diff --git a/src/HOL/Analysis/Affine.thy b/src/HOL/Analysis/Affine.thy --- a/src/HOL/Analysis/Affine.thy +++ b/src/HOL/Analysis/Affine.thy @@ -1,1657 +1,1638 @@ section "Affine Sets" theory Affine imports Linear_Algebra begin lemma if_smult: "(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by (fact if_distrib) lemma sum_delta_notmem: assumes "x \ s" shows "sum (\y. if (y = x) then P x else Q y) s = sum Q s" and "sum (\y. if (x = y) then P x else Q y) s = sum Q s" and "sum (\y. if (y = x) then P y else Q y) s = sum Q s" and "sum (\y. if (x = y) then P y else Q y) s = sum Q s" apply (rule_tac [!] sum.cong) using assms apply auto done lemmas independent_finite = independent_imp_finite lemma span_substd_basis: assumes d: "d \ Basis" shows "span d = {x. \i\Basis. i \ d \ x\i = 0}" (is "_ = ?B") proof - have "d \ ?B" using d by (auto simp: inner_Basis) moreover have s: "subspace ?B" using subspace_substandard[of "\i. i \ d"] . ultimately have "span d \ ?B" using span_mono[of d "?B"] span_eq_iff[of "?B"] by blast moreover have *: "card d \ dim (span d)" using independent_card_le_dim[of d "span d"] independent_substdbasis[OF assms] span_superset[of d] by auto moreover from * have "dim ?B \ dim (span d)" using dim_substandard[OF assms] by auto ultimately show ?thesis using s subspace_dim_equal[of "span d" "?B"] subspace_span[of d] by auto qed lemma basis_to_substdbasis_subspace_isomorphism: fixes B :: "'a::euclidean_space set" assumes "independent B" shows "\f d::'a set. card d = card B \ linear f \ f ` B = d \ f ` span B = {x. \i\Basis. i \ d \ x \ i = 0} \ inj_on f (span B) \ d \ Basis" proof - have B: "card B = dim B" using dim_unique[of B B "card B"] assms span_superset[of B] by auto have "dim B \ card (Basis :: 'a set)" using dim_subset_UNIV[of B] by simp from ex_card[OF this] obtain d :: "'a set" where d: "d \ Basis" and t: "card d = dim B" by auto let ?t = "{x::'a::euclidean_space. \i\Basis. i \ d \ x\i = 0}" have "\f. linear f \ f ` B = d \ f ` span B = ?t \ inj_on f (span B)" proof (intro basis_to_basis_subspace_isomorphism subspace_span subspace_substandard span_superset) show "d \ {x. \i\Basis. i \ d \ x \ i = 0}" using d inner_not_same_Basis by blast qed (auto simp: span_substd_basis independent_substdbasis dim_substandard d t B assms) with t \card B = dim B\ d show ?thesis by auto qed subsection \Affine set and affine hull\ definition\<^marker>\tag important\ affine :: "'a::real_vector set \ bool" where "affine s \ (\x\s. \y\s. \u v. u + v = 1 \ u *\<^sub>R x + v *\<^sub>R y \ s)" lemma affine_alt: "affine s \ (\x\s. \y\s. \u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \ s)" unfolding affine_def by (metis eq_diff_eq') lemma affine_empty [iff]: "affine {}" unfolding affine_def by auto lemma affine_sing [iff]: "affine {x}" unfolding affine_alt by (auto simp: scaleR_left_distrib [symmetric]) lemma affine_UNIV [iff]: "affine UNIV" unfolding affine_def by auto lemma affine_Inter [intro]: "(\s. s\f \ affine s) \ affine (\f)" unfolding affine_def by auto lemma affine_Int[intro]: "affine s \ affine t \ affine (s \ t)" unfolding affine_def by auto lemma affine_scaling: "affine s \ affine (image (\x. c *\<^sub>R x) s)" apply (clarsimp simp add: affine_def) apply (rule_tac x="u *\<^sub>R x + v *\<^sub>R y" in image_eqI) apply (auto simp: algebra_simps) done lemma affine_affine_hull [simp]: "affine(affine hull s)" unfolding hull_def using affine_Inter[of "{t. affine t \ s \ t}"] by auto lemma affine_hull_eq[simp]: "(affine hull s = s) \ affine s" by (metis affine_affine_hull hull_same) lemma affine_hyperplane: "affine {x. a \ x = b}" by (simp add: affine_def algebra_simps) (metis distrib_right mult.left_neutral) subsubsection\<^marker>\tag unimportant\ \Some explicit formulations\ text "Formalized by Lars Schewe." lemma affine: fixes V::"'a::real_vector set" shows "affine V \ (\S u. finite S \ S \ {} \ S \ V \ sum u S = 1 \ (\x\S. u x *\<^sub>R x) \ V)" proof - have "u *\<^sub>R x + v *\<^sub>R y \ V" if "x \ V" "y \ V" "u + v = (1::real)" and *: "\S u. \finite S; S \ {}; S \ V; sum u S = 1\ \ (\x\S. u x *\<^sub>R x) \ V" for x y u v proof (cases "x = y") case True then show ?thesis using that by (metis scaleR_add_left scaleR_one) next case False then show ?thesis using that *[of "{x,y}" "\w. if w = x then u else v"] by auto qed moreover have "(\x\S. u x *\<^sub>R x) \ V" if *: "\x y u v. \x\V; y\V; u + v = 1\ \ u *\<^sub>R x + v *\<^sub>R y \ V" and "finite S" "S \ {}" "S \ V" "sum u S = 1" for S u proof - define n where "n = card S" consider "card S = 0" | "card S = 1" | "card S = 2" | "card S > 2" by linarith then show "(\x\S. u x *\<^sub>R x) \ V" proof cases assume "card S = 1" then obtain a where "S={a}" by (auto simp: card_Suc_eq) then show ?thesis using that by simp next assume "card S = 2" then obtain a b where "S = {a, b}" by (metis Suc_1 card_1_singletonE card_Suc_eq) then show ?thesis using *[of a b] that by (auto simp: sum_clauses(2)) next assume "card S > 2" then show ?thesis using that n_def proof (induct n arbitrary: u S) case 0 then show ?case by auto next case (Suc n u S) have "sum u S = card S" if "\ (\x\S. u x \ 1)" using that unfolding card_eq_sum by auto with Suc.prems obtain x where "x \ S" and x: "u x \ 1" by force have c: "card (S - {x}) = card S - 1" by (simp add: Suc.prems(3) \x \ S\) have "sum u (S - {x}) = 1 - u x" by (simp add: Suc.prems sum_diff1 \x \ S\) with x have eq1: "inverse (1 - u x) * sum u (S - {x}) = 1" by auto have inV: "(\y\S - {x}. (inverse (1 - u x) * u y) *\<^sub>R y) \ V" proof (cases "card (S - {x}) > 2") case True then have S: "S - {x} \ {}" "card (S - {x}) = n" using Suc.prems c by force+ show ?thesis proof (rule Suc.hyps) show "(\a\S - {x}. inverse (1 - u x) * u a) = 1" by (auto simp: eq1 sum_distrib_left[symmetric]) qed (use S Suc.prems True in auto) next case False then have "card (S - {x}) = Suc (Suc 0)" using Suc.prems c by auto then obtain a b where ab: "(S - {x}) = {a, b}" "a\b" unfolding card_Suc_eq by auto then show ?thesis using eq1 \S \ V\ by (auto simp: sum_distrib_left distrib_left intro!: Suc.prems(2)[of a b]) qed have "u x + (1 - u x) = 1 \ u x *\<^sub>R x + (1 - u x) *\<^sub>R ((\y\S - {x}. u y *\<^sub>R y) /\<^sub>R (1 - u x)) \ V" by (rule Suc.prems) (use \x \ S\ Suc.prems inV in \auto simp: scaleR_right.sum\) moreover have "(\a\S. u a *\<^sub>R a) = u x *\<^sub>R x + (\a\S - {x}. u a *\<^sub>R a)" by (meson Suc.prems(3) sum.remove \x \ S\) ultimately show "(\x\S. u x *\<^sub>R x) \ V" by (simp add: x) qed qed (use \S\{}\ \finite S\ in auto) qed ultimately show ?thesis unfolding affine_def by meson qed lemma affine_hull_explicit: "affine hull p = {y. \S u. finite S \ S \ {} \ S \ p \ sum u S = 1 \ sum (\v. u v *\<^sub>R v) S = y}" (is "_ = ?rhs") proof (rule hull_unique) show "p \ ?rhs" proof (intro subsetI CollectI exI conjI) show "\x. sum (\z. 1) {x} = 1" by auto qed auto show "?rhs \ T" if "p \ T" "affine T" for T using that unfolding affine by blast show "affine ?rhs" unfolding affine_def proof clarify fix u v :: real and sx ux sy uy assume uv: "u + v = 1" and x: "finite sx" "sx \ {}" "sx \ p" "sum ux sx = (1::real)" and y: "finite sy" "sy \ {}" "sy \ p" "sum uy sy = (1::real)" have **: "(sx \ sy) \ sx = sx" "(sx \ sy) \ sy = sy" by auto show "\S w. finite S \ S \ {} \ S \ p \ sum w S = 1 \ (\v\S. w v *\<^sub>R v) = u *\<^sub>R (\v\sx. ux v *\<^sub>R v) + v *\<^sub>R (\v\sy. uy v *\<^sub>R v)" proof (intro exI conjI) show "finite (sx \ sy)" using x y by auto show "sum (\i. (if i\sx then u * ux i else 0) + (if i\sy then v * uy i else 0)) (sx \ sy) = 1" using x y uv by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] sum_distrib_left [symmetric] **) have "(\i\sx \ sy. ((if i \ sx then u * ux i else 0) + (if i \ sy then v * uy i else 0)) *\<^sub>R i) = (\i\sx. (u * ux i) *\<^sub>R i) + (\i\sy. (v * uy i) *\<^sub>R i)" using x y unfolding scaleR_left_distrib scaleR_zero_left if_smult by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] **) also have "\ = u *\<^sub>R (\v\sx. ux v *\<^sub>R v) + v *\<^sub>R (\v\sy. uy v *\<^sub>R v)" unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] by blast finally show "(\i\sx \ sy. ((if i \ sx then u * ux i else 0) + (if i \ sy then v * uy i else 0)) *\<^sub>R i) = u *\<^sub>R (\v\sx. ux v *\<^sub>R v) + v *\<^sub>R (\v\sy. uy v *\<^sub>R v)" . qed (use x y in auto) qed qed lemma affine_hull_finite: assumes "finite S" shows "affine hull S = {y. \u. sum u S = 1 \ sum (\v. u v *\<^sub>R v) S = y}" proof - have *: "\h. sum h S = 1 \ (\v\S. h v *\<^sub>R v) = x" if "F \ S" "finite F" "F \ {}" and sum: "sum u F = 1" and x: "(\v\F. u v *\<^sub>R v) = x" for x F u proof - have "S \ F = F" using that by auto show ?thesis proof (intro exI conjI) show "(\x\S. if x \ F then u x else 0) = 1" by (metis (mono_tags, lifting) \S \ F = F\ assms sum.inter_restrict sum) show "(\v\S. (if v \ F then u v else 0) *\<^sub>R v) = x" by (simp add: if_smult cong: if_cong) (metis (no_types) \S \ F = F\ assms sum.inter_restrict x) qed qed show ?thesis unfolding affine_hull_explicit using assms by (fastforce dest: *) qed subsubsection\<^marker>\tag unimportant\ \Stepping theorems and hence small special cases\ lemma affine_hull_empty[simp]: "affine hull {} = {}" by simp lemma affine_hull_finite_step: fixes y :: "'a::real_vector" shows "finite S \ (\u. sum u (insert a S) = w \ sum (\x. u x *\<^sub>R x) (insert a S) = y) \ (\v u. sum u S = w - v \ sum (\x. u x *\<^sub>R x) S = y - v *\<^sub>R a)" (is "_ \ ?lhs = ?rhs") proof - assume fin: "finite S" show "?lhs = ?rhs" proof assume ?lhs then obtain u where u: "sum u (insert a S) = w \ (\x\insert a S. u x *\<^sub>R x) = y" by auto show ?rhs proof (cases "a \ S") case True then show ?thesis using u by (simp add: insert_absorb) (metis diff_zero real_vector.scale_zero_left) next case False show ?thesis by (rule exI [where x="u a"]) (use u fin False in auto) qed next assume ?rhs then obtain v u where vu: "sum u S = w - v" "(\x\S. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto have *: "\x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto show ?lhs proof (cases "a \ S") case True show ?thesis by (rule exI [where x="\x. (if x=a then v else 0) + u x"]) (simp add: True scaleR_left_distrib sum.distrib sum_clauses fin vu * cong: if_cong) next case False then show ?thesis apply (rule_tac x="\x. if x=a then v else u x" in exI) apply (simp add: vu sum_clauses(2)[OF fin] *) by (simp add: sum_delta_notmem(3) vu) qed qed qed lemma affine_hull_2: fixes a b :: "'a::real_vector" shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs") proof - have *: "\x y z. z = x - y \ y + z = (x::real)" "\x y z. z = x - y \ y + z = (x::'a)" by auto have "?lhs = {y. \u. sum u {a, b} = 1 \ (\v\{a, b}. u v *\<^sub>R v) = y}" using affine_hull_finite[of "{a,b}"] by auto also have "\ = {y. \v u. u b = 1 - v \ u b *\<^sub>R b = y - v *\<^sub>R a}" by (simp add: affine_hull_finite_step[of "{b}" a]) also have "\ = ?rhs" unfolding * by auto finally show ?thesis by auto qed lemma affine_hull_3: fixes a b c :: "'a::real_vector" shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" proof - have *: "\x y z. z = x - y \ y + z = (x::real)" "\x y z. z = x - y \ y + z = (x::'a)" by auto show ?thesis apply (simp add: affine_hull_finite affine_hull_finite_step) unfolding * apply safe apply (metis add.assoc) apply (rule_tac x=u in exI, force) done qed lemma mem_affine: assumes "affine S" "x \ S" "y \ S" "u + v = 1" shows "u *\<^sub>R x + v *\<^sub>R y \ S" using assms affine_def[of S] by auto lemma mem_affine_3: assumes "affine S" "x \ S" "y \ S" "z \ S" "u + v + w = 1" shows "u *\<^sub>R x + v *\<^sub>R y + w *\<^sub>R z \ S" proof - have "u *\<^sub>R x + v *\<^sub>R y + w *\<^sub>R z \ affine hull {x, y, z}" using affine_hull_3[of x y z] assms by auto moreover have "affine hull {x, y, z} \ affine hull S" using hull_mono[of "{x, y, z}" "S"] assms by auto moreover have "affine hull S = S" using assms affine_hull_eq[of S] by auto ultimately show ?thesis by auto qed lemma mem_affine_3_minus: assumes "affine S" "x \ S" "y \ S" "z \ S" shows "x + v *\<^sub>R (y-z) \ S" using mem_affine_3[of S x y z 1 v "-v"] assms by (simp add: algebra_simps) corollary%unimportant mem_affine_3_minus2: "\affine S; x \ S; y \ S; z \ S\ \ x - v *\<^sub>R (y-z) \ S" by (metis add_uminus_conv_diff mem_affine_3_minus real_vector.scale_minus_left) subsubsection\<^marker>\tag unimportant\ \Some relations between affine hull and subspaces\ lemma affine_hull_insert_subset_span: "affine hull (insert a S) \ {a + v| v . v \ span {x - a | x . x \ S}}" proof - have "\v T u. x = a + v \ (finite T \ T \ {x - a |x. x \ S} \ (\v\T. u v *\<^sub>R v) = v)" if "finite F" "F \ {}" "F \ insert a S" "sum u F = 1" "(\v\F. u v *\<^sub>R v) = x" for x F u proof - have *: "(\x. x - a) ` (F - {a}) \ {x - a |x. x \ S}" using that by auto show ?thesis proof (intro exI conjI) show "finite ((\x. x - a) ` (F - {a}))" by (simp add: that(1)) show "(\v\(\x. x - a) ` (F - {a}). u(v+a) *\<^sub>R v) = x-a" by (simp add: sum.reindex[unfolded inj_on_def] algebra_simps sum_subtractf scaleR_left.sum[symmetric] sum_diff1 that) qed (use \F \ insert a S\ in auto) qed then show ?thesis unfolding affine_hull_explicit span_explicit by fast qed lemma affine_hull_insert_span: assumes "a \ S" shows "affine hull (insert a S) = {a + v | v . v \ span {x - a | x. x \ S}}" proof - have *: "\G u. finite G \ G \ {} \ G \ insert a S \ sum u G = 1 \ (\v\G. u v *\<^sub>R v) = y" if "v \ span {x - a |x. x \ S}" "y = a + v" for y v proof - from that obtain T u where u: "finite T" "T \ {x - a |x. x \ S}" "a + (\v\T. u v *\<^sub>R v) = y" unfolding span_explicit by auto define F where "F = (\x. x + a) ` T" have F: "finite F" "F \ S" "(\v\F. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding F_def using u by (auto simp: sum.reindex[unfolded inj_on_def]) have *: "F \ {a} = {}" "F \ - {a} = F" using F assms by auto show "\G u. finite G \ G \ {} \ G \ insert a S \ sum u G = 1 \ (\v\G. u v *\<^sub>R v) = y" apply (rule_tac x = "insert a F" in exI) apply (rule_tac x = "\x. if x=a then 1 - sum (\x. u (x - a)) F else u (x - a)" in exI) using assms F apply (auto simp: sum_clauses sum.If_cases if_smult sum_subtractf scaleR_left.sum algebra_simps *) done qed show ?thesis by (intro subset_antisym affine_hull_insert_subset_span) (auto simp: affine_hull_explicit dest!: *) qed lemma affine_hull_span: assumes "a \ S" shows "affine hull S = {a + v | v. v \ span {x - a | x. x \ S - {a}}}" using affine_hull_insert_span[of a "S - {a}", unfolded insert_Diff[OF assms]] by auto subsubsection\<^marker>\tag unimportant\ \Parallel affine sets\ definition affine_parallel :: "'a::real_vector set \ 'a::real_vector set \ bool" where "affine_parallel S T \ (\a. T = (\x. a + x) ` S)" lemma affine_parallel_expl_aux: fixes S T :: "'a::real_vector set" assumes "\x. x \ S \ a + x \ T" shows "T = (\x. a + x) ` S" proof - have "x \ ((\x. a + x) ` S)" if "x \ T" for x using that by (simp add: image_iff) (metis add.commute diff_add_cancel assms) moreover have "T \ (\x. a + x) ` S" using assms by auto ultimately show ?thesis by auto qed lemma affine_parallel_expl: "affine_parallel S T \ (\a. \x. x \ S \ a + x \ T)" by (auto simp add: affine_parallel_def) (use affine_parallel_expl_aux [of S _ T] in blast) lemma affine_parallel_reflex: "affine_parallel S S" unfolding affine_parallel_def using image_add_0 by blast lemma affine_parallel_commut: assumes "affine_parallel A B" shows "affine_parallel B A" proof - from assms obtain a where B: "B = (\x. a + x) ` A" unfolding affine_parallel_def by auto have [simp]: "(\x. x - a) = plus (- a)" by (simp add: fun_eq_iff) from B show ?thesis using translation_galois [of B a A] unfolding affine_parallel_def by blast qed lemma affine_parallel_assoc: assumes "affine_parallel A B" and "affine_parallel B C" shows "affine_parallel A C" proof - from assms obtain ab where "B = (\x. ab + x) ` A" unfolding affine_parallel_def by auto moreover from assms obtain bc where "C = (\x. bc + x) ` B" unfolding affine_parallel_def by auto ultimately show ?thesis using translation_assoc[of bc ab A] unfolding affine_parallel_def by auto qed lemma affine_translation_aux: fixes a :: "'a::real_vector" assumes "affine ((\x. a + x) ` S)" shows "affine S" proof - { fix x y u v assume xy: "x \ S" "y \ S" "(u :: real) + v = 1" then have "(a + x) \ ((\x. a + x) ` S)" "(a + y) \ ((\x. a + x) ` S)" by auto then have h1: "u *\<^sub>R (a + x) + v *\<^sub>R (a + y) \ (\x. a + x) ` S" using xy assms unfolding affine_def by auto have "u *\<^sub>R (a + x) + v *\<^sub>R (a + y) = (u + v) *\<^sub>R a + (u *\<^sub>R x + v *\<^sub>R y)" by (simp add: algebra_simps) also have "\ = a + (u *\<^sub>R x + v *\<^sub>R y)" using \u + v = 1\ by auto ultimately have "a + (u *\<^sub>R x + v *\<^sub>R y) \ (\x. a + x) ` S" using h1 by auto then have "u *\<^sub>R x + v *\<^sub>R y \ S" by auto } then show ?thesis unfolding affine_def by auto qed lemma affine_translation: "affine S \ affine ((+) a ` S)" for a :: "'a::real_vector" proof show "affine ((+) a ` S)" if "affine S" using that translation_assoc [of "- a" a S] by (auto intro: affine_translation_aux [of "- a" "((+) a ` S)"]) show "affine S" if "affine ((+) a ` S)" using that by (rule affine_translation_aux) qed lemma parallel_is_affine: fixes S T :: "'a::real_vector set" assumes "affine S" "affine_parallel S T" shows "affine T" proof - from assms obtain a where "T = (\x. a + x) ` S" unfolding affine_parallel_def by auto then show ?thesis using affine_translation assms by auto qed lemma subspace_imp_affine: "subspace s \ affine s" unfolding subspace_def affine_def by auto lemma affine_hull_subset_span: "(affine hull s) \ (span s)" by (metis hull_minimal span_superset subspace_imp_affine subspace_span) subsubsection\<^marker>\tag unimportant\ \Subspace parallel to an affine set\ lemma subspace_affine: "subspace S \ affine S \ 0 \ S" proof - have h0: "subspace S \ affine S \ 0 \ S" using subspace_imp_affine[of S] subspace_0 by auto { assume assm: "affine S \ 0 \ S" { fix c :: real fix x assume x: "x \ S" have "c *\<^sub>R x = (1-c) *\<^sub>R 0 + c *\<^sub>R x" by auto moreover have "(1 - c) *\<^sub>R 0 + c *\<^sub>R x \ S" using affine_alt[of S] assm x by auto ultimately have "c *\<^sub>R x \ S" by auto } then have h1: "\c. \x \ S. c *\<^sub>R x \ S" by auto { fix x y assume xy: "x \ S" "y \ S" define u where "u = (1 :: real)/2" have "(1/2) *\<^sub>R (x+y) = (1/2) *\<^sub>R (x+y)" by auto moreover have "(1/2) *\<^sub>R (x+y)=(1/2) *\<^sub>R x + (1-(1/2)) *\<^sub>R y" by (simp add: algebra_simps) moreover have "(1 - u) *\<^sub>R x + u *\<^sub>R y \ S" using affine_alt[of S] assm xy by auto ultimately have "(1/2) *\<^sub>R (x+y) \ S" using u_def by auto moreover have "x + y = 2 *\<^sub>R ((1/2) *\<^sub>R (x+y))" by auto ultimately have "x + y \ S" using h1[rule_format, of "(1/2) *\<^sub>R (x+y)" "2"] by auto } then have "\x \ S. \y \ S. x + y \ S" by auto then have "subspace S" using h1 assm unfolding subspace_def by auto } then show ?thesis using h0 by metis qed lemma affine_diffs_subspace: assumes "affine S" "a \ S" shows "subspace ((\x. (-a)+x) ` S)" proof - have [simp]: "(\x. x - a) = plus (- a)" by (simp add: fun_eq_iff) have "affine ((\x. (-a)+x) ` S)" using affine_translation assms by blast moreover have "0 \ ((\x. (-a)+x) ` S)" using assms exI[of "(\x. x\S \ -a+x = 0)" a] by auto ultimately show ?thesis using subspace_affine by auto qed lemma affine_diffs_subspace_subtract: "subspace ((\x. x - a) ` S)" if "affine S" "a \ S" using that affine_diffs_subspace [of _ a] by simp lemma parallel_subspace_explicit: assumes "affine S" and "a \ S" assumes "L \ {y. \x \ S. (-a) + x = y}" shows "subspace L \ affine_parallel S L" proof - from assms have "L = plus (- a) ` S" by auto then have par: "affine_parallel S L" unfolding affine_parallel_def .. then have "affine L" using assms parallel_is_affine by auto moreover have "0 \ L" using assms by auto ultimately show ?thesis using subspace_affine par by auto qed lemma parallel_subspace_aux: assumes "subspace A" and "subspace B" and "affine_parallel A B" shows "A \ B" proof - from assms obtain a where a: "\x. x \ A \ a + x \ B" using affine_parallel_expl[of A B] by auto then have "-a \ A" using assms subspace_0[of B] by auto then have "a \ A" using assms subspace_neg[of A "-a"] by auto then show ?thesis using assms a unfolding subspace_def by auto qed lemma parallel_subspace: assumes "subspace A" and "subspace B" and "affine_parallel A B" shows "A = B" proof show "A \ B" using assms parallel_subspace_aux by auto show "A \ B" using assms parallel_subspace_aux[of B A] affine_parallel_commut by auto qed lemma affine_parallel_subspace: assumes "affine S" "S \ {}" shows "\!L. subspace L \ affine_parallel S L" proof - have ex: "\L. subspace L \ affine_parallel S L" using assms parallel_subspace_explicit by auto { fix L1 L2 assume ass: "subspace L1 \ affine_parallel S L1" "subspace L2 \ affine_parallel S L2" then have "affine_parallel L1 L2" using affine_parallel_commut[of S L1] affine_parallel_assoc[of L1 S L2] by auto then have "L1 = L2" using ass parallel_subspace by auto } then show ?thesis using ex by auto qed subsection \Affine Dependence\ text "Formalized by Lars Schewe." definition\<^marker>\tag important\ affine_dependent :: "'a::real_vector set \ bool" where "affine_dependent s \ (\x\s. x \ affine hull (s - {x}))" lemma affine_dependent_imp_dependent: "affine_dependent s \ dependent s" unfolding affine_dependent_def dependent_def using affine_hull_subset_span by auto lemma affine_dependent_subset: "\affine_dependent s; s \ t\ \ affine_dependent t" apply (simp add: affine_dependent_def Bex_def) apply (blast dest: hull_mono [OF Diff_mono [OF _ subset_refl]]) done lemma affine_independent_subset: shows "\\ affine_dependent t; s \ t\ \ \ affine_dependent s" by (metis affine_dependent_subset) lemma affine_independent_Diff: "\ affine_dependent s \ \ affine_dependent(s - t)" by (meson Diff_subset affine_dependent_subset) proposition affine_dependent_explicit: "affine_dependent p \ (\S u. finite S \ S \ p \ sum u S = 0 \ (\v\S. u v \ 0) \ sum (\v. u v *\<^sub>R v) S = 0)" proof - have "\S u. finite S \ S \ p \ sum u S = 0 \ (\v\S. u v \ 0) \ (\w\S. u w *\<^sub>R w) = 0" if "(\w\S. u w *\<^sub>R w) = x" "x \ p" "finite S" "S \ {}" "S \ p - {x}" "sum u S = 1" for x S u proof (intro exI conjI) have "x \ S" using that by auto then show "(\v \ insert x S. if v = x then - 1 else u v) = 0" using that by (simp add: sum_delta_notmem) show "(\w \ insert x S. (if w = x then - 1 else u w) *\<^sub>R w) = 0" using that \x \ S\ by (simp add: if_smult sum_delta_notmem cong: if_cong) qed (use that in auto) moreover have "\x\p. \S u. finite S \ S \ {} \ S \ p - {x} \ sum u S = 1 \ (\v\S. u v *\<^sub>R v) = x" if "(\v\S. u v *\<^sub>R v) = 0" "finite S" "S \ p" "sum u S = 0" "v \ S" "u v \ 0" for S u v proof (intro bexI exI conjI) have "S \ {v}" using that by auto then show "S - {v} \ {}" using that by auto show "(\x \ S - {v}. - (1 / u v) * u x) = 1" unfolding sum_distrib_left[symmetric] sum_diff1[OF \finite S\] by (simp add: that) show "(\x\S - {v}. (- (1 / u v) * u x) *\<^sub>R x) = v" unfolding sum_distrib_left [symmetric] scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] sum_diff1[OF \finite S\] using that by auto show "S - {v} \ p - {v}" using that by auto qed (use that in auto) ultimately show ?thesis unfolding affine_dependent_def affine_hull_explicit by auto qed lemma affine_dependent_explicit_finite: fixes S :: "'a::real_vector set" assumes "finite S" shows "affine_dependent S \ (\u. sum u S = 0 \ (\v\S. u v \ 0) \ sum (\v. u v *\<^sub>R v) S = 0)" (is "?lhs = ?rhs") proof have *: "\vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else 0::'a)" by auto assume ?lhs then obtain t u v where "finite t" "t \ S" "sum u t = 0" "v\t" "u v \ 0" "(\v\t. u v *\<^sub>R v) = 0" unfolding affine_dependent_explicit by auto then show ?rhs apply (rule_tac x="\x. if x\t then u x else 0" in exI) apply (auto simp: * sum.inter_restrict[OF assms, symmetric] Int_absorb1[OF \t\S\]) done next assume ?rhs then obtain u v where "sum u S = 0" "v\S" "u v \ 0" "(\v\S. u v *\<^sub>R v) = 0" by auto then show ?lhs unfolding affine_dependent_explicit using assms by auto qed lemma dependent_imp_affine_dependent: assumes "dependent {x - a| x . x \ s}" and "a \ s" shows "affine_dependent (insert a s)" proof - from assms(1)[unfolded dependent_explicit] obtain S u v where obt: "finite S" "S \ {x - a |x. x \ s}" "v\S" "u v \ 0" "(\v\S. u v *\<^sub>R v) = 0" by auto define t where "t = (\x. x + a) ` S" have inj: "inj_on (\x. x + a) S" unfolding inj_on_def by auto have "0 \ S" using obt(2) assms(2) unfolding subset_eq by auto have fin: "finite t" and "t \ s" unfolding t_def using obt(1,2) by auto then have "finite (insert a t)" and "insert a t \ insert a s" by auto moreover have *: "\P Q. (\x\t. (if x = a then P x else Q x)) = (\x\t. Q x)" apply (rule sum.cong) using \a\s\ \t\s\ apply auto done have "(\x\insert a t. if x = a then - (\x\t. u (x - a)) else u (x - a)) = 0" unfolding sum_clauses(2)[OF fin] * using \a\s\ \t\s\ by auto moreover have "\v\insert a t. (if v = a then - (\x\t. u (x - a)) else u (v - a)) \ 0" using obt(3,4) \0\S\ by (rule_tac x="v + a" in bexI) (auto simp: t_def) moreover have *: "\P Q. (\x\t. (if x = a then P x else Q x) *\<^sub>R x) = (\x\t. Q x *\<^sub>R x)" using \a\s\ \t\s\ by (auto intro!: sum.cong) have "(\x\t. u (x - a)) *\<^sub>R a = (\v\t. u (v - a) *\<^sub>R v)" unfolding scaleR_left.sum unfolding t_def and sum.reindex[OF inj] and o_def using obt(5) by (auto simp: sum.distrib scaleR_right_distrib) then have "(\v\insert a t. (if v = a then - (\x\t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0" unfolding sum_clauses(2)[OF fin] using \a\s\ \t\s\ by (auto simp: *) ultimately show ?thesis unfolding affine_dependent_explicit apply (rule_tac x="insert a t" in exI, auto) done qed lemma affine_dependent_biggerset: fixes s :: "'a::euclidean_space set" assumes "finite s" "card s \ DIM('a) + 2" shows "affine_dependent s" proof - have "s \ {}" using assms by auto then obtain a where "a\s" by auto have *: "{x - a |x. x \ s - {a}} = (\x. x - a) ` (s - {a})" by auto have "card {x - a |x. x \ s - {a}} = card (s - {a})" unfolding * by (simp add: card_image inj_on_def) also have "\ > DIM('a)" using assms(2) unfolding card_Diff_singleton[OF assms(1) \a\s\] by auto finally show ?thesis apply (subst insert_Diff[OF \a\s\, symmetric]) apply (rule dependent_imp_affine_dependent) apply (rule dependent_biggerset, auto) done qed lemma affine_dependent_biggerset_general: assumes "finite (S :: 'a::euclidean_space set)" and "card S \ dim S + 2" shows "affine_dependent S" proof - from assms(2) have "S \ {}" by auto then obtain a where "a\S" by auto have *: "{x - a |x. x \ S - {a}} = (\x. x - a) ` (S - {a})" by auto have **: "card {x - a |x. x \ S - {a}} = card (S - {a})" by (metis (no_types, lifting) "*" card_image diff_add_cancel inj_on_def) have "dim {x - a |x. x \ S - {a}} \ dim S" using \a\S\ by (auto simp: span_base span_diff intro: subset_le_dim) also have "\ < dim S + 1" by auto also have "\ \ card (S - {a})" using assms using card_Diff_singleton[OF assms(1) \a\S\] by auto finally show ?thesis apply (subst insert_Diff[OF \a\S\, symmetric]) apply (rule dependent_imp_affine_dependent) apply (rule dependent_biggerset_general) unfolding ** apply auto done qed subsection\<^marker>\tag unimportant\ \Some Properties of Affine Dependent Sets\ lemma affine_independent_0 [simp]: "\ affine_dependent {}" by (simp add: affine_dependent_def) lemma affine_independent_1 [simp]: "\ affine_dependent {a}" by (simp add: affine_dependent_def) lemma affine_independent_2 [simp]: "\ affine_dependent {a,b}" by (simp add: affine_dependent_def insert_Diff_if hull_same) lemma affine_hull_translation: "affine hull ((\x. a + x) ` S) = (\x. a + x) ` (affine hull S)" proof - have "affine ((\x. a + x) ` (affine hull S))" using affine_translation affine_affine_hull by blast moreover have "(\x. a + x) ` S \ (\x. a + x) ` (affine hull S)" using hull_subset[of S] by auto ultimately have h1: "affine hull ((\x. a + x) ` S) \ (\x. a + x) ` (affine hull S)" by (metis hull_minimal) have "affine((\x. -a + x) ` (affine hull ((\x. a + x) ` S)))" using affine_translation affine_affine_hull by blast moreover have "(\x. -a + x) ` (\x. a + x) ` S \ (\x. -a + x) ` (affine hull ((\x. a + x) ` S))" using hull_subset[of "(\x. a + x) ` S"] by auto moreover have "S = (\x. -a + x) ` (\x. a + x) ` S" using translation_assoc[of "-a" a] by auto ultimately have "(\x. -a + x) ` (affine hull ((\x. a + x) ` S)) >= (affine hull S)" by (metis hull_minimal) then have "affine hull ((\x. a + x) ` S) >= (\x. a + x) ` (affine hull S)" by auto then show ?thesis using h1 by auto qed lemma affine_dependent_translation: assumes "affine_dependent S" shows "affine_dependent ((\x. a + x) ` S)" proof - obtain x where x: "x \ S \ x \ affine hull (S - {x})" using assms affine_dependent_def by auto have "(+) a ` (S - {x}) = (+) a ` S - {a + x}" by auto then have "a + x \ affine hull ((\x. a + x) ` S - {a + x})" using affine_hull_translation[of a "S - {x}"] x by auto moreover have "a + x \ (\x. a + x) ` S" using x by auto ultimately show ?thesis unfolding affine_dependent_def by auto qed lemma affine_dependent_translation_eq: "affine_dependent S \ affine_dependent ((\x. a + x) ` S)" proof - { assume "affine_dependent ((\x. a + x) ` S)" then have "affine_dependent S" using affine_dependent_translation[of "((\x. a + x) ` S)" "-a"] translation_assoc[of "-a" a] by auto } then show ?thesis using affine_dependent_translation by auto qed lemma affine_hull_0_dependent: assumes "0 \ affine hull S" shows "dependent S" proof - obtain s u where s_u: "finite s \ s \ {} \ s \ S \ sum u s = 1 \ (\v\s. u v *\<^sub>R v) = 0" using assms affine_hull_explicit[of S] by auto then have "\v\s. u v \ 0" by auto then have "finite s \ s \ S \ (\v\s. u v \ 0 \ (\v\s. u v *\<^sub>R v) = 0)" using s_u by auto then show ?thesis unfolding dependent_explicit[of S] by auto qed lemma affine_dependent_imp_dependent2: assumes "affine_dependent (insert 0 S)" shows "dependent S" proof - obtain x where x: "x \ insert 0 S \ x \ affine hull (insert 0 S - {x})" using affine_dependent_def[of "(insert 0 S)"] assms by blast then have "x \ span (insert 0 S - {x})" using affine_hull_subset_span by auto moreover have "span (insert 0 S - {x}) = span (S - {x})" using insert_Diff_if[of "0" S "{x}"] span_insert_0[of "S-{x}"] by auto ultimately have "x \ span (S - {x})" by auto then have "x \ 0 \ dependent S" using x dependent_def by auto moreover { assume "x = 0" then have "0 \ affine hull S" using x hull_mono[of "S - {0}" S] by auto then have "dependent S" using affine_hull_0_dependent by auto } ultimately show ?thesis by auto qed lemma affine_dependent_iff_dependent: assumes "a \ S" shows "affine_dependent (insert a S) \ dependent ((\x. -a + x) ` S)" proof - have "((+) (- a) ` S) = {x - a| x . x \ S}" by auto then show ?thesis using affine_dependent_translation_eq[of "(insert a S)" "-a"] affine_dependent_imp_dependent2 assms dependent_imp_affine_dependent[of a S] by (auto simp del: uminus_add_conv_diff) qed lemma affine_dependent_iff_dependent2: assumes "a \ S" shows "affine_dependent S \ dependent ((\x. -a + x) ` (S-{a}))" proof - have "insert a (S - {a}) = S" using assms by auto then show ?thesis using assms affine_dependent_iff_dependent[of a "S-{a}"] by auto qed lemma affine_hull_insert_span_gen: "affine hull (insert a s) = (\x. a + x) ` span ((\x. - a + x) ` s)" proof - have h1: "{x - a |x. x \ s} = ((\x. -a+x) ` s)" by auto { assume "a \ s" then have ?thesis using affine_hull_insert_span[of a s] h1 by auto } moreover { assume a1: "a \ s" have "\x. x \ s \ -a+x=0" apply (rule exI[of _ a]) using a1 apply auto done then have "insert 0 ((\x. -a+x) ` (s - {a})) = (\x. -a+x) ` s" by auto then have "span ((\x. -a+x) ` (s - {a}))=span ((\x. -a+x) ` s)" using span_insert_0[of "(+) (- a) ` (s - {a})"] by (auto simp del: uminus_add_conv_diff) moreover have "{x - a |x. x \ (s - {a})} = ((\x. -a+x) ` (s - {a}))" by auto moreover have "insert a (s - {a}) = insert a s" by auto ultimately have ?thesis using affine_hull_insert_span[of "a" "s-{a}"] by auto } ultimately show ?thesis by auto qed lemma affine_hull_span2: assumes "a \ s" shows "affine hull s = (\x. a+x) ` span ((\x. -a+x) ` (s-{a}))" using affine_hull_insert_span_gen[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto lemma affine_hull_span_gen: assumes "a \ affine hull s" shows "affine hull s = (\x. a+x) ` span ((\x. -a+x) ` s)" proof - have "affine hull (insert a s) = affine hull s" using hull_redundant[of a affine s] assms by auto then show ?thesis using affine_hull_insert_span_gen[of a "s"] by auto qed lemma affine_hull_span_0: assumes "0 \ affine hull S" shows "affine hull S = span S" using affine_hull_span_gen[of "0" S] assms by auto lemma extend_to_affine_basis_nonempty: fixes S V :: "'n::real_vector set" assumes "\ affine_dependent S" "S \ V" "S \ {}" shows "\T. \ affine_dependent T \ S \ T \ T \ V \ affine hull T = affine hull V" proof - obtain a where a: "a \ S" using assms by auto then have h0: "independent ((\x. -a + x) ` (S-{a}))" using affine_dependent_iff_dependent2 assms by auto obtain B where B: "(\x. -a+x) ` (S - {a}) \ B \ B \ (\x. -a+x) ` V \ independent B \ (\x. -a+x) ` V \ span B" using assms by (blast intro: maximal_independent_subset_extend[OF _ h0, of "(\x. -a + x) ` V"]) define T where "T = (\x. a+x) ` insert 0 B" then have "T = insert a ((\x. a+x) ` B)" by auto then have "affine hull T = (\x. a+x) ` span B" using affine_hull_insert_span_gen[of a "((\x. a+x) ` B)"] translation_assoc[of "-a" a B] by auto then have "V \ affine hull T" using B assms translation_inverse_subset[of a V "span B"] by auto moreover have "T \ V" using T_def B a assms by auto ultimately have "affine hull T = affine hull V" by (metis Int_absorb1 Int_absorb2 hull_hull hull_mono) moreover have "S \ T" using T_def B translation_inverse_subset[of a "S-{a}" B] by auto moreover have "\ affine_dependent T" using T_def affine_dependent_translation_eq[of "insert 0 B"] affine_dependent_imp_dependent2 B by auto ultimately show ?thesis using \T \ V\ by auto qed lemma affine_basis_exists: fixes V :: "'n::real_vector set" shows "\B. B \ V \ \ affine_dependent B \ affine hull V = affine hull B" proof (cases "V = {}") case True then show ?thesis using affine_independent_0 by auto next case False then obtain x where "x \ V" by auto then show ?thesis using affine_dependent_def[of "{x}"] extend_to_affine_basis_nonempty[of "{x}" V] by auto qed proposition extend_to_affine_basis: fixes S V :: "'n::real_vector set" assumes "\ affine_dependent S" "S \ V" obtains T where "\ affine_dependent T" "S \ T" "T \ V" "affine hull T = affine hull V" proof (cases "S = {}") case True then show ?thesis using affine_basis_exists by (metis empty_subsetI that) next case False then show ?thesis by (metis assms extend_to_affine_basis_nonempty that) qed subsection \Affine Dimension of a Set\ definition\<^marker>\tag important\ aff_dim :: "('a::euclidean_space) set \ int" where "aff_dim V = (SOME d :: int. \B. affine hull B = affine hull V \ \ affine_dependent B \ of_nat (card B) = d + 1)" lemma aff_dim_basis_exists: fixes V :: "('n::euclidean_space) set" shows "\B. affine hull B = affine hull V \ \ affine_dependent B \ of_nat (card B) = aff_dim V + 1" proof - obtain B where "\ affine_dependent B \ affine hull B = affine hull V" using affine_basis_exists[of V] by auto then show ?thesis unfolding aff_dim_def some_eq_ex[of "\d. \B. affine hull B = affine hull V \ \ affine_dependent B \ of_nat (card B) = d + 1"] apply auto apply (rule exI[of _ "int (card B) - (1 :: int)"]) apply (rule exI[of _ "B"], auto) done qed lemma affine_hull_eq_empty [simp]: "affine hull S = {} \ S = {}" by (metis affine_empty subset_empty subset_hull) lemma empty_eq_affine_hull[simp]: "{} = affine hull S \ S = {}" by (metis affine_hull_eq_empty) lemma aff_dim_parallel_subspace_aux: fixes B :: "'n::euclidean_space set" assumes "\ affine_dependent B" "a \ B" shows "finite B \ ((card B) - 1 = dim (span ((\x. -a+x) ` (B-{a}))))" proof - have "independent ((\x. -a + x) ` (B-{a}))" using affine_dependent_iff_dependent2 assms by auto then have fin: "dim (span ((\x. -a+x) ` (B-{a}))) = card ((\x. -a + x) ` (B-{a}))" "finite ((\x. -a + x) ` (B - {a}))" using indep_card_eq_dim_span[of "(\x. -a+x) ` (B-{a})"] by auto show ?thesis proof (cases "(\x. -a + x) ` (B - {a}) = {}") case True have "B = insert a ((\x. a + x) ` (\x. -a + x) ` (B - {a}))" using translation_assoc[of "a" "-a" "(B - {a})"] assms by auto then have "B = {a}" using True by auto then show ?thesis using assms fin by auto next case False then have "card ((\x. -a + x) ` (B - {a})) > 0" using fin by auto moreover have h1: "card ((\x. -a + x) ` (B-{a})) = card (B-{a})" by (rule card_image) (use translate_inj_on in blast) ultimately have "card (B-{a}) > 0" by auto then have *: "finite (B - {a})" using card_gt_0_iff[of "(B - {a})"] by auto then have "card (B - {a}) = card B - 1" using card_Diff_singleton assms by auto with * show ?thesis using fin h1 by auto qed qed lemma aff_dim_parallel_subspace: fixes V L :: "'n::euclidean_space set" assumes "V \ {}" and "subspace L" and "affine_parallel (affine hull V) L" shows "aff_dim V = int (dim L)" proof - obtain B where B: "affine hull B = affine hull V \ \ affine_dependent B \ int (card B) = aff_dim V + 1" using aff_dim_basis_exists by auto then have "B \ {}" using assms B by auto then obtain a where a: "a \ B" by auto define Lb where "Lb = span ((\x. -a+x) ` (B-{a}))" moreover have "affine_parallel (affine hull B) Lb" using Lb_def B assms affine_hull_span2[of a B] a affine_parallel_commut[of "Lb" "(affine hull B)"] unfolding affine_parallel_def by auto moreover have "subspace Lb" using Lb_def subspace_span by auto moreover have "affine hull B \ {}" using assms B by auto ultimately have "L = Lb" using assms affine_parallel_subspace[of "affine hull B"] affine_affine_hull[of B] B by auto then have "dim L = dim Lb" by auto moreover have "card B - 1 = dim Lb" and "finite B" using Lb_def aff_dim_parallel_subspace_aux a B by auto ultimately show ?thesis using B \B \ {}\ card_gt_0_iff[of B] by auto qed lemma aff_independent_finite: fixes B :: "'n::euclidean_space set" assumes "\ affine_dependent B" shows "finite B" proof - { assume "B \ {}" then obtain a where "a \ B" by auto then have ?thesis using aff_dim_parallel_subspace_aux assms by auto } then show ?thesis by auto qed lemma aff_dim_empty: fixes S :: "'n::euclidean_space set" shows "S = {} \ aff_dim S = -1" proof - obtain B where *: "affine hull B = affine hull S" and "\ affine_dependent B" and "int (card B) = aff_dim S + 1" using aff_dim_basis_exists by auto moreover from * have "S = {} \ B = {}" by auto ultimately show ?thesis using aff_independent_finite[of B] card_gt_0_iff[of B] by auto qed lemma aff_dim_empty_eq [simp]: "aff_dim ({}::'a::euclidean_space set) = -1" by (simp add: aff_dim_empty [symmetric]) lemma aff_dim_affine_hull [simp]: "aff_dim (affine hull S) = aff_dim S" unfolding aff_dim_def using hull_hull[of _ S] by auto lemma aff_dim_affine_hull2: assumes "affine hull S = affine hull T" shows "aff_dim S = aff_dim T" unfolding aff_dim_def using assms by auto lemma aff_dim_unique: fixes B V :: "'n::euclidean_space set" assumes "affine hull B = affine hull V \ \ affine_dependent B" shows "of_nat (card B) = aff_dim V + 1" proof (cases "B = {}") case True then have "V = {}" using assms by auto then have "aff_dim V = (-1::int)" using aff_dim_empty by auto then show ?thesis using \B = {}\ by auto next case False then obtain a where a: "a \ B" by auto define Lb where "Lb = span ((\x. -a+x) ` (B-{a}))" have "affine_parallel (affine hull B) Lb" using Lb_def affine_hull_span2[of a B] a affine_parallel_commut[of "Lb" "(affine hull B)"] unfolding affine_parallel_def by auto moreover have "subspace Lb" using Lb_def subspace_span by auto ultimately have "aff_dim B = int(dim Lb)" using aff_dim_parallel_subspace[of B Lb] \B \ {}\ by auto moreover have "(card B) - 1 = dim Lb" "finite B" using Lb_def aff_dim_parallel_subspace_aux a assms by auto ultimately have "of_nat (card B) = aff_dim B + 1" using \B \ {}\ card_gt_0_iff[of B] by auto then show ?thesis using aff_dim_affine_hull2 assms by auto qed lemma aff_dim_affine_independent: fixes B :: "'n::euclidean_space set" assumes "\ affine_dependent B" shows "of_nat (card B) = aff_dim B + 1" using aff_dim_unique[of B B] assms by auto lemma affine_independent_iff_card: fixes s :: "'a::euclidean_space set" shows "\ affine_dependent s \ finite s \ aff_dim s = int(card s) - 1" apply (rule iffI) apply (simp add: aff_dim_affine_independent aff_independent_finite) by (metis affine_basis_exists [of s] aff_dim_unique card_subset_eq diff_add_cancel of_nat_eq_iff) lemma aff_dim_sing [simp]: fixes a :: "'n::euclidean_space" shows "aff_dim {a} = 0" using aff_dim_affine_independent[of "{a}"] affine_independent_1 by auto lemma aff_dim_2 [simp]: fixes a :: "'n::euclidean_space" shows "aff_dim {a,b} = (if a = b then 0 else 1)" proof (clarsimp) assume "a \ b" then have "aff_dim{a,b} = card{a,b} - 1" using affine_independent_2 [of a b] aff_dim_affine_independent by fastforce also have "\ = 1" using \a \ b\ by simp finally show "aff_dim {a, b} = 1" . qed lemma aff_dim_inner_basis_exists: fixes V :: "('n::euclidean_space) set" shows "\B. B \ V \ affine hull B = affine hull V \ \ affine_dependent B \ of_nat (card B) = aff_dim V + 1" proof - obtain B where B: "\ affine_dependent B" "B \ V" "affine hull B = affine hull V" using affine_basis_exists[of V] by auto then have "of_nat(card B) = aff_dim V+1" using aff_dim_unique by auto with B show ?thesis by auto qed lemma aff_dim_le_card: fixes V :: "'n::euclidean_space set" assumes "finite V" shows "aff_dim V \ of_nat (card V) - 1" proof - obtain B where B: "B \ V" "of_nat (card B) = aff_dim V + 1" using aff_dim_inner_basis_exists[of V] by auto then have "card B \ card V" using assms card_mono by auto with B show ?thesis by auto qed lemma aff_dim_parallel_eq: fixes S T :: "'n::euclidean_space set" assumes "affine_parallel (affine hull S) (affine hull T)" shows "aff_dim S = aff_dim T" proof - { assume "T \ {}" "S \ {}" then obtain L where L: "subspace L \ affine_parallel (affine hull T) L" using affine_parallel_subspace[of "affine hull T"] affine_affine_hull[of T] by auto then have "aff_dim T = int (dim L)" using aff_dim_parallel_subspace \T \ {}\ by auto moreover have *: "subspace L \ affine_parallel (affine hull S) L" using L affine_parallel_assoc[of "affine hull S" "affine hull T" L] assms by auto moreover from * have "aff_dim S = int (dim L)" using aff_dim_parallel_subspace \S \ {}\ by auto ultimately have ?thesis by auto } moreover { assume "S = {}" then have "S = {}" and "T = {}" using assms unfolding affine_parallel_def by auto then have ?thesis using aff_dim_empty by auto } moreover { assume "T = {}" then have "S = {}" and "T = {}" using assms unfolding affine_parallel_def by auto then have ?thesis using aff_dim_empty by auto } ultimately show ?thesis by blast qed lemma aff_dim_translation_eq: "aff_dim ((+) a ` S) = aff_dim S" for a :: "'n::euclidean_space" proof - have "affine_parallel (affine hull S) (affine hull ((\x. a + x) ` S))" unfolding affine_parallel_def apply (rule exI[of _ "a"]) using affine_hull_translation[of a S] apply auto done then show ?thesis using aff_dim_parallel_eq[of S "(\x. a + x) ` S"] by auto qed lemma aff_dim_translation_eq_subtract: "aff_dim ((\x. x - a) ` S) = aff_dim S" for a :: "'n::euclidean_space" using aff_dim_translation_eq [of "- a"] by (simp cong: image_cong_simp) lemma aff_dim_affine: fixes S L :: "'n::euclidean_space set" assumes "S \ {}" and "affine S" and "subspace L" and "affine_parallel S L" shows "aff_dim S = int (dim L)" proof - have *: "affine hull S = S" using assms affine_hull_eq[of S] by auto then have "affine_parallel (affine hull S) L" using assms by (simp add: *) then show ?thesis using assms aff_dim_parallel_subspace[of S L] by blast qed lemma dim_affine_hull: fixes S :: "'n::euclidean_space set" shows "dim (affine hull S) = dim S" proof - have "dim (affine hull S) \ dim S" using dim_subset by auto moreover have "dim (span S) \ dim (affine hull S)" using dim_subset affine_hull_subset_span by blast moreover have "dim (span S) = dim S" using dim_span by auto ultimately show ?thesis by auto qed lemma aff_dim_subspace: fixes S :: "'n::euclidean_space set" assumes "subspace S" shows "aff_dim S = int (dim S)" proof (cases "S={}") case True with assms show ?thesis by (simp add: subspace_affine) next case False with aff_dim_affine[of S S] assms subspace_imp_affine[of S] affine_parallel_reflex[of S] subspace_affine show ?thesis by auto qed lemma aff_dim_zero: fixes S :: "'n::euclidean_space set" assumes "0 \ affine hull S" shows "aff_dim S = int (dim S)" proof - have "subspace (affine hull S)" using subspace_affine[of "affine hull S"] affine_affine_hull assms by auto then have "aff_dim (affine hull S) = int (dim (affine hull S))" using assms aff_dim_subspace[of "affine hull S"] by auto then show ?thesis using aff_dim_affine_hull[of S] dim_affine_hull[of S] by auto qed lemma aff_dim_eq_dim: "aff_dim S = int (dim ((+) (- a) ` S))" if "a \ affine hull S" for S :: "'n::euclidean_space set" proof - have "0 \ affine hull (+) (- a) ` S" unfolding affine_hull_translation using that by (simp add: ac_simps) with aff_dim_zero show ?thesis by (metis aff_dim_translation_eq) qed lemma aff_dim_eq_dim_subtract: "aff_dim S = int (dim ((\x. x - a) ` S))" if "a \ affine hull S" for S :: "'n::euclidean_space set" using aff_dim_eq_dim [of a] that by (simp cong: image_cong_simp) lemma aff_dim_UNIV [simp]: "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))" using aff_dim_subspace[of "(UNIV :: 'n::euclidean_space set)"] dim_UNIV[where 'a="'n::euclidean_space"] by auto lemma aff_dim_geq: fixes V :: "'n::euclidean_space set" shows "aff_dim V \ -1" proof - obtain B where "affine hull B = affine hull V" and "\ affine_dependent B" and "int (card B) = aff_dim V + 1" using aff_dim_basis_exists by auto then show ?thesis by auto qed lemma aff_dim_negative_iff [simp]: fixes S :: "'n::euclidean_space set" shows "aff_dim S < 0 \S = {}" by (metis aff_dim_empty aff_dim_geq diff_0 eq_iff zle_diff1_eq) lemma aff_lowdim_subset_hyperplane: fixes S :: "'a::euclidean_space set" assumes "aff_dim S < DIM('a)" obtains a b where "a \ 0" "S \ {x. a \ x = b}" proof (cases "S={}") case True moreover have "(SOME b. b \ Basis) \ 0" by (metis norm_some_Basis norm_zero zero_neq_one) ultimately show ?thesis using that by blast next case False then obtain c S' where "c \ S'" "S = insert c S'" by (meson equals0I mk_disjoint_insert) have "dim ((+) (-c) ` S) < DIM('a)" by (metis \S = insert c S'\ aff_dim_eq_dim assms hull_inc insertI1 of_nat_less_imp_less) then obtain a where "a \ 0" "span ((+) (-c) ` S) \ {x. a \ x = 0}" using lowdim_subset_hyperplane by blast moreover have "a \ w = a \ c" if "span ((+) (- c) ` S) \ {x. a \ x = 0}" "w \ S" for w proof - have "w-c \ span ((+) (- c) ` S)" by (simp add: span_base \w \ S\) with that have "w-c \ {x. a \ x = 0}" by blast then show ?thesis by (auto simp: algebra_simps) qed ultimately have "S \ {x. a \ x = a \ c}" by blast then show ?thesis by (rule that[OF \a \ 0\]) qed lemma affine_independent_card_dim_diffs: fixes S :: "'a :: euclidean_space set" assumes "\ affine_dependent S" "a \ S" - shows "card S = dim {x - a|x. x \ S} + 1" + shows "card S = dim ((\x. x - a) ` S) + 1" proof - - have 1: "{b - a|b. b \ (S - {a})} \ {x - a|x. x \ S}" by auto - have 2: "x - a \ span {b - a |b. b \ S - {a}}" if "x \ S" for x - proof (cases "x = a") - case True then show ?thesis by (simp add: span_clauses) - next - case False then show ?thesis - using assms by (blast intro: span_base that) - qed - have "\ affine_dependent (insert a S)" + have non: "\ affine_dependent (insert a S)" by (simp add: assms insert_absorb) - then have 3: "independent {b - a |b. b \ S - {a}}" - using dependent_imp_affine_dependent by fastforce - have "{b - a |b. b \ S - {a}} = (\b. b-a) ` (S - {a})" - by blast - then have "card {b - a |b. b \ S - {a}} = card ((\b. b-a) ` (S - {a}))" - by simp - also have "\ = card (S - {a})" - by (metis (no_types, lifting) card_image diff_add_cancel inj_onI) - also have "\ = card S - 1" - by (simp add: aff_independent_finite assms) - finally have 4: "card {b - a |b. b \ S - {a}} = card S - 1" . have "finite S" by (meson assms aff_independent_finite) with \a \ S\ have "card S \ 0" by auto - moreover have "dim {x - a |x. x \ S} = card S - 1" - using 2 by (blast intro: dim_unique [OF 1 _ 3 4]) + moreover have "dim ((\x. x - a) ` S) = card S - 1" + using aff_dim_eq_dim_subtract aff_dim_unique \a \ S\ hull_inc insert_absorb non by fastforce ultimately show ?thesis by auto qed lemma independent_card_le_aff_dim: fixes B :: "'n::euclidean_space set" assumes "B \ V" assumes "\ affine_dependent B" shows "int (card B) \ aff_dim V + 1" proof - obtain T where T: "\ affine_dependent T \ B \ T \ T \ V \ affine hull T = affine hull V" by (metis assms extend_to_affine_basis[of B V]) then have "of_nat (card T) = aff_dim V + 1" using aff_dim_unique by auto then show ?thesis using T card_mono[of T B] aff_independent_finite[of T] by auto qed lemma aff_dim_subset: fixes S T :: "'n::euclidean_space set" assumes "S \ T" shows "aff_dim S \ aff_dim T" proof - obtain B where B: "\ affine_dependent B" "B \ S" "affine hull B = affine hull S" "of_nat (card B) = aff_dim S + 1" using aff_dim_inner_basis_exists[of S] by auto then have "int (card B) \ aff_dim T + 1" using assms independent_card_le_aff_dim[of B T] by auto with B show ?thesis by auto qed lemma aff_dim_le_DIM: fixes S :: "'n::euclidean_space set" shows "aff_dim S \ int (DIM('n))" proof - have "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))" using aff_dim_UNIV by auto then show "aff_dim (S:: 'n::euclidean_space set) \ int(DIM('n))" using aff_dim_subset[of S "(UNIV :: ('n::euclidean_space) set)"] subset_UNIV by auto qed lemma affine_dim_equal: fixes S :: "'n::euclidean_space set" assumes "affine S" "affine T" "S \ {}" "S \ T" "aff_dim S = aff_dim T" shows "S = T" proof - obtain a where "a \ S" using assms by auto then have "a \ T" using assms by auto define LS where "LS = {y. \x \ S. (-a) + x = y}" then have ls: "subspace LS" "affine_parallel S LS" using assms parallel_subspace_explicit[of S a LS] \a \ S\ by auto then have h1: "int(dim LS) = aff_dim S" using assms aff_dim_affine[of S LS] by auto have "T \ {}" using assms by auto define LT where "LT = {y. \x \ T. (-a) + x = y}" then have lt: "subspace LT \ affine_parallel T LT" using assms parallel_subspace_explicit[of T a LT] \a \ T\ by auto then have "int(dim LT) = aff_dim T" using assms aff_dim_affine[of T LT] \T \ {}\ by auto then have "dim LS = dim LT" using h1 assms by auto moreover have "LS \ LT" using LS_def LT_def assms by auto ultimately have "LS = LT" using subspace_dim_equal[of LS LT] ls lt by auto moreover have "S = {x. \y \ LS. a+y=x}" using LS_def by auto moreover have "T = {x. \y \ LT. a+y=x}" using LT_def by auto ultimately show ?thesis by auto qed lemma aff_dim_eq_0: fixes S :: "'a::euclidean_space set" shows "aff_dim S = 0 \ (\a. S = {a})" proof (cases "S = {}") case True then show ?thesis by auto next case False then obtain a where "a \ S" by auto show ?thesis proof safe assume 0: "aff_dim S = 0" have "\ {a,b} \ S" if "b \ a" for b by (metis "0" aff_dim_2 aff_dim_subset not_one_le_zero that) then show "\a. S = {a}" using \a \ S\ by blast qed auto qed lemma affine_hull_UNIV: fixes S :: "'n::euclidean_space set" assumes "aff_dim S = int(DIM('n))" shows "affine hull S = (UNIV :: ('n::euclidean_space) set)" proof - have "S \ {}" using assms aff_dim_empty[of S] by auto have h0: "S \ affine hull S" using hull_subset[of S _] by auto have h1: "aff_dim (UNIV :: ('n::euclidean_space) set) = aff_dim S" using aff_dim_UNIV assms by auto then have h2: "aff_dim (affine hull S) \ aff_dim (UNIV :: ('n::euclidean_space) set)" using aff_dim_le_DIM[of "affine hull S"] assms h0 by auto have h3: "aff_dim S \ aff_dim (affine hull S)" using h0 aff_dim_subset[of S "affine hull S"] assms by auto then have h4: "aff_dim (affine hull S) = aff_dim (UNIV :: ('n::euclidean_space) set)" using h0 h1 h2 by auto then show ?thesis using affine_dim_equal[of "affine hull S" "(UNIV :: ('n::euclidean_space) set)"] affine_affine_hull[of S] affine_UNIV assms h4 h0 \S \ {}\ by auto qed lemma disjoint_affine_hull: fixes s :: "'n::euclidean_space set" assumes "\ affine_dependent s" "t \ s" "u \ s" "t \ u = {}" shows "(affine hull t) \ (affine hull u) = {}" proof - have "finite s" using assms by (simp add: aff_independent_finite) then have "finite t" "finite u" using assms finite_subset by blast+ { fix y assume yt: "y \ affine hull t" and yu: "y \ affine hull u" then obtain a b where a1 [simp]: "sum a t = 1" and [simp]: "sum (\v. a v *\<^sub>R v) t = y" and [simp]: "sum b u = 1" "sum (\v. b v *\<^sub>R v) u = y" by (auto simp: affine_hull_finite \finite t\ \finite u\) define c where "c x = (if x \ t then a x else if x \ u then -(b x) else 0)" for x have [simp]: "s \ t = t" "s \ - t \ u = u" using assms by auto have "sum c s = 0" by (simp add: c_def comm_monoid_add_class.sum.If_cases \finite s\ sum_negf) moreover have "\ (\v\s. c v = 0)" by (metis (no_types) IntD1 \s \ t = t\ a1 c_def sum.neutral zero_neq_one) moreover have "(\v\s. c v *\<^sub>R v) = 0" by (simp add: c_def if_smult sum_negf comm_monoid_add_class.sum.If_cases \finite s\) ultimately have False using assms \finite s\ by (auto simp: affine_dependent_explicit) } then show ?thesis by blast qed end \ No newline at end of file diff --git a/src/HOL/Analysis/Starlike.thy b/src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy +++ b/src/HOL/Analysis/Starlike.thy @@ -1,6397 +1,6404 @@ (* Title: HOL/Analysis/Starlike.thy Author: L C Paulson, University of Cambridge Author: Robert Himmelmann, TU Muenchen Author: Bogdan Grechuk, University of Edinburgh Author: Armin Heller, TU Muenchen Author: Johannes Hoelzl, TU Muenchen *) chapter \Unsorted\ theory Starlike imports Convex_Euclidean_Space Line_Segment begin lemma affine_hull_closed_segment [simp]: "affine hull (closed_segment a b) = affine hull {a,b}" by (simp add: segment_convex_hull) lemma affine_hull_open_segment [simp]: fixes a :: "'a::euclidean_space" shows "affine hull (open_segment a b) = (if a = b then {} else affine hull {a,b})" by (metis affine_hull_convex_hull affine_hull_empty closure_open_segment closure_same_affine_hull segment_convex_hull) lemma rel_interior_closure_convex_segment: fixes S :: "_::euclidean_space set" assumes "convex S" "a \ rel_interior S" "b \ closure S" shows "open_segment a b \ rel_interior S" proof fix x have [simp]: "(1 - u) *\<^sub>R a + u *\<^sub>R b = b - (1 - u) *\<^sub>R (b - a)" for u by (simp add: algebra_simps) assume "x \ open_segment a b" then show "x \ rel_interior S" unfolding closed_segment_def open_segment_def using assms by (auto intro: rel_interior_closure_convex_shrink) qed lemma convex_hull_insert_segments: "convex hull (insert a S) = (if S = {} then {a} else \x \ convex hull S. closed_segment a x)" by (force simp add: convex_hull_insert_alt in_segment) lemma Int_convex_hull_insert_rel_exterior: fixes z :: "'a::euclidean_space" assumes "convex C" "T \ C" and z: "z \ rel_interior C" and dis: "disjnt S (rel_interior C)" shows "S \ (convex hull (insert z T)) = S \ (convex hull T)" (is "?lhs = ?rhs") proof have "T = {} \ z \ S" using dis z by (auto simp add: disjnt_def) then show "?lhs \ ?rhs" proof (clarsimp simp add: convex_hull_insert_segments) fix x y assume "x \ S" and y: "y \ convex hull T" and "x \ closed_segment z y" have "y \ closure C" by (metis y \convex C\ \T \ C\ closure_subset contra_subsetD convex_hull_eq hull_mono) moreover have "x \ rel_interior C" by (meson \x \ S\ dis disjnt_iff) moreover have "x \ open_segment z y \ {z, y}" using \x \ closed_segment z y\ closed_segment_eq_open by blast ultimately show "x \ convex hull T" using rel_interior_closure_convex_segment [OF \convex C\ z] using y z by blast qed show "?rhs \ ?lhs" by (meson hull_mono inf_mono subset_insertI subset_refl) qed subsection\<^marker>\tag unimportant\ \Shrinking towards the interior of a convex set\ lemma mem_interior_convex_shrink: fixes S :: "'a::euclidean_space set" assumes "convex S" and "c \ interior S" and "x \ S" and "0 < e" and "e \ 1" shows "x - e *\<^sub>R (x - c) \ interior S" proof - obtain d where "d > 0" and d: "ball c d \ S" using assms(2) unfolding mem_interior by auto show ?thesis unfolding mem_interior proof (intro exI subsetI conjI) fix y assume "y \ ball (x - e *\<^sub>R (x - c)) (e*d)" then have as: "dist (x - e *\<^sub>R (x - c)) y < e * d" by simp have *: "y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using \e > 0\ by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib) have "c - ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = (1 / e) *\<^sub>R (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)" using \e > 0\ by (auto simp add: euclidean_eq_iff[where 'a='a] field_simps inner_simps) then have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = \1/e\ * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)" by (simp add: dist_norm) also have "\ = \1/e\ * norm (x - e *\<^sub>R (x - c) - y)" by (auto intro!:arg_cong[where f=norm] simp add: algebra_simps) also have "\ < d" using as[unfolded dist_norm] and \e > 0\ by (auto simp add:pos_divide_less_eq[OF \e > 0\] mult.commute) finally have "(1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x \ S" using assms(3-5) d by (intro convexD_alt [OF \convex S\]) (auto intro: convexD_alt [OF \convex S\]) with \e > 0\ show "y \ S" by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib) qed (use \e>0\ \d>0\ in auto) qed lemma mem_interior_closure_convex_shrink: fixes S :: "'a::euclidean_space set" assumes "convex S" and "c \ interior S" and "x \ closure S" and "0 < e" and "e \ 1" shows "x - e *\<^sub>R (x - c) \ interior S" proof - obtain d where "d > 0" and d: "ball c d \ S" using assms(2) unfolding mem_interior by auto have "\y\S. norm (y - x) * (1 - e) < e * d" proof (cases "x \ S") case True then show ?thesis using \e > 0\ \d > 0\ by force next case False then have x: "x islimpt S" using assms(3)[unfolded closure_def] by auto show ?thesis proof (cases "e = 1") case True obtain y where "y \ S" "y \ x" "dist y x < 1" using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto then show ?thesis using True \0 < d\ by auto next case False then have "0 < e * d / (1 - e)" and *: "1 - e > 0" using \e \ 1\ \e > 0\ \d > 0\ by auto then obtain y where "y \ S" "y \ x" "dist y x < e * d / (1 - e)" using islimpt_approachable x by blast then have "norm (y - x) * (1 - e) < e * d" by (metis "*" dist_norm mult_imp_div_pos_le not_less) then show ?thesis using \y \ S\ by blast qed qed then obtain y where "y \ S" and y: "norm (y - x) * (1 - e) < e * d" by auto define z where "z = c + ((1 - e) / e) *\<^sub>R (x - y)" have *: "x - e *\<^sub>R (x - c) = y - e *\<^sub>R (y - z)" unfolding z_def using \e > 0\ by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib) - have "z \ interior (ball c d)" - using y \0 < e\ \e \ 1\ - apply (simp add: interior_open[OF open_ball] z_def dist_norm) - by (simp add: field_simps norm_minus_commute) + have "(1 - e) * norm (x - y) / e < d" + using y \0 < e\ by (simp add: field_simps norm_minus_commute) + then have "z \ interior (ball c d)" + using \0 < e\ \e \ 1\ by (simp add: interior_open[OF open_ball] z_def dist_norm) then have "z \ interior S" using d interiorI interior_ball by blast then show ?thesis - unfolding * - using mem_interior_convex_shrink \y \ S\ assms by blast + unfolding * using mem_interior_convex_shrink \y \ S\ assms by blast qed lemma in_interior_closure_convex_segment: fixes S :: "'a::euclidean_space set" assumes "convex S" and a: "a \ interior S" and b: "b \ closure S" shows "open_segment a b \ interior S" proof (clarsimp simp: in_segment) fix u::real assume u: "0 < u" "u < 1" have "(1 - u) *\<^sub>R a + u *\<^sub>R b = b - (1 - u) *\<^sub>R (b - a)" by (simp add: algebra_simps) also have "... \ interior S" using mem_interior_closure_convex_shrink [OF assms] u by simp finally show "(1 - u) *\<^sub>R a + u *\<^sub>R b \ interior S" . qed lemma convex_closure_interior: fixes S :: "'a::euclidean_space set" assumes "convex S" and int: "interior S \ {}" shows "closure(interior S) = closure S" proof - obtain a where a: "a \ interior S" using int by auto have "closure S \ closure(interior S)" proof fix x assume x: "x \ closure S" show "x \ closure (interior S)" proof (cases "x=a") case True then show ?thesis using \a \ interior S\ closure_subset by blast next case False show ?thesis proof (clarsimp simp add: closure_def islimpt_approachable) fix e::real assume xnotS: "x \ interior S" and "0 < e" show "\x'\interior S. x' \ x \ dist x' x < e" proof (intro bexI conjI) show "x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a) \ x" using False \0 < e\ by (auto simp: algebra_simps min_def) show "dist (x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a)) x < e" using \0 < e\ by (auto simp: dist_norm min_def) show "x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a) \ interior S" using \0 < e\ False by (auto simp add: min_def a intro: mem_interior_closure_convex_shrink [OF \convex S\ a x]) qed qed qed qed then show ?thesis by (simp add: closure_mono interior_subset subset_antisym) qed lemma closure_convex_Int_superset: fixes S :: "'a::euclidean_space set" assumes "convex S" "interior S \ {}" "interior S \ closure T" shows "closure(S \ T) = closure S" proof - have "closure S \ closure(interior S)" by (simp add: convex_closure_interior assms) also have "... \ closure (S \ T)" using interior_subset [of S] assms by (metis (no_types, lifting) Int_assoc Int_lower2 closure_mono closure_open_Int_superset inf.orderE open_interior) finally show ?thesis by (simp add: closure_mono dual_order.antisym) qed subsection\<^marker>\tag unimportant\ \Some obvious but surprisingly hard simplex lemmas\ lemma simplex: assumes "finite S" and "0 \ S" shows "convex hull (insert 0 S) = {y. \u. (\x\S. 0 \ u x) \ sum u S \ 1 \ sum (\x. u x *\<^sub>R x) S = y}" proof (simp add: convex_hull_finite set_eq_iff assms, safe) fix x and u :: "'a \ real" assume "0 \ u 0" "\x\S. 0 \ u x" "u 0 + sum u S = 1" then show "\v. (\x\S. 0 \ v x) \ sum v S \ 1 \ (\x\S. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)" by force next fix x and u :: "'a \ real" assume "\x\S. 0 \ u x" "sum u S \ 1" then show "\v. 0 \ v 0 \ (\x\S. 0 \ v x) \ v 0 + sum v S = 1 \ (\x\S. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)" by (rule_tac x="\x. if x = 0 then 1 - sum u S else u x" in exI) (auto simp: sum_delta_notmem assms if_smult) qed lemma substd_simplex: assumes d: "d \ Basis" shows "convex hull (insert 0 d) = {x. (\i\Basis. 0 \ x\i) \ (\i\d. x\i) \ 1 \ (\i\Basis. i \ d \ x\i = 0)}" (is "convex hull (insert 0 ?p) = ?s") proof - let ?D = d have "0 \ ?p" using assms by (auto simp: image_def) from d have "finite d" by (blast intro: finite_subset finite_Basis) show ?thesis unfolding simplex[OF \finite d\ \0 \ ?p\] proof (intro set_eqI; safe) fix u :: "'a \ real" assume as: "\x\?D. 0 \ u x" "sum u ?D \ 1" let ?x = "(\x\?D. u x *\<^sub>R x)" have ind: "\i\Basis. i \ d \ u i = ?x \ i" and notind: "(\i\Basis. i \ d \ ?x \ i = 0)" using substdbasis_expansion_unique[OF assms] by blast+ then have **: "sum u ?D = sum ((\) ?x) ?D" using assms by (auto intro!: sum.cong) show "0 \ ?x \ i" if "i \ Basis" for i using as(1) ind notind that by fastforce show "sum ((\) ?x) ?D \ 1" using "**" as(2) by linarith show "?x \ i = 0" if "i \ Basis" "i \ d" for i using notind that by blast next fix x assume "\i\Basis. 0 \ x \ i" "sum ((\) x) ?D \ 1" "(\i\Basis. i \ d \ x \ i = 0)" with d show "\u. (\x\?D. 0 \ u x) \ sum u ?D \ 1 \ (\x\?D. u x *\<^sub>R x) = x" unfolding substdbasis_expansion_unique[OF assms] by (rule_tac x="inner x" in exI) auto qed qed lemma std_simplex: "convex hull (insert 0 Basis) = {x::'a::euclidean_space. (\i\Basis. 0 \ x\i) \ sum (\i. x\i) Basis \ 1}" using substd_simplex[of Basis] by auto lemma interior_std_simplex: "interior (convex hull (insert 0 Basis)) = {x::'a::euclidean_space. (\i\Basis. 0 < x\i) \ sum (\i. x\i) Basis < 1}" unfolding set_eq_iff mem_interior std_simplex proof (intro allI iffI CollectI; clarify) fix x :: 'a fix e assume "e > 0" and as: "ball x e \ {x. (\i\Basis. 0 \ x \ i) \ sum ((\) x) Basis \ 1}" show "(\i\Basis. 0 < x \ i) \ sum ((\) x) Basis < 1" proof safe fix i :: 'a assume i: "i \ Basis" then show "0 < x \ i" - using as[THEN subsetD[where c="x - (e / 2) *\<^sub>R i"]] and \e > 0\ + using as[THEN subsetD[where c="x - (e/2) *\<^sub>R i"]] and \e > 0\ by (force simp add: inner_simps) next - have **: "dist x (x + (e / 2) *\<^sub>R (SOME i. i\Basis)) < e" using \e > 0\ + have **: "dist x (x + (e/2) *\<^sub>R (SOME i. i\Basis)) < e" using \e > 0\ unfolding dist_norm by (auto intro!: mult_strict_left_mono simp: SOME_Basis) - have "\i. i \ Basis \ (x + (e / 2) *\<^sub>R (SOME i. i\Basis)) \ i = + have "\i. i \ Basis \ (x + (e/2) *\<^sub>R (SOME i. i\Basis)) \ i = x\i + (if i = (SOME i. i\Basis) then e/2 else 0)" by (auto simp: SOME_Basis inner_Basis inner_simps) - then have *: "sum ((\) (x + (e / 2) *\<^sub>R (SOME i. i\Basis))) Basis = + then have *: "sum ((\) (x + (e/2) *\<^sub>R (SOME i. i\Basis))) Basis = sum (\i. x\i + (if (SOME i. i\Basis) = i then e/2 else 0)) Basis" by (auto simp: intro!: sum.cong) - have "sum ((\) x) Basis < sum ((\) (x + (e / 2) *\<^sub>R (SOME i. i\Basis))) Basis" + have "sum ((\) x) Basis < sum ((\) (x + (e/2) *\<^sub>R (SOME i. i\Basis))) Basis" using \e > 0\ DIM_positive by (auto simp: SOME_Basis sum.distrib *) also have "\ \ 1" using ** as by force finally show "sum ((\) x) Basis < 1" by auto qed next fix x :: 'a assume as: "\i\Basis. 0 < x \ i" "sum ((\) x) Basis < 1" obtain a :: 'b where "a \ UNIV" using UNIV_witness .. let ?d = "(1 - sum ((\) x) Basis) / real (DIM('a))" show "\e>0. ball x e \ {x. (\i\Basis. 0 \ x \ i) \ sum ((\) x) Basis \ 1}" proof (rule_tac x="min (Min (((\) x) ` Basis)) D" for D in exI, intro conjI subsetI CollectI) fix y assume y: "y \ ball x (min (Min ((\) x ` Basis)) ?d)" have "sum ((\) y) Basis \ sum (\i. x\i + ?d) Basis" proof (rule sum_mono) fix i :: 'a assume i: "i \ Basis" have "\y\i - x\i\ \ norm (y - x)" by (metis Basis_le_norm i inner_commute inner_diff_right) also have "... < ?d" using y by (simp add: dist_norm norm_minus_commute) finally have "\y\i - x\i\ < ?d" . then show "y \ i \ x \ i + ?d" by auto qed also have "\ \ 1" unfolding sum.distrib sum_constant by (auto simp add: Suc_le_eq) finally show "sum ((\) y) Basis \ 1" . show "(\i\Basis. 0 \ y \ i)" proof safe fix i :: 'a assume i: "i \ Basis" have "norm (x - y) < Min (((\) x) ` Basis)" using y by (auto simp: dist_norm less_eq_real_def) also have "... \ x\i" using i by auto finally have "norm (x - y) < x\i" . then show "0 \ y\i" using Basis_le_norm[OF i, of "x - y"] and as(1)[rule_format, OF i] by (auto simp: inner_simps) qed next have "Min (((\) x) ` Basis) > 0" using as by simp moreover have "?d > 0" using as by (auto simp: Suc_le_eq) ultimately show "0 < min (Min ((\) x ` Basis)) ((1 - sum ((\) x) Basis) / real DIM('a))" by linarith qed qed lemma interior_std_simplex_nonempty: obtains a :: "'a::euclidean_space" where "a \ interior(convex hull (insert 0 Basis))" proof - let ?D = "Basis :: 'a set" let ?a = "sum (\b::'a. inverse (2 * real DIM('a)) *\<^sub>R b) Basis" { fix i :: 'a assume i: "i \ Basis" have "?a \ i = inverse (2 * real DIM('a))" by (rule trans[of _ "sum (\j. if i = j then inverse (2 * real DIM('a)) else 0) ?D"]) (simp_all add: sum.If_cases i) } note ** = this show ?thesis proof show "?a \ interior(convex hull (insert 0 Basis))" unfolding interior_std_simplex mem_Collect_eq proof safe fix i :: 'a assume i: "i \ Basis" show "0 < ?a \ i" unfolding **[OF i] by (auto simp add: Suc_le_eq) next have "sum ((\) ?a) ?D = sum (\i. inverse (2 * real DIM('a))) ?D" by (auto intro: sum.cong) also have "\ < 1" unfolding sum_constant divide_inverse[symmetric] by (auto simp add: field_simps) finally show "sum ((\) ?a) ?D < 1" by auto qed qed qed lemma rel_interior_substd_simplex: assumes D: "D \ Basis" shows "rel_interior (convex hull (insert 0 D)) = - {x::'a::euclidean_space. (\i\D. 0 < x\i) \ (\i\D. x\i) < 1 \ (\i\Basis. i \ D \ x\i = 0)}" - (is "rel_interior (convex hull (insert 0 ?p)) = ?s") + {x::'a::euclidean_space. (\i\D. 0 < x\i) \ (\i\D. x\i) < 1 \ (\i\Basis. i \ D \ x\i = 0)}" + (is "_ = ?s") proof - have "finite D" using D finite_Basis finite_subset by blast show ?thesis proof (cases "D = {}") case True then show ?thesis using rel_interior_sing using euclidean_eq_iff[of _ 0] by auto next case False - have h0: "affine hull (convex hull (insert 0 ?p)) = - {x::'a::euclidean_space. (\i\Basis. i \ D \ x\i = 0)}" + have h0: "affine hull (convex hull (insert 0 D)) = + {x::'a::euclidean_space. (\i\Basis. i \ D \ x\i = 0)}" using affine_hull_convex_hull affine_hull_substd_basis assms by auto have aux: "\x::'a. \i\Basis. (\i\D. 0 \ x\i) \ (\i\Basis. i \ D \ x\i = 0) \ 0 \ x\i" by auto { fix x :: "'a::euclidean_space" - assume x: "x \ rel_interior (convex hull (insert 0 ?p))" + assume x: "x \ rel_interior (convex hull (insert 0 D))" then obtain e where "e > 0" and - "ball x e \ {xa. (\i\Basis. i \ D \ xa\i = 0)} \ convex hull (insert 0 ?p)" - using mem_rel_interior_ball[of x "convex hull (insert 0 ?p)"] h0 by auto - then have as [rule_format]: "\y. dist x y < e \ (\i\Basis. i \ D \ y\i = 0) \ - (\i\D. 0 \ y \ i) \ sum ((\) y) D \ 1" - unfolding ball_def unfolding substd_simplex[OF assms] using assms by auto + "ball x e \ {xa. (\i\Basis. i \ D \ xa\i = 0)} \ convex hull (insert 0 D)" + using mem_rel_interior_ball[of x "convex hull (insert 0 D)"] h0 by auto + then have as: "\y. \dist x y < e \ (\i\Basis. i \ D \ y\i = 0)\ \ + (\i\D. 0 \ y \ i) \ sum ((\) y) D \ 1" + using assms by (force simp: substd_simplex) have x0: "(\i\Basis. i \ D \ x\i = 0)" using x rel_interior_subset substd_simplex[OF assms] by auto have "(\i\D. 0 < x \ i) \ sum ((\) x) D < 1 \ (\i\Basis. i \ D \ x\i = 0)" proof (intro conjI ballI) fix i :: 'a assume "i \ D" - then have "\j\D. 0 \ (x - (e / 2) *\<^sub>R i) \ j" + then have "\j\D. 0 \ (x - (e/2) *\<^sub>R i) \ j" using D \e > 0\ x0 - by (force simp: dist_norm inner_simps inner_Basis intro!: as[THEN conjunct1]) + by (intro as[THEN conjunct1]) (force simp: dist_norm inner_simps inner_Basis) then show "0 < x \ i" using \e > 0\ \i \ D\ D by (force simp: inner_simps inner_Basis) next obtain a where a: "a \ D" using \D \ {}\ by auto - then have **: "dist x (x + (e / 2) *\<^sub>R a) < e" - using \e > 0\ norm_Basis[of a] D - unfolding dist_norm - by auto - have "\i. i \ Basis \ (x + (e / 2) *\<^sub>R a) \ i = x\i + (if i = a then e/2 else 0)" + then have **: "dist x (x + (e/2) *\<^sub>R a) < e" + using \e > 0\ norm_Basis[of a] D by (auto simp: dist_norm) + have "\i. i \ Basis \ (x + (e/2) *\<^sub>R a) \ i = x\i + (if i = a then e/2 else 0)" using a D by (auto simp: inner_simps inner_Basis) - then have *: "sum ((\) (x + (e / 2) *\<^sub>R a)) D = - sum (\i. x\i + (if a = i then e/2 else 0)) D" + then have *: "sum ((\) (x + (e/2) *\<^sub>R a)) D = sum (\i. x\i + (if a = i then e/2 else 0)) D" using D by (intro sum.cong) auto have "a \ Basis" using \a \ D\ D by auto - then have h1: "(\i\Basis. i \ D \ (x + (e / 2) *\<^sub>R a) \ i = 0)" + then have h1: "(\i\Basis. i \ D \ (x + (e/2) *\<^sub>R a) \ i = 0)" using x0 D \a\D\ by (auto simp add: inner_add_left inner_Basis) - have "sum ((\) x) D < sum ((\) (x + (e / 2) *\<^sub>R a)) D" + have "sum ((\) x) D < sum ((\) (x + (e/2) *\<^sub>R a)) D" using \e > 0\ \a \ D\ \finite D\ by (auto simp add: * sum.distrib) also have "\ \ 1" - using ** h1 as[rule_format, of "x + (e / 2) *\<^sub>R a"] + using ** h1 as[rule_format, of "x + (e/2) *\<^sub>R a"] by auto finally show "sum ((\) x) D < 1" "\i. i\Basis \ i \ D \ x\i = 0" using x0 by auto qed } moreover { fix x :: "'a::euclidean_space" assume as: "x \ ?s" have "\i. 0 < x\i \ 0 = x\i \ 0 \ x\i" by auto moreover have "\i. i \ D \ i \ D" by auto ultimately have "\i. (\i\D. 0 < x\i) \ (\i. i \ D \ x\i = 0) \ 0 \ x\i" by metis - then have h2: "x \ convex hull (insert 0 ?p)" - using as assms - unfolding substd_simplex[OF assms] by fastforce + then have h2: "x \ convex hull (insert 0 D)" + using as assms by (force simp add: substd_simplex) obtain a where a: "a \ D" using \D \ {}\ by auto - let ?d = "(1 - sum ((\) x) D) / real (card D)" - have "0 < card D" using \D \ {}\ \finite D\ - by (simp add: card_gt_0_iff) - have "Min (((\) x) ` D) > 0" - using as \D \ {}\ \finite D\ by (simp) - moreover have "?d > 0" using as using \0 < card D\ by auto - ultimately have h3: "min (Min (((\) x) ` D)) ?d > 0" - by auto - have "\e>0. ball x e \ {x. \i\Basis. i \ D \ x \ i = 0} - \ convex hull insert 0 D" + define d where "d \ (1 - sum ((\) x) D) / real (card D)" + have "\e>0. ball x e \ {x. \i\Basis. i \ D \ x \ i = 0} \ convex hull insert 0 D" unfolding substd_simplex[OF assms] - apply (rule_tac x="min (Min (((\) x) ` D)) ?d" in exI) - apply (rule, rule h3) - apply safe - unfolding mem_ball - proof - + proof (intro exI; safe) + have "0 < card D" using \D \ {}\ \finite D\ + by (simp add: card_gt_0_iff) + have "Min (((\) x) ` D) > 0" + using as \D \ {}\ \finite D\ by (simp) + moreover have "d > 0" + using as \0 < card D\ by (auto simp: d_def) + ultimately show "min (Min (((\) x) ` D)) d > 0" + by auto fix y :: 'a - assume y: "dist x y < min (Min ((\) x ` D)) ?d" assume y2: "\i\Basis. i \ D \ y\i = 0" - have "sum ((\) y) D \ sum (\i. x\i + ?d) D" + assume "y \ ball x (min (Min ((\) x ` D)) d)" + then have y: "dist x y < min (Min ((\) x ` D)) d" + by auto + have "sum ((\) y) D \ sum (\i. x\i + d) D" proof (rule sum_mono) fix i assume "i \ D" with D have i: "i \ Basis" by auto have "\y\i - x\i\ \ norm (y - x)" by (metis i inner_commute inner_diff_right norm_bound_Basis_le order_refl) - also have "... < ?d" + also have "... < d" by (metis dist_norm min_less_iff_conj norm_minus_commute y) - finally have "\y\i - x\i\ < ?d" . - then show "y \ i \ x \ i + ?d" by auto + finally have "\y\i - x\i\ < d" . + then show "y \ i \ x \ i + d" by auto qed also have "\ \ 1" - unfolding sum.distrib sum_constant using \0 < card D\ + unfolding sum.distrib sum_constant d_def using \0 < card D\ by auto finally show "sum ((\) y) D \ 1" . fix i :: 'a assume i: "i \ Basis" then show "0 \ y\i" proof (cases "i\D") case True have "norm (x - y) < x\i" - using y[unfolded min_less_iff_conj dist_norm, THEN conjunct1] - using Min_gr_iff[of "(\) x ` D" "norm (x - y)"] \0 < card D\ \i \ D\ - by (simp add: card_gt_0_iff) + using y Min_gr_iff[of "(\) x ` D" "norm (x - y)"] \0 < card D\ \i \ D\ + by (simp add: dist_norm card_gt_0_iff) then show "0 \ y\i" using Basis_le_norm[OF i, of "x - y"] and as(1)[rule_format] by (auto simp: inner_simps) qed (use y2 in auto) qed - then have "x \ rel_interior (convex hull (insert 0 ?p))" + then have "x \ rel_interior (convex hull (insert 0 D))" using h0 h2 rel_interior_ball by force } ultimately have "\x. x \ rel_interior (convex hull insert 0 D) \ x \ {x. (\i\D. 0 < x \ i) \ sum ((\) x) D < 1 \ (\i\Basis. i \ D \ x \ i = 0)}" by blast then show ?thesis by (rule set_eqI) qed qed lemma rel_interior_substd_simplex_nonempty: assumes "D \ {}" and "D \ Basis" obtains a :: "'a::euclidean_space" where "a \ rel_interior (convex hull (insert 0 D))" proof - - let ?D = D - let ?a = "sum (\b::'a::euclidean_space. inverse (2 * real (card D)) *\<^sub>R b) ?D" + let ?a = "sum (\b::'a::euclidean_space. inverse (2 * real (card D)) *\<^sub>R b) D" have "finite D" using assms finite_Basis infinite_super by blast then have d1: "0 < real (card D)" using \D \ {}\ by auto { fix i assume "i \ D" - have "?a \ i = sum (\j. if i = j then inverse (2 * real (card D)) else 0) ?D" + have "?a \ i = sum (\j. if i = j then inverse (2 * real (card D)) else 0) D" unfolding inner_sum_left using \i \ D\ by (auto simp: inner_Basis subsetD[OF assms(2)] intro: sum.cong) also have "... = inverse (2 * real (card D))" using \i \ D\ \finite D\ by auto finally have "?a \ i = inverse (2 * real (card D))" . } note ** = this show ?thesis proof show "?a \ rel_interior (convex hull (insert 0 D))" unfolding rel_interior_substd_simplex[OF assms(2)] proof safe fix i assume "i \ D" have "0 < inverse (2 * real (card D))" using d1 by auto also have "\ = ?a \ i" using **[of i] \i \ D\ by auto finally show "0 < ?a \ i" by auto next - have "sum ((\) ?a) ?D = sum (\i. inverse (2 * real (card D))) ?D" + have "sum ((\) ?a) D = sum (\i. inverse (2 * real (card D))) D" by (rule sum.cong) (rule refl, rule **) also have "\ < 1" unfolding sum_constant divide_real_def[symmetric] by (auto simp add: field_simps) - finally show "sum ((\) ?a) ?D < 1" by auto + finally show "sum ((\) ?a) D < 1" by auto next fix i assume "i \ Basis" and "i \ D" have "?a \ span D" proof (rule span_sum[of D "(\b. b /\<^sub>R (2 * real (card D)))" D]) { fix x :: "'a::euclidean_space" assume "x \ D" then have "x \ span D" using span_base[of _ "D"] by auto then have "x /\<^sub>R (2 * real (card D)) \ span D" using span_mul[of x "D" "(inverse (real (card D)) / 2)"] by auto } then show "\x. x\D \ x /\<^sub>R (2 * real (card D)) \ span D" by auto qed then show "?a \ i = 0 " using \i \ D\ unfolding span_substd_basis[OF assms(2)] using \i \ Basis\ by auto qed qed qed subsection\<^marker>\tag unimportant\ \Relative interior of convex set\ lemma rel_interior_convex_nonempty_aux: fixes S :: "'n::euclidean_space set" assumes "convex S" and "0 \ S" shows "rel_interior S \ {}" proof (cases "S = {0}") case True then show ?thesis using rel_interior_sing by auto next case False obtain B where B: "independent B \ B \ S \ S \ span B \ card B = dim S" using basis_exists[of S] by metis then have "B \ {}" using B assms \S \ {0}\ span_empty by auto have "insert 0 B \ span B" using subspace_span[of B] subspace_0[of "span B"] span_superset by auto then have "span (insert 0 B) \ span B" using span_span[of B] span_mono[of "insert 0 B" "span B"] by blast then have "convex hull insert 0 B \ span B" using convex_hull_subset_span[of "insert 0 B"] by auto then have "span (convex hull insert 0 B) \ span B" using span_span[of B] span_mono[of "convex hull insert 0 B" "span B"] by blast then have *: "span (convex hull insert 0 B) = span B" using span_mono[of B "convex hull insert 0 B"] hull_subset[of "insert 0 B"] by auto then have "span (convex hull insert 0 B) = span S" using B span_mono[of B S] span_mono[of S "span B"] span_span[of B] by auto moreover have "0 \ affine hull (convex hull insert 0 B)" using hull_subset[of "convex hull insert 0 B"] hull_subset[of "insert 0 B"] by auto ultimately have **: "affine hull (convex hull insert 0 B) = affine hull S" using affine_hull_span_0[of "convex hull insert 0 B"] affine_hull_span_0[of "S"] assms hull_subset[of S] by auto obtain d and f :: "'n \ 'n" where fd: "card d = card B" "linear f" "f ` B = d" "f ` span B = {x. \i\Basis. i \ d \ x \ i = (0::real)} \ inj_on f (span B)" and d: "d \ Basis" using basis_to_substdbasis_subspace_isomorphism[of B,OF _ ] B by auto then have "bounded_linear f" using linear_conv_bounded_linear by auto have "d \ {}" using fd B \B \ {}\ by auto have "insert 0 d = f ` (insert 0 B)" using fd linear_0 by auto then have "(convex hull (insert 0 d)) = f ` (convex hull (insert 0 B))" using convex_hull_linear_image[of f "(insert 0 d)"] convex_hull_linear_image[of f "(insert 0 B)"] \linear f\ by auto moreover have "rel_interior (f ` (convex hull insert 0 B)) = f ` rel_interior (convex hull insert 0 B)" proof (rule rel_interior_injective_on_span_linear_image[OF \bounded_linear f\]) show "inj_on f (span (convex hull insert 0 B))" using fd * by auto qed ultimately have "rel_interior (convex hull insert 0 B) \ {}" using rel_interior_substd_simplex_nonempty[OF \d \ {}\ d] by fastforce moreover have "convex hull (insert 0 B) \ S" using B assms hull_mono[of "insert 0 B" "S" "convex"] convex_hull_eq by auto ultimately show ?thesis using subset_rel_interior[of "convex hull insert 0 B" S] ** by auto qed lemma rel_interior_eq_empty: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_interior S = {} \ S = {}" proof - { assume "S \ {}" then obtain a where "a \ S" by auto then have "0 \ (+) (-a) ` S" using assms exI[of "(\x. x \ S \ - a + x = 0)" a] by auto then have "rel_interior ((+) (-a) ` S) \ {}" using rel_interior_convex_nonempty_aux[of "(+) (-a) ` S"] convex_translation[of S "-a"] assms by auto then have "rel_interior S \ {}" using rel_interior_translation [of "- a"] by simp } then show ?thesis by auto qed lemma interior_simplex_nonempty: fixes S :: "'N :: euclidean_space set" assumes "independent S" "finite S" "card S = DIM('N)" obtains a where "a \ interior (convex hull (insert 0 S))" proof - have "affine hull (insert 0 S) = UNIV" by (simp add: hull_inc affine_hull_span_0 dim_eq_full[symmetric] assms(1) assms(3) dim_eq_card_independent) moreover have "rel_interior (convex hull insert 0 S) \ {}" using rel_interior_eq_empty [of "convex hull (insert 0 S)"] by auto ultimately have "interior (convex hull insert 0 S) \ {}" by (simp add: rel_interior_interior) with that show ?thesis by auto qed lemma convex_rel_interior: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "convex (rel_interior S)" proof - { fix x y and u :: real assume assm: "x \ rel_interior S" "y \ rel_interior S" "0 \ u" "u \ 1" then have "x \ S" using rel_interior_subset by auto have "x - u *\<^sub>R (x-y) \ rel_interior S" proof (cases "0 = u") case False then have "0 < u" using assm by auto then show ?thesis using assm rel_interior_convex_shrink[of S y x u] assms \x \ S\ by auto next case True then show ?thesis using assm by auto qed then have "(1 - u) *\<^sub>R x + u *\<^sub>R y \ rel_interior S" by (simp add: algebra_simps) } then show ?thesis unfolding convex_alt by auto qed lemma convex_closure_rel_interior: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "closure (rel_interior S) = closure S" proof - have h1: "closure (rel_interior S) \ closure S" using closure_mono[of "rel_interior S" S] rel_interior_subset[of S] by auto show ?thesis proof (cases "S = {}") case False then obtain a where a: "a \ rel_interior S" using rel_interior_eq_empty assms by auto { fix x assume x: "x \ closure S" { assume "x = a" then have "x \ closure (rel_interior S)" using a unfolding closure_def by auto } moreover { assume "x \ a" { fix e :: real assume "e > 0" define e1 where "e1 = min 1 (e/norm (x - a))" then have e1: "e1 > 0" "e1 \ 1" "e1 * norm (x - a) \ e" using \x \ a\ \e > 0\ le_divide_eq[of e1 e "norm (x - a)"] by simp_all then have *: "x - e1 *\<^sub>R (x - a) \ rel_interior S" using rel_interior_closure_convex_shrink[of S a x e1] assms x a e1_def by auto have "\y. y \ rel_interior S \ y \ x \ dist y x \ e" - apply (rule_tac x="x - e1 *\<^sub>R (x - a)" in exI) - using * e1 dist_norm[of "x - e1 *\<^sub>R (x - a)" x] \x \ a\ - apply simp - done + using "*" \x \ a\ e1 by force } then have "x islimpt rel_interior S" unfolding islimpt_approachable_le by auto then have "x \ closure(rel_interior S)" unfolding closure_def by auto } ultimately have "x \ closure(rel_interior S)" by auto } then show ?thesis using h1 by auto - next - case True - then have "rel_interior S = {}" by auto - then have "closure (rel_interior S) = {}" - using closure_empty by auto - with True show ?thesis by auto - qed + qed auto qed lemma rel_interior_same_affine_hull: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "affine hull (rel_interior S) = affine hull S" by (metis assms closure_same_affine_hull convex_closure_rel_interior) lemma rel_interior_aff_dim: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "aff_dim (rel_interior S) = aff_dim S" by (metis aff_dim_affine_hull2 assms rel_interior_same_affine_hull) lemma rel_interior_rel_interior: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_interior (rel_interior S) = rel_interior S" proof - have "openin (top_of_set (affine hull (rel_interior S))) (rel_interior S)" using openin_rel_interior[of S] rel_interior_same_affine_hull[of S] assms by auto then show ?thesis using rel_interior_def by auto qed lemma rel_interior_rel_open: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_open (rel_interior S)" unfolding rel_open_def using rel_interior_rel_interior assms by auto lemma convex_rel_interior_closure_aux: fixes x y z :: "'n::euclidean_space" assumes "0 < a" "0 < b" "(a + b) *\<^sub>R z = a *\<^sub>R x + b *\<^sub>R y" - obtains e where "0 < e" "e \ 1" "z = y - e *\<^sub>R (y - x)" + obtains e where "0 < e" "e < 1" "z = y - e *\<^sub>R (y - x)" proof - define e where "e = a / (a + b)" have "z = (1 / (a + b)) *\<^sub>R ((a + b) *\<^sub>R z)" using assms by (simp add: eq_vector_fraction_iff) also have "\ = (1 / (a + b)) *\<^sub>R (a *\<^sub>R x + b *\<^sub>R y)" using assms scaleR_cancel_left[of "1/(a+b)" "(a + b) *\<^sub>R z" "a *\<^sub>R x + b *\<^sub>R y"] by auto also have "\ = y - e *\<^sub>R (y-x)" using e_def assms - apply (simp add: algebra_simps) - using scaleR_left_distrib[of "a/(a+b)" "b/(a+b)" y] add_divide_distrib[of a b "a+b"] - apply auto - done + by (simp add: divide_simps vector_fraction_eq_iff) (simp add: algebra_simps) finally have "z = y - e *\<^sub>R (y-x)" by auto - moreover have "e > 0" using e_def assms by auto - moreover have "e \ 1" using e_def assms by auto + moreover have "e > 0" "e < 1" using e_def assms by auto ultimately show ?thesis using that[of e] by auto qed lemma convex_rel_interior_closure: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_interior (closure S) = rel_interior S" proof (cases "S = {}") case True then show ?thesis using assms rel_interior_eq_empty by auto next case False have "rel_interior (closure S) \ rel_interior S" using subset_rel_interior[of S "closure S"] closure_same_affine_hull closure_subset by auto moreover { fix z assume z: "z \ rel_interior (closure S)" obtain x where x: "x \ rel_interior S" using \S \ {}\ assms rel_interior_eq_empty by auto have "z \ rel_interior S" proof (cases "x = z") case True then show ?thesis using x by auto next case False obtain e where e: "e > 0" "cball z e \ affine hull closure S \ closure S" using z rel_interior_cball[of "closure S"] by auto hence *: "0 < e/norm(z-x)" using e False by auto define y where "y = z + (e/norm(z-x)) *\<^sub>R (z-x)" have yball: "y \ cball z e" using y_def dist_norm[of z y] e by auto have "x \ affine hull closure S" using x rel_interior_subset_closure hull_inc[of x "closure S"] by blast moreover have "z \ affine hull closure S" using z rel_interior_subset hull_subset[of "closure S"] by blast ultimately have "y \ affine hull closure S" using y_def affine_affine_hull[of "closure S"] mem_affine_3_minus [of "affine hull closure S" z z x "e/norm(z-x)"] by auto then have "y \ closure S" using e yball by auto have "(1 + (e/norm(z-x))) *\<^sub>R z = (e/norm(z-x)) *\<^sub>R x + y" using y_def by (simp add: algebra_simps) - then obtain e1 where "0 < e1" "e1 \ 1" "z = y - e1 *\<^sub>R (y - x)" + then obtain e1 where "0 < e1" "e1 < 1" "z = y - e1 *\<^sub>R (y - x)" using * convex_rel_interior_closure_aux[of "e / norm (z - x)" 1 z x y] by (auto simp add: algebra_simps) then show ?thesis using rel_interior_closure_convex_shrink assms x \y \ closure S\ - by auto + by fastforce qed } ultimately show ?thesis by auto qed lemma convex_interior_closure: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "interior (closure S) = interior S" using closure_aff_dim[of S] interior_rel_interior_gen[of S] interior_rel_interior_gen[of "closure S"] convex_rel_interior_closure[of S] assms by auto lemma closure_eq_rel_interior_eq: fixes S1 S2 :: "'n::euclidean_space set" assumes "convex S1" and "convex S2" shows "closure S1 = closure S2 \ rel_interior S1 = rel_interior S2" by (metis convex_rel_interior_closure convex_closure_rel_interior assms) lemma closure_eq_between: fixes S1 S2 :: "'n::euclidean_space set" assumes "convex S1" and "convex S2" shows "closure S1 = closure S2 \ rel_interior S1 \ S2 \ S2 \ closure S1" (is "?A \ ?B") proof assume ?A then show ?B by (metis assms closure_subset convex_rel_interior_closure rel_interior_subset) next assume ?B then have "closure S1 \ closure S2" by (metis assms(1) convex_closure_rel_interior closure_mono) moreover from \?B\ have "closure S1 \ closure S2" by (metis closed_closure closure_minimal) ultimately show ?A .. qed lemma open_inter_closure_rel_interior: fixes S A :: "'n::euclidean_space set" assumes "convex S" and "open A" shows "A \ closure S = {} \ A \ rel_interior S = {}" by (metis assms convex_closure_rel_interior open_Int_closure_eq_empty) lemma rel_interior_open_segment: fixes a :: "'a :: euclidean_space" shows "rel_interior(open_segment a b) = open_segment a b" proof (cases "a = b") case True then show ?thesis by auto next case False then have "open_segment a b = affine hull {a, b} \ ball ((a + b) /\<^sub>R 2) (norm (b - a) / 2)" by (simp add: open_segment_as_ball) then show ?thesis unfolding rel_interior_eq openin_open by (metis Elementary_Metric_Spaces.open_ball False affine_hull_open_segment) qed lemma rel_interior_closed_segment: fixes a :: "'a :: euclidean_space" shows "rel_interior(closed_segment a b) = (if a = b then {a} else open_segment a b)" proof (cases "a = b") case True then show ?thesis by auto next case False then show ?thesis by simp (metis closure_open_segment convex_open_segment convex_rel_interior_closure rel_interior_open_segment) qed lemmas rel_interior_segment = rel_interior_closed_segment rel_interior_open_segment subsection\The relative frontier of a set\ definition\<^marker>\tag important\ "rel_frontier S = closure S - rel_interior S" lemma rel_frontier_empty [simp]: "rel_frontier {} = {}" by (simp add: rel_frontier_def) lemma rel_frontier_eq_empty: fixes S :: "'n::euclidean_space set" shows "rel_frontier S = {} \ affine S" unfolding rel_frontier_def using rel_interior_subset_closure by (auto simp add: rel_interior_eq_closure [symmetric]) lemma rel_frontier_sing [simp]: fixes a :: "'n::euclidean_space" shows "rel_frontier {a} = {}" by (simp add: rel_frontier_def) lemma rel_frontier_affine_hull: fixes S :: "'a::euclidean_space set" shows "rel_frontier S \ affine hull S" using closure_affine_hull rel_frontier_def by fastforce lemma rel_frontier_cball [simp]: fixes a :: "'n::euclidean_space" shows "rel_frontier(cball a r) = (if r = 0 then {} else sphere a r)" proof (cases rule: linorder_cases [of r 0]) case less then show ?thesis by (force simp: sphere_def) next case equal then show ?thesis by simp next case greater then show ?thesis by simp (metis centre_in_ball empty_iff frontier_cball frontier_def interior_cball interior_rel_interior_gen rel_frontier_def) qed lemma rel_frontier_translation: fixes a :: "'a::euclidean_space" shows "rel_frontier((\x. a + x) ` S) = (\x. a + x) ` (rel_frontier S)" by (simp add: rel_frontier_def translation_diff rel_interior_translation closure_translation) lemma rel_frontier_nonempty_interior: fixes S :: "'n::euclidean_space set" shows "interior S \ {} \ rel_frontier S = frontier S" by (metis frontier_def interior_rel_interior_gen rel_frontier_def) lemma rel_frontier_frontier: fixes S :: "'n::euclidean_space set" shows "affine hull S = UNIV \ rel_frontier S = frontier S" by (simp add: frontier_def rel_frontier_def rel_interior_interior) lemma closest_point_in_rel_frontier: "\closed S; S \ {}; x \ affine hull S - rel_interior S\ \ closest_point S x \ rel_frontier S" by (simp add: closest_point_in_rel_interior closest_point_in_set rel_frontier_def) lemma closed_rel_frontier [iff]: fixes S :: "'n::euclidean_space set" shows "closed (rel_frontier S)" proof - have *: "closedin (top_of_set (affine hull S)) (closure S - rel_interior S)" by (simp add: closed_subset closedin_diff closure_affine_hull openin_rel_interior) show ?thesis proof (rule closedin_closed_trans[of "affine hull S" "rel_frontier S"]) show "closedin (top_of_set (affine hull S)) (rel_frontier S)" by (simp add: "*" rel_frontier_def) qed simp qed lemma closed_rel_boundary: fixes S :: "'n::euclidean_space set" shows "closed S \ closed(S - rel_interior S)" by (metis closed_rel_frontier closure_closed rel_frontier_def) lemma compact_rel_boundary: fixes S :: "'n::euclidean_space set" shows "compact S \ compact(S - rel_interior S)" by (metis bounded_diff closed_rel_boundary closure_eq compact_closure compact_imp_closed) lemma bounded_rel_frontier: fixes S :: "'n::euclidean_space set" shows "bounded S \ bounded(rel_frontier S)" by (simp add: bounded_closure bounded_diff rel_frontier_def) lemma compact_rel_frontier_bounded: fixes S :: "'n::euclidean_space set" shows "bounded S \ compact(rel_frontier S)" using bounded_rel_frontier closed_rel_frontier compact_eq_bounded_closed by blast lemma compact_rel_frontier: fixes S :: "'n::euclidean_space set" shows "compact S \ compact(rel_frontier S)" by (meson compact_eq_bounded_closed compact_rel_frontier_bounded) lemma convex_same_rel_interior_closure: fixes S :: "'n::euclidean_space set" shows "\convex S; convex T\ \ rel_interior S = rel_interior T \ closure S = closure T" by (simp add: closure_eq_rel_interior_eq) lemma convex_same_rel_interior_closure_straddle: fixes S :: "'n::euclidean_space set" shows "\convex S; convex T\ \ rel_interior S = rel_interior T \ rel_interior S \ T \ T \ closure S" by (simp add: closure_eq_between convex_same_rel_interior_closure) lemma convex_rel_frontier_aff_dim: fixes S1 S2 :: "'n::euclidean_space set" assumes "convex S1" and "convex S2" and "S2 \ {}" and "S1 \ rel_frontier S2" shows "aff_dim S1 < aff_dim S2" proof - have "S1 \ closure S2" using assms unfolding rel_frontier_def by auto then have *: "affine hull S1 \ affine hull S2" using hull_mono[of "S1" "closure S2"] closure_same_affine_hull[of S2] by blast then have "aff_dim S1 \ aff_dim S2" using * aff_dim_affine_hull[of S1] aff_dim_affine_hull[of S2] aff_dim_subset[of "affine hull S1" "affine hull S2"] by auto moreover { assume eq: "aff_dim S1 = aff_dim S2" then have "S1 \ {}" using aff_dim_empty[of S1] aff_dim_empty[of S2] \S2 \ {}\ by auto have **: "affine hull S1 = affine hull S2" by (simp_all add: * eq \S1 \ {}\ affine_dim_equal) obtain a where a: "a \ rel_interior S1" using \S1 \ {}\ rel_interior_eq_empty assms by auto obtain T where T: "open T" "a \ T \ S1" "T \ affine hull S1 \ S1" using mem_rel_interior[of a S1] a by auto then have "a \ T \ closure S2" using a assms unfolding rel_frontier_def by auto then obtain b where b: "b \ T \ rel_interior S2" using open_inter_closure_rel_interior[of S2 T] assms T by auto then have "b \ affine hull S1" using rel_interior_subset hull_subset[of S2] ** by auto then have "b \ S1" using T b by auto then have False using b assms unfolding rel_frontier_def by auto } ultimately show ?thesis using less_le by auto qed lemma convex_rel_interior_if: fixes S :: "'n::euclidean_space set" assumes "convex S" and "z \ rel_interior S" shows "\x\affine hull S. \m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" proof - obtain e1 where e1: "e1 > 0 \ cball z e1 \ affine hull S \ S" using mem_rel_interior_cball[of z S] assms by auto { fix x assume x: "x \ affine hull S" { assume "x \ z" define m where "m = 1 + e1/norm(x-z)" hence "m > 1" using e1 \x \ z\ by auto { fix e assume e: "e > 1 \ e \ m" have "z \ affine hull S" using assms rel_interior_subset hull_subset[of S] by auto then have *: "(1 - e)*\<^sub>R x + e *\<^sub>R z \ affine hull S" using mem_affine[of "affine hull S" x z "(1-e)" e] affine_affine_hull[of S] x by auto have "norm (z + e *\<^sub>R x - (x + e *\<^sub>R z)) = norm ((e - 1) *\<^sub>R (x - z))" by (simp add: algebra_simps) also have "\ = (e - 1) * norm (x-z)" using norm_scaleR e by auto also have "\ \ (m - 1) * norm (x - z)" using e mult_right_mono[of _ _ "norm(x-z)"] by auto also have "\ = (e1 / norm (x - z)) * norm (x - z)" using m_def by auto also have "\ = e1" using \x \ z\ e1 by simp finally have **: "norm (z + e *\<^sub>R x - (x + e *\<^sub>R z)) \ e1" by auto have "(1 - e)*\<^sub>R x+ e *\<^sub>R z \ cball z e1" using m_def ** unfolding cball_def dist_norm by (auto simp add: algebra_simps) then have "(1 - e) *\<^sub>R x+ e *\<^sub>R z \ S" using e * e1 by auto } then have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S )" using \m> 1 \ by auto } moreover { assume "x = z" define m where "m = 1 + e1" then have "m > 1" using e1 by auto { fix e assume e: "e > 1 \ e \ m" then have "(1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using e1 x \x = z\ by (auto simp add: algebra_simps) then have "(1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using e by auto } then have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" using \m > 1\ by auto } ultimately have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S )" by blast } then show ?thesis by auto qed lemma convex_rel_interior_if2: fixes S :: "'n::euclidean_space set" assumes "convex S" assumes "z \ rel_interior S" shows "\x\affine hull S. \e. e > 1 \ (1 - e)*\<^sub>R x + e *\<^sub>R z \ S" using convex_rel_interior_if[of S z] assms by auto lemma convex_rel_interior_only_if: fixes S :: "'n::euclidean_space set" assumes "convex S" and "S \ {}" assumes "\x\S. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" shows "z \ rel_interior S" proof - obtain x where x: "x \ rel_interior S" using rel_interior_eq_empty assms by auto then have "x \ S" using rel_interior_subset by auto then obtain e where e: "e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using assms by auto define y where [abs_def]: "y = (1 - e) *\<^sub>R x + e *\<^sub>R z" then have "y \ S" using e by auto define e1 where "e1 = 1/e" then have "0 < e1 \ e1 < 1" using e by auto then have "z =y - (1 - e1) *\<^sub>R (y - x)" using e1_def y_def by (auto simp add: algebra_simps) then show ?thesis using rel_interior_convex_shrink[of S x y "1-e1"] \0 < e1 \ e1 < 1\ \y \ S\ x assms by auto qed lemma convex_rel_interior_iff: fixes S :: "'n::euclidean_space set" assumes "convex S" and "S \ {}" shows "z \ rel_interior S \ (\x\S. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" using assms hull_subset[of S "affine"] convex_rel_interior_if[of S z] convex_rel_interior_only_if[of S z] by auto lemma convex_rel_interior_iff2: fixes S :: "'n::euclidean_space set" assumes "convex S" and "S \ {}" shows "z \ rel_interior S \ (\x\affine hull S. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" using assms hull_subset[of S] convex_rel_interior_if2[of S z] convex_rel_interior_only_if[of S z] by auto lemma convex_interior_iff: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "z \ interior S \ (\x. \e. e > 0 \ z + e *\<^sub>R x \ S)" proof (cases "aff_dim S = int DIM('n)") case False { assume "z \ interior S" then have False using False interior_rel_interior_gen[of S] by auto } moreover { assume r: "\x. \e. e > 0 \ z + e *\<^sub>R x \ S" { fix x obtain e1 where e1: "e1 > 0 \ z + e1 *\<^sub>R (x - z) \ S" using r by auto obtain e2 where e2: "e2 > 0 \ z + e2 *\<^sub>R (z - x) \ S" using r by auto define x1 where [abs_def]: "x1 = z + e1 *\<^sub>R (x - z)" then have x1: "x1 \ affine hull S" using e1 hull_subset[of S] by auto define x2 where [abs_def]: "x2 = z + e2 *\<^sub>R (z - x)" then have x2: "x2 \ affine hull S" using e2 hull_subset[of S] by auto have *: "e1/(e1+e2) + e2/(e1+e2) = 1" using add_divide_distrib[of e1 e2 "e1+e2"] e1 e2 by simp then have "z = (e2/(e1+e2)) *\<^sub>R x1 + (e1/(e1+e2)) *\<^sub>R x2" - using x1_def x2_def - apply (auto simp add: algebra_simps) - using scaleR_left_distrib[of "e1/(e1+e2)" "e2/(e1+e2)" z] - apply auto - done + by (simp add: x1_def x2_def algebra_simps) (simp add: "*" pth_8) then have z: "z \ affine hull S" using mem_affine[of "affine hull S" x1 x2 "e2/(e1+e2)" "e1/(e1+e2)"] x1 x2 affine_affine_hull[of S] * by auto have "x1 - x2 = (e1 + e2) *\<^sub>R (x - z)" using x1_def x2_def by (auto simp add: algebra_simps) then have "x = z+(1/(e1+e2)) *\<^sub>R (x1-x2)" using e1 e2 by simp then have "x \ affine hull S" using mem_affine_3_minus[of "affine hull S" z x1 x2 "1/(e1+e2)"] x1 x2 z affine_affine_hull[of S] by auto } then have "affine hull S = UNIV" by auto then have "aff_dim S = int DIM('n)" using aff_dim_affine_hull[of S] by (simp) then have False using False by auto } ultimately show ?thesis by auto next case True then have "S \ {}" using aff_dim_empty[of S] by auto have *: "affine hull S = UNIV" using True affine_hull_UNIV by auto { assume "z \ interior S" then have "z \ rel_interior S" using True interior_rel_interior_gen[of S] by auto then have **: "\x. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using convex_rel_interior_iff2[of S z] assms \S \ {}\ * by auto fix x obtain e1 where e1: "e1 > 1" "(1 - e1) *\<^sub>R (z - x) + e1 *\<^sub>R z \ S" using **[rule_format, of "z-x"] by auto define e where [abs_def]: "e = e1 - 1" then have "(1 - e1) *\<^sub>R (z - x) + e1 *\<^sub>R z = z + e *\<^sub>R x" by (simp add: algebra_simps) then have "e > 0" "z + e *\<^sub>R x \ S" using e1 e_def by auto then have "\e. e > 0 \ z + e *\<^sub>R x \ S" by auto } moreover { assume r: "\x. \e. e > 0 \ z + e *\<^sub>R x \ S" { fix x obtain e1 where e1: "e1 > 0" "z + e1 *\<^sub>R (z - x) \ S" using r[rule_format, of "z-x"] by auto define e where "e = e1 + 1" then have "z + e1 *\<^sub>R (z - x) = (1 - e) *\<^sub>R x + e *\<^sub>R z" by (simp add: algebra_simps) then have "e > 1" "(1 - e)*\<^sub>R x + e *\<^sub>R z \ S" using e1 e_def by auto then have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" by auto } then have "z \ rel_interior S" using convex_rel_interior_iff2[of S z] assms \S \ {}\ by auto then have "z \ interior S" using True interior_rel_interior_gen[of S] by auto } ultimately show ?thesis by auto qed subsubsection\<^marker>\tag unimportant\ \Relative interior and closure under common operations\ lemma rel_interior_inter_aux: "\{rel_interior S |S. S \ I} \ \I" proof - { fix y assume "y \ \{rel_interior S |S. S \ I}" then have y: "\S \ I. y \ rel_interior S" by auto { fix S assume "S \ I" then have "y \ S" using rel_interior_subset y by auto } then have "y \ \I" by auto } then show ?thesis by auto qed lemma convex_closure_rel_interior_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" proof - obtain x where x: "\S\I. x \ rel_interior S" using assms by auto { fix y assume "y \ \{closure S |S. S \ I}" then have y: "\S \ I. y \ closure S" by auto { assume "y = x" then have "y \ closure (\{rel_interior S |S. S \ I})" using x closure_subset[of "\{rel_interior S |S. S \ I}"] by auto } moreover { assume "y \ x" { fix e :: real assume e: "e > 0" define e1 where "e1 = min 1 (e/norm (y - x))" then have e1: "e1 > 0" "e1 \ 1" "e1 * norm (y - x) \ e" using \y \ x\ \e > 0\ le_divide_eq[of e1 e "norm (y - x)"] by simp_all define z where "z = y - e1 *\<^sub>R (y - x)" { fix S assume "S \ I" then have "z \ rel_interior S" using rel_interior_closure_convex_shrink[of S x y e1] assms x y e1 z_def by auto } then have *: "z \ \{rel_interior S |S. S \ I}" by auto have "\z. z \ \{rel_interior S |S. S \ I} \ z \ y \ dist z y \ e" using \y \ x\ z_def * e1 e dist_norm[of z y] by (rule_tac x="z" in exI) auto } then have "y islimpt \{rel_interior S |S. S \ I}" unfolding islimpt_approachable_le by blast then have "y \ closure (\{rel_interior S |S. S \ I})" unfolding closure_def by auto } ultimately have "y \ closure (\{rel_interior S |S. S \ I})" by auto } then show ?thesis by auto qed lemma convex_closure_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "closure (\I) = \{closure S |S. S \ I}" proof - have "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" using convex_closure_rel_interior_inter assms by auto moreover have "closure (\{rel_interior S |S. S \ I}) \ closure (\I)" using rel_interior_inter_aux closure_mono[of "\{rel_interior S |S. S \ I}" "\I"] by auto ultimately show ?thesis using closure_Int[of I] by auto qed lemma convex_inter_rel_interior_same_closure: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "closure (\{rel_interior S |S. S \ I}) = closure (\I)" proof - have "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" using convex_closure_rel_interior_inter assms by auto moreover have "closure (\{rel_interior S |S. S \ I}) \ closure (\I)" using rel_interior_inter_aux closure_mono[of "\{rel_interior S |S. S \ I}" "\I"] by auto ultimately show ?thesis using closure_Int[of I] by auto qed lemma convex_rel_interior_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "rel_interior (\I) \ \{rel_interior S |S. S \ I}" proof - have "convex (\I)" using assms convex_Inter by auto moreover have "convex (\{rel_interior S |S. S \ I})" using assms convex_rel_interior by (force intro: convex_Inter) ultimately have "rel_interior (\{rel_interior S |S. S \ I}) = rel_interior (\I)" using convex_inter_rel_interior_same_closure assms closure_eq_rel_interior_eq[of "\{rel_interior S |S. S \ I}" "\I"] by blast then show ?thesis using rel_interior_subset[of "\{rel_interior S |S. S \ I}"] by auto qed lemma convex_rel_interior_finite_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" and "finite I" shows "rel_interior (\I) = \{rel_interior S |S. S \ I}" proof - have "\I \ {}" using assms rel_interior_inter_aux[of I] by auto have "convex (\I)" using convex_Inter assms by auto show ?thesis proof (cases "I = {}") case True then show ?thesis using Inter_empty rel_interior_UNIV by auto next case False { fix z assume z: "z \ \{rel_interior S |S. S \ I}" { fix x assume x: "x \ \I" { fix S assume S: "S \ I" then have "z \ rel_interior S" "x \ S" using z x by auto then have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e)*\<^sub>R x + e *\<^sub>R z \ S)" using convex_rel_interior_if[of S z] S assms hull_subset[of S] by auto } then obtain mS where mS: "\S\I. mS S > 1 \ (\e. e > 1 \ e \ mS S \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" by metis define e where "e = Min (mS ` I)" then have "e \ mS ` I" using assms \I \ {}\ by simp then have "e > 1" using mS by auto moreover have "\S\I. e \ mS S" using e_def assms by auto ultimately have "\e > 1. (1 - e) *\<^sub>R x + e *\<^sub>R z \ \I" using mS by auto } then have "z \ rel_interior (\I)" using convex_rel_interior_iff[of "\I" z] \\I \ {}\ \convex (\I)\ by auto } then show ?thesis using convex_rel_interior_inter[of I] assms by auto qed qed lemma convex_closure_inter_two: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" assumes "rel_interior S \ rel_interior T \ {}" shows "closure (S \ T) = closure S \ closure T" using convex_closure_inter[of "{S,T}"] assms by auto lemma convex_rel_interior_inter_two: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" and "rel_interior S \ rel_interior T \ {}" shows "rel_interior (S \ T) = rel_interior S \ rel_interior T" using convex_rel_interior_finite_inter[of "{S,T}"] assms by auto lemma convex_affine_closure_Int: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "affine T" and "rel_interior S \ T \ {}" shows "closure (S \ T) = closure S \ T" proof - have "affine hull T = T" using assms by auto then have "rel_interior T = T" using rel_interior_affine_hull[of T] by metis moreover have "closure T = T" using assms affine_closed[of T] by auto ultimately show ?thesis using convex_closure_inter_two[of S T] assms affine_imp_convex by auto qed lemma connected_component_1_gen: fixes S :: "'a :: euclidean_space set" assumes "DIM('a) = 1" shows "connected_component S a b \ closed_segment a b \ S" unfolding connected_component_def by (metis (no_types, lifting) assms subsetD subsetI convex_contains_segment convex_segment(1) ends_in_segment connected_convex_1_gen) lemma connected_component_1: fixes S :: "real set" shows "connected_component S a b \ closed_segment a b \ S" by (simp add: connected_component_1_gen) lemma convex_affine_rel_interior_Int: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "affine T" and "rel_interior S \ T \ {}" shows "rel_interior (S \ T) = rel_interior S \ T" proof - have "affine hull T = T" using assms by auto then have "rel_interior T = T" using rel_interior_affine_hull[of T] by metis moreover have "closure T = T" using assms affine_closed[of T] by auto ultimately show ?thesis using convex_rel_interior_inter_two[of S T] assms affine_imp_convex by auto qed lemma convex_affine_rel_frontier_Int: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "affine T" and "interior S \ T \ {}" shows "rel_frontier(S \ T) = frontier S \ T" using assms -apply (simp add: rel_frontier_def convex_affine_closure_Int frontier_def) -by (metis Diff_Int_distrib2 Int_emptyI convex_affine_closure_Int convex_affine_rel_interior_Int empty_iff interior_rel_interior_gen) + unfolding rel_frontier_def frontier_def + using convex_affine_closure_Int convex_affine_rel_interior_Int rel_interior_nonempty_interior by fastforce lemma rel_interior_convex_Int_affine: fixes S :: "'a::euclidean_space set" assumes "convex S" "affine T" "interior S \ T \ {}" shows "rel_interior(S \ T) = interior S \ T" proof - obtain a where aS: "a \ interior S" and aT:"a \ T" using assms by force have "rel_interior S = interior S" by (metis (no_types) aS affine_hull_nonempty_interior equals0D rel_interior_interior) then show ?thesis by (metis (no_types) affine_imp_convex assms convex_rel_interior_inter_two hull_same rel_interior_affine_hull) qed lemma closure_convex_Int_affine: fixes S :: "'a::euclidean_space set" assumes "convex S" "affine T" "rel_interior S \ T \ {}" shows "closure(S \ T) = closure S \ T" proof have "closure (S \ T) \ closure T" by (simp add: closure_mono) also have "... \ T" by (simp add: affine_closed assms) finally show "closure(S \ T) \ closure S \ T" by (simp add: closure_mono) next obtain a where "a \ rel_interior S" "a \ T" using assms by auto then have ssT: "subspace ((\x. (-a)+x) ` T)" and "a \ S" using affine_diffs_subspace rel_interior_subset assms by blast+ show "closure S \ T \ closure (S \ T)" proof fix x assume "x \ closure S \ T" show "x \ closure (S \ T)" proof (cases "x = a") case True then show ?thesis using \a \ S\ \a \ T\ closure_subset by fastforce next case False then have "x \ closure(open_segment a x)" by auto then show ?thesis using \x \ closure S \ T\ assms convex_affine_closure_Int by blast qed qed qed lemma subset_rel_interior_convex: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" and "S \ closure T" and "\ S \ rel_frontier T" shows "rel_interior S \ rel_interior T" proof - have *: "S \ closure T = S" using assms by auto have "\ rel_interior S \ rel_frontier T" using closure_mono[of "rel_interior S" "rel_frontier T"] closed_rel_frontier[of T] closure_closed[of S] convex_closure_rel_interior[of S] closure_subset[of S] assms by auto then have "rel_interior S \ rel_interior (closure T) \ {}" using assms rel_frontier_def[of T] rel_interior_subset convex_rel_interior_closure[of T] by auto then have "rel_interior S \ rel_interior T = rel_interior (S \ closure T)" using assms convex_closure convex_rel_interior_inter_two[of S "closure T"] convex_rel_interior_closure[of T] by auto also have "\ = rel_interior S" using * by auto finally show ?thesis by auto qed lemma rel_interior_convex_linear_image: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" shows "f ` (rel_interior S) = rel_interior (f ` S)" proof (cases "S = {}") case True then show ?thesis using assms by auto next case False interpret linear f by fact have *: "f ` (rel_interior S) \ f ` S" unfolding image_mono using rel_interior_subset by auto have "f ` S \ f ` (closure S)" unfolding image_mono using closure_subset by auto also have "\ = f ` (closure (rel_interior S))" using convex_closure_rel_interior assms by auto also have "\ \ closure (f ` (rel_interior S))" using closure_linear_image_subset assms by auto finally have "closure (f ` S) = closure (f ` rel_interior S)" using closure_mono[of "f ` S" "closure (f ` rel_interior S)"] closure_closure closure_mono[of "f ` rel_interior S" "f ` S"] * by auto then have "rel_interior (f ` S) = rel_interior (f ` rel_interior S)" using assms convex_rel_interior linear_conv_bounded_linear[of f] convex_linear_image[of _ S] convex_linear_image[of _ "rel_interior S"] closure_eq_rel_interior_eq[of "f ` S" "f ` rel_interior S"] by auto then have "rel_interior (f ` S) \ f ` rel_interior S" using rel_interior_subset by auto moreover { fix z assume "z \ f ` rel_interior S" then obtain z1 where z1: "z1 \ rel_interior S" "f z1 = z" by auto { fix x assume "x \ f ` S" then obtain x1 where x1: "x1 \ S" "f x1 = x" by auto then obtain e where e: "e > 1" "(1 - e) *\<^sub>R x1 + e *\<^sub>R z1 \ S" using convex_rel_interior_iff[of S z1] \convex S\ x1 z1 by auto moreover have "f ((1 - e) *\<^sub>R x1 + e *\<^sub>R z1) = (1 - e) *\<^sub>R x + e *\<^sub>R z" using x1 z1 by (simp add: linear_add linear_scale \linear f\) ultimately have "(1 - e) *\<^sub>R x + e *\<^sub>R z \ f ` S" using imageI[of "(1 - e) *\<^sub>R x1 + e *\<^sub>R z1" S f] by auto then have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ f ` S" using e by auto } then have "z \ rel_interior (f ` S)" using convex_rel_interior_iff[of "f ` S" z] \convex S\ \linear f\ \S \ {}\ convex_linear_image[of f S] linear_conv_bounded_linear[of f] by auto } ultimately show ?thesis by auto qed lemma rel_interior_convex_linear_preimage: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" and "f -` (rel_interior S) \ {}" shows "rel_interior (f -` S) = f -` (rel_interior S)" proof - interpret linear f by fact have "S \ {}" using assms by auto have nonemp: "f -` S \ {}" by (metis assms(3) rel_interior_subset subset_empty vimage_mono) then have "S \ (range f) \ {}" by auto have conv: "convex (f -` S)" using convex_linear_vimage assms by auto then have "convex (S \ range f)" by (simp add: assms(2) convex_Int convex_linear_image linear_axioms) { fix z assume "z \ f -` (rel_interior S)" then have z: "f z \ rel_interior S" by auto { fix x assume "x \ f -` S" then have "f x \ S" by auto then obtain e where e: "e > 1" "(1 - e) *\<^sub>R f x + e *\<^sub>R f z \ S" using convex_rel_interior_iff[of S "f z"] z assms \S \ {}\ by auto moreover have "(1 - e) *\<^sub>R f x + e *\<^sub>R f z = f ((1 - e) *\<^sub>R x + e *\<^sub>R z)" using \linear f\ by (simp add: linear_iff) ultimately have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ f -` S" using e by auto } then have "z \ rel_interior (f -` S)" using convex_rel_interior_iff[of "f -` S" z] conv nonemp by auto } moreover { fix z assume z: "z \ rel_interior (f -` S)" { fix x assume "x \ S \ range f" then obtain y where y: "f y = x" "y \ f -` S" by auto then obtain e where e: "e > 1" "(1 - e) *\<^sub>R y + e *\<^sub>R z \ f -` S" using convex_rel_interior_iff[of "f -` S" z] z conv by auto moreover have "(1 - e) *\<^sub>R x + e *\<^sub>R f z = f ((1 - e) *\<^sub>R y + e *\<^sub>R z)" using \linear f\ y by (simp add: linear_iff) ultimately have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R f z \ S \ range f" using e by auto } then have "f z \ rel_interior (S \ range f)" using \convex (S \ (range f))\ \S \ range f \ {}\ convex_rel_interior_iff[of "S \ (range f)" "f z"] by auto moreover have "affine (range f)" by (simp add: linear_axioms linear_subspace_image subspace_imp_affine) ultimately have "f z \ rel_interior S" using convex_affine_rel_interior_Int[of S "range f"] assms by auto then have "z \ f -` (rel_interior S)" by auto } ultimately show ?thesis by auto qed lemma rel_interior_Times: fixes S :: "'n::euclidean_space set" and T :: "'m::euclidean_space set" assumes "convex S" and "convex T" shows "rel_interior (S \ T) = rel_interior S \ rel_interior T" proof (cases "S = {} \ T = {}") case True then show ?thesis by auto next case False then have "S \ {}" "T \ {}" by auto then have ri: "rel_interior S \ {}" "rel_interior T \ {}" using rel_interior_eq_empty assms by auto then have "fst -` rel_interior S \ {}" using fst_vimage_eq_Times[of "rel_interior S"] by auto then have "rel_interior ((fst :: 'n * 'm \ 'n) -` S) = fst -` rel_interior S" using linear_fst \convex S\ rel_interior_convex_linear_preimage[of fst S] by auto then have s: "rel_interior (S \ (UNIV :: 'm set)) = rel_interior S \ UNIV" by (simp add: fst_vimage_eq_Times) from ri have "snd -` rel_interior T \ {}" using snd_vimage_eq_Times[of "rel_interior T"] by auto then have "rel_interior ((snd :: 'n * 'm \ 'm) -` T) = snd -` rel_interior T" using linear_snd \convex T\ rel_interior_convex_linear_preimage[of snd T] by auto then have t: "rel_interior ((UNIV :: 'n set) \ T) = UNIV \ rel_interior T" by (simp add: snd_vimage_eq_Times) from s t have *: "rel_interior (S \ (UNIV :: 'm set)) \ rel_interior ((UNIV :: 'n set) \ T) = rel_interior S \ rel_interior T" by auto have "S \ T = S \ (UNIV :: 'm set) \ (UNIV :: 'n set) \ T" by auto then have "rel_interior (S \ T) = rel_interior ((S \ (UNIV :: 'm set)) \ ((UNIV :: 'n set) \ T))" by auto also have "\ = rel_interior (S \ (UNIV :: 'm set)) \ rel_interior ((UNIV :: 'n set) \ T)" using * ri assms convex_Times by (subst convex_rel_interior_inter_two) auto finally show ?thesis using * by auto qed lemma rel_interior_scaleR: fixes S :: "'n::euclidean_space set" assumes "c \ 0" shows "((*\<^sub>R) c) ` (rel_interior S) = rel_interior (((*\<^sub>R) c) ` S)" using rel_interior_injective_linear_image[of "((*\<^sub>R) c)" S] linear_conv_bounded_linear[of "(*\<^sub>R) c"] linear_scaleR injective_scaleR[of c] assms by auto lemma rel_interior_convex_scaleR: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "((*\<^sub>R) c) ` (rel_interior S) = rel_interior (((*\<^sub>R) c) ` S)" by (metis assms linear_scaleR rel_interior_convex_linear_image) lemma convex_rel_open_scaleR: fixes S :: "'n::euclidean_space set" assumes "convex S" and "rel_open S" shows "convex (((*\<^sub>R) c) ` S) \ rel_open (((*\<^sub>R) c) ` S)" by (metis assms convex_scaling rel_interior_convex_scaleR rel_open_def) lemma convex_rel_open_finite_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set) \ rel_open S" and "finite I" shows "convex (\I) \ rel_open (\I)" proof (cases "\{rel_interior S |S. S \ I} = {}") case True then have "\I = {}" using assms unfolding rel_open_def by auto then show ?thesis unfolding rel_open_def by auto next case False then have "rel_open (\I)" using assms unfolding rel_open_def using convex_rel_interior_finite_inter[of I] by auto then show ?thesis using convex_Inter assms by auto qed lemma convex_rel_open_linear_image: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" and "rel_open S" shows "convex (f ` S) \ rel_open (f ` S)" by (metis assms convex_linear_image rel_interior_convex_linear_image rel_open_def) lemma convex_rel_open_linear_preimage: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" and "rel_open S" shows "convex (f -` S) \ rel_open (f -` S)" proof (cases "f -` (rel_interior S) = {}") case True then have "f -` S = {}" using assms unfolding rel_open_def by auto then show ?thesis unfolding rel_open_def by auto next case False then have "rel_open (f -` S)" using assms unfolding rel_open_def using rel_interior_convex_linear_preimage[of f S] by auto then show ?thesis using convex_linear_vimage assms by auto qed lemma rel_interior_projection: fixes S :: "('m::euclidean_space \ 'n::euclidean_space) set" and f :: "'m::euclidean_space \ 'n::euclidean_space set" assumes "convex S" and "f = (\y. {z. (y, z) \ S})" shows "(y, z) \ rel_interior S \ (y \ rel_interior {y. (f y \ {})} \ z \ rel_interior (f y))" proof - { fix y assume "y \ {y. f y \ {}}" then obtain z where "(y, z) \ S" using assms by auto then have "\x. x \ S \ y = fst x" by auto then obtain x where "x \ S" "y = fst x" by blast then have "y \ fst ` S" unfolding image_def by auto } then have "fst ` S = {y. f y \ {}}" unfolding fst_def using assms by auto then have h1: "fst ` rel_interior S = rel_interior {y. f y \ {}}" using rel_interior_convex_linear_image[of fst S] assms linear_fst by auto { fix y assume "y \ rel_interior {y. f y \ {}}" then have "y \ fst ` rel_interior S" using h1 by auto then have *: "rel_interior S \ fst -` {y} \ {}" by auto moreover have aff: "affine (fst -` {y})" unfolding affine_alt by (simp add: algebra_simps) ultimately have **: "rel_interior (S \ fst -` {y}) = rel_interior S \ fst -` {y}" using convex_affine_rel_interior_Int[of S "fst -` {y}"] assms by auto have conv: "convex (S \ fst -` {y})" using convex_Int assms aff affine_imp_convex by auto { fix x assume "x \ f y" then have "(y, x) \ S \ (fst -` {y})" using assms by auto moreover have "x = snd (y, x)" by auto ultimately have "x \ snd ` (S \ fst -` {y})" by blast } then have "snd ` (S \ fst -` {y}) = f y" using assms by auto then have ***: "rel_interior (f y) = snd ` rel_interior (S \ fst -` {y})" using rel_interior_convex_linear_image[of snd "S \ fst -` {y}"] linear_snd conv by auto { fix z assume "z \ rel_interior (f y)" then have "z \ snd ` rel_interior (S \ fst -` {y})" using *** by auto moreover have "{y} = fst ` rel_interior (S \ fst -` {y})" using * ** rel_interior_subset by auto ultimately have "(y, z) \ rel_interior (S \ fst -` {y})" by force then have "(y,z) \ rel_interior S" using ** by auto } moreover { fix z assume "(y, z) \ rel_interior S" then have "(y, z) \ rel_interior (S \ fst -` {y})" using ** by auto then have "z \ snd ` rel_interior (S \ fst -` {y})" by (metis Range_iff snd_eq_Range) then have "z \ rel_interior (f y)" using *** by auto } ultimately have "\z. (y, z) \ rel_interior S \ z \ rel_interior (f y)" by auto } then have h2: "\y z. y \ rel_interior {t. f t \ {}} \ (y, z) \ rel_interior S \ z \ rel_interior (f y)" by auto { fix y z assume asm: "(y, z) \ rel_interior S" then have "y \ fst ` rel_interior S" by (metis Domain_iff fst_eq_Domain) then have "y \ rel_interior {t. f t \ {}}" using h1 by auto then have "y \ rel_interior {t. f t \ {}}" and "(z \ rel_interior (f y))" using h2 asm by auto } then show ?thesis using h2 by blast qed lemma rel_frontier_Times: fixes S :: "'n::euclidean_space set" and T :: "'m::euclidean_space set" assumes "convex S" and "convex T" shows "rel_frontier S \ rel_frontier T \ rel_frontier (S \ T)" by (force simp: rel_frontier_def rel_interior_Times assms closure_Times) subsubsection\<^marker>\tag unimportant\ \Relative interior of convex cone\ lemma cone_rel_interior: fixes S :: "'m::euclidean_space set" assumes "cone S" shows "cone ({0} \ rel_interior S)" proof (cases "S = {}") case True then show ?thesis by (simp add: cone_0) next case False then have *: "0 \ S \ (\c. c > 0 \ (*\<^sub>R) c ` S = S)" using cone_iff[of S] assms by auto then have *: "0 \ ({0} \ rel_interior S)" and "\c. c > 0 \ (*\<^sub>R) c ` ({0} \ rel_interior S) = ({0} \ rel_interior S)" by (auto simp add: rel_interior_scaleR) then show ?thesis using cone_iff[of "{0} \ rel_interior S"] by auto qed lemma rel_interior_convex_cone_aux: fixes S :: "'m::euclidean_space set" assumes "convex S" shows "(c, x) \ rel_interior (cone hull ({(1 :: real)} \ S)) \ c > 0 \ x \ (((*\<^sub>R) c) ` (rel_interior S))" proof (cases "S = {}") case True then show ?thesis by (simp add: cone_hull_empty) next case False then obtain s where "s \ S" by auto have conv: "convex ({(1 :: real)} \ S)" using convex_Times[of "{(1 :: real)}" S] assms convex_singleton[of "1 :: real"] by auto define f where "f y = {z. (y, z) \ cone hull ({1 :: real} \ S)}" for y then have *: "(c, x) \ rel_interior (cone hull ({(1 :: real)} \ S)) = (c \ rel_interior {y. f y \ {}} \ x \ rel_interior (f c))" using convex_cone_hull[of "{(1 :: real)} \ S"] conv by (subst rel_interior_projection) auto { fix y :: real assume "y \ 0" then have "y *\<^sub>R (1,s) \ cone hull ({1 :: real} \ S)" using cone_hull_expl[of "{(1 :: real)} \ S"] \s \ S\ by auto then have "f y \ {}" using f_def by auto } then have "{y. f y \ {}} = {0..}" using f_def cone_hull_expl[of "{1 :: real} \ S"] by auto then have **: "rel_interior {y. f y \ {}} = {0<..}" using rel_interior_real_semiline by auto { fix c :: real assume "c > 0" then have "f c = ((*\<^sub>R) c ` S)" using f_def cone_hull_expl[of "{1 :: real} \ S"] by auto then have "rel_interior (f c) = (*\<^sub>R) c ` rel_interior S" using rel_interior_convex_scaleR[of S c] assms by auto } then show ?thesis using * ** by auto qed lemma rel_interior_convex_cone: fixes S :: "'m::euclidean_space set" assumes "convex S" shows "rel_interior (cone hull ({1 :: real} \ S)) = {(c, c *\<^sub>R x) | c x. c > 0 \ x \ rel_interior S}" (is "?lhs = ?rhs") proof - { fix z assume "z \ ?lhs" have *: "z = (fst z, snd z)" by auto then have "z \ ?rhs" using rel_interior_convex_cone_aux[of S "fst z" "snd z"] assms \z \ ?lhs\ by fastforce } moreover { fix z assume "z \ ?rhs" then have "z \ ?lhs" using rel_interior_convex_cone_aux[of S "fst z" "snd z"] assms by auto } ultimately show ?thesis by blast qed lemma convex_hull_finite_union: assumes "finite I" assumes "\i\I. convex (S i) \ (S i) \ {}" shows "convex hull (\(S ` I)) = {sum (\i. c i *\<^sub>R s i) I | c s. (\i\I. c i \ 0) \ sum c I = 1 \ (\i\I. s i \ S i)}" (is "?lhs = ?rhs") proof - have "?lhs \ ?rhs" proof fix x assume "x \ ?rhs" then obtain c s where *: "sum (\i. c i *\<^sub>R s i) I = x" "sum c I = 1" "(\i\I. c i \ 0) \ (\i\I. s i \ S i)" by auto then have "\i\I. s i \ convex hull (\(S ` I))" using hull_subset[of "\(S ` I)" convex] by auto then show "x \ ?lhs" unfolding *(1)[symmetric] using * assms convex_convex_hull by (subst convex_sum) auto qed { fix i assume "i \ I" with assms have "\p. p \ S i" by auto } then obtain p where p: "\i\I. p i \ S i" by metis { fix i assume "i \ I" { fix x assume "x \ S i" define c where "c j = (if j = i then 1::real else 0)" for j then have *: "sum c I = 1" using \finite I\ \i \ I\ sum.delta[of I i "\j::'a. 1::real"] by auto define s where "s j = (if j = i then x else p j)" for j then have "\j. c j *\<^sub>R s j = (if j = i then x else 0)" using c_def by (auto simp add: algebra_simps) then have "x = sum (\i. c i *\<^sub>R s i) I" using s_def c_def \finite I\ \i \ I\ sum.delta[of I i "\j::'a. x"] by auto - then have "x \ ?rhs" - apply auto - apply (rule_tac x = c in exI) - apply (rule_tac x = s in exI) - using * c_def s_def p \x \ S i\ - apply auto - done + moreover have "(\i\I. 0 \ c i) \ sum c I = 1 \ (\i\I. s i \ S i)" + using * c_def s_def p \x \ S i\ by auto + ultimately have "x \ ?rhs" + by force } then have "?rhs \ S i" by auto } then have *: "?rhs \ \(S ` I)" by auto { fix u v :: real assume uv: "u \ 0 \ v \ 0 \ u + v = 1" fix x y assume xy: "x \ ?rhs \ y \ ?rhs" from xy obtain c s where xc: "x = sum (\i. c i *\<^sub>R s i) I \ (\i\I. c i \ 0) \ sum c I = 1 \ (\i\I. s i \ S i)" by auto from xy obtain d t where yc: "y = sum (\i. d i *\<^sub>R t i) I \ (\i\I. d i \ 0) \ sum d I = 1 \ (\i\I. t i \ S i)" by auto define e where "e i = u * c i + v * d i" for i have ge0: "\i\I. e i \ 0" using e_def xc yc uv by simp have "sum (\i. u * c i) I = u * sum c I" by (simp add: sum_distrib_left) moreover have "sum (\i. v * d i) I = v * sum d I" by (simp add: sum_distrib_left) ultimately have sum1: "sum e I = 1" using e_def xc yc uv by (simp add: sum.distrib) define q where "q i = (if e i = 0 then p i else (u * c i / e i) *\<^sub>R s i + (v * d i / e i) *\<^sub>R t i)" for i { fix i assume i: "i \ I" have "q i \ S i" proof (cases "e i = 0") case True then show ?thesis using i p q_def by auto next case False then show ?thesis using mem_convex_alt[of "S i" "s i" "t i" "u * (c i)" "v * (d i)"] mult_nonneg_nonneg[of u "c i"] mult_nonneg_nonneg[of v "d i"] assms q_def e_def i False xc yc uv by (auto simp del: mult_nonneg_nonneg) qed } then have qs: "\i\I. q i \ S i" by auto { fix i assume i: "i \ I" have "(u * c i) *\<^sub>R s i + (v * d i) *\<^sub>R t i = e i *\<^sub>R q i" proof (cases "e i = 0") case True have ge: "u * (c i) \ 0 \ v * d i \ 0" using xc yc uv i by simp moreover from ge have "u * c i \ 0 \ v * d i \ 0" using True e_def i by simp ultimately have "u * c i = 0 \ v * d i = 0" by auto with True show ?thesis by auto next case False then have "(u * (c i)/(e i))*\<^sub>R (s i)+(v * (d i)/(e i))*\<^sub>R (t i) = q i" using q_def by auto then have "e i *\<^sub>R ((u * (c i)/(e i))*\<^sub>R (s i)+(v * (d i)/(e i))*\<^sub>R (t i)) = (e i) *\<^sub>R (q i)" by auto with False show ?thesis by (simp add: algebra_simps) qed } then have *: "\i\I. (u * c i) *\<^sub>R s i + (v * d i) *\<^sub>R t i = e i *\<^sub>R q i" by auto have "u *\<^sub>R x + v *\<^sub>R y = sum (\i. (u * c i) *\<^sub>R s i + (v * d i) *\<^sub>R t i) I" using xc yc by (simp add: algebra_simps scaleR_right.sum sum.distrib) also have "\ = sum (\i. e i *\<^sub>R q i) I" using * by auto finally have "u *\<^sub>R x + v *\<^sub>R y = sum (\i. (e i) *\<^sub>R (q i)) I" by auto then have "u *\<^sub>R x + v *\<^sub>R y \ ?rhs" using ge0 sum1 qs by auto } then have "convex ?rhs" unfolding convex_def by auto then show ?thesis using \?lhs \ ?rhs\ * hull_minimal[of "\(S ` I)" ?rhs convex] by blast qed lemma convex_hull_union_two: fixes S T :: "'m::euclidean_space set" assumes "convex S" and "S \ {}" and "convex T" and "T \ {}" shows "convex hull (S \ T) = {u *\<^sub>R s + v *\<^sub>R t | u v s t. u \ 0 \ v \ 0 \ u + v = 1 \ s \ S \ t \ T}" (is "?lhs = ?rhs") proof define I :: "nat set" where "I = {1, 2}" define s where "s i = (if i = (1::nat) then S else T)" for i have "\(s ` I) = S \ T" using s_def I_def by auto then have "convex hull (\(s ` I)) = convex hull (S \ T)" by auto moreover have "convex hull \(s ` I) = {\ i\I. c i *\<^sub>R sa i | c sa. (\i\I. 0 \ c i) \ sum c I = 1 \ (\i\I. sa i \ s i)}" using assms s_def I_def by (subst convex_hull_finite_union) auto moreover have "{\i\I. c i *\<^sub>R sa i | c sa. (\i\I. 0 \ c i) \ sum c I = 1 \ (\i\I. sa i \ s i)} \ ?rhs" using s_def I_def by auto ultimately show "?lhs \ ?rhs" by auto { fix x assume "x \ ?rhs" then obtain u v s t where *: "x = u *\<^sub>R s + v *\<^sub>R t \ u \ 0 \ v \ 0 \ u + v = 1 \ s \ S \ t \ T" by auto then have "x \ convex hull {s, t}" using convex_hull_2[of s t] by auto then have "x \ convex hull (S \ T)" using * hull_mono[of "{s, t}" "S \ T"] by auto } then show "?lhs \ ?rhs" by blast qed proposition ray_to_rel_frontier: fixes a :: "'a::real_inner" assumes "bounded S" and a: "a \ rel_interior S" and aff: "(a + l) \ affine hull S" and "l \ 0" obtains d where "0 < d" "(a + d *\<^sub>R l) \ rel_frontier S" "\e. \0 \ e; e < d\ \ (a + e *\<^sub>R l) \ rel_interior S" proof - have aaff: "a \ affine hull S" by (meson a hull_subset rel_interior_subset rev_subsetD) let ?D = "{d. 0 < d \ a + d *\<^sub>R l \ rel_interior S}" obtain B where "B > 0" and B: "S \ ball a B" using bounded_subset_ballD [OF \bounded S\] by blast have "a + (B / norm l) *\<^sub>R l \ ball a B" by (simp add: dist_norm \l \ 0\) with B have "a + (B / norm l) *\<^sub>R l \ rel_interior S" using rel_interior_subset subsetCE by blast with \B > 0\ \l \ 0\ have nonMT: "?D \ {}" using divide_pos_pos zero_less_norm_iff by fastforce have bdd: "bdd_below ?D" by (metis (no_types, lifting) bdd_belowI le_less mem_Collect_eq) have relin_Ex: "\x. x \ rel_interior S \ \e>0. \x'\affine hull S. dist x' x < e \ x' \ rel_interior S" using openin_rel_interior [of S] by (simp add: openin_euclidean_subtopology_iff) define d where "d = Inf ?D" obtain \ where "0 < \" and \: "\\. \0 \ \; \ < \\ \ (a + \ *\<^sub>R l) \ rel_interior S" proof - obtain e where "e>0" and e: "\x'. x' \ affine hull S \ dist x' a < e \ x' \ rel_interior S" using relin_Ex a by blast show thesis proof (rule_tac \ = "e / norm l" in that) show "0 < e / norm l" by (simp add: \0 < e\ \l \ 0\) next show "a + \ *\<^sub>R l \ rel_interior S" if "0 \ \" "\ < e / norm l" for \ proof (rule e) show "a + \ *\<^sub>R l \ affine hull S" by (metis (no_types) add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus aaff) show "dist (a + \ *\<^sub>R l) a < e" using that by (simp add: \l \ 0\ dist_norm pos_less_divide_eq) qed qed qed have inint: "\e. \0 \ e; e < d\ \ a + e *\<^sub>R l \ rel_interior S" unfolding d_def using cInf_lower [OF _ bdd] by (metis (no_types, lifting) a add.right_neutral le_less mem_Collect_eq not_less real_vector.scale_zero_left) have "\ \ d" unfolding d_def using \ dual_order.strict_implies_order le_less_linear by (blast intro: cInf_greatest [OF nonMT]) with \0 < \\ have "0 < d" by simp have "a + d *\<^sub>R l \ rel_interior S" proof assume adl: "a + d *\<^sub>R l \ rel_interior S" obtain e where "e > 0" and e: "\x'. x' \ affine hull S \ dist x' (a + d *\<^sub>R l) < e \ x' \ rel_interior S" using relin_Ex adl by blast have "d + e / norm l \ Inf {d. 0 < d \ a + d *\<^sub>R l \ rel_interior S}" proof (rule cInf_greatest [OF nonMT], clarsimp) fix x::real assume "0 < x" and nonrel: "a + x *\<^sub>R l \ rel_interior S" show "d + e / norm l \ x" proof (cases "x < d") case True with inint nonrel \0 < x\ show ?thesis by auto next case False then have dle: "x < d + e / norm l \ dist (a + x *\<^sub>R l) (a + d *\<^sub>R l) < e" by (simp add: field_simps \l \ 0\) have ain: "a + x *\<^sub>R l \ affine hull S" by (metis add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus aaff) show ?thesis using e [OF ain] nonrel dle by force qed qed then show False using \0 < e\ \l \ 0\ by (simp add: d_def [symmetric] field_simps) qed moreover have "a + d *\<^sub>R l \ closure S" proof (clarsimp simp: closure_approachable) fix \::real assume "0 < \" have 1: "a + (d - min d (\ / 2 / norm l)) *\<^sub>R l \ S" - apply (rule subsetD [OF rel_interior_subset inint]) - using \l \ 0\ \0 < d\ \0 < \\ by auto + proof (rule subsetD [OF rel_interior_subset inint]) + show "d - min d (\ / 2 / norm l) < d" + using \l \ 0\ \0 < d\ \0 < \\ by auto + qed auto have "norm l * min d (\ / (norm l * 2)) \ norm l * (\ / (norm l * 2))" by (metis min_def mult_left_mono norm_ge_zero order_refl) also have "... < \" using \l \ 0\ \0 < \\ by (simp add: field_simps) finally have 2: "norm l * min d (\ / (norm l * 2)) < \" . show "\y\S. dist y (a + d *\<^sub>R l) < \" - apply (rule_tac x="a + (d - min d (\ / 2 / norm l)) *\<^sub>R l" in bexI) - using 1 2 \0 < d\ \0 < \\ apply (auto simp: algebra_simps) - done + using 1 2 \0 < d\ \0 < \\ + by (rule_tac x="a + (d - min d (\ / 2 / norm l)) *\<^sub>R l" in bexI) (auto simp: algebra_simps) qed ultimately have infront: "a + d *\<^sub>R l \ rel_frontier S" by (simp add: rel_frontier_def) show ?thesis by (rule that [OF \0 < d\ infront inint]) qed corollary ray_to_frontier: fixes a :: "'a::euclidean_space" assumes "bounded S" and a: "a \ interior S" and "l \ 0" obtains d where "0 < d" "(a + d *\<^sub>R l) \ frontier S" "\e. \0 \ e; e < d\ \ (a + e *\<^sub>R l) \ interior S" proof - - have "interior S = rel_interior S" + have \
: "interior S = rel_interior S" using a rel_interior_nonempty_interior by auto then have "a \ rel_interior S" using a by simp - then show thesis - apply (rule ray_to_rel_frontier [OF \bounded S\ _ _ \l \ 0\]) - using a affine_hull_nonempty_interior apply blast - by (simp add: \interior S = rel_interior S\ frontier_def rel_frontier_def that) + moreover have "a + l \ affine hull S" + using a affine_hull_nonempty_interior by blast + ultimately show thesis + by (metis \
\bounded S\ \l \ 0\ frontier_def ray_to_rel_frontier rel_frontier_def that) qed lemma segment_to_rel_frontier_aux: fixes x :: "'a::euclidean_space" assumes "convex S" "bounded S" and x: "x \ rel_interior S" and y: "y \ S" and xy: "x \ y" obtains z where "z \ rel_frontier S" "y \ closed_segment x z" "open_segment x z \ rel_interior S" proof - have "x + (y - x) \ affine hull S" using hull_inc [OF y] by auto then obtain d where "0 < d" and df: "(x + d *\<^sub>R (y-x)) \ rel_frontier S" and di: "\e. \0 \ e; e < d\ \ (x + e *\<^sub>R (y-x)) \ rel_interior S" by (rule ray_to_rel_frontier [OF \bounded S\ x]) (use xy in auto) show ?thesis proof show "x + d *\<^sub>R (y - x) \ rel_frontier S" by (simp add: df) next have "open_segment x y \ rel_interior S" using rel_interior_closure_convex_segment [OF \convex S\ x] closure_subset y by blast moreover have "x + d *\<^sub>R (y - x) \ open_segment x y" if "d < 1" using xy \0 < d\ that by (force simp: in_segment algebra_simps) ultimately have "1 \ d" using df rel_frontier_def by fastforce moreover have "x = (1 / d) *\<^sub>R x + ((d - 1) / d) *\<^sub>R x" by (metis \0 < d\ add.commute add_divide_distrib diff_add_cancel divide_self_if less_irrefl scaleR_add_left scaleR_one) ultimately show "y \ closed_segment x (x + d *\<^sub>R (y - x))" - apply (simp add: in_segment) - apply (rule_tac x="1/d" in exI) - apply (auto simp: algebra_simps) - done + unfolding in_segment + by (rule_tac x="1/d" in exI) (auto simp: algebra_simps) next show "open_segment x (x + d *\<^sub>R (y - x)) \ rel_interior S" proof (rule rel_interior_closure_convex_segment [OF \convex S\ x]) show "x + d *\<^sub>R (y - x) \ closure S" using df rel_frontier_def by auto qed qed qed lemma segment_to_rel_frontier: fixes x :: "'a::euclidean_space" assumes S: "convex S" "bounded S" and x: "x \ rel_interior S" and y: "y \ S" and xy: "\(x = y \ S = {x})" obtains z where "z \ rel_frontier S" "y \ closed_segment x z" "open_segment x z \ rel_interior S" proof (cases "x=y") case True with xy have "S \ {x}" by blast with True show ?thesis by (metis Set.set_insert all_not_in_conv ends_in_segment(1) insert_iff segment_to_rel_frontier_aux[OF S x] that y) next case False then show ?thesis using segment_to_rel_frontier_aux [OF S x y] that by blast qed proposition rel_frontier_not_sing: fixes a :: "'a::euclidean_space" assumes "bounded S" shows "rel_frontier S \ {a}" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain z where "z \ S" by blast then show ?thesis proof (cases "S = {z}") case True then show ?thesis by simp next case False then obtain w where "w \ S" "w \ z" using \z \ S\ by blast show ?thesis proof assume "rel_frontier S = {a}" then consider "w \ rel_frontier S" | "z \ rel_frontier S" using \w \ z\ by auto then show False proof cases case 1 then have w: "w \ rel_interior S" using \w \ S\ closure_subset rel_frontier_def by fastforce have "w + (w - z) \ affine hull S" by (metis \w \ S\ \z \ S\ affine_affine_hull hull_inc mem_affine_3_minus scaleR_one) then obtain e where "0 < e" "(w + e *\<^sub>R (w - z)) \ rel_frontier S" using \w \ z\ \z \ S\ by (metis assms ray_to_rel_frontier right_minus_eq w) moreover obtain d where "0 < d" "(w + d *\<^sub>R (z - w)) \ rel_frontier S" using ray_to_rel_frontier [OF \bounded S\ w, of "1 *\<^sub>R (z - w)"] \w \ z\ \z \ S\ by (metis add.commute add.right_neutral diff_add_cancel hull_inc scaleR_one) ultimately have "d *\<^sub>R (z - w) = e *\<^sub>R (w - z)" using \rel_frontier S = {a}\ by force moreover have "e \ -d " using \0 < e\ \0 < d\ by force ultimately show False by (metis (no_types, lifting) \w \ z\ eq_iff_diff_eq_0 minus_diff_eq real_vector.scale_cancel_right real_vector.scale_minus_right scaleR_left.minus) next case 2 then have z: "z \ rel_interior S" using \z \ S\ closure_subset rel_frontier_def by fastforce have "z + (z - w) \ affine hull S" by (metis \z \ S\ \w \ S\ affine_affine_hull hull_inc mem_affine_3_minus scaleR_one) then obtain e where "0 < e" "(z + e *\<^sub>R (z - w)) \ rel_frontier S" using \w \ z\ \w \ S\ by (metis assms ray_to_rel_frontier right_minus_eq z) moreover obtain d where "0 < d" "(z + d *\<^sub>R (w - z)) \ rel_frontier S" using ray_to_rel_frontier [OF \bounded S\ z, of "1 *\<^sub>R (w - z)"] \w \ z\ \w \ S\ by (metis add.commute add.right_neutral diff_add_cancel hull_inc scaleR_one) ultimately have "d *\<^sub>R (w - z) = e *\<^sub>R (z - w)" using \rel_frontier S = {a}\ by force moreover have "e \ -d " using \0 < e\ \0 < d\ by force ultimately show False by (metis (no_types, lifting) \w \ z\ eq_iff_diff_eq_0 minus_diff_eq real_vector.scale_cancel_right real_vector.scale_minus_right scaleR_left.minus) qed qed qed qed subsection\<^marker>\tag unimportant\ \Convexity on direct sums\ lemma closure_sum: fixes S T :: "'a::real_normed_vector set" shows "closure S + closure T \ closure (S + T)" unfolding set_plus_image closure_Times [symmetric] split_def by (intro closure_bounded_linear_image_subset bounded_linear_add bounded_linear_fst bounded_linear_snd) lemma rel_interior_sum: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" shows "rel_interior (S + T) = rel_interior S + rel_interior T" proof - have "rel_interior S + rel_interior T = (\(x,y). x + y) ` (rel_interior S \ rel_interior T)" by (simp add: set_plus_image) also have "\ = (\(x,y). x + y) ` rel_interior (S \ T)" using rel_interior_Times assms by auto also have "\ = rel_interior (S + T)" using fst_snd_linear convex_Times assms rel_interior_convex_linear_image[of "(\(x,y). x + y)" "S \ T"] by (auto simp add: set_plus_image) finally show ?thesis .. qed lemma rel_interior_sum_gen: fixes S :: "'a \ 'n::euclidean_space set" assumes "\i. i\I \ convex (S i)" shows "rel_interior (sum S I) = sum (\i. rel_interior (S i)) I" using rel_interior_sum rel_interior_sing[of "0"] assms by (subst sum_set_cond_linear[of convex], auto simp add: convex_set_plus) lemma convex_rel_open_direct_sum: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "rel_open S" and "convex T" and "rel_open T" shows "convex (S \ T) \ rel_open (S \ T)" by (metis assms convex_Times rel_interior_Times rel_open_def) lemma convex_rel_open_sum: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "rel_open S" and "convex T" and "rel_open T" shows "convex (S + T) \ rel_open (S + T)" by (metis assms convex_set_plus rel_interior_sum rel_open_def) lemma convex_hull_finite_union_cones: assumes "finite I" and "I \ {}" assumes "\i. i\I \ convex (S i) \ cone (S i) \ S i \ {}" shows "convex hull (\(S ` I)) = sum S I" (is "?lhs = ?rhs") proof - { fix x assume "x \ ?lhs" then obtain c xs where x: "x = sum (\i. c i *\<^sub>R xs i) I \ (\i\I. c i \ 0) \ sum c I = 1 \ (\i\I. xs i \ S i)" using convex_hull_finite_union[of I S] assms by auto define s where "s i = c i *\<^sub>R xs i" for i have "\i\I. s i \ S i" using s_def x assms by (simp add: mem_cone) moreover have "x = sum s I" using x s_def by auto ultimately have "x \ ?rhs" using set_sum_alt[of I S] assms by auto } moreover { fix x assume "x \ ?rhs" then obtain s where x: "x = sum s I \ (\i\I. s i \ S i)" using set_sum_alt[of I S] assms by auto define xs where "xs i = of_nat(card I) *\<^sub>R s i" for i then have "x = sum (\i. ((1 :: real) / of_nat(card I)) *\<^sub>R xs i) I" using x assms by auto moreover have "\i\I. xs i \ S i" using x xs_def assms by (simp add: cone_def) moreover have "\i\I. (1 :: real) / of_nat (card I) \ 0" by auto moreover have "sum (\i. (1 :: real) / of_nat (card I)) I = 1" using assms by auto ultimately have "x \ ?lhs" using assms apply (simp add: convex_hull_finite_union[of I S]) by (rule_tac x = "(\i. 1 / (card I))" in exI) auto } ultimately show ?thesis by auto qed lemma convex_hull_union_cones_two: fixes S T :: "'m::euclidean_space set" assumes "convex S" and "cone S" and "S \ {}" assumes "convex T" and "cone T" and "T \ {}" shows "convex hull (S \ T) = S + T" proof - define I :: "nat set" where "I = {1, 2}" define A where "A i = (if i = (1::nat) then S else T)" for i have "\(A ` I) = S \ T" using A_def I_def by auto then have "convex hull (\(A ` I)) = convex hull (S \ T)" by auto moreover have "convex hull \(A ` I) = sum A I" using A_def I_def by (metis assms convex_hull_finite_union_cones empty_iff finite.emptyI finite.insertI insertI1) moreover have "sum A I = S + T" using A_def I_def by (force simp add: set_plus_def) ultimately show ?thesis by auto qed lemma rel_interior_convex_hull_union: fixes S :: "'a \ 'n::euclidean_space set" assumes "finite I" and "\i\I. convex (S i) \ S i \ {}" shows "rel_interior (convex hull (\(S ` I))) = {sum (\i. c i *\<^sub>R s i) I | c s. (\i\I. c i > 0) \ sum c I = 1 \ (\i\I. s i \ rel_interior(S i))}" (is "?lhs = ?rhs") proof (cases "I = {}") case True then show ?thesis using convex_hull_empty by auto next case False define C0 where "C0 = convex hull (\(S ` I))" have "\i\I. C0 \ S i" unfolding C0_def using hull_subset[of "\(S ` I)"] by auto define K0 where "K0 = cone hull ({1 :: real} \ C0)" define K where "K i = cone hull ({1 :: real} \ S i)" for i have "\i\I. K i \ {}" unfolding K_def using assms by (simp add: cone_hull_empty_iff[symmetric]) have convK: "\i\I. convex (K i)" unfolding K_def by (simp add: assms(2) convex_Times convex_cone_hull) have "K0 \ K i" if "i \ I" for i unfolding K0_def K_def by (simp add: Sigma_mono \\i\I. S i \ C0\ hull_mono that) then have "K0 \ \(K ` I)" by auto moreover have "convex K0" unfolding K0_def by (simp add: C0_def convex_Times convex_cone_hull) ultimately have geq: "K0 \ convex hull (\(K ` I))" using hull_minimal[of _ "K0" "convex"] by blast have "\i\I. K i \ {1 :: real} \ S i" using K_def by (simp add: hull_subset) then have "\(K ` I) \ {1 :: real} \ \(S ` I)" by auto then have "convex hull \(K ` I) \ convex hull ({1 :: real} \ \(S ` I))" by (simp add: hull_mono) then have "convex hull \(K ` I) \ {1 :: real} \ C0" unfolding C0_def using convex_hull_Times[of "{(1 :: real)}" "\(S ` I)"] convex_hull_singleton by auto moreover have "cone (convex hull (\(K ` I)))" by (simp add: K_def cone_Union cone_cone_hull cone_convex_hull) ultimately have "convex hull (\(K ` I)) \ K0" unfolding K0_def using hull_minimal[of _ "convex hull (\(K ` I))" "cone"] by blast then have "K0 = convex hull (\(K ` I))" using geq by auto also have "\ = sum K I" using assms False \\i\I. K i \ {}\ cone_hull_eq convK by (intro convex_hull_finite_union_cones; fastforce simp: K_def) finally have "K0 = sum K I" by auto then have *: "rel_interior K0 = sum (\i. (rel_interior (K i))) I" using rel_interior_sum_gen[of I K] convK by auto { fix x assume "x \ ?lhs" then have "(1::real, x) \ rel_interior K0" using K0_def C0_def rel_interior_convex_cone_aux[of C0 "1::real" x] convex_convex_hull by auto then obtain k where k: "(1::real, x) = sum k I \ (\i\I. k i \ rel_interior (K i))" using \finite I\ * set_sum_alt[of I "\i. rel_interior (K i)"] by auto { fix i assume "i \ I" then have "convex (S i) \ k i \ rel_interior (cone hull {1} \ S i)" using k K_def assms by auto then have "\ci si. k i = (ci, ci *\<^sub>R si) \ 0 < ci \ si \ rel_interior (S i)" using rel_interior_convex_cone[of "S i"] by auto } then obtain c s where cs: "\i\I. k i = (c i, c i *\<^sub>R s i) \ 0 < c i \ s i \ rel_interior (S i)" by metis then have "x = (\i\I. c i *\<^sub>R s i) \ sum c I = 1" using k by (simp add: sum_prod) then have "x \ ?rhs" using k cs by auto } moreover { fix x assume "x \ ?rhs" then obtain c s where cs: "x = sum (\i. c i *\<^sub>R s i) I \ (\i\I. c i > 0) \ sum c I = 1 \ (\i\I. s i \ rel_interior (S i))" by auto define k where "k i = (c i, c i *\<^sub>R s i)" for i { fix i assume "i \ I" then have "k i \ rel_interior (K i)" using k_def K_def assms cs rel_interior_convex_cone[of "S i"] by auto } then have "(1, x) \ rel_interior K0" - using K0_def * set_sum_alt[of I "(\i. rel_interior (K i))"] assms k_def cs - apply simp - apply (rule_tac x = k in exI) - apply (simp add: sum_prod) - done + using * set_sum_alt[of I "(\i. rel_interior (K i))"] assms cs + by (simp add: k_def) (metis (mono_tags, lifting) sum_prod) then have "x \ ?lhs" using K0_def C0_def rel_interior_convex_cone_aux[of C0 1 x] by auto } ultimately show ?thesis by blast qed lemma convex_le_Inf_differential: fixes f :: "real \ real" assumes "convex_on I f" and "x \ interior I" and "y \ I" shows "f y \ f x + Inf ((\t. (f x - f t) / (x - t)) ` ({x<..} \ I)) * (y - x)" (is "_ \ _ + Inf (?F x) * (y - x)") proof (cases rule: linorder_cases) assume "x < y" moreover have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where e: "0 < e" "ball x e \ interior I" . moreover define t where "t = min (x + e / 2) ((x + y) / 2)" ultimately have "x < t" "t < y" "t \ ball x e" by (auto simp: dist_real_def field_simps split: split_min) with \x \ interior I\ e interior_subset[of I] have "t \ I" "x \ I" by auto define K where "K = x - e / 2" with \0 < e\ have "K \ ball x e" "K < x" by (auto simp: dist_real_def) then have "K \ I" using \interior I \ I\ e(2) by blast have "Inf (?F x) \ (f x - f y) / (x - y)" proof (intro bdd_belowI cInf_lower2) show "(f x - f t) / (x - t) \ ?F x" using \t \ I\ \x < t\ by auto show "(f x - f t) / (x - t) \ (f x - f y) / (x - y)" using \convex_on I f\ \x \ I\ \y \ I\ \x < t\ \t < y\ by (rule convex_on_diff) next fix y assume "y \ ?F x" with order_trans[OF convex_on_diff[OF \convex_on I f\ \K \ I\ _ \K < x\ _]] show "(f K - f x) / (K - x) \ y" by auto qed then show ?thesis using \x < y\ by (simp add: field_simps) next assume "y < x" moreover have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where e: "0 < e" "ball x e \ interior I" . moreover define t where "t = x + e / 2" ultimately have "x < t" "t \ ball x e" by (auto simp: dist_real_def field_simps) with \x \ interior I\ e interior_subset[of I] have "t \ I" "x \ I" by auto have "(f x - f y) / (x - y) \ Inf (?F x)" proof (rule cInf_greatest) have "(f x - f y) / (x - y) = (f y - f x) / (y - x)" using \y < x\ by (auto simp: field_simps) also fix z assume "z \ ?F x" with order_trans[OF convex_on_diff[OF \convex_on I f\ \y \ I\ _ \y < x\]] have "(f y - f x) / (y - x) \ z" by auto finally show "(f x - f y) / (x - y) \ z" . next have "x + e / 2 \ ball x e" using e by (auto simp: dist_real_def) with e interior_subset[of I] have "x + e / 2 \ {x<..} \ I" by auto then show "?F x \ {}" by blast qed then show ?thesis using \y < x\ by (simp add: field_simps) qed simp subsection\<^marker>\tag unimportant\\Explicit formulas for interior and relative interior of convex hull\ lemma at_within_cbox_finite: assumes "x \ box a b" "x \ S" "finite S" shows "(at x within cbox a b - S) = at x" proof - have "interior (cbox a b - S) = box a b - S" using \finite S\ by (simp add: interior_diff finite_imp_closed) then show ?thesis using at_within_interior assms by fastforce qed lemma affine_independent_convex_affine_hull: fixes S :: "'a::euclidean_space set" assumes "\ affine_dependent S" "T \ S" shows "convex hull T = affine hull T \ convex hull S" proof - have fin: "finite S" "finite T" using assms aff_independent_finite finite_subset by auto - { fix u v x - assume uv: "sum u T = 1" "\x\S. 0 \ v x" "sum v S = 1" - "(\x\S. v x *\<^sub>R x) = (\v\T. u v *\<^sub>R v)" "x \ T" - then have S: "S = (S - T) \ T" \ \split into separate cases\ - using assms by auto - have [simp]: "(\x\T. v x *\<^sub>R x) + (\x\S - T. v x *\<^sub>R x) = (\x\T. u x *\<^sub>R x)" - "sum v T + sum v (S - T) = 1" - using uv fin S - by (auto simp: sum.union_disjoint [symmetric] Un_commute) - have "(\x\S. if x \ T then v x - u x else v x) = 0" - "(\x\S. (if x \ T then v x - u x else v x) *\<^sub>R x) = 0" - using uv fin - by (subst S, subst sum.union_disjoint, auto simp: algebra_simps sum_subtractf)+ - } note [simp] = this have "convex hull T \ affine hull T" using convex_hull_subset_affine_hull by blast moreover have "convex hull T \ convex hull S" using assms hull_mono by blast moreover have "affine hull T \ convex hull S \ convex hull T" proof - have 0: "\u. sum u S = 0 \ (\v\S. u v = 0) \ (\v\S. u v *\<^sub>R v) \ 0" using affine_dependent_explicit_finite assms(1) fin(1) by auto show ?thesis - apply (clarsimp simp add: convex_hull_finite affine_hull_finite fin) - apply (rule_tac x=u in exI) - subgoal for u v - using 0 [of "\x. if x \ T then v x - u x else v x"] \T \ S\ by force - done + proof (clarsimp simp add: affine_hull_finite fin) + fix u + assume S: "(\v\T. u v *\<^sub>R v) \ convex hull S" + and T1: "sum u T = 1" + then obtain v where v: "\x\S. 0 \ v x" "sum v S = 1" "(\x\S. v x *\<^sub>R x) = (\v\T. u v *\<^sub>R v)" + by (auto simp add: convex_hull_finite fin) + { fix x + assume"x \ T" + then have S: "S = (S - T) \ T" \ \split into separate cases\ + using assms by auto + have [simp]: "(\x\T. v x *\<^sub>R x) + (\x\S - T. v x *\<^sub>R x) = (\x\T. u x *\<^sub>R x)" + "sum v T + sum v (S - T) = 1" + using v fin S + by (auto simp: sum.union_disjoint [symmetric] Un_commute) + have "(\x\S. if x \ T then v x - u x else v x) = 0" + "(\x\S. (if x \ T then v x - u x else v x) *\<^sub>R x) = 0" + using v fin T1 + by (subst S, subst sum.union_disjoint, auto simp: algebra_simps sum_subtractf)+ + } note [simp] = this + have "(\x\T. 0 \ u x)" + using 0 [of "\x. if x \ T then v x - u x else v x"] \T \ S\ v(1) by fastforce + then show "(\v\T. u v *\<^sub>R v) \ convex hull T" + using 0 [of "\x. if x \ T then v x - u x else v x"] \T \ S\ T1 + by (fastforce simp add: convex_hull_finite fin) + qed qed ultimately show ?thesis by blast qed lemma affine_independent_span_eq: fixes S :: "'a::euclidean_space set" assumes "\ affine_dependent S" "card S = Suc (DIM ('a))" shows "affine hull S = UNIV" proof (cases "S = {}") case True then show ?thesis using assms by simp next case False then obtain a T where T: "a \ T" "S = insert a T" by blast then have fin: "finite T" using assms by (metis finite_insert aff_independent_finite) - then have "UNIV \ (+) a ` span ((\x. x - a) ` T)" - using assms T - apply (intro card_ge_dim_independent Fun.vimage_subsetD) - apply (auto simp: surj_def affine_dependent_iff_dependent card_image inj_on_def dim_subset_UNIV) - done + have "UNIV \ (+) a ` span ((\x. x - a) ` T)" + proof (intro card_ge_dim_independent Fun.vimage_subsetD) + show "independent ((\x. x - a) ` T)" + using T affine_dependent_iff_dependent assms(1) by auto + show "dim ((+) a -` UNIV) \ card ((\x. x - a) ` T)" + using assms T fin by (auto simp: card_image inj_on_def) + qed (use surj_plus in auto) then show ?thesis using T(2) affine_hull_insert_span_gen equalityI by fastforce qed lemma affine_independent_span_gt: fixes S :: "'a::euclidean_space set" assumes ind: "\ affine_dependent S" and dim: "DIM ('a) < card S" shows "affine hull S = UNIV" proof (intro affine_independent_span_eq [OF ind] antisym) show "card S \ Suc DIM('a)" using aff_independent_finite affine_dependent_biggerset ind by fastforce show "Suc DIM('a) \ card S" using Suc_leI dim by blast qed lemma empty_interior_affine_hull: fixes S :: "'a::euclidean_space set" assumes "finite S" and dim: "card S \ DIM ('a)" shows "interior(affine hull S) = {}" using assms proof (induct S rule: finite_induct) case (insert x S) then have "dim (span ((\y. y - x) ` S)) < DIM('a)" by (auto simp: Suc_le_lessD card_image_le dual_order.trans intro!: dim_le_card'[THEN le_less_trans]) then show ?case by (simp add: empty_interior_lowdim affine_hull_insert_span_gen interior_translation) qed auto lemma empty_interior_convex_hull: fixes S :: "'a::euclidean_space set" assumes "finite S" and dim: "card S \ DIM ('a)" shows "interior(convex hull S) = {}" by (metis Diff_empty Diff_eq_empty_iff convex_hull_subset_affine_hull interior_mono empty_interior_affine_hull [OF assms]) lemma explicit_subset_rel_interior_convex_hull: fixes S :: "'a::euclidean_space set" shows "finite S \ {y. \u. (\x \ S. 0 < u x \ u x < 1) \ sum u S = 1 \ sum (\x. u x *\<^sub>R x) S = y} \ rel_interior (convex hull S)" by (force simp add: rel_interior_convex_hull_union [where S="\x. {x}" and I=S, simplified]) lemma explicit_subset_rel_interior_convex_hull_minimal: fixes S :: "'a::euclidean_space set" shows "finite S \ {y. \u. (\x \ S. 0 < u x) \ sum u S = 1 \ sum (\x. u x *\<^sub>R x) S = y} \ rel_interior (convex hull S)" by (force simp add: rel_interior_convex_hull_union [where S="\x. {x}" and I=S, simplified]) lemma rel_interior_convex_hull_explicit: - fixes s :: "'a::euclidean_space set" - assumes "\ affine_dependent s" - shows "rel_interior(convex hull s) = - {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" + fixes S :: "'a::euclidean_space set" + assumes "\ affine_dependent S" + shows "rel_interior(convex hull S) = + {y. \u. (\x \ S. 0 < u x) \ sum u S = 1 \ sum (\x. u x *\<^sub>R x) S = y}" (is "?lhs = ?rhs") proof show "?rhs \ ?lhs" by (simp add: aff_independent_finite explicit_subset_rel_interior_convex_hull_minimal assms) next show "?lhs \ ?rhs" - proof (cases "\a. s = {a}") + proof (cases "\a. S = {a}") case True then show "?lhs \ ?rhs" by force next case False - have fs: "finite s" + have fs: "finite S" using assms by (simp add: aff_independent_finite) { fix a b and d::real - assume ab: "a \ s" "b \ s" "a \ b" - then have s: "s = (s - {a,b}) \ {a,b}" \ \split into separate cases\ + assume ab: "a \ S" "b \ S" "a \ b" + then have S: "S = (S - {a,b}) \ {a,b}" \ \split into separate cases\ by auto - have "(\x\s. if x = a then - d else if x = b then d else 0) = 0" - "(\x\s. (if x = a then - d else if x = b then d else 0) *\<^sub>R x) = d *\<^sub>R b - d *\<^sub>R a" + have "(\x\S. if x = a then - d else if x = b then d else 0) = 0" + "(\x\S. (if x = a then - d else if x = b then d else 0) *\<^sub>R x) = d *\<^sub>R b - d *\<^sub>R a" using ab fs - by (subst s, subst sum.union_disjoint, auto)+ + by (subst S, subst sum.union_disjoint, auto)+ } note [simp] = this { fix y - assume y: "y \ convex hull s" "y \ ?rhs" - { fix u T a - assume ua: "\x\s. 0 \ u x" "sum u s = 1" "\ 0 < u a" "a \ s" - and yT: "y = (\x\s. u x *\<^sub>R x)" "y \ T" "open T" - and sb: "T \ affine hull s \ {w. \u. (\x\s. 0 \ u x) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = w}" + assume y: "y \ convex hull S" "y \ ?rhs" + have *: False if + ua: "\x\S. 0 \ u x" "sum u S = 1" "\ 0 < u a" "a \ S" + and yT: "y = (\x\S. u x *\<^sub>R x)" "y \ T" "open T" + and sb: "T \ affine hull S \ {w. \u. (\x\S. 0 \ u x) \ sum u S = 1 \ (\x\S. u x *\<^sub>R x) = w}" + for u T a + proof - have ua0: "u a = 0" using ua by auto - obtain b where b: "b\s" "a \ b" + obtain b where b: "b\S" "a \ b" using ua False by auto - obtain e where e: "0 < e" "ball (\x\s. u x *\<^sub>R x) e \ T" + obtain e where e: "0 < e" "ball (\x\S. u x *\<^sub>R x) e \ T" using yT by (auto elim: openE) with b obtain d where d: "0 < d" "norm(d *\<^sub>R (a-b)) < e" by (auto intro: that [of "e / 2 / norm(a-b)"]) - have "(\x\s. u x *\<^sub>R x) \ affine hull s" + have "(\x\S. u x *\<^sub>R x) \ affine hull S" using yT y by (metis affine_hull_convex_hull hull_redundant_eq) - then have "(\x\s. u x *\<^sub>R x) - d *\<^sub>R (a - b) \ affine hull s" + then have "(\x\S. u x *\<^sub>R x) - d *\<^sub>R (a - b) \ affine hull S" using ua b by (auto simp: hull_inc intro: mem_affine_3_minus2) - then have "y - d *\<^sub>R (a - b) \ T \ affine hull s" + then have "y - d *\<^sub>R (a - b) \ T \ affine hull S" using d e yT by auto - then obtain v where "\x\s. 0 \ v x" - "sum v s = 1" - "(\x\s. v x *\<^sub>R x) = (\x\s. u x *\<^sub>R x) - d *\<^sub>R (a - b)" + then obtain v where v: "\x\S. 0 \ v x" + "sum v S = 1" + "(\x\S. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x) - d *\<^sub>R (a - b)" using subsetD [OF sb] yT by auto - then have False - using assms - apply (simp add: affine_dependent_explicit_finite fs) - apply (drule_tac x="\x. (v x - u x) - (if x = a then -d else if x = b then d else 0)" in spec) - using ua b d - apply (auto simp: algebra_simps sum_subtractf sum.distrib) - done - } note * = this - have "y \ rel_interior (convex hull s)" + have aff: "\u. sum u S = 0 \ (\v\S. u v = 0) \ (\v\S. u v *\<^sub>R v) \ 0" + using assms by (simp add: affine_dependent_explicit_finite fs) + show False + using ua b d v aff [of "\x. (v x - u x) - (if x = a then -d else if x = b then d else 0)"] + by (auto simp: algebra_simps sum_subtractf sum.distrib) + qed + have "y \ rel_interior (convex hull S)" using y apply (simp add: mem_rel_interior) apply (auto simp: convex_hull_finite [OF fs]) apply (drule_tac x=u in spec) apply (auto intro: *) done } with rel_interior_subset show "?lhs \ ?rhs" by blast qed qed lemma interior_convex_hull_explicit_minimal: - fixes s :: "'a::euclidean_space set" + fixes S :: "'a::euclidean_space set" + assumes "\ affine_dependent S" shows - "\ affine_dependent s - ==> interior(convex hull s) = - (if card(s) \ DIM('a) then {} - else {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = y})" - apply (simp add: aff_independent_finite empty_interior_convex_hull, clarify) - apply (rule trans [of _ "rel_interior(convex hull s)"]) - apply (simp add: affine_independent_span_gt rel_interior_interior) - by (simp add: rel_interior_convex_hull_explicit) + "interior(convex hull S) = + (if card(S) \ DIM('a) then {} + else {y. \u. (\x \ S. 0 < u x) \ sum u S = 1 \ (\x\S. u x *\<^sub>R x) = y})" + (is "_ = (if _ then _ else ?rhs)") +proof (clarsimp simp: aff_independent_finite empty_interior_convex_hull assms) + assume S: "\ card S \ DIM('a)" + have "interior (convex hull S) = rel_interior(convex hull S)" + using assms S by (simp add: affine_independent_span_gt rel_interior_interior) + then show "interior(convex hull S) = ?rhs" + by (simp add: assms S rel_interior_convex_hull_explicit) +qed lemma interior_convex_hull_explicit: - fixes s :: "'a::euclidean_space set" - assumes "\ affine_dependent s" + fixes S :: "'a::euclidean_space set" + assumes "\ affine_dependent S" shows - "interior(convex hull s) = - (if card(s) \ DIM('a) then {} - else {y. \u. (\x \ s. 0 < u x \ u x < 1) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = y})" + "interior(convex hull S) = + (if card(S) \ DIM('a) then {} + else {y. \u. (\x \ S. 0 < u x \ u x < 1) \ sum u S = 1 \ (\x\S. u x *\<^sub>R x) = y})" proof - { fix u :: "'a \ real" and a - assume "card Basis < card s" and u: "\x. x\s \ 0 < u x" "sum u s = 1" and a: "a \ s" - then have cs: "Suc 0 < card s" + assume "card Basis < card S" and u: "\x. x\S \ 0 < u x" "sum u S = 1" and a: "a \ S" + then have cs: "Suc 0 < card S" by (metis DIM_positive less_trans_Suc) - obtain b where b: "b \ s" "a \ b" - proof (cases "s \ {a}") + obtain b where b: "b \ S" "a \ b" + proof (cases "S \ {a}") case True then show thesis using cs subset_singletonD by fastforce qed blast have "u a + u b \ sum u {a,b}" using a b by simp - also have "... \ sum u s" + also have "... \ sum u S" using a b u by (intro Groups_Big.sum_mono2) (auto simp: less_imp_le aff_independent_finite assms) finally have "u a < 1" - using \b \ s\ u by fastforce + using \b \ S\ u by fastforce } note [simp] = this show ?thesis using assms by (force simp add: not_le interior_convex_hull_explicit_minimal) qed lemma interior_closed_segment_ge2: fixes a :: "'a::euclidean_space" assumes "2 \ DIM('a)" shows "interior(closed_segment a b) = {}" using assms unfolding segment_convex_hull proof - have "card {a, b} \ DIM('a)" using assms by (simp add: card_insert_if linear not_less_eq_eq numeral_2_eq_2) then show "interior (convex hull {a, b}) = {}" by (metis empty_interior_convex_hull finite.insertI finite.emptyI) qed lemma interior_open_segment: fixes a :: "'a::euclidean_space" shows "interior(open_segment a b) = (if 2 \ DIM('a) then {} else open_segment a b)" proof (simp add: not_le, intro conjI impI) assume "2 \ DIM('a)" then show "interior (open_segment a b) = {}" using interior_closed_segment_ge2 interior_mono segment_open_subset_closed by blast next assume le2: "DIM('a) < 2" show "interior (open_segment a b) = open_segment a b" proof (cases "a = b") case True then show ?thesis by auto next case False with le2 have "affine hull (open_segment a b) = UNIV" by (simp add: False affine_independent_span_gt) then show "interior (open_segment a b) = open_segment a b" using rel_interior_interior rel_interior_open_segment by blast qed qed lemma interior_closed_segment: fixes a :: "'a::euclidean_space" shows "interior(closed_segment a b) = (if 2 \ DIM('a) then {} else open_segment a b)" proof (cases "a = b") case True then show ?thesis by simp next case False then have "closure (open_segment a b) = closed_segment a b" by simp then show ?thesis by (metis (no_types) convex_interior_closure convex_open_segment interior_open_segment) qed lemmas interior_segment = interior_closed_segment interior_open_segment lemma closed_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "closed_segment a b = closed_segment c d \ {a,b} = {c,d}" proof assume abcd: "closed_segment a b = closed_segment c d" show "{a,b} = {c,d}" proof (cases "a=b \ c=d") case True with abcd show ?thesis by force next case False then have neq: "a \ b \ c \ d" by force have *: "closed_segment c d - {a, b} = rel_interior (closed_segment c d)" using neq abcd by (metis (no_types) open_segment_def rel_interior_closed_segment) have "b \ {c, d}" proof - have "insert b (closed_segment c d) = closed_segment c d" using abcd by blast then show ?thesis by (metis DiffD2 Diff_insert2 False * insertI1 insert_Diff_if open_segment_def rel_interior_closed_segment) qed moreover have "a \ {c, d}" by (metis Diff_iff False * abcd ends_in_segment(1) insertI1 open_segment_def rel_interior_closed_segment) ultimately show "{a, b} = {c, d}" using neq by fastforce qed next assume "{a,b} = {c,d}" then show "closed_segment a b = closed_segment c d" by (simp add: segment_convex_hull) qed lemma closed_open_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "closed_segment a b \ open_segment c d" by (metis DiffE closed_segment_neq_empty closure_closed_segment closure_open_segment ends_in_segment(1) insertI1 open_segment_def) lemma open_closed_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "open_segment a b \ closed_segment c d" using closed_open_segment_eq by blast lemma open_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "open_segment a b = open_segment c d \ a = b \ c = d \ {a,b} = {c,d}" (is "?lhs = ?rhs") proof assume abcd: ?lhs show ?rhs proof (cases "a=b \ c=d") case True with abcd show ?thesis using finite_open_segment by fastforce next case False then have a2: "a \ b \ c \ d" by force with abcd show ?rhs unfolding open_segment_def by (metis (no_types) abcd closed_segment_eq closure_open_segment) qed next assume ?rhs then show ?lhs by (metis Diff_cancel convex_hull_singleton insert_absorb2 open_segment_def segment_convex_hull) qed subsection\<^marker>\tag unimportant\\Similar results for closure and (relative or absolute) frontier\ lemma closure_convex_hull [simp]: fixes S :: "'a::euclidean_space set" shows "compact S ==> closure(convex hull S) = convex hull S" by (simp add: compact_imp_closed compact_convex_hull) lemma rel_frontier_convex_hull_explicit: fixes S :: "'a::euclidean_space set" assumes "\ affine_dependent S" shows "rel_frontier(convex hull S) = {y. \u. (\x \ S. 0 \ u x) \ (\x \ S. u x = 0) \ sum u S = 1 \ sum (\x. u x *\<^sub>R x) S = y}" proof - have fs: "finite S" using assms by (simp add: aff_independent_finite) - have "\u xa v. - \ xa \ S; - u xa = 0; sum u S = 1; \x\S. 0 < v x; - sum v S = 1; - (\x\S. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)\ + have "\u y v. + \y \ S; u y = 0; sum u S = 1; \x\S. 0 < v x; + sum v S = 1; (\x\S. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)\ \ \u. sum u S = 0 \ (\v\S. u v \ 0) \ (\v\S. u v *\<^sub>R v) = 0" apply (rule_tac x = "\x. u x - v x" in exI) apply (force simp: sum_subtractf scaleR_diff_left) done then show ?thesis using fs assms apply (simp add: rel_frontier_def finite_imp_compact rel_interior_convex_hull_explicit) apply (auto simp: convex_hull_finite) - apply (metis less_eq_real_def) - using affine_dependent_explicit_finite assms by blast + apply (metis less_eq_real_def) + by (simp add: affine_dependent_explicit_finite) qed lemma frontier_convex_hull_explicit: fixes S :: "'a::euclidean_space set" assumes "\ affine_dependent S" shows "frontier(convex hull S) = {y. \u. (\x \ S. 0 \ u x) \ (DIM ('a) < card S \ (\x \ S. u x = 0)) \ sum u S = 1 \ sum (\x. u x *\<^sub>R x) S = y}" proof - have fs: "finite S" using assms by (simp add: aff_independent_finite) show ?thesis proof (cases "DIM ('a) < card S") case True with assms fs show ?thesis by (simp add: rel_frontier_def frontier_def rel_frontier_convex_hull_explicit [symmetric] interior_convex_hull_explicit_minimal rel_interior_convex_hull_explicit) next case False then have "card S \ DIM ('a)" by linarith then show ?thesis using assms fs apply (simp add: frontier_def interior_convex_hull_explicit finite_imp_compact) apply (simp add: convex_hull_finite) done qed qed lemma rel_frontier_convex_hull_cases: fixes S :: "'a::euclidean_space set" assumes "\ affine_dependent S" shows "rel_frontier(convex hull S) = \{convex hull (S - {x}) |x. x \ S}" proof - have fs: "finite S" using assms by (simp add: aff_independent_finite) { fix u a have "\x\S. 0 \ u x \ a \ S \ u a = 0 \ sum u S = 1 \ \x v. x \ S \ (\x\S - {x}. 0 \ v x) \ sum v (S - {x}) = 1 \ (\x\S - {x}. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)" apply (rule_tac x=a in exI) apply (rule_tac x=u in exI) apply (simp add: Groups_Big.sum_diff1 fs) done } moreover { fix a u have "a \ S \ \x\S - {a}. 0 \ u x \ sum u (S - {a}) = 1 \ \v. (\x\S. 0 \ v x) \ (\x\S. v x = 0) \ sum v S = 1 \ (\x\S. v x *\<^sub>R x) = (\x\S - {a}. u x *\<^sub>R x)" apply (rule_tac x="\x. if x = a then 0 else u x" in exI) apply (auto simp: sum.If_cases Diff_eq if_smult fs) done } ultimately show ?thesis using assms apply (simp add: rel_frontier_convex_hull_explicit) - apply (simp add: convex_hull_finite fs Union_SetCompr_eq, auto) + apply (auto simp add: convex_hull_finite fs Union_SetCompr_eq) done qed lemma frontier_convex_hull_eq_rel_frontier: fixes S :: "'a::euclidean_space set" assumes "\ affine_dependent S" shows "frontier(convex hull S) = (if card S \ DIM ('a) then convex hull S else rel_frontier(convex hull S))" using assms unfolding rel_frontier_def frontier_def by (simp add: affine_independent_span_gt rel_interior_interior finite_imp_compact empty_interior_convex_hull aff_independent_finite) lemma frontier_convex_hull_cases: fixes S :: "'a::euclidean_space set" assumes "\ affine_dependent S" shows "frontier(convex hull S) = (if card S \ DIM ('a) then convex hull S else \{convex hull (S - {x}) |x. x \ S})" by (simp add: assms frontier_convex_hull_eq_rel_frontier rel_frontier_convex_hull_cases) lemma in_frontier_convex_hull: fixes S :: "'a::euclidean_space set" assumes "finite S" "card S \ Suc (DIM ('a))" "x \ S" shows "x \ frontier(convex hull S)" proof (cases "affine_dependent S") case True - with assms show ?thesis - apply (auto simp: affine_dependent_def frontier_def finite_imp_compact hull_inc) - by (metis card.insert_remove convex_hull_subset_affine_hull empty_interior_affine_hull finite_Diff hull_redundant insert_Diff insert_Diff_single insert_not_empty interior_mono not_less_eq_eq subset_empty) + with assms obtain y where "y \ S" and y: "y \ affine hull (S - {y})" + by (auto simp: affine_dependent_def) + moreover have "x \ closure (convex hull S)" + by (meson closure_subset hull_inc subset_eq \x \ S\) + moreover have "x \ interior (convex hull S)" + using assms + by (metis Suc_mono affine_hull_convex_hull affine_hull_nonempty_interior \y \ S\ y card.remove empty_iff empty_interior_affine_hull finite_Diff hull_redundant insert_Diff interior_UNIV not_less) + ultimately show ?thesis + unfolding frontier_def by blast next case False { assume "card S = Suc (card Basis)" then have cs: "Suc 0 < card S" by (simp) with subset_singletonD have "\y \ S. y \ x" by (cases "S \ {x}") fastforce+ } note [dest!] = this show ?thesis using assms unfolding frontier_convex_hull_cases [OF False] Union_SetCompr_eq by (auto simp: le_Suc_eq hull_inc) qed lemma not_in_interior_convex_hull: fixes S :: "'a::euclidean_space set" assumes "finite S" "card S \ Suc (DIM ('a))" "x \ S" shows "x \ interior(convex hull S)" using in_frontier_convex_hull [OF assms] by (metis Diff_iff frontier_def) lemma interior_convex_hull_eq_empty: fixes S :: "'a::euclidean_space set" assumes "card S = Suc (DIM ('a))" shows "interior(convex hull S) = {} \ affine_dependent S" proof show "affine_dependent S \ interior (convex hull S) = {}" proof (clarsimp simp: affine_dependent_def) fix a b assume "b \ S" "b \ affine hull (S - {b})" then have "interior(affine hull S) = {}" using assms by (metis DIM_positive One_nat_def Suc_mono card.remove card.infinite empty_interior_affine_hull eq_iff hull_redundant insert_Diff not_less zero_le_one) then show "interior (convex hull S) = {}" using affine_hull_nonempty_interior by fastforce qed next show "interior (convex hull S) = {} \ affine_dependent S" by (metis affine_hull_convex_hull affine_hull_empty affine_independent_span_eq assms convex_convex_hull empty_not_UNIV rel_interior_eq_empty rel_interior_interior) qed subsection \Coplanarity, and collinearity in terms of affine hull\ definition\<^marker>\tag important\ coplanar where "coplanar S \ \u v w. S \ affine hull {u,v,w}" lemma collinear_affine_hull: "collinear S \ (\u v. S \ affine hull {u,v})" proof (cases "S={}") case True then show ?thesis by simp next case False then obtain x where x: "x \ S" by auto { fix u assume *: "\x y. \x\S; y\S\ \ \c. x - y = c *\<^sub>R u" have "\y c. x - y = c *\<^sub>R u \ \a b. y = a *\<^sub>R x + b *\<^sub>R (x + u) \ a + b = 1" by (rule_tac x="1+c" in exI, rule_tac x="-c" in exI, simp add: algebra_simps) then have "\u v. S \ {a *\<^sub>R u + b *\<^sub>R v |a b. a + b = 1}" using * [OF x] by (rule_tac x=x in exI, rule_tac x="x+u" in exI, force) } moreover { fix u v x y assume *: "S \ {a *\<^sub>R u + b *\<^sub>R v |a b. a + b = 1}" have "\c. x - y = c *\<^sub>R (v-u)" if "x\S" "y\S" proof - obtain a r where "a + r = 1" "x = a *\<^sub>R u + r *\<^sub>R v" using "*" \x \ S\ by blast moreover obtain b s where "b + s = 1" "y = b *\<^sub>R u + s *\<^sub>R v" using "*" \y \ S\ by blast ultimately have "x - y = (r-s) *\<^sub>R (v-u)" by (simp add: algebra_simps) (metis scaleR_left.add) then show ?thesis by blast qed } ultimately show ?thesis unfolding collinear_def affine_hull_2 by blast qed lemma collinear_closed_segment [simp]: "collinear (closed_segment a b)" by (metis affine_hull_convex_hull collinear_affine_hull hull_subset segment_convex_hull) lemma collinear_open_segment [simp]: "collinear (open_segment a b)" unfolding open_segment_def by (metis convex_hull_subset_affine_hull segment_convex_hull dual_order.trans convex_hull_subset_affine_hull Diff_subset collinear_affine_hull) lemma collinear_between_cases: fixes c :: "'a::euclidean_space" shows "collinear {a,b,c} \ between (b,c) a \ between (c,a) b \ between (a,b) c" (is "?lhs = ?rhs") proof assume ?lhs then obtain u v where uv: "\x. x \ {a, b, c} \ \c. x = u + c *\<^sub>R v" by (auto simp: collinear_alt) show ?rhs using uv [of a] uv [of b] uv [of c] by (auto simp: between_1) next assume ?rhs then show ?lhs unfolding between_mem_convex_hull by (metis (no_types, hide_lams) collinear_closed_segment collinear_subset hull_redundant hull_subset insert_commute segment_convex_hull) qed lemma subset_continuous_image_segment_1: fixes f :: "'a::euclidean_space \ real" assumes "continuous_on (closed_segment a b) f" shows "closed_segment (f a) (f b) \ image f (closed_segment a b)" by (metis connected_segment convex_contains_segment ends_in_segment imageI is_interval_connected_1 is_interval_convex connected_continuous_image [OF assms]) lemma continuous_injective_image_segment_1: fixes f :: "'a::euclidean_space \ real" assumes contf: "continuous_on (closed_segment a b) f" and injf: "inj_on f (closed_segment a b)" shows "f ` (closed_segment a b) = closed_segment (f a) (f b)" proof show "closed_segment (f a) (f b) \ f ` closed_segment a b" by (metis subset_continuous_image_segment_1 contf) show "f ` closed_segment a b \ closed_segment (f a) (f b)" proof (cases "a = b") case True then show ?thesis by auto next case False then have fnot: "f a \ f b" using inj_onD injf by fastforce moreover have "f a \ open_segment (f c) (f b)" if c: "c \ closed_segment a b" for c proof (clarsimp simp add: open_segment_def) assume fa: "f a \ closed_segment (f c) (f b)" moreover have "closed_segment (f c) (f b) \ f ` closed_segment c b" by (meson closed_segment_subset contf continuous_on_subset convex_closed_segment ends_in_segment(2) subset_continuous_image_segment_1 that) ultimately have "f a \ f ` closed_segment c b" by blast then have a: "a \ closed_segment c b" by (meson ends_in_segment inj_on_image_mem_iff injf subset_closed_segment that) have cb: "closed_segment c b \ closed_segment a b" by (simp add: closed_segment_subset that) show "f a = f c" proof (rule between_antisym) show "between (f c, f b) (f a)" by (simp add: between_mem_segment fa) show "between (f a, f b) (f c)" by (metis a cb between_antisym between_mem_segment between_triv1 subset_iff) qed qed moreover have "f b \ open_segment (f a) (f c)" if c: "c \ closed_segment a b" for c proof (clarsimp simp add: open_segment_def fnot eq_commute) assume fb: "f b \ closed_segment (f a) (f c)" moreover have "closed_segment (f a) (f c) \ f ` closed_segment a c" by (meson contf continuous_on_subset ends_in_segment(1) subset_closed_segment subset_continuous_image_segment_1 that) ultimately have "f b \ f ` closed_segment a c" by blast then have b: "b \ closed_segment a c" by (meson ends_in_segment inj_on_image_mem_iff injf subset_closed_segment that) have ca: "closed_segment a c \ closed_segment a b" by (simp add: closed_segment_subset that) show "f b = f c" proof (rule between_antisym) show "between (f c, f a) (f b)" by (simp add: between_commute between_mem_segment fb) show "between (f b, f a) (f c)" by (metis b between_antisym between_commute between_mem_segment between_triv2 that) qed qed ultimately show ?thesis by (force simp: closed_segment_eq_real_ivl open_segment_eq_real_ivl split: if_split_asm) qed qed lemma continuous_injective_image_open_segment_1: fixes f :: "'a::euclidean_space \ real" assumes contf: "continuous_on (closed_segment a b) f" and injf: "inj_on f (closed_segment a b)" shows "f ` (open_segment a b) = open_segment (f a) (f b)" proof - have "f ` (open_segment a b) = f ` (closed_segment a b) - {f a, f b}" by (metis (no_types, hide_lams) empty_subsetI ends_in_segment image_insert image_is_empty inj_on_image_set_diff injf insert_subset open_segment_def segment_open_subset_closed) also have "... = open_segment (f a) (f b)" using continuous_injective_image_segment_1 [OF assms] by (simp add: open_segment_def inj_on_image_set_diff [OF injf]) finally show ?thesis . qed lemma collinear_imp_coplanar: "collinear s ==> coplanar s" by (metis collinear_affine_hull coplanar_def insert_absorb2) lemma collinear_small: assumes "finite s" "card s \ 2" shows "collinear s" proof - have "card s = 0 \ card s = 1 \ card s = 2" using assms by linarith then show ?thesis using assms using card_eq_SucD numeral_2_eq_2 by (force simp: card_1_singleton_iff) qed lemma coplanar_small: assumes "finite s" "card s \ 3" shows "coplanar s" proof - consider "card s \ 2" | "card s = Suc (Suc (Suc 0))" using assms by linarith then show ?thesis proof cases case 1 then show ?thesis by (simp add: \finite s\ collinear_imp_coplanar collinear_small) next case 2 then show ?thesis using hull_subset [of "{_,_,_}"] by (fastforce simp: coplanar_def dest!: card_eq_SucD) qed qed lemma coplanar_empty: "coplanar {}" by (simp add: coplanar_small) lemma coplanar_sing: "coplanar {a}" by (simp add: coplanar_small) lemma coplanar_2: "coplanar {a,b}" by (auto simp: card_insert_if coplanar_small) lemma coplanar_3: "coplanar {a,b,c}" by (auto simp: card_insert_if coplanar_small) lemma collinear_affine_hull_collinear: "collinear(affine hull s) \ collinear s" unfolding collinear_affine_hull by (metis affine_affine_hull subset_hull hull_hull hull_mono) lemma coplanar_affine_hull_coplanar: "coplanar(affine hull s) \ coplanar s" unfolding coplanar_def by (metis affine_affine_hull subset_hull hull_hull hull_mono) lemma coplanar_linear_image: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" - assumes "coplanar s" "linear f" shows "coplanar(f ` s)" + assumes "coplanar S" "linear f" shows "coplanar(f ` S)" proof - { fix u v w - assume "s \ affine hull {u, v, w}" - then have "f ` s \ f ` (affine hull {u, v, w})" + assume "S \ affine hull {u, v, w}" + then have "f ` S \ f ` (affine hull {u, v, w})" by (simp add: image_mono) - then have "f ` s \ affine hull (f ` {u, v, w})" + then have "f ` S \ affine hull (f ` {u, v, w})" by (metis assms(2) linear_conv_bounded_linear affine_hull_linear_image) } then show ?thesis by auto (meson assms(1) coplanar_def) qed -lemma coplanar_translation_imp: "coplanar s \ coplanar ((\x. a + x) ` s)" - unfolding coplanar_def - apply clarify - apply (rule_tac x="u+a" in exI) - apply (rule_tac x="v+a" in exI) - apply (rule_tac x="w+a" in exI) - using affine_hull_translation [of a "{u,v,w}" for u v w] - apply (force simp: add.commute) - done - -lemma coplanar_translation_eq: "coplanar((\x. a + x) ` s) \ coplanar s" +lemma coplanar_translation_imp: + assumes "coplanar S" shows "coplanar ((\x. a + x) ` S)" +proof - + obtain u v w where "S \ affine hull {u,v,w}" + by (meson assms coplanar_def) + then have "(+) a ` S \ affine hull {u + a, v + a, w + a}" + using affine_hull_translation [of a "{u,v,w}" for u v w] + by (force simp: add.commute) + then show ?thesis + unfolding coplanar_def by blast +qed + +lemma coplanar_translation_eq: "coplanar((\x. a + x) ` S) \ coplanar S" by (metis (no_types) coplanar_translation_imp translation_galois) lemma coplanar_linear_image_eq: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" - assumes "linear f" "inj f" shows "coplanar(f ` s) = coplanar s" + assumes "linear f" "inj f" shows "coplanar(f ` S) = coplanar S" proof - assume "coplanar s" - then show "coplanar (f ` s)" - unfolding coplanar_def - using affine_hull_linear_image [of f "{u,v,w}" for u v w] assms - by (meson coplanar_def coplanar_linear_image) + assume "coplanar S" + then show "coplanar (f ` S)" + using assms(1) coplanar_linear_image by blast next obtain g where g: "linear g" "g \ f = id" using linear_injective_left_inverse [OF assms] by blast - assume "coplanar (f ` s)" - then obtain u v w where "f ` s \ affine hull {u, v, w}" - by (auto simp: coplanar_def) - then have "g ` f ` s \ g ` (affine hull {u, v, w})" - by blast - then have "s \ g ` (affine hull {u, v, w})" - using g by (simp add: Fun.image_comp) - then show "coplanar s" - unfolding coplanar_def - using affine_hull_linear_image [of g "{u,v,w}" for u v w] \linear g\ linear_conv_bounded_linear - by fastforce -qed -(*The HOL Light proof is simply - MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE COPLANAR_LINEAR_IMAGE));; -*) - -lemma coplanar_subset: "\coplanar t; s \ t\ \ coplanar s" + assume "coplanar (f ` S)" + then show "coplanar S" + by (metis coplanar_linear_image g(1) g(2) id_apply image_comp image_id) +qed + +lemma coplanar_subset: "\coplanar t; S \ t\ \ coplanar S" by (meson coplanar_def order_trans) lemma affine_hull_3_imp_collinear: "c \ affine hull {a,b} \ collinear {a,b,c}" by (metis collinear_2 collinear_affine_hull_collinear hull_redundant insert_commute) lemma collinear_3_imp_in_affine_hull: assumes "collinear {a,b,c}" "a \ b" shows "c \ affine hull {a,b}" proof - obtain u x y where "b - a = y *\<^sub>R u" "c - a = x *\<^sub>R u" using assms unfolding collinear_def by auto - with \a \ b\ show ?thesis - apply (simp add: affine_hull_2) - apply (rule_tac x="1 - x/y" in exI) - apply (simp add: algebra_simps) - done + with \a \ b\ have "\v. c = (1 - x / y) *\<^sub>R a + v *\<^sub>R b \ 1 - x / y + v = 1" + by (simp add: algebra_simps) + then show ?thesis + by (simp add: hull_inc mem_affine) qed lemma collinear_3_affine_hull: assumes "a \ b" shows "collinear {a,b,c} \ c \ affine hull {a,b}" using affine_hull_3_imp_collinear assms collinear_3_imp_in_affine_hull by blast lemma collinear_3_eq_affine_dependent: "collinear{a,b,c} \ a = b \ a = c \ b = c \ affine_dependent {a,b,c}" proof (cases "a = b \ a = c \ b = c") case True then show ?thesis by (auto simp: insert_commute) next case False - then show ?thesis - apply (auto simp: affine_dependent_def collinear_3_affine_hull insert_Diff_if) - apply (metis collinear_3_affine_hull insert_commute)+ - done + then have "collinear{a,b,c}" if "affine_dependent {a,b,c}" + using that unfolding affine_dependent_def + by (auto simp: insert_Diff_if; metis affine_hull_3_imp_collinear insert_commute) + moreover + have "affine_dependent {a,b,c}" if "collinear{a,b,c}" + using False that by (auto simp: affine_dependent_def collinear_3_affine_hull insert_Diff_if) + ultimately + show ?thesis + using False by blast qed lemma affine_dependent_imp_collinear_3: "affine_dependent {a,b,c} \ collinear{a,b,c}" by (simp add: collinear_3_eq_affine_dependent) lemma collinear_3: "NO_MATCH 0 x \ collinear {x,y,z} \ collinear {0, x-y, z-y}" by (auto simp add: collinear_def) lemma collinear_3_expand: "collinear{a,b,c} \ a = c \ (\u. b = u *\<^sub>R a + (1 - u) *\<^sub>R c)" proof - have "collinear{a,b,c} = collinear{a,c,b}" by (simp add: insert_commute) also have "... = collinear {0, a - c, b - c}" by (simp add: collinear_3) also have "... \ (a = c \ b = c \ (\ca. b - c = ca *\<^sub>R (a - c)))" by (simp add: collinear_lemma) also have "... \ a = c \ (\u. b = u *\<^sub>R a + (1 - u) *\<^sub>R c)" by (cases "a = c \ b = c") (auto simp: algebra_simps) finally show ?thesis . qed lemma collinear_aff_dim: "collinear S \ aff_dim S \ 1" proof assume "collinear S" then obtain u and v :: "'a" where "aff_dim S \ aff_dim {u,v}" by (metis \collinear S\ aff_dim_affine_hull aff_dim_subset collinear_affine_hull) then show "aff_dim S \ 1" using order_trans by fastforce next assume "aff_dim S \ 1" then have le1: "aff_dim (affine hull S) \ 1" by simp obtain B where "B \ S" and B: "\ affine_dependent B" "affine hull S = affine hull B" using affine_basis_exists [of S] by auto then have "finite B" "card B \ 2" using B le1 by (auto simp: affine_independent_iff_card) then have "collinear B" by (rule collinear_small) then show "collinear S" by (metis \affine hull S = affine hull B\ collinear_affine_hull_collinear) qed -lemma collinear_midpoint: "collinear{a,midpoint a b,b}" - apply (auto simp: collinear_3 collinear_lemma) - apply (drule_tac x="-1" in spec) - apply (simp add: algebra_simps) - done +lemma collinear_midpoint: "collinear{a, midpoint a b, b}" +proof - + have \
: "\a \ midpoint a b; b - midpoint a b \ - 1 *\<^sub>R (a - midpoint a b)\ \ b = midpoint a b" + by (simp add: algebra_simps) + show ?thesis + by (auto simp: collinear_3 collinear_lemma intro: \
) +qed lemma midpoint_collinear: fixes a b c :: "'a::real_normed_vector" assumes "a \ c" shows "b = midpoint a c \ collinear{a,b,c} \ dist a b = dist b c" proof - have *: "a - (u *\<^sub>R a + (1 - u) *\<^sub>R c) = (1 - u) *\<^sub>R (a - c)" "u *\<^sub>R a + (1 - u) *\<^sub>R c - c = u *\<^sub>R (a - c)" "\1 - u\ = \u\ \ u = 1/2" for u::real by (auto simp: algebra_simps) - have "b = midpoint a c \ collinear{a,b,c} " + have "b = midpoint a c \ collinear{a,b,c}" using collinear_midpoint by blast - moreover have "collinear{a,b,c} \ b = midpoint a c \ dist a b = dist b c" - apply (auto simp: collinear_3_expand assms dist_midpoint) - apply (simp add: dist_norm * assms midpoint_def del: divide_const_simps) - apply (simp add: algebra_simps) - done + moreover have "b = midpoint a c \ dist a b = dist b c" if "collinear{a,b,c}" + proof - + consider "a = c" | u where "b = u *\<^sub>R a + (1 - u) *\<^sub>R c" + using \collinear {a,b,c}\ unfolding collinear_3_expand by blast + then show ?thesis + proof cases + case 2 + with assms have "dist a b = dist b c \ b = midpoint a c" + by (simp add: dist_norm * midpoint_def scaleR_add_right del: divide_const_simps) + then show ?thesis + by (auto simp: dist_midpoint) + qed (use assms in auto) + qed ultimately show ?thesis by blast qed lemma between_imp_collinear: fixes x :: "'a :: euclidean_space" assumes "between (a,b) x" shows "collinear {a,x,b}" proof (cases "x = a \ x = b \ a = b") case True with assms show ?thesis by (auto simp: dist_commute) next - case False with assms show ?thesis - apply (auto simp: collinear_3 collinear_lemma between_norm) - apply (drule_tac x="-(norm(b - x) / norm(x - a))" in spec) - apply (simp add: vector_add_divide_simps real_vector.scale_minus_right [symmetric]) - done + case False + then have False if "\c. b - x \ c *\<^sub>R (a - x)" + using that [of "-(norm(b - x) / norm(x - a))"] assms + by (simp add: between_norm vector_add_divide_simps flip: real_vector.scale_minus_right) + then show ?thesis + by (auto simp: collinear_3 collinear_lemma) qed lemma midpoint_between: fixes a b :: "'a::euclidean_space" shows "b = midpoint a c \ between (a,c) b \ dist a b = dist b c" proof (cases "a = c") - case True then show ?thesis - by (auto simp: dist_commute) -next case False show ?thesis using False between_imp_collinear between_midpoint(1) midpoint_collinear by blast -qed +qed (auto simp: dist_commute) lemma collinear_triples: assumes "a \ b" shows "collinear(insert a (insert b S)) \ (\x \ S. collinear{a,b,x})" (is "?lhs = ?rhs") proof safe fix x assume ?lhs and "x \ S" then show "collinear {a, b, x}" using collinear_subset by force next assume ?rhs then have "\x \ S. collinear{a,x,b}" by (simp add: insert_commute) - then have *: "\u. x = u *\<^sub>R a + (1 - u) *\<^sub>R b" if "x \ (insert a (insert b S))" for x + then have *: "\u. x = u *\<^sub>R a + (1 - u) *\<^sub>R b" if "x \ insert a (insert b S)" for x using that assms collinear_3_expand by fastforce+ - show ?lhs - unfolding collinear_def - apply (rule_tac x="b-a" in exI) - apply (clarify dest!: *) - by (metis (no_types, hide_lams) add.commute diff_add_cancel diff_diff_eq2 real_vector.scale_right_diff_distrib scaleR_left.diff) + have "\c. x - y = c *\<^sub>R (b - a)" + if x: "x \ insert a (insert b S)" and y: "y \ insert a (insert b S)" for x y + proof - + obtain u v where "x = u *\<^sub>R a + (1 - u) *\<^sub>R b" "y = v *\<^sub>R a + (1 - v) *\<^sub>R b" + using "*" x y by presburger + then have "x - y = (v - u) *\<^sub>R (b - a)" + by (simp add: scale_left_diff_distrib scale_right_diff_distrib) + then show ?thesis .. + qed + then show ?lhs + unfolding collinear_def by metis qed lemma collinear_4_3: assumes "a \ b" shows "collinear {a,b,c,d} \ collinear{a,b,c} \ collinear{a,b,d}" using collinear_triples [OF assms, of "{c,d}"] by (force simp:) lemma collinear_3_trans: assumes "collinear{a,b,c}" "collinear{b,c,d}" "b \ c" shows "collinear{a,b,d}" proof - have "collinear{b,c,a,d}" by (metis (full_types) assms collinear_4_3 insert_commute) then show ?thesis by (simp add: collinear_subset) qed lemma affine_hull_2_alt: fixes a b :: "'a::real_vector" shows "affine hull {a,b} = range (\u. a + u *\<^sub>R (b - a))" -apply (simp add: affine_hull_2, safe) -apply (rule_tac x=v in image_eqI) -apply (simp add: algebra_simps) -apply (metis scaleR_add_left scaleR_one, simp) -apply (rule_tac x="1-u" in exI) -apply (simp add: algebra_simps) -done +proof - + have 1: "u *\<^sub>R a + v *\<^sub>R b = a + v *\<^sub>R (b - a)" if "u + v = 1" for u v + using that + by (simp add: algebra_simps flip: scaleR_add_left) + have 2: "a + u *\<^sub>R (b - a) = (1 - u) *\<^sub>R a + u *\<^sub>R b" for u + by (auto simp: algebra_simps) + show ?thesis + by (force simp add: affine_hull_2 dest: 1 intro!: 2) +qed lemma interior_convex_hull_3_minimal: fixes a :: "'a::euclidean_space" - shows "\\ collinear{a,b,c}; DIM('a) = 2\ - \ interior(convex hull {a,b,c}) = - {v. \x y z. 0 < x \ 0 < y \ 0 < z \ x + y + z = 1 \ - x *\<^sub>R a + y *\<^sub>R b + z *\<^sub>R c = v}" -apply (simp add: collinear_3_eq_affine_dependent interior_convex_hull_explicit_minimal, safe) -apply (rule_tac x="u a" in exI, simp) -apply (rule_tac x="u b" in exI, simp) -apply (rule_tac x="u c" in exI, simp) -apply (rename_tac uu x y z) -apply (rule_tac x="\r. (if r=a then x else if r=b then y else if r=c then z else 0)" in exI) -apply simp -done + assumes "\ collinear{a,b,c}" and 2: "DIM('a) = 2" + shows "interior(convex hull {a,b,c}) = + {v. \x y z. 0 < x \ 0 < y \ 0 < z \ x + y + z = 1 \ x *\<^sub>R a + y *\<^sub>R b + z *\<^sub>R c = v}" + (is "?lhs = ?rhs") +proof + have abc: "a \ b" "a \ c" "b \ c" "\ affine_dependent {a, b, c}" + using assms by (auto simp: collinear_3_eq_affine_dependent) + with 2 show "?lhs \ ?rhs" + by (fastforce simp add: interior_convex_hull_explicit_minimal) + show "?rhs \ ?lhs" + using abc 2 + apply (clarsimp simp add: interior_convex_hull_explicit_minimal) + subgoal for x y z + by (rule_tac x="\r. (if r=a then x else if r=b then y else if r=c then z else 0)" in exI) auto + done +qed subsection\<^marker>\tag unimportant\\Basic lemmas about hyperplanes and halfspaces\ lemma halfspace_Int_eq: "{x. a \ x \ b} \ {x. b \ a \ x} = {x. a \ x = b}" "{x. b \ a \ x} \ {x. a \ x \ b} = {x. a \ x = b}" by auto lemma hyperplane_eq_Ex: assumes "a \ 0" obtains x where "a \ x = b" by (rule_tac x = "(b / (a \ a)) *\<^sub>R a" in that) (simp add: assms) lemma hyperplane_eq_empty: "{x. a \ x = b} = {} \ a = 0 \ b \ 0" using hyperplane_eq_Ex by (metis (mono_tags, lifting) empty_Collect_eq inner_zero_left) lemma hyperplane_eq_UNIV: "{x. a \ x = b} = UNIV \ a = 0 \ b = 0" proof - have "a = 0 \ b = 0" if "UNIV \ {x. a \ x = b}" using subsetD [OF that, where c = "((b+1) / (a \ a)) *\<^sub>R a"] by (simp add: field_split_simps split: if_split_asm) then show ?thesis by force qed lemma halfspace_eq_empty_lt: "{x. a \ x < b} = {} \ a = 0 \ b \ 0" proof - have "a = 0 \ b \ 0" if "{x. a \ x < b} \ {}" using subsetD [OF that, where c = "((b-1) / (a \ a)) *\<^sub>R a"] by (force simp add: field_split_simps split: if_split_asm) then show ?thesis by force qed lemma halfspace_eq_empty_gt: "{x. a \ x > b} = {} \ a = 0 \ b \ 0" using halfspace_eq_empty_lt [of "-a" "-b"] by simp lemma halfspace_eq_empty_le: "{x. a \ x \ b} = {} \ a = 0 \ b < 0" proof - have "a = 0 \ b < 0" if "{x. a \ x \ b} \ {}" using subsetD [OF that, where c = "((b-1) / (a \ a)) *\<^sub>R a"] by (force simp add: field_split_simps split: if_split_asm) then show ?thesis by force qed lemma halfspace_eq_empty_ge: "{x. a \ x \ b} = {} \ a = 0 \ b > 0" using halfspace_eq_empty_le [of "-a" "-b"] by simp subsection\<^marker>\tag unimportant\\Use set distance for an easy proof of separation properties\ proposition\<^marker>\tag unimportant\ separation_closures: fixes S :: "'a::euclidean_space set" assumes "S \ closure T = {}" "T \ closure S = {}" obtains U V where "U \ V = {}" "open U" "open V" "S \ U" "T \ V" proof (cases "S = {} \ T = {}") case True with that show ?thesis by auto next case False define f where "f \ \x. setdist {x} T - setdist {x} S" have contf: "continuous_on UNIV f" unfolding f_def by (intro continuous_intros continuous_on_setdist) show ?thesis proof (rule_tac U = "{x. f x > 0}" and V = "{x. f x < 0}" in that) show "{x. 0 < f x} \ {x. f x < 0} = {}" by auto show "open {x. 0 < f x}" by (simp add: open_Collect_less contf) show "open {x. f x < 0}" by (simp add: open_Collect_less contf) have "\x. x \ S \ setdist {x} T \ 0" "\x. x \ T \ setdist {x} S \ 0" by (meson False assms disjoint_iff setdist_eq_0_sing_1)+ then show "S \ {x. 0 < f x}" "T \ {x. f x < 0}" using less_eq_real_def by (fastforce simp add: f_def setdist_sing_in_set)+ qed qed lemma separation_normal: fixes S :: "'a::euclidean_space set" assumes "closed S" "closed T" "S \ T = {}" obtains U V where "open U" "open V" "S \ U" "T \ V" "U \ V = {}" using separation_closures [of S T] by (metis assms closure_closed disjnt_def inf_commute) lemma separation_normal_local: fixes S :: "'a::euclidean_space set" assumes US: "closedin (top_of_set U) S" and UT: "closedin (top_of_set U) T" and "S \ T = {}" obtains S' T' where "openin (top_of_set U) S'" "openin (top_of_set U) T'" "S \ S'" "T \ T'" "S' \ T' = {}" proof (cases "S = {} \ T = {}") case True with that show ?thesis using UT US by (blast dest: closedin_subset) next case False define f where "f \ \x. setdist {x} T - setdist {x} S" have contf: "continuous_on U f" unfolding f_def by (intro continuous_intros) show ?thesis proof (rule_tac S' = "(U \ f -` {0<..})" and T' = "(U \ f -` {..<0})" in that) show "(U \ f -` {0<..}) \ (U \ f -` {..<0}) = {}" by auto show "openin (top_of_set U) (U \ f -` {0<..})" by (rule continuous_openin_preimage [where T=UNIV]) (simp_all add: contf) next show "openin (top_of_set U) (U \ f -` {..<0})" by (rule continuous_openin_preimage [where T=UNIV]) (simp_all add: contf) next have "S \ U" "T \ U" using closedin_imp_subset assms by blast+ then show "S \ U \ f -` {0<..}" "T \ U \ f -` {..<0}" using assms False by (force simp add: f_def setdist_sing_in_set intro!: setdist_gt_0_closedin)+ qed qed lemma separation_normal_compact: fixes S :: "'a::euclidean_space set" assumes "compact S" "closed T" "S \ T = {}" obtains U V where "open U" "compact(closure U)" "open V" "S \ U" "T \ V" "U \ V = {}" proof - have "closed S" "bounded S" using assms by (auto simp: compact_eq_bounded_closed) then obtain r where "r>0" and r: "S \ ball 0 r" by (auto dest!: bounded_subset_ballD) have **: "closed (T \ - ball 0 r)" "S \ (T \ - ball 0 r) = {}" using assms r by blast+ then obtain U V where UV: "open U" "open V" "S \ U" "T \ - ball 0 r \ V" "U \ V = {}" by (meson \closed S\ separation_normal) then have "compact(closure U)" by (meson bounded_ball bounded_subset compact_closure compl_le_swap2 disjoint_eq_subset_Compl le_sup_iff) with UV show thesis using that by auto qed subsection\Connectedness of the intersection of a chain\ proposition connected_chain: fixes \ :: "'a :: euclidean_space set set" assumes cc: "\S. S \ \ \ compact S \ connected S" and linear: "\S T. S \ \ \ T \ \ \ S \ T \ T \ S" shows "connected(\\)" proof (cases "\ = {}") case True then show ?thesis by auto next case False then have cf: "compact(\\)" by (simp add: cc compact_Inter) have False if AB: "closed A" "closed B" "A \ B = {}" and ABeq: "A \ B = \\" and "A \ {}" "B \ {}" for A B proof - obtain U V where "open U" "open V" "A \ U" "B \ V" "U \ V = {}" using separation_normal [OF AB] by metis obtain K where "K \ \" "compact K" using cc False by blast then obtain N where "open N" and "K \ N" by blast let ?\ = "insert (U \ V) ((\S. N - S) ` \)" obtain \ where "\ \ ?\" "finite \" "K \ \\" proof (rule compactE [OF \compact K\]) show "K \ \(insert (U \ V) ((-) N ` \))" using \K \ N\ ABeq \A \ U\ \B \ V\ by auto show "\B. B \ insert (U \ V) ((-) N ` \) \ open B" by (auto simp: \open U\ \open V\ open_Un \open N\ cc compact_imp_closed open_Diff) qed then have "finite(\ - {U \ V})" by blast moreover have "\ - {U \ V} \ (\S. N - S) ` \" using \\ \ ?\\ by blast ultimately obtain \ where "\ \ \" "finite \" and Deq: "\ - {U \ V} = (\S. N-S) ` \" using finite_subset_image by metis obtain J where "J \ \" and J: "(\S\\. N - S) \ N - J" proof (cases "\ = {}") case True with \\ \ {}\ that show ?thesis by auto next case False have "\S T. \S \ \; T \ \\ \ S \ T \ T \ S" by (meson \\ \ \\ in_mono local.linear) with \finite \\ \\ \ {}\ have "\J \ \. (\S\\. N - S) \ N - J" proof induction case (insert X \) show ?case proof (cases "\ = {}") case True then show ?thesis by auto next case False then have "\S T. \S \ \; T \ \\ \ S \ T \ T \ S" by (simp add: insert.prems) with insert.IH False obtain J where "J \ \" and J: "(\Y\\. N - Y) \ N - J" by metis have "N - J \ N - X \ N - X \ N - J" by (meson Diff_mono \J \ \\ insert.prems(2) insert_iff order_refl) then show ?thesis proof assume "N - J \ N - X" with J show ?thesis by auto next assume "N - X \ N - J" with J have "N - X \ \ ((-) N ` \) \ N - J" by auto with \J \ \\ show ?thesis by blast qed qed qed simp with \\ \ \\ show ?thesis by (blast intro: that) qed have "K \ \(insert (U \ V) (\ - {U \ V}))" using \K \ \\\ by auto also have "... \ (U \ V) \ (N - J)" by (metis (no_types, hide_lams) Deq Un_subset_iff Un_upper2 J Union_insert order_trans sup_ge1) finally have "J \ K \ U \ V" by blast moreover have "connected(J \ K)" by (metis Int_absorb1 \J \ \\ \K \ \\ cc inf.orderE local.linear) moreover have "U \ (J \ K) \ {}" using ABeq \J \ \\ \K \ \\ \A \ {}\ \A \ U\ by blast moreover have "V \ (J \ K) \ {}" using ABeq \J \ \\ \K \ \\ \B \ {}\ \B \ V\ by blast ultimately show False using connectedD [of "J \ K" U V] \open U\ \open V\ \U \ V = {}\ by auto qed with cf show ?thesis by (auto simp: connected_closed_set compact_imp_closed) qed lemma connected_chain_gen: fixes \ :: "'a :: euclidean_space set set" assumes X: "X \ \" "compact X" and cc: "\T. T \ \ \ closed T \ connected T" and linear: "\S T. S \ \ \ T \ \ \ S \ T \ T \ S" shows "connected(\\)" proof - have "\\ = (\T\\. X \ T)" using X by blast moreover have "connected (\T\\. X \ T)" proof (rule connected_chain) show "\T. T \ (\) X ` \ \ compact T \ connected T" using cc X by auto (metis inf.absorb2 inf.orderE local.linear) show "\S T. S \ (\) X ` \ \ T \ (\) X ` \ \ S \ T \ T \ S" using local.linear by blast qed ultimately show ?thesis by metis qed lemma connected_nest: fixes S :: "'a::linorder \ 'b::euclidean_space set" assumes S: "\n. compact(S n)" "\n. connected(S n)" and nest: "\m n. m \ n \ S n \ S m" shows "connected(\ (range S))" - apply (rule connected_chain) - using S apply blast +proof (rule connected_chain) + show "\A T. A \ range S \ T \ range S \ A \ T \ T \ A" by (metis image_iff le_cases nest) +qed (use S in blast) lemma connected_nest_gen: fixes S :: "'a::linorder \ 'b::euclidean_space set" assumes S: "\n. closed(S n)" "\n. connected(S n)" "compact(S k)" and nest: "\m n. m \ n \ S n \ S m" shows "connected(\ (range S))" - apply (rule connected_chain_gen [of "S k"]) - using S apply auto - by (meson le_cases nest subsetCE) +proof (rule connected_chain_gen [of "S k"]) + show "\A T. A \ range S \ T \ range S \ A \ T \ T \ A" + by (metis imageE le_cases nest) +qed (use S in auto) subsection\Proper maps, including projections out of compact sets\ lemma finite_indexed_bound: assumes A: "finite A" "\x. x \ A \ \n::'a::linorder. P x n" shows "\m. \x \ A. \k\m. P x k" using A proof (induction A) case empty then show ?case by force next case (insert a A) then obtain m n where "\x \ A. \k\m. P x k" "P a n" by force then show ?case by (metis dual_order.trans insert_iff le_cases) qed proposition proper_map: fixes f :: "'a::heine_borel \ 'b::heine_borel" assumes "closedin (top_of_set S) K" and com: "\U. \U \ T; compact U\ \ compact (S \ f -` U)" and "f ` S \ T" shows "closedin (top_of_set T) (f ` K)" proof - have "K \ S" using assms closedin_imp_subset by metis obtain C where "closed C" and Keq: "K = S \ C" using assms by (auto simp: closedin_closed) have *: "y \ f ` K" if "y \ T" and y: "y islimpt f ` K" for y proof - obtain h where "\n. (\x\K. h n = f x) \ h n \ y" "inj h" and hlim: "(h \ y) sequentially" using \y \ T\ y by (force simp: limpt_sequential_inj) then obtain X where X: "\n. X n \ K \ h n = f (X n) \ h n \ y" by metis then have fX: "\n. f (X n) = h n" by metis + define \ where "\ \ \n. {a \ K. f a \ insert y (range (\i. f (X (n + i))))}" have "compact (C \ (S \ f -` insert y (range (\i. f(X(n + i))))))" for n proof (intro closed_Int_compact [OF \closed C\ com] compact_sequence_with_limit) show "insert y (range (\i. f (X (n + i)))) \ T" using X \K \ S\ \f ` S \ T\ \y \ T\ by blast show "(\i. f (X (n + i))) \ y" by (simp add: fX add.commute [of n] LIMSEQ_ignore_initial_segment [OF hlim]) qed - then have comf: "compact {a \ K. f a \ insert y (range (\i. f(X(n + i))))}" for n - by (simp add: Keq Int_def conj_commute) + then have comf: "compact (\ n)" for n + by (simp add: Keq Int_def \_def conj_commute) have ne: "\\ \ {}" if "finite \" - and \: "\t. t \ \ \ - (\n. t = {a \ K. f a \ insert y (range (\i. f (X (n + i))))})" + and \: "\t. t \ \ \ (\n. t = \ n)" for \ proof - - obtain m where m: "\t. t \ \ \ \k\m. t = {a \ K. f a \ insert y (range (\i. f (X (k + i))))}" + obtain m where m: "\t. t \ \ \ \k\m. t = \ k" by (rule exE [OF finite_indexed_bound [OF \finite \\ \]], force+) have "X m \ \\" - using X le_Suc_ex by (fastforce dest: m) + using X le_Suc_ex by (fastforce simp: \_def dest: m) then show ?thesis by blast qed - have "\{{a. a \ K \ f a \ insert y (range (\i. f(X(n + i))))} |n. n \ UNIV} - \ {}" - apply (rule compact_fip_Heine_Borel) - using comf apply force - using ne apply (simp add: subset_iff del: insert_iff) - done - then have "\x. x \ (\n. {a \ K. f a \ insert y (range (\i. f (X (n + i))))})" - by blast + have "(\n. \ n) \ {}" + proof (rule compact_fip_Heine_Borel) + show "\\'. \finite \'; \' \ range \\ \ \ \' \ {}" + by (meson ne rangeE subset_eq) + qed (use comf in blast) + then obtain x where "x \ K" "\n. (f x = y \ (\u. f x = h (n + u)))" + by (force simp add: \_def fX) then show ?thesis - apply (simp add: image_iff fX) - by (metis \inj h\ le_add1 not_less_eq_eq rangeI range_ex1_eq) + unfolding image_iff by (metis \inj h\ le_add1 not_less_eq_eq rangeI range_ex1_eq) qed with assms closedin_subset show ?thesis by (force simp: closedin_limpt) qed lemma compact_continuous_image_eq: fixes f :: "'a::heine_borel \ 'b::heine_borel" assumes f: "inj_on f S" shows "continuous_on S f \ (\T. compact T \ T \ S \ compact(f ` T))" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs by (metis continuous_on_subset compact_continuous_image) next assume RHS: ?rhs obtain g where gf: "\x. x \ S \ g (f x) = x" by (metis inv_into_f_f f) then have *: "(S \ f -` U) = g ` U" if "U \ f ` S" for U using that by fastforce have gfim: "g ` f ` S \ S" using gf by auto have **: "compact (f ` S \ g -` C)" if C: "C \ S" "compact C" for C proof - obtain h where "h C \ C \ h C \ S \ compact (f ` C)" by (force simp: C RHS) moreover have "f ` C = (f ` S \ g -` C)" using C gf by auto ultimately show ?thesis using C by auto qed show ?lhs using proper_map [OF _ _ gfim] ** by (simp add: continuous_on_closed * closedin_imp_subset) qed subsection\<^marker>\tag unimportant\\Trivial fact: convexity equals connectedness for collinear sets\ lemma convex_connected_collinear: fixes S :: "'a::euclidean_space set" assumes "collinear S" shows "convex S \ connected S" proof assume "convex S" then show "connected S" using convex_connected by blast next assume S: "connected S" show "convex S" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain a where "a \ S" by auto have "collinear (affine hull S)" by (simp add: assms collinear_affine_hull_collinear) then obtain z where "z \ 0" "\x. x \ affine hull S \ \c. x - a = c *\<^sub>R z" by (meson \a \ S\ collinear hull_inc) then obtain f where f: "\x. x \ affine hull S \ x - a = f x *\<^sub>R z" by metis then have inj_f: "inj_on f (affine hull S)" by (metis diff_add_cancel inj_onI) have diff: "x - y = (f x - f y) *\<^sub>R z" if x: "x \ affine hull S" and y: "y \ affine hull S" for x y proof - have "f x *\<^sub>R z = x - a" by (simp add: f hull_inc x) moreover have "f y *\<^sub>R z = y - a" by (simp add: f hull_inc y) ultimately show ?thesis by (simp add: scaleR_left.diff) qed have cont_f: "continuous_on (affine hull S) f" - apply (clarsimp simp: dist_norm continuous_on_iff diff) - by (metis \z \ 0\ mult.commute mult_less_cancel_left_pos norm_minus_commute real_norm_def zero_less_mult_iff zero_less_norm_iff) + proof (clarsimp simp: dist_norm continuous_on_iff diff) + show "\x e. 0 < e \ \d>0. \y \ affine hull S. \f y - f x\ * norm z < d \ \f y - f x\ < e" + by (metis \z \ 0\ mult_pos_pos real_mult_less_iff1 zero_less_norm_iff) + qed then have conn_fS: "connected (f ` S)" by (meson S connected_continuous_image continuous_on_subset hull_subset) show ?thesis proof (clarsimp simp: convex_contains_segment) fix x y z assume "x \ S" "y \ S" "z \ closed_segment x y" have False if "z \ S" proof - have "f ` (closed_segment x y) = closed_segment (f x) (f y)" proof (rule continuous_injective_image_segment_1) show "continuous_on (closed_segment x y) f" by (meson \x \ S\ \y \ S\ convex_affine_hull convex_contains_segment hull_inc continuous_on_subset [OF cont_f]) show "inj_on f (closed_segment x y)" by (meson \x \ S\ \y \ S\ convex_affine_hull convex_contains_segment hull_inc inj_on_subset [OF inj_f]) qed then have fz: "f z \ closed_segment (f x) (f y)" using \z \ closed_segment x y\ by blast have "z \ affine hull S" by (meson \x \ S\ \y \ S\ \z \ closed_segment x y\ convex_affine_hull convex_contains_segment hull_inc subset_eq) then have fz_notin: "f z \ f ` S" using hull_subset inj_f inj_onD that by fastforce moreover have "{.. f ` S \ {}" "{f z<..} \ f ` S \ {}" proof - - have "{.. f ` {x,y} \ {}" "{f z<..} \ f ` {x,y} \ {}" - using fz fz_notin \x \ S\ \y \ S\ - apply (auto simp: closed_segment_eq_real_ivl less_eq_real_def split: if_split_asm) - apply (metis image_eqI)+ - done + consider "f x \ f z \ f z \ f y" | "f y \ f z \ f z \ f x" + using fz + by (auto simp add: closed_segment_eq_real_ivl split: if_split_asm) + then have "{.. f ` {x,y} \ {} \ {f z<..} \ f ` {x,y} \ {}" + by cases (use fz_notin \x \ S\ \y \ S\ in \auto simp: image_iff\) then show "{.. f ` S \ {}" "{f z<..} \ f ` S \ {}" using \x \ S\ \y \ S\ by blast+ qed ultimately show False using connectedD [OF conn_fS, of "{.. S" by meson qed qed qed lemma compact_convex_collinear_segment_alt: fixes S :: "'a::euclidean_space set" assumes "S \ {}" "compact S" "connected S" "collinear S" obtains a b where "S = closed_segment a b" proof - obtain \ where "\ \ S" using \S \ {}\ by auto have "collinear (affine hull S)" by (simp add: assms collinear_affine_hull_collinear) then obtain z where "z \ 0" "\x. x \ affine hull S \ \c. x - \ = c *\<^sub>R z" by (meson \\ \ S\ collinear hull_inc) then obtain f where f: "\x. x \ affine hull S \ x - \ = f x *\<^sub>R z" by metis let ?g = "\r. r *\<^sub>R z + \" have gf: "?g (f x) = x" if "x \ affine hull S" for x by (metis diff_add_cancel f that) then have inj_f: "inj_on f (affine hull S)" by (metis inj_onI) have diff: "x - y = (f x - f y) *\<^sub>R z" if x: "x \ affine hull S" and y: "y \ affine hull S" for x y proof - have "f x *\<^sub>R z = x - \" by (simp add: f hull_inc x) moreover have "f y *\<^sub>R z = y - \" by (simp add: f hull_inc y) ultimately show ?thesis by (simp add: scaleR_left.diff) qed have cont_f: "continuous_on (affine hull S) f" - apply (clarsimp simp: dist_norm continuous_on_iff diff) - by (metis \z \ 0\ mult.commute mult_less_cancel_left_pos norm_minus_commute real_norm_def zero_less_mult_iff zero_less_norm_iff) + proof (clarsimp simp: dist_norm continuous_on_iff diff) + show "\x e. 0 < e \ \d>0. \y \ affine hull S. \f y - f x\ * norm z < d \ \f y - f x\ < e" + by (metis \z \ 0\ mult_pos_pos real_mult_less_iff1 zero_less_norm_iff) + qed then have "connected (f ` S)" by (meson \connected S\ connected_continuous_image continuous_on_subset hull_subset) moreover have "compact (f ` S)" by (meson \compact S\ compact_continuous_image_eq cont_f hull_subset inj_f) ultimately obtain x y where "f ` S = {x..y}" by (meson connected_compact_interval_1) then have fS_eq: "f ` S = closed_segment x y" using \S \ {}\ closed_segment_eq_real_ivl by auto obtain a b where "a \ S" "f a = x" "b \ S" "f b = y" by (metis (full_types) ends_in_segment fS_eq imageE) have "f ` (closed_segment a b) = closed_segment (f a) (f b)" proof (rule continuous_injective_image_segment_1) show "continuous_on (closed_segment a b) f" by (meson \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment hull_inc continuous_on_subset [OF cont_f]) show "inj_on f (closed_segment a b)" by (meson \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment hull_inc inj_on_subset [OF inj_f]) qed then have "f ` (closed_segment a b) = f ` S" by (simp add: \f a = x\ \f b = y\ fS_eq) then have "?g ` f ` (closed_segment a b) = ?g ` f ` S" by simp moreover have "(\x. f x *\<^sub>R z + \) ` closed_segment a b = closed_segment a b" - apply safe - apply (metis (mono_tags, hide_lams) \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment gf hull_inc subsetCE) - by (metis (mono_tags, lifting) \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment gf hull_subset image_iff subsetCE) + unfolding image_def using \a \ S\ \b \ S\ + by (safe; metis (mono_tags, lifting) convex_affine_hull convex_contains_segment gf hull_subset subsetCE) ultimately have "closed_segment a b = S" using gf by (simp add: image_comp o_def hull_inc cong: image_cong) then show ?thesis using that by blast qed lemma compact_convex_collinear_segment: fixes S :: "'a::euclidean_space set" assumes "S \ {}" "compact S" "convex S" "collinear S" obtains a b where "S = closed_segment a b" using assms convex_connected_collinear compact_convex_collinear_segment_alt by blast lemma proper_map_from_compact: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes contf: "continuous_on S f" and imf: "f ` S \ T" and "compact S" "closedin (top_of_set T) K" shows "compact (S \ f -` K)" by (rule closedin_compact [OF \compact S\] continuous_closedin_preimage_gen assms)+ lemma proper_map_fst: assumes "compact T" "K \ S" "compact K" shows "compact (S \ T \ fst -` K)" proof - have "(S \ T \ fst -` K) = K \ T" using assms by auto then show ?thesis by (simp add: assms compact_Times) qed lemma closed_map_fst: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" assumes "compact T" "closedin (top_of_set (S \ T)) c" shows "closedin (top_of_set S) (fst ` c)" proof - have *: "fst ` (S \ T) \ S" by auto show ?thesis using proper_map [OF _ _ *] by (simp add: proper_map_fst assms) qed lemma proper_map_snd: assumes "compact S" "K \ T" "compact K" shows "compact (S \ T \ snd -` K)" proof - have "(S \ T \ snd -` K) = S \ K" using assms by auto then show ?thesis by (simp add: assms compact_Times) qed lemma closed_map_snd: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" assumes "compact S" "closedin (top_of_set (S \ T)) c" shows "closedin (top_of_set T) (snd ` c)" proof - have *: "snd ` (S \ T) \ T" by auto show ?thesis using proper_map [OF _ _ *] by (simp add: proper_map_snd assms) qed lemma closedin_compact_projection: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" assumes "compact S" and clo: "closedin (top_of_set (S \ T)) U" shows "closedin (top_of_set T) {y. \x. x \ S \ (x, y) \ U}" proof - have "U \ S \ T" by (metis clo closedin_imp_subset) then have "{y. \x. x \ S \ (x, y) \ U} = snd ` U" by force moreover have "closedin (top_of_set T) (snd ` U)" by (rule closed_map_snd [OF assms]) ultimately show ?thesis by simp qed lemma closed_compact_projection: fixes S :: "'a::euclidean_space set" and T :: "('a * 'b::euclidean_space) set" assumes "compact S" and clo: "closed T" shows "closed {y. \x. x \ S \ (x, y) \ T}" proof - have *: "{y. \x. x \ S \ Pair x y \ T} = {y. \x. x \ S \ Pair x y \ ((S \ UNIV) \ T)}" by auto show ?thesis unfolding * by (intro clo closedin_closed_Int closedin_closed_trans [OF _ closed_UNIV] closedin_compact_projection [OF \compact S\]) qed subsubsection\<^marker>\tag unimportant\\Representing affine hull as a finite intersection of hyperplanes\ proposition\<^marker>\tag unimportant\ affine_hull_convex_Int_nonempty_interior: fixes S :: "'a::real_normed_vector set" assumes "convex S" "S \ interior T \ {}" shows "affine hull (S \ T) = affine hull S" proof show "affine hull (S \ T) \ affine hull S" by (simp add: hull_mono) next obtain a where "a \ S" "a \ T" and at: "a \ interior T" using assms interior_subset by blast then obtain e where "e > 0" and e: "cball a e \ T" using mem_interior_cball by blast have *: "x \ (+) a ` span ((\x. x - a) ` (S \ T))" if "x \ S" for x proof (cases "x = a") case True with that span_0 eq_add_iff image_def mem_Collect_eq show ?thesis by blast next case False define k where "k = min (1/2) (e / norm (x-a))" have k: "0 < k" "k < 1" using \e > 0\ False by (auto simp: k_def) then have xa: "(x-a) = inverse k *\<^sub>R k *\<^sub>R (x-a)" by simp have "e / norm (x - a) \ k" using k_def by linarith then have "a + k *\<^sub>R (x - a) \ cball a e" using \0 < k\ False by (simp add: dist_norm) (simp add: field_simps) then have T: "a + k *\<^sub>R (x - a) \ T" using e by blast have S: "a + k *\<^sub>R (x - a) \ S" using k \a \ S\ convexD [OF \convex S\ \a \ S\ \x \ S\, of "1-k" k] by (simp add: algebra_simps) have "inverse k *\<^sub>R k *\<^sub>R (x-a) \ span ((\x. x - a) ` (S \ T))" by (intro span_mul [OF span_base] image_eqI [where x = "a + k *\<^sub>R (x - a)"]) (auto simp: S T) with xa image_iff show ?thesis by fastforce qed have "S \ affine hull (S \ T)" by (force simp: * \a \ S\ \a \ T\ hull_inc affine_hull_span_gen [of a]) then show "affine hull S \ affine hull (S \ T)" by (simp add: subset_hull) qed corollary affine_hull_convex_Int_open: fixes S :: "'a::real_normed_vector set" assumes "convex S" "open T" "S \ T \ {}" shows "affine hull (S \ T) = affine hull S" using affine_hull_convex_Int_nonempty_interior assms interior_eq by blast corollary affine_hull_affine_Int_nonempty_interior: fixes S :: "'a::real_normed_vector set" assumes "affine S" "S \ interior T \ {}" shows "affine hull (S \ T) = affine hull S" by (simp add: affine_hull_convex_Int_nonempty_interior affine_imp_convex assms) corollary affine_hull_affine_Int_open: fixes S :: "'a::real_normed_vector set" assumes "affine S" "open T" "S \ T \ {}" shows "affine hull (S \ T) = affine hull S" by (simp add: affine_hull_convex_Int_open affine_imp_convex assms) corollary affine_hull_convex_Int_openin: fixes S :: "'a::real_normed_vector set" assumes "convex S" "openin (top_of_set (affine hull S)) T" "S \ T \ {}" shows "affine hull (S \ T) = affine hull S" using assms unfolding openin_open by (metis affine_hull_convex_Int_open hull_subset inf.orderE inf_assoc) corollary affine_hull_openin: fixes S :: "'a::real_normed_vector set" assumes "openin (top_of_set (affine hull T)) S" "S \ {}" shows "affine hull S = affine hull T" using assms unfolding openin_open by (metis affine_affine_hull affine_hull_affine_Int_open hull_hull) corollary affine_hull_open: fixes S :: "'a::real_normed_vector set" assumes "open S" "S \ {}" shows "affine hull S = UNIV" by (metis affine_hull_convex_Int_nonempty_interior assms convex_UNIV hull_UNIV inf_top.left_neutral interior_open) lemma aff_dim_convex_Int_nonempty_interior: fixes S :: "'a::euclidean_space set" shows "\convex S; S \ interior T \ {}\ \ aff_dim(S \ T) = aff_dim S" using aff_dim_affine_hull2 affine_hull_convex_Int_nonempty_interior by blast lemma aff_dim_convex_Int_open: fixes S :: "'a::euclidean_space set" shows "\convex S; open T; S \ T \ {}\ \ aff_dim(S \ T) = aff_dim S" using aff_dim_convex_Int_nonempty_interior interior_eq by blast lemma affine_hull_Diff: fixes S:: "'a::real_normed_vector set" assumes ope: "openin (top_of_set (affine hull S)) S" and "finite F" "F \ S" shows "affine hull (S - F) = affine hull S" proof - have clo: "closedin (top_of_set S) F" using assms finite_imp_closedin by auto moreover have "S - F \ {}" using assms by auto ultimately show ?thesis by (metis ope closedin_def topspace_euclidean_subtopology affine_hull_openin openin_trans) qed lemma affine_hull_halfspace_lt: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x < r} = (if a = 0 \ r \ 0 then {} else UNIV)" using halfspace_eq_empty_lt [of a r] by (simp add: open_halfspace_lt affine_hull_open) lemma affine_hull_halfspace_le: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x \ r} = (if a = 0 \ r < 0 then {} else UNIV)" proof (cases "a = 0") case True then show ?thesis by simp next case False then have "affine hull closure {x. a \ x < r} = UNIV" using affine_hull_halfspace_lt closure_same_affine_hull by fastforce moreover have "{x. a \ x < r} \ {x. a \ x \ r}" by (simp add: Collect_mono) ultimately show ?thesis using False antisym_conv hull_mono top_greatest by (metis affine_hull_halfspace_lt) qed lemma affine_hull_halfspace_gt: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x > r} = (if a = 0 \ r \ 0 then {} else UNIV)" using halfspace_eq_empty_gt [of r a] by (simp add: open_halfspace_gt affine_hull_open) lemma affine_hull_halfspace_ge: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x \ r} = (if a = 0 \ r > 0 then {} else UNIV)" using affine_hull_halfspace_le [of "-a" "-r"] by simp lemma aff_dim_halfspace_lt: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x < r} = (if a = 0 \ r \ 0 then -1 else DIM('a))" by simp (metis aff_dim_open halfspace_eq_empty_lt open_halfspace_lt) lemma aff_dim_halfspace_le: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x \ r} = (if a = 0 \ r < 0 then -1 else DIM('a))" proof - have "int (DIM('a)) = aff_dim (UNIV::'a set)" by (simp) then have "aff_dim (affine hull {x. a \ x \ r}) = DIM('a)" if "(a = 0 \ r \ 0)" using that by (simp add: affine_hull_halfspace_le not_less) then show ?thesis by (force) qed lemma aff_dim_halfspace_gt: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x > r} = (if a = 0 \ r \ 0 then -1 else DIM('a))" by simp (metis aff_dim_open halfspace_eq_empty_gt open_halfspace_gt) lemma aff_dim_halfspace_ge: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x \ r} = (if a = 0 \ r > 0 then -1 else DIM('a))" using aff_dim_halfspace_le [of "-a" "-r"] by simp proposition aff_dim_eq_hyperplane: fixes S :: "'a::euclidean_space set" shows "aff_dim S = DIM('a) - 1 \ (\a b. a \ 0 \ affine hull S = {x. a \ x = b})" + (is "?lhs = ?rhs") proof (cases "S = {}") case True then show ?thesis by (auto simp: dest: hyperplane_eq_Ex) next case False then obtain c where "c \ S" by blast show ?thesis proof (cases "c = 0") - case True show ?thesis - using span_zero [of S] - apply (simp add: aff_dim_eq_dim [of c] affine_hull_span_gen [of c] \c \ S\ hull_inc dim_eq_hyperplane - del: One_nat_def) - apply (auto simp add: \c = 0\) - done + case True + have "?lhs \ (\a. a \ 0 \ span ((\x. x - c) ` S) = {x. a \ x = 0})" + by (simp add: aff_dim_eq_dim [of c] \c \ S\ hull_inc dim_eq_hyperplane del: One_nat_def) + also have "... \ ?rhs" + using span_zero [of S] True \c \ S\ affine_hull_span_0 hull_inc + by (fastforce simp add: affine_hull_span_gen [of c] \c = 0\) + finally show ?thesis . next case False have xc_im: "x \ (+) c ` {y. a \ y = 0}" if "a \ x = a \ c" for a x proof - have "\y. a \ y = 0 \ c + y = x" by (metis that add.commute diff_add_cancel inner_commute inner_diff_left right_minus_eq) then show "x \ (+) c ` {y. a \ y = 0}" by blast qed have 2: "span ((\x. x - c) ` S) = {x. a \ x = 0}" if "(+) c ` span ((\x. x - c) ` S) = {x. a \ x = b}" for a b proof - have "b = a \ c" using span_0 that by fastforce with that have "(+) c ` span ((\x. x - c) ` S) = {x. a \ x = a \ c}" by simp then have "span ((\x. x - c) ` S) = (\x. x - c) ` {x. a \ x = a \ c}" by (metis (no_types) image_cong translation_galois uminus_add_conv_diff) also have "... = {x. a \ x = 0}" by (force simp: inner_distrib inner_diff_right intro: image_eqI [where x="x+c" for x]) finally show ?thesis . qed - show ?thesis - apply (simp add: aff_dim_eq_dim [of c] affine_hull_span_gen [of c] \c \ S\ hull_inc dim_eq_hyperplane - del: One_nat_def cong: image_cong_simp, safe) - apply (fastforce simp add: inner_distrib intro: xc_im) - apply (force intro!: 2) - done + have "?lhs = (\a. a \ 0 \ span ((\x. x - c) ` S) = {x. a \ x = 0})" + by (simp add: aff_dim_eq_dim [of c] \c \ S\ hull_inc dim_eq_hyperplane del: One_nat_def) + also have "... = ?rhs" + by (fastforce simp add: affine_hull_span_gen [of c] \c \ S\ hull_inc inner_distrib intro: xc_im intro!: 2) + finally show ?thesis . qed qed corollary aff_dim_hyperplane [simp]: fixes a :: "'a::euclidean_space" shows "a \ 0 \ aff_dim {x. a \ x = r} = DIM('a) - 1" by (metis aff_dim_eq_hyperplane affine_hull_eq affine_hyperplane) subsection\<^marker>\tag unimportant\\Some stepping theorems\ lemma aff_dim_insert: fixes a :: "'a::euclidean_space" shows "aff_dim (insert a S) = (if a \ affine hull S then aff_dim S else aff_dim S + 1)" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain x s' where S: "S = insert x s'" "x \ s'" by (meson Set.set_insert all_not_in_conv) show ?thesis using S by (force simp add: affine_hull_insert_span_gen span_zero insert_commute [of a] aff_dim_eq_dim [of x] dim_insert) qed lemma affine_dependent_choose: fixes a :: "'a :: euclidean_space" assumes "\(affine_dependent S)" shows "affine_dependent(insert a S) \ a \ S \ a \ affine hull S" (is "?lhs = ?rhs") proof safe assume "affine_dependent (insert a S)" and "a \ S" then show "False" using \a \ S\ assms insert_absorb by fastforce next assume lhs: "affine_dependent (insert a S)" then have "a \ S" by (metis (no_types) assms insert_absorb) moreover have "finite S" using affine_independent_iff_card assms by blast moreover have "aff_dim (insert a S) \ int (card S)" using \finite S\ affine_independent_iff_card \a \ S\ lhs by fastforce ultimately show "a \ affine hull S" by (metis aff_dim_affine_independent aff_dim_insert assms) next assume "a \ S" and "a \ affine hull S" show "affine_dependent (insert a S)" by (simp add: \a \ affine hull S\ \a \ S\ affine_dependent_def) qed lemma affine_independent_insert: fixes a :: "'a :: euclidean_space" shows "\\ affine_dependent S; a \ affine hull S\ \ \ affine_dependent(insert a S)" by (simp add: affine_dependent_choose) lemma subspace_bounded_eq_trivial: fixes S :: "'a::real_normed_vector set" assumes "subspace S" shows "bounded S \ S = {0}" proof - have "False" if "bounded S" "x \ S" "x \ 0" for x proof - obtain B where B: "\y. y \ S \ norm y < B" "B > 0" using \bounded S\ by (force simp: bounded_pos_less) have "(B / norm x) *\<^sub>R x \ S" using assms subspace_mul \x \ S\ by auto moreover have "norm ((B / norm x) *\<^sub>R x) = B" using that B by (simp add: algebra_simps) ultimately show False using B by force qed then have "bounded S \ S = {0}" using assms subspace_0 by fastforce then show ?thesis by blast qed lemma affine_bounded_eq_trivial: fixes S :: "'a::real_normed_vector set" assumes "affine S" shows "bounded S \ S = {} \ (\a. S = {a})" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain b where "b \ S" by blast with False assms have "bounded S \ S = {b}" using affine_diffs_subspace [OF assms \b \ S\] by (metis (no_types, lifting) ab_group_add_class.ab_left_minus bounded_translation image_empty image_insert subspace_bounded_eq_trivial translation_invert) then show ?thesis by auto qed lemma affine_bounded_eq_lowdim: fixes S :: "'a::euclidean_space set" assumes "affine S" shows "bounded S \ aff_dim S \ 0" proof show "aff_dim S \ 0 \ bounded S" by (metis aff_dim_sing aff_dim_subset affine_dim_equal affine_sing all_not_in_conv assms bounded_empty bounded_insert dual_order.antisym empty_subsetI insert_subset) qed (use affine_bounded_eq_trivial assms in fastforce) lemma bounded_hyperplane_eq_trivial_0: fixes a :: "'a::euclidean_space" assumes "a \ 0" shows "bounded {x. a \ x = 0} \ DIM('a) = 1" proof assume "bounded {x. a \ x = 0}" then have "aff_dim {x. a \ x = 0} \ 0" by (simp add: affine_bounded_eq_lowdim affine_hyperplane) with assms show "DIM('a) = 1" by (simp add: le_Suc_eq) next assume "DIM('a) = 1" then show "bounded {x. a \ x = 0}" by (simp add: affine_bounded_eq_lowdim affine_hyperplane assms) qed lemma bounded_hyperplane_eq_trivial: fixes a :: "'a::euclidean_space" shows "bounded {x. a \ x = r} \ (if a = 0 then r \ 0 else DIM('a) = 1)" proof (simp add: bounded_hyperplane_eq_trivial_0, clarify) assume "r \ 0" "a \ 0" have "aff_dim {x. y \ x = 0} = aff_dim {x. a \ x = r}" if "y \ 0" for y::'a by (metis that \a \ 0\ aff_dim_hyperplane) then show "bounded {x. a \ x = r} = (DIM('a) = Suc 0)" by (metis One_nat_def \a \ 0\ affine_bounded_eq_lowdim affine_hyperplane bounded_hyperplane_eq_trivial_0) qed subsection\<^marker>\tag unimportant\\General case without assuming closure and getting non-strict separation\ proposition\<^marker>\tag unimportant\ separating_hyperplane_closed_point_inset: fixes S :: "'a::euclidean_space set" assumes "convex S" "closed S" "S \ {}" "z \ S" obtains a b where "a \ S" "(a - z) \ z < b" "\x. x \ S \ b < (a - z) \ x" proof - obtain y where "y \ S" and y: "\u. u \ S \ dist z y \ dist z u" using distance_attains_inf [of S z] assms by auto then have *: "(y - z) \ z < (y - z) \ z + (norm (y - z))\<^sup>2 / 2" using \y \ S\ \z \ S\ by auto show ?thesis proof (rule that [OF \y \ S\ *]) fix x assume "x \ S" have yz: "0 < (y - z) \ (y - z)" using \y \ S\ \z \ S\ by auto { assume 0: "0 < ((z - y) \ (x - y))" with any_closest_point_dot [OF \convex S\ \closed S\] have False using y \x \ S\ \y \ S\ not_less by blast } then have "0 \ ((y - z) \ (x - y))" by (force simp: not_less inner_diff_left) with yz have "0 < 2 * ((y - z) \ (x - y)) + (y - z) \ (y - z)" by (simp add: algebra_simps) then show "(y - z) \ z + (norm (y - z))\<^sup>2 / 2 < (y - z) \ x" by (simp add: field_simps inner_diff_left inner_diff_right dot_square_norm [symmetric]) qed qed lemma separating_hyperplane_closed_0_inset: fixes S :: "'a::euclidean_space set" assumes "convex S" "closed S" "S \ {}" "0 \ S" obtains a b where "a \ S" "a \ 0" "0 < b" "\x. x \ S \ a \ x > b" using separating_hyperplane_closed_point_inset [OF assms] by simp (metis \0 \ S\) proposition\<^marker>\tag unimportant\ separating_hyperplane_set_0_inspan: fixes S :: "'a::euclidean_space set" assumes "convex S" "S \ {}" "0 \ S" obtains a where "a \ span S" "a \ 0" "\x. x \ S \ 0 \ a \ x" proof - define k where [abs_def]: "k c = {x. 0 \ c \ x}" for c :: 'a have "span S \ frontier (cball 0 1) \ \f' \ {}" if f': "finite f'" "f' \ k ` S" for f' proof - obtain C where "C \ S" "finite C" and C: "f' = k ` C" using finite_subset_image [OF f'] by blast obtain a where "a \ S" "a \ 0" using \S \ {}\ \0 \ S\ ex_in_conv by blast then have "norm (a /\<^sub>R (norm a)) = 1" by simp moreover have "a /\<^sub>R (norm a) \ span S" by (simp add: \a \ S\ span_scale span_base) ultimately have ass: "a /\<^sub>R (norm a) \ span S \ sphere 0 1" by simp show ?thesis proof (cases "C = {}") case True with C ass show ?thesis by auto next case False have "closed (convex hull C)" using \finite C\ compact_eq_bounded_closed finite_imp_compact_convex_hull by auto moreover have "convex hull C \ {}" by (simp add: False) moreover have "0 \ convex hull C" by (metis \C \ S\ \convex S\ \0 \ S\ convex_hull_subset hull_same insert_absorb insert_subset) ultimately obtain a b where "a \ convex hull C" "a \ 0" "0 < b" and ab: "\x. x \ convex hull C \ a \ x > b" using separating_hyperplane_closed_0_inset by blast then have "a \ S" by (metis \C \ S\ assms(1) subsetCE subset_hull) moreover have "norm (a /\<^sub>R (norm a)) = 1" using \a \ 0\ by simp moreover have "a /\<^sub>R (norm a) \ span S" by (simp add: \a \ S\ span_scale span_base) ultimately have ass: "a /\<^sub>R (norm a) \ span S \ sphere 0 1" by simp have "\x. \a \ 0; x \ C\ \ 0 \ x \ a" using ab \0 < b\ by (metis hull_inc inner_commute less_eq_real_def less_trans) then have aa: "a /\<^sub>R (norm a) \ (\c\C. {x. 0 \ c \ x})" by (auto simp add: field_split_simps) show ?thesis unfolding C k_def using ass aa Int_iff empty_iff by force qed qed moreover have "\T. T \ k ` S \ closed T" using closed_halfspace_ge k_def by blast ultimately have "(span S \ frontier(cball 0 1)) \ (\ (k ` S)) \ {}" by (metis compact_imp_fip closed_Int_compact closed_span compact_cball compact_frontier) then show ?thesis unfolding set_eq_iff k_def by simp (metis inner_commute norm_eq_zero that zero_neq_one) qed lemma separating_hyperplane_set_point_inaff: fixes S :: "'a::euclidean_space set" assumes "convex S" "S \ {}" and zno: "z \ S" obtains a b where "(z + a) \ affine hull (insert z S)" and "a \ 0" and "a \ z \ b" and "\x. x \ S \ a \ x \ b" proof - from separating_hyperplane_set_0_inspan [of "image (\x. -z + x) S"] have "convex ((+) (- z) ` S)" using \convex S\ by simp moreover have "(+) (- z) ` S \ {}" by (simp add: \S \ {}\) moreover have "0 \ (+) (- z) ` S" using zno by auto ultimately obtain a where "a \ span ((+) (- z) ` S)" "a \ 0" and a: "\x. x \ ((+) (- z) ` S) \ 0 \ a \ x" using separating_hyperplane_set_0_inspan [of "image (\x. -z + x) S"] by blast then have szx: "\x. x \ S \ a \ z \ a \ x" by (metis (no_types, lifting) imageI inner_minus_right inner_right_distrib minus_add neg_le_0_iff_le neg_le_iff_le real_add_le_0_iff) moreover have "z + a \ affine hull insert z S" using \a \ span ((+) (- z) ` S)\ affine_hull_insert_span_gen by blast ultimately show ?thesis using \a \ 0\ szx that by auto qed proposition\<^marker>\tag unimportant\ supporting_hyperplane_rel_boundary: fixes S :: "'a::euclidean_space set" assumes "convex S" "x \ S" and xno: "x \ rel_interior S" obtains a where "a \ 0" and "\y. y \ S \ a \ x \ a \ y" and "\y. y \ rel_interior S \ a \ x < a \ y" proof - obtain a b where aff: "(x + a) \ affine hull (insert x (rel_interior S))" and "a \ 0" and "a \ x \ b" and ageb: "\u. u \ (rel_interior S) \ a \ u \ b" using separating_hyperplane_set_point_inaff [of "rel_interior S" x] assms by (auto simp: rel_interior_eq_empty convex_rel_interior) have le_ay: "a \ x \ a \ y" if "y \ S" for y proof - have con: "continuous_on (closure (rel_interior S)) ((\) a)" by (rule continuous_intros continuous_on_subset | blast)+ have y: "y \ closure (rel_interior S)" using \convex S\ closure_def convex_closure_rel_interior \y \ S\ by fastforce show ?thesis using continuous_ge_on_closure [OF con y] ageb \a \ x \ b\ by fastforce qed have 3: "a \ x < a \ y" if "y \ rel_interior S" for y proof - obtain e where "0 < e" "y \ S" and e: "cball y e \ affine hull S \ S" using \y \ rel_interior S\ by (force simp: rel_interior_cball) define y' where "y' = y - (e / norm a) *\<^sub>R ((x + a) - x)" have "y' \ cball y e" unfolding y'_def using \0 < e\ by force moreover have "y' \ affine hull S" unfolding y'_def by (metis \x \ S\ \y \ S\ \convex S\ aff affine_affine_hull hull_redundant rel_interior_same_affine_hull hull_inc mem_affine_3_minus2) ultimately have "y' \ S" using e by auto have "a \ x \ a \ y" using le_ay \a \ 0\ \y \ S\ by blast moreover have "a \ x \ a \ y" using le_ay [OF \y' \ S\] \a \ 0\ \0 < e\ not_le by (fastforce simp add: y'_def inner_diff dot_square_norm power2_eq_square) ultimately show ?thesis by force qed show ?thesis by (rule that [OF \a \ 0\ le_ay 3]) qed lemma supporting_hyperplane_relative_frontier: fixes S :: "'a::euclidean_space set" assumes "convex S" "x \ closure S" "x \ rel_interior S" obtains a where "a \ 0" and "\y. y \ closure S \ a \ x \ a \ y" and "\y. y \ rel_interior S \ a \ x < a \ y" using supporting_hyperplane_rel_boundary [of "closure S" x] by (metis assms convex_closure convex_rel_interior_closure) subsection\<^marker>\tag unimportant\\ Some results on decomposing convex hulls: intersections, simplicial subdivision\ lemma - fixes s :: "'a::euclidean_space set" - assumes "\ affine_dependent(s \ t)" - shows convex_hull_Int_subset: "convex hull s \ convex hull t \ convex hull (s \ t)" (is ?C) - and affine_hull_Int_subset: "affine hull s \ affine hull t \ affine hull (s \ t)" (is ?A) + fixes S :: "'a::euclidean_space set" + assumes "\ affine_dependent(S \ T)" + shows convex_hull_Int_subset: "convex hull S \ convex hull T \ convex hull (S \ T)" (is ?C) + and affine_hull_Int_subset: "affine hull S \ affine hull T \ affine hull (S \ T)" (is ?A) proof - - have [simp]: "finite s" "finite t" + have [simp]: "finite S" "finite T" using aff_independent_finite assms by blast+ - have "sum u (s \ t) = 1 \ - (\v\s \ t. u v *\<^sub>R v) = (\v\s. u v *\<^sub>R v)" - if [simp]: "sum u s = 1" - "sum v t = 1" - and eq: "(\x\t. v x *\<^sub>R x) = (\x\s. u x *\<^sub>R x)" for u v + have "sum u (S \ T) = 1 \ + (\v\S \ T. u v *\<^sub>R v) = (\v\S. u v *\<^sub>R v)" + if [simp]: "sum u S = 1" + "sum v T = 1" + and eq: "(\x\T. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)" for u v proof - - define f where "f x = (if x \ s then u x else 0) - (if x \ t then v x else 0)" for x - have "sum f (s \ t) = 0" - apply (simp add: f_def sum_Un sum_subtractf) - apply (simp add: Int_commute flip: sum.inter_restrict) - done - moreover have "(\x\(s \ t). f x *\<^sub>R x) = 0" - apply (simp add: f_def sum_Un scaleR_left_diff_distrib sum_subtractf) - apply (simp add: if_smult Int_commute eq flip: sum.inter_restrict - cong del: if_weak_cong) - done - ultimately have "\v. v \ s \ t \ f v = 0" - using aff_independent_finite assms unfolding affine_dependent_explicit - by blast - then have u [simp]: "\x. x \ s \ u x = (if x \ t then v x else 0)" - by (simp add: f_def) presburger - have "sum u (s \ t) = sum u s" - by (simp add: sum.inter_restrict) - then have "sum u (s \ t) = 1" - using that by linarith - moreover have "(\v\s \ t. u v *\<^sub>R v) = (\v\s. u v *\<^sub>R v)" + define f where "f x = (if x \ S then u x else 0) - (if x \ T then v x else 0)" for x + have "sum f (S \ T) = 0" + by (simp add: f_def sum_Un sum_subtractf flip: sum.inter_restrict) + moreover have "(\x\(S \ T). f x *\<^sub>R x) = 0" + by (simp add: eq f_def sum_Un scaleR_left_diff_distrib sum_subtractf if_smult flip: sum.inter_restrict cong: if_cong) + ultimately have "\v. v \ S \ T \ f v = 0" + using aff_independent_finite assms unfolding affine_dependent_explicit + by blast + then have u [simp]: "\x. x \ S \ u x = (if x \ T then v x else 0)" + by (simp add: f_def) presburger + have "sum u (S \ T) = sum u S" + by (simp add: sum.inter_restrict) + then have "sum u (S \ T) = 1" + using that by linarith + moreover have "(\v\S \ T. u v *\<^sub>R v) = (\v\S. u v *\<^sub>R v)" by (auto simp: if_smult sum.inter_restrict intro: sum.cong) ultimately show ?thesis by force qed then show ?A ?C by (auto simp: convex_hull_finite affine_hull_finite) qed proposition\<^marker>\tag unimportant\ affine_hull_Int: - fixes s :: "'a::euclidean_space set" - assumes "\ affine_dependent(s \ t)" - shows "affine hull (s \ t) = affine hull s \ affine hull t" + fixes S :: "'a::euclidean_space set" + assumes "\ affine_dependent(S \ T)" + shows "affine hull (S \ T) = affine hull S \ affine hull T" by (simp add: affine_hull_Int_subset assms hull_mono subset_antisym) proposition\<^marker>\tag unimportant\ convex_hull_Int: - fixes s :: "'a::euclidean_space set" - assumes "\ affine_dependent(s \ t)" - shows "convex hull (s \ t) = convex hull s \ convex hull t" + fixes S :: "'a::euclidean_space set" + assumes "\ affine_dependent(S \ T)" + shows "convex hull (S \ T) = convex hull S \ convex hull T" by (simp add: convex_hull_Int_subset assms hull_mono subset_antisym) proposition\<^marker>\tag unimportant\ - fixes s :: "'a::euclidean_space set set" - assumes "\ affine_dependent (\s)" - shows affine_hull_Inter: "affine hull (\s) = (\t\s. affine hull t)" (is "?A") - and convex_hull_Inter: "convex hull (\s) = (\t\s. convex hull t)" (is "?C") + fixes S :: "'a::euclidean_space set set" + assumes "\ affine_dependent (\S)" + shows affine_hull_Inter: "affine hull (\S) = (\T\S. affine hull T)" (is "?A") + and convex_hull_Inter: "convex hull (\S) = (\T\S. convex hull T)" (is "?C") proof - - have "finite s" + have "finite S" using aff_independent_finite assms finite_UnionD by blast then have "?A \ ?C" using assms - proof (induction s rule: finite_induct) + proof (induction S rule: finite_induct) case empty then show ?case by auto next - case (insert t F) + case (insert T F) then show ?case proof (cases "F={}") case True then show ?thesis by simp next case False - with "insert.prems" have [simp]: "\ affine_dependent (t \ \F)" + with "insert.prems" have [simp]: "\ affine_dependent (T \ \F)" by (auto intro: affine_dependent_subset) have [simp]: "\ affine_dependent (\F)" using affine_independent_subset insert.prems by fastforce show ?thesis by (simp add: affine_hull_Int convex_hull_Int insert.IH) qed qed then show "?A" "?C" by auto qed proposition\<^marker>\tag unimportant\ in_convex_hull_exchange_unique: fixes S :: "'a::euclidean_space set" assumes naff: "\ affine_dependent S" and a: "a \ convex hull S" and S: "T \ S" "T' \ S" and x: "x \ convex hull (insert a T)" and x': "x \ convex hull (insert a T')" shows "x \ convex hull (insert a (T \ T'))" proof (cases "a \ S") case True then have "\ affine_dependent (insert a T \ insert a T')" using affine_dependent_subset assms by auto then have "x \ convex hull (insert a T \ insert a T')" by (metis IntI convex_hull_Int x x') then show ?thesis by simp next case False then have anot: "a \ T" "a \ T'" using assms by auto have [simp]: "finite S" by (simp add: aff_independent_finite assms) then obtain b where b0: "\s. s \ S \ 0 \ b s" and b1: "sum b S = 1" and aeq: "a = (\s\S. b s *\<^sub>R s)" using a by (auto simp: convex_hull_finite) have fin [simp]: "finite T" "finite T'" using assms infinite_super \finite S\ by blast+ then obtain c c' where c0: "\t. t \ insert a T \ 0 \ c t" and c1: "sum c (insert a T) = 1" and xeq: "x = (\t \ insert a T. c t *\<^sub>R t)" and c'0: "\t. t \ insert a T' \ 0 \ c' t" and c'1: "sum c' (insert a T') = 1" and x'eq: "x = (\t \ insert a T'. c' t *\<^sub>R t)" using x x' by (auto simp: convex_hull_finite) with fin anot have sumTT': "sum c T = 1 - c a" "sum c' T' = 1 - c' a" and wsumT: "(\t \ T. c t *\<^sub>R t) = x - c a *\<^sub>R a" by simp_all have wsumT': "(\t \ T'. c' t *\<^sub>R t) = x - c' a *\<^sub>R a" using x'eq fin anot by simp define cc where "cc \ \x. if x \ T then c x else 0" define cc' where "cc' \ \x. if x \ T' then c' x else 0" define dd where "dd \ \x. cc x - cc' x + (c a - c' a) * b x" have sumSS': "sum cc S = 1 - c a" "sum cc' S = 1 - c' a" unfolding cc_def cc'_def using S by (simp_all add: Int_absorb1 Int_absorb2 sum_subtractf sum.inter_restrict [symmetric] sumTT') have wsumSS: "(\t \ S. cc t *\<^sub>R t) = x - c a *\<^sub>R a" "(\t \ S. cc' t *\<^sub>R t) = x - c' a *\<^sub>R a" unfolding cc_def cc'_def using S by (simp_all add: Int_absorb1 Int_absorb2 if_smult sum.inter_restrict [symmetric] wsumT wsumT' cong: if_cong) have sum_dd0: "sum dd S = 0" unfolding dd_def using S by (simp add: sumSS' comm_monoid_add_class.sum.distrib sum_subtractf algebra_simps sum_distrib_right [symmetric] b1) have "(\v\S. (b v * x) *\<^sub>R v) = x *\<^sub>R (\v\S. b v *\<^sub>R v)" for x by (simp add: pth_5 real_vector.scale_sum_right mult.commute) then have *: "(\v\S. (b v * x) *\<^sub>R v) = x *\<^sub>R a" for x using aeq by blast have "(\v \ S. dd v *\<^sub>R v) = 0" unfolding dd_def using S by (simp add: * wsumSS sum.distrib sum_subtractf algebra_simps) then have dd0: "dd v = 0" if "v \ S" for v using naff [unfolded affine_dependent_explicit not_ex, rule_format, of S dd] using that sum_dd0 by force consider "c' a \ c a" | "c a \ c' a" by linarith then show ?thesis proof cases case 1 then have "sum cc S \ sum cc' S" by (simp add: sumSS') then have le: "cc x \ cc' x" if "x \ S" for x using dd0 [OF that] 1 b0 mult_left_mono that by (fastforce simp add: dd_def algebra_simps) have cc0: "cc x = 0" if "x \ S" "x \ T \ T'" for x using le [OF \x \ S\] that c0 by (force simp: cc_def cc'_def split: if_split_asm) show ?thesis proof (simp add: convex_hull_finite, intro exI conjI) show "\x\T \ T'. 0 \ (cc(a := c a)) x" by (simp add: c0 cc_def) show "0 \ (cc(a := c a)) a" by (simp add: c0) have "sum (cc(a := c a)) (insert a (T \ T')) = c a + sum (cc(a := c a)) (T \ T')" by (simp add: anot) also have "... = c a + sum (cc(a := c a)) S" using \T \ S\ False cc0 cc_def \a \ S\ by (fastforce intro!: sum.mono_neutral_left split: if_split_asm) also have "... = c a + (1 - c a)" by (metis \a \ S\ fun_upd_other sum.cong sumSS'(1)) finally show "sum (cc(a := c a)) (insert a (T \ T')) = 1" by simp have "(\x\insert a (T \ T'). (cc(a := c a)) x *\<^sub>R x) = c a *\<^sub>R a + (\x \ T \ T'. (cc(a := c a)) x *\<^sub>R x)" by (simp add: anot) also have "... = c a *\<^sub>R a + (\x \ S. (cc(a := c a)) x *\<^sub>R x)" using \T \ S\ False cc0 by (fastforce intro!: sum.mono_neutral_left split: if_split_asm) also have "... = c a *\<^sub>R a + x - c a *\<^sub>R a" by (simp add: wsumSS \a \ S\ if_smult sum_delta_notmem) finally show "(\x\insert a (T \ T'). (cc(a := c a)) x *\<^sub>R x) = x" by simp qed next case 2 then have "sum cc' S \ sum cc S" by (simp add: sumSS') then have le: "cc' x \ cc x" if "x \ S" for x using dd0 [OF that] 2 b0 mult_left_mono that by (fastforce simp add: dd_def algebra_simps) have cc0: "cc' x = 0" if "x \ S" "x \ T \ T'" for x using le [OF \x \ S\] that c'0 by (force simp: cc_def cc'_def split: if_split_asm) show ?thesis proof (simp add: convex_hull_finite, intro exI conjI) show "\x\T \ T'. 0 \ (cc'(a := c' a)) x" by (simp add: c'0 cc'_def) show "0 \ (cc'(a := c' a)) a" by (simp add: c'0) have "sum (cc'(a := c' a)) (insert a (T \ T')) = c' a + sum (cc'(a := c' a)) (T \ T')" by (simp add: anot) also have "... = c' a + sum (cc'(a := c' a)) S" using \T \ S\ False cc0 by (fastforce intro!: sum.mono_neutral_left split: if_split_asm) also have "... = c' a + (1 - c' a)" by (metis \a \ S\ fun_upd_other sum.cong sumSS') finally show "sum (cc'(a := c' a)) (insert a (T \ T')) = 1" by simp have "(\x\insert a (T \ T'). (cc'(a := c' a)) x *\<^sub>R x) = c' a *\<^sub>R a + (\x \ T \ T'. (cc'(a := c' a)) x *\<^sub>R x)" by (simp add: anot) also have "... = c' a *\<^sub>R a + (\x \ S. (cc'(a := c' a)) x *\<^sub>R x)" using \T \ S\ False cc0 by (fastforce intro!: sum.mono_neutral_left split: if_split_asm) also have "... = c a *\<^sub>R a + x - c a *\<^sub>R a" by (simp add: wsumSS \a \ S\ if_smult sum_delta_notmem) finally show "(\x\insert a (T \ T'). (cc'(a := c' a)) x *\<^sub>R x) = x" by simp qed qed qed corollary\<^marker>\tag unimportant\ convex_hull_exchange_Int: fixes a :: "'a::euclidean_space" assumes "\ affine_dependent S" "a \ convex hull S" "T \ S" "T' \ S" shows "(convex hull (insert a T)) \ (convex hull (insert a T')) = convex hull (insert a (T \ T'))" (is "?lhs = ?rhs") proof (rule subset_antisym) show "?lhs \ ?rhs" using in_convex_hull_exchange_unique assms by blast show "?rhs \ ?lhs" by (metis hull_mono inf_le1 inf_le2 insert_inter_insert le_inf_iff) qed lemma Int_closed_segment: fixes b :: "'a::euclidean_space" assumes "b \ closed_segment a c \ \ collinear{a,b,c}" shows "closed_segment a b \ closed_segment b c = {b}" proof (cases "c = a") case True then show ?thesis using assms collinear_3_eq_affine_dependent by fastforce next case False from assms show ?thesis proof assume "b \ closed_segment a c" moreover have "\ affine_dependent {a, c}" by (simp) ultimately show ?thesis using False convex_hull_exchange_Int [of "{a,c}" b "{a}" "{c}"] by (simp add: segment_convex_hull insert_commute) next assume ncoll: "\ collinear {a, b, c}" have False if "closed_segment a b \ closed_segment b c \ {b}" proof - have "b \ closed_segment a b" and "b \ closed_segment b c" by auto with that obtain d where "b \ d" "d \ closed_segment a b" "d \ closed_segment b c" by force then have d: "collinear {a, d, b}" "collinear {b, d, c}" by (auto simp: between_mem_segment between_imp_collinear) have "collinear {a, b, c}" by (metis (full_types) \b \ d\ collinear_3_trans d insert_commute) with ncoll show False .. qed then show ?thesis by blast qed qed lemma affine_hull_finite_intersection_hyperplanes: fixes S :: "'a::euclidean_space set" obtains \ where "finite \" "of_nat (card \) + aff_dim S = DIM('a)" "affine hull S = \\" "\h. h \ \ \ \a b. a \ 0 \ h = {x. a \ x = b}" proof - obtain b where "b \ S" and indb: "\ affine_dependent b" and eq: "affine hull S = affine hull b" using affine_basis_exists by blast obtain c where indc: "\ affine_dependent c" and "b \ c" and affc: "affine hull c = UNIV" by (metis extend_to_affine_basis affine_UNIV hull_same indb subset_UNIV) then have "finite c" by (simp add: aff_independent_finite) then have fbc: "finite b" "card b \ card c" using \b \ c\ infinite_super by (auto simp: card_mono) have imeq: "(\x. affine hull x) ` ((\a. c - {a}) ` (c - b)) = ((\a. affine hull (c - {a})) ` (c - b))" by blast have card_cb: "(card (c - b)) + aff_dim S = DIM('a)" proof - have aff: "aff_dim (UNIV::'a set) = aff_dim c" by (metis aff_dim_affine_hull affc) have "aff_dim b = aff_dim S" by (metis (no_types) aff_dim_affine_hull eq) then have "int (card b) = 1 + aff_dim S" by (simp add: aff_dim_affine_independent indb) then show ?thesis using fbc aff by (simp add: \\ affine_dependent c\ \b \ c\ aff_dim_affine_independent card_Diff_subset of_nat_diff) qed show ?thesis proof (cases "c = b") case True show ?thesis proof show "int (card {}) + aff_dim S = int DIM('a)" using True card_cb by auto show "affine hull S = \ {}" using True affc eq by blast qed auto next case False have ind: "\ affine_dependent (\a\c - b. c - {a})" by (rule affine_independent_subset [OF indc]) auto have *: "1 + aff_dim (c - {t}) = int (DIM('a))" if t: "t \ c" for t proof - have "insert t c = c" using t by blast then show ?thesis by (metis (full_types) add.commute aff_dim_affine_hull aff_dim_insert aff_dim_UNIV affc affine_dependent_def indc insert_Diff_single t) qed let ?\ = "(\x. affine hull x) ` ((\a. c - {a}) ` (c - b))" show ?thesis proof have "card ((\a. affine hull (c - {a})) ` (c - b)) = card (c - b)" - apply (rule card_image [OF inj_onI]) - by (metis Diff_eq_empty_iff Diff_iff indc affine_dependent_def hull_subset insert_iff) + proof (rule card_image) + show "inj_on (\a. affine hull (c - {a})) (c - b)" + unfolding inj_on_def + by (metis Diff_eq_empty_iff Diff_iff indc affine_dependent_def hull_subset insert_iff) + qed then show "int (card ?\) + aff_dim S = int DIM('a)" by (simp add: imeq card_cb) show "affine hull S = \ ?\" - using \b \ c\ False - apply (subst affine_hull_Inter [OF ind, symmetric]) - apply (simp add: eq double_diff) - done - show "\h. h \ ?\ \ \a b. a \ 0 \ h = {x. a \ x = b}" - apply clarsimp - by (metis DIM_positive One_nat_def Suc_leI add_diff_cancel_left' of_nat_1 aff_dim_eq_hyperplane of_nat_diff *) + by (metis Diff_eq_empty_iff INT_simps(4) UN_singleton order_refl \b \ c\ False eq double_diff affine_hull_Inter [OF ind]) + have "\a. \a \ c; a \ b\ \ aff_dim (c - {a}) = int (DIM('a) - Suc 0)" + by (metis "*" DIM_ge_Suc0 One_nat_def add_diff_cancel_left' int_ops(2) of_nat_diff) + then show "\h. h \ ?\ \ \a b. a \ 0 \ h = {x. a \ x = b}" + by (auto simp only: One_nat_def aff_dim_eq_hyperplane [symmetric]) qed (use \finite c\ in auto) qed qed lemma affine_hyperplane_sums_eq_UNIV_0: fixes S :: "'a :: euclidean_space set" assumes "affine S" and "0 \ S" and "w \ S" and "a \ w \ 0" shows "{x + y| x y. x \ S \ a \ y = 0} = UNIV" proof - have "subspace S" by (simp add: assms subspace_affine) have span1: "span {y. a \ y = 0} \ span {x + y |x y. x \ S \ a \ y = 0}" using \0 \ S\ add.left_neutral by (intro span_mono) force have "w \ span {y. a \ y = 0}" using \a \ w \ 0\ span_induct subspace_hyperplane by auto moreover have "w \ span {x + y |x y. x \ S \ a \ y = 0}" using \w \ S\ by (metis (mono_tags, lifting) inner_zero_right mem_Collect_eq pth_d span_base) ultimately have span2: "span {y. a \ y = 0} \ span {x + y |x y. x \ S \ a \ y = 0}" by blast have "a \ 0" using assms inner_zero_left by blast then have "DIM('a) - 1 = dim {y. a \ y = 0}" by (simp add: dim_hyperplane) also have "... < dim {x + y |x y. x \ S \ a \ y = 0}" using span1 span2 by (blast intro: dim_psubset) finally have "DIM('a) - 1 < dim {x + y |x y. x \ S \ a \ y = 0}" . then have DD: "dim {x + y |x y. x \ S \ a \ y = 0} = DIM('a)" using antisym dim_subset_UNIV lowdim_subset_hyperplane not_le by fastforce have subs: "subspace {x + y| x y. x \ S \ a \ y = 0}" using subspace_sums [OF \subspace S\ subspace_hyperplane] by simp moreover have "span {x + y| x y. x \ S \ a \ y = 0} = UNIV" using DD dim_eq_full by blast ultimately show ?thesis by (simp add: subs) (metis (lifting) span_eq_iff subs) qed proposition\<^marker>\tag unimportant\ affine_hyperplane_sums_eq_UNIV: fixes S :: "'a :: euclidean_space set" assumes "affine S" and "S \ {v. a \ v = b} \ {}" and "S - {v. a \ v = b} \ {}" shows "{x + y| x y. x \ S \ a \ y = b} = UNIV" proof (cases "a = 0") case True with assms show ?thesis by (auto simp: if_splits) next case False obtain c where "c \ S" and c: "a \ c = b" using assms by force with affine_diffs_subspace [OF \affine S\] have "subspace ((+) (- c) ` S)" by blast then have aff: "affine ((+) (- c) ` S)" by (simp add: subspace_imp_affine) have 0: "0 \ (+) (- c) ` S" by (simp add: \c \ S\) obtain d where "d \ S" and "a \ d \ b" and dc: "d-c \ (+) (- c) ` S" using assms by auto then have adc: "a \ (d - c) \ 0" by (simp add: c inner_diff_right) - let ?U = "(+) (c+c) ` {x + y |x y. x \ (+) (- c) ` S \ a \ y = 0}" - have "u + v \ (+) (c + c) ` {x + v |x v. x \ (+) (- c) ` S \ a \ v = 0}" - if "u \ S" "b = a \ v" for u v - apply (rule_tac x="u+v-c-c" in image_eqI) - apply (simp_all add: algebra_simps) - apply (rule_tac x="u-c" in exI) - apply (rule_tac x="v-c" in exI) - apply (simp add: algebra_simps that c) - done + define U where "U \ {x + y |x y. x \ (+) (- c) ` S \ a \ y = 0}" + have "u + v \ (+) (c+c) ` U" + if "u \ S" "b = a \ v" for u v + proof + show "u + v = c + c + (u + v - c - c)" + by (simp add: algebra_simps) + have "\x y. u + v - c - c = x + y \ (\xa\S. x = xa - c) \ a \ y = 0" + proof (intro exI conjI) + show "u + v - c - c = (u-c) + (v-c)" "a \ (v - c) = 0" + by (simp_all add: algebra_simps c that) + qed (use that in auto) + then show "u + v - c - c \ U" + by (auto simp: U_def image_def) + qed moreover have "\a \ v = 0; u \ S\ \ \x ya. v + (u + c) = x + ya \ x \ S \ a \ ya = b" for v u by (metis add.left_commute c inner_right_distrib pth_d) - ultimately have "{x + y |x y. x \ S \ a \ y = b} = ?U" - by (fastforce simp: algebra_simps) + ultimately have "{x + y |x y. x \ S \ a \ y = b} = (+) (c+c) ` U" + by (fastforce simp: algebra_simps U_def) also have "... = range ((+) (c + c))" - by (simp only: affine_hyperplane_sums_eq_UNIV_0 [OF aff 0 dc adc]) + by (simp only: U_def affine_hyperplane_sums_eq_UNIV_0 [OF aff 0 dc adc]) also have "... = UNIV" by simp finally show ?thesis . qed lemma aff_dim_sums_Int_0: assumes "affine S" and "affine T" and "0 \ S" "0 \ T" shows "aff_dim {x + y| x y. x \ S \ y \ T} = (aff_dim S + aff_dim T) - aff_dim(S \ T)" proof - have "0 \ {x + y |x y. x \ S \ y \ T}" using assms by force then have 0: "0 \ affine hull {x + y |x y. x \ S \ y \ T}" by (metis (lifting) hull_inc) have sub: "subspace S" "subspace T" using assms by (auto simp: subspace_affine) show ?thesis using dim_sums_Int [OF sub] by (simp add: aff_dim_zero assms 0 hull_inc) qed proposition aff_dim_sums_Int: assumes "affine S" and "affine T" and "S \ T \ {}" shows "aff_dim {x + y| x y. x \ S \ y \ T} = (aff_dim S + aff_dim T) - aff_dim(S \ T)" proof - obtain a where a: "a \ S" "a \ T" using assms by force have aff: "affine ((+) (-a) ` S)" "affine ((+) (-a) ` T)" using affine_translation [symmetric, of "- a"] assms by (simp_all cong: image_cong_simp) have zero: "0 \ ((+) (-a) ` S)" "0 \ ((+) (-a) ` T)" using a assms by auto have "{x + y |x y. x \ (+) (- a) ` S \ y \ (+) (- a) ` T} = (+) (- 2 *\<^sub>R a) ` {x + y| x y. x \ S \ y \ T}" by (force simp: algebra_simps scaleR_2) moreover have "(+) (- a) ` S \ (+) (- a) ` T = (+) (- a) ` (S \ T)" by auto ultimately show ?thesis using aff_dim_sums_Int_0 [OF aff zero] aff_dim_translation_eq by (metis (lifting)) qed lemma aff_dim_affine_Int_hyperplane: fixes a :: "'a::euclidean_space" assumes "affine S" shows "aff_dim(S \ {x. a \ x = b}) = (if S \ {v. a \ v = b} = {} then - 1 else if S \ {v. a \ v = b} then aff_dim S else aff_dim S - 1)" proof (cases "a = 0") case True with assms show ?thesis by auto next case False then have "aff_dim (S \ {x. a \ x = b}) = aff_dim S - 1" if "x \ S" "a \ x \ b" and non: "S \ {v. a \ v = b} \ {}" for x proof - have [simp]: "{x + y| x y. x \ S \ a \ y = b} = UNIV" using affine_hyperplane_sums_eq_UNIV [OF assms non] that by blast show ?thesis using aff_dim_sums_Int [OF assms affine_hyperplane non] by (simp add: of_nat_diff False) qed then show ?thesis by (metis (mono_tags, lifting) inf.orderE aff_dim_empty_eq mem_Collect_eq subsetI) qed lemma aff_dim_lt_full: fixes S :: "'a::euclidean_space set" shows "aff_dim S < DIM('a) \ (affine hull S \ UNIV)" by (metis (no_types) aff_dim_affine_hull aff_dim_le_DIM aff_dim_UNIV affine_hull_UNIV less_le) lemma aff_dim_openin: fixes S :: "'a::euclidean_space set" assumes ope: "openin (top_of_set T) S" and "affine T" "S \ {}" shows "aff_dim S = aff_dim T" proof - show ?thesis proof (rule order_antisym) show "aff_dim S \ aff_dim T" by (blast intro: aff_dim_subset [OF openin_imp_subset] ope) next obtain a where "a \ S" using \S \ {}\ by blast have "S \ T" using ope openin_imp_subset by auto then have "a \ T" using \a \ S\ by auto then have subT': "subspace ((\x. - a + x) ` T)" using affine_diffs_subspace \affine T\ by auto then obtain B where Bsub: "B \ ((\x. - a + x) ` T)" and po: "pairwise orthogonal B" and eq1: "\x. x \ B \ norm x = 1" and "independent B" and cardB: "card B = dim ((\x. - a + x) ` T)" and spanB: "span B = ((\x. - a + x) ` T)" by (rule orthonormal_basis_subspace) auto obtain e where "0 < e" and e: "cball a e \ T \ S" by (meson \a \ S\ openin_contains_cball ope) have "aff_dim T = aff_dim ((\x. - a + x) ` T)" by (metis aff_dim_translation_eq) also have "... = dim ((\x. - a + x) ` T)" using aff_dim_subspace subT' by blast also have "... = card B" by (simp add: cardB) also have "... = card ((\x. e *\<^sub>R x) ` B)" using \0 < e\ by (force simp: inj_on_def card_image) also have "... \ dim ((\x. - a + x) ` S)" proof (simp, rule independent_card_le_dim) have e': "cball 0 e \ (\x. x - a) ` T \ (\x. x - a) ` S" using e by (auto simp: dist_norm norm_minus_commute subset_eq) have "(\x. e *\<^sub>R x) ` B \ cball 0 e \ (\x. x - a) ` T" using Bsub \0 < e\ eq1 subT' \a \ T\ by (auto simp: subspace_def) then show "(\x. e *\<^sub>R x) ` B \ (\x. x - a) ` S" using e' by blast have "inj_on ((*\<^sub>R) e) (span B)" using \0 < e\ inj_on_def by fastforce then show "independent ((\x. e *\<^sub>R x) ` B)" using linear_scale_self \independent B\ linear_dependent_inj_imageD by blast qed also have "... = aff_dim S" using \a \ S\ aff_dim_eq_dim hull_inc by (force cong: image_cong_simp) finally show "aff_dim T \ aff_dim S" . qed qed lemma dim_openin: fixes S :: "'a::euclidean_space set" assumes ope: "openin (top_of_set T) S" and "subspace T" "S \ {}" shows "dim S = dim T" proof (rule order_antisym) show "dim S \ dim T" by (metis ope dim_subset openin_subset topspace_euclidean_subtopology) next have "dim T = aff_dim S" using aff_dim_openin by (metis aff_dim_subspace \subspace T\ \S \ {}\ ope subspace_affine) also have "... \ dim S" by (metis aff_dim_subset aff_dim_subspace dim_span span_superset subspace_span) finally show "dim T \ dim S" by simp qed subsection\Lower-dimensional affine subsets are nowhere dense\ proposition dense_complement_subspace: fixes S :: "'a :: euclidean_space set" assumes dim_less: "dim T < dim S" and "subspace S" shows "closure(S - T) = S" proof - have "closure(S - U) = S" if "dim U < dim S" "U \ S" for U proof - have "span U \ span S" by (metis neq_iff psubsetI span_eq_dim span_mono that) then obtain a where "a \ 0" "a \ span S" and a: "\y. y \ span U \ orthogonal a y" using orthogonal_to_subspace_exists_gen by metis show ?thesis proof have "closed S" by (simp add: \subspace S\ closed_subspace) then show "closure (S - U) \ S" by (simp add: closure_minimal) show "S \ closure (S - U)" proof (clarsimp simp: closure_approachable) fix x and e::real assume "x \ S" "0 < e" show "\y\S - U. dist y x < e" proof (cases "x \ U") case True let ?y = "x + (e/2 / norm a) *\<^sub>R a" show ?thesis proof show "dist ?y x < e" using \0 < e\ by (simp add: dist_norm) next have "?y \ S" by (metis \a \ span S\ \x \ S\ assms(2) span_eq_iff subspace_add subspace_scale) moreover have "?y \ U" proof - have "e/2 / norm a \ 0" using \0 < e\ \a \ 0\ by auto then show ?thesis by (metis True \a \ 0\ a orthogonal_scaleR orthogonal_self real_vector.scale_eq_0_iff span_add_eq span_base) qed ultimately show "?y \ S - U" by blast qed next case False with \0 < e\ \x \ S\ show ?thesis by force qed qed qed qed moreover have "S - S \ T = S-T" by blast moreover have "dim (S \ T) < dim S" by (metis dim_less dim_subset inf.cobounded2 inf.orderE inf.strict_boundedE not_le) ultimately show ?thesis by force qed corollary\<^marker>\tag unimportant\ dense_complement_affine: fixes S :: "'a :: euclidean_space set" assumes less: "aff_dim T < aff_dim S" and "affine S" shows "closure(S - T) = S" proof (cases "S \ T = {}") case True then show ?thesis by (metis Diff_triv affine_hull_eq \affine S\ closure_same_affine_hull closure_subset hull_subset subset_antisym) next case False then obtain z where z: "z \ S \ T" by blast then have "subspace ((+) (- z) ` S)" by (meson IntD1 affine_diffs_subspace \affine S\) moreover have "int (dim ((+) (- z) ` T)) < int (dim ((+) (- z) ` S))" thm aff_dim_eq_dim using z less by (simp add: aff_dim_eq_dim_subtract [of z] hull_inc cong: image_cong_simp) ultimately have "closure(((+) (- z) ` S) - ((+) (- z) ` T)) = ((+) (- z) ` S)" by (simp add: dense_complement_subspace) then show ?thesis by (metis closure_translation translation_diff translation_invert) qed corollary\<^marker>\tag unimportant\ dense_complement_openin_affine_hull: fixes S :: "'a :: euclidean_space set" assumes less: "aff_dim T < aff_dim S" and ope: "openin (top_of_set (affine hull S)) S" shows "closure(S - T) = closure S" proof - have "affine hull S - T \ affine hull S" by blast then have "closure (S \ closure (affine hull S - T)) = closure (S \ (affine hull S - T))" by (rule closure_openin_Int_closure [OF ope]) then show ?thesis by (metis Int_Diff aff_dim_affine_hull affine_affine_hull dense_complement_affine hull_subset inf.orderE less) qed corollary\<^marker>\tag unimportant\ dense_complement_convex: fixes S :: "'a :: euclidean_space set" assumes "aff_dim T < aff_dim S" "convex S" shows "closure(S - T) = closure S" proof show "closure (S - T) \ closure S" by (simp add: closure_mono) have "closure (rel_interior S - T) = closure (rel_interior S)" by (simp add: assms dense_complement_openin_affine_hull openin_rel_interior rel_interior_aff_dim rel_interior_same_affine_hull) then show "closure S \ closure (S - T)" by (metis Diff_mono \convex S\ closure_mono convex_closure_rel_interior order_refl rel_interior_subset) qed corollary\<^marker>\tag unimportant\ dense_complement_convex_closed: fixes S :: "'a :: euclidean_space set" assumes "aff_dim T < aff_dim S" "convex S" "closed S" shows "closure(S - T) = S" by (simp add: assms dense_complement_convex) subsection\<^marker>\tag unimportant\\Parallel slices, etc\ text\ If we take a slice out of a set, we can do it perpendicularly, with the normal vector to the slice parallel to the affine hull.\ proposition\<^marker>\tag unimportant\ affine_parallel_slice: fixes S :: "'a :: euclidean_space set" assumes "affine S" and "S \ {x. a \ x \ b} \ {}" and "\ (S \ {x. a \ x \ b})" obtains a' b' where "a' \ 0" "S \ {x. a' \ x \ b'} = S \ {x. a \ x \ b}" "S \ {x. a' \ x = b'} = S \ {x. a \ x = b}" "\w. w \ S \ (w + a') \ S" proof (cases "S \ {x. a \ x = b} = {}") case True then obtain u v where "u \ S" "v \ S" "a \ u \ b" "a \ v > b" using assms by (auto simp: not_le) define \ where "\ = u + ((b - a \ u) / (a \ v - a \ u)) *\<^sub>R (v - u)" have "\ \ S" by (simp add: \_def \u \ S\ \v \ S\ \affine S\ mem_affine_3_minus) moreover have "a \ \ = b" using \a \ u \ b\ \b < a \ v\ by (simp add: \_def algebra_simps) (simp add: field_simps) ultimately have False using True by force then show ?thesis .. next case False then obtain z where "z \ S" and z: "a \ z = b" using assms by auto with affine_diffs_subspace [OF \affine S\] have sub: "subspace ((+) (- z) ` S)" by blast then have aff: "affine ((+) (- z) ` S)" and span: "span ((+) (- z) ` S) = ((+) (- z) ` S)" by (auto simp: subspace_imp_affine) obtain a' a'' where a': "a' \ span ((+) (- z) ` S)" and a: "a = a' + a''" and "\w. w \ span ((+) (- z) ` S) \ orthogonal a'' w" using orthogonal_subspace_decomp_exists [of "(+) (- z) ` S" "a"] by metis then have "\w. w \ S \ a'' \ (w-z) = 0" by (simp add: span_base orthogonal_def) then have a'': "\w. w \ S \ a'' \ w = (a - a') \ z" by (simp add: a inner_diff_right) then have ba'': "\w. w \ S \ a'' \ w = b - a' \ z" by (simp add: inner_diff_left z) - have "\w. w \ (+) (- z) ` S \ (w + a') \ (+) (- z) ` S" - by (metis subspace_add a' span_eq_iff sub) - then have Sclo: "\w. w \ S \ (w + a') \ S" - by fastforce show ?thesis proof (cases "a' = 0") case True with a assms True a'' diff_zero less_irrefl show ?thesis by auto next case False show ?thesis - apply (rule_tac a' = "a'" and b' = "a' \ z" in that) - apply (auto simp: a ba'' inner_left_distrib False Sclo) - done + proof + show "S \ {x. a' \ x \ a' \ z} = S \ {x. a \ x \ b}" + "S \ {x. a' \ x = a' \ z} = S \ {x. a \ x = b}" + by (auto simp: a ba'' inner_left_distrib) + have "\w. w \ (+) (- z) ` S \ (w + a') \ (+) (- z) ` S" + by (metis subspace_add a' span_eq_iff sub) + then show "\w. w \ S \ (w + a') \ S" + by fastforce + qed (use False in auto) qed qed lemma diffs_affine_hull_span: assumes "a \ S" - shows "{x - a |x. x \ affine hull S} = span {x - a |x. x \ S}" + shows "(\x. x - a) ` (affine hull S) = span ((\x. x - a) ` S)" proof - - have *: "((\x. x - a) ` (S - {a})) = {x. x + a \ S} - {0}" + have *: "((\x. x - a) ` (S - {a})) = ((\x. x - a) ` S) - {0}" by (auto simp: algebra_simps) show ?thesis by (auto simp add: algebra_simps affine_hull_span2 [OF assms] *) qed lemma aff_dim_dim_affine_diffs: fixes S :: "'a :: euclidean_space set" assumes "affine S" "a \ S" - shows "aff_dim S = dim {x - a |x. x \ S}" + shows "aff_dim S = dim ((\x. x - a) ` S)" proof - obtain B where aff: "affine hull B = affine hull S" and ind: "\ affine_dependent B" and card: "of_nat (card B) = aff_dim S + 1" using aff_dim_basis_exists by blast then have "B \ {}" using assms by (metis affine_hull_eq_empty ex_in_conv) then obtain c where "c \ B" by auto then have "c \ S" by (metis aff affine_hull_eq \affine S\ hull_inc) have xy: "x - c = y - a \ y = x + 1 *\<^sub>R (a - c)" for x y c and a::'a by (auto simp: algebra_simps) - have *: "{x - c |x. x \ S} = {x - a |x. x \ S}" - apply safe - apply (simp_all only: xy) - using mem_affine_3_minus [OF \affine S\] \a \ S\ \c \ S\ apply blast+ - done + have *: "(\x. x - c) ` S = (\x. x - a) ` S" + using assms \c \ S\ + by (auto simp: image_iff xy; metis mem_affine_3_minus pth_1) have affS: "affine hull S = S" by (simp add: \affine S\) have "aff_dim S = of_nat (card B) - 1" using card by simp - also have "... = dim {x - c |x. x \ B}" + also have "... = dim ((\x. x - c) ` B)" + using affine_independent_card_dim_diffs [OF ind \c \ B\] by (simp add: affine_independent_card_dim_diffs [OF ind \c \ B\]) - also have "... = dim {x - c | x. x \ affine hull B}" - by (simp add: diffs_affine_hull_span \c \ B\) - also have "... = dim {x - a |x. x \ S}" - by (simp add: affS aff *) - finally show ?thesis . + also have "... = dim ((\x. x - c) ` (affine hull B))" + by (simp add: diffs_affine_hull_span \c \ B\) + also have "... = dim ((\x. x - a) ` S)" + by (simp add: affS aff *) + finally show ?thesis . qed lemma aff_dim_linear_image_le: assumes "linear f" shows "aff_dim(f ` S) \ aff_dim S" proof - have "aff_dim (f ` T) \ aff_dim T" if "affine T" for T proof (cases "T = {}") case True then show ?thesis by (simp add: aff_dim_geq) next case False then obtain a where "a \ T" by auto have 1: "((\x. x - f a) ` f ` T) = {x - f a |x. x \ f ` T}" by auto - have 2: "{x - f a| x. x \ f ` T} = f ` {x - a| x. x \ T}" + have 2: "{x - f a| x. x \ f ` T} = f ` ((\x. x - a) ` T)" by (force simp: linear_diff [OF assms]) have "aff_dim (f ` T) = int (dim {x - f a |x. x \ f ` T})" by (simp add: \a \ T\ hull_inc aff_dim_eq_dim [of "f a"] 1 cong: image_cong_simp) - also have "... = int (dim (f ` {x - a| x. x \ T}))" + also have "... = int (dim (f ` ((\x. x - a) ` T)))" by (force simp: linear_diff [OF assms] 2) - also have "... \ int (dim {x - a| x. x \ T})" + also have "... \ int (dim ((\x. x - a) ` T))" by (simp add: dim_image_le [OF assms]) also have "... \ aff_dim T" by (simp add: aff_dim_dim_affine_diffs [symmetric] \a \ T\ \affine T\) finally show ?thesis . qed then have "aff_dim (f ` (affine hull S)) \ aff_dim (affine hull S)" using affine_affine_hull [of S] by blast then show ?thesis using affine_hull_linear_image assms linear_conv_bounded_linear by fastforce qed lemma aff_dim_injective_linear_image [simp]: assumes "linear f" "inj f" shows "aff_dim (f ` S) = aff_dim S" proof (rule antisym) show "aff_dim (f ` S) \ aff_dim S" by (simp add: aff_dim_linear_image_le assms(1)) next obtain g where "linear g" "g \ f = id" using assms(1) assms(2) linear_injective_left_inverse by blast then have "aff_dim S \ aff_dim(g ` f ` S)" by (simp add: image_comp) also have "... \ aff_dim (f ` S)" by (simp add: \linear g\ aff_dim_linear_image_le) finally show "aff_dim S \ aff_dim (f ` S)" . qed lemma choose_affine_subset: assumes "affine S" "-1 \ d" and dle: "d \ aff_dim S" obtains T where "affine T" "T \ S" "aff_dim T = d" proof (cases "d = -1 \ S={}") case True with assms show ?thesis by (metis aff_dim_empty affine_empty bot.extremum that eq_iff) next case False with assms obtain a where "a \ S" "0 \ d" by auto with assms have ss: "subspace ((+) (- a) ` S)" by (simp add: affine_diffs_subspace_subtract cong: image_cong_simp) have "nat d \ dim ((+) (- a) ` S)" by (metis aff_dim_subspace aff_dim_translation_eq dle nat_int nat_mono ss) then obtain T where "subspace T" and Tsb: "T \ span ((+) (- a) ` S)" and Tdim: "dim T = nat d" using choose_subspace_of_subspace [of "nat d" "(+) (- a) ` S"] by blast then have "affine T" using subspace_affine by blast then have "affine ((+) a ` T)" by (metis affine_hull_eq affine_hull_translation) moreover have "(+) a ` T \ S" proof - have "T \ (+) (- a) ` S" by (metis (no_types) span_eq_iff Tsb ss) then show "(+) a ` T \ S" using add_ac by auto qed moreover have "aff_dim ((+) a ` T) = d" by (simp add: aff_dim_subspace Tdim \0 \ d\ \subspace T\ aff_dim_translation_eq) ultimately show ?thesis by (rule that) qed subsection\Paracompactness\ proposition paracompact: fixes S :: "'a :: {metric_space,second_countable_topology} set" assumes "S \ \\" and opC: "\T. T \ \ \ open T" obtains \' where "S \ \ \'" and "\U. U \ \' \ open U \ (\T. T \ \ \ U \ T)" and "\x. x \ S \ \V. open V \ x \ V \ finite {U. U \ \' \ (U \ V \ {})}" proof (cases "S = {}") case True with that show ?thesis by blast next case False have "\T U. x \ U \ open U \ closure U \ T \ T \ \" if "x \ S" for x proof - obtain T where "x \ T" "T \ \" "open T" using assms \x \ S\ by blast then obtain e where "e > 0" "cball x e \ T" by (force simp: open_contains_cball) then show ?thesis by (meson open_ball \T \ \\ ball_subset_cball centre_in_ball closed_cball closure_minimal dual_order.trans) qed then obtain F G where Gin: "x \ G x" and oG: "open (G x)" and clos: "closure (G x) \ F x" and Fin: "F x \ \" if "x \ S" for x by metis then obtain \ where "\ \ G ` S" "countable \" "\\ = \(G ` S)" using Lindelof [of "G ` S"] by (metis image_iff) then obtain K where K: "K \ S" "countable K" and eq: "\(G ` K) = \(G ` S)" by (metis countable_subset_image) with False Gin have "K \ {}" by force then obtain a :: "nat \ 'a" where "range a = K" by (metis range_from_nat_into \countable K\) then have odif: "\n. open (F (a n) - \{closure (G (a m)) |m. m < n})" using \K \ S\ Fin opC by (fastforce simp add:) let ?C = "range (\n. F(a n) - \{closure(G(a m)) |m. m < n})" have enum_S: "\n. x \ F(a n) \ x \ G(a n)" if "x \ S" for x proof - have "\y \ K. x \ G y" using eq that Gin by fastforce then show ?thesis using clos K \range a = K\ closure_subset by blast qed show ?thesis proof show "S \ Union ?C" proof fix x assume "x \ S" define n where "n \ LEAST n. x \ F(a n)" have n: "x \ F(a n)" using enum_S [OF \x \ S\] by (force simp: n_def intro: LeastI) have notn: "x \ F(a m)" if "m < n" for m using that not_less_Least by (force simp: n_def) then have "x \ \{closure (G (a m)) |m. m < n}" using n \K \ S\ \range a = K\ clos notn by fastforce with n show "x \ Union ?C" by blast qed show "\U. U \ ?C \ open U \ (\T. T \ \ \ U \ T)" using Fin \K \ S\ \range a = K\ by (auto simp: odif) show "\V. open V \ x \ V \ finite {U. U \ ?C \ (U \ V \ {})}" if "x \ S" for x proof - obtain n where n: "x \ F(a n)" "x \ G(a n)" using \x \ S\ enum_S by auto have "{U \ ?C. U \ G (a n) \ {}} \ (\n. F(a n) - \{closure(G(a m)) |m. m < n}) ` atMost n" proof clarsimp fix k assume "(F (a k) - \{closure (G (a m)) |m. m < k}) \ G (a n) \ {}" then have "k \ n" by auto (metis closure_subset not_le subsetCE) then show "F (a k) - \{closure (G (a m)) |m. m < k} \ (\n. F (a n) - \{closure (G (a m)) |m. m < n}) ` {..n}" by force qed moreover have "finite ((\n. F(a n) - \{closure(G(a m)) |m. m < n}) ` atMost n)" by force ultimately have *: "finite {U \ ?C. U \ G (a n) \ {}}" using finite_subset by blast have "a n \ S" using \K \ S\ \range a = K\ by blast then show ?thesis by (blast intro: oG n *) qed qed qed corollary paracompact_closedin: fixes S :: "'a :: {metric_space,second_countable_topology} set" assumes cin: "closedin (top_of_set U) S" and oin: "\T. T \ \ \ openin (top_of_set U) T" and "S \ \\" obtains \' where "S \ \ \'" and "\V. V \ \' \ openin (top_of_set U) V \ (\T. T \ \ \ V \ T)" and "\x. x \ U \ \V. openin (top_of_set U) V \ x \ V \ finite {X. X \ \' \ (X \ V \ {})}" proof - have "\Z. open Z \ (T = U \ Z)" if "T \ \" for T using oin [OF that] by (auto simp: openin_open) then obtain F where opF: "open (F T)" and intF: "U \ F T = T" if "T \ \" for T by metis obtain K where K: "closed K" "U \ K = S" using cin by (auto simp: closedin_closed) have 1: "U \ \(insert (- K) (F ` \))" by clarsimp (metis Int_iff Union_iff \U \ K = S\ \S \ \\\ subsetD intF) have 2: "\T. T \ insert (- K) (F ` \) \ open T" using \closed K\ by (auto simp: opF) obtain \ where "U \ \\" and D1: "\U. U \ \ \ open U \ (\T. T \ insert (- K) (F ` \) \ U \ T)" and D2: "\x. x \ U \ \V. open V \ x \ V \ finite {U \ \. U \ V \ {}}" by (blast intro: paracompact [OF 1 2]) let ?C = "{U \ V |V. V \ \ \ (V \ K \ {})}" show ?thesis proof (rule_tac \' = "{U \ V |V. V \ \ \ (V \ K \ {})}" in that) show "S \ \?C" using \U \ K = S\ \U \ \\\ K by (blast dest!: subsetD) show "\V. V \ ?C \ openin (top_of_set U) V \ (\T. T \ \ \ V \ T)" using D1 intF by fastforce have *: "{X. (\V. X = U \ V \ V \ \ \ V \ K \ {}) \ X \ (U \ V) \ {}} \ (\x. U \ x) ` {U \ \. U \ V \ {}}" for V by blast show "\V. openin (top_of_set U) V \ x \ V \ finite {X \ ?C. X \ V \ {}}" if "x \ U" for x proof - from D2 [OF that] obtain V where "open V" "x \ V" "finite {U \ \. U \ V \ {}}" by auto with * show ?thesis by (rule_tac x="U \ V" in exI) (auto intro: that finite_subset [OF *]) qed qed qed corollary\<^marker>\tag unimportant\ paracompact_closed: fixes S :: "'a :: {metric_space,second_countable_topology} set" assumes "closed S" and opC: "\T. T \ \ \ open T" and "S \ \\" obtains \' where "S \ \\'" and "\U. U \ \' \ open U \ (\T. T \ \ \ U \ T)" and "\x. \V. open V \ x \ V \ finite {U. U \ \' \ (U \ V \ {})}" by (rule paracompact_closedin [of UNIV S \]) (auto simp: assms) subsection\<^marker>\tag unimportant\\Closed-graph characterization of continuity\ lemma continuous_closed_graph_gen: fixes T :: "'b::real_normed_vector set" assumes contf: "continuous_on S f" and fim: "f ` S \ T" shows "closedin (top_of_set (S \ T)) ((\x. Pair x (f x)) ` S)" proof - have eq: "((\x. Pair x (f x)) ` S) = (S \ T \ (\z. (f \ fst)z - snd z) -` {0})" using fim by auto show ?thesis - apply (subst eq) - apply (intro continuous_intros continuous_closedin_preimage continuous_on_subset [OF contf]) - by auto + unfolding eq + by (intro continuous_intros continuous_closedin_preimage continuous_on_subset [OF contf]) auto qed lemma continuous_closed_graph_eq: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "compact T" and fim: "f ` S \ T" shows "continuous_on S f \ closedin (top_of_set (S \ T)) ((\x. Pair x (f x)) ` S)" (is "?lhs = ?rhs") proof - have "?lhs" if ?rhs proof (clarsimp simp add: continuous_on_closed_gen [OF fim]) fix U assume U: "closedin (top_of_set T) U" have eq: "(S \ f -` U) = fst ` (((\x. Pair x (f x)) ` S) \ (S \ U))" by (force simp: image_iff) show "closedin (top_of_set S) (S \ f -` U)" by (simp add: U closedin_Int closedin_Times closed_map_fst [OF \compact T\] that eq) qed with continuous_closed_graph_gen assms show ?thesis by blast qed lemma continuous_closed_graph: fixes f :: "'a::topological_space \ 'b::real_normed_vector" assumes "closed S" and contf: "continuous_on S f" shows "closed ((\x. Pair x (f x)) ` S)" proof (rule closedin_closed_trans) show "closedin (top_of_set (S \ UNIV)) ((\x. (x, f x)) ` S)" by (rule continuous_closed_graph_gen [OF contf subset_UNIV]) qed (simp add: \closed S\ closed_Times) lemma continuous_from_closed_graph: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "compact T" and fim: "f ` S \ T" and clo: "closed ((\x. Pair x (f x)) ` S)" shows "continuous_on S f" using fim clo by (auto intro: closed_subset simp: continuous_closed_graph_eq [OF \compact T\ fim]) lemma continuous_on_Un_local_open: assumes opS: "openin (top_of_set (S \ T)) S" and opT: "openin (top_of_set (S \ T)) T" and contf: "continuous_on S f" and contg: "continuous_on T f" shows "continuous_on (S \ T) f" using pasting_lemma [of "{S,T}" "top_of_set (S \ T)" id euclidean "\i. f" f] contf contg opS opT by (simp add: subtopology_subtopology) (metis inf.absorb2 openin_imp_subset) lemma continuous_on_cases_local_open: assumes opS: "openin (top_of_set (S \ T)) S" and opT: "openin (top_of_set (S \ T)) T" and contf: "continuous_on S f" and contg: "continuous_on T g" and fg: "\x. x \ S \ \P x \ x \ T \ P x \ f x = g x" shows "continuous_on (S \ T) (\x. if P x then f x else g x)" proof - have "\x. x \ S \ (if P x then f x else g x) = f x" "\x. x \ T \ (if P x then f x else g x) = g x" by (simp_all add: fg) then have "continuous_on S (\x. if P x then f x else g x)" "continuous_on T (\x. if P x then f x else g x)" by (simp_all add: contf contg cong: continuous_on_cong) then show ?thesis by (rule continuous_on_Un_local_open [OF opS opT]) qed subsection\<^marker>\tag unimportant\\The union of two collinear segments is another segment\ proposition\<^marker>\tag unimportant\ in_convex_hull_exchange: fixes a :: "'a::euclidean_space" assumes a: "a \ convex hull S" and xS: "x \ convex hull S" obtains b where "b \ S" "x \ convex hull (insert a (S - {b}))" proof (cases "a \ S") case True with xS insert_Diff that show ?thesis by fastforce next case False show ?thesis proof (cases "finite S \ card S \ Suc (DIM('a))") case True then obtain u where u0: "\i. i \ S \ 0 \ u i" and u1: "sum u S = 1" and ua: "(\i\S. u i *\<^sub>R i) = a" using a by (auto simp: convex_hull_finite) obtain v where v0: "\i. i \ S \ 0 \ v i" and v1: "sum v S = 1" and vx: "(\i\S. v i *\<^sub>R i) = x" using True xS by (auto simp: convex_hull_finite) show ?thesis proof (cases "\b. b \ S \ v b = 0") case True then obtain b where b: "b \ S" "v b = 0" by blast show ?thesis proof have fin: "finite (insert a (S - {b}))" using sum.infinite v1 by fastforce show "x \ convex hull insert a (S - {b})" unfolding convex_hull_finite [OF fin] mem_Collect_eq proof (intro conjI exI ballI) have "(\x \ insert a (S - {b}). if x = a then 0 else v x) = (\x \ S - {b}. if x = a then 0 else v x)" using fin by (force intro: sum.mono_neutral_right) also have "... = (\x \ S - {b}. v x)" using b False by (auto intro!: sum.cong split: if_split_asm) also have "... = (\x\S. v x)" by (metis \v b = 0\ diff_zero sum.infinite sum_diff1 u1 zero_neq_one) finally show "(\x\insert a (S - {b}). if x = a then 0 else v x) = 1" by (simp add: v1) show "\x. x \ insert a (S - {b}) \ 0 \ (if x = a then 0 else v x)" by (auto simp: v0) have "(\x \ insert a (S - {b}). (if x = a then 0 else v x) *\<^sub>R x) = (\x \ S - {b}. (if x = a then 0 else v x) *\<^sub>R x)" using fin by (force intro: sum.mono_neutral_right) also have "... = (\x \ S - {b}. v x *\<^sub>R x)" using b False by (auto intro!: sum.cong split: if_split_asm) also have "... = (\x\S. v x *\<^sub>R x)" by (metis (no_types, lifting) b(2) diff_zero fin finite.emptyI finite_Diff2 finite_insert scale_eq_0_iff sum_diff1) finally show "(\x\insert a (S - {b}). (if x = a then 0 else v x) *\<^sub>R x) = x" by (simp add: vx) qed qed (rule \b \ S\) next case False have le_Max: "u i / v i \ Max ((\i. u i / v i) ` S)" if "i \ S" for i by (simp add: True that) have "Max ((\i. u i / v i) ` S) \ (\i. u i / v i) ` S" using True v1 by (auto intro: Max_in) then obtain b where "b \ S" and beq: "Max ((\b. u b / v b) ` S) = u b / v b" by blast then have "0 \ u b / v b" using le_Max beq divide_le_0_iff le_numeral_extra(2) sum_nonpos u1 by (metis False eq_iff v0) then have "0 < u b" "0 < v b" using False \b \ S\ u0 v0 by force+ have fin: "finite (insert a (S - {b}))" using sum.infinite v1 by fastforce show ?thesis proof show "x \ convex hull insert a (S - {b})" unfolding convex_hull_finite [OF fin] mem_Collect_eq proof (intro conjI exI ballI) have "(\x \ insert a (S - {b}). if x=a then v b / u b else v x - (v b / u b) * u x) = v b / u b + (\x \ S - {b}. v x - (v b / u b) * u x)" using \a \ S\ \b \ S\ True by (auto intro!: sum.cong split: if_split_asm) also have "... = v b / u b + (\x \ S - {b}. v x) - (v b / u b) * (\x \ S - {b}. u x)" by (simp add: Groups_Big.sum_subtractf sum_distrib_left) also have "... = (\x\S. v x)" using \0 < u b\ True by (simp add: Groups_Big.sum_diff1 u1 field_simps) finally show "sum (\x. if x=a then v b / u b else v x - (v b / u b) * u x) (insert a (S - {b})) = 1" by (simp add: v1) show "0 \ (if i = a then v b / u b else v i - v b / u b * u i)" if "i \ insert a (S - {b})" for i using \0 < u b\ \0 < v b\ v0 [of i] le_Max [of i] beq that False by (auto simp: field_simps split: if_split_asm) have "(\x\insert a (S - {b}). (if x=a then v b / u b else v x - v b / u b * u x) *\<^sub>R x) = (v b / u b) *\<^sub>R a + (\x\S - {b}. (v x - v b / u b * u x) *\<^sub>R x)" using \a \ S\ \b \ S\ True by (auto intro!: sum.cong split: if_split_asm) also have "... = (v b / u b) *\<^sub>R a + (\x \ S - {b}. v x *\<^sub>R x) - (v b / u b) *\<^sub>R (\x \ S - {b}. u x *\<^sub>R x)" by (simp add: Groups_Big.sum_subtractf scaleR_left_diff_distrib sum_distrib_left scale_sum_right) also have "... = (\x\S. v x *\<^sub>R x)" using \0 < u b\ True by (simp add: ua vx Groups_Big.sum_diff1 algebra_simps) finally show "(\x\insert a (S - {b}). (if x=a then v b / u b else v x - v b / u b * u x) *\<^sub>R x) = x" by (simp add: vx) qed qed (rule \b \ S\) qed next case False obtain T where "finite T" "T \ S" and caT: "card T \ Suc (DIM('a))" and xT: "x \ convex hull T" using xS by (auto simp: caratheodory [of S]) with False obtain b where b: "b \ S" "b \ T" by (metis antisym subsetI) show ?thesis proof show "x \ convex hull insert a (S - {b})" using \T \ S\ b by (blast intro: subsetD [OF hull_mono xT]) qed (rule \b \ S\) qed qed lemma convex_hull_exchange_Union: fixes a :: "'a::euclidean_space" assumes "a \ convex hull S" shows "convex hull S = (\b \ S. convex hull (insert a (S - {b})))" (is "?lhs = ?rhs") proof show "?lhs \ ?rhs" by (blast intro: in_convex_hull_exchange [OF assms]) show "?rhs \ ?lhs" proof clarify fix x b assume"b \ S" "x \ convex hull insert a (S - {b})" then show "x \ convex hull S" if "b \ S" by (metis (no_types) that assms order_refl hull_mono hull_redundant insert_Diff_single insert_subset subsetCE) qed qed lemma Un_closed_segment: fixes a :: "'a::euclidean_space" assumes "b \ closed_segment a c" shows "closed_segment a b \ closed_segment b c = closed_segment a c" proof (cases "c = a") case True with assms show ?thesis by simp next case False with assms have "convex hull {a, b} \ convex hull {b, c} = (\ba\{a, c}. convex hull insert b ({a, c} - {ba}))" by (auto simp: insert_Diff_if insert_commute) then show ?thesis using convex_hull_exchange_Union by (metis assms segment_convex_hull) qed lemma Un_open_segment: fixes a :: "'a::euclidean_space" assumes "b \ open_segment a c" - shows "open_segment a b \ {b} \ open_segment b c = open_segment a c" + shows "open_segment a b \ {b} \ open_segment b c = open_segment a c" (is "?lhs = ?rhs") proof - have b: "b \ closed_segment a c" by (simp add: assms open_closed_segment) - have *: "open_segment a c \ insert b (open_segment a b \ open_segment b c)" - if "{b,c,a} \ open_segment a b \ open_segment b c = {c,a} \ open_segment a c" + have *: "?rhs \ insert b (open_segment a b \ open_segment b c)" + if "{b,c,a} \ open_segment a b \ open_segment b c = {c,a} \ ?rhs" proof - - have "insert a (insert c (insert b (open_segment a b \ open_segment b c))) = insert a (insert c (open_segment a c))" + have "insert a (insert c (insert b (open_segment a b \ open_segment b c))) = insert a (insert c (?rhs))" using that by (simp add: insert_commute) then show ?thesis by (metis (no_types) Diff_cancel Diff_eq_empty_iff Diff_insert2 open_segment_def) qed show ?thesis - apply (rule antisym) - using Un_closed_segment [OF b] assms * - by (simp_all add: closed_segment_eq_open b subset_open_segment insert_commute) + proof + show "?lhs \ ?rhs" + by (simp add: assms b subset_open_segment) + show "?rhs \ ?lhs" + using Un_closed_segment [OF b] * + by (simp add: closed_segment_eq_open insert_commute) + qed qed subsection\Covering an open set by a countable chain of compact sets\ proposition open_Union_compact_subsets: fixes S :: "'a::euclidean_space set" assumes "open S" obtains C where "\n. compact(C n)" "\n. C n \ S" "\n. C n \ interior(C(Suc n))" "\(range C) = S" "\K. \compact K; K \ S\ \ \N. \n\N. K \ (C n)" proof (cases "S = {}") case True then show ?thesis by (rule_tac C = "\n. {}" in that) auto next case False then obtain a where "a \ S" by auto let ?C = "\n. cball a (real n) - (\x \ -S. \e \ ball 0 (1 / real(Suc n)). {x + e})" have "\N. \n\N. K \ (f n)" if "\n. compact(f n)" and sub_int: "\n. f n \ interior (f(Suc n))" and eq: "\(range f) = S" and "compact K" "K \ S" for f K proof - have *: "\n. f n \ (\n. interior (f n))" by (meson Sup_upper2 UNIV_I \\n. f n \ interior (f (Suc n))\ image_iff) have mono: "\m n. m \ n \f m \ f n" by (meson dual_order.trans interior_subset lift_Suc_mono_le sub_int) obtain I where "finite I" and I: "K \ (\i\I. interior (f i))" proof (rule compactE_image [OF \compact K\]) show "K \ (\n. interior (f n))" using \K \ S\ \\(f ` UNIV) = S\ * by blast qed auto { fix n assume n: "Max I \ n" have "(\i\I. interior (f i)) \ f n" by (rule UN_least) (meson dual_order.trans interior_subset mono I Max_ge [OF \finite I\] n) then have "K \ f n" using I by auto } then show ?thesis by blast qed moreover have "\f. (\n. compact(f n)) \ (\n. (f n) \ S) \ (\n. (f n) \ interior(f(Suc n))) \ ((\(range f) = S))" proof (intro exI conjI allI) show "\n. compact (?C n)" by (auto simp: compact_diff open_sums) show "\n. ?C n \ S" by auto show "?C n \ interior (?C (Suc n))" for n proof (simp add: interior_diff, rule Diff_mono) show "cball a (real n) \ ball a (1 + real n)" by (simp add: cball_subset_ball_iff) have cl: "closed (\x\- S. \e\cball 0 (1 / (2 + real n)). {x + e})" using assms by (auto intro: closed_compact_sums) have "closure (\x\- S. \y\ball 0 (1 / (2 + real n)). {x + y}) \ (\x \ -S. \e \ cball 0 (1 / (2 + real n)). {x + e})" by (intro closure_minimal UN_mono ball_subset_cball order_refl cl) also have "... \ (\x \ -S. \y\ball 0 (1 / (1 + real n)). {x + y})" - apply (intro UN_mono order_refl) - apply (simp add: cball_subset_ball_iff field_split_simps) - done + by (simp add: cball_subset_ball_iff field_split_simps UN_mono) finally show "closure (\x\- S. \y\ball 0 (1 / (2 + real n)). {x + y}) \ (\x \ -S. \y\ball 0 (1 / (1 + real n)). {x + y})" . qed have "S \ \ (range ?C)" proof fix x assume x: "x \ S" then obtain e where "e > 0" and e: "ball x e \ S" using assms open_contains_ball by blast then obtain N1 where "N1 > 0" and N1: "real N1 > 1/e" using reals_Archimedean2 by (metis divide_less_0_iff less_eq_real_def neq0_conv not_le of_nat_0 of_nat_1 of_nat_less_0_iff) obtain N2 where N2: "norm(x - a) \ real N2" by (meson real_arch_simple) have N12: "inverse((N1 + N2) + 1) \ inverse(N1)" using \N1 > 0\ by (auto simp: field_split_simps) have "x \ y + z" if "y \ S" "norm z < 1 / (1 + (real N1 + real N2))" for y z proof - have "e * real N1 < e * (1 + (real N1 + real N2))" by (simp add: \0 < e\) then have "1 / (1 + (real N1 + real N2)) < e" using N1 \e > 0\ by (metis divide_less_eq less_trans mult.commute of_nat_add of_nat_less_0_iff of_nat_Suc) then have "x - z \ ball x e" using that by simp then have "x - z \ S" using e by blast with that show ?thesis by auto qed with N2 show "x \ \ (range ?C)" by (rule_tac a = "N1+N2" in UN_I) (auto simp: dist_norm norm_minus_commute) qed then show "\ (range ?C) = S" by auto qed ultimately show ?thesis using that by metis qed subsection\Orthogonal complement\ definition\<^marker>\tag important\ orthogonal_comp ("_\<^sup>\" [80] 80) where "orthogonal_comp W \ {x. \y \ W. orthogonal y x}" proposition subspace_orthogonal_comp: "subspace (W\<^sup>\)" unfolding subspace_def orthogonal_comp_def orthogonal_def by (auto simp: inner_right_distrib) lemma orthogonal_comp_anti_mono: assumes "A \ B" shows "B\<^sup>\ \ A\<^sup>\" proof fix x assume x: "x \ B\<^sup>\" show "x \ orthogonal_comp A" using x unfolding orthogonal_comp_def by (simp add: orthogonal_def, metis assms in_mono) qed lemma orthogonal_comp_null [simp]: "{0}\<^sup>\ = UNIV" by (auto simp: orthogonal_comp_def orthogonal_def) lemma orthogonal_comp_UNIV [simp]: "UNIV\<^sup>\ = {0}" unfolding orthogonal_comp_def orthogonal_def by auto (use inner_eq_zero_iff in blast) lemma orthogonal_comp_subset: "U \ U\<^sup>\\<^sup>\" by (auto simp: orthogonal_comp_def orthogonal_def inner_commute) lemma subspace_sum_minimal: assumes "S \ U" "T \ U" "subspace U" shows "S + T \ U" proof fix x assume "x \ S + T" then obtain xs xt where "xs \ S" "xt \ T" "x = xs+xt" by (meson set_plus_elim) then show "x \ U" by (meson assms subsetCE subspace_add) qed proposition subspace_sum_orthogonal_comp: fixes U :: "'a :: euclidean_space set" assumes "subspace U" shows "U + U\<^sup>\ = UNIV" proof - obtain B where "B \ U" and ortho: "pairwise orthogonal B" "\x. x \ B \ norm x = 1" and "independent B" "card B = dim U" "span B = U" using orthonormal_basis_subspace [OF assms] by metis then have "finite B" by (simp add: indep_card_eq_dim_span) have *: "\x\B. \y\B. x \ y = (if x=y then 1 else 0)" using ortho norm_eq_1 by (auto simp: orthogonal_def pairwise_def) { fix v let ?u = "\b\B. (v \ b) *\<^sub>R b" have "v = ?u + (v - ?u)" by simp moreover have "?u \ U" by (metis (no_types, lifting) \span B = U\ assms subspace_sum span_base span_mul) moreover have "(v - ?u) \ U\<^sup>\" proof (clarsimp simp: orthogonal_comp_def orthogonal_def) fix y assume "y \ U" with \span B = U\ span_finite [OF \finite B\] obtain u where u: "y = (\b\B. u b *\<^sub>R b)" by auto have "b \ (v - ?u) = 0" if "b \ B" for b using that \finite B\ by (simp add: * algebra_simps inner_sum_right if_distrib [of "(*)v" for v] inner_commute cong: if_cong) then show "y \ (v - ?u) = 0" by (simp add: u inner_sum_left) qed ultimately have "v \ U + U\<^sup>\" using set_plus_intro by fastforce } then show ?thesis by auto qed lemma orthogonal_Int_0: assumes "subspace U" shows "U \ U\<^sup>\ = {0}" using orthogonal_comp_def orthogonal_self by (force simp: assms subspace_0 subspace_orthogonal_comp) lemma orthogonal_comp_self: fixes U :: "'a :: euclidean_space set" assumes "subspace U" shows "U\<^sup>\\<^sup>\ = U" proof have ssU': "subspace (U\<^sup>\)" by (simp add: subspace_orthogonal_comp) have "u \ U" if "u \ U\<^sup>\\<^sup>\" for u proof - obtain v w where "u = v+w" "v \ U" "w \ U\<^sup>\" using subspace_sum_orthogonal_comp [OF assms] set_plus_elim by blast then have "u-v \ U\<^sup>\" by simp moreover have "v \ U\<^sup>\\<^sup>\" using \v \ U\ orthogonal_comp_subset by blast then have "u-v \ U\<^sup>\\<^sup>\" by (simp add: subspace_diff subspace_orthogonal_comp that) ultimately have "u-v = 0" using orthogonal_Int_0 ssU' by blast with \v \ U\ show ?thesis by auto qed then show "U\<^sup>\\<^sup>\ \ U" by auto qed (use orthogonal_comp_subset in auto) lemma ker_orthogonal_comp_adjoint: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" shows "f -` {0} = (range (adjoint f))\<^sup>\" - apply (auto simp: orthogonal_comp_def orthogonal_def) - apply (simp add: adjoint_works assms(1) inner_commute) - by (metis adjoint_works all_zero_iff assms(1) inner_commute) +proof - + have "\x. \\y. y \ f x = 0\ \ f x = 0" + using assms inner_commute all_zero_iff by metis + then show ?thesis + using assms + by (auto simp: orthogonal_comp_def orthogonal_def adjoint_works inner_commute) +qed subsection\<^marker>\tag unimportant\ \A non-injective linear function maps into a hyperplane.\ lemma linear_surj_adj_imp_inj: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" "surj (adjoint f)" shows "inj f" proof - have "\x. y = adjoint f x" for y using assms by (simp add: surjD) then show "inj f" using assms unfolding inj_on_def image_def by (metis (no_types) adjoint_works euclidean_eqI) qed \ \\<^url>\https://mathonline.wikidot.com/injectivity-and-surjectivity-of-the-adjoint-of-a-linear-map\\ lemma surj_adjoint_iff_inj [simp]: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" shows "surj (adjoint f) \ inj f" proof assume "surj (adjoint f)" then show "inj f" by (simp add: assms linear_surj_adj_imp_inj) next assume "inj f" have "f -` {0} = {0}" using assms \inj f\ linear_0 linear_injective_0 by fastforce moreover have "f -` {0} = range (adjoint f)\<^sup>\" by (intro ker_orthogonal_comp_adjoint assms) ultimately have "range (adjoint f)\<^sup>\\<^sup>\ = UNIV" by (metis orthogonal_comp_null) then show "surj (adjoint f)" using adjoint_linear \linear f\ by (subst (asm) orthogonal_comp_self) (simp add: adjoint_linear linear_subspace_image) qed lemma inj_adjoint_iff_surj [simp]: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" shows "inj (adjoint f) \ surj f" proof assume "inj (adjoint f)" have "(adjoint f) -` {0} = {0}" by (metis \inj (adjoint f)\ adjoint_linear assms surj_adjoint_iff_inj ker_orthogonal_comp_adjoint orthogonal_comp_UNIV) then have "(range(f))\<^sup>\ = {0}" by (metis (no_types, hide_lams) adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint set_zero) then show "surj f" by (metis \inj (adjoint f)\ adjoint_adjoint adjoint_linear assms surj_adjoint_iff_inj) next assume "surj f" then have "range f = (adjoint f -` {0})\<^sup>\" by (simp add: adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint) then have "{0} = adjoint f -` {0}" using \surj f\ adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint by force then show "inj (adjoint f)" by (simp add: \surj f\ adjoint_adjoint adjoint_linear assms linear_surj_adj_imp_inj) qed lemma linear_singular_into_hyperplane: fixes f :: "'n::euclidean_space \ 'n" assumes "linear f" shows "\ inj f \ (\a. a \ 0 \ (\x. a \ f x = 0))" (is "_ = ?rhs") proof assume "\inj f" then show ?rhs using all_zero_iff by (metis (no_types, hide_lams) adjoint_clauses(2) adjoint_linear assms linear_injective_0 linear_injective_imp_surjective linear_surj_adj_imp_inj) next assume ?rhs then show "\inj f" by (metis assms linear_injective_isomorphism all_zero_iff) qed lemma linear_singular_image_hyperplane: fixes f :: "'n::euclidean_space \ 'n" assumes "linear f" "\inj f" obtains a where "a \ 0" "\S. f ` S \ {x. a \ x = 0}" using assms by (fastforce simp add: linear_singular_into_hyperplane) end diff --git a/src/HOL/Set.thy b/src/HOL/Set.thy --- a/src/HOL/Set.thy +++ b/src/HOL/Set.thy @@ -1,2028 +1,2034 @@ (* Title: HOL/Set.thy Author: Tobias Nipkow Author: Lawrence C Paulson Author: Markus Wenzel *) section \Set theory for higher-order logic\ theory Set imports Lattices begin subsection \Sets as predicates\ typedecl 'a set axiomatization Collect :: "('a \ bool) \ 'a set" \ \comprehension\ and member :: "'a \ 'a set \ bool" \ \membership\ where mem_Collect_eq [iff, code_unfold]: "member a (Collect P) = P a" and Collect_mem_eq [simp]: "Collect (\x. member x A) = A" notation member ("'(\')") and member ("(_/ \ _)" [51, 51] 50) abbreviation not_member where "not_member x A \ \ (x \ A)" \ \non-membership\ notation not_member ("'(\')") and not_member ("(_/ \ _)" [51, 51] 50) notation (ASCII) member ("'(:')") and member ("(_/ : _)" [51, 51] 50) and not_member ("'(~:')") and not_member ("(_/ ~: _)" [51, 51] 50) text \Set comprehensions\ syntax "_Coll" :: "pttrn \ bool \ 'a set" ("(1{_./ _})") translations "{x. P}" \ "CONST Collect (\x. P)" syntax (ASCII) "_Collect" :: "pttrn \ 'a set \ bool \ 'a set" ("(1{(_/: _)./ _})") syntax "_Collect" :: "pttrn \ 'a set \ bool \ 'a set" ("(1{(_/ \ _)./ _})") translations "{p:A. P}" \ "CONST Collect (\p. p \ A \ P)" lemma CollectI: "P a \ a \ {x. P x}" by simp lemma CollectD: "a \ {x. P x} \ P a" by simp lemma Collect_cong: "(\x. P x = Q x) \ {x. P x} = {x. Q x}" by simp text \ Simproc for pulling \x = t\ in \{x. \ \ x = t \ \}\ to the front (and similarly for \t = x\): \ simproc_setup defined_Collect ("{x. P x \ Q x}") = \ fn _ => Quantifier1.rearrange_Collect (fn ctxt => resolve_tac ctxt @{thms Collect_cong} 1 THEN resolve_tac ctxt @{thms iffI} 1 THEN ALLGOALS (EVERY' [REPEAT_DETERM o eresolve_tac ctxt @{thms conjE}, DEPTH_SOLVE_1 o (assume_tac ctxt ORELSE' resolve_tac ctxt @{thms conjI})])) \ lemmas CollectE = CollectD [elim_format] lemma set_eqI: assumes "\x. x \ A \ x \ B" shows "A = B" proof - from assms have "{x. x \ A} = {x. x \ B}" by simp then show ?thesis by simp qed lemma set_eq_iff: "A = B \ (\x. x \ A \ x \ B)" by (auto intro:set_eqI) lemma Collect_eqI: assumes "\x. P x = Q x" shows "Collect P = Collect Q" using assms by (auto intro: set_eqI) text \Lifting of predicate class instances\ instantiation set :: (type) boolean_algebra begin definition less_eq_set where "A \ B \ (\x. member x A) \ (\x. member x B)" definition less_set where "A < B \ (\x. member x A) < (\x. member x B)" definition inf_set where "A \ B = Collect ((\x. member x A) \ (\x. member x B))" definition sup_set where "A \ B = Collect ((\x. member x A) \ (\x. member x B))" definition bot_set where "\ = Collect \" definition top_set where "\ = Collect \" definition uminus_set where "- A = Collect (- (\x. member x A))" definition minus_set where "A - B = Collect ((\x. member x A) - (\x. member x B))" instance by standard (simp_all add: less_eq_set_def less_set_def inf_set_def sup_set_def bot_set_def top_set_def uminus_set_def minus_set_def less_le_not_le sup_inf_distrib1 diff_eq set_eqI fun_eq_iff del: inf_apply sup_apply bot_apply top_apply minus_apply uminus_apply) end text \Set enumerations\ abbreviation empty :: "'a set" ("{}") where "{} \ bot" definition insert :: "'a \ 'a set \ 'a set" where insert_compr: "insert a B = {x. x = a \ x \ B}" syntax "_Finset" :: "args \ 'a set" ("{(_)}") translations "{x, xs}" \ "CONST insert x {xs}" "{x}" \ "CONST insert x {}" subsection \Subsets and bounded quantifiers\ abbreviation subset :: "'a set \ 'a set \ bool" where "subset \ less" abbreviation subset_eq :: "'a set \ 'a set \ bool" where "subset_eq \ less_eq" notation subset ("'(\')") and subset ("(_/ \ _)" [51, 51] 50) and subset_eq ("'(\')") and subset_eq ("(_/ \ _)" [51, 51] 50) abbreviation (input) supset :: "'a set \ 'a set \ bool" where "supset \ greater" abbreviation (input) supset_eq :: "'a set \ 'a set \ bool" where "supset_eq \ greater_eq" notation supset ("'(\')") and supset ("(_/ \ _)" [51, 51] 50) and supset_eq ("'(\')") and supset_eq ("(_/ \ _)" [51, 51] 50) notation (ASCII output) subset ("'(<')") and subset ("(_/ < _)" [51, 51] 50) and subset_eq ("'(<=')") and subset_eq ("(_/ <= _)" [51, 51] 50) definition Ball :: "'a set \ ('a \ bool) \ bool" where "Ball A P \ (\x. x \ A \ P x)" \ \bounded universal quantifiers\ definition Bex :: "'a set \ ('a \ bool) \ bool" where "Bex A P \ (\x. x \ A \ P x)" \ \bounded existential quantifiers\ syntax (ASCII) "_Ball" :: "pttrn \ 'a set \ bool \ bool" ("(3ALL (_/:_)./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn \ 'a set \ bool \ bool" ("(3EX (_/:_)./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn \ 'a set \ bool \ bool" ("(3EX! (_/:_)./ _)" [0, 0, 10] 10) "_Bleast" :: "id \ 'a set \ bool \ 'a" ("(3LEAST (_/:_)./ _)" [0, 0, 10] 10) syntax (input) "_Ball" :: "pttrn \ 'a set \ bool \ bool" ("(3! (_/:_)./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn \ 'a set \ bool \ bool" ("(3? (_/:_)./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn \ 'a set \ bool \ bool" ("(3?! (_/:_)./ _)" [0, 0, 10] 10) syntax "_Ball" :: "pttrn \ 'a set \ bool \ bool" ("(3\(_/\_)./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn \ 'a set \ bool \ bool" ("(3\(_/\_)./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn \ 'a set \ bool \ bool" ("(3\!(_/\_)./ _)" [0, 0, 10] 10) "_Bleast" :: "id \ 'a set \ bool \ 'a" ("(3LEAST(_/\_)./ _)" [0, 0, 10] 10) translations "\x\A. P" \ "CONST Ball A (\x. P)" "\x\A. P" \ "CONST Bex A (\x. P)" "\!x\A. P" \ "\!x. x \ A \ P" "LEAST x:A. P" \ "LEAST x. x \ A \ P" syntax (ASCII output) "_setlessAll" :: "[idt, 'a, bool] \ bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] \ bool" ("(3EX _<_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] \ bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] \ bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] \ bool" ("(3EX! _<=_./ _)" [0, 0, 10] 10) syntax "_setlessAll" :: "[idt, 'a, bool] \ bool" ("(3\_\_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] \ bool" ("(3\_\_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] \ bool" ("(3\_\_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] \ bool" ("(3\_\_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] \ bool" ("(3\!_\_./ _)" [0, 0, 10] 10) translations "\A\B. P" \ "\A. A \ B \ P" "\A\B. P" \ "\A. A \ B \ P" "\A\B. P" \ "\A. A \ B \ P" "\A\B. P" \ "\A. A \ B \ P" "\!A\B. P" \ "\!A. A \ B \ P" print_translation \ let val All_binder = Mixfix.binder_name \<^const_syntax>\All\; val Ex_binder = Mixfix.binder_name \<^const_syntax>\Ex\; val impl = \<^const_syntax>\HOL.implies\; val conj = \<^const_syntax>\HOL.conj\; val sbset = \<^const_syntax>\subset\; val sbset_eq = \<^const_syntax>\subset_eq\; val trans = [((All_binder, impl, sbset), \<^syntax_const>\_setlessAll\), ((All_binder, impl, sbset_eq), \<^syntax_const>\_setleAll\), ((Ex_binder, conj, sbset), \<^syntax_const>\_setlessEx\), ((Ex_binder, conj, sbset_eq), \<^syntax_const>\_setleEx\)]; fun mk v (v', T) c n P = if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n) then Syntax.const c $ Syntax_Trans.mark_bound_body (v', T) $ n $ P else raise Match; fun tr' q = (q, fn _ => (fn [Const (\<^syntax_const>\_bound\, _) $ Free (v, Type (\<^type_name>\set\, _)), Const (c, _) $ (Const (d, _) $ (Const (\<^syntax_const>\_bound\, _) $ Free (v', T)) $ n) $ P] => (case AList.lookup (=) trans (q, c, d) of NONE => raise Match | SOME l => mk v (v', T) l n P) | _ => raise Match)); in [tr' All_binder, tr' Ex_binder] end \ text \ \<^medskip> Translate between \{e | x1\xn. P}\ and \{u. \x1\xn. u = e \ P}\; \{y. \x1\xn. y = e \ P}\ is only translated if \[0..n] \ bvs e\. \ syntax "_Setcompr" :: "'a \ idts \ bool \ 'a set" ("(1{_ |/_./ _})") parse_translation \ let val ex_tr = snd (Syntax_Trans.mk_binder_tr ("EX ", \<^const_syntax>\Ex\)); fun nvars (Const (\<^syntax_const>\_idts\, _) $ _ $ idts) = nvars idts + 1 | nvars _ = 1; fun setcompr_tr ctxt [e, idts, b] = let val eq = Syntax.const \<^const_syntax>\HOL.eq\ $ Bound (nvars idts) $ e; val P = Syntax.const \<^const_syntax>\HOL.conj\ $ eq $ b; val exP = ex_tr ctxt [idts, P]; in Syntax.const \<^const_syntax>\Collect\ $ absdummy dummyT exP end; in [(\<^syntax_const>\_Setcompr\, setcompr_tr)] end \ print_translation \ [Syntax_Trans.preserve_binder_abs2_tr' \<^const_syntax>\Ball\ \<^syntax_const>\_Ball\, Syntax_Trans.preserve_binder_abs2_tr' \<^const_syntax>\Bex\ \<^syntax_const>\_Bex\] \ \ \to avoid eta-contraction of body\ print_translation \ let val ex_tr' = snd (Syntax_Trans.mk_binder_tr' (\<^const_syntax>\Ex\, "DUMMY")); fun setcompr_tr' ctxt [Abs (abs as (_, _, P))] = let fun check (Const (\<^const_syntax>\Ex\, _) $ Abs (_, _, P), n) = check (P, n + 1) | check (Const (\<^const_syntax>\HOL.conj\, _) $ (Const (\<^const_syntax>\HOL.eq\, _) $ Bound m $ e) $ P, n) = n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso subset (=) (0 upto (n - 1), add_loose_bnos (e, 0, [])) | check _ = false; fun tr' (_ $ abs) = let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' ctxt [abs] in Syntax.const \<^syntax_const>\_Setcompr\ $ e $ idts $ Q end; in if check (P, 0) then tr' P else let val (x as _ $ Free(xN, _), t) = Syntax_Trans.atomic_abs_tr' abs; val M = Syntax.const \<^syntax_const>\_Coll\ $ x $ t; in case t of Const (\<^const_syntax>\HOL.conj\, _) $ (Const (\<^const_syntax>\Set.member\, _) $ (Const (\<^syntax_const>\_bound\, _) $ Free (yN, _)) $ A) $ P => if xN = yN then Syntax.const \<^syntax_const>\_Collect\ $ x $ A $ P else M | _ => M end end; in [(\<^const_syntax>\Collect\, setcompr_tr')] end \ simproc_setup defined_Bex ("\x\A. P x \ Q x") = \ fn _ => Quantifier1.rearrange_Bex (fn ctxt => unfold_tac ctxt @{thms Bex_def}) \ simproc_setup defined_All ("\x\A. P x \ Q x") = \ fn _ => Quantifier1.rearrange_Ball (fn ctxt => unfold_tac ctxt @{thms Ball_def}) \ lemma ballI [intro!]: "(\x. x \ A \ P x) \ \x\A. P x" by (simp add: Ball_def) lemmas strip = impI allI ballI lemma bspec [dest?]: "\x\A. P x \ x \ A \ P x" by (simp add: Ball_def) text \Gives better instantiation for bound:\ setup \ map_theory_claset (fn ctxt => ctxt addbefore ("bspec", fn ctxt' => dresolve_tac ctxt' @{thms bspec} THEN' assume_tac ctxt')) \ ML \ structure Simpdata = struct open Simpdata; val mksimps_pairs = [(\<^const_name>\Ball\, @{thms bspec})] @ mksimps_pairs; end; open Simpdata; \ declaration \fn _ => Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs))\ lemma ballE [elim]: "\x\A. P x \ (P x \ Q) \ (x \ A \ Q) \ Q" unfolding Ball_def by blast lemma bexI [intro]: "P x \ x \ A \ \x\A. P x" \ \Normally the best argument order: \P x\ constrains the choice of \x \ A\.\ unfolding Bex_def by blast lemma rev_bexI [intro?]: "x \ A \ P x \ \x\A. P x" \ \The best argument order when there is only one \x \ A\.\ unfolding Bex_def by blast lemma bexCI: "(\x\A. \ P x \ P a) \ a \ A \ \x\A. P x" unfolding Bex_def by blast lemma bexE [elim!]: "\x\A. P x \ (\x. x \ A \ P x \ Q) \ Q" unfolding Bex_def by blast lemma ball_triv [simp]: "(\x\A. P) \ ((\x. x \ A) \ P)" \ \Trival rewrite rule.\ by (simp add: Ball_def) lemma bex_triv [simp]: "(\x\A. P) \ ((\x. x \ A) \ P)" \ \Dual form for existentials.\ by (simp add: Bex_def) lemma bex_triv_one_point1 [simp]: "(\x\A. x = a) \ a \ A" by blast lemma bex_triv_one_point2 [simp]: "(\x\A. a = x) \ a \ A" by blast lemma bex_one_point1 [simp]: "(\x\A. x = a \ P x) \ a \ A \ P a" by blast lemma bex_one_point2 [simp]: "(\x\A. a = x \ P x) \ a \ A \ P a" by blast lemma ball_one_point1 [simp]: "(\x\A. x = a \ P x) \ (a \ A \ P a)" by blast lemma ball_one_point2 [simp]: "(\x\A. a = x \ P x) \ (a \ A \ P a)" by blast lemma ball_conj_distrib: "(\x\A. P x \ Q x) \ (\x\A. P x) \ (\x\A. Q x)" by blast lemma bex_disj_distrib: "(\x\A. P x \ Q x) \ (\x\A. P x) \ (\x\A. Q x)" by blast text \Congruence rules\ lemma ball_cong: "\ A = B; \x. x \ B \ P x \ Q x \ \ (\x\A. P x) \ (\x\B. Q x)" by (simp add: Ball_def) lemma ball_cong_simp [cong]: "\ A = B; \x. x \ B =simp=> P x \ Q x \ \ (\x\A. P x) \ (\x\B. Q x)" by (simp add: simp_implies_def Ball_def) lemma bex_cong: "\ A = B; \x. x \ B \ P x \ Q x \ \ (\x\A. P x) \ (\x\B. Q x)" by (simp add: Bex_def cong: conj_cong) lemma bex_cong_simp [cong]: "\ A = B; \x. x \ B =simp=> P x \ Q x \ \ (\x\A. P x) \ (\x\B. Q x)" by (simp add: simp_implies_def Bex_def cong: conj_cong) lemma bex1_def: "(\!x\X. P x) \ (\x\X. P x) \ (\x\X. \y\X. P x \ P y \ x = y)" by auto subsection \Basic operations\ subsubsection \Subsets\ lemma subsetI [intro!]: "(\x. x \ A \ x \ B) \ A \ B" by (simp add: less_eq_set_def le_fun_def) text \ \<^medskip> Map the type \'a set \ anything\ to just \'a\; for overloading constants whose first argument has type \'a set\. \ lemma subsetD [elim, intro?]: "A \ B \ c \ A \ c \ B" by (simp add: less_eq_set_def le_fun_def) \ \Rule in Modus Ponens style.\ lemma rev_subsetD [intro?,no_atp]: "c \ A \ A \ B \ c \ B" \ \The same, with reversed premises for use with @{method erule} -- cf. @{thm rev_mp}.\ by (rule subsetD) lemma subsetCE [elim,no_atp]: "A \ B \ (c \ A \ P) \ (c \ B \ P) \ P" \ \Classical elimination rule.\ by (auto simp add: less_eq_set_def le_fun_def) lemma subset_eq: "A \ B \ (\x\A. x \ B)" by blast lemma contra_subsetD [no_atp]: "A \ B \ c \ B \ c \ A" by blast lemma subset_refl: "A \ A" by (fact order_refl) (* already [iff] *) lemma subset_trans: "A \ B \ B \ C \ A \ C" by (fact order_trans) lemma subset_not_subset_eq [code]: "A \ B \ A \ B \ \ B \ A" by (fact less_le_not_le) lemma eq_mem_trans: "a = b \ b \ A \ a \ A" by simp lemmas basic_trans_rules [trans] = order_trans_rules rev_subsetD subsetD eq_mem_trans subsubsection \Equality\ lemma subset_antisym [intro!]: "A \ B \ B \ A \ A = B" \ \Anti-symmetry of the subset relation.\ by (iprover intro: set_eqI subsetD) text \\<^medskip> Equality rules from ZF set theory -- are they appropriate here?\ lemma equalityD1: "A = B \ A \ B" by simp lemma equalityD2: "A = B \ B \ A" by simp text \ \<^medskip> Be careful when adding this to the claset as \subset_empty\ is in the simpset: \<^prop>\A = {}\ goes to \<^prop>\{} \ A\ and \<^prop>\A \ {}\ and then back to \<^prop>\A = {}\! \ lemma equalityE: "A = B \ (A \ B \ B \ A \ P) \ P" by simp lemma equalityCE [elim]: "A = B \ (c \ A \ c \ B \ P) \ (c \ A \ c \ B \ P) \ P" by blast lemma eqset_imp_iff: "A = B \ x \ A \ x \ B" by simp lemma eqelem_imp_iff: "x = y \ x \ A \ y \ A" by simp subsubsection \The empty set\ lemma empty_def: "{} = {x. False}" by (simp add: bot_set_def bot_fun_def) lemma empty_iff [simp]: "c \ {} \ False" by (simp add: empty_def) lemma emptyE [elim!]: "a \ {} \ P" by simp lemma empty_subsetI [iff]: "{} \ A" \ \One effect is to delete the ASSUMPTION \<^prop>\{} \ A\\ by blast lemma equals0I: "(\y. y \ A \ False) \ A = {}" by blast lemma equals0D: "A = {} \ a \ A" \ \Use for reasoning about disjointness: \A \ B = {}\\ by blast lemma ball_empty [simp]: "Ball {} P \ True" by (simp add: Ball_def) lemma bex_empty [simp]: "Bex {} P \ False" by (simp add: Bex_def) subsubsection \The universal set -- UNIV\ abbreviation UNIV :: "'a set" where "UNIV \ top" lemma UNIV_def: "UNIV = {x. True}" by (simp add: top_set_def top_fun_def) lemma UNIV_I [simp]: "x \ UNIV" by (simp add: UNIV_def) declare UNIV_I [intro] \ \unsafe makes it less likely to cause problems\ lemma UNIV_witness [intro?]: "\x. x \ UNIV" by simp lemma subset_UNIV: "A \ UNIV" by (fact top_greatest) (* already simp *) text \ \<^medskip> Eta-contracting these two rules (to remove \P\) causes them to be ignored because of their interaction with congruence rules. \ lemma ball_UNIV [simp]: "Ball UNIV P \ All P" by (simp add: Ball_def) lemma bex_UNIV [simp]: "Bex UNIV P \ Ex P" by (simp add: Bex_def) lemma UNIV_eq_I: "(\x. x \ A) \ UNIV = A" by auto lemma UNIV_not_empty [iff]: "UNIV \ {}" by (blast elim: equalityE) lemma empty_not_UNIV[simp]: "{} \ UNIV" by blast subsubsection \The Powerset operator -- Pow\ definition Pow :: "'a set \ 'a set set" where Pow_def: "Pow A = {B. B \ A}" lemma Pow_iff [iff]: "A \ Pow B \ A \ B" by (simp add: Pow_def) lemma PowI: "A \ B \ A \ Pow B" by (simp add: Pow_def) lemma PowD: "A \ Pow B \ A \ B" by (simp add: Pow_def) lemma Pow_bottom: "{} \ Pow B" by simp lemma Pow_top: "A \ Pow A" by simp lemma Pow_not_empty: "Pow A \ {}" using Pow_top by blast subsubsection \Set complement\ lemma Compl_iff [simp]: "c \ - A \ c \ A" by (simp add: fun_Compl_def uminus_set_def) lemma ComplI [intro!]: "(c \ A \ False) \ c \ - A" by (simp add: fun_Compl_def uminus_set_def) blast text \ \<^medskip> This form, with negated conclusion, works well with the Classical prover. Negated assumptions behave like formulae on the right side of the notional turnstile \dots \ lemma ComplD [dest!]: "c \ - A \ c \ A" by simp lemmas ComplE = ComplD [elim_format] lemma Compl_eq: "- A = {x. \ x \ A}" by blast subsubsection \Binary intersection\ abbreviation inter :: "'a set \ 'a set \ 'a set" (infixl "\" 70) where "(\) \ inf" notation (ASCII) inter (infixl "Int" 70) lemma Int_def: "A \ B = {x. x \ A \ x \ B}" by (simp add: inf_set_def inf_fun_def) lemma Int_iff [simp]: "c \ A \ B \ c \ A \ c \ B" unfolding Int_def by blast lemma IntI [intro!]: "c \ A \ c \ B \ c \ A \ B" by simp lemma IntD1: "c \ A \ B \ c \ A" by simp lemma IntD2: "c \ A \ B \ c \ B" by simp lemma IntE [elim!]: "c \ A \ B \ (c \ A \ c \ B \ P) \ P" by simp lemma mono_Int: "mono f \ f (A \ B) \ f A \ f B" by (fact mono_inf) subsubsection \Binary union\ abbreviation union :: "'a set \ 'a set \ 'a set" (infixl "\" 65) where "union \ sup" notation (ASCII) union (infixl "Un" 65) lemma Un_def: "A \ B = {x. x \ A \ x \ B}" by (simp add: sup_set_def sup_fun_def) lemma Un_iff [simp]: "c \ A \ B \ c \ A \ c \ B" unfolding Un_def by blast lemma UnI1 [elim?]: "c \ A \ c \ A \ B" by simp lemma UnI2 [elim?]: "c \ B \ c \ A \ B" by simp text \\<^medskip> Classical introduction rule: no commitment to \A\ vs. \B\.\ lemma UnCI [intro!]: "(c \ B \ c \ A) \ c \ A \ B" by auto lemma UnE [elim!]: "c \ A \ B \ (c \ A \ P) \ (c \ B \ P) \ P" unfolding Un_def by blast lemma insert_def: "insert a B = {x. x = a} \ B" by (simp add: insert_compr Un_def) lemma mono_Un: "mono f \ f A \ f B \ f (A \ B)" by (fact mono_sup) subsubsection \Set difference\ lemma Diff_iff [simp]: "c \ A - B \ c \ A \ c \ B" by (simp add: minus_set_def fun_diff_def) lemma DiffI [intro!]: "c \ A \ c \ B \ c \ A - B" by simp lemma DiffD1: "c \ A - B \ c \ A" by simp lemma DiffD2: "c \ A - B \ c \ B \ P" by simp lemma DiffE [elim!]: "c \ A - B \ (c \ A \ c \ B \ P) \ P" by simp lemma set_diff_eq: "A - B = {x. x \ A \ x \ B}" by blast lemma Compl_eq_Diff_UNIV: "- A = (UNIV - A)" by blast subsubsection \Augmenting a set -- \<^const>\insert\\ lemma insert_iff [simp]: "a \ insert b A \ a = b \ a \ A" unfolding insert_def by blast lemma insertI1: "a \ insert a B" by simp lemma insertI2: "a \ B \ a \ insert b B" by simp lemma insertE [elim!]: "a \ insert b A \ (a = b \ P) \ (a \ A \ P) \ P" unfolding insert_def by blast lemma insertCI [intro!]: "(a \ B \ a = b) \ a \ insert b B" \ \Classical introduction rule.\ by auto lemma subset_insert_iff: "A \ insert x B \ (if x \ A then A - {x} \ B else A \ B)" by auto lemma set_insert: assumes "x \ A" obtains B where "A = insert x B" and "x \ B" proof show "A = insert x (A - {x})" using assms by blast show "x \ A - {x}" by blast qed lemma insert_ident: "x \ A \ x \ B \ insert x A = insert x B \ A = B" by auto lemma insert_eq_iff: assumes "a \ A" "b \ B" shows "insert a A = insert b B \ (if a = b then A = B else \C. A = insert b C \ b \ C \ B = insert a C \ a \ C)" (is "?L \ ?R") proof show ?R if ?L proof (cases "a = b") case True with assms \?L\ show ?R by (simp add: insert_ident) next case False let ?C = "A - {b}" have "A = insert b ?C \ b \ ?C \ B = insert a ?C \ a \ ?C" using assms \?L\ \a \ b\ by auto then show ?R using \a \ b\ by auto qed show ?L if ?R using that by (auto split: if_splits) qed lemma insert_UNIV: "insert x UNIV = UNIV" by auto subsubsection \Singletons, using insert\ lemma singletonI [intro!]: "a \ {a}" \ \Redundant? But unlike \insertCI\, it proves the subgoal immediately!\ by (rule insertI1) lemma singletonD [dest!]: "b \ {a} \ b = a" by blast lemmas singletonE = singletonD [elim_format] lemma singleton_iff: "b \ {a} \ b = a" by blast lemma singleton_inject [dest!]: "{a} = {b} \ a = b" by blast lemma singleton_insert_inj_eq [iff]: "{b} = insert a A \ a = b \ A \ {b}" by blast lemma singleton_insert_inj_eq' [iff]: "insert a A = {b} \ a = b \ A \ {b}" by blast lemma subset_singletonD: "A \ {x} \ A = {} \ A = {x}" by fast lemma subset_singleton_iff: "X \ {a} \ X = {} \ X = {a}" by blast lemma subset_singleton_iff_Uniq: "(\a. A \ {a}) \ (\\<^sub>\\<^sub>1x. x \ A)" unfolding Uniq_def by blast lemma singleton_conv [simp]: "{x. x = a} = {a}" by blast lemma singleton_conv2 [simp]: "{x. a = x} = {a}" by blast lemma Diff_single_insert: "A - {x} \ B \ A \ insert x B" by blast lemma subset_Diff_insert: "A \ B - insert x C \ A \ B - C \ x \ A" by blast lemma doubleton_eq_iff: "{a, b} = {c, d} \ a = c \ b = d \ a = d \ b = c" by (blast elim: equalityE) lemma Un_singleton_iff: "A \ B = {x} \ A = {} \ B = {x} \ A = {x} \ B = {} \ A = {x} \ B = {x}" by auto lemma singleton_Un_iff: "{x} = A \ B \ A = {} \ B = {x} \ A = {x} \ B = {} \ A = {x} \ B = {x}" by auto subsubsection \Image of a set under a function\ text \Frequently \b\ does not have the syntactic form of \f x\.\ definition image :: "('a \ 'b) \ 'a set \ 'b set" (infixr "`" 90) where "f ` A = {y. \x\A. y = f x}" lemma image_eqI [simp, intro]: "b = f x \ x \ A \ b \ f ` A" unfolding image_def by blast lemma imageI: "x \ A \ f x \ f ` A" by (rule image_eqI) (rule refl) lemma rev_image_eqI: "x \ A \ b = f x \ b \ f ` A" \ \This version's more effective when we already have the required \x\.\ by (rule image_eqI) lemma imageE [elim!]: assumes "b \ (\x. f x) ` A" \ \The eta-expansion gives variable-name preservation.\ obtains x where "b = f x" and "x \ A" using assms unfolding image_def by blast lemma Compr_image_eq: "{x \ f ` A. P x} = f ` {x \ A. P (f x)}" by auto lemma image_Un: "f ` (A \ B) = f ` A \ f ` B" by blast lemma image_iff: "z \ f ` A \ (\x\A. z = f x)" by blast lemma image_subsetI: "(\x. x \ A \ f x \ B) \ f ` A \ B" \ \Replaces the three steps \subsetI\, \imageE\, \hypsubst\, but breaks too many existing proofs.\ by blast lemma image_subset_iff: "f ` A \ B \ (\x\A. f x \ B)" \ \This rewrite rule would confuse users if made default.\ by blast lemma subset_imageE: assumes "B \ f ` A" obtains C where "C \ A" and "B = f ` C" proof - from assms have "B = f ` {a \ A. f a \ B}" by fast moreover have "{a \ A. f a \ B} \ A" by blast ultimately show thesis by (blast intro: that) qed lemma subset_image_iff: "B \ f ` A \ (\AA\A. B = f ` AA)" by (blast elim: subset_imageE) lemma image_ident [simp]: "(\x. x) ` Y = Y" by blast lemma image_empty [simp]: "f ` {} = {}" by blast lemma image_insert [simp]: "f ` insert a B = insert (f a) (f ` B)" by blast lemma image_constant: "x \ A \ (\x. c) ` A = {c}" by auto lemma image_constant_conv: "(\x. c) ` A = (if A = {} then {} else {c})" by auto lemma image_image: "f ` (g ` A) = (\x. f (g x)) ` A" by blast lemma insert_image [simp]: "x \ A \ insert (f x) (f ` A) = f ` A" by blast lemma image_is_empty [iff]: "f ` A = {} \ A = {}" by blast lemma empty_is_image [iff]: "{} = f ` A \ A = {}" by blast lemma image_Collect: "f ` {x. P x} = {f x | x. P x}" \ \NOT suitable as a default simp rule: the RHS isn't simpler than the LHS, with its implicit quantifier and conjunction. Also image enjoys better equational properties than does the RHS.\ by blast lemma if_image_distrib [simp]: "(\x. if P x then f x else g x) ` S = f ` (S \ {x. P x}) \ g ` (S \ {x. \ P x})" by auto lemma image_cong: "f ` M = g ` N" if "M = N" "\x. x \ N \ f x = g x" using that by (simp add: image_def) lemma image_cong_simp [cong]: "f ` M = g ` N" if "M = N" "\x. x \ N =simp=> f x = g x" using that image_cong [of M N f g] by (simp add: simp_implies_def) lemma image_Int_subset: "f ` (A \ B) \ f ` A \ f ` B" by blast lemma image_diff_subset: "f ` A - f ` B \ f ` (A - B)" by blast lemma Setcompr_eq_image: "{f x |x. x \ A} = f ` A" by blast lemma setcompr_eq_image: "{f x |x. P x} = f ` {x. P x}" by auto lemma ball_imageD: "\x\f ` A. P x \ \x\A. P (f x)" by simp lemma bex_imageD: "\x\f ` A. P x \ \x\A. P (f x)" by auto lemma image_add_0 [simp]: "(+) (0::'a::comm_monoid_add) ` S = S" by auto text \\<^medskip> Range of a function -- just an abbreviation for image!\ abbreviation range :: "('a \ 'b) \ 'b set" \ \of function\ where "range f \ f ` UNIV" lemma range_eqI: "b = f x \ b \ range f" by simp lemma rangeI: "f x \ range f" by simp lemma rangeE [elim?]: "b \ range (\x. f x) \ (\x. b = f x \ P) \ P" by (rule imageE) lemma full_SetCompr_eq: "{u. \x. u = f x} = range f" by auto lemma range_composition: "range (\x. f (g x)) = f ` range g" by auto lemma range_constant [simp]: "range (\_. x) = {x}" by (simp add: image_constant) lemma range_eq_singletonD: "range f = {a} \ f x = a" by auto subsubsection \Some rules with \if\\ text \Elimination of \{x. \ \ x = t \ \}\.\ lemma Collect_conv_if: "{x. x = a \ P x} = (if P a then {a} else {})" by auto lemma Collect_conv_if2: "{x. a = x \ P x} = (if P a then {a} else {})" by auto text \ Rewrite rules for boolean case-splitting: faster than \if_split [split]\. \ lemma if_split_eq1: "(if Q then x else y) = b \ (Q \ x = b) \ (\ Q \ y = b)" by (rule if_split) lemma if_split_eq2: "a = (if Q then x else y) \ (Q \ a = x) \ (\ Q \ a = y)" by (rule if_split) text \ Split ifs on either side of the membership relation. Not for \[simp]\ -- can cause goals to blow up! \ lemma if_split_mem1: "(if Q then x else y) \ b \ (Q \ x \ b) \ (\ Q \ y \ b)" by (rule if_split) lemma if_split_mem2: "(a \ (if Q then x else y)) \ (Q \ a \ x) \ (\ Q \ a \ y)" by (rule if_split [where P = "\S. a \ S"]) lemmas split_ifs = if_bool_eq_conj if_split_eq1 if_split_eq2 if_split_mem1 if_split_mem2 (*Would like to add these, but the existing code only searches for the outer-level constant, which in this case is just Set.member; we instead need to use term-nets to associate patterns with rules. Also, if a rule fails to apply, then the formula should be kept. [("uminus", Compl_iff RS iffD1), ("minus", [Diff_iff RS iffD1]), ("Int", [IntD1,IntD2]), ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])] *) subsection \Further operations and lemmas\ subsubsection \The ``proper subset'' relation\ lemma psubsetI [intro!]: "A \ B \ A \ B \ A \ B" unfolding less_le by blast lemma psubsetE [elim!]: "A \ B \ (A \ B \ \ B \ A \ R) \ R" unfolding less_le by blast lemma psubset_insert_iff: "A \ insert x B \ (if x \ B then A \ B else if x \ A then A - {x} \ B else A \ B)" by (auto simp add: less_le subset_insert_iff) lemma psubset_eq: "A \ B \ A \ B \ A \ B" by (simp only: less_le) lemma psubset_imp_subset: "A \ B \ A \ B" by (simp add: psubset_eq) lemma psubset_trans: "A \ B \ B \ C \ A \ C" unfolding less_le by (auto dest: subset_antisym) lemma psubsetD: "A \ B \ c \ A \ c \ B" unfolding less_le by (auto dest: subsetD) lemma psubset_subset_trans: "A \ B \ B \ C \ A \ C" by (auto simp add: psubset_eq) lemma subset_psubset_trans: "A \ B \ B \ C \ A \ C" by (auto simp add: psubset_eq) lemma psubset_imp_ex_mem: "A \ B \ \b. b \ B - A" unfolding less_le by blast lemma atomize_ball: "(\x. x \ A \ P x) \ Trueprop (\x\A. P x)" by (simp only: Ball_def atomize_all atomize_imp) lemmas [symmetric, rulify] = atomize_ball and [symmetric, defn] = atomize_ball lemma image_Pow_mono: "f ` A \ B \ image f ` Pow A \ Pow B" by blast lemma image_Pow_surj: "f ` A = B \ image f ` Pow A = Pow B" by (blast elim: subset_imageE) subsubsection \Derived rules involving subsets.\ text \\insert\.\ lemma subset_insertI: "B \ insert a B" by (rule subsetI) (erule insertI2) lemma subset_insertI2: "A \ B \ A \ insert b B" by blast lemma subset_insert: "x \ A \ A \ insert x B \ A \ B" by blast text \\<^medskip> Finite Union -- the least upper bound of two sets.\ lemma Un_upper1: "A \ A \ B" by (fact sup_ge1) lemma Un_upper2: "B \ A \ B" by (fact sup_ge2) lemma Un_least: "A \ C \ B \ C \ A \ B \ C" by (fact sup_least) text \\<^medskip> Finite Intersection -- the greatest lower bound of two sets.\ lemma Int_lower1: "A \ B \ A" by (fact inf_le1) lemma Int_lower2: "A \ B \ B" by (fact inf_le2) lemma Int_greatest: "C \ A \ C \ B \ C \ A \ B" by (fact inf_greatest) text \\<^medskip> Set difference.\ lemma Diff_subset[simp]: "A - B \ A" by blast lemma Diff_subset_conv: "A - B \ C \ A \ B \ C" by blast subsubsection \Equalities involving union, intersection, inclusion, etc.\ text \\{}\.\ lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})" \ \supersedes \Collect_False_empty\\ by auto lemma subset_empty [simp]: "A \ {} \ A = {}" by (fact bot_unique) lemma not_psubset_empty [iff]: "\ (A < {})" by (fact not_less_bot) (* FIXME: already simp *) lemma Collect_subset [simp]: "{x\A. P x} \ A" by auto lemma Collect_empty_eq [simp]: "Collect P = {} \ (\x. \ P x)" by blast lemma empty_Collect_eq [simp]: "{} = Collect P \ (\x. \ P x)" by blast lemma Collect_neg_eq: "{x. \ P x} = - {x. P x}" by blast lemma Collect_disj_eq: "{x. P x \ Q x} = {x. P x} \ {x. Q x}" by blast lemma Collect_imp_eq: "{x. P x \ Q x} = - {x. P x} \ {x. Q x}" by blast lemma Collect_conj_eq: "{x. P x \ Q x} = {x. P x} \ {x. Q x}" by blast lemma Collect_mono_iff: "Collect P \ Collect Q \ (\x. P x \ Q x)" by blast text \\<^medskip> \insert\.\ lemma insert_is_Un: "insert a A = {a} \ A" \ \NOT SUITABLE FOR REWRITING since \{a} \ insert a {}\\ by blast lemma insert_not_empty [simp]: "insert a A \ {}" and empty_not_insert [simp]: "{} \ insert a A" by blast+ lemma insert_absorb: "a \ A \ insert a A = A" \ \\[simp]\ causes recursive calls when there are nested inserts\ \ \with \<^emph>\quadratic\ running time\ by blast lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A" by blast lemma insert_commute: "insert x (insert y A) = insert y (insert x A)" by blast lemma insert_subset [simp]: "insert x A \ B \ x \ B \ A \ B" by blast lemma mk_disjoint_insert: "a \ A \ \B. A = insert a B \ a \ B" \ \use new \B\ rather than \A - {a}\ to avoid infinite unfolding\ by (rule exI [where x = "A - {a}"]) blast lemma insert_Collect: "insert a (Collect P) = {u. u \ a \ P u}" by auto lemma insert_inter_insert [simp]: "insert a A \ insert a B = insert a (A \ B)" by blast lemma insert_disjoint [simp]: "insert a A \ B = {} \ a \ B \ A \ B = {}" "{} = insert a A \ B \ a \ B \ {} = A \ B" by auto lemma disjoint_insert [simp]: "B \ insert a A = {} \ a \ B \ B \ A = {}" "{} = A \ insert b B \ b \ A \ {} = A \ B" by auto text \\<^medskip> \Int\\ lemma Int_absorb: "A \ A = A" by (fact inf_idem) (* already simp *) lemma Int_left_absorb: "A \ (A \ B) = A \ B" by (fact inf_left_idem) lemma Int_commute: "A \ B = B \ A" by (fact inf_commute) lemma Int_left_commute: "A \ (B \ C) = B \ (A \ C)" by (fact inf_left_commute) lemma Int_assoc: "(A \ B) \ C = A \ (B \ C)" by (fact inf_assoc) lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute \ \Intersection is an AC-operator\ lemma Int_absorb1: "B \ A \ A \ B = B" by (fact inf_absorb2) lemma Int_absorb2: "A \ B \ A \ B = A" by (fact inf_absorb1) lemma Int_empty_left: "{} \ B = {}" by (fact inf_bot_left) (* already simp *) lemma Int_empty_right: "A \ {} = {}" by (fact inf_bot_right) (* already simp *) lemma disjoint_eq_subset_Compl: "A \ B = {} \ A \ - B" by blast lemma disjoint_iff: "A \ B = {} \ (\x. x\A \ x \ B)" by blast lemma disjoint_iff_not_equal: "A \ B = {} \ (\x\A. \y\B. x \ y)" by blast lemma Int_UNIV_left: "UNIV \ B = B" by (fact inf_top_left) (* already simp *) lemma Int_UNIV_right: "A \ UNIV = A" by (fact inf_top_right) (* already simp *) lemma Int_Un_distrib: "A \ (B \ C) = (A \ B) \ (A \ C)" by (fact inf_sup_distrib1) lemma Int_Un_distrib2: "(B \ C) \ A = (B \ A) \ (C \ A)" by (fact inf_sup_distrib2) lemma Int_UNIV [simp]: "A \ B = UNIV \ A = UNIV \ B = UNIV" by (fact inf_eq_top_iff) (* already simp *) lemma Int_subset_iff [simp]: "C \ A \ B \ C \ A \ C \ B" by (fact le_inf_iff) lemma Int_Collect: "x \ A \ {x. P x} \ x \ A \ P x" by blast text \\<^medskip> \Un\.\ lemma Un_absorb: "A \ A = A" by (fact sup_idem) (* already simp *) lemma Un_left_absorb: "A \ (A \ B) = A \ B" by (fact sup_left_idem) lemma Un_commute: "A \ B = B \ A" by (fact sup_commute) lemma Un_left_commute: "A \ (B \ C) = B \ (A \ C)" by (fact sup_left_commute) lemma Un_assoc: "(A \ B) \ C = A \ (B \ C)" by (fact sup_assoc) lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute \ \Union is an AC-operator\ lemma Un_absorb1: "A \ B \ A \ B = B" by (fact sup_absorb2) lemma Un_absorb2: "B \ A \ A \ B = A" by (fact sup_absorb1) lemma Un_empty_left: "{} \ B = B" by (fact sup_bot_left) (* already simp *) lemma Un_empty_right: "A \ {} = A" by (fact sup_bot_right) (* already simp *) lemma Un_UNIV_left: "UNIV \ B = UNIV" by (fact sup_top_left) (* already simp *) lemma Un_UNIV_right: "A \ UNIV = UNIV" by (fact sup_top_right) (* already simp *) lemma Un_insert_left [simp]: "(insert a B) \ C = insert a (B \ C)" by blast lemma Un_insert_right [simp]: "A \ (insert a B) = insert a (A \ B)" by blast lemma Int_insert_left: "(insert a B) \ C = (if a \ C then insert a (B \ C) else B \ C)" by auto lemma Int_insert_left_if0 [simp]: "a \ C \ (insert a B) \ C = B \ C" by auto lemma Int_insert_left_if1 [simp]: "a \ C \ (insert a B) \ C = insert a (B \ C)" by auto lemma Int_insert_right: "A \ (insert a B) = (if a \ A then insert a (A \ B) else A \ B)" by auto lemma Int_insert_right_if0 [simp]: "a \ A \ A \ (insert a B) = A \ B" by auto lemma Int_insert_right_if1 [simp]: "a \ A \ A \ (insert a B) = insert a (A \ B)" by auto lemma Un_Int_distrib: "A \ (B \ C) = (A \ B) \ (A \ C)" by (fact sup_inf_distrib1) lemma Un_Int_distrib2: "(B \ C) \ A = (B \ A) \ (C \ A)" by (fact sup_inf_distrib2) lemma Un_Int_crazy: "(A \ B) \ (B \ C) \ (C \ A) = (A \ B) \ (B \ C) \ (C \ A)" by blast lemma subset_Un_eq: "A \ B \ A \ B = B" by (fact le_iff_sup) lemma Un_empty [iff]: "A \ B = {} \ A = {} \ B = {}" by (fact sup_eq_bot_iff) (* FIXME: already simp *) lemma Un_subset_iff [simp]: "A \ B \ C \ A \ C \ B \ C" by (fact le_sup_iff) lemma Un_Diff_Int: "(A - B) \ (A \ B) = A" by blast lemma Diff_Int2: "A \ C - B \ C = A \ C - B" by blast lemma subset_UnE: assumes "C \ A \ B" obtains A' B' where "A' \ A" "B' \ B" "C = A' \ B'" proof show "C \ A \ A" "C \ B \ B" "C = (C \ A) \ (C \ B)" using assms by blast+ qed +lemma Un_Int_eq [simp]: "(S \ T) \ S = S" "(S \ T) \ T = T" "S \ (S \ T) = S" "T \ (S \ T) = T" + by auto + +lemma Int_Un_eq [simp]: "(S \ T) \ S = S" "(S \ T) \ T = T" "S \ (S \ T) = S" "T \ (S \ T) = T" + by auto + text \\<^medskip> Set complement\ lemma Compl_disjoint [simp]: "A \ - A = {}" by (fact inf_compl_bot) lemma Compl_disjoint2 [simp]: "- A \ A = {}" by (fact compl_inf_bot) lemma Compl_partition: "A \ - A = UNIV" by (fact sup_compl_top) lemma Compl_partition2: "- A \ A = UNIV" by (fact compl_sup_top) lemma double_complement: "- (-A) = A" for A :: "'a set" by (fact double_compl) (* already simp *) lemma Compl_Un: "- (A \ B) = (- A) \ (- B)" by (fact compl_sup) (* already simp *) lemma Compl_Int: "- (A \ B) = (- A) \ (- B)" by (fact compl_inf) (* already simp *) lemma subset_Compl_self_eq: "A \ - A \ A = {}" by blast lemma Un_Int_assoc_eq: "(A \ B) \ C = A \ (B \ C) \ C \ A" \ \Halmos, Naive Set Theory, page 16.\ by blast lemma Compl_UNIV_eq: "- UNIV = {}" by (fact compl_top_eq) (* already simp *) lemma Compl_empty_eq: "- {} = UNIV" by (fact compl_bot_eq) (* already simp *) lemma Compl_subset_Compl_iff [iff]: "- A \ - B \ B \ A" by (fact compl_le_compl_iff) (* FIXME: already simp *) lemma Compl_eq_Compl_iff [iff]: "- A = - B \ A = B" for A B :: "'a set" by (fact compl_eq_compl_iff) (* FIXME: already simp *) lemma Compl_insert: "- insert x A = (- A) - {x}" by blast text \\<^medskip> Bounded quantifiers. The following are not added to the default simpset because (a) they duplicate the body and (b) there are no similar rules for \Int\. \ lemma ball_Un: "(\x \ A \ B. P x) \ (\x\A. P x) \ (\x\B. P x)" by blast lemma bex_Un: "(\x \ A \ B. P x) \ (\x\A. P x) \ (\x\B. P x)" by blast text \\<^medskip> Set difference.\ lemma Diff_eq: "A - B = A \ (- B)" by blast lemma Diff_eq_empty_iff [simp]: "A - B = {} \ A \ B" by blast lemma Diff_cancel [simp]: "A - A = {}" by blast lemma Diff_idemp [simp]: "(A - B) - B = A - B" for A B :: "'a set" by blast lemma Diff_triv: "A \ B = {} \ A - B = A" by (blast elim: equalityE) lemma empty_Diff [simp]: "{} - A = {}" by blast lemma Diff_empty [simp]: "A - {} = A" by blast lemma Diff_UNIV [simp]: "A - UNIV = {}" by blast lemma Diff_insert0 [simp]: "x \ A \ A - insert x B = A - B" by blast lemma Diff_insert: "A - insert a B = A - B - {a}" \ \NOT SUITABLE FOR REWRITING since \{a} \ insert a 0\\ by blast lemma Diff_insert2: "A - insert a B = A - {a} - B" \ \NOT SUITABLE FOR REWRITING since \{a} \ insert a 0\\ by blast lemma insert_Diff_if: "insert x A - B = (if x \ B then A - B else insert x (A - B))" by auto lemma insert_Diff1 [simp]: "x \ B \ insert x A - B = A - B" by blast lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A" by blast lemma insert_Diff: "a \ A \ insert a (A - {a}) = A" by blast lemma Diff_insert_absorb: "x \ A \ (insert x A) - {x} = A" by auto lemma Diff_disjoint [simp]: "A \ (B - A) = {}" by blast lemma Diff_partition: "A \ B \ A \ (B - A) = B" by blast lemma double_diff: "A \ B \ B \ C \ B - (C - A) = A" by blast lemma Un_Diff_cancel [simp]: "A \ (B - A) = A \ B" by blast lemma Un_Diff_cancel2 [simp]: "(B - A) \ A = B \ A" by blast lemma Diff_Un: "A - (B \ C) = (A - B) \ (A - C)" by blast lemma Diff_Int: "A - (B \ C) = (A - B) \ (A - C)" by blast lemma Diff_Diff_Int: "A - (A - B) = A \ B" by blast lemma Un_Diff: "(A \ B) - C = (A - C) \ (B - C)" by blast lemma Int_Diff: "(A \ B) - C = A \ (B - C)" by blast lemma Diff_Int_distrib: "C \ (A - B) = (C \ A) - (C \ B)" by blast lemma Diff_Int_distrib2: "(A - B) \ C = (A \ C) - (B \ C)" by blast lemma Diff_Compl [simp]: "A - (- B) = A \ B" by auto lemma Compl_Diff_eq [simp]: "- (A - B) = - A \ B" by blast lemma subset_Compl_singleton [simp]: "A \ - {b} \ b \ A" by blast text \\<^medskip> Quantification over type \<^typ>\bool\.\ lemma bool_induct: "P True \ P False \ P x" by (cases x) auto lemma all_bool_eq: "(\b. P b) \ P True \ P False" by (auto intro: bool_induct) lemma bool_contrapos: "P x \ \ P False \ P True" by (cases x) auto lemma ex_bool_eq: "(\b. P b) \ P True \ P False" by (auto intro: bool_contrapos) lemma UNIV_bool: "UNIV = {False, True}" by (auto intro: bool_induct) text \\<^medskip> \Pow\\ lemma Pow_empty [simp]: "Pow {} = {{}}" by (auto simp add: Pow_def) lemma Pow_singleton_iff [simp]: "Pow X = {Y} \ X = {} \ Y = {}" by blast (* somewhat slow *) lemma Pow_insert: "Pow (insert a A) = Pow A \ (insert a ` Pow A)" by (blast intro: image_eqI [where ?x = "u - {a}" for u]) lemma Pow_Compl: "Pow (- A) = {- B | B. A \ Pow B}" by (blast intro: exI [where ?x = "- u" for u]) lemma Pow_UNIV [simp]: "Pow UNIV = UNIV" by blast lemma Un_Pow_subset: "Pow A \ Pow B \ Pow (A \ B)" by blast lemma Pow_Int_eq [simp]: "Pow (A \ B) = Pow A \ Pow B" by blast text \\<^medskip> Miscellany.\ lemma set_eq_subset: "A = B \ A \ B \ B \ A" by blast lemma subset_iff: "A \ B \ (\t. t \ A \ t \ B)" by blast lemma subset_iff_psubset_eq: "A \ B \ A \ B \ A = B" unfolding less_le by blast lemma all_not_in_conv [simp]: "(\x. x \ A) \ A = {}" by blast lemma ex_in_conv: "(\x. x \ A) \ A \ {}" by blast lemma ball_simps [simp, no_atp]: "\A P Q. (\x\A. P x \ Q) \ ((\x\A. P x) \ Q)" "\A P Q. (\x\A. P \ Q x) \ (P \ (\x\A. Q x))" "\A P Q. (\x\A. P \ Q x) \ (P \ (\x\A. Q x))" "\A P Q. (\x\A. P x \ Q) \ ((\x\A. P x) \ Q)" "\P. (\x\{}. P x) \ True" "\P. (\x\UNIV. P x) \ (\x. P x)" "\a B P. (\x\insert a B. P x) \ (P a \ (\x\B. P x))" "\P Q. (\x\Collect Q. P x) \ (\x. Q x \ P x)" "\A P f. (\x\f`A. P x) \ (\x\A. P (f x))" "\A P. (\ (\x\A. P x)) \ (\x\A. \ P x)" by auto lemma bex_simps [simp, no_atp]: "\A P Q. (\x\A. P x \ Q) \ ((\x\A. P x) \ Q)" "\A P Q. (\x\A. P \ Q x) \ (P \ (\x\A. Q x))" "\P. (\x\{}. P x) \ False" "\P. (\x\UNIV. P x) \ (\x. P x)" "\a B P. (\x\insert a B. P x) \ (P a \ (\x\B. P x))" "\P Q. (\x\Collect Q. P x) \ (\x. Q x \ P x)" "\A P f. (\x\f`A. P x) \ (\x\A. P (f x))" "\A P. (\(\x\A. P x)) \ (\x\A. \ P x)" by auto lemma ex_image_cong_iff [simp, no_atp]: "(\x. x\f`A) \ A \ {}" "(\x. x\f`A \ P x) \ (\x\A. P (f x))" by auto subsubsection \Monotonicity of various operations\ lemma image_mono: "A \ B \ f ` A \ f ` B" by blast lemma Pow_mono: "A \ B \ Pow A \ Pow B" by blast lemma insert_mono: "C \ D \ insert a C \ insert a D" by blast lemma Un_mono: "A \ C \ B \ D \ A \ B \ C \ D" by (fact sup_mono) lemma Int_mono: "A \ C \ B \ D \ A \ B \ C \ D" by (fact inf_mono) lemma Diff_mono: "A \ C \ D \ B \ A - B \ C - D" by blast lemma Compl_anti_mono: "A \ B \ - B \ - A" by (fact compl_mono) text \\<^medskip> Monotonicity of implications.\ lemma in_mono: "A \ B \ x \ A \ x \ B" by (rule impI) (erule subsetD) lemma conj_mono: "P1 \ Q1 \ P2 \ Q2 \ (P1 \ P2) \ (Q1 \ Q2)" by iprover lemma disj_mono: "P1 \ Q1 \ P2 \ Q2 \ (P1 \ P2) \ (Q1 \ Q2)" by iprover lemma imp_mono: "Q1 \ P1 \ P2 \ Q2 \ (P1 \ P2) \ (Q1 \ Q2)" by iprover lemma imp_refl: "P \ P" .. lemma not_mono: "Q \ P \ \ P \ \ Q" by iprover lemma ex_mono: "(\x. P x \ Q x) \ (\x. P x) \ (\x. Q x)" by iprover lemma all_mono: "(\x. P x \ Q x) \ (\x. P x) \ (\x. Q x)" by iprover lemma Collect_mono: "(\x. P x \ Q x) \ Collect P \ Collect Q" by blast lemma Int_Collect_mono: "A \ B \ (\x. x \ A \ P x \ Q x) \ A \ Collect P \ B \ Collect Q" by blast lemmas basic_monos = subset_refl imp_refl disj_mono conj_mono ex_mono Collect_mono in_mono lemma eq_to_mono: "a = b \ c = d \ b \ d \ a \ c" by iprover subsubsection \Inverse image of a function\ definition vimage :: "('a \ 'b) \ 'b set \ 'a set" (infixr "-`" 90) where "f -` B \ {x. f x \ B}" lemma vimage_eq [simp]: "a \ f -` B \ f a \ B" unfolding vimage_def by blast lemma vimage_singleton_eq: "a \ f -` {b} \ f a = b" by simp lemma vimageI [intro]: "f a = b \ b \ B \ a \ f -` B" unfolding vimage_def by blast lemma vimageI2: "f a \ A \ a \ f -` A" unfolding vimage_def by fast lemma vimageE [elim!]: "a \ f -` B \ (\x. f a = x \ x \ B \ P) \ P" unfolding vimage_def by blast lemma vimageD: "a \ f -` A \ f a \ A" unfolding vimage_def by fast lemma vimage_empty [simp]: "f -` {} = {}" by blast lemma vimage_Compl: "f -` (- A) = - (f -` A)" by blast lemma vimage_Un [simp]: "f -` (A \ B) = (f -` A) \ (f -` B)" by blast lemma vimage_Int [simp]: "f -` (A \ B) = (f -` A) \ (f -` B)" by fast lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}" by blast lemma vimage_Collect: "(\x. P (f x) = Q x) \ f -` (Collect P) = Collect Q" by blast lemma vimage_insert: "f -` (insert a B) = (f -` {a}) \ (f -` B)" \ \NOT suitable for rewriting because of the recurrence of \{a}\.\ by blast lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)" by blast lemma vimage_UNIV [simp]: "f -` UNIV = UNIV" by blast lemma vimage_mono: "A \ B \ f -` A \ f -` B" \ \monotonicity\ by blast lemma vimage_image_eq: "f -` (f ` A) = {y. \x\A. f x = f y}" by (blast intro: sym) lemma image_vimage_subset: "f ` (f -` A) \ A" by blast lemma image_vimage_eq [simp]: "f ` (f -` A) = A \ range f" by blast lemma image_subset_iff_subset_vimage: "f ` A \ B \ A \ f -` B" by blast lemma vimage_const [simp]: "((\x. c) -` A) = (if c \ A then UNIV else {})" by auto lemma vimage_if [simp]: "((\x. if x \ B then c else d) -` A) = (if c \ A then (if d \ A then UNIV else B) else if d \ A then - B else {})" by (auto simp add: vimage_def) lemma vimage_inter_cong: "(\ w. w \ S \ f w = g w) \ f -` y \ S = g -` y \ S" by auto lemma vimage_ident [simp]: "(\x. x) -` Y = Y" by blast subsubsection \Singleton sets\ definition is_singleton :: "'a set \ bool" where "is_singleton A \ (\x. A = {x})" lemma is_singletonI [simp, intro!]: "is_singleton {x}" unfolding is_singleton_def by simp lemma is_singletonI': "A \ {} \ (\x y. x \ A \ y \ A \ x = y) \ is_singleton A" unfolding is_singleton_def by blast lemma is_singletonE: "is_singleton A \ (\x. A = {x} \ P) \ P" unfolding is_singleton_def by blast subsubsection \Getting the contents of a singleton set\ definition the_elem :: "'a set \ 'a" where "the_elem X = (THE x. X = {x})" lemma the_elem_eq [simp]: "the_elem {x} = x" by (simp add: the_elem_def) lemma is_singleton_the_elem: "is_singleton A \ A = {the_elem A}" by (auto simp: is_singleton_def) lemma the_elem_image_unique: assumes "A \ {}" and *: "\y. y \ A \ f y = f x" shows "the_elem (f ` A) = f x" unfolding the_elem_def proof (rule the1_equality) from \A \ {}\ obtain y where "y \ A" by auto with * have "f x = f y" by simp with \y \ A\ have "f x \ f ` A" by blast with * show "f ` A = {f x}" by auto then show "\!x. f ` A = {x}" by auto qed subsubsection \Least value operator\ lemma Least_mono: "mono f \ \x\S. \y\S. x \ y \ (LEAST y. y \ f ` S) = f (LEAST x. x \ S)" for f :: "'a::order \ 'b::order" \ \Courtesy of Stephan Merz\ apply clarify apply (erule_tac P = "\x. x \ S" in LeastI2_order) apply fast apply (rule LeastI2_order) apply (auto elim: monoD intro!: order_antisym) done subsubsection \Monad operation\ definition bind :: "'a set \ ('a \ 'b set) \ 'b set" where "bind A f = {x. \B \ f`A. x \ B}" hide_const (open) bind lemma bind_bind: "Set.bind (Set.bind A B) C = Set.bind A (\x. Set.bind (B x) C)" for A :: "'a set" by (auto simp: bind_def) lemma empty_bind [simp]: "Set.bind {} f = {}" by (simp add: bind_def) lemma nonempty_bind_const: "A \ {} \ Set.bind A (\_. B) = B" by (auto simp: bind_def) lemma bind_const: "Set.bind A (\_. B) = (if A = {} then {} else B)" by (auto simp: bind_def) lemma bind_singleton_conv_image: "Set.bind A (\x. {f x}) = f ` A" by (auto simp: bind_def) subsubsection \Operations for execution\ definition is_empty :: "'a set \ bool" where [code_abbrev]: "is_empty A \ A = {}" hide_const (open) is_empty definition remove :: "'a \ 'a set \ 'a set" where [code_abbrev]: "remove x A = A - {x}" hide_const (open) remove lemma member_remove [simp]: "x \ Set.remove y A \ x \ A \ x \ y" by (simp add: remove_def) definition filter :: "('a \ bool) \ 'a set \ 'a set" where [code_abbrev]: "filter P A = {a \ A. P a}" hide_const (open) filter lemma member_filter [simp]: "x \ Set.filter P A \ x \ A \ P x" by (simp add: filter_def) instantiation set :: (equal) equal begin definition "HOL.equal A B \ A \ B \ B \ A" instance by standard (auto simp add: equal_set_def) end text \Misc\ definition pairwise :: "('a \ 'a \ bool) \ 'a set \ bool" where "pairwise R S \ (\x \ S. \y \ S. x \ y \ R x y)" lemma pairwise_alt: "pairwise R S \ (\x\S. \y\S-{x}. R x y)" by (auto simp add: pairwise_def) lemma pairwise_trivial [simp]: "pairwise (\i j. j \ i) I" by (auto simp: pairwise_def) lemma pairwiseI [intro?]: "pairwise R S" if "\x y. x \ S \ y \ S \ x \ y \ R x y" using that by (simp add: pairwise_def) lemma pairwiseD: "R x y" and "R y x" if "pairwise R S" "x \ S" and "y \ S" and "x \ y" using that by (simp_all add: pairwise_def) lemma pairwise_empty [simp]: "pairwise P {}" by (simp add: pairwise_def) lemma pairwise_singleton [simp]: "pairwise P {A}" by (simp add: pairwise_def) lemma pairwise_insert: "pairwise r (insert x s) \ (\y. y \ s \ y \ x \ r x y \ r y x) \ pairwise r s" by (force simp: pairwise_def) lemma pairwise_subset: "pairwise P S \ T \ S \ pairwise P T" by (force simp: pairwise_def) lemma pairwise_mono: "\pairwise P A; \x y. P x y \ Q x y; B \ A\ \ pairwise Q B" by (fastforce simp: pairwise_def) lemma pairwise_imageI: "pairwise P (f ` A)" if "\x y. x \ A \ y \ A \ x \ y \ f x \ f y \ P (f x) (f y)" using that by (auto intro: pairwiseI) lemma pairwise_image: "pairwise r (f ` s) \ pairwise (\x y. (f x \ f y) \ r (f x) (f y)) s" by (force simp: pairwise_def) definition disjnt :: "'a set \ 'a set \ bool" where "disjnt A B \ A \ B = {}" lemma disjnt_self_iff_empty [simp]: "disjnt S S \ S = {}" by (auto simp: disjnt_def) lemma disjnt_iff: "disjnt A B \ (\x. \ (x \ A \ x \ B))" by (force simp: disjnt_def) lemma disjnt_sym: "disjnt A B \ disjnt B A" using disjnt_iff by blast lemma disjnt_empty1 [simp]: "disjnt {} A" and disjnt_empty2 [simp]: "disjnt A {}" by (auto simp: disjnt_def) lemma disjnt_insert1 [simp]: "disjnt (insert a X) Y \ a \ Y \ disjnt X Y" by (simp add: disjnt_def) lemma disjnt_insert2 [simp]: "disjnt Y (insert a X) \ a \ Y \ disjnt Y X" by (simp add: disjnt_def) lemma disjnt_subset1 : "\disjnt X Y; Z \ X\ \ disjnt Z Y" by (auto simp: disjnt_def) lemma disjnt_subset2 : "\disjnt X Y; Z \ Y\ \ disjnt X Z" by (auto simp: disjnt_def) lemma disjnt_Un1 [simp]: "disjnt (A \ B) C \ disjnt A C \ disjnt B C" by (auto simp: disjnt_def) lemma disjnt_Un2 [simp]: "disjnt C (A \ B) \ disjnt C A \ disjnt C B" by (auto simp: disjnt_def) lemma disjoint_image_subset: "\pairwise disjnt \; \X. X \ \ \ f X \ X\ \ pairwise disjnt (f `\)" unfolding disjnt_def pairwise_def by fast lemma pairwise_disjnt_iff: "pairwise disjnt \ \ (\x. \\<^sub>\\<^sub>1 X. X \ \ \ x \ X)" by (auto simp: Uniq_def disjnt_iff pairwise_def) lemma Int_emptyI: "(\x. x \ A \ x \ B \ False) \ A \ B = {}" by blast lemma in_image_insert_iff: assumes "\C. C \ B \ x \ C" shows "A \ insert x ` B \ x \ A \ A - {x} \ B" (is "?P \ ?Q") proof assume ?P then show ?Q using assms by auto next assume ?Q then have "x \ A" and "A - {x} \ B" by simp_all from \A - {x} \ B\ have "insert x (A - {x}) \ insert x ` B" by (rule imageI) also from \x \ A\ have "insert x (A - {x}) = A" by auto finally show ?P . qed hide_const (open) member not_member lemmas equalityI = subset_antisym lemmas set_mp = subsetD lemmas set_rev_mp = rev_subsetD ML \ val Ball_def = @{thm Ball_def} val Bex_def = @{thm Bex_def} val CollectD = @{thm CollectD} val CollectE = @{thm CollectE} val CollectI = @{thm CollectI} val Collect_conj_eq = @{thm Collect_conj_eq} val Collect_mem_eq = @{thm Collect_mem_eq} val IntD1 = @{thm IntD1} val IntD2 = @{thm IntD2} val IntE = @{thm IntE} val IntI = @{thm IntI} val Int_Collect = @{thm Int_Collect} val UNIV_I = @{thm UNIV_I} val UNIV_witness = @{thm UNIV_witness} val UnE = @{thm UnE} val UnI1 = @{thm UnI1} val UnI2 = @{thm UnI2} val ballE = @{thm ballE} val ballI = @{thm ballI} val bexCI = @{thm bexCI} val bexE = @{thm bexE} val bexI = @{thm bexI} val bex_triv = @{thm bex_triv} val bspec = @{thm bspec} val contra_subsetD = @{thm contra_subsetD} val equalityCE = @{thm equalityCE} val equalityD1 = @{thm equalityD1} val equalityD2 = @{thm equalityD2} val equalityE = @{thm equalityE} val equalityI = @{thm equalityI} val imageE = @{thm imageE} val imageI = @{thm imageI} val image_Un = @{thm image_Un} val image_insert = @{thm image_insert} val insert_commute = @{thm insert_commute} val insert_iff = @{thm insert_iff} val mem_Collect_eq = @{thm mem_Collect_eq} val rangeE = @{thm rangeE} val rangeI = @{thm rangeI} val range_eqI = @{thm range_eqI} val subsetCE = @{thm subsetCE} val subsetD = @{thm subsetD} val subsetI = @{thm subsetI} val subset_refl = @{thm subset_refl} val subset_trans = @{thm subset_trans} val vimageD = @{thm vimageD} val vimageE = @{thm vimageE} val vimageI = @{thm vimageI} val vimageI2 = @{thm vimageI2} val vimage_Collect = @{thm vimage_Collect} val vimage_Int = @{thm vimage_Int} val vimage_Un = @{thm vimage_Un} \ end