\ 0 by standard (auto simp add: bit_eq_iff bit_xor_iff) lemma even_and_iff: \even (a AND b) \ even a \ even b\ using bit_and_iff [of a b 0] by auto lemma even_or_iff: \even (a OR b) \ even a \ even b\ using bit_or_iff [of a b 0] by auto lemma even_xor_iff: \even (a XOR b) \ (even a \ even b)\ using bit_xor_iff [of a b 0] by auto lemma zero_and_eq [simp]: "0 AND a = 0" by (simp add: bit_eq_iff bit_and_iff) lemma and_zero_eq [simp]: "a AND 0 = 0" by (simp add: bit_eq_iff bit_and_iff) lemma one_and_eq: "1 AND a = a mod 2" by (simp add: bit_eq_iff bit_and_iff) (auto simp add: bit_1_iff) lemma and_one_eq: "a AND 1 = a mod 2" using one_and_eq [of a] by (simp add: ac_simps) lemma one_or_eq: "1 OR a = a + of_bool (even a)" by (simp add: bit_eq_iff bit_or_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff) lemma or_one_eq: "a OR 1 = a + of_bool (even a)" using one_or_eq [of a] by (simp add: ac_simps) lemma one_xor_eq: "1 XOR a = a + of_bool (even a) - of_bool (odd a)" by (simp add: bit_eq_iff bit_xor_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff odd_bit_iff_bit_pred elim: oddE) lemma xor_one_eq: "a XOR 1 = a + of_bool (even a) - of_bool (odd a)" using one_xor_eq [of a] by (simp add: ac_simps) lemma take_bit_and [simp]: \take_bit n (a AND b) = take_bit n a AND take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_and_iff) lemma take_bit_or [simp]: \take_bit n (a OR b) = take_bit n a OR take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_or_iff) lemma take_bit_xor [simp]: \take_bit n (a XOR b) = take_bit n a XOR take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff) lemma push_bit_and [simp]: \push_bit n (a AND b) = push_bit n a AND push_bit n b\ by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_and_iff) lemma push_bit_or [simp]: \push_bit n (a OR b) = push_bit n a OR push_bit n b\ by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_or_iff) lemma push_bit_xor [simp]: \push_bit n (a XOR b) = push_bit n a XOR push_bit n b\ by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_xor_iff) lemma drop_bit_and [simp]: \drop_bit n (a AND b) = drop_bit n a AND drop_bit n b\ by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_and_iff) lemma drop_bit_or [simp]: \drop_bit n (a OR b) = drop_bit n a OR drop_bit n b\ by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_or_iff) lemma drop_bit_xor [simp]: \drop_bit n (a XOR b) = drop_bit n a XOR drop_bit n b\ by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_xor_iff) -lemma bit_mask_iff: +lemma bit_mask_iff [bit_simps]: \bit (mask m) n \ 2 ^ n \ 0 \ n < m\ by (simp add: mask_eq_exp_minus_1 bit_mask_iff) lemma even_mask_iff: \even (mask n) \ n = 0\ using bit_mask_iff [of n 0] by auto lemma mask_0 [simp]: \mask 0 = 0\ by (simp add: mask_eq_exp_minus_1) lemma mask_Suc_0 [simp]: \mask (Suc 0) = 1\ by (simp add: mask_eq_exp_minus_1 add_implies_diff sym) lemma mask_Suc_exp: \mask (Suc n) = 2 ^ n OR mask n\ by (rule bit_eqI) (auto simp add: bit_or_iff bit_mask_iff bit_exp_iff not_less le_less_Suc_eq) lemma mask_Suc_double: \mask (Suc n) = 1 OR 2 * mask n\ proof (rule bit_eqI) fix q assume \2 ^ q \ 0\ show \bit (mask (Suc n)) q \ bit (1 OR 2 * mask n) q\ by (cases q) (simp_all add: even_mask_iff even_or_iff bit_or_iff bit_mask_iff bit_exp_iff bit_double_iff not_less le_less_Suc_eq bit_1_iff, auto simp add: mult_2) qed lemma mask_numeral: \mask (numeral n) = 1 + 2 * mask (pred_numeral n)\ by (simp add: numeral_eq_Suc mask_Suc_double one_or_eq ac_simps) lemma take_bit_eq_mask: \take_bit n a = a AND mask n\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_and_iff bit_mask_iff) lemma or_eq_0_iff: \a OR b = 0 \ a = 0 \ b = 0\ by (auto simp add: bit_eq_iff bit_or_iff) lemma disjunctive_add: \a + b = a OR b\ if \\n. \ bit a n \ \ bit b n\ by (rule bit_eqI) (use that in \simp add: bit_disjunctive_add_iff bit_or_iff\) lemma bit_iff_and_drop_bit_eq_1: \bit a n \ drop_bit n a AND 1 = 1\ by (simp add: bit_iff_odd_drop_bit and_one_eq odd_iff_mod_2_eq_one) lemma bit_iff_and_push_bit_not_eq_0: \bit a n \ a AND push_bit n 1 \ 0\ apply (cases \2 ^ n = 0\) apply (simp_all add: push_bit_of_1 bit_eq_iff bit_and_iff bit_push_bit_iff exp_eq_0_imp_not_bit) apply (simp_all add: bit_exp_iff) done end class ring_bit_operations = semiring_bit_operations + ring_parity + fixes not :: \'a \ 'a\ (\NOT\) - assumes bit_not_iff: \\n. bit (NOT a) n \ 2 ^ n \ 0 \ \ bit a n\ + assumes bit_not_iff [bit_simps]: \\n. bit (NOT a) n \ 2 ^ n \ 0 \ \ bit a n\ assumes minus_eq_not_minus_1: \- a = NOT (a - 1)\ begin text \ For the sake of code generation \<^const>\not\ is specified as definitional class operation. Note that \<^const>\not\ has no sensible definition for unlimited but only positive bit strings (type \<^typ>\nat\). \ lemma bits_minus_1_mod_2_eq [simp]: \(- 1) mod 2 = 1\ by (simp add: mod_2_eq_odd) lemma not_eq_complement: \NOT a = - a - 1\ using minus_eq_not_minus_1 [of \a + 1\] by simp lemma minus_eq_not_plus_1: \- a = NOT a + 1\ using not_eq_complement [of a] by simp -lemma bit_minus_iff: +lemma bit_minus_iff [bit_simps]: \bit (- a) n \ 2 ^ n \ 0 \ \ bit (a - 1) n\ by (simp add: minus_eq_not_minus_1 bit_not_iff) lemma even_not_iff [simp]: "even (NOT a) \ odd a" using bit_not_iff [of a 0] by auto -lemma bit_not_exp_iff: +lemma bit_not_exp_iff [bit_simps]: \bit (NOT (2 ^ m)) n \ 2 ^ n \ 0 \ n \ m\ by (auto simp add: bit_not_iff bit_exp_iff) lemma bit_minus_1_iff [simp]: \bit (- 1) n \ 2 ^ n \ 0\ by (simp add: bit_minus_iff) -lemma bit_minus_exp_iff: +lemma bit_minus_exp_iff [bit_simps]: \bit (- (2 ^ m)) n \ 2 ^ n \ 0 \ n \ m\ - oops + by (auto simp add: bit_simps simp flip: mask_eq_exp_minus_1) lemma bit_minus_2_iff [simp]: \bit (- 2) n \ 2 ^ n \ 0 \ n > 0\ by (simp add: bit_minus_iff bit_1_iff) lemma not_one [simp]: "NOT 1 = - 2" by (simp add: bit_eq_iff bit_not_iff) (simp add: bit_1_iff) sublocale "and": semilattice_neutr \(AND)\ \- 1\ by standard (rule bit_eqI, simp add: bit_and_iff) sublocale bit: boolean_algebra \(AND)\ \(OR)\ NOT 0 \- 1\ rewrites \bit.xor = (XOR)\ proof - interpret bit: boolean_algebra \(AND)\ \(OR)\ NOT 0 \- 1\ by standard (auto simp add: bit_and_iff bit_or_iff bit_not_iff intro: bit_eqI) show \boolean_algebra (AND) (OR) NOT 0 (- 1)\ by standard show \boolean_algebra.xor (AND) (OR) NOT = (XOR)\ by (rule ext, rule ext, rule bit_eqI) (auto simp add: bit.xor_def bit_and_iff bit_or_iff bit_xor_iff bit_not_iff) qed lemma and_eq_not_not_or: \a AND b = NOT (NOT a OR NOT b)\ by simp lemma or_eq_not_not_and: \a OR b = NOT (NOT a AND NOT b)\ by simp lemma not_add_distrib: \NOT (a + b) = NOT a - b\ by (simp add: not_eq_complement algebra_simps) lemma not_diff_distrib: \NOT (a - b) = NOT a + b\ using not_add_distrib [of a \- b\] by simp lemma (in ring_bit_operations) and_eq_minus_1_iff: \a AND b = - 1 \ a = - 1 \ b = - 1\ proof assume \a = - 1 \ b = - 1\ then show \a AND b = - 1\ by simp next assume \a AND b = - 1\ have *: \bit a n\ \bit b n\ if \2 ^ n \ 0\ for n proof - from \a AND b = - 1\ have \bit (a AND b) n = bit (- 1) n\ by (simp add: bit_eq_iff) then show \bit a n\ \bit b n\ using that by (simp_all add: bit_and_iff) qed have \a = - 1\ by (rule bit_eqI) (simp add: *) moreover have \b = - 1\ by (rule bit_eqI) (simp add: *) ultimately show \a = - 1 \ b = - 1\ by simp qed lemma disjunctive_diff: \a - b = a AND NOT b\ if \\n. bit b n \ bit a n\ proof - have \NOT a + b = NOT a OR b\ by (rule disjunctive_add) (auto simp add: bit_not_iff dest: that) then have \NOT (NOT a + b) = NOT (NOT a OR b)\ by simp then show ?thesis by (simp add: not_add_distrib) qed lemma push_bit_minus: \push_bit n (- a) = - push_bit n a\ by (simp add: push_bit_eq_mult) lemma take_bit_not_take_bit: \take_bit n (NOT (take_bit n a)) = take_bit n (NOT a)\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff) lemma take_bit_not_iff: "take_bit n (NOT a) = take_bit n (NOT b) \ take_bit n a = take_bit n b" apply (simp add: bit_eq_iff) apply (simp add: bit_not_iff bit_take_bit_iff bit_exp_iff) apply (use exp_eq_0_imp_not_bit in blast) done lemma take_bit_not_eq_mask_diff: \take_bit n (NOT a) = mask n - take_bit n a\ proof - have \take_bit n (NOT a) = take_bit n (NOT (take_bit n a))\ by (simp add: take_bit_not_take_bit) also have \\ = mask n AND NOT (take_bit n a)\ by (simp add: take_bit_eq_mask ac_simps) also have \\ = mask n - take_bit n a\ by (subst disjunctive_diff) (auto simp add: bit_take_bit_iff bit_mask_iff exp_eq_0_imp_not_bit) finally show ?thesis by simp qed lemma mask_eq_take_bit_minus_one: \mask n = take_bit n (- 1)\ by (simp add: bit_eq_iff bit_mask_iff bit_take_bit_iff conj_commute) lemma take_bit_minus_one_eq_mask: \take_bit n (- 1) = mask n\ by (simp add: mask_eq_take_bit_minus_one) lemma minus_exp_eq_not_mask: \- (2 ^ n) = NOT (mask n)\ by (rule bit_eqI) (simp add: bit_minus_iff bit_not_iff flip: mask_eq_exp_minus_1) lemma push_bit_minus_one_eq_not_mask: \push_bit n (- 1) = NOT (mask n)\ by (simp add: push_bit_eq_mult minus_exp_eq_not_mask) lemma take_bit_not_mask_eq_0: \take_bit m (NOT (mask n)) = 0\ if \n \ m\ by (rule bit_eqI) (use that in \simp add: bit_take_bit_iff bit_not_iff bit_mask_iff\) lemma take_bit_mask [simp]: \take_bit m (mask n) = mask (min m n)\ by (simp add: mask_eq_take_bit_minus_one) definition set_bit :: \nat \ 'a \ 'a\ where \set_bit n a = a OR push_bit n 1\ definition unset_bit :: \nat \ 'a \ 'a\ where \unset_bit n a = a AND NOT (push_bit n 1)\ definition flip_bit :: \nat \ 'a \ 'a\ where \flip_bit n a = a XOR push_bit n 1\ -lemma bit_set_bit_iff: +lemma bit_set_bit_iff [bit_simps]: \bit (set_bit m a) n \ bit a n \ (m = n \ 2 ^ n \ 0)\ by (auto simp add: set_bit_def push_bit_of_1 bit_or_iff bit_exp_iff) lemma even_set_bit_iff: \even (set_bit m a) \ even a \ m \ 0\ using bit_set_bit_iff [of m a 0] by auto -lemma bit_unset_bit_iff: +lemma bit_unset_bit_iff [bit_simps]: \bit (unset_bit m a) n \ bit a n \ m \ n\ by (auto simp add: unset_bit_def push_bit_of_1 bit_and_iff bit_not_iff bit_exp_iff exp_eq_0_imp_not_bit) lemma even_unset_bit_iff: \even (unset_bit m a) \ even a \ m = 0\ using bit_unset_bit_iff [of m a 0] by auto -lemma bit_flip_bit_iff: +lemma bit_flip_bit_iff [bit_simps]: \bit (flip_bit m a) n \ (m = n \ \ bit a n) \ 2 ^ n \ 0\ by (auto simp add: flip_bit_def push_bit_of_1 bit_xor_iff bit_exp_iff exp_eq_0_imp_not_bit) lemma even_flip_bit_iff: \even (flip_bit m a) \ \ (even a \ m = 0)\ using bit_flip_bit_iff [of m a 0] by auto lemma set_bit_0 [simp]: \set_bit 0 a = 1 + 2 * (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ then show \bit (set_bit 0 a) m = bit (1 + 2 * (a div 2)) m\ by (simp add: bit_set_bit_iff bit_double_iff even_bit_succ_iff) (cases m, simp_all add: bit_Suc) qed lemma set_bit_Suc: \set_bit (Suc n) a = a mod 2 + 2 * set_bit n (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ show \bit (set_bit (Suc n) a) m \ bit (a mod 2 + 2 * set_bit n (a div 2)) m\ proof (cases m) case 0 then show ?thesis by (simp add: even_set_bit_iff) next case (Suc m) with * have \2 ^ m \ 0\ using mult_2 by auto show ?thesis by (cases a rule: parity_cases) (simp_all add: bit_set_bit_iff bit_double_iff even_bit_succ_iff *, simp_all add: Suc \2 ^ m \ 0\ bit_Suc) qed qed lemma unset_bit_0 [simp]: \unset_bit 0 a = 2 * (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ then show \bit (unset_bit 0 a) m = bit (2 * (a div 2)) m\ by (simp add: bit_unset_bit_iff bit_double_iff) (cases m, simp_all add: bit_Suc) qed lemma unset_bit_Suc: \unset_bit (Suc n) a = a mod 2 + 2 * unset_bit n (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ then show \bit (unset_bit (Suc n) a) m \ bit (a mod 2 + 2 * unset_bit n (a div 2)) m\ proof (cases m) case 0 then show ?thesis by (simp add: even_unset_bit_iff) next case (Suc m) show ?thesis by (cases a rule: parity_cases) (simp_all add: bit_unset_bit_iff bit_double_iff even_bit_succ_iff *, simp_all add: Suc bit_Suc) qed qed lemma flip_bit_0 [simp]: \flip_bit 0 a = of_bool (even a) + 2 * (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ then show \bit (flip_bit 0 a) m = bit (of_bool (even a) + 2 * (a div 2)) m\ by (simp add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff) (cases m, simp_all add: bit_Suc) qed lemma flip_bit_Suc: \flip_bit (Suc n) a = a mod 2 + 2 * flip_bit n (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ show \bit (flip_bit (Suc n) a) m \ bit (a mod 2 + 2 * flip_bit n (a div 2)) m\ proof (cases m) case 0 then show ?thesis by (simp add: even_flip_bit_iff) next case (Suc m) with * have \2 ^ m \ 0\ using mult_2 by auto show ?thesis by (cases a rule: parity_cases) (simp_all add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff, simp_all add: Suc \2 ^ m \ 0\ bit_Suc) qed qed lemma flip_bit_eq_if: \flip_bit n a = (if bit a n then unset_bit else set_bit) n a\ by (rule bit_eqI) (auto simp add: bit_set_bit_iff bit_unset_bit_iff bit_flip_bit_iff) lemma take_bit_set_bit_eq: \take_bit n (set_bit m a) = (if n \ m then take_bit n a else set_bit m (take_bit n a))\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_set_bit_iff) lemma take_bit_unset_bit_eq: \take_bit n (unset_bit m a) = (if n \ m then take_bit n a else unset_bit m (take_bit n a))\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_unset_bit_iff) lemma take_bit_flip_bit_eq: \take_bit n (flip_bit m a) = (if n \ m then take_bit n a else flip_bit m (take_bit n a))\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_flip_bit_iff) end subsection \Instance \<^typ>\int\\ lemma int_bit_bound: fixes k :: int obtains n where \\m. n \ m \ bit k m \ bit k n\ and \n > 0 \ bit k (n - 1) \ bit k n\ proof - obtain q where *: \\m. q \ m \ bit k m \ bit k q\ proof (cases \k \ 0\) case True moreover from power_gt_expt [of 2 \nat k\] have \k < 2 ^ nat k\ by simp ultimately have *: \k div 2 ^ nat k = 0\ by simp show thesis proof (rule that [of \nat k\]) fix m assume \nat k \ m\ then show \bit k m \ bit k (nat k)\ by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq dest!: le_Suc_ex) qed next case False moreover from power_gt_expt [of 2 \nat (- k)\] have \- k \ 2 ^ nat (- k)\ by simp ultimately have \- k div - (2 ^ nat (- k)) = - 1\ by (subst div_pos_neg_trivial) simp_all then have *: \k div 2 ^ nat (- k) = - 1\ by simp show thesis proof (rule that [of \nat (- k)\]) fix m assume \nat (- k) \ m\ then show \bit k m \ bit k (nat (- k))\ by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq minus_1_div_exp_eq_int dest!: le_Suc_ex) qed qed show thesis proof (cases \\m. bit k m \ bit k q\) case True then have \bit k 0 \ bit k q\ by blast with True that [of 0] show thesis by simp next case False then obtain r where **: \bit k r \ bit k q\ by blast have \r < q\ by (rule ccontr) (use * [of r] ** in simp) define N where \N = {n. n < q \ bit k n \ bit k q}\ moreover have \finite N\ \r \ N\ using ** N_def \r < q\ by auto moreover define n where \n = Suc (Max N)\ ultimately have \\m. n \ m \ bit k m \ bit k n\ apply auto apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \finite N\ all_not_in_conv mem_Collect_eq not_le) apply (metis "*" Max_ge Suc_n_not_le_n \finite N\ linorder_not_less mem_Collect_eq) apply (metis "*" Max_ge Suc_n_not_le_n \finite N\ linorder_not_less mem_Collect_eq) apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \finite N\ all_not_in_conv mem_Collect_eq not_le) done have \bit k (Max N) \ bit k n\ by (metis (mono_tags, lifting) "*" Max_in N_def \\m. n \ m \ bit k m = bit k n\ \finite N\ \r \ N\ empty_iff le_cases mem_Collect_eq) show thesis apply (rule that [of n]) using \\m. n \ m \ bit k m = bit k n\ apply blast using \bit k (Max N) \ bit k n\ n_def by auto qed qed instantiation int :: ring_bit_operations begin definition not_int :: \int \ int\ where \not_int k = - k - 1\ lemma not_int_rec: "NOT k = of_bool (even k) + 2 * NOT (k div 2)" for k :: int by (auto simp add: not_int_def elim: oddE) lemma even_not_iff_int: \even (NOT k) \ odd k\ for k :: int by (simp add: not_int_def) lemma not_int_div_2: \NOT k div 2 = NOT (k div 2)\ for k :: int by (simp add: not_int_def) -lemma bit_not_int_iff: +lemma bit_not_int_iff [bit_simps]: \bit (NOT k) n \ \ bit k n\ for k :: int by (simp add: bit_not_int_iff' not_int_def) function and_int :: \int \ int \ int\ where \(k::int) AND l = (if k \ {0, - 1} \ l \ {0, - 1} then - of_bool (odd k \ odd l) else of_bool (odd k \ odd l) + 2 * ((k div 2) AND (l div 2)))\ by auto termination by (relation \measure (\(k, l). nat (\k\ + \l\))\) auto declare and_int.simps [simp del] lemma and_int_rec: \k AND l = of_bool (odd k \ odd l) + 2 * ((k div 2) AND (l div 2))\ for k l :: int proof (cases \k \ {0, - 1} \ l \ {0, - 1}\) case True then show ?thesis by auto (simp_all add: and_int.simps) next case False then show ?thesis by (auto simp add: ac_simps and_int.simps [of k l]) qed lemma bit_and_int_iff: \bit (k AND l) n \ bit k n \ bit l n\ for k l :: int proof (induction n arbitrary: k l) case 0 then show ?case by (simp add: and_int_rec [of k l]) next case (Suc n) then show ?case by (simp add: and_int_rec [of k l] bit_Suc) qed lemma even_and_iff_int: \even (k AND l) \ even k \ even l\ for k l :: int using bit_and_int_iff [of k l 0] by auto definition or_int :: \int \ int \ int\ where \k OR l = NOT (NOT k AND NOT l)\ for k l :: int lemma or_int_rec: \k OR l = of_bool (odd k \ odd l) + 2 * ((k div 2) OR (l div 2))\ for k l :: int using and_int_rec [of \NOT k\ \NOT l\] by (simp add: or_int_def even_not_iff_int not_int_div_2) (simp add: not_int_def) lemma bit_or_int_iff: \bit (k OR l) n \ bit k n \ bit l n\ for k l :: int by (simp add: or_int_def bit_not_int_iff bit_and_int_iff) definition xor_int :: \int \ int \ int\ where \k XOR l = k AND NOT l OR NOT k AND l\ for k l :: int lemma xor_int_rec: \k XOR l = of_bool (odd k \ odd l) + 2 * ((k div 2) XOR (l div 2))\ for k l :: int by (simp add: xor_int_def or_int_rec [of \k AND NOT l\ \NOT k AND l\] even_and_iff_int even_not_iff_int) (simp add: and_int_rec [of \NOT k\ \l\] and_int_rec [of \k\ \NOT l\] not_int_div_2) lemma bit_xor_int_iff: \bit (k XOR l) n \ bit k n \ bit l n\ for k l :: int by (auto simp add: xor_int_def bit_or_int_iff bit_and_int_iff bit_not_int_iff) definition mask_int :: \nat \ int\ where \mask n = (2 :: int) ^ n - 1\ instance proof fix k l :: int and n :: nat show \- k = NOT (k - 1)\ by (simp add: not_int_def) show \bit (k AND l) n \ bit k n \ bit l n\ by (fact bit_and_int_iff) show \bit (k OR l) n \ bit k n \ bit l n\ by (fact bit_or_int_iff) show \bit (k XOR l) n \ bit k n \ bit l n\ by (fact bit_xor_int_iff) qed (simp_all add: bit_not_int_iff mask_int_def) end lemma mask_half_int: \mask n div 2 = (mask (n - 1) :: int)\ by (cases n) (simp_all add: mask_eq_exp_minus_1 algebra_simps) lemma mask_nonnegative_int [simp]: \mask n \ (0::int)\ by (simp add: mask_eq_exp_minus_1) lemma not_mask_negative_int [simp]: \\ mask n < (0::int)\ by (simp add: not_less) lemma not_nonnegative_int_iff [simp]: \NOT k \ 0 \ k < 0\ for k :: int by (simp add: not_int_def) lemma not_negative_int_iff [simp]: \NOT k < 0 \ k \ 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less not_le) lemma and_nonnegative_int_iff [simp]: \k AND l \ 0 \ k \ 0 \ l \ 0\ for k l :: int proof (induction k arbitrary: l rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) then show ?case using and_int_rec [of \k * 2\ l] by (simp add: pos_imp_zdiv_nonneg_iff) next case (odd k) from odd have \0 \ k AND l div 2 \ 0 \ k \ 0 \ l div 2\ by simp then have \0 \ (1 + k * 2) div 2 AND l div 2 \ 0 \ (1 + k * 2) div 2\ 0 \ l div 2\ by simp with and_int_rec [of \1 + k * 2\ l] show ?case by auto qed lemma and_negative_int_iff [simp]: \k AND l < 0 \ k < 0 \ l < 0\ for k l :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma and_less_eq: \k AND l \ k\ if \l < 0\ for k l :: int using that proof (induction k arbitrary: l rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) from even.IH [of \l div 2\] even.hyps even.prems show ?case by (simp add: and_int_rec [of _ l]) next case (odd k) from odd.IH [of \l div 2\] odd.hyps odd.prems show ?case by (simp add: and_int_rec [of _ l]) qed lemma or_nonnegative_int_iff [simp]: \k OR l \ 0 \ k \ 0 \ l \ 0\ for k l :: int by (simp only: or_eq_not_not_and not_nonnegative_int_iff) simp lemma or_negative_int_iff [simp]: \k OR l < 0 \ k < 0 \ l < 0\ for k l :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma or_greater_eq: \k OR l \ k\ if \l \ 0\ for k l :: int using that proof (induction k arbitrary: l rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) from even.IH [of \l div 2\] even.hyps even.prems show ?case by (simp add: or_int_rec [of _ l]) next case (odd k) from odd.IH [of \l div 2\] odd.hyps odd.prems show ?case by (simp add: or_int_rec [of _ l]) qed lemma xor_nonnegative_int_iff [simp]: \k XOR l \ 0 \ (k \ 0 \ l \ 0)\ for k l :: int by (simp only: bit.xor_def or_nonnegative_int_iff) auto lemma xor_negative_int_iff [simp]: \k XOR l < 0 \ (k < 0) \ (l < 0)\ for k l :: int by (subst Not_eq_iff [symmetric]) (auto simp add: not_less) lemma OR_upper: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" "x < 2 ^ n" "y < 2 ^ n" shows "x OR y < 2 ^ n" using assms proof (induction x arbitrary: y n rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even x) from even.IH [of \n - 1\ \y div 2\] even.prems even.hyps show ?case by (cases n) (auto simp add: or_int_rec [of \_ * 2\] elim: oddE) next case (odd x) from odd.IH [of \n - 1\ \y div 2\] odd.prems odd.hyps show ?case by (cases n) (auto simp add: or_int_rec [of \1 + _ * 2\], linarith) qed lemma XOR_upper: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" "x < 2 ^ n" "y < 2 ^ n" shows "x XOR y < 2 ^ n" using assms proof (induction x arbitrary: y n rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even x) from even.IH [of \n - 1\ \y div 2\] even.prems even.hyps show ?case by (cases n) (auto simp add: xor_int_rec [of \_ * 2\] elim: oddE) next case (odd x) from odd.IH [of \n - 1\ \y div 2\] odd.prems odd.hyps show ?case by (cases n) (auto simp add: xor_int_rec [of \1 + _ * 2\]) qed lemma AND_lower [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" shows "0 \ x AND y" using assms by simp lemma OR_lower [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" "0 \ y" shows "0 \ x OR y" using assms by simp lemma XOR_lower [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" "0 \ y" shows "0 \ x XOR y" using assms by simp lemma AND_upper1 [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" shows "x AND y \ x" using assms by (induction x arbitrary: y rule: int_bit_induct) (simp_all add: and_int_rec [of \_ * 2\] and_int_rec [of \1 + _ * 2\] add_increasing) lemmas AND_upper1' [simp] = order_trans [OF AND_upper1] \<^marker>\contributor \Stefan Berghofer\\ lemmas AND_upper1'' [simp] = order_le_less_trans [OF AND_upper1] \<^marker>\contributor \Stefan Berghofer\\ lemma AND_upper2 [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ y" shows "x AND y \ y" using assms AND_upper1 [of y x] by (simp add: ac_simps) lemmas AND_upper2' [simp] = order_trans [OF AND_upper2] \<^marker>\contributor \Stefan Berghofer\\ lemmas AND_upper2'' [simp] = order_le_less_trans [OF AND_upper2] \<^marker>\contributor \Stefan Berghofer\\ lemma plus_and_or: \(x AND y) + (x OR y) = x + y\ for x y :: int proof (induction x arbitrary: y rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even x) from even.IH [of \y div 2\] show ?case by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE) next case (odd x) from odd.IH [of \y div 2\] show ?case by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE) qed lemma set_bit_nonnegative_int_iff [simp]: \set_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: set_bit_def) lemma set_bit_negative_int_iff [simp]: \set_bit n k < 0 \ k < 0\ for k :: int by (simp add: set_bit_def) lemma unset_bit_nonnegative_int_iff [simp]: \unset_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: unset_bit_def) lemma unset_bit_negative_int_iff [simp]: \unset_bit n k < 0 \ k < 0\ for k :: int by (simp add: unset_bit_def) lemma flip_bit_nonnegative_int_iff [simp]: \flip_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: flip_bit_def) lemma flip_bit_negative_int_iff [simp]: \flip_bit n k < 0 \ k < 0\ for k :: int by (simp add: flip_bit_def) lemma set_bit_greater_eq: \set_bit n k \ k\ for k :: int by (simp add: set_bit_def or_greater_eq) lemma unset_bit_less_eq: \unset_bit n k \ k\ for k :: int by (simp add: unset_bit_def and_less_eq) lemma set_bit_eq: \set_bit n k = k + of_bool (\ bit k n) * 2 ^ n\ for k :: int proof (rule bit_eqI) fix m show \bit (set_bit n k) m \ bit (k + of_bool (\ bit k n) * 2 ^ n) m\ proof (cases \m = n\) case True then show ?thesis apply (simp add: bit_set_bit_iff) apply (simp add: bit_iff_odd div_plus_div_distrib_dvd_right) done next case False then show ?thesis apply (clarsimp simp add: bit_set_bit_iff) apply (subst disjunctive_add) apply (clarsimp simp add: bit_exp_iff) apply (clarsimp simp add: bit_or_iff bit_exp_iff) done qed qed lemma unset_bit_eq: \unset_bit n k = k - of_bool (bit k n) * 2 ^ n\ for k :: int proof (rule bit_eqI) fix m show \bit (unset_bit n k) m \ bit (k - of_bool (bit k n) * 2 ^ n) m\ proof (cases \m = n\) case True then show ?thesis apply (simp add: bit_unset_bit_iff) apply (simp add: bit_iff_odd) using div_plus_div_distrib_dvd_right [of \2 ^ n\ \- (2 ^ n)\ k] apply (simp add: dvd_neg_div) done next case False then show ?thesis apply (clarsimp simp add: bit_unset_bit_iff) apply (subst disjunctive_diff) apply (clarsimp simp add: bit_exp_iff) apply (clarsimp simp add: bit_and_iff bit_not_iff bit_exp_iff) done qed qed context ring_bit_operations begin lemma even_of_int_iff: \even (of_int k) \ even k\ by (induction k rule: int_bit_induct) simp_all -lemma bit_of_int_iff: +lemma bit_of_int_iff [bit_simps]: \bit (of_int k) n \ (2::'a) ^ n \ 0 \ bit k n\ proof (cases \(2::'a) ^ n = 0\) case True then show ?thesis by (simp add: exp_eq_0_imp_not_bit) next case False then have \bit (of_int k) n \ bit k n\ proof (induction k arbitrary: n rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) then show ?case using bit_double_iff [of \of_int k\ n] Parity.bit_double_iff [of k n] by (cases n) (auto simp add: ac_simps dest: mult_not_zero) next case (odd k) then show ?case using bit_double_iff [of \of_int k\ n] by (cases n) (auto simp add: ac_simps bit_double_iff even_bit_succ_iff Parity.bit_Suc dest: mult_not_zero) qed with False show ?thesis by simp qed lemma push_bit_of_int: \push_bit n (of_int k) = of_int (push_bit n k)\ by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult) lemma of_int_push_bit: \of_int (push_bit n k) = push_bit n (of_int k)\ by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult) lemma take_bit_of_int: \take_bit n (of_int k) = of_int (take_bit n k)\ by (rule bit_eqI) (simp add: bit_take_bit_iff Parity.bit_take_bit_iff bit_of_int_iff) lemma of_int_take_bit: \of_int (take_bit n k) = take_bit n (of_int k)\ by (rule bit_eqI) (simp add: bit_take_bit_iff Parity.bit_take_bit_iff bit_of_int_iff) lemma of_int_not_eq: \of_int (NOT k) = NOT (of_int k)\ by (rule bit_eqI) (simp add: bit_not_iff Bit_Operations.bit_not_iff bit_of_int_iff) lemma of_int_and_eq: \of_int (k AND l) = of_int k AND of_int l\ by (rule bit_eqI) (simp add: bit_of_int_iff bit_and_iff Bit_Operations.bit_and_iff) lemma of_int_or_eq: \of_int (k OR l) = of_int k OR of_int l\ by (rule bit_eqI) (simp add: bit_of_int_iff bit_or_iff Bit_Operations.bit_or_iff) lemma of_int_xor_eq: \of_int (k XOR l) = of_int k XOR of_int l\ by (rule bit_eqI) (simp add: bit_of_int_iff bit_xor_iff Bit_Operations.bit_xor_iff) lemma of_int_mask_eq: \of_int (mask n) = mask n\ by (induction n) (simp_all add: mask_Suc_double Bit_Operations.mask_Suc_double of_int_or_eq) end text \FIXME: The rule sets below are very large (24 rules for each operator). Is there a simpler way to do this?\ context begin private lemma eqI: \k = l\ if num: \\n. bit k (numeral n) \ bit l (numeral n)\ and even: \even k \ even l\ for k l :: int proof (rule bit_eqI) fix n show \bit k n \ bit l n\ proof (cases n) case 0 with even show ?thesis by simp next case (Suc n) with num [of \num_of_nat (Suc n)\] show ?thesis by (simp only: numeral_num_of_nat) qed qed lemma int_and_numerals [simp]: "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND numeral y)" "numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (2 :: int) * (numeral x AND numeral y)" "numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND numeral y)" "numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x AND numeral y)" "numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND - numeral y)" "numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (2 :: int) * (numeral x AND - numeral (y + Num.One))" "numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND - numeral y)" "numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x AND - numeral (y + Num.One))" "- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (2 :: int) * (- numeral x AND numeral y)" "- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (2 :: int) * (- numeral x AND numeral y)" "- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (2 :: int) * (- numeral (x + Num.One) AND numeral y)" "- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) AND numeral y)" "- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x AND - numeral y)" "- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (2 :: int) * (- numeral x AND - numeral (y + Num.One))" "- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (- numeral (x + Num.One) AND - numeral y)" "- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) AND - numeral (y + Num.One))" "(1::int) AND numeral (Num.Bit0 y) = 0" "(1::int) AND numeral (Num.Bit1 y) = 1" "(1::int) AND - numeral (Num.Bit0 y) = 0" "(1::int) AND - numeral (Num.Bit1 y) = 1" "numeral (Num.Bit0 x) AND (1::int) = 0" "numeral (Num.Bit1 x) AND (1::int) = 1" "- numeral (Num.Bit0 x) AND (1::int) = 0" "- numeral (Num.Bit1 x) AND (1::int) = 1" by (auto simp add: bit_and_iff bit_minus_iff even_and_iff bit_double_iff even_bit_succ_iff add_One sub_inc_One_eq intro: eqI) lemma int_or_numerals [simp]: "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (2 :: int) * (numeral x OR numeral y)" "numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR numeral y)" "numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x OR numeral y)" "numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR numeral y)" "numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (2 :: int) * (numeral x OR - numeral y)" "numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR - numeral (y + Num.One))" "numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x OR - numeral y)" "numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR - numeral (y + Num.One))" "- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (2 :: int) * (- numeral x OR numeral y)" "- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x OR numeral y)" "- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR numeral y)" "- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR numeral y)" "- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x OR - numeral y)" "- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x OR - numeral (y + Num.One))" "- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR - numeral y)" "- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR - numeral (y + Num.One))" "(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" "(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)" "(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" "(1::int) OR - numeral (Num.Bit1 y) = - numeral (Num.Bit1 y)" "numeral (Num.Bit0 x) OR (1::int) = numeral (Num.Bit1 x)" "numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)" "- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)" "- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)" by (auto simp add: bit_or_iff bit_minus_iff even_or_iff bit_double_iff even_bit_succ_iff add_One sub_inc_One_eq sub_BitM_One_eq intro: eqI) lemma int_xor_numerals [simp]: "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (2 :: int) * (numeral x XOR numeral y)" "numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x XOR numeral y)" "numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x XOR numeral y)" "numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (2 :: int) * (numeral x XOR numeral y)" "numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (2 :: int) * (numeral x XOR - numeral y)" "numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x XOR - numeral (y + Num.One))" "numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x XOR - numeral y)" "numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (2 :: int) * (numeral x XOR - numeral (y + Num.One))" "- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (2 :: int) * (- numeral x XOR numeral y)" "- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x XOR numeral y)" "- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) XOR numeral y)" "- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (2 :: int) * (- numeral (x + Num.One) XOR numeral y)" "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x XOR - numeral y)" "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x XOR - numeral (y + Num.One))" "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) XOR - numeral y)" "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (2 :: int) * (- numeral (x + Num.One) XOR - numeral (y + Num.One))" "(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" "(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)" "(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" "(1::int) XOR - numeral (Num.Bit1 y) = - numeral (Num.Bit0 (y + Num.One))" "numeral (Num.Bit0 x) XOR (1::int) = numeral (Num.Bit1 x)" "numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)" "- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)" "- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))" by (auto simp add: bit_xor_iff bit_minus_iff even_xor_iff bit_double_iff even_bit_succ_iff add_One sub_inc_One_eq sub_BitM_One_eq intro: eqI) end subsection \Bit concatenation\ definition concat_bit :: \nat \ int \ int \ int\ where \concat_bit n k l = take_bit n k OR push_bit n l\ -lemma bit_concat_bit_iff: +lemma bit_concat_bit_iff [bit_simps]: \bit (concat_bit m k l) n \ n < m \ bit k n \ m \ n \ bit l (n - m)\ by (simp add: concat_bit_def bit_or_iff bit_and_iff bit_take_bit_iff bit_push_bit_iff ac_simps) lemma concat_bit_eq: \concat_bit n k l = take_bit n k + push_bit n l\ by (simp add: concat_bit_def take_bit_eq_mask bit_and_iff bit_mask_iff bit_push_bit_iff disjunctive_add) lemma concat_bit_0 [simp]: \concat_bit 0 k l = l\ by (simp add: concat_bit_def) lemma concat_bit_Suc: \concat_bit (Suc n) k l = k mod 2 + 2 * concat_bit n (k div 2) l\ by (simp add: concat_bit_eq take_bit_Suc push_bit_double) lemma concat_bit_of_zero_1 [simp]: \concat_bit n 0 l = push_bit n l\ by (simp add: concat_bit_def) lemma concat_bit_of_zero_2 [simp]: \concat_bit n k 0 = take_bit n k\ by (simp add: concat_bit_def take_bit_eq_mask) lemma concat_bit_nonnegative_iff [simp]: \concat_bit n k l \ 0 \ l \ 0\ by (simp add: concat_bit_def) lemma concat_bit_negative_iff [simp]: \concat_bit n k l < 0 \ l < 0\ by (simp add: concat_bit_def) lemma concat_bit_assoc: \concat_bit n k (concat_bit m l r) = concat_bit (m + n) (concat_bit n k l) r\ by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps) lemma concat_bit_assoc_sym: \concat_bit m (concat_bit n k l) r = concat_bit (min m n) k (concat_bit (m - n) l r)\ by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps min_def) lemma concat_bit_eq_iff: \concat_bit n k l = concat_bit n r s \ take_bit n k = take_bit n r \ l = s\ (is \?P \ ?Q\) proof assume ?Q then show ?P by (simp add: concat_bit_def) next assume ?P then have *: \bit (concat_bit n k l) m = bit (concat_bit n r s) m\ for m by (simp add: bit_eq_iff) have \take_bit n k = take_bit n r\ proof (rule bit_eqI) fix m from * [of m] show \bit (take_bit n k) m \ bit (take_bit n r) m\ by (auto simp add: bit_take_bit_iff bit_concat_bit_iff) qed moreover have \push_bit n l = push_bit n s\ proof (rule bit_eqI) fix m from * [of m] show \bit (push_bit n l) m \ bit (push_bit n s) m\ by (auto simp add: bit_push_bit_iff bit_concat_bit_iff) qed then have \l = s\ by (simp add: push_bit_eq_mult) ultimately show ?Q by (simp add: concat_bit_def) qed lemma take_bit_concat_bit_eq: \take_bit m (concat_bit n k l) = concat_bit (min m n) k (take_bit (m - n) l)\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_concat_bit_iff min_def) lemma concat_bit_take_bit_eq: \concat_bit n (take_bit n b) = concat_bit n b\ by (simp add: concat_bit_def [abs_def]) subsection \Taking bits with sign propagation\ context ring_bit_operations begin definition signed_take_bit :: \nat \ 'a \ 'a\ where \signed_take_bit n a = take_bit n a OR (of_bool (bit a n) * NOT (mask n))\ lemma signed_take_bit_eq_if_positive: \signed_take_bit n a = take_bit n a\ if \\ bit a n\ using that by (simp add: signed_take_bit_def) lemma signed_take_bit_eq_if_negative: \signed_take_bit n a = take_bit n a OR NOT (mask n)\ if \bit a n\ using that by (simp add: signed_take_bit_def) lemma even_signed_take_bit_iff: \even (signed_take_bit m a) \ even a\ by (auto simp add: signed_take_bit_def even_or_iff even_mask_iff bit_double_iff) -lemma bit_signed_take_bit_iff: +lemma bit_signed_take_bit_iff [bit_simps]: \bit (signed_take_bit m a) n \ 2 ^ n \ 0 \ bit a (min m n)\ by (simp add: signed_take_bit_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff min_def not_le) (use exp_eq_0_imp_not_bit in blast) lemma signed_take_bit_0 [simp]: \signed_take_bit 0 a = - (a mod 2)\ by (simp add: signed_take_bit_def odd_iff_mod_2_eq_one) lemma signed_take_bit_Suc: \signed_take_bit (Suc n) a = a mod 2 + 2 * signed_take_bit n (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ show \bit (signed_take_bit (Suc n) a) m \ bit (a mod 2 + 2 * signed_take_bit n (a div 2)) m\ proof (cases m) case 0 then show ?thesis by (simp add: even_signed_take_bit_iff) next case (Suc m) with * have \2 ^ m \ 0\ by (metis mult_not_zero power_Suc) with Suc show ?thesis by (simp add: bit_signed_take_bit_iff mod2_eq_if bit_double_iff even_bit_succ_iff ac_simps flip: bit_Suc) qed qed lemma signed_take_bit_of_0 [simp]: \signed_take_bit n 0 = 0\ by (simp add: signed_take_bit_def) lemma signed_take_bit_of_minus_1 [simp]: \signed_take_bit n (- 1) = - 1\ by (simp add: signed_take_bit_def take_bit_minus_one_eq_mask mask_eq_exp_minus_1) lemma signed_take_bit_Suc_1 [simp]: \signed_take_bit (Suc n) 1 = 1\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_rec: \signed_take_bit n a = (if n = 0 then - (a mod 2) else a mod 2 + 2 * signed_take_bit (n - 1) (a div 2))\ by (cases n) (simp_all add: signed_take_bit_Suc) lemma signed_take_bit_eq_iff_take_bit_eq: \signed_take_bit n a = signed_take_bit n b \ take_bit (Suc n) a = take_bit (Suc n) b\ proof - have \bit (signed_take_bit n a) = bit (signed_take_bit n b) \ bit (take_bit (Suc n) a) = bit (take_bit (Suc n) b)\ by (simp add: fun_eq_iff bit_signed_take_bit_iff bit_take_bit_iff not_le less_Suc_eq_le min_def) (use exp_eq_0_imp_not_bit in fastforce) then show ?thesis by (simp add: bit_eq_iff fun_eq_iff) qed lemma signed_take_bit_signed_take_bit [simp]: \signed_take_bit m (signed_take_bit n a) = signed_take_bit (min m n) a\ proof (rule bit_eqI) fix q show \bit (signed_take_bit m (signed_take_bit n a)) q \ bit (signed_take_bit (min m n) a) q\ by (simp add: bit_signed_take_bit_iff min_def bit_or_iff bit_not_iff bit_mask_iff bit_take_bit_iff) (use le_Suc_ex exp_add_not_zero_imp in blast) qed lemma signed_take_bit_take_bit: \signed_take_bit m (take_bit n a) = (if n \ m then take_bit n else signed_take_bit m) a\ by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff) lemma take_bit_signed_take_bit: \take_bit m (signed_take_bit n a) = take_bit m a\ if \m \ Suc n\ using that by (rule le_SucE; intro bit_eqI) (auto simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def less_Suc_eq) end text \Modulus centered around 0\ lemma signed_take_bit_eq_concat_bit: \signed_take_bit n k = concat_bit n k (- of_bool (bit k n))\ by (simp add: concat_bit_def signed_take_bit_def push_bit_minus_one_eq_not_mask) lemma signed_take_bit_add: \signed_take_bit n (signed_take_bit n k + signed_take_bit n l) = signed_take_bit n (k + l)\ for k l :: int proof - have \take_bit (Suc n) (take_bit (Suc n) (signed_take_bit n k) + take_bit (Suc n) (signed_take_bit n l)) = take_bit (Suc n) (k + l)\ by (simp add: take_bit_signed_take_bit take_bit_add) then show ?thesis by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_add) qed lemma signed_take_bit_diff: \signed_take_bit n (signed_take_bit n k - signed_take_bit n l) = signed_take_bit n (k - l)\ for k l :: int proof - have \take_bit (Suc n) (take_bit (Suc n) (signed_take_bit n k) - take_bit (Suc n) (signed_take_bit n l)) = take_bit (Suc n) (k - l)\ by (simp add: take_bit_signed_take_bit take_bit_diff) then show ?thesis by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_diff) qed lemma signed_take_bit_minus: \signed_take_bit n (- signed_take_bit n k) = signed_take_bit n (- k)\ for k :: int proof - have \take_bit (Suc n) (- take_bit (Suc n) (signed_take_bit n k)) = take_bit (Suc n) (- k)\ by (simp add: take_bit_signed_take_bit take_bit_minus) then show ?thesis by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_minus) qed lemma signed_take_bit_mult: \signed_take_bit n (signed_take_bit n k * signed_take_bit n l) = signed_take_bit n (k * l)\ for k l :: int proof - have \take_bit (Suc n) (take_bit (Suc n) (signed_take_bit n k) * take_bit (Suc n) (signed_take_bit n l)) = take_bit (Suc n) (k * l)\ by (simp add: take_bit_signed_take_bit take_bit_mult) then show ?thesis by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_mult) qed lemma signed_take_bit_eq_take_bit_minus: \signed_take_bit n k = take_bit (Suc n) k - 2 ^ Suc n * of_bool (bit k n)\ for k :: int proof (cases \bit k n\) case True have \signed_take_bit n k = take_bit (Suc n) k OR NOT (mask (Suc n))\ by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff less_Suc_eq True) then have \signed_take_bit n k = take_bit (Suc n) k + NOT (mask (Suc n))\ by (simp add: disjunctive_add bit_take_bit_iff bit_not_iff bit_mask_iff) with True show ?thesis by (simp flip: minus_exp_eq_not_mask) next case False show ?thesis by (rule bit_eqI) (simp add: False bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq) qed lemma signed_take_bit_eq_take_bit_shift: \signed_take_bit n k = take_bit (Suc n) (k + 2 ^ n) - 2 ^ n\ for k :: int proof - have *: \take_bit n k OR 2 ^ n = take_bit n k + 2 ^ n\ by (simp add: disjunctive_add bit_exp_iff bit_take_bit_iff) have \take_bit n k - 2 ^ n = take_bit n k + NOT (mask n)\ by (simp add: minus_exp_eq_not_mask) also have \\ = take_bit n k OR NOT (mask n)\ by (rule disjunctive_add) (simp add: bit_exp_iff bit_take_bit_iff bit_not_iff bit_mask_iff) finally have **: \take_bit n k - 2 ^ n = take_bit n k OR NOT (mask n)\ . have \take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (take_bit (Suc n) k + take_bit (Suc n) (2 ^ n))\ by (simp only: take_bit_add) also have \take_bit (Suc n) k = 2 ^ n * of_bool (bit k n) + take_bit n k\ by (simp add: take_bit_Suc_from_most) finally have \take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (2 ^ (n + of_bool (bit k n)) + take_bit n k)\ by (simp add: ac_simps) also have \2 ^ (n + of_bool (bit k n)) + take_bit n k = 2 ^ (n + of_bool (bit k n)) OR take_bit n k\ by (rule disjunctive_add) (auto simp add: disjunctive_add bit_take_bit_iff bit_double_iff bit_exp_iff) finally show ?thesis using * ** by (simp add: signed_take_bit_def concat_bit_Suc min_def ac_simps) qed lemma signed_take_bit_nonnegative_iff [simp]: \0 \ signed_take_bit n k \ \ bit k n\ for k :: int by (simp add: signed_take_bit_def not_less concat_bit_def) lemma signed_take_bit_negative_iff [simp]: \signed_take_bit n k < 0 \ bit k n\ for k :: int by (simp add: signed_take_bit_def not_less concat_bit_def) lemma signed_take_bit_int_eq_self_iff: \signed_take_bit n k = k \ - (2 ^ n) \ k \ k < 2 ^ n\ for k :: int by (auto simp add: signed_take_bit_eq_take_bit_shift take_bit_int_eq_self_iff algebra_simps) lemma signed_take_bit_int_eq_self: \signed_take_bit n k = k\ if \- (2 ^ n) \ k\ \k < 2 ^ n\ for k :: int using that by (simp add: signed_take_bit_int_eq_self_iff) lemma signed_take_bit_int_less_eq_self_iff: \signed_take_bit n k \ k \ - (2 ^ n) \ k\ for k :: int by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_eq_self_iff algebra_simps) linarith lemma signed_take_bit_int_less_self_iff: \signed_take_bit n k < k \ 2 ^ n \ k\ for k :: int by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_self_iff algebra_simps) lemma signed_take_bit_int_greater_self_iff: \k < signed_take_bit n k \ k < - (2 ^ n)\ for k :: int by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_self_iff algebra_simps) linarith lemma signed_take_bit_int_greater_eq_self_iff: \k \ signed_take_bit n k \ k < 2 ^ n\ for k :: int by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_eq_self_iff algebra_simps) lemma signed_take_bit_int_greater_eq: \k + 2 ^ Suc n \ signed_take_bit n k\ if \k < - (2 ^ n)\ for k :: int using that take_bit_int_greater_eq [of \k + 2 ^ n\ \Suc n\] by (simp add: signed_take_bit_eq_take_bit_shift) lemma signed_take_bit_int_less_eq: \signed_take_bit n k \ k - 2 ^ Suc n\ if \k \ 2 ^ n\ for k :: int using that take_bit_int_less_eq [of \Suc n\ \k + 2 ^ n\] by (simp add: signed_take_bit_eq_take_bit_shift) lemma signed_take_bit_Suc_bit0 [simp]: \signed_take_bit (Suc n) (numeral (Num.Bit0 k)) = signed_take_bit n (numeral k) * (2 :: int)\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_Suc_bit1 [simp]: \signed_take_bit (Suc n) (numeral (Num.Bit1 k)) = signed_take_bit n (numeral k) * 2 + (1 :: int)\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_Suc_minus_bit0 [simp]: \signed_take_bit (Suc n) (- numeral (Num.Bit0 k)) = signed_take_bit n (- numeral k) * (2 :: int)\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_Suc_minus_bit1 [simp]: \signed_take_bit (Suc n) (- numeral (Num.Bit1 k)) = signed_take_bit n (- numeral k - 1) * 2 + (1 :: int)\ by (simp add: signed_take_bit_Suc) lemma signed_take_bit_numeral_bit0 [simp]: \signed_take_bit (numeral l) (numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (numeral k) * (2 :: int)\ by (simp add: signed_take_bit_rec) lemma signed_take_bit_numeral_bit1 [simp]: \signed_take_bit (numeral l) (numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (numeral k) * 2 + (1 :: int)\ by (simp add: signed_take_bit_rec) lemma signed_take_bit_numeral_minus_bit0 [simp]: \signed_take_bit (numeral l) (- numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (- numeral k) * (2 :: int)\ by (simp add: signed_take_bit_rec) lemma signed_take_bit_numeral_minus_bit1 [simp]: \signed_take_bit (numeral l) (- numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (- numeral k - 1) * 2 + (1 :: int)\ by (simp add: signed_take_bit_rec) lemma signed_take_bit_code [code]: \signed_take_bit n a = (let l = take_bit (Suc n) a in if bit l n then l + push_bit (Suc n) (- 1) else l)\ proof - have *: \take_bit (Suc n) a + push_bit n (- 2) = take_bit (Suc n) a OR NOT (mask (Suc n))\ by (auto simp add: bit_take_bit_iff bit_push_bit_iff bit_not_iff bit_mask_iff disjunctive_add simp flip: push_bit_minus_one_eq_not_mask) show ?thesis by (rule bit_eqI) (auto simp add: Let_def * bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq bit_not_iff bit_mask_iff bit_or_iff) qed lemma not_minus_numeral_inc_eq: \NOT (- numeral (Num.inc n)) = (numeral n :: int)\ by (simp add: not_int_def sub_inc_One_eq) subsection \Instance \<^typ>\nat\\ instantiation nat :: semiring_bit_operations begin definition and_nat :: \nat \ nat \ nat\ where \m AND n = nat (int m AND int n)\ for m n :: nat definition or_nat :: \nat \ nat \ nat\ where \m OR n = nat (int m OR int n)\ for m n :: nat definition xor_nat :: \nat \ nat \ nat\ where \m XOR n = nat (int m XOR int n)\ for m n :: nat definition mask_nat :: \nat \ nat\ where \mask n = (2 :: nat) ^ n - 1\ instance proof fix m n q :: nat show \bit (m AND n) q \ bit m q \ bit n q\ - by (auto simp add: bit_nat_iff and_nat_def bit_and_iff less_le bit_eq_iff) + by (simp add: and_nat_def bit_simps) show \bit (m OR n) q \ bit m q \ bit n q\ - by (auto simp add: bit_nat_iff or_nat_def bit_or_iff less_le bit_eq_iff) + by (simp add: or_nat_def bit_simps) show \bit (m XOR n) q \ bit m q \ bit n q\ - by (auto simp add: bit_nat_iff xor_nat_def bit_xor_iff less_le bit_eq_iff) + by (simp add: xor_nat_def bit_simps) qed (simp add: mask_nat_def) end lemma and_nat_rec: \m AND n = of_bool (odd m \ odd n) + 2 * ((m div 2) AND (n div 2))\ for m n :: nat by (simp add: and_nat_def and_int_rec [of \int m\ \int n\] zdiv_int nat_add_distrib nat_mult_distrib) lemma or_nat_rec: \m OR n = of_bool (odd m \ odd n) + 2 * ((m div 2) OR (n div 2))\ for m n :: nat by (simp add: or_nat_def or_int_rec [of \int m\ \int n\] zdiv_int nat_add_distrib nat_mult_distrib) lemma xor_nat_rec: \m XOR n = of_bool (odd m \ odd n) + 2 * ((m div 2) XOR (n div 2))\ for m n :: nat by (simp add: xor_nat_def xor_int_rec [of \int m\ \int n\] zdiv_int nat_add_distrib nat_mult_distrib) lemma Suc_0_and_eq [simp]: \Suc 0 AND n = n mod 2\ using one_and_eq [of n] by simp lemma and_Suc_0_eq [simp]: \n AND Suc 0 = n mod 2\ using and_one_eq [of n] by simp lemma Suc_0_or_eq: \Suc 0 OR n = n + of_bool (even n)\ using one_or_eq [of n] by simp lemma or_Suc_0_eq: \n OR Suc 0 = n + of_bool (even n)\ using or_one_eq [of n] by simp lemma Suc_0_xor_eq: \Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)\ using one_xor_eq [of n] by simp lemma xor_Suc_0_eq: \n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)\ using xor_one_eq [of n] by simp context semiring_bit_operations begin lemma of_nat_and_eq: \of_nat (m AND n) = of_nat m AND of_nat n\ by (rule bit_eqI) (simp add: bit_of_nat_iff bit_and_iff Bit_Operations.bit_and_iff) lemma of_nat_or_eq: \of_nat (m OR n) = of_nat m OR of_nat n\ by (rule bit_eqI) (simp add: bit_of_nat_iff bit_or_iff Bit_Operations.bit_or_iff) lemma of_nat_xor_eq: \of_nat (m XOR n) = of_nat m XOR of_nat n\ by (rule bit_eqI) (simp add: bit_of_nat_iff bit_xor_iff Bit_Operations.bit_xor_iff) end context ring_bit_operations begin lemma of_nat_mask_eq: \of_nat (mask n) = mask n\ by (induction n) (simp_all add: mask_Suc_double Bit_Operations.mask_Suc_double of_nat_or_eq) end subsection \Instances for \<^typ>\integer\ and \<^typ>\natural\\ unbundle integer.lifting natural.lifting instantiation integer :: ring_bit_operations begin lift_definition not_integer :: \integer \ integer\ is not . lift_definition and_integer :: \integer \ integer \ integer\ is \and\ . lift_definition or_integer :: \integer \ integer \ integer\ is or . lift_definition xor_integer :: \integer \ integer \ integer\ is xor . lift_definition mask_integer :: \nat \ integer\ is mask . instance by (standard; transfer) (simp_all add: minus_eq_not_minus_1 mask_eq_exp_minus_1 bit_not_iff bit_and_iff bit_or_iff bit_xor_iff) end lemma [code]: \mask n = 2 ^ n - (1::integer)\ by (simp add: mask_eq_exp_minus_1) instantiation natural :: semiring_bit_operations begin lift_definition and_natural :: \natural \ natural \ natural\ is \and\ . lift_definition or_natural :: \natural \ natural \ natural\ is or . lift_definition xor_natural :: \natural \ natural \ natural\ is xor . lift_definition mask_natural :: \nat \ natural\ is mask . instance by (standard; transfer) (simp_all add: mask_eq_exp_minus_1 bit_and_iff bit_or_iff bit_xor_iff) end lemma [code]: \integer_of_natural (mask n) = mask n\ by transfer (simp add: mask_eq_exp_minus_1 of_nat_diff) lifting_update integer.lifting lifting_forget integer.lifting lifting_update natural.lifting lifting_forget natural.lifting subsection \Key ideas of bit operations\ text \ When formalizing bit operations, it is tempting to represent bit values as explicit lists over a binary type. This however is a bad idea, mainly due to the inherent ambiguities in representation concerning repeating leading bits. Hence this approach avoids such explicit lists altogether following an algebraic path: \<^item> Bit values are represented by numeric types: idealized unbounded bit values can be represented by type \<^typ>\int\, bounded bit values by quotient types over \<^typ>\int\. \<^item> (A special case are idealized unbounded bit values ending in @{term [source] 0} which can be represented by type \<^typ>\nat\ but only support a restricted set of operations). \<^item> From this idea follows that \<^item> multiplication by \<^term>\2 :: int\ is a bit shift to the left and \<^item> division by \<^term>\2 :: int\ is a bit shift to the right. \<^item> Concerning bounded bit values, iterated shifts to the left may result in eliminating all bits by shifting them all beyond the boundary. The property \<^prop>\(2 :: int) ^ n \ 0\ represents that \<^term>\n\ is \<^emph>\not\ beyond that boundary. \<^item> The projection on a single bit is then @{thm bit_iff_odd [where ?'a = int, no_vars]}. \<^item> This leads to the most fundamental properties of bit values: \<^item> Equality rule: @{thm bit_eqI [where ?'a = int, no_vars]} \<^item> Induction rule: @{thm bits_induct [where ?'a = int, no_vars]} \<^item> Typical operations are characterized as follows: \<^item> Singleton \<^term>\n\th bit: \<^term>\(2 :: int) ^ n\ \<^item> Bit mask upto bit \<^term>\n\: @{thm mask_eq_exp_minus_1 [where ?'a = int, no_vars]} \<^item> Left shift: @{thm push_bit_eq_mult [where ?'a = int, no_vars]} \<^item> Right shift: @{thm drop_bit_eq_div [where ?'a = int, no_vars]} \<^item> Truncation: @{thm take_bit_eq_mod [where ?'a = int, no_vars]} \<^item> Negation: @{thm bit_not_iff [where ?'a = int, no_vars]} \<^item> And: @{thm bit_and_iff [where ?'a = int, no_vars]} \<^item> Or: @{thm bit_or_iff [where ?'a = int, no_vars]} \<^item> Xor: @{thm bit_xor_iff [where ?'a = int, no_vars]} \<^item> Set a single bit: @{thm set_bit_def [where ?'a = int, no_vars]} \<^item> Unset a single bit: @{thm unset_bit_def [where ?'a = int, no_vars]} \<^item> Flip a single bit: @{thm flip_bit_def [where ?'a = int, no_vars]} \<^item> Signed truncation, or modulus centered around \<^term>\0::int\: @{thm signed_take_bit_def [no_vars]} \<^item> Bit concatenation: @{thm concat_bit_def [no_vars]} \<^item> (Bounded) conversion from and to a list of bits: @{thm horner_sum_bit_eq_take_bit [where ?'a = int, no_vars]} \ code_identifier type_class semiring_bits \ (SML) Bit_Operations.semiring_bits and (OCaml) Bit_Operations.semiring_bits and (Haskell) Bit_Operations.semiring_bits and (Scala) Bit_Operations.semiring_bits | class_relation semiring_bits < semiring_parity \ (SML) Bit_Operations.semiring_parity_semiring_bits and (OCaml) Bit_Operations.semiring_parity_semiring_bits and (Haskell) Bit_Operations.semiring_parity_semiring_bits and (Scala) Bit_Operations.semiring_parity_semiring_bits | constant bit \ (SML) Bit_Operations.bit and (OCaml) Bit_Operations.bit and (Haskell) Bit_Operations.bit and (Scala) Bit_Operations.bit | class_instance nat :: semiring_bits \ (SML) Bit_Operations.semiring_bits_nat and (OCaml) Bit_Operations.semiring_bits_nat and (Haskell) Bit_Operations.semiring_bits_nat and (Scala) Bit_Operations.semiring_bits_nat | class_instance int :: semiring_bits \ (SML) Bit_Operations.semiring_bits_int and (OCaml) Bit_Operations.semiring_bits_int and (Haskell) Bit_Operations.semiring_bits_int and (Scala) Bit_Operations.semiring_bits_int | type_class semiring_bit_shifts \ (SML) Bit_Operations.semiring_bit_shifts and (OCaml) Bit_Operations.semiring_bit_shifts and (Haskell) Bit_Operations.semiring_bits and (Scala) Bit_Operations.semiring_bit_shifts | class_relation semiring_bit_shifts < semiring_bits \ (SML) Bit_Operations.semiring_bits_semiring_bit_shifts and (OCaml) Bit_Operations.semiring_bits_semiring_bit_shifts and (Haskell) Bit_Operations.semiring_bits_semiring_bit_shifts and (Scala) Bit_Operations.semiring_bits_semiring_bit_shifts | constant push_bit \ (SML) Bit_Operations.push_bit and (OCaml) Bit_Operations.push_bit and (Haskell) Bit_Operations.push_bit and (Scala) Bit_Operations.push_bit | constant drop_bit \ (SML) Bit_Operations.drop_bit and (OCaml) Bit_Operations.drop_bit and (Haskell) Bit_Operations.drop_bit and (Scala) Bit_Operations.drop_bit | constant take_bit \ (SML) Bit_Operations.take_bit and (OCaml) Bit_Operations.take_bit and (Haskell) Bit_Operations.take_bit and (Scala) Bit_Operations.take_bit | class_instance nat :: semiring_bit_shifts \ (SML) Bit_Operations.semiring_bit_shifts and (OCaml) Bit_Operations.semiring_bit_shifts and (Haskell) Bit_Operations.semiring_bit_shifts and (Scala) Bit_Operations.semiring_bit_shifts | class_instance int :: semiring_bit_shifts \ (SML) Bit_Operations.semiring_bit_shifts and (OCaml) Bit_Operations.semiring_bit_shifts and (Haskell) Bit_Operations.semiring_bit_shifts and (Scala) Bit_Operations.semiring_bit_shifts end diff --git a/src/HOL/Library/Word.thy b/src/HOL/Library/Word.thy --- a/src/HOL/Library/Word.thy +++ b/src/HOL/Library/Word.thy @@ -1,4588 +1,4588 @@ (* Title: HOL/Library/Word.thy Author: Jeremy Dawson and Gerwin Klein, NICTA, et. al. *) section \A type of finite bit strings\ theory Word imports "HOL-Library.Type_Length" "HOL-Library.Boolean_Algebra" "HOL-Library.Bit_Operations" begin subsection \Preliminaries\ lemma signed_take_bit_decr_length_iff: \signed_take_bit (LENGTH('a::len) - Suc 0) k = signed_take_bit (LENGTH('a) - Suc 0) l \ take_bit LENGTH('a) k = take_bit LENGTH('a) l\ by (cases \LENGTH('a)\) (simp_all add: signed_take_bit_eq_iff_take_bit_eq) subsection \Fundamentals\ subsubsection \Type definition\ quotient_type (overloaded) 'a word = int / \\k l. take_bit LENGTH('a) k = take_bit LENGTH('a::len) l\ morphisms rep Word by (auto intro!: equivpI reflpI sympI transpI) hide_const (open) rep \ \only for foundational purpose\ hide_const (open) Word \ \only for code generation\ subsubsection \Basic arithmetic\ instantiation word :: (len) comm_ring_1 begin lift_definition zero_word :: \'a word\ is 0 . lift_definition one_word :: \'a word\ is 1 . lift_definition plus_word :: \'a word \ 'a word \ 'a word\ is \(+)\ by (auto simp add: take_bit_eq_mod intro: mod_add_cong) lift_definition minus_word :: \'a word \ 'a word \ 'a word\ is \(-)\ by (auto simp add: take_bit_eq_mod intro: mod_diff_cong) lift_definition uminus_word :: \'a word \ 'a word\ is uminus by (auto simp add: take_bit_eq_mod intro: mod_minus_cong) lift_definition times_word :: \'a word \ 'a word \ 'a word\ is \(*)\ by (auto simp add: take_bit_eq_mod intro: mod_mult_cong) instance by (standard; transfer) (simp_all add: algebra_simps) end context includes lifting_syntax notes power_transfer [transfer_rule] transfer_rule_of_bool [transfer_rule] transfer_rule_numeral [transfer_rule] transfer_rule_of_nat [transfer_rule] transfer_rule_of_int [transfer_rule] begin lemma power_transfer_word [transfer_rule]: \(pcr_word ===> (=) ===> pcr_word) (^) (^)\ by transfer_prover lemma [transfer_rule]: \((=) ===> pcr_word) of_bool of_bool\ by transfer_prover lemma [transfer_rule]: \((=) ===> pcr_word) numeral numeral\ by transfer_prover lemma [transfer_rule]: \((=) ===> pcr_word) int of_nat\ by transfer_prover lemma [transfer_rule]: \((=) ===> pcr_word) (\k. k) of_int\ proof - have \((=) ===> pcr_word) of_int of_int\ by transfer_prover then show ?thesis by (simp add: id_def) qed lemma [transfer_rule]: \(pcr_word ===> (\)) even ((dvd) 2 :: 'a::len word \ bool)\ proof - have even_word_unfold: "even k \ (\l. take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l))" (is "?P \ ?Q") for k :: int proof assume ?P then show ?Q by auto next assume ?Q then obtain l where "take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l)" .. then have "even (take_bit LENGTH('a) k)" by simp then show ?P by simp qed show ?thesis by (simp only: even_word_unfold [abs_def] dvd_def [where ?'a = "'a word", abs_def]) transfer_prover qed end lemma exp_eq_zero_iff [simp]: \2 ^ n = (0 :: 'a::len word) \ n \ LENGTH('a)\ by transfer simp lemma word_exp_length_eq_0 [simp]: \(2 :: 'a::len word) ^ LENGTH('a) = 0\ by simp subsubsection \Basic tool setup\ ML_file \Tools/word_lib.ML\ subsubsection \Basic code generation setup\ context begin qualified lift_definition the_int :: \'a::len word \ int\ is \take_bit LENGTH('a)\ . end lemma [code abstype]: \Word.Word (Word.the_int w) = w\ by transfer simp lemma Word_eq_word_of_int [code_post, simp]: \Word.Word = of_int\ by (rule; transfer) simp quickcheck_generator word constructors: \0 :: 'a::len word\, \numeral :: num \ 'a::len word\ instantiation word :: (len) equal begin lift_definition equal_word :: \'a word \ 'a word \ bool\ is \\k l. take_bit LENGTH('a) k = take_bit LENGTH('a) l\ by simp instance by (standard; transfer) rule end lemma [code]: \HOL.equal v w \ HOL.equal (Word.the_int v) (Word.the_int w)\ by transfer (simp add: equal) lemma [code]: \Word.the_int 0 = 0\ by transfer simp lemma [code]: \Word.the_int 1 = 1\ by transfer simp lemma [code]: \Word.the_int (v + w) = take_bit LENGTH('a) (Word.the_int v + Word.the_int w)\ for v w :: \'a::len word\ by transfer (simp add: take_bit_add) lemma [code]: \Word.the_int (- w) = (let k = Word.the_int w in if w = 0 then 0 else 2 ^ LENGTH('a) - k)\ for w :: \'a::len word\ by transfer (auto simp add: take_bit_eq_mod zmod_zminus1_eq_if) lemma [code]: \Word.the_int (v - w) = take_bit LENGTH('a) (Word.the_int v - Word.the_int w)\ for v w :: \'a::len word\ by transfer (simp add: take_bit_diff) lemma [code]: \Word.the_int (v * w) = take_bit LENGTH('a) (Word.the_int v * Word.the_int w)\ for v w :: \'a::len word\ by transfer (simp add: take_bit_mult) subsubsection \Basic conversions\ abbreviation word_of_nat :: \nat \ 'a::len word\ where \word_of_nat \ of_nat\ abbreviation word_of_int :: \int \ 'a::len word\ where \word_of_int \ of_int\ lemma word_of_nat_eq_iff: \word_of_nat m = (word_of_nat n :: 'a::len word) \ take_bit LENGTH('a) m = take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma word_of_int_eq_iff: \word_of_int k = (word_of_int l :: 'a::len word) \ take_bit LENGTH('a) k = take_bit LENGTH('a) l\ by transfer rule lemma word_of_nat_eq_0_iff [simp]: \word_of_nat n = (0 :: 'a::len word) \ 2 ^ LENGTH('a) dvd n\ using word_of_nat_eq_iff [where ?'a = 'a, of n 0] by (simp add: take_bit_eq_0_iff) lemma word_of_int_eq_0_iff [simp]: \word_of_int k = (0 :: 'a::len word) \ 2 ^ LENGTH('a) dvd k\ using word_of_int_eq_iff [where ?'a = 'a, of k 0] by (simp add: take_bit_eq_0_iff) context semiring_1 begin lift_definition unsigned :: \'b::len word \ 'a\ is \of_nat \ nat \ take_bit LENGTH('b)\ by simp lemma unsigned_0 [simp]: \unsigned 0 = 0\ by transfer simp lemma unsigned_1 [simp]: \unsigned 1 = 1\ by transfer simp lemma unsigned_numeral [simp]: \unsigned (numeral n :: 'b::len word) = of_nat (take_bit LENGTH('b) (numeral n))\ by transfer (simp add: nat_take_bit_eq) lemma unsigned_neg_numeral [simp]: \unsigned (- numeral n :: 'b::len word) = of_nat (nat (take_bit LENGTH('b) (- numeral n)))\ by transfer simp end context semiring_1 begin lemma unsigned_of_nat [simp]: \unsigned (word_of_nat n :: 'b::len word) = of_nat (take_bit LENGTH('b) n)\ by transfer (simp add: nat_eq_iff take_bit_of_nat) lemma unsigned_of_int [simp]: \unsigned (word_of_int k :: 'b::len word) = of_nat (nat (take_bit LENGTH('b) k))\ by transfer simp end context semiring_char_0 begin lemma unsigned_word_eqI: \v = w\ if \unsigned v = unsigned w\ using that by transfer (simp add: eq_nat_nat_iff) lemma word_eq_iff_unsigned: \v = w \ unsigned v = unsigned w\ by (auto intro: unsigned_word_eqI) lemma inj_unsigned [simp]: \inj unsigned\ by (rule injI) (simp add: unsigned_word_eqI) lemma unsigned_eq_0_iff: \unsigned w = 0 \ w = 0\ using word_eq_iff_unsigned [of w 0] by simp end context ring_1 begin lift_definition signed :: \'b::len word \ 'a\ is \of_int \ signed_take_bit (LENGTH('b) - Suc 0)\ by (simp flip: signed_take_bit_decr_length_iff) lemma signed_0 [simp]: \signed 0 = 0\ by transfer simp lemma signed_1 [simp]: \signed (1 :: 'b::len word) = (if LENGTH('b) = 1 then - 1 else 1)\ by (transfer fixing: uminus; cases \LENGTH('b)\) (auto dest: gr0_implies_Suc) lemma signed_minus_1 [simp]: \signed (- 1 :: 'b::len word) = - 1\ by (transfer fixing: uminus) simp lemma signed_numeral [simp]: \signed (numeral n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - 1) (numeral n))\ by transfer simp lemma signed_neg_numeral [simp]: \signed (- numeral n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - 1) (- numeral n))\ by transfer simp lemma signed_of_nat [simp]: \signed (word_of_nat n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - Suc 0) (int n))\ by transfer simp lemma signed_of_int [simp]: \signed (word_of_int n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - Suc 0) n)\ by transfer simp end context ring_char_0 begin lemma signed_word_eqI: \v = w\ if \signed v = signed w\ using that by transfer (simp flip: signed_take_bit_decr_length_iff) lemma word_eq_iff_signed: \v = w \ signed v = signed w\ by (auto intro: signed_word_eqI) lemma inj_signed [simp]: \inj signed\ by (rule injI) (simp add: signed_word_eqI) lemma signed_eq_0_iff: \signed w = 0 \ w = 0\ using word_eq_iff_signed [of w 0] by simp end abbreviation unat :: \'a::len word \ nat\ where \unat \ unsigned\ abbreviation uint :: \'a::len word \ int\ where \uint \ unsigned\ abbreviation sint :: \'a::len word \ int\ where \sint \ signed\ abbreviation ucast :: \'a::len word \ 'b::len word\ where \ucast \ unsigned\ abbreviation scast :: \'a::len word \ 'b::len word\ where \scast \ signed\ context includes lifting_syntax begin lemma [transfer_rule]: \(pcr_word ===> (=)) (nat \ take_bit LENGTH('a)) (unat :: 'a::len word \ nat)\ using unsigned.transfer [where ?'a = nat] by simp lemma [transfer_rule]: \(pcr_word ===> (=)) (take_bit LENGTH('a)) (uint :: 'a::len word \ int)\ using unsigned.transfer [where ?'a = int] by (simp add: comp_def) lemma [transfer_rule]: \(pcr_word ===> (=)) (signed_take_bit (LENGTH('a) - Suc 0)) (sint :: 'a::len word \ int)\ using signed.transfer [where ?'a = int] by simp lemma [transfer_rule]: \(pcr_word ===> pcr_word) (take_bit LENGTH('a)) (ucast :: 'a::len word \ 'b::len word)\ proof (rule rel_funI) fix k :: int and w :: \'a word\ assume \pcr_word k w\ then have \w = word_of_int k\ by (simp add: pcr_word_def cr_word_def relcompp_apply) moreover have \pcr_word (take_bit LENGTH('a) k) (ucast (word_of_int k :: 'a word))\ by transfer (simp add: pcr_word_def cr_word_def relcompp_apply) ultimately show \pcr_word (take_bit LENGTH('a) k) (ucast w)\ by simp qed lemma [transfer_rule]: \(pcr_word ===> pcr_word) (signed_take_bit (LENGTH('a) - Suc 0)) (scast :: 'a::len word \ 'b::len word)\ proof (rule rel_funI) fix k :: int and w :: \'a word\ assume \pcr_word k w\ then have \w = word_of_int k\ by (simp add: pcr_word_def cr_word_def relcompp_apply) moreover have \pcr_word (signed_take_bit (LENGTH('a) - Suc 0) k) (scast (word_of_int k :: 'a word))\ by transfer (simp add: pcr_word_def cr_word_def relcompp_apply) ultimately show \pcr_word (signed_take_bit (LENGTH('a) - Suc 0) k) (scast w)\ by simp qed end lemma of_nat_unat [simp]: \of_nat (unat w) = unsigned w\ by transfer simp lemma of_int_uint [simp]: \of_int (uint w) = unsigned w\ by transfer simp lemma of_int_sint [simp]: \of_int (sint a) = signed a\ by transfer (simp_all add: take_bit_signed_take_bit) lemma nat_uint_eq [simp]: \nat (uint w) = unat w\ by transfer simp lemma sgn_uint_eq [simp]: \sgn (uint w) = of_bool (w \ 0)\ by transfer (simp add: less_le) text \Aliasses only for code generation\ context begin qualified lift_definition of_int :: \int \ 'a::len word\ is \take_bit LENGTH('a)\ . qualified lift_definition of_nat :: \nat \ 'a::len word\ is \int \ take_bit LENGTH('a)\ . qualified lift_definition the_nat :: \'a::len word \ nat\ is \nat \ take_bit LENGTH('a)\ by simp qualified lift_definition the_signed_int :: \'a::len word \ int\ is \signed_take_bit (LENGTH('a) - Suc 0)\ by (simp add: signed_take_bit_decr_length_iff) qualified lift_definition cast :: \'a::len word \ 'b::len word\ is \take_bit LENGTH('a)\ by simp qualified lift_definition signed_cast :: \'a::len word \ 'b::len word\ is \signed_take_bit (LENGTH('a) - Suc 0)\ by (metis signed_take_bit_decr_length_iff) end lemma [code_abbrev, simp]: \Word.the_int = uint\ by transfer rule lemma [code]: \Word.the_int (Word.of_int k :: 'a::len word) = take_bit LENGTH('a) k\ by transfer simp lemma [code_abbrev, simp]: \Word.of_int = word_of_int\ by (rule; transfer) simp lemma [code]: \Word.the_int (Word.of_nat n :: 'a::len word) = take_bit LENGTH('a) (int n)\ by transfer (simp add: take_bit_of_nat) lemma [code_abbrev, simp]: \Word.of_nat = word_of_nat\ by (rule; transfer) (simp add: take_bit_of_nat) lemma [code]: \Word.the_nat w = nat (Word.the_int w)\ by transfer simp lemma [code_abbrev, simp]: \Word.the_nat = unat\ by (rule; transfer) simp lemma [code]: \Word.the_signed_int w = signed_take_bit (LENGTH('a) - Suc 0) (Word.the_int w)\ for w :: \'a::len word\ by transfer (simp add: signed_take_bit_take_bit) lemma [code_abbrev, simp]: \Word.the_signed_int = sint\ by (rule; transfer) simp lemma [code]: \Word.the_int (Word.cast w :: 'b::len word) = take_bit LENGTH('b) (Word.the_int w)\ for w :: \'a::len word\ by transfer simp lemma [code_abbrev, simp]: \Word.cast = ucast\ by (rule; transfer) simp lemma [code]: \Word.the_int (Word.signed_cast w :: 'b::len word) = take_bit LENGTH('b) (Word.the_signed_int w)\ for w :: \'a::len word\ by transfer simp lemma [code_abbrev, simp]: \Word.signed_cast = scast\ by (rule; transfer) simp lemma [code]: \unsigned w = of_nat (nat (Word.the_int w))\ by transfer simp lemma [code]: \signed w = of_int (Word.the_signed_int w)\ by transfer simp subsubsection \Basic ordering\ instantiation word :: (len) linorder begin lift_definition less_eq_word :: "'a word \ 'a word \ bool" is "\a b. take_bit LENGTH('a) a \ take_bit LENGTH('a) b" by simp lift_definition less_word :: "'a word \ 'a word \ bool" is "\a b. take_bit LENGTH('a) a < take_bit LENGTH('a) b" by simp instance by (standard; transfer) auto end interpretation word_order: ordering_top \(\)\ \(<)\ \- 1 :: 'a::len word\ by (standard; transfer) (simp add: take_bit_eq_mod zmod_minus1) interpretation word_coorder: ordering_top \(\)\ \(>)\ \0 :: 'a::len word\ by (standard; transfer) simp lemma word_of_nat_less_eq_iff: \word_of_nat m \ (word_of_nat n :: 'a::len word) \ take_bit LENGTH('a) m \ take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma word_of_int_less_eq_iff: \word_of_int k \ (word_of_int l :: 'a::len word) \ take_bit LENGTH('a) k \ take_bit LENGTH('a) l\ by transfer rule lemma word_of_nat_less_iff: \word_of_nat m < (word_of_nat n :: 'a::len word) \ take_bit LENGTH('a) m < take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma word_of_int_less_iff: \word_of_int k < (word_of_int l :: 'a::len word) \ take_bit LENGTH('a) k < take_bit LENGTH('a) l\ by transfer rule lemma word_le_def [code]: "a \ b \ uint a \ uint b" by transfer rule lemma word_less_def [code]: "a < b \ uint a < uint b" by transfer rule lemma word_greater_zero_iff: \a > 0 \ a \ 0\ for a :: \'a::len word\ by transfer (simp add: less_le) lemma of_nat_word_less_eq_iff: \of_nat m \ (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m \ take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_less_iff: \of_nat m < (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m < take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_int_word_less_eq_iff: \of_int k \ (of_int l :: 'a::len word) \ take_bit LENGTH('a) k \ take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_less_iff: \of_int k < (of_int l :: 'a::len word) \ take_bit LENGTH('a) k < take_bit LENGTH('a) l\ by transfer rule subsection \Enumeration\ lemma inj_on_word_of_nat: \inj_on (word_of_nat :: nat \ 'a::len word) {0..<2 ^ LENGTH('a)}\ by (rule inj_onI; transfer) (simp_all add: take_bit_int_eq_self) lemma UNIV_word_eq_word_of_nat: \(UNIV :: 'a::len word set) = word_of_nat ` {0..<2 ^ LENGTH('a)}\ (is \_ = ?A\) proof show \word_of_nat ` {0..<2 ^ LENGTH('a)} \ UNIV\ by simp show \UNIV \ ?A\ proof fix w :: \'a word\ show \w \ (word_of_nat ` {0..<2 ^ LENGTH('a)} :: 'a word set)\ by (rule image_eqI [of _ _ \unat w\]; transfer) simp_all qed qed instantiation word :: (len) enum begin definition enum_word :: \'a word list\ where \enum_word = map word_of_nat [0..<2 ^ LENGTH('a)]\ definition enum_all_word :: \('a word \ bool) \ bool\ where \enum_all_word = Ball UNIV\ definition enum_ex_word :: \('a word \ bool) \ bool\ where \enum_ex_word = Bex UNIV\ lemma [code]: \Enum.enum_all P \ Ball UNIV P\ \Enum.enum_ex P \ Bex UNIV P\ for P :: \'a word \ bool\ by (simp_all add: enum_all_word_def enum_ex_word_def) instance by standard (simp_all add: UNIV_word_eq_word_of_nat inj_on_word_of_nat enum_word_def enum_all_word_def enum_ex_word_def distinct_map) end subsection \Bit-wise operations\ instantiation word :: (len) semiring_modulo begin lift_definition divide_word :: \'a word \ 'a word \ 'a word\ is \\a b. take_bit LENGTH('a) a div take_bit LENGTH('a) b\ by simp lift_definition modulo_word :: \'a word \ 'a word \ 'a word\ is \\a b. take_bit LENGTH('a) a mod take_bit LENGTH('a) b\ by simp instance proof show "a div b * b + a mod b = a" for a b :: "'a word" proof transfer fix k l :: int define r :: int where "r = 2 ^ LENGTH('a)" then have r: "take_bit LENGTH('a) k = k mod r" for k by (simp add: take_bit_eq_mod) have "k mod r = ((k mod r) div (l mod r) * (l mod r) + (k mod r) mod (l mod r)) mod r" by (simp add: div_mult_mod_eq) also have "... = (((k mod r) div (l mod r) * (l mod r)) mod r + (k mod r) mod (l mod r)) mod r" by (simp add: mod_add_left_eq) also have "... = (((k mod r) div (l mod r) * l) mod r + (k mod r) mod (l mod r)) mod r" by (simp add: mod_mult_right_eq) finally have "k mod r = ((k mod r) div (l mod r) * l + (k mod r) mod (l mod r)) mod r" by (simp add: mod_simps) with r show "take_bit LENGTH('a) (take_bit LENGTH('a) k div take_bit LENGTH('a) l * l + take_bit LENGTH('a) k mod take_bit LENGTH('a) l) = take_bit LENGTH('a) k" by simp qed qed end instance word :: (len) semiring_parity proof show "\ 2 dvd (1::'a word)" by transfer simp show even_iff_mod_2_eq_0: "2 dvd a \ a mod 2 = 0" for a :: "'a word" by transfer (simp_all add: mod_2_eq_odd take_bit_Suc) show "\ 2 dvd a \ a mod 2 = 1" for a :: "'a word" by transfer (simp_all add: mod_2_eq_odd take_bit_Suc) qed lemma word_bit_induct [case_names zero even odd]: \P a\ if word_zero: \P 0\ and word_even: \\a. P a \ 0 < a \ a < 2 ^ (LENGTH('a) - Suc 0) \ P (2 * a)\ and word_odd: \\a. P a \ a < 2 ^ (LENGTH('a) - Suc 0) \ P (1 + 2 * a)\ for P and a :: \'a::len word\ proof - define m :: nat where \m = LENGTH('a) - Suc 0\ then have l: \LENGTH('a) = Suc m\ by simp define n :: nat where \n = unat a\ then have \n < 2 ^ LENGTH('a)\ by transfer (simp add: take_bit_eq_mod) then have \n < 2 * 2 ^ m\ by (simp add: l) then have \P (of_nat n)\ proof (induction n rule: nat_bit_induct) case zero show ?case by simp (rule word_zero) next case (even n) then have \n < 2 ^ m\ by simp with even.IH have \P (of_nat n)\ by simp moreover from \n < 2 ^ m\ even.hyps have \0 < (of_nat n :: 'a word)\ by (auto simp add: word_greater_zero_iff l) moreover from \n < 2 ^ m\ have \(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - Suc 0)\ using of_nat_word_less_iff [where ?'a = 'a, of n \2 ^ m\] by (simp add: l take_bit_eq_mod) ultimately have \P (2 * of_nat n)\ by (rule word_even) then show ?case by simp next case (odd n) then have \Suc n \ 2 ^ m\ by simp with odd.IH have \P (of_nat n)\ by simp moreover from \Suc n \ 2 ^ m\ have \(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - Suc 0)\ using of_nat_word_less_iff [where ?'a = 'a, of n \2 ^ m\] by (simp add: l take_bit_eq_mod) ultimately have \P (1 + 2 * of_nat n)\ by (rule word_odd) then show ?case by simp qed moreover have \of_nat (nat (uint a)) = a\ by transfer simp ultimately show ?thesis by (simp add: n_def) qed lemma bit_word_half_eq: \(of_bool b + a * 2) div 2 = a\ if \a < 2 ^ (LENGTH('a) - Suc 0)\ for a :: \'a::len word\ proof (cases \2 \ LENGTH('a::len)\) case False have \of_bool (odd k) < (1 :: int) \ even k\ for k :: int by auto with False that show ?thesis by transfer (simp add: eq_iff) next case True obtain n where length: \LENGTH('a) = Suc n\ by (cases \LENGTH('a)\) simp_all show ?thesis proof (cases b) case False moreover have \a * 2 div 2 = a\ using that proof transfer fix k :: int from length have \k * 2 mod 2 ^ LENGTH('a) = (k mod 2 ^ n) * 2\ by simp moreover assume \take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\ with \LENGTH('a) = Suc n\ have \k mod 2 ^ LENGTH('a) = k mod 2 ^ n\ by (simp add: take_bit_eq_mod divmod_digit_0) ultimately have \take_bit LENGTH('a) (k * 2) = take_bit LENGTH('a) k * 2\ by (simp add: take_bit_eq_mod) with True show \take_bit LENGTH('a) (take_bit LENGTH('a) (k * 2) div take_bit LENGTH('a) 2) = take_bit LENGTH('a) k\ by simp qed ultimately show ?thesis by simp next case True moreover have \(1 + a * 2) div 2 = a\ using that proof transfer fix k :: int from length have \(1 + k * 2) mod 2 ^ LENGTH('a) = 1 + (k mod 2 ^ n) * 2\ using pos_zmod_mult_2 [of \2 ^ n\ k] by (simp add: ac_simps) moreover assume \take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\ with \LENGTH('a) = Suc n\ have \k mod 2 ^ LENGTH('a) = k mod 2 ^ n\ by (simp add: take_bit_eq_mod divmod_digit_0) ultimately have \take_bit LENGTH('a) (1 + k * 2) = 1 + take_bit LENGTH('a) k * 2\ by (simp add: take_bit_eq_mod) with True show \take_bit LENGTH('a) (take_bit LENGTH('a) (1 + k * 2) div take_bit LENGTH('a) 2) = take_bit LENGTH('a) k\ by (auto simp add: take_bit_Suc) qed ultimately show ?thesis by simp qed qed lemma even_mult_exp_div_word_iff: \even (a * 2 ^ m div 2 ^ n) \ \ ( m \ n \ n < LENGTH('a) \ odd (a div 2 ^ (n - m)))\ for a :: \'a::len word\ by transfer (auto simp flip: drop_bit_eq_div simp add: even_drop_bit_iff_not_bit bit_take_bit_iff, simp_all flip: push_bit_eq_mult add: bit_push_bit_iff_int) instantiation word :: (len) semiring_bits begin lift_definition bit_word :: \'a word \ nat \ bool\ is \\k n. n < LENGTH('a) \ bit k n\ proof fix k l :: int and n :: nat assume *: \take_bit LENGTH('a) k = take_bit LENGTH('a) l\ show \n < LENGTH('a) \ bit k n \ n < LENGTH('a) \ bit l n\ proof (cases \n < LENGTH('a)\) case True from * have \bit (take_bit LENGTH('a) k) n \ bit (take_bit LENGTH('a) l) n\ by simp then show ?thesis by (simp add: bit_take_bit_iff) next case False then show ?thesis by simp qed qed instance proof show \P a\ if stable: \\a. a div 2 = a \ P a\ and rec: \\a b. P a \ (of_bool b + 2 * a) div 2 = a \ P (of_bool b + 2 * a)\ for P and a :: \'a word\ proof (induction a rule: word_bit_induct) case zero have \0 div 2 = (0::'a word)\ by transfer simp with stable [of 0] show ?case by simp next case (even a) with rec [of a False] show ?case using bit_word_half_eq [of a False] by (simp add: ac_simps) next case (odd a) with rec [of a True] show ?case using bit_word_half_eq [of a True] by (simp add: ac_simps) qed show \bit a n \ odd (a div 2 ^ n)\ for a :: \'a word\ and n by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit bit_iff_odd_drop_bit) show \0 div a = 0\ for a :: \'a word\ by transfer simp show \a div 1 = a\ for a :: \'a word\ by transfer simp show \a mod b div b = 0\ for a b :: \'a word\ apply transfer apply (simp add: take_bit_eq_mod) apply (subst (3) mod_pos_pos_trivial [of _ \2 ^ LENGTH('a)\]) apply simp_all apply (metis le_less mod_by_0 pos_mod_conj zero_less_numeral zero_less_power) using pos_mod_bound [of \2 ^ LENGTH('a)\] apply simp proof - fix aa :: int and ba :: int have f1: "\i n. (i::int) mod 2 ^ n = 0 \ 0 < i mod 2 ^ n" by (metis le_less take_bit_eq_mod take_bit_nonnegative) have "(0::int) < 2 ^ len_of (TYPE('a)::'a itself) \ ba mod 2 ^ len_of (TYPE('a)::'a itself) \ 0 \ aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)" by (metis (no_types) mod_by_0 unique_euclidean_semiring_numeral_class.pos_mod_bound zero_less_numeral zero_less_power) then show "aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)" using f1 by (meson le_less less_le_trans unique_euclidean_semiring_numeral_class.pos_mod_bound) qed show \(1 + a) div 2 = a div 2\ if \even a\ for a :: \'a word\ using that by transfer (auto dest: le_Suc_ex simp add: mod_2_eq_odd take_bit_Suc elim!: evenE) show \(2 :: 'a word) ^ m div 2 ^ n = of_bool ((2 :: 'a word) ^ m \ 0 \ n \ m) * 2 ^ (m - n)\ for m n :: nat by transfer (simp, simp add: exp_div_exp_eq) show "a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)" for a :: "'a word" and m n :: nat apply transfer apply (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: drop_bit_eq_div) apply (simp add: drop_bit_take_bit) done show "a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n" for a :: "'a word" and m n :: nat by transfer (auto simp flip: take_bit_eq_mod simp add: ac_simps) show \a * 2 ^ m mod 2 ^ n = a mod 2 ^ (n - m) * 2 ^ m\ if \m \ n\ for a :: "'a word" and m n :: nat using that apply transfer apply (auto simp flip: take_bit_eq_mod) apply (auto simp flip: push_bit_eq_mult simp add: push_bit_take_bit split: split_min_lin) done show \a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\ for a :: "'a word" and m n :: nat by transfer (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: take_bit_eq_mod drop_bit_eq_div split: split_min_lin) show \even ((2 ^ m - 1) div (2::'a word) ^ n) \ 2 ^ n = (0::'a word) \ m \ n\ for m n :: nat by transfer (auto simp add: take_bit_of_mask even_mask_div_iff) show \even (a * 2 ^ m div 2 ^ n) \ n < m \ (2::'a word) ^ n = 0 \ m \ n \ even (a div 2 ^ (n - m))\ for a :: \'a word\ and m n :: nat proof transfer show \even (take_bit LENGTH('a) (k * 2 ^ m) div take_bit LENGTH('a) (2 ^ n)) \ n < m \ take_bit LENGTH('a) ((2::int) ^ n) = take_bit LENGTH('a) 0 \ (m \ n \ even (take_bit LENGTH('a) k div take_bit LENGTH('a) (2 ^ (n - m))))\ for m n :: nat and k l :: int by (auto simp flip: take_bit_eq_mod drop_bit_eq_div push_bit_eq_mult simp add: div_push_bit_of_1_eq_drop_bit drop_bit_take_bit drop_bit_push_bit_int [of n m]) qed qed end lemma bit_word_eqI: \a = b\ if \\n. n < LENGTH('a) \ bit a n \ bit b n\ for a b :: \'a::len word\ using that by transfer (auto simp add: nat_less_le bit_eq_iff bit_take_bit_iff) lemma bit_imp_le_length: \n < LENGTH('a)\ if \bit w n\ for w :: \'a::len word\ using that by transfer simp lemma not_bit_length [simp]: \\ bit w LENGTH('a)\ for w :: \'a::len word\ by transfer simp instantiation word :: (len) semiring_bit_shifts begin lift_definition push_bit_word :: \nat \ 'a word \ 'a word\ is push_bit proof - show \take_bit LENGTH('a) (push_bit n k) = take_bit LENGTH('a) (push_bit n l)\ if \take_bit LENGTH('a) k = take_bit LENGTH('a) l\ for k l :: int and n :: nat proof - from that have \take_bit (LENGTH('a) - n) (take_bit LENGTH('a) k) = take_bit (LENGTH('a) - n) (take_bit LENGTH('a) l)\ by simp moreover have \min (LENGTH('a) - n) LENGTH('a) = LENGTH('a) - n\ by simp ultimately show ?thesis by (simp add: take_bit_push_bit) qed qed lift_definition drop_bit_word :: \nat \ 'a word \ 'a word\ is \\n. drop_bit n \ take_bit LENGTH('a)\ by (simp add: take_bit_eq_mod) lift_definition take_bit_word :: \nat \ 'a word \ 'a word\ is \\n. take_bit (min LENGTH('a) n)\ by (simp add: ac_simps) (simp only: flip: take_bit_take_bit) instance proof show \push_bit n a = a * 2 ^ n\ for n :: nat and a :: \'a word\ by transfer (simp add: push_bit_eq_mult) show \drop_bit n a = a div 2 ^ n\ for n :: nat and a :: \'a word\ by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit) show \take_bit n a = a mod 2 ^ n\ for n :: nat and a :: \'a word\ by transfer (auto simp flip: take_bit_eq_mod) qed end lemma [code]: \push_bit n w = w * 2 ^ n\ for w :: \'a::len word\ by (fact push_bit_eq_mult) lemma [code]: \Word.the_int (drop_bit n w) = drop_bit n (Word.the_int w)\ by transfer (simp add: drop_bit_take_bit min_def le_less less_diff_conv) lemma [code]: \Word.the_int (take_bit n w) = (if n < LENGTH('a::len) then take_bit n (Word.the_int w) else Word.the_int w)\ for w :: \'a::len word\ by transfer (simp add: not_le not_less ac_simps min_absorb2) instantiation word :: (len) ring_bit_operations begin lift_definition not_word :: \'a word \ 'a word\ is not by (simp add: take_bit_not_iff) lift_definition and_word :: \'a word \ 'a word \ 'a word\ is \and\ by simp lift_definition or_word :: \'a word \ 'a word \ 'a word\ is or by simp lift_definition xor_word :: \'a word \ 'a word \ 'a word\ is xor by simp lift_definition mask_word :: \nat \ 'a word\ is mask . instance by (standard; transfer) (auto simp add: minus_eq_not_minus_1 mask_eq_exp_minus_1 bit_not_iff bit_and_iff bit_or_iff bit_xor_iff) end lemma [code_abbrev]: \push_bit n 1 = (2 :: 'a::len word) ^ n\ by (fact push_bit_of_1) lemma [code]: \NOT w = Word.of_int (NOT (Word.the_int w))\ for w :: \'a::len word\ by transfer (simp add: take_bit_not_take_bit) lemma [code]: \Word.the_int (v AND w) = Word.the_int v AND Word.the_int w\ by transfer simp lemma [code]: \Word.the_int (v OR w) = Word.the_int v OR Word.the_int w\ by transfer simp lemma [code]: \Word.the_int (v XOR w) = Word.the_int v XOR Word.the_int w\ by transfer simp lemma [code]: \Word.the_int (mask n :: 'a::len word) = mask (min LENGTH('a) n)\ by transfer simp context includes lifting_syntax begin lemma set_bit_word_transfer [transfer_rule]: \((=) ===> pcr_word ===> pcr_word) set_bit set_bit\ by (unfold set_bit_def) transfer_prover lemma unset_bit_word_transfer [transfer_rule]: \((=) ===> pcr_word ===> pcr_word) unset_bit unset_bit\ by (unfold unset_bit_def) transfer_prover lemma flip_bit_word_transfer [transfer_rule]: \((=) ===> pcr_word ===> pcr_word) flip_bit flip_bit\ by (unfold flip_bit_def) transfer_prover lemma signed_take_bit_word_transfer [transfer_rule]: \((=) ===> pcr_word ===> pcr_word) (\n k. signed_take_bit n (take_bit LENGTH('a::len) k)) (signed_take_bit :: nat \ 'a word \ 'a word)\ proof - let ?K = \\n (k :: int). take_bit (min LENGTH('a) n) k OR of_bool (n < LENGTH('a) \ bit k n) * NOT (mask n)\ let ?W = \\n (w :: 'a word). take_bit n w OR of_bool (bit w n) * NOT (mask n)\ have \((=) ===> pcr_word ===> pcr_word) ?K ?W\ by transfer_prover also have \?K = (\n k. signed_take_bit n (take_bit LENGTH('a::len) k))\ by (simp add: fun_eq_iff signed_take_bit_def bit_take_bit_iff ac_simps) also have \?W = signed_take_bit\ by (simp add: fun_eq_iff signed_take_bit_def) finally show ?thesis . qed end subsection \Conversions including casts\ subsubsection \Generic unsigned conversion\ context semiring_bits begin -lemma bit_unsigned_iff: +lemma bit_unsigned_iff [bit_simps]: \bit (unsigned w) n \ 2 ^ n \ 0 \ bit w n\ for w :: \'b::len word\ by (transfer fixing: bit) (simp add: bit_of_nat_iff bit_nat_iff bit_take_bit_iff) end context semiring_bit_shifts begin lemma unsigned_push_bit_eq: \unsigned (push_bit n w) = take_bit LENGTH('b) (push_bit n (unsigned w))\ for w :: \'b::len word\ proof (rule bit_eqI) fix m assume \2 ^ m \ 0\ show \bit (unsigned (push_bit n w)) m = bit (take_bit LENGTH('b) (push_bit n (unsigned w))) m\ proof (cases \n \ m\) case True with \2 ^ m \ 0\ have \2 ^ (m - n) \ 0\ by (metis (full_types) diff_add exp_add_not_zero_imp) with True show ?thesis by (simp add: bit_unsigned_iff bit_push_bit_iff Parity.bit_push_bit_iff bit_take_bit_iff not_le exp_eq_zero_iff ac_simps) next case False then show ?thesis by (simp add: not_le bit_unsigned_iff bit_push_bit_iff Parity.bit_push_bit_iff bit_take_bit_iff) qed qed lemma unsigned_take_bit_eq: \unsigned (take_bit n w) = take_bit n (unsigned w)\ for w :: \'b::len word\ by (rule bit_eqI) (simp add: bit_unsigned_iff bit_take_bit_iff Parity.bit_take_bit_iff) end context unique_euclidean_semiring_with_bit_shifts begin lemma unsigned_drop_bit_eq: \unsigned (drop_bit n w) = drop_bit n (take_bit LENGTH('b) (unsigned w))\ for w :: \'b::len word\ by (rule bit_eqI) (auto simp add: bit_unsigned_iff bit_take_bit_iff bit_drop_bit_eq Parity.bit_drop_bit_eq dest: bit_imp_le_length) end context semiring_bit_operations begin lemma unsigned_and_eq: \unsigned (v AND w) = unsigned v AND unsigned w\ for v w :: \'b::len word\ by (rule bit_eqI) (simp add: bit_unsigned_iff bit_and_iff Bit_Operations.bit_and_iff) lemma unsigned_or_eq: \unsigned (v OR w) = unsigned v OR unsigned w\ for v w :: \'b::len word\ by (rule bit_eqI) (simp add: bit_unsigned_iff bit_or_iff Bit_Operations.bit_or_iff) lemma unsigned_xor_eq: \unsigned (v XOR w) = unsigned v XOR unsigned w\ for v w :: \'b::len word\ by (rule bit_eqI) (simp add: bit_unsigned_iff bit_xor_iff Bit_Operations.bit_xor_iff) end context ring_bit_operations begin lemma unsigned_not_eq: \unsigned (NOT w) = take_bit LENGTH('b) (NOT (unsigned w))\ for w :: \'b::len word\ by (rule bit_eqI) (simp add: bit_unsigned_iff bit_take_bit_iff bit_not_iff Bit_Operations.bit_not_iff exp_eq_zero_iff not_le) end context unique_euclidean_semiring_numeral begin lemma unsigned_greater_eq [simp]: \0 \ unsigned w\ for w :: \'b::len word\ by (transfer fixing: less_eq) simp lemma unsigned_less [simp]: \unsigned w < 2 ^ LENGTH('b)\ for w :: \'b::len word\ by (transfer fixing: less) simp end context linordered_semidom begin lemma word_less_eq_iff_unsigned: "a \ b \ unsigned a \ unsigned b" by (transfer fixing: less_eq) (simp add: nat_le_eq_zle) lemma word_less_iff_unsigned: "a < b \ unsigned a < unsigned b" by (transfer fixing: less) (auto dest: preorder_class.le_less_trans [OF take_bit_nonnegative]) end subsubsection \Generic signed conversion\ context ring_bit_operations begin -lemma bit_signed_iff: +lemma bit_signed_iff [bit_simps]: \bit (signed w) n \ 2 ^ n \ 0 \ bit w (min (LENGTH('b) - Suc 0) n)\ for w :: \'b::len word\ by (transfer fixing: bit) (auto simp add: bit_of_int_iff Bit_Operations.bit_signed_take_bit_iff min_def) lemma signed_push_bit_eq: \signed (push_bit n w) = signed_take_bit (LENGTH('b) - Suc 0) (push_bit n (signed w :: 'a))\ for w :: \'b::len word\ proof (rule bit_eqI) fix m assume \2 ^ m \ 0\ define q where \q = LENGTH('b) - Suc 0\ then have *: \LENGTH('b) = Suc q\ by simp show \bit (signed (push_bit n w)) m \ bit (signed_take_bit (LENGTH('b) - Suc 0) (push_bit n (signed w :: 'a))) m\ proof (cases \q \ m\) case True moreover define r where \r = m - q\ ultimately have \m = q + r\ by simp moreover from \m = q + r\ \2 ^ m \ 0\ have \2 ^ q \ 0\ \2 ^ r \ 0\ using exp_add_not_zero_imp_left [of q r] exp_add_not_zero_imp_right [of q r] by simp_all moreover from \2 ^ q \ 0\ have \2 ^ (q - n) \ 0\ by (rule exp_not_zero_imp_exp_diff_not_zero) ultimately show ?thesis by (auto simp add: bit_signed_iff bit_signed_take_bit_iff bit_push_bit_iff Parity.bit_push_bit_iff min_def * exp_eq_zero_iff le_diff_conv2) next case False then show ?thesis using exp_not_zero_imp_exp_diff_not_zero [of m n] by (auto simp add: bit_signed_iff bit_signed_take_bit_iff bit_push_bit_iff Parity.bit_push_bit_iff min_def not_le not_less * le_diff_conv2 less_diff_conv2 Parity.exp_eq_0_imp_not_bit exp_eq_0_imp_not_bit exp_eq_zero_iff) qed qed lemma signed_take_bit_eq: \signed (take_bit n w) = (if n < LENGTH('b) then take_bit n (signed w) else signed w)\ for w :: \'b::len word\ by (transfer fixing: take_bit; cases \LENGTH('b)\) (auto simp add: Bit_Operations.signed_take_bit_take_bit Bit_Operations.take_bit_signed_take_bit take_bit_of_int min_def less_Suc_eq) lemma signed_not_eq: \signed (NOT w) = signed_take_bit LENGTH('b) (NOT (signed w))\ for w :: \'b::len word\ proof (rule bit_eqI) fix n assume \2 ^ n \ 0\ define q where \q = LENGTH('b) - Suc 0\ then have *: \LENGTH('b) = Suc q\ by simp show \bit (signed (NOT w)) n \ bit (signed_take_bit LENGTH('b) (NOT (signed w))) n\ proof (cases \q < n\) case True moreover define r where \r = n - Suc q\ ultimately have \n = r + Suc q\ by simp moreover from \2 ^ n \ 0\ \n = r + Suc q\ have \2 ^ Suc q \ 0\ using exp_add_not_zero_imp_right by blast ultimately show ?thesis by (simp add: * bit_signed_iff bit_not_iff bit_signed_take_bit_iff Bit_Operations.bit_not_iff min_def exp_eq_zero_iff) next case False then show ?thesis by (auto simp add: * bit_signed_iff bit_not_iff bit_signed_take_bit_iff Bit_Operations.bit_not_iff min_def exp_eq_zero_iff) qed qed lemma signed_and_eq: \signed (v AND w) = signed v AND signed w\ for v w :: \'b::len word\ by (rule bit_eqI) (simp add: bit_signed_iff bit_and_iff Bit_Operations.bit_and_iff) lemma signed_or_eq: \signed (v OR w) = signed v OR signed w\ for v w :: \'b::len word\ by (rule bit_eqI) (simp add: bit_signed_iff bit_or_iff Bit_Operations.bit_or_iff) lemma signed_xor_eq: \signed (v XOR w) = signed v XOR signed w\ for v w :: \'b::len word\ by (rule bit_eqI) (simp add: bit_signed_iff bit_xor_iff Bit_Operations.bit_xor_iff) end subsubsection \More\ lemma sint_greater_eq: \- (2 ^ (LENGTH('a) - Suc 0)) \ sint w\ for w :: \'a::len word\ proof (cases \bit w (LENGTH('a) - Suc 0)\) case True then show ?thesis by transfer (simp add: signed_take_bit_eq_if_negative minus_exp_eq_not_mask or_greater_eq ac_simps) next have *: \- (2 ^ (LENGTH('a) - Suc 0)) \ (0::int)\ by simp case False then show ?thesis by transfer (auto simp add: signed_take_bit_eq intro: order_trans *) qed lemma sint_less: \sint w < 2 ^ (LENGTH('a) - Suc 0)\ for w :: \'a::len word\ by (cases \bit w (LENGTH('a) - Suc 0)\; transfer) (simp_all add: signed_take_bit_eq signed_take_bit_def not_eq_complement mask_eq_exp_minus_1 OR_upper) lemma unat_div_distrib: \unat (v div w) = unat v div unat w\ proof transfer fix k l have \nat (take_bit LENGTH('a) k) div nat (take_bit LENGTH('a) l) \ nat (take_bit LENGTH('a) k)\ by (rule div_le_dividend) also have \nat (take_bit LENGTH('a) k) < 2 ^ LENGTH('a)\ by (simp add: nat_less_iff) finally show \(nat \ take_bit LENGTH('a)) (take_bit LENGTH('a) k div take_bit LENGTH('a) l) = (nat \ take_bit LENGTH('a)) k div (nat \ take_bit LENGTH('a)) l\ by (simp add: nat_take_bit_eq div_int_pos_iff nat_div_distrib take_bit_nat_eq_self_iff) qed lemma unat_mod_distrib: \unat (v mod w) = unat v mod unat w\ proof transfer fix k l have \nat (take_bit LENGTH('a) k) mod nat (take_bit LENGTH('a) l) \ nat (take_bit LENGTH('a) k)\ by (rule mod_less_eq_dividend) also have \nat (take_bit LENGTH('a) k) < 2 ^ LENGTH('a)\ by (simp add: nat_less_iff) finally show \(nat \ take_bit LENGTH('a)) (take_bit LENGTH('a) k mod take_bit LENGTH('a) l) = (nat \ take_bit LENGTH('a)) k mod (nat \ take_bit LENGTH('a)) l\ by (simp add: nat_take_bit_eq mod_int_pos_iff less_le nat_mod_distrib take_bit_nat_eq_self_iff) qed lemma uint_div_distrib: \uint (v div w) = uint v div uint w\ proof - have \int (unat (v div w)) = int (unat v div unat w)\ by (simp add: unat_div_distrib) then show ?thesis by (simp add: of_nat_div) qed lemma unat_drop_bit_eq: \unat (drop_bit n w) = drop_bit n (unat w)\ by (rule bit_eqI) (simp add: bit_unsigned_iff bit_drop_bit_eq) lemma uint_mod_distrib: \uint (v mod w) = uint v mod uint w\ proof - have \int (unat (v mod w)) = int (unat v mod unat w)\ by (simp add: unat_mod_distrib) then show ?thesis by (simp add: of_nat_mod) qed context semiring_bit_shifts begin lemma unsigned_ucast_eq: \unsigned (ucast w :: 'c::len word) = take_bit LENGTH('c) (unsigned w)\ for w :: \'b::len word\ by (rule bit_eqI) (simp add: bit_unsigned_iff Word.bit_unsigned_iff bit_take_bit_iff exp_eq_zero_iff not_le) end context ring_bit_operations begin lemma signed_ucast_eq: \signed (ucast w :: 'c::len word) = signed_take_bit (LENGTH('c) - Suc 0) (unsigned w)\ for w :: \'b::len word\ proof (rule bit_eqI) fix n assume \2 ^ n \ 0\ then have \2 ^ (min (LENGTH('c) - Suc 0) n) \ 0\ by (simp add: min_def) (metis (mono_tags) diff_diff_cancel exp_not_zero_imp_exp_diff_not_zero) then show \bit (signed (ucast w :: 'c::len word)) n \ bit (signed_take_bit (LENGTH('c) - Suc 0) (unsigned w)) n\ by (simp add: bit_signed_iff bit_unsigned_iff Word.bit_unsigned_iff bit_signed_take_bit_iff exp_eq_zero_iff not_le) qed lemma signed_scast_eq: \signed (scast w :: 'c::len word) = signed_take_bit (LENGTH('c) - Suc 0) (signed w)\ for w :: \'b::len word\ proof (rule bit_eqI) fix n assume \2 ^ n \ 0\ then have \2 ^ (min (LENGTH('c) - Suc 0) n) \ 0\ by (simp add: min_def) (metis (mono_tags) diff_diff_cancel exp_not_zero_imp_exp_diff_not_zero) then show \bit (signed (scast w :: 'c::len word)) n \ bit (signed_take_bit (LENGTH('c) - Suc 0) (signed w)) n\ by (simp add: bit_signed_iff bit_unsigned_iff Word.bit_signed_iff bit_signed_take_bit_iff exp_eq_zero_iff not_le) qed end lemma uint_nonnegative: "0 \ uint w" by (fact unsigned_greater_eq) lemma uint_bounded: "uint w < 2 ^ LENGTH('a)" for w :: "'a::len word" by (fact unsigned_less) lemma uint_idem: "uint w mod 2 ^ LENGTH('a) = uint w" for w :: "'a::len word" by transfer (simp add: take_bit_eq_mod) lemma word_uint_eqI: "uint a = uint b \ a = b" by (fact unsigned_word_eqI) lemma word_uint_eq_iff: "a = b \ uint a = uint b" by (fact word_eq_iff_unsigned) lemma uint_word_of_int_eq: \uint (word_of_int k :: 'a::len word) = take_bit LENGTH('a) k\ by transfer rule lemma uint_word_of_int: "uint (word_of_int k :: 'a::len word) = k mod 2 ^ LENGTH('a)" by (simp add: uint_word_of_int_eq take_bit_eq_mod) lemma word_of_int_uint: "word_of_int (uint w) = w" by transfer simp lemma word_div_def [code]: "a div b = word_of_int (uint a div uint b)" by transfer rule lemma word_mod_def [code]: "a mod b = word_of_int (uint a mod uint b)" by transfer rule lemma split_word_all: "(\x::'a::len word. PROP P x) \ (\x. PROP P (word_of_int x))" proof fix x :: "'a word" assume "\x. PROP P (word_of_int x)" then have "PROP P (word_of_int (uint x))" . then show "PROP P x" by (simp only: word_of_int_uint) qed lemma sint_uint: \sint w = signed_take_bit (LENGTH('a) - Suc 0) (uint w)\ for w :: \'a::len word\ by (cases \LENGTH('a)\; transfer) (simp_all add: signed_take_bit_take_bit) lemma unat_eq_nat_uint: \unat w = nat (uint w)\ by simp lemma ucast_eq: \ucast w = word_of_int (uint w)\ by transfer simp lemma scast_eq: \scast w = word_of_int (sint w)\ by transfer simp lemma uint_0_eq: \uint 0 = 0\ by (fact unsigned_0) lemma uint_1_eq: \uint 1 = 1\ by (fact unsigned_1) lemma word_m1_wi: "- 1 = word_of_int (- 1)" by simp lemma uint_0_iff: "uint x = 0 \ x = 0" by (auto simp add: unsigned_word_eqI) lemma unat_0_iff: "unat x = 0 \ x = 0" by (auto simp add: unsigned_word_eqI) lemma unat_0: "unat 0 = 0" by (fact unsigned_0) lemma unat_gt_0: "0 < unat x \ x \ 0" by (auto simp: unat_0_iff [symmetric]) lemma ucast_0: "ucast 0 = 0" by (fact unsigned_0) lemma sint_0: "sint 0 = 0" by (fact signed_0) lemma scast_0: "scast 0 = 0" by (fact signed_0) lemma sint_n1: "sint (- 1) = - 1" by (fact signed_minus_1) lemma scast_n1: "scast (- 1) = - 1" by (fact signed_minus_1) lemma uint_1: "uint (1::'a::len word) = 1" by (fact uint_1_eq) lemma unat_1: "unat (1::'a::len word) = 1" by (fact unsigned_1) lemma ucast_1: "ucast (1::'a::len word) = 1" by (fact unsigned_1) instantiation word :: (len) size begin lift_definition size_word :: \'a word \ nat\ is \\_. LENGTH('a)\ .. instance .. end lemma word_size [code]: \size w = LENGTH('a)\ for w :: \'a::len word\ by (fact size_word.rep_eq) lemma word_size_gt_0 [iff]: "0 < size w" for w :: "'a::len word" by (simp add: word_size) lemmas lens_gt_0 = word_size_gt_0 len_gt_0 lemma lens_not_0 [iff]: \size w \ 0\ for w :: \'a::len word\ by auto lift_definition source_size :: \('a::len word \ 'b) \ nat\ is \\_. LENGTH('a)\ . lift_definition target_size :: \('a \ 'b::len word) \ nat\ is \\_. LENGTH('b)\ .. lift_definition is_up :: \('a::len word \ 'b::len word) \ bool\ is \\_. LENGTH('a) \ LENGTH('b)\ .. lift_definition is_down :: \('a::len word \ 'b::len word) \ bool\ is \\_. LENGTH('a) \ LENGTH('b)\ .. lemma is_up_eq: \is_up f \ source_size f \ target_size f\ for f :: \'a::len word \ 'b::len word\ by (simp add: source_size.rep_eq target_size.rep_eq is_up.rep_eq) lemma is_down_eq: \is_down f \ target_size f \ source_size f\ for f :: \'a::len word \ 'b::len word\ by (simp add: source_size.rep_eq target_size.rep_eq is_down.rep_eq) lift_definition word_int_case :: \(int \ 'b) \ 'a::len word \ 'b\ is \\f. f \ take_bit LENGTH('a)\ by simp lemma word_int_case_eq_uint [code]: \word_int_case f w = f (uint w)\ by transfer simp translations "case x of XCONST of_int y \ b" \ "CONST word_int_case (\y. b) x" "case x of (XCONST of_int :: 'a) y \ b" \ "CONST word_int_case (\y. b) x" subsection \Arithmetic operations\ text \Legacy theorems:\ lemma word_add_def [code]: "a + b = word_of_int (uint a + uint b)" by transfer (simp add: take_bit_add) lemma word_sub_wi [code]: "a - b = word_of_int (uint a - uint b)" by transfer (simp add: take_bit_diff) lemma word_mult_def [code]: "a * b = word_of_int (uint a * uint b)" by transfer (simp add: take_bit_eq_mod mod_simps) lemma word_minus_def [code]: "- a = word_of_int (- uint a)" by transfer (simp add: take_bit_minus) lemma word_0_wi: "0 = word_of_int 0" by transfer simp lemma word_1_wi: "1 = word_of_int 1" by transfer simp lift_definition word_succ :: "'a::len word \ 'a word" is "\x. x + 1" by (auto simp add: take_bit_eq_mod intro: mod_add_cong) lift_definition word_pred :: "'a::len word \ 'a word" is "\x. x - 1" by (auto simp add: take_bit_eq_mod intro: mod_diff_cong) lemma word_succ_alt [code]: "word_succ a = word_of_int (uint a + 1)" by transfer (simp add: take_bit_eq_mod mod_simps) lemma word_pred_alt [code]: "word_pred a = word_of_int (uint a - 1)" by transfer (simp add: take_bit_eq_mod mod_simps) lemmas word_arith_wis = word_add_def word_sub_wi word_mult_def word_minus_def word_succ_alt word_pred_alt word_0_wi word_1_wi lemma wi_homs: shows wi_hom_add: "word_of_int a + word_of_int b = word_of_int (a + b)" and wi_hom_sub: "word_of_int a - word_of_int b = word_of_int (a - b)" and wi_hom_mult: "word_of_int a * word_of_int b = word_of_int (a * b)" and wi_hom_neg: "- word_of_int a = word_of_int (- a)" and wi_hom_succ: "word_succ (word_of_int a) = word_of_int (a + 1)" and wi_hom_pred: "word_pred (word_of_int a) = word_of_int (a - 1)" by (transfer, simp)+ lemmas wi_hom_syms = wi_homs [symmetric] lemmas word_of_int_homs = wi_homs word_0_wi word_1_wi lemmas word_of_int_hom_syms = word_of_int_homs [symmetric] lemma double_eq_zero_iff: \2 * a = 0 \ a = 0 \ a = 2 ^ (LENGTH('a) - Suc 0)\ for a :: \'a::len word\ proof - define n where \n = LENGTH('a) - Suc 0\ then have *: \LENGTH('a) = Suc n\ by simp have \a = 0\ if \2 * a = 0\ and \a \ 2 ^ (LENGTH('a) - Suc 0)\ using that by transfer (auto simp add: take_bit_eq_0_iff take_bit_eq_mod *) moreover have \2 ^ LENGTH('a) = (0 :: 'a word)\ by transfer simp then have \2 * 2 ^ (LENGTH('a) - Suc 0) = (0 :: 'a word)\ by (simp add: *) ultimately show ?thesis by auto qed subsection \Ordering\ lift_definition word_sle :: \'a::len word \ 'a word \ bool\ is \\k l. signed_take_bit (LENGTH('a) - Suc 0) k \ signed_take_bit (LENGTH('a) - Suc 0) l\ by (simp flip: signed_take_bit_decr_length_iff) lift_definition word_sless :: \'a::len word \ 'a word \ bool\ is \\k l. signed_take_bit (LENGTH('a) - Suc 0) k < signed_take_bit (LENGTH('a) - Suc 0) l\ by (simp flip: signed_take_bit_decr_length_iff) notation word_sle ("'(\s')") and word_sle ("(_/ \s _)" [51, 51] 50) and word_sless ("'(a <=s b \ sint a \ sint b\ by transfer simp lemma [code]: \a sint a < sint b\ by transfer simp lemma signed_ordering: \ordering word_sle word_sless\ apply (standard; transfer) apply simp_all using signed_take_bit_decr_length_iff apply force using signed_take_bit_decr_length_iff apply force done lemma signed_linorder: \class.linorder word_sle word_sless\ by (standard; transfer) (auto simp add: signed_take_bit_decr_length_iff) interpretation signed: linorder word_sle word_sless by (fact signed_linorder) lemma word_sless_eq: \x x <=s y \ x \ y\ by (fact signed.less_le) lemma word_less_alt: "a < b \ uint a < uint b" by (fact word_less_def) lemma word_zero_le [simp]: "0 \ y" for y :: "'a::len word" by (fact word_coorder.extremum) lemma word_m1_ge [simp] : "word_pred 0 \ y" (* FIXME: delete *) by transfer (simp add: take_bit_minus_one_eq_mask mask_eq_exp_minus_1 ) lemma word_n1_ge [simp]: "y \ -1" for y :: "'a::len word" by (fact word_order.extremum) lemmas word_not_simps [simp] = word_zero_le [THEN leD] word_m1_ge [THEN leD] word_n1_ge [THEN leD] lemma word_gt_0: "0 < y \ 0 \ y" for y :: "'a::len word" by (simp add: less_le) lemmas word_gt_0_no [simp] = word_gt_0 [of "numeral y"] for y lemma word_sless_alt: "a sint a < sint b" by transfer simp lemma word_le_nat_alt: "a \ b \ unat a \ unat b" by transfer (simp add: nat_le_eq_zle) lemma word_less_nat_alt: "a < b \ unat a < unat b" by transfer (auto simp add: less_le [of 0]) lemmas unat_mono = word_less_nat_alt [THEN iffD1] instance word :: (len) wellorder proof fix P :: "'a word \ bool" and a assume *: "(\b. (\a. a < b \ P a) \ P b)" have "wf (measure unat)" .. moreover have "{(a, b :: ('a::len) word). a < b} \ measure unat" by (auto simp add: word_less_nat_alt) ultimately have "wf {(a, b :: ('a::len) word). a < b}" by (rule wf_subset) then show "P a" using * by induction blast qed lemma wi_less: "(word_of_int n < (word_of_int m :: 'a::len word)) = (n mod 2 ^ LENGTH('a) < m mod 2 ^ LENGTH('a))" by transfer (simp add: take_bit_eq_mod) lemma wi_le: "(word_of_int n \ (word_of_int m :: 'a::len word)) = (n mod 2 ^ LENGTH('a) \ m mod 2 ^ LENGTH('a))" by transfer (simp add: take_bit_eq_mod) subsection \Bit-wise operations\ lemma uint_take_bit_eq: \uint (take_bit n w) = take_bit n (uint w)\ by transfer (simp add: ac_simps) lemma take_bit_word_eq_self: \take_bit n w = w\ if \LENGTH('a) \ n\ for w :: \'a::len word\ using that by transfer simp lemma take_bit_length_eq [simp]: \take_bit LENGTH('a) w = w\ for w :: \'a::len word\ by (rule take_bit_word_eq_self) simp lemma bit_word_of_int_iff: \bit (word_of_int k :: 'a::len word) n \ n < LENGTH('a) \ bit k n\ by transfer rule lemma bit_uint_iff: \bit (uint w) n \ n < LENGTH('a) \ bit w n\ for w :: \'a::len word\ by transfer (simp add: bit_take_bit_iff) lemma bit_sint_iff: \bit (sint w) n \ n \ LENGTH('a) \ bit w (LENGTH('a) - 1) \ bit w n\ for w :: \'a::len word\ by transfer (auto simp add: bit_signed_take_bit_iff min_def le_less not_less) lemma bit_word_ucast_iff: \bit (ucast w :: 'b::len word) n \ n < LENGTH('a) \ n < LENGTH('b) \ bit w n\ for w :: \'a::len word\ by transfer (simp add: bit_take_bit_iff ac_simps) lemma bit_word_scast_iff: \bit (scast w :: 'b::len word) n \ n < LENGTH('b) \ (bit w n \ LENGTH('a) \ n \ bit w (LENGTH('a) - Suc 0))\ for w :: \'a::len word\ by transfer (auto simp add: bit_signed_take_bit_iff le_less min_def) lift_definition shiftl1 :: \'a::len word \ 'a word\ is \(*) 2\ by (auto simp add: take_bit_eq_mod intro: mod_mult_cong) lemma shiftl1_eq: \shiftl1 w = word_of_int (2 * uint w)\ by transfer (simp add: take_bit_eq_mod mod_simps) lemma shiftl1_eq_mult_2: \shiftl1 = (*) 2\ by (rule ext, transfer) simp -lemma bit_shiftl1_iff: +lemma bit_shiftl1_iff [bit_simps]: \bit (shiftl1 w) n \ 0 < n \ n < LENGTH('a) \ bit w (n - 1)\ for w :: \'a::len word\ - by (simp add: shiftl1_eq_mult_2 bit_double_iff exp_eq_zero_iff not_le) (simp add: ac_simps) + by (simp add: shiftl1_eq_mult_2 bit_double_iff not_le) (simp add: ac_simps) lift_definition shiftr1 :: \'a::len word \ 'a word\ \ \shift right as unsigned or as signed, ie logical or arithmetic\ is \\k. take_bit LENGTH('a) k div 2\ by simp lemma shiftr1_eq_div_2: \shiftr1 w = w div 2\ by transfer simp -lemma bit_shiftr1_iff: +lemma bit_shiftr1_iff [bit_simps]: \bit (shiftr1 w) n \ bit w (Suc n)\ by transfer (auto simp flip: bit_Suc simp add: bit_take_bit_iff) lemma shiftr1_eq: \shiftr1 w = word_of_int (uint w div 2)\ by transfer simp lemma bit_word_iff_drop_bit_and [code]: \bit a n \ drop_bit n a AND 1 = 1\ for a :: \'a::len word\ by (simp add: bit_iff_odd_drop_bit odd_iff_mod_2_eq_one and_one_eq) lemma word_not_def: "NOT (a::'a::len word) = word_of_int (NOT (uint a))" and word_and_def: "(a::'a word) AND b = word_of_int (uint a AND uint b)" and word_or_def: "(a::'a word) OR b = word_of_int (uint a OR uint b)" and word_xor_def: "(a::'a word) XOR b = word_of_int (uint a XOR uint b)" by (transfer, simp add: take_bit_not_take_bit)+ lift_definition setBit :: \'a::len word \ nat \ 'a word\ is \\k n. set_bit n k\ by (simp add: take_bit_set_bit_eq) lemma set_Bit_eq: \setBit w n = set_bit n w\ by transfer simp -lemma bit_setBit_iff: +lemma bit_setBit_iff [bit_simps]: \bit (setBit w m) n \ (m = n \ n < LENGTH('a) \ bit w n)\ for w :: \'a::len word\ by transfer (auto simp add: bit_set_bit_iff) lift_definition clearBit :: \'a::len word \ nat \ 'a word\ is \\k n. unset_bit n k\ by (simp add: take_bit_unset_bit_eq) lemma clear_Bit_eq: \clearBit w n = unset_bit n w\ by transfer simp -lemma bit_clearBit_iff: +lemma bit_clearBit_iff [bit_simps]: \bit (clearBit w m) n \ m \ n \ bit w n\ for w :: \'a::len word\ by transfer (auto simp add: bit_unset_bit_iff) definition even_word :: \'a::len word \ bool\ where [code_abbrev]: \even_word = even\ lemma even_word_iff [code]: \even_word a \ a AND 1 = 0\ by (simp add: and_one_eq even_iff_mod_2_eq_zero even_word_def) lemma map_bit_range_eq_if_take_bit_eq: \map (bit k) [0.. if \take_bit n k = take_bit n l\ for k l :: int using that proof (induction n arbitrary: k l) case 0 then show ?case by simp next case (Suc n) from Suc.prems have \take_bit n (k div 2) = take_bit n (l div 2)\ by (simp add: take_bit_Suc) then have \map (bit (k div 2)) [0.. by (rule Suc.IH) moreover have \bit (r div 2) = bit r \ Suc\ for r :: int by (simp add: fun_eq_iff bit_Suc) moreover from Suc.prems have \even k \ even l\ by (auto simp add: take_bit_Suc elim!: evenE oddE) arith+ ultimately show ?case by (simp only: map_Suc_upt upt_conv_Cons flip: list.map_comp) simp qed lemma take_bit_word_Bit0_eq [simp]: \take_bit (numeral n) (numeral (num.Bit0 m) :: 'a::len word) = 2 * take_bit (pred_numeral n) (numeral m)\ (is ?P) and take_bit_word_Bit1_eq [simp]: \take_bit (numeral n) (numeral (num.Bit1 m) :: 'a::len word) = 1 + 2 * take_bit (pred_numeral n) (numeral m)\ (is ?Q) and take_bit_word_minus_Bit0_eq [simp]: \take_bit (numeral n) (- numeral (num.Bit0 m) :: 'a::len word) = 2 * take_bit (pred_numeral n) (- numeral m)\ (is ?R) and take_bit_word_minus_Bit1_eq [simp]: \take_bit (numeral n) (- numeral (num.Bit1 m) :: 'a::len word) = 1 + 2 * take_bit (pred_numeral n) (- numeral (Num.inc m))\ (is ?S) proof - define w :: \'a::len word\ where \w = numeral m\ moreover define q :: nat where \q = pred_numeral n\ ultimately have num: \numeral m = w\ \numeral (num.Bit0 m) = 2 * w\ \numeral (num.Bit1 m) = 1 + 2 * w\ \numeral (Num.inc m) = 1 + w\ \pred_numeral n = q\ \numeral n = Suc q\ by (simp_all only: w_def q_def numeral_Bit0 [of m] numeral_Bit1 [of m] ac_simps numeral_inc numeral_eq_Suc flip: mult_2) have even: \take_bit (Suc q) (2 * w) = 2 * take_bit q w\ for w :: \'a::len word\ by (rule bit_word_eqI) (auto simp add: bit_take_bit_iff bit_double_iff) have odd: \take_bit (Suc q) (1 + 2 * w) = 1 + 2 * take_bit q w\ for w :: \'a::len word\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_double_iff even_bit_succ_iff) show ?P using even [of w] by (simp add: num) show ?Q using odd [of w] by (simp add: num) show ?R using even [of \- w\] by (simp add: num) show ?S using odd [of \- (1 + w)\] by (simp add: num) qed subsection \More shift operations\ lift_definition signed_drop_bit :: \nat \ 'a word \ 'a::len word\ is \\n. drop_bit n \ signed_take_bit (LENGTH('a) - Suc 0)\ using signed_take_bit_decr_length_iff by (simp add: take_bit_drop_bit) force -lemma bit_signed_drop_bit_iff: +lemma bit_signed_drop_bit_iff [bit_simps]: \bit (signed_drop_bit m w) n \ bit w (if LENGTH('a) - m \ n \ n < LENGTH('a) then LENGTH('a) - 1 else m + n)\ for w :: \'a::len word\ apply transfer apply (auto simp add: bit_drop_bit_eq bit_signed_take_bit_iff not_le min_def) apply (metis add.commute le_antisym less_diff_conv less_eq_decr_length_iff) apply (metis le_antisym less_eq_decr_length_iff) done lemma [code]: \Word.the_int (signed_drop_bit n w) = take_bit LENGTH('a) (drop_bit n (Word.the_signed_int w))\ for w :: \'a::len word\ by transfer simp lemma signed_drop_bit_signed_drop_bit [simp]: \signed_drop_bit m (signed_drop_bit n w) = signed_drop_bit (m + n) w\ for w :: \'a::len word\ apply (cases \LENGTH('a)\) apply simp_all apply (rule bit_word_eqI) apply (auto simp add: bit_signed_drop_bit_iff not_le less_diff_conv ac_simps) done lemma signed_drop_bit_0 [simp]: \signed_drop_bit 0 w = w\ by transfer (simp add: take_bit_signed_take_bit) lemma sint_signed_drop_bit_eq: \sint (signed_drop_bit n w) = drop_bit n (sint w)\ apply (cases \LENGTH('a)\; cases n) apply simp_all apply (rule bit_eqI) apply (auto simp add: bit_sint_iff bit_drop_bit_eq bit_signed_drop_bit_iff dest: bit_imp_le_length) done lift_definition sshiftr1 :: \'a::len word \ 'a word\ is \\k. take_bit LENGTH('a) (signed_take_bit (LENGTH('a) - Suc 0) k div 2)\ by (simp flip: signed_take_bit_decr_length_iff) lift_definition bshiftr1 :: \bool \ 'a::len word \ 'a word\ is \\b k. take_bit LENGTH('a) k div 2 + of_bool b * 2 ^ (LENGTH('a) - Suc 0)\ by (fact arg_cong) lemma sshiftr1_eq_signed_drop_bit_Suc_0: \sshiftr1 = signed_drop_bit (Suc 0)\ by (rule ext) (transfer, simp add: drop_bit_Suc) lemma sshiftr1_eq: \sshiftr1 w = word_of_int (sint w div 2)\ by transfer simp subsection \Rotation\ lift_definition word_rotr :: \nat \ 'a::len word \ 'a::len word\ is \\n k. concat_bit (LENGTH('a) - n mod LENGTH('a)) (drop_bit (n mod LENGTH('a)) (take_bit LENGTH('a) k)) (take_bit (n mod LENGTH('a)) k)\ subgoal for n k l apply (simp add: concat_bit_def nat_le_iff less_imp_le take_bit_tightened [of \LENGTH('a)\ k l \n mod LENGTH('a::len)\]) done done lift_definition word_rotl :: \nat \ 'a::len word \ 'a::len word\ is \\n k. concat_bit (n mod LENGTH('a)) (drop_bit (LENGTH('a) - n mod LENGTH('a)) (take_bit LENGTH('a) k)) (take_bit (LENGTH('a) - n mod LENGTH('a)) k)\ subgoal for n k l apply (simp add: concat_bit_def nat_le_iff less_imp_le take_bit_tightened [of \LENGTH('a)\ k l \LENGTH('a) - n mod LENGTH('a::len)\]) done done lift_definition word_roti :: \int \ 'a::len word \ 'a::len word\ is \\r k. concat_bit (LENGTH('a) - nat (r mod int LENGTH('a))) (drop_bit (nat (r mod int LENGTH('a))) (take_bit LENGTH('a) k)) (take_bit (nat (r mod int LENGTH('a))) k)\ subgoal for r k l apply (simp add: concat_bit_def nat_le_iff less_imp_le take_bit_tightened [of \LENGTH('a)\ k l \nat (r mod int LENGTH('a::len))\]) done done lemma word_rotl_eq_word_rotr [code]: \word_rotl n = (word_rotr (LENGTH('a) - n mod LENGTH('a)) :: 'a::len word \ 'a word)\ by (rule ext, cases \n mod LENGTH('a) = 0\; transfer) simp_all lemma word_roti_eq_word_rotr_word_rotl [code]: \word_roti i w = (if i \ 0 then word_rotr (nat i) w else word_rotl (nat (- i)) w)\ proof (cases \i \ 0\) case True moreover define n where \n = nat i\ ultimately have \i = int n\ by simp moreover have \word_roti (int n) = (word_rotr n :: _ \ 'a word)\ by (rule ext, transfer) (simp add: nat_mod_distrib) ultimately show ?thesis by simp next case False moreover define n where \n = nat (- i)\ ultimately have \i = - int n\ \n > 0\ by simp_all moreover have \word_roti (- int n) = (word_rotl n :: _ \ 'a word)\ by (rule ext, transfer) (simp add: zmod_zminus1_eq_if flip: of_nat_mod of_nat_diff) ultimately show ?thesis by simp qed -lemma bit_word_rotr_iff: +lemma bit_word_rotr_iff [bit_simps]: \bit (word_rotr m w) n \ n < LENGTH('a) \ bit w ((n + m) mod LENGTH('a))\ for w :: \'a::len word\ proof transfer fix k :: int and m n :: nat define q where \q = m mod LENGTH('a)\ have \q < LENGTH('a)\ by (simp add: q_def) then have \q \ LENGTH('a)\ by simp have \m mod LENGTH('a) = q\ by (simp add: q_def) moreover have \(n + m) mod LENGTH('a) = (n + q) mod LENGTH('a)\ by (subst mod_add_right_eq [symmetric]) (simp add: \m mod LENGTH('a) = q\) moreover have \n < LENGTH('a) \ bit (concat_bit (LENGTH('a) - q) (drop_bit q (take_bit LENGTH('a) k)) (take_bit q k)) n \ n < LENGTH('a) \ bit k ((n + q) mod LENGTH('a))\ using \q < LENGTH('a)\ by (cases \q + n \ LENGTH('a)\) (auto simp add: bit_concat_bit_iff bit_drop_bit_eq bit_take_bit_iff le_mod_geq ac_simps) ultimately show \n < LENGTH('a) \ bit (concat_bit (LENGTH('a) - m mod LENGTH('a)) (drop_bit (m mod LENGTH('a)) (take_bit LENGTH('a) k)) (take_bit (m mod LENGTH('a)) k)) n \ n < LENGTH('a) \ (n + m) mod LENGTH('a) < LENGTH('a) \ bit k ((n + m) mod LENGTH('a))\ by simp qed -lemma bit_word_rotl_iff: +lemma bit_word_rotl_iff [bit_simps]: \bit (word_rotl m w) n \ n < LENGTH('a) \ bit w ((n + (LENGTH('a) - m mod LENGTH('a))) mod LENGTH('a))\ for w :: \'a::len word\ by (simp add: word_rotl_eq_word_rotr bit_word_rotr_iff) -lemma bit_word_roti_iff: +lemma bit_word_roti_iff [bit_simps]: \bit (word_roti k w) n \ n < LENGTH('a) \ bit w (nat ((int n + k) mod int LENGTH('a)))\ for w :: \'a::len word\ proof transfer fix k l :: int and n :: nat define m where \m = nat (k mod int LENGTH('a))\ have \m < LENGTH('a)\ by (simp add: nat_less_iff m_def) then have \m \ LENGTH('a)\ by simp have \k mod int LENGTH('a) = int m\ by (simp add: nat_less_iff m_def) moreover have \(int n + k) mod int LENGTH('a) = int ((n + m) mod LENGTH('a))\ by (subst mod_add_right_eq [symmetric]) (simp add: of_nat_mod \k mod int LENGTH('a) = int m\) moreover have \n < LENGTH('a) \ bit (concat_bit (LENGTH('a) - m) (drop_bit m (take_bit LENGTH('a) l)) (take_bit m l)) n \ n < LENGTH('a) \ bit l ((n + m) mod LENGTH('a))\ using \m < LENGTH('a)\ by (cases \m + n \ LENGTH('a)\) (auto simp add: bit_concat_bit_iff bit_drop_bit_eq bit_take_bit_iff nat_less_iff not_le not_less ac_simps le_diff_conv le_mod_geq) ultimately show \n < LENGTH('a) \ bit (concat_bit (LENGTH('a) - nat (k mod int LENGTH('a))) (drop_bit (nat (k mod int LENGTH('a))) (take_bit LENGTH('a) l)) (take_bit (nat (k mod int LENGTH('a))) l)) n \ n < LENGTH('a) \ nat ((int n + k) mod int LENGTH('a)) < LENGTH('a) \ bit l (nat ((int n + k) mod int LENGTH('a)))\ by simp qed lemma uint_word_rotr_eq: \uint (word_rotr n w) = concat_bit (LENGTH('a) - n mod LENGTH('a)) (drop_bit (n mod LENGTH('a)) (uint w)) (uint (take_bit (n mod LENGTH('a)) w))\ for w :: \'a::len word\ apply transfer apply (simp add: concat_bit_def take_bit_drop_bit push_bit_take_bit min_def) using mod_less_divisor not_less apply blast done lemma [code]: \Word.the_int (word_rotr n w) = concat_bit (LENGTH('a) - n mod LENGTH('a)) (drop_bit (n mod LENGTH('a)) (Word.the_int w)) (Word.the_int (take_bit (n mod LENGTH('a)) w))\ for w :: \'a::len word\ using uint_word_rotr_eq [of n w] by simp subsection \Split and cat operations\ lift_definition word_cat :: \'a::len word \ 'b::len word \ 'c::len word\ is \\k l. concat_bit LENGTH('b) l (take_bit LENGTH('a) k)\ by (simp add: bit_eq_iff bit_concat_bit_iff bit_take_bit_iff) lemma word_cat_eq: \(word_cat v w :: 'c::len word) = push_bit LENGTH('b) (ucast v) + ucast w\ for v :: \'a::len word\ and w :: \'b::len word\ by transfer (simp add: concat_bit_eq ac_simps) lemma word_cat_eq' [code]: \word_cat a b = word_of_int (concat_bit LENGTH('b) (uint b) (uint a))\ for a :: \'a::len word\ and b :: \'b::len word\ by transfer (simp add: concat_bit_take_bit_eq) -lemma bit_word_cat_iff: +lemma bit_word_cat_iff [bit_simps]: \bit (word_cat v w :: 'c::len word) n \ n < LENGTH('c) \ (if n < LENGTH('b) then bit w n else bit v (n - LENGTH('b)))\ for v :: \'a::len word\ and w :: \'b::len word\ by transfer (simp add: bit_concat_bit_iff bit_take_bit_iff) definition word_split :: \'a::len word \ 'b::len word \ 'c::len word\ where \word_split w = (ucast (drop_bit LENGTH('c) w) :: 'b::len word, ucast w :: 'c::len word)\ definition word_rcat :: \'a::len word list \ 'b::len word\ where \word_rcat = word_of_int \ horner_sum uint (2 ^ LENGTH('a)) \ rev\ abbreviation (input) max_word :: \'a::len word\ \ \Largest representable machine integer.\ where "max_word \ - 1" subsection \More on conversions\ lemma int_word_sint: \sint (word_of_int x :: 'a::len word) = (x + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - 2 ^ (LENGTH('a) - 1)\ by transfer (simp flip: take_bit_eq_mod add: signed_take_bit_eq_take_bit_shift) lemma sint_sbintrunc': "sint (word_of_int bin :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) bin" by simp lemma uint_sint: "uint w = take_bit LENGTH('a) (sint w)" for w :: "'a::len word" by transfer (simp add: take_bit_signed_take_bit) lemma bintr_uint: "LENGTH('a) \ n \ take_bit n (uint w) = uint w" for w :: "'a::len word" by transfer (simp add: min_def) lemma wi_bintr: "LENGTH('a::len) \ n \ word_of_int (take_bit n w) = (word_of_int w :: 'a word)" by transfer simp lemma word_numeral_alt: "numeral b = word_of_int (numeral b)" by (induct b, simp_all only: numeral.simps word_of_int_homs) declare word_numeral_alt [symmetric, code_abbrev] lemma word_neg_numeral_alt: "- numeral b = word_of_int (- numeral b)" by (simp only: word_numeral_alt wi_hom_neg) declare word_neg_numeral_alt [symmetric, code_abbrev] lemma uint_bintrunc [simp]: "uint (numeral bin :: 'a word) = take_bit (LENGTH('a::len)) (numeral bin)" by transfer rule lemma uint_bintrunc_neg [simp]: "uint (- numeral bin :: 'a word) = take_bit (LENGTH('a::len)) (- numeral bin)" by transfer rule lemma sint_sbintrunc [simp]: "sint (numeral bin :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) (numeral bin)" by transfer simp lemma sint_sbintrunc_neg [simp]: "sint (- numeral bin :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) (- numeral bin)" by transfer simp lemma unat_bintrunc [simp]: "unat (numeral bin :: 'a::len word) = nat (take_bit (LENGTH('a)) (numeral bin))" by transfer simp lemma unat_bintrunc_neg [simp]: "unat (- numeral bin :: 'a::len word) = nat (take_bit (LENGTH('a)) (- numeral bin))" by transfer simp lemma size_0_eq: "size w = 0 \ v = w" for v w :: "'a::len word" by transfer simp lemma uint_ge_0 [iff]: "0 \ uint x" by (fact unsigned_greater_eq) lemma uint_lt2p [iff]: "uint x < 2 ^ LENGTH('a)" for x :: "'a::len word" by (fact unsigned_less) lemma sint_ge: "- (2 ^ (LENGTH('a) - 1)) \ sint x" for x :: "'a::len word" using sint_greater_eq [of x] by simp lemma sint_lt: "sint x < 2 ^ (LENGTH('a) - 1)" for x :: "'a::len word" using sint_less [of x] by simp lemma uint_m2p_neg: "uint x - 2 ^ LENGTH('a) < 0" for x :: "'a::len word" by (simp only: diff_less_0_iff_less uint_lt2p) lemma uint_m2p_not_non_neg: "\ 0 \ uint x - 2 ^ LENGTH('a)" for x :: "'a::len word" by (simp only: not_le uint_m2p_neg) lemma lt2p_lem: "LENGTH('a) \ n \ uint w < 2 ^ n" for w :: "'a::len word" using uint_bounded [of w] by (rule less_le_trans) simp lemma uint_le_0_iff [simp]: "uint x \ 0 \ uint x = 0" by (fact uint_ge_0 [THEN leD, THEN antisym_conv1]) lemma uint_nat: "uint w = int (unat w)" by transfer simp lemma uint_numeral: "uint (numeral b :: 'a::len word) = numeral b mod 2 ^ LENGTH('a)" by (simp flip: take_bit_eq_mod add: of_nat_take_bit) lemma uint_neg_numeral: "uint (- numeral b :: 'a::len word) = - numeral b mod 2 ^ LENGTH('a)" by (simp flip: take_bit_eq_mod add: of_nat_take_bit) lemma unat_numeral: "unat (numeral b :: 'a::len word) = numeral b mod 2 ^ LENGTH('a)" by transfer (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq) lemma sint_numeral: "sint (numeral b :: 'a::len word) = (numeral b + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - 2 ^ (LENGTH('a) - 1)" apply (transfer fixing: b) using int_word_sint [of \numeral b\] apply simp done lemma word_of_int_0 [simp, code_post]: "word_of_int 0 = 0" by (fact of_int_0) lemma word_of_int_1 [simp, code_post]: "word_of_int 1 = 1" by (fact of_int_1) lemma word_of_int_neg_1 [simp]: "word_of_int (- 1) = - 1" by (simp add: wi_hom_syms) lemma word_of_int_numeral [simp] : "(word_of_int (numeral bin) :: 'a::len word) = numeral bin" by (fact of_int_numeral) lemma word_of_int_neg_numeral [simp]: "(word_of_int (- numeral bin) :: 'a::len word) = - numeral bin" by (fact of_int_neg_numeral) lemma word_int_case_wi: "word_int_case f (word_of_int i :: 'b word) = f (i mod 2 ^ LENGTH('b::len))" by transfer (simp add: take_bit_eq_mod) lemma word_int_split: "P (word_int_case f x) = (\i. x = (word_of_int i :: 'b::len word) \ 0 \ i \ i < 2 ^ LENGTH('b) \ P (f i))" by transfer (auto simp add: take_bit_eq_mod) lemma word_int_split_asm: "P (word_int_case f x) = (\n. x = (word_of_int n :: 'b::len word) \ 0 \ n \ n < 2 ^ LENGTH('b::len) \ \ P (f n))" by transfer (auto simp add: take_bit_eq_mod) lemma uint_range_size: "0 \ uint w \ uint w < 2 ^ size w" by transfer simp lemma sint_range_size: "- (2 ^ (size w - Suc 0)) \ sint w \ sint w < 2 ^ (size w - Suc 0)" by (simp add: word_size sint_greater_eq sint_less) lemma sint_above_size: "2 ^ (size w - 1) \ x \ sint w < x" for w :: "'a::len word" unfolding word_size by (rule less_le_trans [OF sint_lt]) lemma sint_below_size: "x \ - (2 ^ (size w - 1)) \ x \ sint w" for w :: "'a::len word" unfolding word_size by (rule order_trans [OF _ sint_ge]) subsection \Testing bits\ lemma bin_nth_uint_imp: "bit (uint w) n \ n < LENGTH('a)" for w :: "'a::len word" by transfer (simp add: bit_take_bit_iff) lemma bin_nth_sint: "LENGTH('a) \ n \ bit (sint w) n = bit (sint w) (LENGTH('a) - 1)" for w :: "'a::len word" by (transfer fixing: n) (simp add: bit_signed_take_bit_iff le_diff_conv min_def) lemma num_of_bintr': "take_bit (LENGTH('a::len)) (numeral a :: int) = (numeral b) \ numeral a = (numeral b :: 'a word)" proof (transfer fixing: a b) assume \take_bit LENGTH('a) (numeral a :: int) = numeral b\ then have \take_bit LENGTH('a) (take_bit LENGTH('a) (numeral a :: int)) = take_bit LENGTH('a) (numeral b)\ by simp then show \take_bit LENGTH('a) (numeral a :: int) = take_bit LENGTH('a) (numeral b)\ by simp qed lemma num_of_sbintr': "signed_take_bit (LENGTH('a::len) - 1) (numeral a :: int) = (numeral b) \ numeral a = (numeral b :: 'a word)" proof (transfer fixing: a b) assume \signed_take_bit (LENGTH('a) - 1) (numeral a :: int) = numeral b\ then have \take_bit LENGTH('a) (signed_take_bit (LENGTH('a) - 1) (numeral a :: int)) = take_bit LENGTH('a) (numeral b)\ by simp then show \take_bit LENGTH('a) (numeral a :: int) = take_bit LENGTH('a) (numeral b)\ by (simp add: take_bit_signed_take_bit) qed lemma num_abs_bintr: "(numeral x :: 'a word) = word_of_int (take_bit (LENGTH('a::len)) (numeral x))" by transfer simp lemma num_abs_sbintr: "(numeral x :: 'a word) = word_of_int (signed_take_bit (LENGTH('a::len) - 1) (numeral x))" by transfer (simp add: take_bit_signed_take_bit) text \ \cast\ -- note, no arg for new length, as it's determined by type of result, thus in \cast w = w\, the type means cast to length of \w\! \ lemma bit_ucast_iff: \bit (ucast a :: 'a::len word) n \ n < LENGTH('a::len) \ Parity.bit a n\ by transfer (simp add: bit_take_bit_iff) lemma ucast_id [simp]: "ucast w = w" by transfer simp lemma scast_id [simp]: "scast w = w" by transfer (simp add: take_bit_signed_take_bit) lemma ucast_mask_eq: \ucast (mask n :: 'b word) = mask (min LENGTH('b::len) n)\ by (simp add: bit_eq_iff) (auto simp add: bit_mask_iff bit_ucast_iff exp_eq_zero_iff) \ \literal u(s)cast\ lemma ucast_bintr [simp]: "ucast (numeral w :: 'a::len word) = word_of_int (take_bit (LENGTH('a)) (numeral w))" by transfer simp (* TODO: neg_numeral *) lemma scast_sbintr [simp]: "scast (numeral w ::'a::len word) = word_of_int (signed_take_bit (LENGTH('a) - Suc 0) (numeral w))" by transfer simp lemma source_size: "source_size (c::'a::len word \ _) = LENGTH('a)" by transfer simp lemma target_size: "target_size (c::_ \ 'b::len word) = LENGTH('b)" by transfer simp lemma is_down: "is_down c \ LENGTH('b) \ LENGTH('a)" for c :: "'a::len word \ 'b::len word" by transfer simp lemma is_up: "is_up c \ LENGTH('a) \ LENGTH('b)" for c :: "'a::len word \ 'b::len word" by transfer simp lemma is_up_down: \is_up c \ is_down d\ for c :: \'a::len word \ 'b::len word\ and d :: \'b::len word \ 'a::len word\ by transfer simp context fixes dummy_types :: \'a::len \ 'b::len\ begin private abbreviation (input) UCAST :: \'a::len word \ 'b::len word\ where \UCAST == ucast\ private abbreviation (input) SCAST :: \'a::len word \ 'b::len word\ where \SCAST == scast\ lemma down_cast_same: \UCAST = scast\ if \is_down UCAST\ by (rule ext, use that in transfer) (simp add: take_bit_signed_take_bit) lemma sint_up_scast: \sint (SCAST w) = sint w\ if \is_up SCAST\ using that by transfer (simp add: min_def Suc_leI le_diff_iff) lemma uint_up_ucast: \uint (UCAST w) = uint w\ if \is_up UCAST\ using that by transfer (simp add: min_def) lemma ucast_up_ucast: \ucast (UCAST w) = ucast w\ if \is_up UCAST\ using that by transfer (simp add: ac_simps) lemma ucast_up_ucast_id: \ucast (UCAST w) = w\ if \is_up UCAST\ using that by (simp add: ucast_up_ucast) lemma scast_up_scast: \scast (SCAST w) = scast w\ if \is_up SCAST\ using that by transfer (simp add: ac_simps) lemma scast_up_scast_id: \scast (SCAST w) = w\ if \is_up SCAST\ using that by (simp add: scast_up_scast) lemma isduu: \is_up UCAST\ if \is_down d\ for d :: \'b word \ 'a word\ using that is_up_down [of UCAST d] by simp lemma isdus: \is_up SCAST\ if \is_down d\ for d :: \'b word \ 'a word\ using that is_up_down [of SCAST d] by simp lemmas ucast_down_ucast_id = isduu [THEN ucast_up_ucast_id] lemmas scast_down_scast_id = isdus [THEN scast_up_scast_id] lemma up_ucast_surj: \surj (ucast :: 'b word \ 'a word)\ if \is_up UCAST\ by (rule surjI) (use that in \rule ucast_up_ucast_id\) lemma up_scast_surj: \surj (scast :: 'b word \ 'a word)\ if \is_up SCAST\ by (rule surjI) (use that in \rule scast_up_scast_id\) lemma down_ucast_inj: \inj_on UCAST A\ if \is_down (ucast :: 'b word \ 'a word)\ by (rule inj_on_inverseI) (use that in \rule ucast_down_ucast_id\) lemma down_scast_inj: \inj_on SCAST A\ if \is_down (scast :: 'b word \ 'a word)\ by (rule inj_on_inverseI) (use that in \rule scast_down_scast_id\) lemma ucast_down_wi: \UCAST (word_of_int x) = word_of_int x\ if \is_down UCAST\ using that by transfer simp lemma ucast_down_no: \UCAST (numeral bin) = numeral bin\ if \is_down UCAST\ using that by transfer simp end lemmas word_log_defs = word_and_def word_or_def word_xor_def word_not_def lemma bit_last_iff: \bit w (LENGTH('a) - Suc 0) \ sint w < 0\ (is \?P \ ?Q\) for w :: \'a::len word\ proof - have \?P \ bit (uint w) (LENGTH('a) - Suc 0)\ by (simp add: bit_uint_iff) also have \\ \ ?Q\ by (simp add: sint_uint) finally show ?thesis . qed lemma drop_bit_eq_zero_iff_not_bit_last: \drop_bit (LENGTH('a) - Suc 0) w = 0 \ \ bit w (LENGTH('a) - Suc 0)\ for w :: "'a::len word" apply (cases \LENGTH('a)\) apply simp_all apply (simp add: bit_iff_odd_drop_bit) apply transfer apply (simp add: take_bit_drop_bit) apply (auto simp add: drop_bit_eq_div take_bit_eq_mod min_def) apply (auto elim!: evenE) apply (metis div_exp_eq mod_div_trivial mult.commute nonzero_mult_div_cancel_left power_Suc0_right power_add zero_neq_numeral) done subsection \Word Arithmetic\ lemmas word_div_no [simp] = word_div_def [of "numeral a" "numeral b"] for a b lemmas word_mod_no [simp] = word_mod_def [of "numeral a" "numeral b"] for a b lemmas word_less_no [simp] = word_less_def [of "numeral a" "numeral b"] for a b lemmas word_le_no [simp] = word_le_def [of "numeral a" "numeral b"] for a b lemmas word_sless_no [simp] = word_sless_eq [of "numeral a" "numeral b"] for a b lemmas word_sle_no [simp] = word_sle_eq [of "numeral a" "numeral b"] for a b lemma size_0_same': "size w = 0 \ w = v" for v w :: "'a::len word" by (unfold word_size) simp lemmas size_0_same = size_0_same' [unfolded word_size] lemmas unat_eq_0 = unat_0_iff lemmas unat_eq_zero = unat_0_iff subsection \Transferring goals from words to ints\ lemma word_ths: shows word_succ_p1: "word_succ a = a + 1" and word_pred_m1: "word_pred a = a - 1" and word_pred_succ: "word_pred (word_succ a) = a" and word_succ_pred: "word_succ (word_pred a) = a" and word_mult_succ: "word_succ a * b = b + a * b" by (transfer, simp add: algebra_simps)+ lemma uint_cong: "x = y \ uint x = uint y" by simp lemma uint_word_ariths: fixes a b :: "'a::len word" shows "uint (a + b) = (uint a + uint b) mod 2 ^ LENGTH('a::len)" and "uint (a - b) = (uint a - uint b) mod 2 ^ LENGTH('a)" and "uint (a * b) = uint a * uint b mod 2 ^ LENGTH('a)" and "uint (- a) = - uint a mod 2 ^ LENGTH('a)" and "uint (word_succ a) = (uint a + 1) mod 2 ^ LENGTH('a)" and "uint (word_pred a) = (uint a - 1) mod 2 ^ LENGTH('a)" and "uint (0 :: 'a word) = 0 mod 2 ^ LENGTH('a)" and "uint (1 :: 'a word) = 1 mod 2 ^ LENGTH('a)" by (simp_all only: word_arith_wis uint_word_of_int_eq flip: take_bit_eq_mod) lemma uint_word_arith_bintrs: fixes a b :: "'a::len word" shows "uint (a + b) = take_bit (LENGTH('a)) (uint a + uint b)" and "uint (a - b) = take_bit (LENGTH('a)) (uint a - uint b)" and "uint (a * b) = take_bit (LENGTH('a)) (uint a * uint b)" and "uint (- a) = take_bit (LENGTH('a)) (- uint a)" and "uint (word_succ a) = take_bit (LENGTH('a)) (uint a + 1)" and "uint (word_pred a) = take_bit (LENGTH('a)) (uint a - 1)" and "uint (0 :: 'a word) = take_bit (LENGTH('a)) 0" and "uint (1 :: 'a word) = take_bit (LENGTH('a)) 1" by (simp_all add: uint_word_ariths take_bit_eq_mod) lemma sint_word_ariths: fixes a b :: "'a::len word" shows "sint (a + b) = signed_take_bit (LENGTH('a) - 1) (sint a + sint b)" and "sint (a - b) = signed_take_bit (LENGTH('a) - 1) (sint a - sint b)" and "sint (a * b) = signed_take_bit (LENGTH('a) - 1) (sint a * sint b)" and "sint (- a) = signed_take_bit (LENGTH('a) - 1) (- sint a)" and "sint (word_succ a) = signed_take_bit (LENGTH('a) - 1) (sint a + 1)" and "sint (word_pred a) = signed_take_bit (LENGTH('a) - 1) (sint a - 1)" and "sint (0 :: 'a word) = signed_take_bit (LENGTH('a) - 1) 0" and "sint (1 :: 'a word) = signed_take_bit (LENGTH('a) - 1) 1" apply transfer apply (simp add: signed_take_bit_add) apply transfer apply (simp add: signed_take_bit_diff) apply transfer apply (simp add: signed_take_bit_mult) apply transfer apply (simp add: signed_take_bit_minus) apply (metis of_int_sint scast_id sint_sbintrunc' wi_hom_succ) apply (metis of_int_sint scast_id sint_sbintrunc' wi_hom_pred) apply (simp_all add: sint_uint) done lemma word_pred_0_n1: "word_pred 0 = word_of_int (- 1)" unfolding word_pred_m1 by simp lemma succ_pred_no [simp]: "word_succ (numeral w) = numeral w + 1" "word_pred (numeral w) = numeral w - 1" "word_succ (- numeral w) = - numeral w + 1" "word_pred (- numeral w) = - numeral w - 1" by (simp_all add: word_succ_p1 word_pred_m1) lemma word_sp_01 [simp]: "word_succ (- 1) = 0 \ word_succ 0 = 1 \ word_pred 0 = - 1 \ word_pred 1 = 0" by (simp_all add: word_succ_p1 word_pred_m1) \ \alternative approach to lifting arithmetic equalities\ lemma word_of_int_Ex: "\y. x = word_of_int y" by (rule_tac x="uint x" in exI) simp subsection \Order on fixed-length words\ lift_definition udvd :: \'a::len word \ 'a::len word \ bool\ (infixl \udvd\ 50) is \\k l. take_bit LENGTH('a) k dvd take_bit LENGTH('a) l\ by simp lemma udvd_iff_dvd: \x udvd y \ unat x dvd unat y\ by transfer (simp add: nat_dvd_iff) lemma udvd_iff_dvd_int: \v udvd w \ uint v dvd uint w\ by transfer rule lemma udvdI [intro]: \v udvd w\ if \unat w = unat v * unat u\ proof - from that have \unat v dvd unat w\ .. then show ?thesis by (simp add: udvd_iff_dvd) qed lemma udvdE [elim]: fixes v w :: \'a::len word\ assumes \v udvd w\ obtains u :: \'a word\ where \unat w = unat v * unat u\ proof (cases \v = 0\) case True moreover from True \v udvd w\ have \w = 0\ by transfer simp ultimately show thesis using that by simp next case False then have \unat v > 0\ by (simp add: unat_gt_0) from \v udvd w\ have \unat v dvd unat w\ by (simp add: udvd_iff_dvd) then obtain n where \unat w = unat v * n\ .. moreover have \n < 2 ^ LENGTH('a)\ proof (rule ccontr) assume \\ n < 2 ^ LENGTH('a)\ then have \n \ 2 ^ LENGTH('a)\ by (simp add: not_le) then have \unat v * n \ 2 ^ LENGTH('a)\ using \unat v > 0\ mult_le_mono [of 1 \unat v\ \2 ^ LENGTH('a)\ n] by simp with \unat w = unat v * n\ have \unat w \ 2 ^ LENGTH('a)\ by simp with unsigned_less [of w, where ?'a = nat] show False by linarith qed ultimately have \unat w = unat v * unat (word_of_nat n :: 'a word)\ by (auto simp add: take_bit_nat_eq_self_iff intro: sym) with that show thesis . qed lemma udvd_imp_mod_eq_0: \w mod v = 0\ if \v udvd w\ using that by transfer simp lemma mod_eq_0_imp_udvd [intro?]: \v udvd w\ if \w mod v = 0\ proof - from that have \unat (w mod v) = unat 0\ by simp then have \unat w mod unat v = 0\ by (simp add: unat_mod_distrib) then have \unat v dvd unat w\ .. then show ?thesis by (simp add: udvd_iff_dvd) qed lemma udvd_imp_dvd: \v dvd w\ if \v udvd w\ for v w :: \'a::len word\ proof - from that obtain u :: \'a word\ where \unat w = unat v * unat u\ .. then have \(word_of_nat (unat w) :: 'a word) = word_of_nat (unat v * unat u)\ by simp then have \w = v * u\ by simp then show \v dvd w\ .. qed lemma exp_dvd_iff_exp_udvd: \2 ^ n dvd w \ 2 ^ n udvd w\ for v w :: \'a::len word\ proof assume \2 ^ n udvd w\ then show \2 ^ n dvd w\ by (rule udvd_imp_dvd) next assume \2 ^ n dvd w\ then obtain u :: \'a word\ where \w = 2 ^ n * u\ .. then have \w = push_bit n u\ by (simp add: push_bit_eq_mult) then show \2 ^ n udvd w\ by transfer (simp add: take_bit_push_bit dvd_eq_mod_eq_0 flip: take_bit_eq_mod) qed lemma udvd_nat_alt: \a udvd b \ (\n. unat b = n * unat a)\ by (auto simp add: udvd_iff_dvd) lemma udvd_unfold_int: \a udvd b \ (\n\0. uint b = n * uint a)\ apply (auto elim!: dvdE simp add: udvd_iff_dvd) apply (simp only: uint_nat) apply auto using of_nat_0_le_iff apply blast apply (simp only: unat_eq_nat_uint) apply (simp add: nat_mult_distrib) done lemma unat_minus_one: \unat (w - 1) = unat w - 1\ if \w \ 0\ proof - have "0 \ uint w" by (fact uint_nonnegative) moreover from that have "0 \ uint w" by (simp add: uint_0_iff) ultimately have "1 \ uint w" by arith from uint_lt2p [of w] have "uint w - 1 < 2 ^ LENGTH('a)" by arith with \1 \ uint w\ have "(uint w - 1) mod 2 ^ LENGTH('a) = uint w - 1" by (auto intro: mod_pos_pos_trivial) with \1 \ uint w\ have "nat ((uint w - 1) mod 2 ^ LENGTH('a)) = nat (uint w) - 1" by (auto simp del: nat_uint_eq) then show ?thesis by (simp only: unat_eq_nat_uint word_arith_wis mod_diff_right_eq) (metis of_int_1 uint_word_of_int unsigned_1) qed lemma measure_unat: "p \ 0 \ unat (p - 1) < unat p" by (simp add: unat_minus_one) (simp add: unat_0_iff [symmetric]) lemmas uint_add_ge0 [simp] = add_nonneg_nonneg [OF uint_ge_0 uint_ge_0] lemmas uint_mult_ge0 [simp] = mult_nonneg_nonneg [OF uint_ge_0 uint_ge_0] lemma uint_sub_lt2p [simp]: "uint x - uint y < 2 ^ LENGTH('a)" for x :: "'a::len word" and y :: "'b::len word" using uint_ge_0 [of y] uint_lt2p [of x] by arith subsection \Conditions for the addition (etc) of two words to overflow\ lemma uint_add_lem: "(uint x + uint y < 2 ^ LENGTH('a)) = (uint (x + y) = uint x + uint y)" for x y :: "'a::len word" by (metis add.right_neutral add_mono_thms_linordered_semiring(1) mod_pos_pos_trivial of_nat_0_le_iff uint_lt2p uint_nat uint_word_ariths(1)) lemma uint_mult_lem: "(uint x * uint y < 2 ^ LENGTH('a)) = (uint (x * y) = uint x * uint y)" for x y :: "'a::len word" by (metis mod_pos_pos_trivial uint_lt2p uint_mult_ge0 uint_word_ariths(3)) lemma uint_sub_lem: "uint x \ uint y \ uint (x - y) = uint x - uint y" by (metis diff_ge_0_iff_ge of_nat_0_le_iff uint_nat uint_sub_lt2p uint_word_of_int unique_euclidean_semiring_numeral_class.mod_less word_sub_wi) lemma uint_add_le: "uint (x + y) \ uint x + uint y" unfolding uint_word_ariths by (simp add: zmod_le_nonneg_dividend) lemma uint_sub_ge: "uint (x - y) \ uint x - uint y" unfolding uint_word_ariths by (simp flip: take_bit_eq_mod add: take_bit_int_greater_eq_self_iff) lemma int_mod_ge: \a \ a mod n\ if \a < n\ \0 < n\ for a n :: int proof (cases \a < 0\) case True with \0 < n\ show ?thesis by (metis less_trans not_less pos_mod_conj) next case False with \a < n\ show ?thesis by simp qed lemma mod_add_if_z: "x < z \ y < z \ 0 \ y \ 0 \ x \ 0 \ z \ (x + y) mod z = (if x + y < z then x + y else x + y - z)" for x y z :: int apply (auto simp add: not_less) apply (rule antisym) apply (metis diff_ge_0_iff_ge minus_mod_self2 zmod_le_nonneg_dividend) apply (simp only: flip: minus_mod_self2 [of \x + y\ z]) apply (metis add.commute add_less_cancel_left add_mono_thms_linordered_field(5) diff_add_cancel diff_ge_0_iff_ge mod_pos_pos_trivial order_refl) done lemma uint_plus_if': "uint (a + b) = (if uint a + uint b < 2 ^ LENGTH('a) then uint a + uint b else uint a + uint b - 2 ^ LENGTH('a))" for a b :: "'a::len word" using mod_add_if_z [of "uint a" _ "uint b"] by (simp add: uint_word_ariths) lemma mod_sub_if_z: "x < z \ y < z \ 0 \ y \ 0 \ x \ 0 \ z \ (x - y) mod z = (if y \ x then x - y else x - y + z)" for x y z :: int apply (auto simp add: not_le) apply (rule antisym) apply (simp only: flip: mod_add_self2 [of \x - y\ z]) apply (rule zmod_le_nonneg_dividend) apply simp apply (metis add.commute add.right_neutral add_le_cancel_left diff_ge_0_iff_ge int_mod_ge le_less le_less_trans mod_add_self1 not_less) done lemma uint_sub_if': "uint (a - b) = (if uint b \ uint a then uint a - uint b else uint a - uint b + 2 ^ LENGTH('a))" for a b :: "'a::len word" using mod_sub_if_z [of "uint a" _ "uint b"] by (simp add: uint_word_ariths) subsection \Definition of \uint_arith\\ lemma word_of_int_inverse: "word_of_int r = a \ 0 \ r \ r < 2 ^ LENGTH('a) \ uint a = r" for a :: "'a::len word" apply transfer apply (drule sym) apply (simp add: take_bit_int_eq_self) done lemma uint_split: "P (uint x) = (\i. word_of_int i = x \ 0 \ i \ i < 2^LENGTH('a) \ P i)" for x :: "'a::len word" by transfer (auto simp add: take_bit_eq_mod) lemma uint_split_asm: "P (uint x) = (\i. word_of_int i = x \ 0 \ i \ i < 2^LENGTH('a) \ \ P i)" for x :: "'a::len word" by auto (metis take_bit_int_eq_self_iff) lemmas uint_splits = uint_split uint_split_asm lemmas uint_arith_simps = word_le_def word_less_alt word_uint_eq_iff uint_sub_if' uint_plus_if' \ \use this to stop, eg. \2 ^ LENGTH(32)\ being simplified\ lemma power_False_cong: "False \ a ^ b = c ^ d" by auto \ \\uint_arith_tac\: reduce to arithmetic on int, try to solve by arith\ ML \ val uint_arith_simpset = @{context} |> fold Simplifier.add_simp @{thms uint_arith_simps} |> fold Splitter.add_split @{thms if_split_asm} |> fold Simplifier.add_cong @{thms power_False_cong} |> simpset_of; fun uint_arith_tacs ctxt = let fun arith_tac' n t = Arith_Data.arith_tac ctxt n t handle Cooper.COOPER _ => Seq.empty; in [ clarify_tac ctxt 1, full_simp_tac (put_simpset uint_arith_simpset ctxt) 1, ALLGOALS (full_simp_tac (put_simpset HOL_ss ctxt |> fold Splitter.add_split @{thms uint_splits} |> fold Simplifier.add_cong @{thms power_False_cong})), rewrite_goals_tac ctxt @{thms word_size}, ALLGOALS (fn n => REPEAT (resolve_tac ctxt [allI, impI] n) THEN REPEAT (eresolve_tac ctxt [conjE] n) THEN REPEAT (dresolve_tac ctxt @{thms word_of_int_inverse} n THEN assume_tac ctxt n THEN assume_tac ctxt n)), TRYALL arith_tac' ] end fun uint_arith_tac ctxt = SELECT_GOAL (EVERY (uint_arith_tacs ctxt)) \ method_setup uint_arith = \Scan.succeed (SIMPLE_METHOD' o uint_arith_tac)\ "solving word arithmetic via integers and arith" subsection \More on overflows and monotonicity\ lemma no_plus_overflow_uint_size: "x \ x + y \ uint x + uint y < 2 ^ size x" for x y :: "'a::len word" unfolding word_size by uint_arith lemmas no_olen_add = no_plus_overflow_uint_size [unfolded word_size] lemma no_ulen_sub: "x \ x - y \ uint y \ uint x" for x y :: "'a::len word" by uint_arith lemma no_olen_add': "x \ y + x \ uint y + uint x < 2 ^ LENGTH('a)" for x y :: "'a::len word" by (simp add: ac_simps no_olen_add) lemmas olen_add_eqv = trans [OF no_olen_add no_olen_add' [symmetric]] lemmas uint_plus_simple_iff = trans [OF no_olen_add uint_add_lem] lemmas uint_plus_simple = uint_plus_simple_iff [THEN iffD1] lemmas uint_minus_simple_iff = trans [OF no_ulen_sub uint_sub_lem] lemmas uint_minus_simple_alt = uint_sub_lem [folded word_le_def] lemmas word_sub_le_iff = no_ulen_sub [folded word_le_def] lemmas word_sub_le = word_sub_le_iff [THEN iffD2] lemma word_less_sub1: "x \ 0 \ 1 < x \ 0 < x - 1" for x :: "'a::len word" by uint_arith lemma word_le_sub1: "x \ 0 \ 1 \ x \ 0 \ x - 1" for x :: "'a::len word" by uint_arith lemma sub_wrap_lt: "x < x - z \ x < z" for x z :: "'a::len word" by uint_arith lemma sub_wrap: "x \ x - z \ z = 0 \ x < z" for x z :: "'a::len word" by uint_arith lemma plus_minus_not_NULL_ab: "x \ ab - c \ c \ ab \ c \ 0 \ x + c \ 0" for x ab c :: "'a::len word" by uint_arith lemma plus_minus_no_overflow_ab: "x \ ab - c \ c \ ab \ x \ x + c" for x ab c :: "'a::len word" by uint_arith lemma le_minus': "a + c \ b \ a \ a + c \ c \ b - a" for a b c :: "'a::len word" by uint_arith lemma le_plus': "a \ b \ c \ b - a \ a + c \ b" for a b c :: "'a::len word" by uint_arith lemmas le_plus = le_plus' [rotated] lemmas le_minus = leD [THEN thin_rl, THEN le_minus'] (* FIXME *) lemma word_plus_mono_right: "y \ z \ x \ x + z \ x + y \ x + z" for x y z :: "'a::len word" by uint_arith lemma word_less_minus_cancel: "y - x < z - x \ x \ z \ y < z" for x y z :: "'a::len word" by uint_arith lemma word_less_minus_mono_left: "y < z \ x \ y \ y - x < z - x" for x y z :: "'a::len word" by uint_arith lemma word_less_minus_mono: "a < c \ d < b \ a - b < a \ c - d < c \ a - b < c - d" for a b c d :: "'a::len word" by uint_arith lemma word_le_minus_cancel: "y - x \ z - x \ x \ z \ y \ z" for x y z :: "'a::len word" by uint_arith lemma word_le_minus_mono_left: "y \ z \ x \ y \ y - x \ z - x" for x y z :: "'a::len word" by uint_arith lemma word_le_minus_mono: "a \ c \ d \ b \ a - b \ a \ c - d \ c \ a - b \ c - d" for a b c d :: "'a::len word" by uint_arith lemma plus_le_left_cancel_wrap: "x + y' < x \ x + y < x \ x + y' < x + y \ y' < y" for x y y' :: "'a::len word" by uint_arith lemma plus_le_left_cancel_nowrap: "x \ x + y' \ x \ x + y \ x + y' < x + y \ y' < y" for x y y' :: "'a::len word" by uint_arith lemma word_plus_mono_right2: "a \ a + b \ c \ b \ a \ a + c" for a b c :: "'a::len word" by uint_arith lemma word_less_add_right: "x < y - z \ z \ y \ x + z < y" for x y z :: "'a::len word" by uint_arith lemma word_less_sub_right: "x < y + z \ y \ x \ x - y < z" for x y z :: "'a::len word" by uint_arith lemma word_le_plus_either: "x \ y \ x \ z \ y \ y + z \ x \ y + z" for x y z :: "'a::len word" by uint_arith lemma word_less_nowrapI: "x < z - k \ k \ z \ 0 < k \ x < x + k" for x z k :: "'a::len word" by uint_arith lemma inc_le: "i < m \ i + 1 \ m" for i m :: "'a::len word" by uint_arith lemma inc_i: "1 \ i \ i < m \ 1 \ i + 1 \ i + 1 \ m" for i m :: "'a::len word" by uint_arith lemma udvd_incr_lem: "up < uq \ up = ua + n * uint K \ uq = ua + n' * uint K \ up + uint K \ uq" by auto (metis int_distrib(1) linorder_not_less mult.left_neutral mult_right_mono uint_nonnegative zless_imp_add1_zle) lemma udvd_incr': "p < q \ uint p = ua + n * uint K \ uint q = ua + n' * uint K \ p + K \ q" apply (unfold word_less_alt word_le_def) apply (drule (2) udvd_incr_lem) apply (erule uint_add_le [THEN order_trans]) done lemma udvd_decr': "p < q \ uint p = ua + n * uint K \ uint q = ua + n' * uint K \ p \ q - K" apply (unfold word_less_alt word_le_def) apply (drule (2) udvd_incr_lem) apply (drule le_diff_eq [THEN iffD2]) apply (erule order_trans) apply (rule uint_sub_ge) done lemmas udvd_incr_lem0 = udvd_incr_lem [where ua=0, unfolded add_0_left] lemmas udvd_incr0 = udvd_incr' [where ua=0, unfolded add_0_left] lemmas udvd_decr0 = udvd_decr' [where ua=0, unfolded add_0_left] lemma udvd_minus_le': "xy < k \ z udvd xy \ z udvd k \ xy \ k - z" apply (unfold udvd_unfold_int) apply clarify apply (erule (2) udvd_decr0) done lemma udvd_incr2_K: "p < a + s \ a \ a + s \ K udvd s \ K udvd p - a \ a \ p \ 0 < K \ p \ p + K \ p + K \ a + s" supply [[simproc del: linordered_ring_less_cancel_factor]] apply (unfold udvd_unfold_int) apply clarify apply (simp add: uint_arith_simps split: if_split_asm) prefer 2 using uint_lt2p [of s] apply simp apply (drule add.commute [THEN xtrans(1)]) apply (simp flip: diff_less_eq) apply (subst (asm) mult_less_cancel_right) apply simp apply (simp add: diff_eq_eq not_less) apply (subst (asm) (3) zless_iff_Suc_zadd) apply auto apply (auto simp add: algebra_simps) apply (drule less_le_trans [of _ \2 ^ LENGTH('a)\]) apply assumption apply (simp add: mult_less_0_iff) done subsection \Arithmetic type class instantiations\ lemmas word_le_0_iff [simp] = word_zero_le [THEN leD, THEN antisym_conv1] lemma word_of_int_nat: "0 \ x \ word_of_int x = of_nat (nat x)" by simp text \ note that \iszero_def\ is only for class \comm_semiring_1_cancel\, which requires word length \\ 1\, ie \'a::len word\ \ lemma iszero_word_no [simp]: "iszero (numeral bin :: 'a::len word) = iszero (take_bit LENGTH('a) (numeral bin :: int))" apply (simp add: iszero_def) apply transfer apply simp done text \Use \iszero\ to simplify equalities between word numerals.\ lemmas word_eq_numeral_iff_iszero [simp] = eq_numeral_iff_iszero [where 'a="'a::len word"] subsection \Word and nat\ lemma word_nchotomy: "\w :: 'a::len word. \n. w = of_nat n \ n < 2 ^ LENGTH('a)" apply (rule allI) apply (rule exI [of _ \unat w\ for w :: \'a word\]) apply simp done lemma of_nat_eq: "of_nat n = w \ (\q. n = unat w + q * 2 ^ LENGTH('a))" for w :: "'a::len word" using mod_div_mult_eq [of n "2 ^ LENGTH('a)", symmetric] by (auto simp flip: take_bit_eq_mod) lemma of_nat_eq_size: "of_nat n = w \ (\q. n = unat w + q * 2 ^ size w)" unfolding word_size by (rule of_nat_eq) lemma of_nat_0: "of_nat m = (0::'a::len word) \ (\q. m = q * 2 ^ LENGTH('a))" by (simp add: of_nat_eq) lemma of_nat_2p [simp]: "of_nat (2 ^ LENGTH('a)) = (0::'a::len word)" by (fact mult_1 [symmetric, THEN iffD2 [OF of_nat_0 exI]]) lemma of_nat_gt_0: "of_nat k \ 0 \ 0 < k" by (cases k) auto lemma of_nat_neq_0: "0 < k \ k < 2 ^ LENGTH('a::len) \ of_nat k \ (0 :: 'a word)" by (auto simp add : of_nat_0) lemma Abs_fnat_hom_add: "of_nat a + of_nat b = of_nat (a + b)" by simp lemma Abs_fnat_hom_mult: "of_nat a * of_nat b = (of_nat (a * b) :: 'a::len word)" by (simp add: wi_hom_mult) lemma Abs_fnat_hom_Suc: "word_succ (of_nat a) = of_nat (Suc a)" by transfer (simp add: ac_simps) lemma Abs_fnat_hom_0: "(0::'a::len word) = of_nat 0" by simp lemma Abs_fnat_hom_1: "(1::'a::len word) = of_nat (Suc 0)" by simp lemmas Abs_fnat_homs = Abs_fnat_hom_add Abs_fnat_hom_mult Abs_fnat_hom_Suc Abs_fnat_hom_0 Abs_fnat_hom_1 lemma word_arith_nat_add: "a + b = of_nat (unat a + unat b)" by simp lemma word_arith_nat_mult: "a * b = of_nat (unat a * unat b)" by simp lemma word_arith_nat_Suc: "word_succ a = of_nat (Suc (unat a))" by (subst Abs_fnat_hom_Suc [symmetric]) simp lemma word_arith_nat_div: "a div b = of_nat (unat a div unat b)" by (metis of_int_of_nat_eq of_nat_unat of_nat_div word_div_def) lemma word_arith_nat_mod: "a mod b = of_nat (unat a mod unat b)" by (metis of_int_of_nat_eq of_nat_mod of_nat_unat word_mod_def) lemmas word_arith_nat_defs = word_arith_nat_add word_arith_nat_mult word_arith_nat_Suc Abs_fnat_hom_0 Abs_fnat_hom_1 word_arith_nat_div word_arith_nat_mod lemma unat_cong: "x = y \ unat x = unat y" by (fact arg_cong) lemma unat_of_nat: \unat (word_of_nat x :: 'a::len word) = x mod 2 ^ LENGTH('a)\ by transfer (simp flip: take_bit_eq_mod add: nat_take_bit_eq) lemmas unat_word_ariths = word_arith_nat_defs [THEN trans [OF unat_cong unat_of_nat]] lemmas word_sub_less_iff = word_sub_le_iff [unfolded linorder_not_less [symmetric] Not_eq_iff] lemma unat_add_lem: "unat x + unat y < 2 ^ LENGTH('a) \ unat (x + y) = unat x + unat y" for x y :: "'a::len word" apply (auto simp: unat_word_ariths) apply (drule sym) apply (metis unat_of_nat unsigned_less) done lemma unat_mult_lem: "unat x * unat y < 2 ^ LENGTH('a) \ unat (x * y) = unat x * unat y" for x y :: "'a::len word" apply (auto simp: unat_word_ariths) apply (drule sym) apply (metis unat_of_nat unsigned_less) done lemma unat_plus_if': \unat (a + b) = (if unat a + unat b < 2 ^ LENGTH('a) then unat a + unat b else unat a + unat b - 2 ^ LENGTH('a))\ for a b :: \'a::len word\ apply (auto simp: unat_word_ariths not_less) apply (subst (asm) le_iff_add) apply auto apply (simp flip: take_bit_eq_mod add: take_bit_nat_eq_self_iff) apply (metis add.commute add_less_cancel_right le_less_trans less_imp_le unsigned_less) done lemma le_no_overflow: "x \ b \ a \ a + b \ x \ a + b" for a b x :: "'a::len word" apply (erule order_trans) apply (erule olen_add_eqv [THEN iffD1]) done lemmas un_ui_le = trans [OF word_le_nat_alt [symmetric] word_le_def] lemma unat_sub_if_size: "unat (x - y) = (if unat y \ unat x then unat x - unat y else unat x + 2 ^ size x - unat y)" supply nat_uint_eq [simp del] apply (unfold word_size) apply (simp add: un_ui_le) apply (auto simp add: unat_eq_nat_uint uint_sub_if') apply (rule nat_diff_distrib) prefer 3 apply (simp add: algebra_simps) apply (rule nat_diff_distrib [THEN trans]) prefer 3 apply (subst nat_add_distrib) prefer 3 apply (simp add: nat_power_eq) apply auto apply uint_arith done lemmas unat_sub_if' = unat_sub_if_size [unfolded word_size] lemma uint_div: \uint (x div y) = uint x div uint y\ by (fact uint_div_distrib) lemma unat_div: \unat (x div y) = unat x div unat y\ by (fact unat_div_distrib) lemma uint_mod: \uint (x mod y) = uint x mod uint y\ by (fact uint_mod_distrib) lemma unat_mod: \unat (x mod y) = unat x mod unat y\ by (fact unat_mod_distrib) text \Definition of \unat_arith\ tactic\ lemma unat_split: "P (unat x) \ (\n. of_nat n = x \ n < 2^LENGTH('a) \ P n)" for x :: "'a::len word" by auto (metis take_bit_nat_eq_self_iff) lemma unat_split_asm: "P (unat x) \ (\n. of_nat n = x \ n < 2^LENGTH('a) \ \ P n)" for x :: "'a::len word" by auto (metis take_bit_nat_eq_self_iff) lemma of_nat_inverse: \word_of_nat r = a \ r < 2 ^ LENGTH('a) \ unat a = r\ for a :: \'a::len word\ apply (drule sym) apply transfer apply (simp add: take_bit_int_eq_self) done lemma word_unat_eq_iff: \v = w \ unat v = unat w\ for v w :: \'a::len word\ by (fact word_eq_iff_unsigned) lemmas unat_splits = unat_split unat_split_asm lemmas unat_arith_simps = word_le_nat_alt word_less_nat_alt word_unat_eq_iff unat_sub_if' unat_plus_if' unat_div unat_mod \ \\unat_arith_tac\: tactic to reduce word arithmetic to \nat\, try to solve via \arith\\ ML \ val unat_arith_simpset = @{context} |> fold Simplifier.add_simp @{thms unat_arith_simps} |> fold Splitter.add_split @{thms if_split_asm} |> fold Simplifier.add_cong @{thms power_False_cong} |> simpset_of fun unat_arith_tacs ctxt = let fun arith_tac' n t = Arith_Data.arith_tac ctxt n t handle Cooper.COOPER _ => Seq.empty; in [ clarify_tac ctxt 1, full_simp_tac (put_simpset unat_arith_simpset ctxt) 1, ALLGOALS (full_simp_tac (put_simpset HOL_ss ctxt |> fold Splitter.add_split @{thms unat_splits} |> fold Simplifier.add_cong @{thms power_False_cong})), rewrite_goals_tac ctxt @{thms word_size}, ALLGOALS (fn n => REPEAT (resolve_tac ctxt [allI, impI] n) THEN REPEAT (eresolve_tac ctxt [conjE] n) THEN REPEAT (dresolve_tac ctxt @{thms of_nat_inverse} n THEN assume_tac ctxt n)), TRYALL arith_tac' ] end fun unat_arith_tac ctxt = SELECT_GOAL (EVERY (unat_arith_tacs ctxt)) \ method_setup unat_arith = \Scan.succeed (SIMPLE_METHOD' o unat_arith_tac)\ "solving word arithmetic via natural numbers and arith" lemma no_plus_overflow_unat_size: "x \ x + y \ unat x + unat y < 2 ^ size x" for x y :: "'a::len word" unfolding word_size by unat_arith lemmas no_olen_add_nat = no_plus_overflow_unat_size [unfolded word_size] lemmas unat_plus_simple = trans [OF no_olen_add_nat unat_add_lem] lemma word_div_mult: "0 < y \ unat x * unat y < 2 ^ LENGTH('a) \ x * y div y = x" for x y :: "'a::len word" apply unat_arith apply clarsimp apply (subst unat_mult_lem [THEN iffD1]) apply auto done lemma div_lt': "i \ k div x \ unat i * unat x < 2 ^ LENGTH('a)" for i k x :: "'a::len word" apply unat_arith apply clarsimp apply (drule mult_le_mono1) apply (erule order_le_less_trans) apply (metis add_lessD1 div_mult_mod_eq unsigned_less) done lemmas div_lt'' = order_less_imp_le [THEN div_lt'] lemma div_lt_mult: "i < k div x \ 0 < x \ i * x < k" for i k x :: "'a::len word" apply (frule div_lt'' [THEN unat_mult_lem [THEN iffD1]]) apply (simp add: unat_arith_simps) apply (drule (1) mult_less_mono1) apply (erule order_less_le_trans) apply auto done lemma div_le_mult: "i \ k div x \ 0 < x \ i * x \ k" for i k x :: "'a::len word" apply (frule div_lt' [THEN unat_mult_lem [THEN iffD1]]) apply (simp add: unat_arith_simps) apply (drule mult_le_mono1) apply (erule order_trans) apply auto done lemma div_lt_uint': "i \ k div x \ uint i * uint x < 2 ^ LENGTH('a)" for i k x :: "'a::len word" apply (unfold uint_nat) apply (drule div_lt') apply (metis of_nat_less_iff of_nat_mult of_nat_numeral of_nat_power) done lemmas div_lt_uint'' = order_less_imp_le [THEN div_lt_uint'] lemma word_le_exists': "x \ y \ \z. y = x + z \ uint x + uint z < 2 ^ LENGTH('a)" for x y z :: "'a::len word" by (metis add_diff_cancel_left' add_diff_eq uint_add_lem uint_plus_simple) lemmas plus_minus_not_NULL = order_less_imp_le [THEN plus_minus_not_NULL_ab] lemmas plus_minus_no_overflow = order_less_imp_le [THEN plus_minus_no_overflow_ab] lemmas mcs = word_less_minus_cancel word_less_minus_mono_left word_le_minus_cancel word_le_minus_mono_left lemmas word_l_diffs = mcs [where y = "w + x", unfolded add_diff_cancel] for w x lemmas word_diff_ls = mcs [where z = "w + x", unfolded add_diff_cancel] for w x lemmas word_plus_mcs = word_diff_ls [where y = "v + x", unfolded add_diff_cancel] for v x lemma le_unat_uoi: \y \ unat z \ unat (word_of_nat y :: 'a word) = y\ for z :: \'a::len word\ by transfer (simp add: nat_take_bit_eq take_bit_nat_eq_self_iff le_less_trans) lemmas thd = times_div_less_eq_dividend lemmas uno_simps [THEN le_unat_uoi] = mod_le_divisor div_le_dividend lemma word_mod_div_equality: "(n div b) * b + (n mod b) = n" for n b :: "'a::len word" by (fact div_mult_mod_eq) lemma word_div_mult_le: "a div b * b \ a" for a b :: "'a::len word" by (metis div_le_mult mult_not_zero order.not_eq_order_implies_strict order_refl word_zero_le) lemma word_mod_less_divisor: "0 < n \ m mod n < n" for m n :: "'a::len word" by (simp add: unat_arith_simps) lemma word_of_int_power_hom: "word_of_int a ^ n = (word_of_int (a ^ n) :: 'a::len word)" by (induct n) (simp_all add: wi_hom_mult [symmetric]) lemma word_arith_power_alt: "a ^ n = (word_of_int (uint a ^ n) :: 'a::len word)" by (simp add : word_of_int_power_hom [symmetric]) lemma unatSuc: "1 + n \ 0 \ unat (1 + n) = Suc (unat n)" for n :: "'a::len word" by unat_arith subsection \Cardinality, finiteness of set of words\ lemma inj_on_word_of_int: \inj_on (word_of_int :: int \ 'a word) {0..<2 ^ LENGTH('a::len)}\ apply (rule inj_onI) apply transfer apply (simp add: take_bit_eq_mod) done lemma inj_uint: \inj uint\ by (fact inj_unsigned) lemma range_uint: \range (uint :: 'a word \ int) = {0..<2 ^ LENGTH('a::len)}\ apply transfer apply (auto simp add: image_iff) apply (metis take_bit_int_eq_self_iff) done lemma UNIV_eq: \(UNIV :: 'a word set) = word_of_int ` {0..<2 ^ LENGTH('a::len)}\ by (auto simp add: image_iff) (metis atLeastLessThan_iff linorder_not_le uint_split) lemma card_word: "CARD('a word) = 2 ^ LENGTH('a::len)" by (simp add: UNIV_eq card_image inj_on_word_of_int) lemma card_word_size: "CARD('a word) = 2 ^ size x" for x :: "'a::len word" unfolding word_size by (rule card_word) instance word :: (len) finite by standard (simp add: UNIV_eq) subsection \Bitwise Operations on Words\ lemma word_wi_log_defs: "NOT (word_of_int a) = word_of_int (NOT a)" "word_of_int a AND word_of_int b = word_of_int (a AND b)" "word_of_int a OR word_of_int b = word_of_int (a OR b)" "word_of_int a XOR word_of_int b = word_of_int (a XOR b)" by (transfer, rule refl)+ lemma word_no_log_defs [simp]: "NOT (numeral a) = word_of_int (NOT (numeral a))" "NOT (- numeral a) = word_of_int (NOT (- numeral a))" "numeral a AND numeral b = word_of_int (numeral a AND numeral b)" "numeral a AND - numeral b = word_of_int (numeral a AND - numeral b)" "- numeral a AND numeral b = word_of_int (- numeral a AND numeral b)" "- numeral a AND - numeral b = word_of_int (- numeral a AND - numeral b)" "numeral a OR numeral b = word_of_int (numeral a OR numeral b)" "numeral a OR - numeral b = word_of_int (numeral a OR - numeral b)" "- numeral a OR numeral b = word_of_int (- numeral a OR numeral b)" "- numeral a OR - numeral b = word_of_int (- numeral a OR - numeral b)" "numeral a XOR numeral b = word_of_int (numeral a XOR numeral b)" "numeral a XOR - numeral b = word_of_int (numeral a XOR - numeral b)" "- numeral a XOR numeral b = word_of_int (- numeral a XOR numeral b)" "- numeral a XOR - numeral b = word_of_int (- numeral a XOR - numeral b)" by (transfer, rule refl)+ text \Special cases for when one of the arguments equals 1.\ lemma word_bitwise_1_simps [simp]: "NOT (1::'a::len word) = -2" "1 AND numeral b = word_of_int (1 AND numeral b)" "1 AND - numeral b = word_of_int (1 AND - numeral b)" "numeral a AND 1 = word_of_int (numeral a AND 1)" "- numeral a AND 1 = word_of_int (- numeral a AND 1)" "1 OR numeral b = word_of_int (1 OR numeral b)" "1 OR - numeral b = word_of_int (1 OR - numeral b)" "numeral a OR 1 = word_of_int (numeral a OR 1)" "- numeral a OR 1 = word_of_int (- numeral a OR 1)" "1 XOR numeral b = word_of_int (1 XOR numeral b)" "1 XOR - numeral b = word_of_int (1 XOR - numeral b)" "numeral a XOR 1 = word_of_int (numeral a XOR 1)" "- numeral a XOR 1 = word_of_int (- numeral a XOR 1)" by (transfer, simp)+ text \Special cases for when one of the arguments equals -1.\ lemma word_bitwise_m1_simps [simp]: "NOT (-1::'a::len word) = 0" "(-1::'a::len word) AND x = x" "x AND (-1::'a::len word) = x" "(-1::'a::len word) OR x = -1" "x OR (-1::'a::len word) = -1" " (-1::'a::len word) XOR x = NOT x" "x XOR (-1::'a::len word) = NOT x" by (transfer, simp)+ lemma uint_and: \uint (x AND y) = uint x AND uint y\ by transfer simp lemma uint_or: \uint (x OR y) = uint x OR uint y\ by transfer simp lemma uint_xor: \uint (x XOR y) = uint x XOR uint y\ by transfer simp \ \get from commutativity, associativity etc of \int_and\ etc to same for \word_and etc\\ lemmas bwsimps = wi_hom_add word_wi_log_defs lemma word_bw_assocs: "(x AND y) AND z = x AND y AND z" "(x OR y) OR z = x OR y OR z" "(x XOR y) XOR z = x XOR y XOR z" for x :: "'a::len word" by (fact ac_simps)+ lemma word_bw_comms: "x AND y = y AND x" "x OR y = y OR x" "x XOR y = y XOR x" for x :: "'a::len word" by (fact ac_simps)+ lemma word_bw_lcs: "y AND x AND z = x AND y AND z" "y OR x OR z = x OR y OR z" "y XOR x XOR z = x XOR y XOR z" for x :: "'a::len word" by (fact ac_simps)+ lemma word_log_esimps: "x AND 0 = 0" "x AND -1 = x" "x OR 0 = x" "x OR -1 = -1" "x XOR 0 = x" "x XOR -1 = NOT x" "0 AND x = 0" "-1 AND x = x" "0 OR x = x" "-1 OR x = -1" "0 XOR x = x" "-1 XOR x = NOT x" for x :: "'a::len word" by simp_all lemma word_not_dist: "NOT (x OR y) = NOT x AND NOT y" "NOT (x AND y) = NOT x OR NOT y" for x :: "'a::len word" by simp_all lemma word_bw_same: "x AND x = x" "x OR x = x" "x XOR x = 0" for x :: "'a::len word" by simp_all lemma word_ao_absorbs [simp]: "x AND (y OR x) = x" "x OR y AND x = x" "x AND (x OR y) = x" "y AND x OR x = x" "(y OR x) AND x = x" "x OR x AND y = x" "(x OR y) AND x = x" "x AND y OR x = x" for x :: "'a::len word" by (auto intro: bit_eqI simp add: bit_and_iff bit_or_iff) lemma word_not_not [simp]: "NOT (NOT x) = x" for x :: "'a::len word" by (fact bit.double_compl) lemma word_ao_dist: "(x OR y) AND z = x AND z OR y AND z" for x :: "'a::len word" by (fact bit.conj_disj_distrib2) lemma word_oa_dist: "x AND y OR z = (x OR z) AND (y OR z)" for x :: "'a::len word" by (fact bit.disj_conj_distrib2) lemma word_add_not [simp]: "x + NOT x = -1" for x :: "'a::len word" by (simp add: not_eq_complement) lemma word_plus_and_or [simp]: "(x AND y) + (x OR y) = x + y" for x :: "'a::len word" by transfer (simp add: plus_and_or) lemma leoa: "w = x OR y \ y = w AND y" for x :: "'a::len word" by auto lemma leao: "w' = x' AND y' \ x' = x' OR w'" for x' :: "'a::len word" by auto lemma word_ao_equiv: "w = w OR w' \ w' = w AND w'" for w w' :: "'a::len word" by (auto intro: leoa leao) lemma le_word_or2: "x \ x OR y" for x y :: "'a::len word" by (simp add: or_greater_eq uint_or word_le_def) lemmas le_word_or1 = xtrans(3) [OF word_bw_comms (2) le_word_or2] lemmas word_and_le1 = xtrans(3) [OF word_ao_absorbs (4) [symmetric] le_word_or2] lemmas word_and_le2 = xtrans(3) [OF word_ao_absorbs (8) [symmetric] le_word_or2] -lemma bit_horner_sum_bit_word_iff: +lemma bit_horner_sum_bit_word_iff [bit_simps]: \bit (horner_sum of_bool (2 :: 'a::len word) bs) n \ n < min LENGTH('a) (length bs) \ bs ! n\ by transfer (simp add: bit_horner_sum_bit_iff) definition word_reverse :: \'a::len word \ 'a word\ where \word_reverse w = horner_sum of_bool 2 (rev (map (bit w) [0.. -lemma bit_word_reverse_iff: +lemma bit_word_reverse_iff [bit_simps]: \bit (word_reverse w) n \ n < LENGTH('a) \ bit w (LENGTH('a) - Suc n)\ for w :: \'a::len word\ by (cases \n < LENGTH('a)\) (simp_all add: word_reverse_def bit_horner_sum_bit_word_iff rev_nth) lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w" by (rule bit_word_eqI) (auto simp add: bit_word_reverse_iff bit_imp_le_length Suc_diff_Suc) lemma word_rev_gal: "word_reverse w = u \ word_reverse u = w" by (metis word_rev_rev) lemma word_rev_gal': "u = word_reverse w \ w = word_reverse u" by simp lemma uint_2p: "(0::'a::len word) < 2 ^ n \ uint (2 ^ n::'a::len word) = 2 ^ n" apply (cases \n < LENGTH('a)\; transfer) apply auto done lemma word_of_int_2p: "(word_of_int (2 ^ n) :: 'a::len word) = 2 ^ n" by (induct n) (simp_all add: wi_hom_syms) subsection \Shifting, Rotating, and Splitting Words\ lemma shiftl1_wi [simp]: "shiftl1 (word_of_int w) = word_of_int (2 * w)" by transfer simp lemma shiftl1_numeral [simp]: "shiftl1 (numeral w) = numeral (Num.Bit0 w)" unfolding word_numeral_alt shiftl1_wi by simp lemma shiftl1_neg_numeral [simp]: "shiftl1 (- numeral w) = - numeral (Num.Bit0 w)" unfolding word_neg_numeral_alt shiftl1_wi by simp lemma shiftl1_0 [simp] : "shiftl1 0 = 0" by transfer simp lemma shiftl1_def_u: "shiftl1 w = word_of_int (2 * uint w)" by (fact shiftl1_eq) lemma shiftl1_def_s: "shiftl1 w = word_of_int (2 * sint w)" by (simp add: shiftl1_def_u wi_hom_syms) lemma shiftr1_0 [simp]: "shiftr1 0 = 0" by transfer simp lemma sshiftr1_0 [simp]: "sshiftr1 0 = 0" by transfer simp lemma sshiftr1_n1 [simp]: "sshiftr1 (- 1) = - 1" by transfer simp text \ see paper page 10, (1), (2), \shiftr1_def\ is of the form of (1), where \f\ (ie \_ div 2\) takes normal arguments to normal results, thus we get (2) from (1) \ lemma uint_shiftr1: "uint (shiftr1 w) = uint w div 2" using drop_bit_eq_div [of 1 \uint w\, symmetric] apply simp apply transfer apply (simp add: drop_bit_take_bit min_def) done -lemma bit_sshiftr1_iff: +lemma bit_sshiftr1_iff [bit_simps]: \bit (sshiftr1 w) n \ bit w (if n = LENGTH('a) - 1 then LENGTH('a) - 1 else Suc n)\ for w :: \'a::len word\ apply transfer apply (auto simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def simp flip: bit_Suc) using le_less_Suc_eq apply fastforce using le_less_Suc_eq apply fastforce done lemma shiftr1_div_2: "uint (shiftr1 w) = uint w div 2" by (fact uint_shiftr1) lemma sshiftr1_div_2: "sint (sshiftr1 w) = sint w div 2" using sint_signed_drop_bit_eq [of 1 w] by (simp add: drop_bit_Suc sshiftr1_eq_signed_drop_bit_Suc_0) -lemma bit_bshiftr1_iff: +lemma bit_bshiftr1_iff [bit_simps]: \bit (bshiftr1 b w) n \ b \ n = LENGTH('a) - 1 \ bit w (Suc n)\ for w :: \'a::len word\ apply transfer apply (simp add: bit_take_bit_iff flip: bit_Suc) apply (subst disjunctive_add) apply (auto simp add: bit_take_bit_iff bit_or_iff bit_exp_iff simp flip: bit_Suc) done subsubsection \shift functions in terms of lists of bools\ lemma shiftl1_rev: "shiftl1 w = word_reverse (shiftr1 (word_reverse w))" apply (rule bit_word_eqI) apply (auto simp add: bit_shiftl1_iff bit_word_reverse_iff bit_shiftr1_iff Suc_diff_Suc) done \ \note -- the following results use \'a::len word < number_ring\\ lemma shiftl1_2t: "shiftl1 w = 2 * w" for w :: "'a::len word" by (simp add: shiftl1_eq wi_hom_mult [symmetric]) lemma shiftl1_p: "shiftl1 w = w + w" for w :: "'a::len word" by (simp add: shiftl1_2t) lemma shiftr1_bintr [simp]: "(shiftr1 (numeral w) :: 'a::len word) = word_of_int (take_bit LENGTH('a) (numeral w) div 2)" by transfer simp lemma sshiftr1_sbintr [simp]: "(sshiftr1 (numeral w) :: 'a::len word) = word_of_int (signed_take_bit (LENGTH('a) - 1) (numeral w) div 2)" by transfer simp text \TODO: rules for \<^term>\- (numeral n)\\ lemma drop_bit_word_numeral [simp]: \drop_bit (numeral n) (numeral k) = (word_of_int (drop_bit (numeral n) (take_bit LENGTH('a) (numeral k))) :: 'a::len word)\ by transfer simp lemma zip_replicate: "n \ length ys \ zip (replicate n x) ys = map (\y. (x, y)) ys" apply (induct ys arbitrary: n) apply simp_all apply (case_tac n) apply simp_all done lemma align_lem_or [rule_format] : "\x m. length x = n + m \ length y = n + m \ drop m x = replicate n False \ take m y = replicate m False \ map2 (|) x y = take m x @ drop m y" apply (induct y) apply force apply clarsimp apply (case_tac x) apply force apply (case_tac m) apply auto apply (drule_tac t="length xs" for xs in sym) apply (auto simp: zip_replicate o_def) done lemma align_lem_and [rule_format] : "\x m. length x = n + m \ length y = n + m \ drop m x = replicate n False \ take m y = replicate m False \ map2 (\) x y = replicate (n + m) False" apply (induct y) apply force apply clarsimp apply (case_tac x) apply force apply (case_tac m) apply auto apply (drule_tac t="length xs" for xs in sym) apply (auto simp: zip_replicate o_def map_replicate_const) done subsubsection \Mask\ lemma minus_1_eq_mask: \- 1 = (mask LENGTH('a) :: 'a::len word)\ by (rule bit_eqI) (simp add: bit_exp_iff bit_mask_iff exp_eq_zero_iff) lemma mask_eq_decr_exp: \mask n = 2 ^ n - (1 :: 'a::len word)\ by (fact mask_eq_exp_minus_1) lemma mask_Suc_rec: \mask (Suc n) = 2 * mask n + (1 :: 'a::len word)\ by (simp add: mask_eq_exp_minus_1) context begin -qualified lemma bit_mask_iff: +qualified lemma bit_mask_iff [bit_simps]: \bit (mask m :: 'a::len word) n \ n < min LENGTH('a) m\ by (simp add: bit_mask_iff exp_eq_zero_iff not_le) end lemma mask_bin: "mask n = word_of_int (take_bit n (- 1))" by transfer (simp add: take_bit_minus_one_eq_mask) lemma and_mask_bintr: "w AND mask n = word_of_int (take_bit n (uint w))" by transfer (simp add: ac_simps take_bit_eq_mask) lemma and_mask_wi: "word_of_int i AND mask n = word_of_int (take_bit n i)" by (auto simp add: and_mask_bintr min_def not_le wi_bintr) lemma and_mask_wi': "word_of_int i AND mask n = (word_of_int (take_bit (min LENGTH('a) n) i) :: 'a::len word)" by (auto simp add: and_mask_wi min_def wi_bintr) lemma and_mask_no: "numeral i AND mask n = word_of_int (take_bit n (numeral i))" unfolding word_numeral_alt by (rule and_mask_wi) lemma and_mask_mod_2p: "w AND mask n = word_of_int (uint w mod 2 ^ n)" by (simp only: and_mask_bintr take_bit_eq_mod) lemma uint_mask_eq: \uint (mask n :: 'a::len word) = mask (min LENGTH('a) n)\ by transfer simp lemma and_mask_lt_2p: "uint (w AND mask n) < 2 ^ n" apply (simp flip: take_bit_eq_mask) apply transfer apply (auto simp add: min_def) using antisym_conv take_bit_int_eq_self_iff by fastforce lemma mask_eq_iff: "w AND mask n = w \ uint w < 2 ^ n" apply (auto simp flip: take_bit_eq_mask) apply (metis take_bit_int_eq_self_iff uint_take_bit_eq) apply (simp add: take_bit_int_eq_self unsigned_take_bit_eq word_uint_eqI) done lemma and_mask_dvd: "2 ^ n dvd uint w \ w AND mask n = 0" by (simp flip: take_bit_eq_mask take_bit_eq_mod unsigned_take_bit_eq add: dvd_eq_mod_eq_0 uint_0_iff) lemma and_mask_dvd_nat: "2 ^ n dvd unat w \ w AND mask n = 0" by (simp flip: take_bit_eq_mask take_bit_eq_mod unsigned_take_bit_eq add: dvd_eq_mod_eq_0 unat_0_iff uint_0_iff) lemma word_2p_lem: "n < size w \ w < 2 ^ n = (uint w < 2 ^ n)" for w :: "'a::len word" by transfer simp lemma less_mask_eq: "x < 2 ^ n \ x AND mask n = x" for x :: "'a::len word" apply (cases \n < LENGTH('a)\) apply (simp_all add: not_less flip: take_bit_eq_mask exp_eq_zero_iff) apply transfer apply (simp add: min_def) apply (metis min_def nat_less_le take_bit_int_eq_self_iff take_bit_take_bit) done lemmas mask_eq_iff_w2p = trans [OF mask_eq_iff word_2p_lem [symmetric]] lemmas and_mask_less' = iffD2 [OF word_2p_lem and_mask_lt_2p, simplified word_size] lemma and_mask_less_size: "n < size x \ x AND mask n < 2 ^ n" for x :: \'a::len word\ unfolding word_size by (erule and_mask_less') lemma word_mod_2p_is_mask [OF refl]: "c = 2 ^ n \ c > 0 \ x mod c = x AND mask n" for c x :: "'a::len word" by (auto simp: word_mod_def uint_2p and_mask_mod_2p) lemma mask_eqs: "(a AND mask n) + b AND mask n = a + b AND mask n" "a + (b AND mask n) AND mask n = a + b AND mask n" "(a AND mask n) - b AND mask n = a - b AND mask n" "a - (b AND mask n) AND mask n = a - b AND mask n" "a * (b AND mask n) AND mask n = a * b AND mask n" "(b AND mask n) * a AND mask n = b * a AND mask n" "(a AND mask n) + (b AND mask n) AND mask n = a + b AND mask n" "(a AND mask n) - (b AND mask n) AND mask n = a - b AND mask n" "(a AND mask n) * (b AND mask n) AND mask n = a * b AND mask n" "- (a AND mask n) AND mask n = - a AND mask n" "word_succ (a AND mask n) AND mask n = word_succ a AND mask n" "word_pred (a AND mask n) AND mask n = word_pred a AND mask n" using word_of_int_Ex [where x=a] word_of_int_Ex [where x=b] apply (auto simp flip: take_bit_eq_mask) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) apply transfer apply (simp add: take_bit_eq_mod mod_simps) done lemma mask_power_eq: "(x AND mask n) ^ k AND mask n = x ^ k AND mask n" for x :: \'a::len word\ using word_of_int_Ex [where x=x] apply (auto simp flip: take_bit_eq_mask) apply transfer apply (simp add: take_bit_eq_mod mod_simps) done lemma mask_full [simp]: "mask LENGTH('a) = (- 1 :: 'a::len word)" by transfer (simp add: take_bit_minus_one_eq_mask) subsubsection \Slices\ definition slice1 :: \nat \ 'a::len word \ 'b::len word\ where \slice1 n w = (if n < LENGTH('a) then ucast (drop_bit (LENGTH('a) - n) w) else push_bit (n - LENGTH('a)) (ucast w))\ -lemma bit_slice1_iff: +lemma bit_slice1_iff [bit_simps]: \bit (slice1 m w :: 'b::len word) n \ m - LENGTH('a) \ n \ n < min LENGTH('b) m \ bit w (n + (LENGTH('a) - m) - (m - LENGTH('a)))\ for w :: \'a::len word\ by (auto simp add: slice1_def bit_ucast_iff bit_drop_bit_eq bit_push_bit_iff exp_eq_zero_iff not_less not_le ac_simps dest: bit_imp_le_length) definition slice :: \nat \ 'a::len word \ 'b::len word\ where \slice n = slice1 (LENGTH('a) - n)\ -lemma bit_slice_iff: +lemma bit_slice_iff [bit_simps]: \bit (slice m w :: 'b::len word) n \ n < min LENGTH('b) (LENGTH('a) - m) \ bit w (n + LENGTH('a) - (LENGTH('a) - m))\ for w :: \'a::len word\ by (simp add: slice_def word_size bit_slice1_iff) lemma slice1_0 [simp] : "slice1 n 0 = 0" unfolding slice1_def by simp lemma slice_0 [simp] : "slice n 0 = 0" unfolding slice_def by auto lemma ucast_slice1: "ucast w = slice1 (size w) w" apply (simp add: slice1_def) apply transfer apply simp done lemma ucast_slice: "ucast w = slice 0 w" by (simp add: slice_def slice1_def) lemma slice_id: "slice 0 t = t" by (simp only: ucast_slice [symmetric] ucast_id) lemma rev_slice1: \slice1 n (word_reverse w :: 'b::len word) = word_reverse (slice1 k w :: 'a::len word)\ if \n + k = LENGTH('a) + LENGTH('b)\ proof (rule bit_word_eqI) fix m assume *: \m < LENGTH('a)\ from that have **: \LENGTH('b) = n + k - LENGTH('a)\ by simp show \bit (slice1 n (word_reverse w :: 'b word) :: 'a word) m \ bit (word_reverse (slice1 k w :: 'a word)) m\ apply (simp add: bit_slice1_iff bit_word_reverse_iff) using * ** apply (cases \n \ LENGTH('a)\; cases \k \ LENGTH('a)\) apply auto done qed lemma rev_slice: "n + k + LENGTH('a::len) = LENGTH('b::len) \ slice n (word_reverse (w::'b word)) = word_reverse (slice k w :: 'a word)" apply (unfold slice_def word_size) apply (rule rev_slice1) apply arith done subsubsection \Revcast\ definition revcast :: \'a::len word \ 'b::len word\ where \revcast = slice1 LENGTH('b)\ -lemma bit_revcast_iff: +lemma bit_revcast_iff [bit_simps]: \bit (revcast w :: 'b::len word) n \ LENGTH('b) - LENGTH('a) \ n \ n < LENGTH('b) \ bit w (n + (LENGTH('a) - LENGTH('b)) - (LENGTH('b) - LENGTH('a)))\ for w :: \'a::len word\ by (simp add: revcast_def bit_slice1_iff) lemma revcast_slice1 [OF refl]: "rc = revcast w \ slice1 (size rc) w = rc" by (simp add: revcast_def word_size) lemma revcast_rev_ucast [OF refl refl refl]: "cs = [rc, uc] \ rc = revcast (word_reverse w) \ uc = ucast w \ rc = word_reverse uc" apply auto apply (rule bit_word_eqI) apply (cases \LENGTH('a) \ LENGTH('b)\) apply (simp_all add: bit_revcast_iff bit_word_reverse_iff bit_ucast_iff not_le bit_imp_le_length) using bit_imp_le_length apply fastforce using bit_imp_le_length apply fastforce done lemma revcast_ucast: "revcast w = word_reverse (ucast (word_reverse w))" using revcast_rev_ucast [of "word_reverse w"] by simp lemma ucast_revcast: "ucast w = word_reverse (revcast (word_reverse w))" by (fact revcast_rev_ucast [THEN word_rev_gal']) lemma ucast_rev_revcast: "ucast (word_reverse w) = word_reverse (revcast w)" by (fact revcast_ucast [THEN word_rev_gal']) text "linking revcast and cast via shift" lemmas wsst_TYs = source_size target_size word_size lemmas sym_notr = not_iff [THEN iffD2, THEN not_sym, THEN not_iff [THEN iffD1]] subsection \Split and cat\ lemmas word_split_bin' = word_split_def lemmas word_cat_bin' = word_cat_eq \ \this odd result is analogous to \ucast_id\, result to the length given by the result type\ lemma word_cat_id: "word_cat a b = b" by transfer (simp add: take_bit_concat_bit_eq) lemma word_cat_split_alt: "size w \ size u + size v \ word_split w = (u, v) \ word_cat u v = w" apply (rule bit_word_eqI) apply (auto simp add: bit_word_cat_iff not_less word_size word_split_def bit_ucast_iff bit_drop_bit_eq) done lemmas word_cat_split_size = sym [THEN [2] word_cat_split_alt [symmetric]] subsubsection \Split and slice\ lemma split_slices: "word_split w = (u, v) \ u = slice (size v) w \ v = slice 0 w" apply (auto simp add: word_split_def word_size) apply (rule bit_word_eqI) apply (simp add: bit_slice_iff bit_ucast_iff bit_drop_bit_eq) apply (cases \LENGTH('c) \ LENGTH('b)\) apply (auto simp add: ac_simps dest: bit_imp_le_length) apply (rule bit_word_eqI) apply (auto simp add: bit_slice_iff bit_ucast_iff dest: bit_imp_le_length) done lemma slice_cat1 [OF refl]: "wc = word_cat a b \ size wc >= size a + size b \ slice (size b) wc = a" apply (rule bit_word_eqI) apply (auto simp add: bit_slice_iff bit_word_cat_iff word_size) done lemmas slice_cat2 = trans [OF slice_id word_cat_id] lemma cat_slices: "a = slice n c \ b = slice 0 c \ n = size b \ size a + size b >= size c \ word_cat a b = c" apply (rule bit_word_eqI) apply (auto simp add: bit_slice_iff bit_word_cat_iff word_size) done lemma word_split_cat_alt: "w = word_cat u v \ size u + size v \ size w \ word_split w = (u, v)" apply (auto simp add: word_split_def word_size) apply (rule bit_eqI) apply (auto simp add: bit_ucast_iff bit_drop_bit_eq bit_word_cat_iff dest: bit_imp_le_length) apply (rule bit_eqI) apply (auto simp add: bit_ucast_iff bit_drop_bit_eq bit_word_cat_iff dest: bit_imp_le_length) done lemma horner_sum_uint_exp_Cons_eq: \horner_sum uint (2 ^ LENGTH('a)) (w # ws) = concat_bit LENGTH('a) (uint w) (horner_sum uint (2 ^ LENGTH('a)) ws)\ for ws :: \'a::len word list\ apply (simp add: concat_bit_eq push_bit_eq_mult) apply transfer apply simp done lemma bit_horner_sum_uint_exp_iff: \bit (horner_sum uint (2 ^ LENGTH('a)) ws) n \ n div LENGTH('a) < length ws \ bit (ws ! (n div LENGTH('a))) (n mod LENGTH('a))\ for ws :: \'a::len word list\ proof (induction ws arbitrary: n) case Nil then show ?case by simp next case (Cons w ws) then show ?case by (cases \n \ LENGTH('a)\) (simp_all only: horner_sum_uint_exp_Cons_eq, simp_all add: bit_concat_bit_iff le_div_geq le_mod_geq bit_uint_iff Cons) qed subsection \Rotation\ lemma word_rotr_word_rotr_eq: \word_rotr m (word_rotr n w) = word_rotr (m + n) w\ by (rule bit_word_eqI) (simp add: bit_word_rotr_iff ac_simps mod_add_right_eq) lemma word_rot_rl [simp]: \word_rotl k (word_rotr k v) = v\ apply (rule bit_word_eqI) apply (simp add: word_rotl_eq_word_rotr word_rotr_word_rotr_eq bit_word_rotr_iff algebra_simps) apply (auto dest: bit_imp_le_length) apply (metis (no_types, lifting) add.right_neutral add_diff_cancel_right' div_mult_mod_eq mod_add_right_eq mod_add_self2 mod_if mod_mult_self2_is_0) apply (metis (no_types, lifting) add.right_neutral add_diff_cancel_right' div_mult_mod_eq mod_add_right_eq mod_add_self2 mod_less mod_mult_self2_is_0) done lemma word_rot_lr [simp]: \word_rotr k (word_rotl k v) = v\ apply (rule bit_word_eqI) apply (simp add: word_rotl_eq_word_rotr word_rotr_word_rotr_eq bit_word_rotr_iff algebra_simps) apply (auto dest: bit_imp_le_length) apply (metis (no_types, lifting) add.right_neutral add_diff_cancel_right' div_mult_mod_eq mod_add_right_eq mod_add_self2 mod_if mod_mult_self2_is_0) apply (metis (no_types, lifting) add.right_neutral add_diff_cancel_right' div_mult_mod_eq mod_add_right_eq mod_add_self2 mod_less mod_mult_self2_is_0) done lemma word_rot_gal: \word_rotr n v = w \ word_rotl n w = v\ by auto lemma word_rot_gal': \w = word_rotr n v \ v = word_rotl n w\ by auto lemma word_rotr_rev: \word_rotr n w = word_reverse (word_rotl n (word_reverse w))\ proof (rule bit_word_eqI) fix m assume \m < LENGTH('a)\ moreover have \1 + ((int m + int n mod int LENGTH('a)) mod int LENGTH('a) + ((int LENGTH('a) * 2) mod int LENGTH('a) - (1 + (int m + int n mod int LENGTH('a)))) mod int LENGTH('a)) = int LENGTH('a)\ apply (cases \(1 + (int m + int n mod int LENGTH('a))) mod int LENGTH('a) = 0\) using zmod_zminus1_eq_if [of \1 + (int m + int n mod int LENGTH('a))\ \int LENGTH('a)\] apply simp_all apply (auto simp add: algebra_simps) apply (simp add: minus_equation_iff [of \int m\]) apply (drule sym [of _ \int m\]) apply simp apply (metis add.commute add_minus_cancel diff_minus_eq_add len_gt_0 less_imp_of_nat_less less_nat_zero_code mod_mult_self3 of_nat_gt_0 zmod_minus1) apply (metis (no_types, hide_lams) Abs_fnat_hom_add less_not_refl mod_Suc of_nat_Suc of_nat_gt_0 of_nat_mod) done then have \int ((m + n) mod LENGTH('a)) = int (LENGTH('a) - Suc ((LENGTH('a) - Suc m + LENGTH('a) - n mod LENGTH('a)) mod LENGTH('a)))\ using \m < LENGTH('a)\ by (simp only: of_nat_mod mod_simps) (simp add: of_nat_diff of_nat_mod Suc_le_eq add_less_mono algebra_simps mod_simps) then have \(m + n) mod LENGTH('a) = LENGTH('a) - Suc ((LENGTH('a) - Suc m + LENGTH('a) - n mod LENGTH('a)) mod LENGTH('a))\ by simp ultimately show \bit (word_rotr n w) m \ bit (word_reverse (word_rotl n (word_reverse w))) m\ by (simp add: word_rotl_eq_word_rotr bit_word_rotr_iff bit_word_reverse_iff) qed lemma word_roti_0 [simp]: "word_roti 0 w = w" by transfer simp lemma word_roti_add: "word_roti (m + n) w = word_roti m (word_roti n w)" by (rule bit_word_eqI) (simp add: bit_word_roti_iff nat_less_iff mod_simps ac_simps) lemma word_roti_conv_mod': "word_roti n w = word_roti (n mod int (size w)) w" by transfer simp lemmas word_roti_conv_mod = word_roti_conv_mod' [unfolded word_size] subsubsection \"Word rotation commutes with bit-wise operations\ \ \using locale to not pollute lemma namespace\ locale word_rotate begin lemma word_rot_logs: "word_rotl n (NOT v) = NOT (word_rotl n v)" "word_rotr n (NOT v) = NOT (word_rotr n v)" "word_rotl n (x AND y) = word_rotl n x AND word_rotl n y" "word_rotr n (x AND y) = word_rotr n x AND word_rotr n y" "word_rotl n (x OR y) = word_rotl n x OR word_rotl n y" "word_rotr n (x OR y) = word_rotr n x OR word_rotr n y" "word_rotl n (x XOR y) = word_rotl n x XOR word_rotl n y" "word_rotr n (x XOR y) = word_rotr n x XOR word_rotr n y" apply (rule bit_word_eqI) apply (auto simp add: bit_word_rotl_iff bit_not_iff algebra_simps exp_eq_zero_iff not_le) apply (rule bit_word_eqI) apply (auto simp add: bit_word_rotr_iff bit_not_iff algebra_simps exp_eq_zero_iff not_le) apply (rule bit_word_eqI) apply (auto simp add: bit_word_rotl_iff bit_and_iff algebra_simps exp_eq_zero_iff not_le) apply (rule bit_word_eqI) apply (auto simp add: bit_word_rotr_iff bit_and_iff algebra_simps exp_eq_zero_iff not_le) apply (rule bit_word_eqI) apply (auto simp add: bit_word_rotl_iff bit_or_iff algebra_simps exp_eq_zero_iff not_le) apply (rule bit_word_eqI) apply (auto simp add: bit_word_rotr_iff bit_or_iff algebra_simps exp_eq_zero_iff not_le) apply (rule bit_word_eqI) apply (auto simp add: bit_word_rotl_iff bit_xor_iff algebra_simps exp_eq_zero_iff not_le) apply (rule bit_word_eqI) apply (auto simp add: bit_word_rotr_iff bit_xor_iff algebra_simps exp_eq_zero_iff not_le) done end lemmas word_rot_logs = word_rotate.word_rot_logs lemma word_rotx_0 [simp] : "word_rotr i 0 = 0 \ word_rotl i 0 = 0" by transfer simp_all lemma word_roti_0' [simp] : "word_roti n 0 = 0" by transfer simp declare word_roti_eq_word_rotr_word_rotl [simp] subsection \Maximum machine word\ lemma word_int_cases: fixes x :: "'a::len word" obtains n where "x = word_of_int n" and "0 \ n" and "n < 2^LENGTH('a)" by (rule that [of \uint x\]) simp_all lemma word_nat_cases [cases type: word]: fixes x :: "'a::len word" obtains n where "x = of_nat n" and "n < 2^LENGTH('a)" by (rule that [of \unat x\]) simp_all lemma max_word_max [intro!]: "n \ max_word" by (fact word_order.extremum) lemma word_of_int_2p_len: "word_of_int (2 ^ LENGTH('a)) = (0::'a::len word)" by simp lemma word_pow_0: "(2::'a::len word) ^ LENGTH('a) = 0" by (fact word_exp_length_eq_0) lemma max_word_wrap: "x + 1 = 0 \ x = max_word" by (simp add: eq_neg_iff_add_eq_0) lemma word_and_max: "x AND max_word = x" by (fact word_log_esimps) lemma word_or_max: "x OR max_word = max_word" by (fact word_log_esimps) lemma word_ao_dist2: "x AND (y OR z) = x AND y OR x AND z" for x y z :: "'a::len word" by (fact bit.conj_disj_distrib) lemma word_oa_dist2: "x OR y AND z = (x OR y) AND (x OR z)" for x y z :: "'a::len word" by (fact bit.disj_conj_distrib) lemma word_and_not [simp]: "x AND NOT x = 0" for x :: "'a::len word" by (fact bit.conj_cancel_right) lemma word_or_not [simp]: "x OR NOT x = max_word" by (fact bit.disj_cancel_right) lemma word_xor_and_or: "x XOR y = x AND NOT y OR NOT x AND y" for x y :: "'a::len word" by (fact bit.xor_def) lemma uint_lt_0 [simp]: "uint x < 0 = False" by (simp add: linorder_not_less) lemma shiftr1_1 [simp]: "shiftr1 (1::'a::len word) = 0" by transfer simp lemma word_less_1 [simp]: "x < 1 \ x = 0" for x :: "'a::len word" by (simp add: word_less_nat_alt unat_0_iff) lemma uint_plus_if_size: "uint (x + y) = (if uint x + uint y < 2^size x then uint x + uint y else uint x + uint y - 2^size x)" apply (simp only: word_arith_wis word_size uint_word_of_int_eq) apply (auto simp add: not_less take_bit_int_eq_self_iff) apply (metis not_less take_bit_eq_mod uint_plus_if' uint_word_ariths(1)) done lemma unat_plus_if_size: "unat (x + y) = (if unat x + unat y < 2^size x then unat x + unat y else unat x + unat y - 2^size x)" for x y :: "'a::len word" apply (subst word_arith_nat_defs) apply (subst unat_of_nat) apply (auto simp add: not_less word_size) apply (metis not_le unat_plus_if' unat_word_ariths(1)) done lemma word_neq_0_conv: "w \ 0 \ 0 < w" for w :: "'a::len word" by (fact word_coorder.not_eq_extremum) lemma max_lt: "unat (max a b div c) = unat (max a b) div unat c" for c :: "'a::len word" by (fact unat_div) lemma uint_sub_if_size: "uint (x - y) = (if uint y \ uint x then uint x - uint y else uint x - uint y + 2^size x)" apply (simp only: word_arith_wis word_size uint_word_of_int_eq) apply (auto simp add: take_bit_int_eq_self_iff not_le) apply (metis not_less uint_sub_if' uint_word_arith_bintrs(2)) done lemma unat_sub: \unat (a - b) = unat a - unat b\ if \b \ a\ proof - from that have \unat b \ unat a\ by transfer simp with that show ?thesis apply transfer apply simp apply (subst take_bit_diff [symmetric]) apply (subst nat_take_bit_eq) apply (simp add: nat_le_eq_zle) apply (simp add: nat_diff_distrib take_bit_nat_eq_self_iff less_imp_diff_less) done qed lemmas word_less_sub1_numberof [simp] = word_less_sub1 [of "numeral w"] for w lemmas word_le_sub1_numberof [simp] = word_le_sub1 [of "numeral w"] for w lemma word_of_int_minus: "word_of_int (2^LENGTH('a) - i) = (word_of_int (-i)::'a::len word)" apply transfer apply (subst take_bit_diff [symmetric]) apply (simp add: take_bit_minus) done lemma word_of_int_inj: \(word_of_int x :: 'a::len word) = word_of_int y \ x = y\ if \0 \ x \ x < 2 ^ LENGTH('a)\ \0 \ y \ y < 2 ^ LENGTH('a)\ using that by (transfer fixing: x y) (simp add: take_bit_int_eq_self) lemma word_le_less_eq: "x \ y \ x = y \ x < y" for x y :: "'z::len word" by (auto simp add: order_class.le_less) lemma mod_plus_cong: fixes b b' :: int assumes 1: "b = b'" and 2: "x mod b' = x' mod b'" and 3: "y mod b' = y' mod b'" and 4: "x' + y' = z'" shows "(x + y) mod b = z' mod b'" proof - from 1 2[symmetric] 3[symmetric] have "(x + y) mod b = (x' mod b' + y' mod b') mod b'" by (simp add: mod_add_eq) also have "\ = (x' + y') mod b'" by (simp add: mod_add_eq) finally show ?thesis by (simp add: 4) qed lemma mod_minus_cong: fixes b b' :: int assumes "b = b'" and "x mod b' = x' mod b'" and "y mod b' = y' mod b'" and "x' - y' = z'" shows "(x - y) mod b = z' mod b'" using assms [symmetric] by (auto intro: mod_diff_cong) lemma word_induct_less: \P m\ if zero: \P 0\ and less: \\n. n < m \ P n \ P (1 + n)\ for m :: \'a::len word\ proof - define q where \q = unat m\ with less have \\n. n < word_of_nat q \ P n \ P (1 + n)\ by simp then have \P (word_of_nat q :: 'a word)\ proof (induction q) case 0 show ?case by (simp add: zero) next case (Suc q) show ?case proof (cases \1 + word_of_nat q = (0 :: 'a word)\) case True then show ?thesis by (simp add: zero) next case False then have *: \word_of_nat q < (word_of_nat (Suc q) :: 'a word)\ by (simp add: unatSuc word_less_nat_alt) then have **: \n < (1 + word_of_nat q :: 'a word) \ n \ (word_of_nat q :: 'a word)\ for n by (metis (no_types, lifting) add.commute inc_le le_less_trans not_less of_nat_Suc) have \P (word_of_nat q)\ apply (rule Suc.IH) apply (rule Suc.prems) apply (erule less_trans) apply (rule *) apply assumption done with * have \P (1 + word_of_nat q)\ by (rule Suc.prems) then show ?thesis by simp qed qed with \q = unat m\ show ?thesis by simp qed lemma word_induct: "P 0 \ (\n. P n \ P (1 + n)) \ P m" for P :: "'a::len word \ bool" by (rule word_induct_less) lemma word_induct2 [induct type]: "P 0 \ (\n. 1 + n \ 0 \ P n \ P (1 + n)) \ P n" for P :: "'b::len word \ bool" apply (rule word_induct_less) apply simp_all apply (case_tac "1 + na = 0") apply auto done subsection \Recursion combinator for words\ definition word_rec :: "'a \ ('b::len word \ 'a \ 'a) \ 'b word \ 'a" where "word_rec forZero forSuc n = rec_nat forZero (forSuc \ of_nat) (unat n)" lemma word_rec_0: "word_rec z s 0 = z" by (simp add: word_rec_def) lemma word_rec_Suc: "1 + n \ 0 \ word_rec z s (1 + n) = s n (word_rec z s n)" for n :: "'a::len word" apply (auto simp add: word_rec_def unat_word_ariths) apply (metis (mono_tags, lifting) Abs_fnat_hom_add add_diff_cancel_left' o_def of_nat_1 old.nat.simps(7) plus_1_eq_Suc unatSuc unat_word_ariths(1) unsigned_1 word_arith_nat_add) done lemma word_rec_Pred: "n \ 0 \ word_rec z s n = s (n - 1) (word_rec z s (n - 1))" apply (rule subst[where t="n" and s="1 + (n - 1)"]) apply simp apply (subst word_rec_Suc) apply simp apply simp done lemma word_rec_in: "f (word_rec z (\_. f) n) = word_rec (f z) (\_. f) n" by (induct n) (simp_all add: word_rec_0 word_rec_Suc) lemma word_rec_in2: "f n (word_rec z f n) = word_rec (f 0 z) (f \ (+) 1) n" by (induct n) (simp_all add: word_rec_0 word_rec_Suc) lemma word_rec_twice: "m \ n \ word_rec z f n = word_rec (word_rec z f (n - m)) (f \ (+) (n - m)) m" apply (erule rev_mp) apply (rule_tac x=z in spec) apply (rule_tac x=f in spec) apply (induct n) apply (simp add: word_rec_0) apply clarsimp apply (rule_tac t="1 + n - m" and s="1 + (n - m)" in subst) apply simp apply (case_tac "1 + (n - m) = 0") apply (simp add: word_rec_0) apply (rule_tac f = "word_rec a b" for a b in arg_cong) apply (rule_tac t="m" and s="m + (1 + (n - m))" in subst) apply simp apply (simp (no_asm_use)) apply (simp add: word_rec_Suc word_rec_in2) apply (erule impE) apply uint_arith apply (drule_tac x="x \ (+) 1" in spec) apply (drule_tac x="x 0 xa" in spec) apply simp apply (rule_tac t="\a. x (1 + (n - m + a))" and s="\a. x (1 + (n - m) + a)" in subst) apply (clarsimp simp add: fun_eq_iff) apply (rule_tac t="(1 + (n - m + xb))" and s="1 + (n - m) + xb" in subst) apply simp apply (rule refl) apply (rule refl) done lemma word_rec_id: "word_rec z (\_. id) n = z" by (induct n) (auto simp add: word_rec_0 word_rec_Suc) lemma word_rec_id_eq: "\m < n. f m = id \ word_rec z f n = z" apply (erule rev_mp) apply (induct n) apply (auto simp add: word_rec_0 word_rec_Suc) apply (drule spec, erule mp) apply uint_arith apply (drule_tac x=n in spec, erule impE) apply uint_arith apply simp done lemma word_rec_max: "\m\n. m \ - 1 \ f m = id \ word_rec z f (- 1) = word_rec z f n" apply (subst word_rec_twice[where n="-1" and m="-1 - n"]) apply simp apply simp apply (rule word_rec_id_eq) apply clarsimp apply (drule spec, rule mp, erule mp) apply (rule word_plus_mono_right2[OF _ order_less_imp_le]) prefer 2 apply assumption apply simp apply (erule contrapos_pn) apply simp apply (drule arg_cong[where f="\x. x - n"]) apply simp done subsection \More\ lemma mask_1: "mask 1 = 1" by simp lemma mask_Suc_0: "mask (Suc 0) = 1" by simp lemma bin_last_bintrunc: "odd (take_bit l n) \ l > 0 \ odd n" by simp lemma push_bit_word_beyond [simp]: \push_bit n w = 0\ if \LENGTH('a) \ n\ for w :: \'a::len word\ using that by (transfer fixing: n) (simp add: take_bit_push_bit) lemma drop_bit_word_beyond [simp]: \drop_bit n w = 0\ if \LENGTH('a) \ n\ for w :: \'a::len word\ using that by (transfer fixing: n) (simp add: drop_bit_take_bit) lemma signed_drop_bit_beyond: \signed_drop_bit n w = (if bit w (LENGTH('a) - Suc 0) then - 1 else 0)\ if \LENGTH('a) \ n\ for w :: \'a::len word\ by (rule bit_word_eqI) (simp add: bit_signed_drop_bit_iff that) subsection \SMT support\ ML_file \Tools/smt_word.ML\ end diff --git a/src/HOL/Parity.thy b/src/HOL/Parity.thy --- a/src/HOL/Parity.thy +++ b/src/HOL/Parity.thy @@ -1,1994 +1,1996 @@ (* Title: HOL/Parity.thy Author: Jeremy Avigad Author: Jacques D. Fleuriot *) section \Parity in rings and semirings\ theory Parity imports Euclidean_Division begin subsection \Ring structures with parity and \even\/\odd\ predicates\ class semiring_parity = comm_semiring_1 + semiring_modulo + assumes even_iff_mod_2_eq_zero: "2 dvd a \ a mod 2 = 0" and odd_iff_mod_2_eq_one: "\ 2 dvd a \ a mod 2 = 1" and odd_one [simp]: "\ 2 dvd 1" begin abbreviation even :: "'a \ bool" where "even a \ 2 dvd a" abbreviation odd :: "'a \ bool" where "odd a \ \ 2 dvd a" lemma parity_cases [case_names even odd]: assumes "even a \ a mod 2 = 0 \ P" assumes "odd a \ a mod 2 = 1 \ P" shows P using assms by (cases "even a") (simp_all add: even_iff_mod_2_eq_zero [symmetric] odd_iff_mod_2_eq_one [symmetric]) lemma odd_of_bool_self [simp]: \odd (of_bool p) \ p\ by (cases p) simp_all lemma not_mod_2_eq_0_eq_1 [simp]: "a mod 2 \ 0 \ a mod 2 = 1" by (cases a rule: parity_cases) simp_all lemma not_mod_2_eq_1_eq_0 [simp]: "a mod 2 \ 1 \ a mod 2 = 0" by (cases a rule: parity_cases) simp_all lemma evenE [elim?]: assumes "even a" obtains b where "a = 2 * b" using assms by (rule dvdE) lemma oddE [elim?]: assumes "odd a" obtains b where "a = 2 * b + 1" proof - have "a = 2 * (a div 2) + a mod 2" by (simp add: mult_div_mod_eq) with assms have "a = 2 * (a div 2) + 1" by (simp add: odd_iff_mod_2_eq_one) then show ?thesis .. qed lemma mod_2_eq_odd: "a mod 2 = of_bool (odd a)" by (auto elim: oddE simp add: even_iff_mod_2_eq_zero) lemma of_bool_odd_eq_mod_2: "of_bool (odd a) = a mod 2" by (simp add: mod_2_eq_odd) lemma even_mod_2_iff [simp]: \even (a mod 2) \ even a\ by (simp add: mod_2_eq_odd) lemma mod2_eq_if: "a mod 2 = (if even a then 0 else 1)" by (simp add: mod_2_eq_odd) lemma even_zero [simp]: "even 0" by (fact dvd_0_right) lemma odd_even_add: "even (a + b)" if "odd a" and "odd b" proof - from that obtain c d where "a = 2 * c + 1" and "b = 2 * d + 1" by (blast elim: oddE) then have "a + b = 2 * c + 2 * d + (1 + 1)" by (simp only: ac_simps) also have "\ = 2 * (c + d + 1)" by (simp add: algebra_simps) finally show ?thesis .. qed lemma even_add [simp]: "even (a + b) \ (even a \ even b)" by (auto simp add: dvd_add_right_iff dvd_add_left_iff odd_even_add) lemma odd_add [simp]: "odd (a + b) \ \ (odd a \ odd b)" by simp lemma even_plus_one_iff [simp]: "even (a + 1) \ odd a" by (auto simp add: dvd_add_right_iff intro: odd_even_add) lemma even_mult_iff [simp]: "even (a * b) \ even a \ even b" (is "?P \ ?Q") proof assume ?Q then show ?P by auto next assume ?P show ?Q proof (rule ccontr) assume "\ (even a \ even b)" then have "odd a" and "odd b" by auto then obtain r s where "a = 2 * r + 1" and "b = 2 * s + 1" by (blast elim: oddE) then have "a * b = (2 * r + 1) * (2 * s + 1)" by simp also have "\ = 2 * (2 * r * s + r + s) + 1" by (simp add: algebra_simps) finally have "odd (a * b)" by simp with \?P\ show False by auto qed qed lemma even_numeral [simp]: "even (numeral (Num.Bit0 n))" proof - have "even (2 * numeral n)" unfolding even_mult_iff by simp then have "even (numeral n + numeral n)" unfolding mult_2 . then show ?thesis unfolding numeral.simps . qed lemma odd_numeral [simp]: "odd (numeral (Num.Bit1 n))" proof assume "even (numeral (num.Bit1 n))" then have "even (numeral n + numeral n + 1)" unfolding numeral.simps . then have "even (2 * numeral n + 1)" unfolding mult_2 . then have "2 dvd numeral n * 2 + 1" by (simp add: ac_simps) then have "2 dvd 1" using dvd_add_times_triv_left_iff [of 2 "numeral n" 1] by simp then show False by simp qed lemma odd_numeral_BitM [simp]: \odd (numeral (Num.BitM w))\ by (cases w) simp_all lemma even_power [simp]: "even (a ^ n) \ even a \ n > 0" by (induct n) auto lemma mask_eq_sum_exp: \2 ^ n - 1 = (\m\{q. q < n}. 2 ^ m)\ proof - have *: \{q. q < Suc m} = insert m {q. q < m}\ for m by auto have \2 ^ n = (\m\{q. q < n}. 2 ^ m) + 1\ by (induction n) (simp_all add: ac_simps mult_2 *) then have \2 ^ n - 1 = (\m\{q. q < n}. 2 ^ m) + 1 - 1\ by simp then show ?thesis by simp qed end class ring_parity = ring + semiring_parity begin subclass comm_ring_1 .. lemma even_minus: "even (- a) \ even a" by (fact dvd_minus_iff) lemma even_diff [simp]: "even (a - b) \ even (a + b)" using even_add [of a "- b"] by simp end subsection \Special case: euclidean rings containing the natural numbers\ context unique_euclidean_semiring_with_nat begin subclass semiring_parity proof show "2 dvd a \ a mod 2 = 0" for a by (fact dvd_eq_mod_eq_0) show "\ 2 dvd a \ a mod 2 = 1" for a proof assume "a mod 2 = 1" then show "\ 2 dvd a" by auto next assume "\ 2 dvd a" have eucl: "euclidean_size (a mod 2) = 1" proof (rule order_antisym) show "euclidean_size (a mod 2) \ 1" using mod_size_less [of 2 a] by simp show "1 \ euclidean_size (a mod 2)" using \\ 2 dvd a\ by (simp add: Suc_le_eq dvd_eq_mod_eq_0) qed from \\ 2 dvd a\ have "\ of_nat 2 dvd division_segment a * of_nat (euclidean_size a)" by simp then have "\ of_nat 2 dvd of_nat (euclidean_size a)" by (auto simp only: dvd_mult_unit_iff' is_unit_division_segment) then have "\ 2 dvd euclidean_size a" using of_nat_dvd_iff [of 2] by simp then have "euclidean_size a mod 2 = 1" by (simp add: semidom_modulo_class.dvd_eq_mod_eq_0) then have "of_nat (euclidean_size a mod 2) = of_nat 1" by simp then have "of_nat (euclidean_size a) mod 2 = 1" by (simp add: of_nat_mod) from \\ 2 dvd a\ eucl show "a mod 2 = 1" by (auto intro: division_segment_eq_iff simp add: division_segment_mod) qed show "\ is_unit 2" proof (rule notI) assume "is_unit 2" then have "of_nat 2 dvd of_nat 1" by simp then have "is_unit (2::nat)" by (simp only: of_nat_dvd_iff) then show False by simp qed qed lemma even_of_nat [simp]: "even (of_nat a) \ even a" proof - have "even (of_nat a) \ of_nat 2 dvd of_nat a" by simp also have "\ \ even a" by (simp only: of_nat_dvd_iff) finally show ?thesis . qed lemma even_succ_div_two [simp]: "even a \ (a + 1) div 2 = a div 2" by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero) lemma odd_succ_div_two [simp]: "odd a \ (a + 1) div 2 = a div 2 + 1" by (auto elim!: oddE simp add: add.assoc) lemma even_two_times_div_two: "even a \ 2 * (a div 2) = a" by (fact dvd_mult_div_cancel) lemma odd_two_times_div_two_succ [simp]: "odd a \ 2 * (a div 2) + 1 = a" using mult_div_mod_eq [of 2 a] by (simp add: even_iff_mod_2_eq_zero) lemma coprime_left_2_iff_odd [simp]: "coprime 2 a \ odd a" proof assume "odd a" show "coprime 2 a" proof (rule coprimeI) fix b assume "b dvd 2" "b dvd a" then have "b dvd a mod 2" by (auto intro: dvd_mod) with \odd a\ show "is_unit b" by (simp add: mod_2_eq_odd) qed next assume "coprime 2 a" show "odd a" proof (rule notI) assume "even a" then obtain b where "a = 2 * b" .. with \coprime 2 a\ have "coprime 2 (2 * b)" by simp moreover have "\ coprime 2 (2 * b)" by (rule not_coprimeI [of 2]) simp_all ultimately show False by blast qed qed lemma coprime_right_2_iff_odd [simp]: "coprime a 2 \ odd a" using coprime_left_2_iff_odd [of a] by (simp add: ac_simps) end context unique_euclidean_ring_with_nat begin subclass ring_parity .. lemma minus_1_mod_2_eq [simp]: "- 1 mod 2 = 1" by (simp add: mod_2_eq_odd) lemma minus_1_div_2_eq [simp]: "- 1 div 2 = - 1" proof - from div_mult_mod_eq [of "- 1" 2] have "- 1 div 2 * 2 = - 1 * 2" using add_implies_diff by fastforce then show ?thesis using mult_right_cancel [of 2 "- 1 div 2" "- 1"] by simp qed end subsection \Instance for \<^typ>\nat\\ instance nat :: unique_euclidean_semiring_with_nat by standard (simp_all add: dvd_eq_mod_eq_0) lemma even_Suc_Suc_iff [simp]: "even (Suc (Suc n)) \ even n" using dvd_add_triv_right_iff [of 2 n] by simp lemma even_Suc [simp]: "even (Suc n) \ odd n" using even_plus_one_iff [of n] by simp lemma even_diff_nat [simp]: "even (m - n) \ m < n \ even (m + n)" for m n :: nat proof (cases "n \ m") case True then have "m - n + n * 2 = m + n" by (simp add: mult_2_right) moreover have "even (m - n) \ even (m - n + n * 2)" by simp ultimately have "even (m - n) \ even (m + n)" by (simp only:) then show ?thesis by auto next case False then show ?thesis by simp qed lemma odd_pos: "odd n \ 0 < n" for n :: nat by (auto elim: oddE) lemma Suc_double_not_eq_double: "Suc (2 * m) \ 2 * n" proof assume "Suc (2 * m) = 2 * n" moreover have "odd (Suc (2 * m))" and "even (2 * n)" by simp_all ultimately show False by simp qed lemma double_not_eq_Suc_double: "2 * m \ Suc (2 * n)" using Suc_double_not_eq_double [of n m] by simp lemma odd_Suc_minus_one [simp]: "odd n \ Suc (n - Suc 0) = n" by (auto elim: oddE) lemma even_Suc_div_two [simp]: "even n \ Suc n div 2 = n div 2" using even_succ_div_two [of n] by simp lemma odd_Suc_div_two [simp]: "odd n \ Suc n div 2 = Suc (n div 2)" using odd_succ_div_two [of n] by simp lemma odd_two_times_div_two_nat [simp]: assumes "odd n" shows "2 * (n div 2) = n - (1 :: nat)" proof - from assms have "2 * (n div 2) + 1 = n" by (rule odd_two_times_div_two_succ) then have "Suc (2 * (n div 2)) - 1 = n - 1" by simp then show ?thesis by simp qed lemma not_mod2_eq_Suc_0_eq_0 [simp]: "n mod 2 \ Suc 0 \ n mod 2 = 0" using not_mod_2_eq_1_eq_0 [of n] by simp lemma odd_card_imp_not_empty: \A \ {}\ if \odd (card A)\ using that by auto lemma nat_induct2 [case_names 0 1 step]: assumes "P 0" "P 1" and step: "\n::nat. P n \ P (n + 2)" shows "P n" proof (induct n rule: less_induct) case (less n) show ?case proof (cases "n < Suc (Suc 0)") case True then show ?thesis using assms by (auto simp: less_Suc_eq) next case False then obtain k where k: "n = Suc (Suc k)" by (force simp: not_less nat_le_iff_add) then have "k2 ^ n - Suc 0 = (\m\{q. q < n}. 2 ^ m)\ using mask_eq_sum_exp [where ?'a = nat] by simp context semiring_parity begin lemma even_sum_iff: \even (sum f A) \ even (card {a\A. odd (f a)})\ if \finite A\ using that proof (induction A) case empty then show ?case by simp next case (insert a A) moreover have \{b \ insert a A. odd (f b)} = (if odd (f a) then {a} else {}) \ {b \ A. odd (f b)}\ by auto ultimately show ?case by simp qed lemma even_prod_iff: \even (prod f A) \ (\a\A. even (f a))\ if \finite A\ using that by (induction A) simp_all lemma even_mask_iff [simp]: \even (2 ^ n - 1) \ n = 0\ proof (cases \n = 0\) case True then show ?thesis by simp next case False then have \{a. a = 0 \ a < n} = {0}\ by auto then show ?thesis by (auto simp add: mask_eq_sum_exp even_sum_iff) qed end subsection \Parity and powers\ context ring_1 begin lemma power_minus_even [simp]: "even n \ (- a) ^ n = a ^ n" by (auto elim: evenE) lemma power_minus_odd [simp]: "odd n \ (- a) ^ n = - (a ^ n)" by (auto elim: oddE) lemma uminus_power_if: "(- a) ^ n = (if even n then a ^ n else - (a ^ n))" by auto lemma neg_one_even_power [simp]: "even n \ (- 1) ^ n = 1" by simp lemma neg_one_odd_power [simp]: "odd n \ (- 1) ^ n = - 1" by simp lemma neg_one_power_add_eq_neg_one_power_diff: "k \ n \ (- 1) ^ (n + k) = (- 1) ^ (n - k)" by (cases "even (n + k)") auto lemma minus_one_power_iff: "(- 1) ^ n = (if even n then 1 else - 1)" by (induct n) auto end context linordered_idom begin lemma zero_le_even_power: "even n \ 0 \ a ^ n" by (auto elim: evenE) lemma zero_le_odd_power: "odd n \ 0 \ a ^ n \ 0 \ a" by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE) lemma zero_le_power_eq: "0 \ a ^ n \ even n \ odd n \ 0 \ a" by (auto simp add: zero_le_even_power zero_le_odd_power) lemma zero_less_power_eq: "0 < a ^ n \ n = 0 \ even n \ a \ 0 \ odd n \ 0 < a" proof - have [simp]: "0 = a ^ n \ a = 0 \ n > 0" unfolding power_eq_0_iff [of a n, symmetric] by blast show ?thesis unfolding less_le zero_le_power_eq by auto qed lemma power_less_zero_eq [simp]: "a ^ n < 0 \ odd n \ a < 0" unfolding not_le [symmetric] zero_le_power_eq by auto lemma power_le_zero_eq: "a ^ n \ 0 \ n > 0 \ (odd n \ a \ 0 \ even n \ a = 0)" unfolding not_less [symmetric] zero_less_power_eq by auto lemma power_even_abs: "even n \ \a\ ^ n = a ^ n" using power_abs [of a n] by (simp add: zero_le_even_power) lemma power_mono_even: assumes "even n" and "\a\ \ \b\" shows "a ^ n \ b ^ n" proof - have "0 \ \a\" by auto with \\a\ \ \b\\ have "\a\ ^ n \ \b\ ^ n" by (rule power_mono) with \even n\ show ?thesis by (simp add: power_even_abs) qed lemma power_mono_odd: assumes "odd n" and "a \ b" shows "a ^ n \ b ^ n" proof (cases "b < 0") case True with \a \ b\ have "- b \ - a" and "0 \ - b" by auto then have "(- b) ^ n \ (- a) ^ n" by (rule power_mono) with \odd n\ show ?thesis by simp next case False then have "0 \ b" by auto show ?thesis proof (cases "a < 0") case True then have "n \ 0" and "a \ 0" using \odd n\ [THEN odd_pos] by auto then have "a ^ n \ 0" unfolding power_le_zero_eq using \odd n\ by auto moreover from \0 \ b\ have "0 \ b ^ n" by auto ultimately show ?thesis by auto next case False then have "0 \ a" by auto with \a \ b\ show ?thesis using power_mono by auto qed qed text \Simplify, when the exponent is a numeral\ lemma zero_le_power_eq_numeral [simp]: "0 \ a ^ numeral w \ even (numeral w :: nat) \ odd (numeral w :: nat) \ 0 \ a" by (fact zero_le_power_eq) lemma zero_less_power_eq_numeral [simp]: "0 < a ^ numeral w \ numeral w = (0 :: nat) \ even (numeral w :: nat) \ a \ 0 \ odd (numeral w :: nat) \ 0 < a" by (fact zero_less_power_eq) lemma power_le_zero_eq_numeral [simp]: "a ^ numeral w \ 0 \ (0 :: nat) < numeral w \ (odd (numeral w :: nat) \ a \ 0 \ even (numeral w :: nat) \ a = 0)" by (fact power_le_zero_eq) lemma power_less_zero_eq_numeral [simp]: "a ^ numeral w < 0 \ odd (numeral w :: nat) \ a < 0" by (fact power_less_zero_eq) lemma power_even_abs_numeral [simp]: "even (numeral w :: nat) \ \a\ ^ numeral w = a ^ numeral w" by (fact power_even_abs) end context unique_euclidean_semiring_with_nat begin lemma even_mask_div_iff': \even ((2 ^ m - 1) div 2 ^ n) \ m \ n\ proof - have \even ((2 ^ m - 1) div 2 ^ n) \ even (of_nat ((2 ^ m - Suc 0) div 2 ^ n))\ by (simp only: of_nat_div) (simp add: of_nat_diff) also have \\ \ even ((2 ^ m - Suc 0) div 2 ^ n)\ by simp also have \\ \ m \ n\ proof (cases \m \ n\) case True then show ?thesis by (simp add: Suc_le_lessD) next case False then obtain r where r: \m = n + Suc r\ using less_imp_Suc_add by fastforce from r have \{q. q < m} \ {q. 2 ^ n dvd (2::nat) ^ q} = {q. n \ q \ q < m}\ by (auto simp add: dvd_power_iff_le) moreover from r have \{q. q < m} \ {q. \ 2 ^ n dvd (2::nat) ^ q} = {q. q < n}\ by (auto simp add: dvd_power_iff_le) moreover from False have \{q. n \ q \ q < m \ q \ n} = {n}\ by auto then have \odd ((\a\{q. n \ q \ q < m}. 2 ^ a div (2::nat) ^ n) + sum ((^) 2) {q. q < n} div 2 ^ n)\ by (simp_all add: euclidean_semiring_cancel_class.power_diff_power_eq semiring_parity_class.even_sum_iff not_less mask_eq_sum_exp_nat [symmetric]) ultimately have \odd (sum ((^) (2::nat)) {q. q < m} div 2 ^ n)\ by (subst euclidean_semiring_cancel_class.sum_div_partition) simp_all with False show ?thesis by (simp add: mask_eq_sum_exp_nat) qed finally show ?thesis . qed end subsection \Instance for \<^typ>\int\\ lemma even_diff_iff: "even (k - l) \ even (k + l)" for k l :: int by (fact even_diff) lemma even_abs_add_iff: "even (\k\ + l) \ even (k + l)" for k l :: int by simp lemma even_add_abs_iff: "even (k + \l\) \ even (k + l)" for k l :: int by simp lemma even_nat_iff: "0 \ k \ even (nat k) \ even k" by (simp add: even_of_nat [of "nat k", where ?'a = int, symmetric]) lemma zdiv_zmult2_eq: \a div (b * c) = (a div b) div c\ if \c \ 0\ for a b c :: int proof (cases \b \ 0\) case True with that show ?thesis using div_mult2_eq' [of a \nat b\ \nat c\] by simp next case False with that show ?thesis using div_mult2_eq' [of \- a\ \nat (- b)\ \nat c\] by simp qed lemma zmod_zmult2_eq: \a mod (b * c) = b * (a div b mod c) + a mod b\ if \c \ 0\ for a b c :: int proof (cases \b \ 0\) case True with that show ?thesis using mod_mult2_eq' [of a \nat b\ \nat c\] by simp next case False with that show ?thesis using mod_mult2_eq' [of \- a\ \nat (- b)\ \nat c\] by simp qed context assumes "SORT_CONSTRAINT('a::division_ring)" begin lemma power_int_minus_left: "power_int (-a :: 'a) n = (if even n then power_int a n else -power_int a n)" by (auto simp: power_int_def minus_one_power_iff even_nat_iff) lemma power_int_minus_left_even [simp]: "even n \ power_int (-a :: 'a) n = power_int a n" by (simp add: power_int_minus_left) lemma power_int_minus_left_odd [simp]: "odd n \ power_int (-a :: 'a) n = -power_int a n" by (simp add: power_int_minus_left) lemma power_int_minus_left_distrib: "NO_MATCH (-1) x \ power_int (-a :: 'a) n = power_int (-1) n * power_int a n" by (simp add: power_int_minus_left) lemma power_int_minus_one_minus: "power_int (-1 :: 'a) (-n) = power_int (-1) n" by (simp add: power_int_minus_left) lemma power_int_minus_one_diff_commute: "power_int (-1 :: 'a) (a - b) = power_int (-1) (b - a)" by (subst power_int_minus_one_minus [symmetric]) auto lemma power_int_minus_one_mult_self [simp]: "power_int (-1 :: 'a) m * power_int (-1) m = 1" by (simp add: power_int_minus_left) lemma power_int_minus_one_mult_self' [simp]: "power_int (-1 :: 'a) m * (power_int (-1) m * b) = b" by (simp add: power_int_minus_left) end subsection \Abstract bit structures\ class semiring_bits = semiring_parity + assumes bits_induct [case_names stable rec]: \(\a. a div 2 = a \ P a) \ (\a b. P a \ (of_bool b + 2 * a) div 2 = a \ P (of_bool b + 2 * a)) \ P a\ assumes bits_div_0 [simp]: \0 div a = 0\ and bits_div_by_1 [simp]: \a div 1 = a\ and bits_mod_div_trivial [simp]: \a mod b div b = 0\ and even_succ_div_2 [simp]: \even a \ (1 + a) div 2 = a div 2\ and even_mask_div_iff: \even ((2 ^ m - 1) div 2 ^ n) \ 2 ^ n = 0 \ m \ n\ and exp_div_exp_eq: \2 ^ m div 2 ^ n = of_bool (2 ^ m \ 0 \ m \ n) * 2 ^ (m - n)\ and div_exp_eq: \a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)\ and mod_exp_eq: \a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n\ and mult_exp_mod_exp_eq: \m \ n \ (a * 2 ^ m) mod (2 ^ n) = (a mod 2 ^ (n - m)) * 2 ^ m\ and div_exp_mod_exp_eq: \a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\ and even_mult_exp_div_exp_iff: \even (a * 2 ^ m div 2 ^ n) \ m > n \ 2 ^ n = 0 \ (m \ n \ even (a div 2 ^ (n - m)))\ fixes bit :: \'a \ nat \ bool\ assumes bit_iff_odd: \bit a n \ odd (a div 2 ^ n)\ begin text \ Having \<^const>\bit\ as definitional class operation takes into account that specific instances can be implemented differently wrt. code generation. \ lemma bits_div_by_0 [simp]: \a div 0 = 0\ by (metis add_cancel_right_right bits_mod_div_trivial mod_mult_div_eq mult_not_zero) lemma bits_1_div_2 [simp]: \1 div 2 = 0\ using even_succ_div_2 [of 0] by simp lemma bits_1_div_exp [simp]: \1 div 2 ^ n = of_bool (n = 0)\ using div_exp_eq [of 1 1] by (cases n) simp_all lemma even_succ_div_exp [simp]: \(1 + a) div 2 ^ n = a div 2 ^ n\ if \even a\ and \n > 0\ proof (cases n) case 0 with that show ?thesis by simp next case (Suc n) with \even a\ have \(1 + a) div 2 ^ Suc n = a div 2 ^ Suc n\ proof (induction n) case 0 then show ?case by simp next case (Suc n) then show ?case using div_exp_eq [of _ 1 \Suc n\, symmetric] by simp qed with Suc show ?thesis by simp qed lemma even_succ_mod_exp [simp]: \(1 + a) mod 2 ^ n = 1 + (a mod 2 ^ n)\ if \even a\ and \n > 0\ using div_mult_mod_eq [of \1 + a\ \2 ^ n\] that apply simp by (metis local.add.left_commute local.add_left_cancel local.div_mult_mod_eq) lemma bits_mod_by_1 [simp]: \a mod 1 = 0\ using div_mult_mod_eq [of a 1] by simp lemma bits_mod_0 [simp]: \0 mod a = 0\ using div_mult_mod_eq [of 0 a] by simp lemma bits_one_mod_two_eq_one [simp]: \1 mod 2 = 1\ by (simp add: mod2_eq_if) lemma bit_0 [simp]: \bit a 0 \ odd a\ by (simp add: bit_iff_odd) lemma bit_Suc: \bit a (Suc n) \ bit (a div 2) n\ using div_exp_eq [of a 1 n] by (simp add: bit_iff_odd) lemma bit_rec: \bit a n \ (if n = 0 then odd a else bit (a div 2) (n - 1))\ by (cases n) (simp_all add: bit_Suc) lemma bit_0_eq [simp]: \bit 0 = bot\ by (simp add: fun_eq_iff bit_iff_odd) context fixes a assumes stable: \a div 2 = a\ begin lemma bits_stable_imp_add_self: \a + a mod 2 = 0\ proof - have \a div 2 * 2 + a mod 2 = a\ by (fact div_mult_mod_eq) then have \a * 2 + a mod 2 = a\ by (simp add: stable) then show ?thesis by (simp add: mult_2_right ac_simps) qed lemma stable_imp_bit_iff_odd: \bit a n \ odd a\ by (induction n) (simp_all add: stable bit_Suc) end lemma bit_iff_idd_imp_stable: \a div 2 = a\ if \\n. bit a n \ odd a\ using that proof (induction a rule: bits_induct) case (stable a) then show ?case by simp next case (rec a b) from rec.prems [of 1] have [simp]: \b = odd a\ by (simp add: rec.hyps bit_Suc) from rec.hyps have hyp: \(of_bool (odd a) + 2 * a) div 2 = a\ by simp have \bit a n \ odd a\ for n using rec.prems [of \Suc n\] by (simp add: hyp bit_Suc) then have \a div 2 = a\ by (rule rec.IH) then have \of_bool (odd a) + 2 * a = 2 * (a div 2) + of_bool (odd a)\ by (simp add: ac_simps) also have \\ = a\ using mult_div_mod_eq [of 2 a] by (simp add: of_bool_odd_eq_mod_2) finally show ?case using \a div 2 = a\ by (simp add: hyp) qed lemma exp_eq_0_imp_not_bit: \\ bit a n\ if \2 ^ n = 0\ using that by (simp add: bit_iff_odd) lemma bit_eqI: \a = b\ if \\n. 2 ^ n \ 0 \ bit a n \ bit b n\ proof - have \bit a n \ bit b n\ for n proof (cases \2 ^ n = 0\) case True then show ?thesis by (simp add: exp_eq_0_imp_not_bit) next case False then show ?thesis by (rule that) qed then show ?thesis proof (induction a arbitrary: b rule: bits_induct) case (stable a) from stable(2) [of 0] have **: \even b \ even a\ by simp have \b div 2 = b\ proof (rule bit_iff_idd_imp_stable) fix n from stable have *: \bit b n \ bit a n\ by simp also have \bit a n \ odd a\ using stable by (simp add: stable_imp_bit_iff_odd) finally show \bit b n \ odd b\ by (simp add: **) qed from ** have \a mod 2 = b mod 2\ by (simp add: mod2_eq_if) then have \a mod 2 + (a + b) = b mod 2 + (a + b)\ by simp then have \a + a mod 2 + b = b + b mod 2 + a\ by (simp add: ac_simps) with \a div 2 = a\ \b div 2 = b\ show ?case by (simp add: bits_stable_imp_add_self) next case (rec a p) from rec.prems [of 0] have [simp]: \p = odd b\ by simp from rec.hyps have \bit a n \ bit (b div 2) n\ for n using rec.prems [of \Suc n\] by (simp add: bit_Suc) then have \a = b div 2\ by (rule rec.IH) then have \2 * a = 2 * (b div 2)\ by simp then have \b mod 2 + 2 * a = b mod 2 + 2 * (b div 2)\ by simp also have \\ = b\ by (fact mod_mult_div_eq) finally show ?case by (auto simp add: mod2_eq_if) qed qed lemma bit_eq_iff: \a = b \ (\n. bit a n \ bit b n)\ by (auto intro: bit_eqI) -lemma bit_exp_iff: +named_theorems bit_simps \Simplification rules for \<^const>\bit\\ + +lemma bit_exp_iff [bit_simps]: \bit (2 ^ m) n \ 2 ^ m \ 0 \ m = n\ by (auto simp add: bit_iff_odd exp_div_exp_eq) -lemma bit_1_iff: +lemma bit_1_iff [bit_simps]: \bit 1 n \ 1 \ 0 \ n = 0\ using bit_exp_iff [of 0 n] by simp -lemma bit_2_iff: +lemma bit_2_iff [bit_simps]: \bit 2 n \ 2 \ 0 \ n = 1\ using bit_exp_iff [of 1 n] by auto lemma even_bit_succ_iff: \bit (1 + a) n \ bit a n \ n = 0\ if \even a\ using that by (cases \n = 0\) (simp_all add: bit_iff_odd) lemma odd_bit_iff_bit_pred: \bit a n \ bit (a - 1) n \ n = 0\ if \odd a\ proof - from \odd a\ obtain b where \a = 2 * b + 1\ .. moreover have \bit (2 * b) n \ n = 0 \ bit (1 + 2 * b) n\ using even_bit_succ_iff by simp ultimately show ?thesis by (simp add: ac_simps) qed -lemma bit_double_iff: +lemma bit_double_iff [bit_simps]: \bit (2 * a) n \ bit a (n - 1) \ n \ 0 \ 2 ^ n \ 0\ using even_mult_exp_div_exp_iff [of a 1 n] by (cases n, auto simp add: bit_iff_odd ac_simps) lemma bit_eq_rec: \a = b \ (even a \ even b) \ a div 2 = b div 2\ (is \?P = ?Q\) proof assume ?P then show ?Q by simp next assume ?Q then have \even a \ even b\ and \a div 2 = b div 2\ by simp_all show ?P proof (rule bit_eqI) fix n show \bit a n \ bit b n\ proof (cases n) case 0 with \even a \ even b\ show ?thesis by simp next case (Suc n) moreover from \a div 2 = b div 2\ have \bit (a div 2) n = bit (b div 2) n\ by simp ultimately show ?thesis by (simp add: bit_Suc) qed qed qed lemma bit_mod_2_iff [simp]: \bit (a mod 2) n \ n = 0 \ odd a\ by (cases a rule: parity_cases) (simp_all add: bit_iff_odd) lemma bit_mask_iff: \bit (2 ^ m - 1) n \ 2 ^ n \ 0 \ n < m\ by (simp add: bit_iff_odd even_mask_div_iff not_le) lemma bit_Numeral1_iff [simp]: \bit (numeral Num.One) n \ n = 0\ by (simp add: bit_rec) lemma exp_add_not_zero_imp: \2 ^ m \ 0\ and \2 ^ n \ 0\ if \2 ^ (m + n) \ 0\ proof - have \\ (2 ^ m = 0 \ 2 ^ n = 0)\ proof (rule notI) assume \2 ^ m = 0 \ 2 ^ n = 0\ then have \2 ^ (m + n) = 0\ by (rule disjE) (simp_all add: power_add) with that show False .. qed then show \2 ^ m \ 0\ and \2 ^ n \ 0\ by simp_all qed lemma bit_disjunctive_add_iff: \bit (a + b) n \ bit a n \ bit b n\ if \\n. \ bit a n \ \ bit b n\ proof (cases \2 ^ n = 0\) case True then show ?thesis by (simp add: exp_eq_0_imp_not_bit) next case False with that show ?thesis proof (induction n arbitrary: a b) case 0 from "0.prems"(1) [of 0] show ?case by auto next case (Suc n) from Suc.prems(1) [of 0] have even: \even a \ even b\ by auto have bit: \\ bit (a div 2) n \ \ bit (b div 2) n\ for n using Suc.prems(1) [of \Suc n\] by (simp add: bit_Suc) from Suc.prems(2) have \2 * 2 ^ n \ 0\ \2 ^ n \ 0\ by (auto simp add: mult_2) have \a + b = (a div 2 * 2 + a mod 2) + (b div 2 * 2 + b mod 2)\ using div_mult_mod_eq [of a 2] div_mult_mod_eq [of b 2] by simp also have \\ = of_bool (odd a \ odd b) + 2 * (a div 2 + b div 2)\ using even by (auto simp add: algebra_simps mod2_eq_if) finally have \bit ((a + b) div 2) n \ bit (a div 2 + b div 2) n\ using \2 * 2 ^ n \ 0\ by simp (simp flip: bit_Suc add: bit_double_iff) also have \\ \ bit (a div 2) n \ bit (b div 2) n\ using bit \2 ^ n \ 0\ by (rule Suc.IH) finally show ?case by (simp add: bit_Suc) qed qed lemma exp_add_not_zero_imp_left: \2 ^ m \ 0\ and exp_add_not_zero_imp_right: \2 ^ n \ 0\ if \2 ^ (m + n) \ 0\ proof - have \\ (2 ^ m = 0 \ 2 ^ n = 0)\ proof (rule notI) assume \2 ^ m = 0 \ 2 ^ n = 0\ then have \2 ^ (m + n) = 0\ by (rule disjE) (simp_all add: power_add) with that show False .. qed then show \2 ^ m \ 0\ and \2 ^ n \ 0\ by simp_all qed lemma exp_not_zero_imp_exp_diff_not_zero: \2 ^ (n - m) \ 0\ if \2 ^ n \ 0\ proof (cases \m \ n\) case True moreover define q where \q = n - m\ ultimately have \n = m + q\ by simp with that show ?thesis by (simp add: exp_add_not_zero_imp_right) next case False with that show ?thesis by simp qed end lemma nat_bit_induct [case_names zero even odd]: "P n" if zero: "P 0" and even: "\n. P n \ n > 0 \ P (2 * n)" and odd: "\n. P n \ P (Suc (2 * n))" proof (induction n rule: less_induct) case (less n) show "P n" proof (cases "n = 0") case True with zero show ?thesis by simp next case False with less have hyp: "P (n div 2)" by simp show ?thesis proof (cases "even n") case True then have "n \ 1" by auto with \n \ 0\ have "n div 2 > 0" by simp with \even n\ hyp even [of "n div 2"] show ?thesis by simp next case False with hyp odd [of "n div 2"] show ?thesis by simp qed qed qed instantiation nat :: semiring_bits begin definition bit_nat :: \nat \ nat \ bool\ where \bit_nat m n \ odd (m div 2 ^ n)\ instance proof show \P n\ if stable: \\n. n div 2 = n \ P n\ and rec: \\n b. P n \ (of_bool b + 2 * n) div 2 = n \ P (of_bool b + 2 * n)\ for P and n :: nat proof (induction n rule: nat_bit_induct) case zero from stable [of 0] show ?case by simp next case (even n) with rec [of n False] show ?case by simp next case (odd n) with rec [of n True] show ?case by simp qed show \q mod 2 ^ m mod 2 ^ n = q mod 2 ^ min m n\ for q m n :: nat apply (auto simp add: less_iff_Suc_add power_add mod_mod_cancel split: split_min_lin) apply (metis div_mult2_eq mod_div_trivial mod_eq_self_iff_div_eq_0 mod_mult_self2_is_0 power_commutes) done show \(q * 2 ^ m) mod (2 ^ n) = (q mod 2 ^ (n - m)) * 2 ^ m\ if \m \ n\ for q m n :: nat using that apply (auto simp add: mod_mod_cancel div_mult2_eq power_add mod_mult2_eq le_iff_add split: split_min_lin) apply (simp add: mult.commute) done show \even ((2 ^ m - (1::nat)) div 2 ^ n) \ 2 ^ n = (0::nat) \ m \ n\ for m n :: nat using even_mask_div_iff' [where ?'a = nat, of m n] by simp show \even (q * 2 ^ m div 2 ^ n) \ n < m \ (2::nat) ^ n = 0 \ m \ n \ even (q div 2 ^ (n - m))\ for m n q r :: nat apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex) apply (metis (full_types) dvd_mult dvd_mult_imp_div dvd_power_iff_le not_less not_less_eq order_refl power_Suc) done qed (auto simp add: div_mult2_eq mod_mult2_eq power_add power_diff bit_nat_def) end lemma int_bit_induct [case_names zero minus even odd]: "P k" if zero_int: "P 0" and minus_int: "P (- 1)" and even_int: "\k. P k \ k \ 0 \ P (k * 2)" and odd_int: "\k. P k \ k \ - 1 \ P (1 + (k * 2))" for k :: int proof (cases "k \ 0") case True define n where "n = nat k" with True have "k = int n" by simp then show "P k" proof (induction n arbitrary: k rule: nat_bit_induct) case zero then show ?case by (simp add: zero_int) next case (even n) have "P (int n * 2)" by (rule even_int) (use even in simp_all) with even show ?case by (simp add: ac_simps) next case (odd n) have "P (1 + (int n * 2))" by (rule odd_int) (use odd in simp_all) with odd show ?case by (simp add: ac_simps) qed next case False define n where "n = nat (- k - 1)" with False have "k = - int n - 1" by simp then show "P k" proof (induction n arbitrary: k rule: nat_bit_induct) case zero then show ?case by (simp add: minus_int) next case (even n) have "P (1 + (- int (Suc n) * 2))" by (rule odd_int) (use even in \simp_all add: algebra_simps\) also have "\ = - int (2 * n) - 1" by (simp add: algebra_simps) finally show ?case using even.prems by simp next case (odd n) have "P (- int (Suc n) * 2)" by (rule even_int) (use odd in \simp_all add: algebra_simps\) also have "\ = - int (Suc (2 * n)) - 1" by (simp add: algebra_simps) finally show ?case using odd.prems by simp qed qed context semiring_bits begin -lemma bit_of_bool_iff: +lemma bit_of_bool_iff [bit_simps]: \bit (of_bool b) n \ b \ n = 0\ by (simp add: bit_1_iff) lemma even_of_nat_iff: \even (of_nat n) \ even n\ by (induction n rule: nat_bit_induct) simp_all -lemma bit_of_nat_iff: +lemma bit_of_nat_iff [bit_simps]: \bit (of_nat m) n \ (2::'a) ^ n \ 0 \ bit m n\ proof (cases \(2::'a) ^ n = 0\) case True then show ?thesis by (simp add: exp_eq_0_imp_not_bit) next case False then have \bit (of_nat m) n \ bit m n\ proof (induction m arbitrary: n rule: nat_bit_induct) case zero then show ?case by simp next case (even m) then show ?case by (cases n) (auto simp add: bit_double_iff Parity.bit_double_iff dest: mult_not_zero) next case (odd m) then show ?case by (cases n) (auto simp add: bit_double_iff even_bit_succ_iff Parity.bit_Suc dest: mult_not_zero) qed with False show ?thesis by simp qed end instantiation int :: semiring_bits begin definition bit_int :: \int \ nat \ bool\ where \bit_int k n \ odd (k div 2 ^ n)\ instance proof show \P k\ if stable: \\k. k div 2 = k \ P k\ and rec: \\k b. P k \ (of_bool b + 2 * k) div 2 = k \ P (of_bool b + 2 * k)\ for P and k :: int proof (induction k rule: int_bit_induct) case zero from stable [of 0] show ?case by simp next case minus from stable [of \- 1\] show ?case by simp next case (even k) with rec [of k False] show ?case by (simp add: ac_simps) next case (odd k) with rec [of k True] show ?case by (simp add: ac_simps) qed show \(2::int) ^ m div 2 ^ n = of_bool ((2::int) ^ m \ 0 \ n \ m) * 2 ^ (m - n)\ for m n :: nat proof (cases \m < n\) case True then have \n = m + (n - m)\ by simp then have \(2::int) ^ m div 2 ^ n = (2::int) ^ m div 2 ^ (m + (n - m))\ by simp also have \\ = (2::int) ^ m div (2 ^ m * 2 ^ (n - m))\ by (simp add: power_add) also have \\ = (2::int) ^ m div 2 ^ m div 2 ^ (n - m)\ by (simp add: zdiv_zmult2_eq) finally show ?thesis using \m < n\ by simp next case False then show ?thesis by (simp add: power_diff) qed show \k mod 2 ^ m mod 2 ^ n = k mod 2 ^ min m n\ for m n :: nat and k :: int using mod_exp_eq [of \nat k\ m n] apply (auto simp add: mod_mod_cancel zdiv_zmult2_eq power_add zmod_zmult2_eq le_iff_add split: split_min_lin) apply (auto simp add: less_iff_Suc_add mod_mod_cancel power_add) apply (simp only: flip: mult.left_commute [of \2 ^ m\]) apply (subst zmod_zmult2_eq) apply simp_all done show \(k * 2 ^ m) mod (2 ^ n) = (k mod 2 ^ (n - m)) * 2 ^ m\ if \m \ n\ for m n :: nat and k :: int using that apply (auto simp add: power_add zmod_zmult2_eq le_iff_add split: split_min_lin) apply (simp add: ac_simps) done show \even ((2 ^ m - (1::int)) div 2 ^ n) \ 2 ^ n = (0::int) \ m \ n\ for m n :: nat using even_mask_div_iff' [where ?'a = int, of m n] by simp show \even (k * 2 ^ m div 2 ^ n) \ n < m \ (2::int) ^ n = 0 \ m \ n \ even (k div 2 ^ (n - m))\ for m n :: nat and k l :: int apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex) apply (metis Suc_leI dvd_mult dvd_mult_imp_div dvd_power_le dvd_refl power.simps(2)) done qed (auto simp add: zdiv_zmult2_eq zmod_zmult2_eq power_add power_diff not_le bit_int_def) end class semiring_bit_shifts = semiring_bits + fixes push_bit :: \nat \ 'a \ 'a\ assumes push_bit_eq_mult: \push_bit n a = a * 2 ^ n\ fixes drop_bit :: \nat \ 'a \ 'a\ assumes drop_bit_eq_div: \drop_bit n a = a div 2 ^ n\ fixes take_bit :: \nat \ 'a \ 'a\ assumes take_bit_eq_mod: \take_bit n a = a mod 2 ^ n\ begin text \ Logically, \<^const>\push_bit\, \<^const>\drop_bit\ and \<^const>\take_bit\ are just aliases; having them as separate operations makes proofs easier, otherwise proof automation would fiddle with concrete expressions \<^term>\2 ^ n\ in a way obfuscating the basic algebraic relationships between those operations. Having them as definitional class operations takes into account that specific instances of these can be implemented differently wrt. code generation. \ lemma bit_iff_odd_drop_bit: \bit a n \ odd (drop_bit n a)\ by (simp add: bit_iff_odd drop_bit_eq_div) lemma even_drop_bit_iff_not_bit: \even (drop_bit n a) \ \ bit a n\ by (simp add: bit_iff_odd_drop_bit) lemma div_push_bit_of_1_eq_drop_bit: \a div push_bit n 1 = drop_bit n a\ by (simp add: push_bit_eq_mult drop_bit_eq_div) lemma bits_ident: "push_bit n (drop_bit n a) + take_bit n a = a" using div_mult_mod_eq by (simp add: push_bit_eq_mult take_bit_eq_mod drop_bit_eq_div) lemma push_bit_push_bit [simp]: "push_bit m (push_bit n a) = push_bit (m + n) a" by (simp add: push_bit_eq_mult power_add ac_simps) lemma push_bit_0_id [simp]: "push_bit 0 = id" by (simp add: fun_eq_iff push_bit_eq_mult) lemma push_bit_of_0 [simp]: "push_bit n 0 = 0" by (simp add: push_bit_eq_mult) lemma push_bit_of_1: "push_bit n 1 = 2 ^ n" by (simp add: push_bit_eq_mult) lemma push_bit_Suc [simp]: "push_bit (Suc n) a = push_bit n (a * 2)" by (simp add: push_bit_eq_mult ac_simps) lemma push_bit_double: "push_bit n (a * 2) = push_bit n a * 2" by (simp add: push_bit_eq_mult ac_simps) lemma push_bit_add: "push_bit n (a + b) = push_bit n a + push_bit n b" by (simp add: push_bit_eq_mult algebra_simps) lemma push_bit_numeral [simp]: \push_bit (numeral l) (numeral k) = push_bit (pred_numeral l) (numeral (Num.Bit0 k))\ by (simp add: numeral_eq_Suc mult_2_right) (simp add: numeral_Bit0) lemma take_bit_0 [simp]: "take_bit 0 a = 0" by (simp add: take_bit_eq_mod) lemma take_bit_Suc: \take_bit (Suc n) a = take_bit n (a div 2) * 2 + a mod 2\ proof - have \take_bit (Suc n) (a div 2 * 2 + of_bool (odd a)) = take_bit n (a div 2) * 2 + of_bool (odd a)\ using even_succ_mod_exp [of \2 * (a div 2)\ \Suc n\] mult_exp_mod_exp_eq [of 1 \Suc n\ \a div 2\] by (auto simp add: take_bit_eq_mod ac_simps) then show ?thesis using div_mult_mod_eq [of a 2] by (simp add: mod_2_eq_odd) qed lemma take_bit_rec: \take_bit n a = (if n = 0 then 0 else take_bit (n - 1) (a div 2) * 2 + a mod 2)\ by (cases n) (simp_all add: take_bit_Suc) lemma take_bit_Suc_0 [simp]: \take_bit (Suc 0) a = a mod 2\ by (simp add: take_bit_eq_mod) lemma take_bit_of_0 [simp]: "take_bit n 0 = 0" by (simp add: take_bit_eq_mod) lemma take_bit_of_1 [simp]: "take_bit n 1 = of_bool (n > 0)" by (cases n) (simp_all add: take_bit_Suc) lemma drop_bit_of_0 [simp]: "drop_bit n 0 = 0" by (simp add: drop_bit_eq_div) lemma drop_bit_of_1 [simp]: "drop_bit n 1 = of_bool (n = 0)" by (simp add: drop_bit_eq_div) lemma drop_bit_0 [simp]: "drop_bit 0 = id" by (simp add: fun_eq_iff drop_bit_eq_div) lemma drop_bit_Suc: "drop_bit (Suc n) a = drop_bit n (a div 2)" using div_exp_eq [of a 1] by (simp add: drop_bit_eq_div) lemma drop_bit_rec: "drop_bit n a = (if n = 0 then a else drop_bit (n - 1) (a div 2))" by (cases n) (simp_all add: drop_bit_Suc) lemma drop_bit_half: "drop_bit n (a div 2) = drop_bit n a div 2" by (induction n arbitrary: a) (simp_all add: drop_bit_Suc) lemma drop_bit_of_bool [simp]: "drop_bit n (of_bool b) = of_bool (n = 0 \ b)" by (cases n) simp_all lemma even_take_bit_eq [simp]: \even (take_bit n a) \ n = 0 \ even a\ by (simp add: take_bit_rec [of n a]) lemma take_bit_take_bit [simp]: "take_bit m (take_bit n a) = take_bit (min m n) a" by (simp add: take_bit_eq_mod mod_exp_eq ac_simps) lemma drop_bit_drop_bit [simp]: "drop_bit m (drop_bit n a) = drop_bit (m + n) a" by (simp add: drop_bit_eq_div power_add div_exp_eq ac_simps) lemma push_bit_take_bit: "push_bit m (take_bit n a) = take_bit (m + n) (push_bit m a)" apply (simp add: push_bit_eq_mult take_bit_eq_mod power_add ac_simps) using mult_exp_mod_exp_eq [of m \m + n\ a] apply (simp add: ac_simps power_add) done lemma take_bit_push_bit: "take_bit m (push_bit n a) = push_bit n (take_bit (m - n) a)" proof (cases "m \ n") case True then show ?thesis apply (simp add:) apply (simp_all add: push_bit_eq_mult take_bit_eq_mod) apply (auto dest!: le_Suc_ex simp add: power_add ac_simps) using mult_exp_mod_exp_eq [of m m \a * 2 ^ n\ for n] apply (simp add: ac_simps) done next case False then show ?thesis using push_bit_take_bit [of n "m - n" a] by simp qed lemma take_bit_drop_bit: "take_bit m (drop_bit n a) = drop_bit n (take_bit (m + n) a)" by (simp add: drop_bit_eq_div take_bit_eq_mod ac_simps div_exp_mod_exp_eq) lemma drop_bit_take_bit: "drop_bit m (take_bit n a) = take_bit (n - m) (drop_bit m a)" proof (cases "m \ n") case True then show ?thesis using take_bit_drop_bit [of "n - m" m a] by simp next case False then obtain q where \m = n + q\ by (auto simp add: not_le dest: less_imp_Suc_add) then have \drop_bit m (take_bit n a) = 0\ using div_exp_eq [of \a mod 2 ^ n\ n q] by (simp add: take_bit_eq_mod drop_bit_eq_div) with False show ?thesis by simp qed lemma even_push_bit_iff [simp]: \even (push_bit n a) \ n \ 0 \ even a\ by (simp add: push_bit_eq_mult) auto -lemma bit_push_bit_iff: +lemma bit_push_bit_iff [bit_simps]: \bit (push_bit m a) n \ m \ n \ 2 ^ n \ 0 \ bit a (n - m)\ by (auto simp add: bit_iff_odd push_bit_eq_mult even_mult_exp_div_exp_iff) -lemma bit_drop_bit_eq: +lemma bit_drop_bit_eq [bit_simps]: \bit (drop_bit n a) = bit a \ (+) n\ by (simp add: bit_iff_odd fun_eq_iff ac_simps flip: drop_bit_eq_div) -lemma bit_take_bit_iff: +lemma bit_take_bit_iff [bit_simps]: \bit (take_bit m a) n \ n < m \ bit a n\ by (simp add: bit_iff_odd drop_bit_take_bit not_le flip: drop_bit_eq_div) lemma stable_imp_drop_bit_eq: \drop_bit n a = a\ if \a div 2 = a\ by (induction n) (simp_all add: that drop_bit_Suc) lemma stable_imp_take_bit_eq: \take_bit n a = (if even a then 0 else 2 ^ n - 1)\ if \a div 2 = a\ proof (rule bit_eqI) fix m assume \2 ^ m \ 0\ with that show \bit (take_bit n a) m \ bit (if even a then 0 else 2 ^ n - 1) m\ by (simp add: bit_take_bit_iff bit_mask_iff stable_imp_bit_iff_odd) qed lemma exp_dvdE: assumes \2 ^ n dvd a\ obtains b where \a = push_bit n b\ proof - from assms obtain b where \a = 2 ^ n * b\ .. then have \a = push_bit n b\ by (simp add: push_bit_eq_mult ac_simps) with that show thesis . qed lemma take_bit_eq_0_iff: \take_bit n a = 0 \ 2 ^ n dvd a\ (is \?P \ ?Q\) proof assume ?P then show ?Q by (simp add: take_bit_eq_mod mod_0_imp_dvd) next assume ?Q then obtain b where \a = push_bit n b\ by (rule exp_dvdE) then show ?P by (simp add: take_bit_push_bit) qed lemma take_bit_tightened: \take_bit m a = take_bit m b\ if \take_bit n a = take_bit n b\ and \m \ n\ proof - from that have \take_bit m (take_bit n a) = take_bit m (take_bit n b)\ by simp then have \take_bit (min m n) a = take_bit (min m n) b\ by simp with that show ?thesis by (simp add: min_def) qed end instantiation nat :: semiring_bit_shifts begin definition push_bit_nat :: \nat \ nat \ nat\ where \push_bit_nat n m = m * 2 ^ n\ definition drop_bit_nat :: \nat \ nat \ nat\ where \drop_bit_nat n m = m div 2 ^ n\ definition take_bit_nat :: \nat \ nat \ nat\ where \take_bit_nat n m = m mod 2 ^ n\ instance by standard (simp_all add: push_bit_nat_def drop_bit_nat_def take_bit_nat_def) end context semiring_bit_shifts begin lemma push_bit_of_nat: \push_bit n (of_nat m) = of_nat (push_bit n m)\ by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult) lemma of_nat_push_bit: \of_nat (push_bit m n) = push_bit m (of_nat n)\ by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult) lemma take_bit_of_nat: \take_bit n (of_nat m) = of_nat (take_bit n m)\ by (rule bit_eqI) (simp add: bit_take_bit_iff Parity.bit_take_bit_iff bit_of_nat_iff) lemma of_nat_take_bit: \of_nat (take_bit n m) = take_bit n (of_nat m)\ by (rule bit_eqI) (simp add: bit_take_bit_iff Parity.bit_take_bit_iff bit_of_nat_iff) end instantiation int :: semiring_bit_shifts begin definition push_bit_int :: \nat \ int \ int\ where \push_bit_int n k = k * 2 ^ n\ definition drop_bit_int :: \nat \ int \ int\ where \drop_bit_int n k = k div 2 ^ n\ definition take_bit_int :: \nat \ int \ int\ where \take_bit_int n k = k mod 2 ^ n\ instance by standard (simp_all add: push_bit_int_def drop_bit_int_def take_bit_int_def) end lemma bit_push_bit_iff_nat: \bit (push_bit m q) n \ m \ n \ bit q (n - m)\ for q :: nat by (auto simp add: bit_push_bit_iff) lemma bit_push_bit_iff_int: \bit (push_bit m k) n \ m \ n \ bit k (n - m)\ for k :: int by (auto simp add: bit_push_bit_iff) lemma take_bit_nat_less_exp [simp]: \take_bit n m < 2 ^ n\ for n m ::nat by (simp add: take_bit_eq_mod) lemma take_bit_nonnegative [simp]: \take_bit n k \ 0\ for k :: int by (simp add: take_bit_eq_mod) lemma not_take_bit_negative [simp]: \\ take_bit n k < 0\ for k :: int by (simp add: not_less) lemma take_bit_int_less_exp [simp]: \take_bit n k < 2 ^ n\ for k :: int by (simp add: take_bit_eq_mod) lemma take_bit_nat_eq_self_iff: \take_bit n m = m \ m < 2 ^ n\ (is \?P \ ?Q\) for n m :: nat proof assume ?P moreover note take_bit_nat_less_exp [of n m] ultimately show ?Q by simp next assume ?Q then show ?P by (simp add: take_bit_eq_mod) qed lemma take_bit_nat_eq_self: \take_bit n m = m\ if \m < 2 ^ n\ for m n :: nat using that by (simp add: take_bit_nat_eq_self_iff) lemma take_bit_int_eq_self_iff: \take_bit n k = k \ 0 \ k \ k < 2 ^ n\ (is \?P \ ?Q\) for k :: int proof assume ?P moreover note take_bit_int_less_exp [of n k] take_bit_nonnegative [of n k] ultimately show ?Q by simp next assume ?Q then show ?P by (simp add: take_bit_eq_mod) qed lemma take_bit_int_eq_self: \take_bit n k = k\ if \0 \ k\ \k < 2 ^ n\ for k :: int using that by (simp add: take_bit_int_eq_self_iff) lemma take_bit_nat_less_eq_self [simp]: \take_bit n m \ m\ for n m :: nat by (simp add: take_bit_eq_mod) lemma take_bit_nat_less_self_iff: \take_bit n m < m \ 2 ^ n \ m\ (is \?P \ ?Q\) for m n :: nat proof assume ?P then have \take_bit n m \ m\ by simp then show \?Q\ by (simp add: take_bit_nat_eq_self_iff) next have \take_bit n m < 2 ^ n\ by (fact take_bit_nat_less_exp) also assume ?Q finally show ?P . qed class unique_euclidean_semiring_with_bit_shifts = unique_euclidean_semiring_with_nat + semiring_bit_shifts begin lemma take_bit_of_exp [simp]: \take_bit m (2 ^ n) = of_bool (n < m) * 2 ^ n\ by (simp add: take_bit_eq_mod exp_mod_exp) lemma take_bit_of_2 [simp]: \take_bit n 2 = of_bool (2 \ n) * 2\ using take_bit_of_exp [of n 1] by simp lemma take_bit_of_mask: \take_bit m (2 ^ n - 1) = 2 ^ min m n - 1\ by (simp add: take_bit_eq_mod mask_mod_exp) lemma push_bit_eq_0_iff [simp]: "push_bit n a = 0 \ a = 0" by (simp add: push_bit_eq_mult) lemma take_bit_add: "take_bit n (take_bit n a + take_bit n b) = take_bit n (a + b)" by (simp add: take_bit_eq_mod mod_simps) lemma take_bit_of_1_eq_0_iff [simp]: "take_bit n 1 = 0 \ n = 0" by (simp add: take_bit_eq_mod) lemma take_bit_Suc_1 [simp]: \take_bit (Suc n) 1 = 1\ by (simp add: take_bit_Suc) lemma take_bit_Suc_bit0 [simp]: \take_bit (Suc n) (numeral (Num.Bit0 k)) = take_bit n (numeral k) * 2\ by (simp add: take_bit_Suc numeral_Bit0_div_2) lemma take_bit_Suc_bit1 [simp]: \take_bit (Suc n) (numeral (Num.Bit1 k)) = take_bit n (numeral k) * 2 + 1\ by (simp add: take_bit_Suc numeral_Bit1_div_2 mod_2_eq_odd) lemma take_bit_numeral_1 [simp]: \take_bit (numeral l) 1 = 1\ by (simp add: take_bit_rec [of \numeral l\ 1]) lemma take_bit_numeral_bit0 [simp]: \take_bit (numeral l) (numeral (Num.Bit0 k)) = take_bit (pred_numeral l) (numeral k) * 2\ by (simp add: take_bit_rec numeral_Bit0_div_2) lemma take_bit_numeral_bit1 [simp]: \take_bit (numeral l) (numeral (Num.Bit1 k)) = take_bit (pred_numeral l) (numeral k) * 2 + 1\ by (simp add: take_bit_rec numeral_Bit1_div_2 mod_2_eq_odd) lemma drop_bit_Suc_bit0 [simp]: \drop_bit (Suc n) (numeral (Num.Bit0 k)) = drop_bit n (numeral k)\ by (simp add: drop_bit_Suc numeral_Bit0_div_2) lemma drop_bit_Suc_bit1 [simp]: \drop_bit (Suc n) (numeral (Num.Bit1 k)) = drop_bit n (numeral k)\ by (simp add: drop_bit_Suc numeral_Bit1_div_2) lemma drop_bit_numeral_bit0 [simp]: \drop_bit (numeral l) (numeral (Num.Bit0 k)) = drop_bit (pred_numeral l) (numeral k)\ by (simp add: drop_bit_rec numeral_Bit0_div_2) lemma drop_bit_numeral_bit1 [simp]: \drop_bit (numeral l) (numeral (Num.Bit1 k)) = drop_bit (pred_numeral l) (numeral k)\ by (simp add: drop_bit_rec numeral_Bit1_div_2) lemma drop_bit_of_nat: "drop_bit n (of_nat m) = of_nat (drop_bit n m)" by (simp add: drop_bit_eq_div Parity.drop_bit_eq_div of_nat_div [of m "2 ^ n"]) -lemma bit_of_nat_iff_bit [simp]: +lemma bit_of_nat_iff_bit [bit_simps]: \bit (of_nat m) n \ bit m n\ proof - have \even (m div 2 ^ n) \ even (of_nat (m div 2 ^ n))\ by simp also have \of_nat (m div 2 ^ n) = of_nat m div of_nat (2 ^ n)\ by (simp add: of_nat_div) finally show ?thesis by (simp add: bit_iff_odd semiring_bits_class.bit_iff_odd) qed lemma of_nat_drop_bit: \of_nat (drop_bit m n) = drop_bit m (of_nat n)\ by (simp add: drop_bit_eq_div semiring_bit_shifts_class.drop_bit_eq_div of_nat_div) -lemma bit_push_bit_iff_of_nat_iff: +lemma bit_push_bit_iff_of_nat_iff [bit_simps]: \bit (push_bit m (of_nat r)) n \ m \ n \ bit (of_nat r) (n - m)\ by (auto simp add: bit_push_bit_iff) end instance nat :: unique_euclidean_semiring_with_bit_shifts .. instance int :: unique_euclidean_semiring_with_bit_shifts .. lemma bit_not_int_iff': \bit (- k - 1) n \ \ bit k n\ for k :: int proof (induction n arbitrary: k) case 0 show ?case by simp next case (Suc n) have \- k - 1 = - (k + 2) + 1\ by simp also have \(- (k + 2) + 1) div 2 = - (k div 2) - 1\ proof (cases \even k\) case True then have \- k div 2 = - (k div 2)\ by rule (simp flip: mult_minus_right) with True show ?thesis by simp next case False have \4 = 2 * (2::int)\ by simp also have \2 * 2 div 2 = (2::int)\ by (simp only: nonzero_mult_div_cancel_left) finally have *: \4 div 2 = (2::int)\ . from False obtain l where k: \k = 2 * l + 1\ .. then have \- k - 2 = 2 * - (l + 2) + 1\ by simp then have \(- k - 2) div 2 + 1 = - (k div 2) - 1\ by (simp flip: mult_minus_right add: *) (simp add: k) with False show ?thesis by simp qed finally have \(- k - 1) div 2 = - (k div 2) - 1\ . with Suc show ?case by (simp add: bit_Suc) qed -lemma bit_minus_int_iff: +lemma bit_minus_int_iff [bit_simps]: \bit (- k) n \ \ bit (k - 1) n\ for k :: int using bit_not_int_iff' [of \k - 1\] by simp -lemma bit_nat_iff: +lemma bit_nat_iff [bit_simps]: \bit (nat k) n \ k \ 0 \ bit k n\ proof (cases \k \ 0\) case True moreover define m where \m = nat k\ ultimately have \k = int m\ by simp then show ?thesis - by (auto intro: ccontr) + by (simp add: bit_simps) next case False then show ?thesis by simp qed lemma push_bit_nat_eq: \push_bit n (nat k) = nat (push_bit n k)\ by (cases \k \ 0\) (simp_all add: push_bit_eq_mult nat_mult_distrib not_le mult_nonneg_nonpos2) lemma drop_bit_nat_eq: \drop_bit n (nat k) = nat (drop_bit n k)\ apply (cases \k \ 0\) apply (simp_all add: drop_bit_eq_div nat_div_distrib nat_power_eq not_le) apply (simp add: divide_int_def) done lemma take_bit_nat_eq: \take_bit n (nat k) = nat (take_bit n k)\ if \k \ 0\ using that by (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq) lemma nat_take_bit_eq: \nat (take_bit n k) = take_bit n (nat k)\ if \k \ 0\ using that by (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq) lemma not_exp_less_eq_0_int [simp]: \\ 2 ^ n \ (0::int)\ by (simp add: power_le_zero_eq) lemma half_nonnegative_int_iff [simp]: \k div 2 \ 0 \ k \ 0\ for k :: int proof (cases \k \ 0\) case True then show ?thesis by (auto simp add: divide_int_def sgn_1_pos) next case False then show ?thesis apply (auto simp add: divide_int_def not_le elim!: evenE) apply (simp only: minus_mult_right) apply (subst nat_mult_distrib) apply simp_all done qed lemma half_negative_int_iff [simp]: \k div 2 < 0 \ k < 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma push_bit_of_Suc_0 [simp]: "push_bit n (Suc 0) = 2 ^ n" using push_bit_of_1 [where ?'a = nat] by simp lemma take_bit_of_Suc_0 [simp]: "take_bit n (Suc 0) = of_bool (0 < n)" using take_bit_of_1 [where ?'a = nat] by simp lemma drop_bit_of_Suc_0 [simp]: "drop_bit n (Suc 0) = of_bool (n = 0)" using drop_bit_of_1 [where ?'a = nat] by simp lemma push_bit_minus_one: "push_bit n (- 1 :: int) = - (2 ^ n)" by (simp add: push_bit_eq_mult) lemma minus_1_div_exp_eq_int: \- 1 div (2 :: int) ^ n = - 1\ by (induction n) (use div_exp_eq [symmetric, of \- 1 :: int\ 1] in \simp_all add: ac_simps\) lemma drop_bit_minus_one [simp]: \drop_bit n (- 1 :: int) = - 1\ by (simp add: drop_bit_eq_div minus_1_div_exp_eq_int) lemma take_bit_Suc_from_most: \take_bit (Suc n) k = 2 ^ n * of_bool (bit k n) + take_bit n k\ for k :: int by (simp only: take_bit_eq_mod power_Suc2) (simp_all add: bit_iff_odd odd_iff_mod_2_eq_one zmod_zmult2_eq) lemma take_bit_minus: \take_bit n (- take_bit n k) = take_bit n (- k)\ for k :: int by (simp add: take_bit_eq_mod mod_minus_eq) lemma take_bit_diff: \take_bit n (take_bit n k - take_bit n l) = take_bit n (k - l)\ for k l :: int by (simp add: take_bit_eq_mod mod_diff_eq) lemma bit_imp_take_bit_positive: \0 < take_bit m k\ if \n < m\ and \bit k n\ for k :: int proof (rule ccontr) assume \\ 0 < take_bit m k\ then have \take_bit m k = 0\ by (auto simp add: not_less intro: order_antisym) then have \bit (take_bit m k) n = bit 0 n\ by simp with that show False by (simp add: bit_take_bit_iff) qed lemma take_bit_mult: \take_bit n (take_bit n k * take_bit n l) = take_bit n (k * l)\ for k l :: int by (simp add: take_bit_eq_mod mod_mult_eq) lemma (in ring_1) of_nat_nat_take_bit_eq [simp]: \of_nat (nat (take_bit n k)) = of_int (take_bit n k)\ by simp lemma take_bit_minus_small_eq: \take_bit n (- k) = 2 ^ n - k\ if \0 < k\ \k \ 2 ^ n\ for k :: int proof - define m where \m = nat k\ with that have \k = int m\ and \0 < m\ and \m \ 2 ^ n\ by simp_all have \(2 ^ n - m) mod 2 ^ n = 2 ^ n - m\ using \0 < m\ by simp then have \int ((2 ^ n - m) mod 2 ^ n) = int (2 ^ n - m)\ by simp then have \(2 ^ n - int m) mod 2 ^ n = 2 ^ n - int m\ using \m \ 2 ^ n\ by (simp only: of_nat_mod of_nat_diff) simp with \k = int m\ have \(2 ^ n - k) mod 2 ^ n = 2 ^ n - k\ by simp then show ?thesis by (simp add: take_bit_eq_mod) qed lemma drop_bit_push_bit_int: \drop_bit m (push_bit n k) = drop_bit (m - n) (push_bit (n - m) k)\ for k :: int by (cases \m \ n\) (auto simp add: mult.left_commute [of _ \2 ^ n\] mult.commute [of _ \2 ^ n\] mult.assoc mult.commute [of k] drop_bit_eq_div push_bit_eq_mult not_le power_add dest!: le_Suc_ex less_imp_Suc_add) lemma push_bit_nonnegative_int_iff [simp]: \push_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: push_bit_eq_mult zero_le_mult_iff) lemma push_bit_negative_int_iff [simp]: \push_bit n k < 0 \ k < 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma drop_bit_nonnegative_int_iff [simp]: \drop_bit n k \ 0 \ k \ 0\ for k :: int by (induction n) (simp_all add: drop_bit_Suc drop_bit_half) lemma drop_bit_negative_int_iff [simp]: \drop_bit n k < 0 \ k < 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) code_identifier code_module Parity \ (SML) Arith and (OCaml) Arith and (Haskell) Arith end diff --git a/src/HOL/String.thy b/src/HOL/String.thy --- a/src/HOL/String.thy +++ b/src/HOL/String.thy @@ -1,753 +1,753 @@ (* Author: Tobias Nipkow, Florian Haftmann, TU Muenchen *) section \Character and string types\ theory String imports Enum begin subsection \Strings as list of bytes\ text \ When modelling strings, we follow the approach given in \<^url>\https://utf8everywhere.org/\: \<^item> Strings are a list of bytes (8 bit). \<^item> Byte values from 0 to 127 are US-ASCII. \<^item> Byte values from 128 to 255 are uninterpreted blobs. \ subsubsection \Bytes as datatype\ datatype char = Char (digit0: bool) (digit1: bool) (digit2: bool) (digit3: bool) (digit4: bool) (digit5: bool) (digit6: bool) (digit7: bool) context comm_semiring_1 begin definition of_char :: \char \ 'a\ where \of_char c = horner_sum of_bool 2 [digit0 c, digit1 c, digit2 c, digit3 c, digit4 c, digit5 c, digit6 c, digit7 c]\ lemma of_char_Char [simp]: \of_char (Char b0 b1 b2 b3 b4 b5 b6 b7) = horner_sum of_bool 2 [b0, b1, b2, b3, b4, b5, b6, b7]\ by (simp add: of_char_def) end context unique_euclidean_semiring_with_bit_shifts begin definition char_of :: \'a \ char\ where \char_of n = Char (odd n) (bit n 1) (bit n 2) (bit n 3) (bit n 4) (bit n 5) (bit n 6) (bit n 7)\ lemma char_of_take_bit_eq: \char_of (take_bit n m) = char_of m\ if \n \ 8\ using that by (simp add: char_of_def bit_take_bit_iff) lemma char_of_char [simp]: \char_of (of_char c) = c\ by (simp only: of_char_def char_of_def bit_horner_sum_bit_iff) simp lemma char_of_comp_of_char [simp]: "char_of \ of_char = id" by (simp add: fun_eq_iff) lemma inj_of_char: \inj of_char\ proof (rule injI) fix c d assume "of_char c = of_char d" then have "char_of (of_char c) = char_of (of_char d)" by simp then show "c = d" by simp qed lemma of_char_eqI: \c = d\ if \of_char c = of_char d\ using that inj_of_char by (simp add: inj_eq) lemma of_char_eq_iff [simp]: \of_char c = of_char d \ c = d\ by (auto intro: of_char_eqI) lemma of_char_of [simp]: \of_char (char_of a) = a mod 256\ proof - have \[0..<8] = [0, Suc 0, 2, 3, 4, 5, 6, 7 :: nat]\ by (simp add: upt_eq_Cons_conv) then have \[odd a, bit a 1, bit a 2, bit a 3, bit a 4, bit a 5, bit a 6, bit a 7] = map (bit a) [0..<8]\ by simp then have \of_char (char_of a) = take_bit 8 a\ by (simp only: char_of_def of_char_def char.sel horner_sum_bit_eq_take_bit) then show ?thesis by (simp add: take_bit_eq_mod) qed lemma char_of_mod_256 [simp]: \char_of (n mod 256) = char_of n\ by (rule of_char_eqI) simp lemma of_char_mod_256 [simp]: \of_char c mod 256 = of_char c\ proof - have \of_char (char_of (of_char c)) mod 256 = of_char (char_of (of_char c))\ by (simp only: of_char_of) simp then show ?thesis by simp qed lemma char_of_quasi_inj [simp]: \char_of m = char_of n \ m mod 256 = n mod 256\ (is \?P \ ?Q\) proof assume ?Q then show ?P by (auto intro: of_char_eqI) next assume ?P then have \of_char (char_of m) = of_char (char_of n)\ by simp then show ?Q by simp qed lemma char_of_eq_iff: \char_of n = c \ take_bit 8 n = of_char c\ by (auto intro: of_char_eqI simp add: take_bit_eq_mod) lemma char_of_nat [simp]: \char_of (of_nat n) = char_of n\ - by (simp add: char_of_def String.char_of_def drop_bit_of_nat) + by (simp add: char_of_def String.char_of_def drop_bit_of_nat bit_simps) end lemma inj_on_char_of_nat [simp]: "inj_on char_of {0::nat..<256}" by (rule inj_onI) simp lemma nat_of_char_less_256 [simp]: "of_char c < (256 :: nat)" proof - have "of_char c mod (256 :: nat) < 256" by arith then show ?thesis by simp qed lemma range_nat_of_char: "range of_char = {0::nat..<256}" proof (rule; rule) fix n :: nat assume "n \ range of_char" then show "n \ {0..<256}" by auto next fix n :: nat assume "n \ {0..<256}" then have "n = of_char (char_of n)" by simp then show "n \ range of_char" by (rule range_eqI) qed lemma UNIV_char_of_nat: "UNIV = char_of ` {0::nat..<256}" proof - have "range (of_char :: char \ nat) = of_char ` char_of ` {0::nat..<256}" by (auto simp add: range_nat_of_char intro!: image_eqI) with inj_of_char [where ?'a = nat] show ?thesis by (simp add: inj_image_eq_iff) qed lemma card_UNIV_char: "card (UNIV :: char set) = 256" by (auto simp add: UNIV_char_of_nat card_image) context includes lifting_syntax integer.lifting natural.lifting begin lemma [transfer_rule]: \(pcr_integer ===> (=)) char_of char_of\ by (unfold char_of_def) transfer_prover lemma [transfer_rule]: \((=) ===> pcr_integer) of_char of_char\ by (unfold of_char_def) transfer_prover lemma [transfer_rule]: \(pcr_natural ===> (=)) char_of char_of\ by (unfold char_of_def) transfer_prover lemma [transfer_rule]: \((=) ===> pcr_natural) of_char of_char\ by (unfold of_char_def) transfer_prover end lifting_update integer.lifting lifting_forget integer.lifting lifting_update natural.lifting lifting_forget natural.lifting syntax "_Char" :: "str_position \ char" ("CHR _") "_Char_ord" :: "num_const \ char" ("CHR _") type_synonym string = "char list" syntax "_String" :: "str_position \ string" ("_") ML_file \Tools/string_syntax.ML\ instantiation char :: enum begin definition "Enum.enum = [ CHR 0x00, CHR 0x01, CHR 0x02, CHR 0x03, CHR 0x04, CHR 0x05, CHR 0x06, CHR 0x07, CHR 0x08, CHR 0x09, CHR ''\'', CHR 0x0B, CHR 0x0C, CHR 0x0D, CHR 0x0E, CHR 0x0F, CHR 0x10, CHR 0x11, CHR 0x12, CHR 0x13, CHR 0x14, CHR 0x15, CHR 0x16, CHR 0x17, CHR 0x18, CHR 0x19, CHR 0x1A, CHR 0x1B, CHR 0x1C, CHR 0x1D, CHR 0x1E, CHR 0x1F, CHR '' '', CHR ''!'', CHR 0x22, CHR ''#'', CHR ''$'', CHR ''%'', CHR ''&'', CHR 0x27, CHR ''('', CHR '')'', CHR ''*'', CHR ''+'', CHR '','', CHR ''-'', CHR ''.'', CHR ''/'', CHR ''0'', CHR ''1'', CHR ''2'', CHR ''3'', CHR ''4'', CHR ''5'', CHR ''6'', CHR ''7'', CHR ''8'', CHR ''9'', CHR '':'', CHR '';'', CHR ''<'', CHR ''='', CHR ''>'', CHR ''?'', CHR ''@'', CHR ''A'', CHR ''B'', CHR ''C'', CHR ''D'', CHR ''E'', CHR ''F'', CHR ''G'', CHR ''H'', CHR ''I'', CHR ''J'', CHR ''K'', CHR ''L'', CHR ''M'', CHR ''N'', CHR ''O'', CHR ''P'', CHR ''Q'', CHR ''R'', CHR ''S'', CHR ''T'', CHR ''U'', CHR ''V'', CHR ''W'', CHR ''X'', CHR ''Y'', CHR ''Z'', CHR ''['', CHR 0x5C, CHR '']'', CHR ''^'', CHR ''_'', CHR 0x60, CHR ''a'', CHR ''b'', CHR ''c'', CHR ''d'', CHR ''e'', CHR ''f'', CHR ''g'', CHR ''h'', CHR ''i'', CHR ''j'', CHR ''k'', CHR ''l'', CHR ''m'', CHR ''n'', CHR ''o'', CHR ''p'', CHR ''q'', CHR ''r'', CHR ''s'', CHR ''t'', CHR ''u'', CHR ''v'', CHR ''w'', CHR ''x'', CHR ''y'', CHR ''z'', CHR ''{'', CHR ''|'', CHR ''}'', CHR ''~'', CHR 0x7F, CHR 0x80, CHR 0x81, CHR 0x82, CHR 0x83, CHR 0x84, CHR 0x85, CHR 0x86, CHR 0x87, CHR 0x88, CHR 0x89, CHR 0x8A, CHR 0x8B, CHR 0x8C, CHR 0x8D, CHR 0x8E, CHR 0x8F, CHR 0x90, CHR 0x91, CHR 0x92, CHR 0x93, CHR 0x94, CHR 0x95, CHR 0x96, CHR 0x97, CHR 0x98, CHR 0x99, CHR 0x9A, CHR 0x9B, CHR 0x9C, CHR 0x9D, CHR 0x9E, CHR 0x9F, CHR 0xA0, CHR 0xA1, CHR 0xA2, CHR 0xA3, CHR 0xA4, CHR 0xA5, CHR 0xA6, CHR 0xA7, CHR 0xA8, CHR 0xA9, CHR 0xAA, CHR 0xAB, CHR 0xAC, CHR 0xAD, CHR 0xAE, CHR 0xAF, CHR 0xB0, CHR 0xB1, CHR 0xB2, CHR 0xB3, CHR 0xB4, CHR 0xB5, CHR 0xB6, CHR 0xB7, CHR 0xB8, CHR 0xB9, CHR 0xBA, CHR 0xBB, CHR 0xBC, CHR 0xBD, CHR 0xBE, CHR 0xBF, CHR 0xC0, CHR 0xC1, CHR 0xC2, CHR 0xC3, CHR 0xC4, CHR 0xC5, CHR 0xC6, CHR 0xC7, CHR 0xC8, CHR 0xC9, CHR 0xCA, CHR 0xCB, CHR 0xCC, CHR 0xCD, CHR 0xCE, CHR 0xCF, CHR 0xD0, CHR 0xD1, CHR 0xD2, CHR 0xD3, CHR 0xD4, CHR 0xD5, CHR 0xD6, CHR 0xD7, CHR 0xD8, CHR 0xD9, CHR 0xDA, CHR 0xDB, CHR 0xDC, CHR 0xDD, CHR 0xDE, CHR 0xDF, CHR 0xE0, CHR 0xE1, CHR 0xE2, CHR 0xE3, CHR 0xE4, CHR 0xE5, CHR 0xE6, CHR 0xE7, CHR 0xE8, CHR 0xE9, CHR 0xEA, CHR 0xEB, CHR 0xEC, CHR 0xED, CHR 0xEE, CHR 0xEF, CHR 0xF0, CHR 0xF1, CHR 0xF2, CHR 0xF3, CHR 0xF4, CHR 0xF5, CHR 0xF6, CHR 0xF7, CHR 0xF8, CHR 0xF9, CHR 0xFA, CHR 0xFB, CHR 0xFC, CHR 0xFD, CHR 0xFE, CHR 0xFF]" definition "Enum.enum_all P \ list_all P (Enum.enum :: char list)" definition "Enum.enum_ex P \ list_ex P (Enum.enum :: char list)" lemma enum_char_unfold: "Enum.enum = map char_of [0..<256]" proof - have "map (of_char :: char \ nat) Enum.enum = [0..<256]" by (simp add: enum_char_def of_char_def upt_conv_Cons_Cons numeral_2_eq_2 [symmetric]) then have "map char_of (map (of_char :: char \ nat) Enum.enum) = map char_of [0..<256]" by simp then show ?thesis by simp qed instance proof show UNIV: "UNIV = set (Enum.enum :: char list)" by (simp add: enum_char_unfold UNIV_char_of_nat atLeast0LessThan) show "distinct (Enum.enum :: char list)" by (auto simp add: enum_char_unfold distinct_map intro: inj_onI) show "\P. Enum.enum_all P \ Ball (UNIV :: char set) P" by (simp add: UNIV enum_all_char_def list_all_iff) show "\P. Enum.enum_ex P \ Bex (UNIV :: char set) P" by (simp add: UNIV enum_ex_char_def list_ex_iff) qed end lemma linorder_char: "class.linorder (\c d. of_char c \ (of_char d :: nat)) (\c d. of_char c < (of_char d :: nat))" by standard auto text \Optimized version for execution\ definition char_of_integer :: "integer \ char" where [code_abbrev]: "char_of_integer = char_of" definition integer_of_char :: "char \ integer" where [code_abbrev]: "integer_of_char = of_char" lemma char_of_integer_code [code]: "char_of_integer k = (let (q0, b0) = bit_cut_integer k; (q1, b1) = bit_cut_integer q0; (q2, b2) = bit_cut_integer q1; (q3, b3) = bit_cut_integer q2; (q4, b4) = bit_cut_integer q3; (q5, b5) = bit_cut_integer q4; (q6, b6) = bit_cut_integer q5; (_, b7) = bit_cut_integer q6 in Char b0 b1 b2 b3 b4 b5 b6 b7)" by (simp add: bit_cut_integer_def char_of_integer_def char_of_def div_mult2_numeral_eq bit_iff_odd_drop_bit drop_bit_eq_div) lemma integer_of_char_code [code]: "integer_of_char (Char b0 b1 b2 b3 b4 b5 b6 b7) = ((((((of_bool b7 * 2 + of_bool b6) * 2 + of_bool b5) * 2 + of_bool b4) * 2 + of_bool b3) * 2 + of_bool b2) * 2 + of_bool b1) * 2 + of_bool b0" by (simp add: integer_of_char_def of_char_def) subsection \Strings as dedicated type for target language code generation\ subsubsection \Logical specification\ context begin qualified definition ascii_of :: "char \ char" where "ascii_of c = Char (digit0 c) (digit1 c) (digit2 c) (digit3 c) (digit4 c) (digit5 c) (digit6 c) False" qualified lemma ascii_of_Char [simp]: "ascii_of (Char b0 b1 b2 b3 b4 b5 b6 b7) = Char b0 b1 b2 b3 b4 b5 b6 False" by (simp add: ascii_of_def) qualified lemma not_digit7_ascii_of [simp]: "\ digit7 (ascii_of c)" by (simp add: ascii_of_def) qualified lemma ascii_of_idem: "ascii_of c = c" if "\ digit7 c" using that by (cases c) simp qualified lemma char_of_ascii_of [simp]: "of_char (ascii_of c) = take_bit 7 (of_char c :: nat)" by (cases c) (simp only: ascii_of_Char of_char_Char take_bit_horner_sum_bit_eq, simp) qualified typedef literal = "{cs. \c\set cs. \ digit7 c}" morphisms explode Abs_literal proof show "[] \ {cs. \c\set cs. \ digit7 c}" by simp qed qualified setup_lifting type_definition_literal qualified lift_definition implode :: "string \ literal" is "map ascii_of" by auto qualified lemma implode_explode_eq [simp]: "String.implode (String.explode s) = s" proof transfer fix cs show "map ascii_of cs = cs" if "\c\set cs. \ digit7 c" using that by (induction cs) (simp_all add: ascii_of_idem) qed qualified lemma explode_implode_eq [simp]: "String.explode (String.implode cs) = map ascii_of cs" by transfer rule end subsubsection \Syntactic representation\ text \ Logical ground representations for literals are: \<^enum> \0\ for the empty literal; \<^enum> \Literal b0 \ b6 s\ for a literal starting with one character and continued by another literal. Syntactic representations for literals are: \<^enum> Printable text as string prefixed with \STR\; \<^enum> A single ascii value as numerical hexadecimal value prefixed with \STR\. \ instantiation String.literal :: zero begin context begin qualified lift_definition zero_literal :: String.literal is Nil by simp instance .. end end context begin qualified abbreviation (output) empty_literal :: String.literal where "empty_literal \ 0" qualified lift_definition Literal :: "bool \ bool \ bool \ bool \ bool \ bool \ bool \ String.literal \ String.literal" is "\b0 b1 b2 b3 b4 b5 b6 cs. Char b0 b1 b2 b3 b4 b5 b6 False # cs" by auto qualified lemma Literal_eq_iff [simp]: "Literal b0 b1 b2 b3 b4 b5 b6 s = Literal c0 c1 c2 c3 c4 c5 c6 t \ (b0 \ c0) \ (b1 \ c1) \ (b2 \ c2) \ (b3 \ c3) \ (b4 \ c4) \ (b5 \ c5) \ (b6 \ c6) \ s = t" by transfer simp qualified lemma empty_neq_Literal [simp]: "empty_literal \ Literal b0 b1 b2 b3 b4 b5 b6 s" by transfer simp qualified lemma Literal_neq_empty [simp]: "Literal b0 b1 b2 b3 b4 b5 b6 s \ empty_literal" by transfer simp end code_datatype "0 :: String.literal" String.Literal syntax "_Literal" :: "str_position \ String.literal" ("STR _") "_Ascii" :: "num_const \ String.literal" ("STR _") ML_file \Tools/literal.ML\ subsubsection \Operations\ instantiation String.literal :: plus begin context begin qualified lift_definition plus_literal :: "String.literal \ String.literal \ String.literal" is "(@)" by auto instance .. end end instance String.literal :: monoid_add by (standard; transfer) simp_all instantiation String.literal :: size begin context includes literal.lifting begin lift_definition size_literal :: "String.literal \ nat" is length . end instance .. end instantiation String.literal :: equal begin context begin qualified lift_definition equal_literal :: "String.literal \ String.literal \ bool" is HOL.equal . instance by (standard; transfer) (simp add: equal) end end instantiation String.literal :: linorder begin context begin qualified lift_definition less_eq_literal :: "String.literal \ String.literal \ bool" is "ord.lexordp_eq (\c d. of_char c < (of_char d :: nat))" . qualified lift_definition less_literal :: "String.literal \ String.literal \ bool" is "ord.lexordp (\c d. of_char c < (of_char d :: nat))" . instance proof - from linorder_char interpret linorder "ord.lexordp_eq (\c d. of_char c < (of_char d :: nat))" "ord.lexordp (\c d. of_char c < (of_char d :: nat)) :: string \ string \ bool" by (rule linorder.lexordp_linorder) show "PROP ?thesis" by (standard; transfer) (simp_all add: less_le_not_le linear) qed end end lemma infinite_literal: "infinite (UNIV :: String.literal set)" proof - define S where "S = range (\n. replicate n CHR ''A'')" have "inj_on String.implode S" proof (rule inj_onI) fix cs ds assume "String.implode cs = String.implode ds" then have "String.explode (String.implode cs) = String.explode (String.implode ds)" by simp moreover assume "cs \ S" and "ds \ S" ultimately show "cs = ds" by (auto simp add: S_def) qed moreover have "infinite S" by (auto simp add: S_def dest: finite_range_imageI [of _ length]) ultimately have "infinite (String.implode ` S)" by (simp add: finite_image_iff) then show ?thesis by (auto intro: finite_subset) qed subsubsection \Executable conversions\ context begin qualified lift_definition asciis_of_literal :: "String.literal \ integer list" is "map of_char" . qualified lemma asciis_of_zero [simp, code]: "asciis_of_literal 0 = []" by transfer simp qualified lemma asciis_of_Literal [simp, code]: "asciis_of_literal (String.Literal b0 b1 b2 b3 b4 b5 b6 s) = of_char (Char b0 b1 b2 b3 b4 b5 b6 False) # asciis_of_literal s " by transfer simp qualified lift_definition literal_of_asciis :: "integer list \ String.literal" is "map (String.ascii_of \ char_of)" by auto qualified lemma literal_of_asciis_Nil [simp, code]: "literal_of_asciis [] = 0" by transfer simp qualified lemma literal_of_asciis_Cons [simp, code]: "literal_of_asciis (k # ks) = (case char_of k of Char b0 b1 b2 b3 b4 b5 b6 b7 \ String.Literal b0 b1 b2 b3 b4 b5 b6 (literal_of_asciis ks))" by (simp add: char_of_def) (transfer, simp add: char_of_def) qualified lemma literal_of_asciis_of_literal [simp]: "literal_of_asciis (asciis_of_literal s) = s" proof transfer fix cs assume "\c\set cs. \ digit7 c" then show "map (String.ascii_of \ char_of) (map of_char cs) = cs" by (induction cs) (simp_all add: String.ascii_of_idem) qed qualified lemma explode_code [code]: "String.explode s = map char_of (asciis_of_literal s)" by transfer simp qualified lemma implode_code [code]: "String.implode cs = literal_of_asciis (map of_char cs)" by transfer simp qualified lemma equal_literal [code]: "HOL.equal (String.Literal b0 b1 b2 b3 b4 b5 b6 s) (String.Literal a0 a1 a2 a3 a4 a5 a6 r) \ (b0 \ a0) \ (b1 \ a1) \ (b2 \ a2) \ (b3 \ a3) \ (b4 \ a4) \ (b5 \ a5) \ (b6 \ a6) \ (s = r)" by (simp add: equal) end subsubsection \Technical code generation setup\ text \Alternative constructor for generated computations\ context begin qualified definition Literal' :: "bool \ bool \ bool \ bool \ bool \ bool \ bool \ String.literal \ String.literal" where [simp]: "Literal' = String.Literal" lemma [code]: \Literal' b0 b1 b2 b3 b4 b5 b6 s = String.literal_of_asciis [foldr (\b k. of_bool b + k * 2) [b0, b1, b2, b3, b4, b5, b6] 0] + s\ proof - have \foldr (\b k. of_bool b + k * 2) [b0, b1, b2, b3, b4, b5, b6] 0 = of_char (Char b0 b1 b2 b3 b4 b5 b6 False)\ by simp moreover have \Literal' b0 b1 b2 b3 b4 b5 b6 s = String.literal_of_asciis [of_char (Char b0 b1 b2 b3 b4 b5 b6 False)] + s\ by (unfold Literal'_def) (transfer, simp only: list.simps comp_apply char_of_char, simp) ultimately show ?thesis by simp qed lemma [code_computation_unfold]: "String.Literal = Literal'" by simp end code_reserved SML string String Char List code_reserved OCaml string String Char List code_reserved Haskell Prelude code_reserved Scala string code_printing type_constructor String.literal \ (SML) "string" and (OCaml) "string" and (Haskell) "String" and (Scala) "String" | constant "STR ''''" \ (SML) "\"\"" and (OCaml) "\"\"" and (Haskell) "\"\"" and (Scala) "\"\"" setup \ fold Literal.add_code ["SML", "OCaml", "Haskell", "Scala"] \ code_printing constant "(+) :: String.literal \ String.literal \ String.literal" \ (SML) infixl 18 "^" and (OCaml) infixr 6 "^" and (Haskell) infixr 5 "++" and (Scala) infixl 7 "+" | constant String.literal_of_asciis \ (SML) "!(String.implode/ o List.map (fn k => if 0 <= k andalso k < 128 then (Char.chr o IntInf.toInt) k else raise Fail \"Non-ASCII character in literal\"))" and (OCaml) "!(let xs = _ and chr k = let l = Z.to'_int k in if 0 <= l && l < 128 then Char.chr l else failwith \"Non-ASCII character in literal\" in String.init (List.length xs) (List.nth (List.map chr xs)))" and (Haskell) "map/ (let chr k | (0 <= k && k < 128) = Prelude.toEnum k :: Prelude.Char in chr . Prelude.fromInteger)" and (Scala) "\"\"/ ++/ _.map((k: BigInt) => if (BigInt(0) <= k && k < BigInt(128)) k.charValue else sys.error(\"Non-ASCII character in literal\"))" | constant String.asciis_of_literal \ (SML) "!(List.map (fn c => let val k = Char.ord c in if k < 128 then IntInf.fromInt k else raise Fail \"Non-ASCII character in literal\" end) /o String.explode)" and (OCaml) "!(let s = _ in let rec exp i l = if i < 0 then l else exp (i - 1) (let k = Char.code (String.get s i) in if k < 128 then Z.of'_int k :: l else failwith \"Non-ASCII character in literal\") in exp (String.length s - 1) [])" and (Haskell) "map/ (let ord k | (k < 128) = Prelude.toInteger k in ord . (Prelude.fromEnum :: Prelude.Char -> Prelude.Int))" and (Scala) "!(_.toList.map(c => { val k: Int = c.toInt; if (k < 128) BigInt(k) else sys.error(\"Non-ASCII character in literal\") }))" | class_instance String.literal :: equal \ (Haskell) - | constant "HOL.equal :: String.literal \ String.literal \ bool" \ (SML) "!((_ : string) = _)" and (OCaml) "!((_ : string) = _)" and (Haskell) infix 4 "==" and (Scala) infixl 5 "==" | constant "(\) :: String.literal \ String.literal \ bool" \ (SML) "!((_ : string) <= _)" and (OCaml) "!((_ : string) <= _)" and (Haskell) infix 4 "<=" \ \Order operations for \<^typ>\String.literal\ work in Haskell only if no type class instance needs to be generated, because String = [Char] in Haskell and \<^typ>\char list\ need not have the same order as \<^typ>\String.literal\.\ and (Scala) infixl 4 "<=" and (Eval) infixl 6 "<=" | constant "(<) :: String.literal \ String.literal \ bool" \ (SML) "!((_ : string) < _)" and (OCaml) "!((_ : string) < _)" and (Haskell) infix 4 "<" and (Scala) infixl 4 "<" and (Eval) infixl 6 "<" subsubsection \Code generation utility\ setup \Sign.map_naming (Name_Space.mandatory_path "Code")\ definition abort :: "String.literal \ (unit \ 'a) \ 'a" where [simp]: "abort _ f = f ()" declare [[code drop: Code.abort]] lemma abort_cong: "msg = msg' \ Code.abort msg f = Code.abort msg' f" by simp setup \Sign.map_naming Name_Space.parent_path\ setup \Code_Simp.map_ss (Simplifier.add_cong @{thm Code.abort_cong})\ code_printing constant Code.abort \ (SML) "!(raise/ Fail/ _)" and (OCaml) "failwith" and (Haskell) "!(error/ ::/ forall a./ String -> (() -> a) -> a)" and (Scala) "!{/ sys.error((_));/ ((_)).apply(())/ }" subsubsection \Finally\ lifting_update literal.lifting lifting_forget literal.lifting end