diff --git a/src/HOL/Statespace/state_space.ML b/src/HOL/Statespace/state_space.ML --- a/src/HOL/Statespace/state_space.ML +++ b/src/HOL/Statespace/state_space.ML @@ -1,663 +1,663 @@ (* Title: HOL/Statespace/state_space.ML Author: Norbert Schirmer, TU Muenchen *) signature STATE_SPACE = sig val distinct_compsN : string val getN : string val putN : string val injectN : string val namespaceN : string val projectN : string val valuetypesN : string val namespace_definition : bstring -> typ -> (xstring, string) Expression.expr * (binding * string option * mixfix) list -> string list -> string list -> theory -> theory val define_statespace : string list -> string -> ((string * bool) * (string list * bstring * (string * string) list)) list -> (string * string) list -> theory -> theory val define_statespace_i : string option -> string list -> string -> ((string * bool) * (typ list * bstring * (string * string) list)) list -> (string * typ) list -> theory -> theory val statespace_decl : ((string list * bstring) * (((string * bool) * (string list * xstring * (bstring * bstring) list)) list * (bstring * string) list)) parser val neq_x_y : Proof.context -> term -> term -> thm option val distinctNameSolver : Simplifier.solver val distinctTree_tac : Proof.context -> int -> tactic val distinct_simproc : Simplifier.simproc val get_comp : Context.generic -> string -> (typ * string) option val get_silent : Context.generic -> bool val set_silent : bool -> Context.generic -> Context.generic val gen_lookup_tr : Proof.context -> term -> string -> term val lookup_swap_tr : Proof.context -> term list -> term val lookup_tr : Proof.context -> term list -> term val lookup_tr' : Proof.context -> term list -> term val gen_update_tr : bool -> Proof.context -> string -> term -> term -> term val update_tr : Proof.context -> term list -> term val update_tr' : Proof.context -> term list -> term end; structure StateSpace : STATE_SPACE = struct (* Names *) val distinct_compsN = "distinct_names" val namespaceN = "_namespace" val valuetypesN = "_valuetypes" val projectN = "project" val injectN = "inject" val getN = "get" val putN = "put" val project_injectL = "StateSpaceLocale.project_inject"; (* Library *) fun fold1 f xs = fold f (tl xs) (hd xs) fun fold1' f [] x = x | fold1' f xs _ = fold1 f xs fun sorted_subset eq [] ys = true | sorted_subset eq (x::xs) [] = false | sorted_subset eq (x::xs) (y::ys) = if eq (x,y) then sorted_subset eq xs ys else sorted_subset eq (x::xs) ys; type namespace_info = {declinfo: (typ*string) Termtab.table, (* type, name of statespace *) distinctthm: thm Symtab.table, silent: bool }; structure NameSpaceData = Generic_Data ( type T = namespace_info; val empty = {declinfo = Termtab.empty, distinctthm = Symtab.empty, silent = false}; val extend = I; fun merge ({declinfo=declinfo1, distinctthm=distinctthm1, silent=silent1}, {declinfo=declinfo2, distinctthm=distinctthm2, silent=silent2}) : T = {declinfo = Termtab.merge (K true) (declinfo1, declinfo2), distinctthm = Symtab.merge (K true) (distinctthm1, distinctthm2), silent = silent1 andalso silent2 (* FIXME odd merge *)} ); fun make_namespace_data declinfo distinctthm silent = {declinfo=declinfo,distinctthm=distinctthm,silent=silent}; fun update_declinfo (n,v) ctxt = let val {declinfo,distinctthm,silent} = NameSpaceData.get ctxt; in NameSpaceData.put (make_namespace_data (Termtab.update (n,v) declinfo) distinctthm silent) ctxt end; fun set_silent silent ctxt = let val {declinfo,distinctthm,...} = NameSpaceData.get ctxt; in NameSpaceData.put (make_namespace_data declinfo distinctthm silent) ctxt end; val get_silent = #silent o NameSpaceData.get; fun expression_no_pos (expr, fixes) : Expression.expression = (map (fn (name, inst) => ((name, Position.none), inst)) expr, fixes); fun prove_interpretation_in ctxt_tac (name, expr) thy = thy |> Interpretation.global_sublocale_cmd (name, Position.none) (expression_no_pos expr) [] |> Proof.global_terminal_proof ((Method.Basic (fn ctxt => SIMPLE_METHOD (ctxt_tac ctxt)), Position.no_range), NONE) |> Proof_Context.theory_of fun add_locale name expr elems thy = thy |> Expression.add_locale (Binding.name name) (Binding.name name) expr elems |> snd |> Local_Theory.exit; fun add_locale_cmd name expr elems thy = thy |> Expression.add_locale_cmd (Binding.name name) Binding.empty (expression_no_pos expr) elems |> snd |> Local_Theory.exit; type statespace_info = {args: (string * sort) list, (* type arguments *) parents: (typ list * string * string option list) list, (* type instantiation, state-space name, component renamings *) components: (string * typ) list, types: typ list (* range types of state space *) }; structure StateSpaceData = Generic_Data ( type T = statespace_info Symtab.table; val empty = Symtab.empty; val extend = I; fun merge data : T = Symtab.merge (K true) data; ); fun add_statespace name args parents components types ctxt = StateSpaceData.put (Symtab.update_new (name, {args=args,parents=parents, components=components,types=types}) (StateSpaceData.get ctxt)) ctxt; fun get_statespace ctxt name = Symtab.lookup (StateSpaceData.get ctxt) name; fun mk_free ctxt name = if Variable.is_fixed ctxt name orelse Variable.is_declared ctxt name then let val n' = Variable.intern_fixed ctxt name |> perhaps Long_Name.dest_hidden; in SOME (Free (n', Proof_Context.infer_type ctxt (n', dummyT))) end else NONE fun get_dist_thm ctxt name = Symtab.lookup (#distinctthm (NameSpaceData.get ctxt)) name; fun get_comp ctxt name = Option.mapPartial (Termtab.lookup (#declinfo (NameSpaceData.get ctxt))) (mk_free (Context.proof_of ctxt) name); (*** Tactics ***) fun neq_x_y ctxt x y = (let val dist_thm = the (get_dist_thm (Context.Proof ctxt) (#1 (dest_Free x))); val ctree = Thm.cprop_of dist_thm |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2; val tree = Thm.term_of ctree; val x_path = the (DistinctTreeProver.find_tree x tree); val y_path = the (DistinctTreeProver.find_tree y tree); val thm = DistinctTreeProver.distinctTreeProver ctxt dist_thm x_path y_path; in SOME thm end handle Option.Option => NONE) fun distinctTree_tac ctxt = SUBGOAL (fn (goal, i) => (case goal of Const (\<^const_name>\Trueprop\, _) $ (Const (\<^const_name>\Not\, _) $ (Const (\<^const_name>\HOL.eq\, _) $ (x as Free _) $ (y as Free _))) => (case neq_x_y ctxt x y of SOME neq => resolve_tac ctxt [neq] i | NONE => no_tac) | _ => no_tac)); val distinctNameSolver = mk_solver "distinctNameSolver" distinctTree_tac; val distinct_simproc = Simplifier.make_simproc \<^context> "StateSpace.distinct_simproc" {lhss = [\<^term>\x = y\], proc = fn _ => fn ctxt => fn ct => (case Thm.term_of ct of Const (\<^const_name>\HOL.eq\,_) $ (x as Free _) $ (y as Free _) => Option.map (fn neq => DistinctTreeProver.neq_to_eq_False OF [neq]) (neq_x_y ctxt x y) | _ => NONE)}; fun interprete_parent name dist_thm_name parent_expr thy = let fun solve_tac ctxt = CSUBGOAL (fn (goal, i) => let val distinct_thm = Proof_Context.get_thm ctxt dist_thm_name; val rule = DistinctTreeProver.distinct_implProver ctxt distinct_thm goal; in resolve_tac ctxt [rule] i end); fun tac ctxt = Locale.intro_locales_tac {strict = true, eager = true} ctxt [] THEN ALLGOALS (solve_tac ctxt); in thy |> prove_interpretation_in tac (name, parent_expr) end; fun namespace_definition name nameT parent_expr parent_comps new_comps thy = let val all_comps = parent_comps @ new_comps; val vars = (map (fn n => (Binding.name n, NONE, NoSyn)) all_comps); val dist_thm_name = distinct_compsN; val dist_thm_full_name = dist_thm_name; fun comps_of_thm thm = Thm.prop_of thm |> (fn (_$(_$t)) => DistinctTreeProver.dest_tree t) |> map (fst o dest_Free); fun type_attr phi = Thm.declaration_attribute (fn thm => fn context => (case context of Context.Theory _ => context | Context.Proof ctxt => let val {declinfo,distinctthm=tt,silent} = NameSpaceData.get context; val all_names = comps_of_thm thm; fun upd name tt = (case Symtab.lookup tt name of SOME dthm => if sorted_subset (op =) (comps_of_thm dthm) all_names then Symtab.update (name,thm) tt else tt | NONE => Symtab.update (name,thm) tt) val tt' = tt |> fold upd all_names; val context' = Context_Position.set_visible false ctxt addsimprocs [distinct_simproc] |> Context_Position.restore_visible ctxt |> Context.Proof |> NameSpaceData.put {declinfo=declinfo,distinctthm=tt',silent=silent}; in context' end)); val attr = Attrib.internal type_attr; val assume = ((Binding.name dist_thm_name, [attr]), [(HOLogic.Trueprop $ (Const (\<^const_name>\all_distinct\, Type (\<^type_name>\tree\, [nameT]) --> HOLogic.boolT) $ DistinctTreeProver.mk_tree (fn n => Free (n, nameT)) nameT (sort fast_string_ord all_comps)), [])]); in thy |> add_locale name ([], vars) [Element.Assumes [assume]] |> Proof_Context.theory_of |> interprete_parent name dist_thm_full_name parent_expr end; fun encode_dot x = if x = #"." then #"_" else x; fun encode_type (TFree (s, _)) = s | encode_type (TVar ((s,i),_)) = "?" ^ s ^ string_of_int i | encode_type (Type (n,Ts)) = let val Ts' = fold1' (fn x => fn y => x ^ "_" ^ y) (map encode_type Ts) ""; val n' = String.map encode_dot n; in if Ts'="" then n' else Ts' ^ "_" ^ n' end; fun project_name T = projectN ^"_"^encode_type T; fun inject_name T = injectN ^"_"^encode_type T; fun add_declaration name decl thy = thy |> Named_Target.init name - |> (fn lthy => Local_Theory.declaration {syntax = false, pervasive = false} (decl lthy) lthy) + |> (fn lthy => Local_Theory.declaration {syntax = true, pervasive = false} (decl lthy) lthy) |> Local_Theory.exit_global; fun parent_components thy (Ts, pname, renaming) = let val ctxt = Context.Theory thy; fun rename [] xs = xs | rename (NONE::rs) (x::xs) = x::rename rs xs | rename (SOME r::rs) ((x,T)::xs) = (r,T)::rename rs xs; val {args, parents, components, ...} = the (Symtab.lookup (StateSpaceData.get ctxt) pname); val inst = map fst args ~~ Ts; val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst); val parent_comps = maps (fn (Ts',n,rs) => parent_components thy (map subst Ts', n, rs)) parents; val all_comps = rename renaming (parent_comps @ map (apsnd subst) components); in all_comps end; fun statespace_definition state_type args name parents parent_comps components thy = let val full_name = Sign.full_bname thy name; val all_comps = parent_comps @ components; val components' = map (fn (n,T) => (n,(T,full_name))) components; fun parent_expr (prefix, (_, n, rs)) = (suffix namespaceN n, (prefix, (Expression.Positional rs,[]))); val parents_expr = map parent_expr parents; fun distinct_types Ts = let val tab = fold (fn T => fn tab => Typtab.update (T,()) tab) Ts Typtab.empty; in map fst (Typtab.dest tab) end; val Ts = distinct_types (map snd all_comps); val arg_names = map fst args; val valueN = singleton (Name.variant_list arg_names) "'value"; val nameN = singleton (Name.variant_list (valueN :: arg_names)) "'name"; val valueT = TFree (valueN, Sign.defaultS thy); val nameT = TFree (nameN, Sign.defaultS thy); val stateT = nameT --> valueT; fun projectT T = valueT --> T; fun injectT T = T --> valueT; val locinsts = map (fn T => (project_injectL, ((encode_type T,false),(Expression.Positional [SOME (Free (project_name T,projectT T)), SOME (Free ((inject_name T,injectT T)))],[])))) Ts; val locs = maps (fn T => [(Binding.name (project_name T),NONE,NoSyn), (Binding.name (inject_name T),NONE,NoSyn)]) Ts; val constrains = maps (fn T => [(project_name T,projectT T),(inject_name T,injectT T)]) Ts; fun interprete_parent_valuetypes (prefix, (Ts, pname, _)) thy = let val {args,types,...} = the (Symtab.lookup (StateSpaceData.get (Context.Theory thy)) pname); val inst = map fst args ~~ Ts; val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst); val pars = maps ((fn T => [project_name T,inject_name T]) o subst) types; val expr = ([(suffix valuetypesN name, (prefix, (Expression.Positional (map SOME pars),[])))],[]); in prove_interpretation_in (fn ctxt => ALLGOALS (solve_tac ctxt (Assumption.all_prems_of ctxt))) (suffix valuetypesN name, expr) thy end; fun interprete_parent (prefix, (_, pname, rs)) = let val expr = ([(pname, (prefix, (Expression.Positional rs,[])))],[]) in prove_interpretation_in (fn ctxt => Locale.intro_locales_tac {strict = true, eager = false} ctxt []) (full_name, expr) end; fun declare_declinfo updates lthy phi ctxt = let fun upd_prf ctxt = let fun upd (n,v) = let val nT = Proof_Context.infer_type (Local_Theory.target_of lthy) (n, dummyT) in Context.proof_map (update_declinfo (Morphism.term phi (Free (n,nT)),v)) end; in ctxt |> fold upd updates end; in Context.mapping I upd_prf ctxt end; fun string_of_typ T = Print_Mode.setmp [] (Syntax.string_of_typ (Config.put show_sorts true (Syntax.init_pretty_global thy))) T; val fixestate = (case state_type of NONE => [] | SOME s => let val fx = Element.Fixes [(Binding.name s,SOME (string_of_typ stateT),NoSyn)]; val cs = Element.Constrains (map (fn (n,T) => (n,string_of_typ T)) ((map (fn (n,_) => (n,nameT)) all_comps) @ constrains)) in [fx,cs] end ) in thy |> namespace_definition (suffix namespaceN name) nameT (parents_expr,[]) (map fst parent_comps) (map fst components) |> Context.theory_map (add_statespace full_name args (map snd parents) components []) |> add_locale (suffix valuetypesN name) (locinsts,locs) [] |> Proof_Context.theory_of |> fold interprete_parent_valuetypes parents |> add_locale_cmd name ([(suffix namespaceN full_name ,(("",false),(Expression.Named [],[]))), (suffix valuetypesN full_name,(("",false),(Expression.Named [],[])))],[]) fixestate |> Proof_Context.theory_of |> fold interprete_parent parents |> add_declaration full_name (declare_declinfo components') end; (* prepare arguments *) fun read_typ ctxt raw_T env = let val ctxt' = fold (Variable.declare_typ o TFree) env ctxt; val T = Syntax.read_typ ctxt' raw_T; val env' = Term.add_tfreesT T env; in (T, env') end; fun cert_typ ctxt raw_T env = let val thy = Proof_Context.theory_of ctxt; val T = Type.no_tvars (Sign.certify_typ thy raw_T) handle TYPE (msg, _, _) => error msg; val env' = Term.add_tfreesT T env; in (T, env') end; fun gen_define_statespace prep_typ state_space args name parents comps thy = let (* - args distinct - only args may occur in comps and parent-instantiations - number of insts must match parent args - no duplicate renamings - renaming should occur in namespace *) val _ = writeln ("Defining statespace " ^ quote name ^ " ..."); val ctxt = Proof_Context.init_global thy; fun add_parent (prefix, (Ts, pname, rs)) env = let val prefix' = (case prefix of ("", mandatory) => (pname, mandatory) | _ => prefix); val full_pname = Sign.full_bname thy pname; val {args,components,...} = (case get_statespace (Context.Theory thy) full_pname of SOME r => r | NONE => error ("Undefined statespace " ^ quote pname)); val (Ts',env') = fold_map (prep_typ ctxt) Ts env handle ERROR msg => cat_error msg ("The error(s) above occurred in parent statespace specification " ^ quote pname); val err_insts = if length args <> length Ts' then ["number of type instantiation(s) does not match arguments of parent statespace " ^ quote pname] else []; val rnames = map fst rs val err_dup_renamings = (case duplicates (op =) rnames of [] => [] | dups => ["Duplicate renaming(s) for " ^ commas dups]) val cnames = map fst components; val err_rename_unknowns = (case subtract (op =) cnames rnames of [] => [] | rs => ["Unknown components " ^ commas rs]); val rs' = map (AList.lookup (op =) rs o fst) components; val errs =err_insts @ err_dup_renamings @ err_rename_unknowns in if null errs then ((prefix', (Ts', full_pname, rs')), env') else error (cat_lines (errs @ ["in parent statespace " ^ quote pname])) end; val (parents',env) = fold_map add_parent parents []; val err_dup_args = (case duplicates (op =) args of [] => [] | dups => ["Duplicate type argument(s) " ^ commas dups]); val err_dup_components = (case duplicates (op =) (map fst comps) of [] => [] | dups => ["Duplicate state-space components " ^ commas dups]); fun prep_comp (n,T) env = let val (T', env') = prep_typ ctxt T env handle ERROR msg => cat_error msg ("The error(s) above occurred in component " ^ quote n) in ((n,T'), env') end; val (comps',env') = fold_map prep_comp comps env; val err_extra_frees = (case subtract (op =) args (map fst env') of [] => [] | extras => ["Extra free type variable(s) " ^ commas extras]); val defaultS = Sign.defaultS thy; val args' = map (fn x => (x, AList.lookup (op =) env x |> the_default defaultS)) args; fun fst_eq ((x:string,_),(y,_)) = x = y; fun snd_eq ((_,t:typ),(_,u)) = t = u; val raw_parent_comps = maps (parent_components thy o snd) parents'; fun check_type (n,T) = (case distinct (snd_eq) (filter (curry fst_eq (n,T)) raw_parent_comps) of [] => [] | [_] => [] | rs => ["Different types for component " ^ quote n ^ ": " ^ commas (map (Syntax.string_of_typ ctxt o snd) rs)]) val err_dup_types = maps check_type (duplicates fst_eq raw_parent_comps) val parent_comps = distinct (fst_eq) raw_parent_comps; val all_comps = parent_comps @ comps'; val err_comp_in_parent = (case duplicates (op =) (map fst all_comps) of [] => [] | xs => ["Components already defined in parents: " ^ commas_quote xs]); val errs = err_dup_args @ err_dup_components @ err_extra_frees @ err_dup_types @ err_comp_in_parent; in if null errs then thy |> statespace_definition state_space args' name parents' parent_comps comps' else error (cat_lines errs) end handle ERROR msg => cat_error msg ("Failed to define statespace " ^ quote name); val define_statespace = gen_define_statespace read_typ NONE; val define_statespace_i = gen_define_statespace cert_typ; (*** parse/print - translations ***) local fun map_get_comp f ctxt (Free (name,_)) = (case (get_comp ctxt name) of SOME (T,_) => f T T dummyT | NONE => (Syntax.free "arbitrary"(*; error "context not ready"*))) | map_get_comp _ _ _ = Syntax.free "arbitrary"; fun name_of (Free (n,_)) = n; in fun gen_lookup_tr ctxt s n = (case get_comp (Context.Proof ctxt) n of SOME (T, _) => Syntax.const \<^const_name>\StateFun.lookup\ $ Syntax.free (project_name T) $ Syntax.free n $ s | NONE => if get_silent (Context.Proof ctxt) then Syntax.const \<^const_name>\StateFun.lookup\ $ Syntax.const \<^const_syntax>\undefined\ $ Syntax.free n $ s else raise TERM ("StateSpace.gen_lookup_tr: component " ^ quote n ^ " not defined", [])); fun lookup_tr ctxt [s, x] = (case Term_Position.strip_positions x of Free (n,_) => gen_lookup_tr ctxt s n | _ => raise Match); fun lookup_swap_tr ctxt [Free (n,_),s] = gen_lookup_tr ctxt s n; fun lookup_tr' ctxt [_ $ Free (prj, _), n as (_ $ Free (name, _)), s] = (case get_comp (Context.Proof ctxt) name of SOME (T, _) => if prj = project_name T then Syntax.const "_statespace_lookup" $ s $ n else raise Match | NONE => raise Match) | lookup_tr' _ _ = raise Match; fun gen_update_tr id ctxt n v s = let fun pname T = if id then \<^const_name>\Fun.id\ else project_name T; fun iname T = if id then \<^const_name>\Fun.id\ else inject_name T; in (case get_comp (Context.Proof ctxt) n of SOME (T, _) => Syntax.const \<^const_name>\StateFun.update\ $ Syntax.free (pname T) $ Syntax.free (iname T) $ Syntax.free n $ (Syntax.const \<^const_name>\K_statefun\ $ v) $ s | NONE => if get_silent (Context.Proof ctxt) then Syntax.const \<^const_name>\StateFun.update\ $ Syntax.const \<^const_syntax>\undefined\ $ Syntax.const \<^const_syntax>\undefined\ $ Syntax.free n $ (Syntax.const \<^const_name>\K_statefun\ $ v) $ s else raise TERM ("StateSpace.gen_update_tr: component " ^ n ^ " not defined", [])) end; fun update_tr ctxt [s, x, v] = (case Term_Position.strip_positions x of Free (n, _) => gen_update_tr false ctxt n v s | _ => raise Match); fun update_tr' ctxt [_ $ Free (prj, _), _ $ Free (inj, _), n as (_ $ Free (name, _)), (Const (k, _) $ v), s] = if Long_Name.base_name k = Long_Name.base_name \<^const_name>\K_statefun\ then (case get_comp (Context.Proof ctxt) name of SOME (T, _) => if inj = inject_name T andalso prj = project_name T then Syntax.const "_statespace_update" $ s $ n $ v else raise Match | NONE => raise Match) else raise Match | update_tr' _ _ = raise Match; end; (*** outer syntax *) local val type_insts = Parse.typ >> single || \<^keyword>\(\ |-- Parse.!!! (Parse.list1 Parse.typ --| \<^keyword>\)\) val comp = Parse.name -- (\<^keyword>\::\ |-- Parse.!!! Parse.typ); fun plus1_unless test scan = scan ::: Scan.repeat (\<^keyword>\+\ |-- Scan.unless test (Parse.!!! scan)); val mapsto = \<^keyword>\=\; val rename = Parse.name -- (mapsto |-- Parse.name); val renames = Scan.optional (\<^keyword>\[\ |-- Parse.!!! (Parse.list1 rename --| \<^keyword>\]\)) []; val parent = Parse_Spec.locale_prefix -- ((type_insts -- Parse.name) || (Parse.name >> pair [])) -- renames >> (fn ((prefix, (insts, name)), renames) => (prefix, (insts, name, renames))); in val statespace_decl = Parse.type_args -- Parse.name -- (\<^keyword>\=\ |-- ((Scan.repeat1 comp >> pair []) || (plus1_unless comp parent -- Scan.optional (\<^keyword>\+\ |-- Parse.!!! (Scan.repeat1 comp)) []))); val _ = Outer_Syntax.command \<^command_keyword>\statespace\ "define state-space as locale context" (statespace_decl >> (fn ((args, name), (parents, comps)) => Toplevel.theory (define_statespace args name parents comps))); end; end;