diff --git a/src/HOL/Tools/SMT/cvc5_replay_methods.ML b/src/HOL/Tools/SMT/cvc5_replay_methods.ML --- a/src/HOL/Tools/SMT/cvc5_replay_methods.ML +++ b/src/HOL/Tools/SMT/cvc5_replay_methods.ML @@ -1,261 +1,261 @@ (* Title: HOL/Tools/SMT/cvc5_replay_methods.ML Author: Mathias Fleury, JKU, Uni Freiburg Author: Hanna Lachnitt, Stanford University Proof method for replaying cvc5 proofs. *) signature CVC5_REPLAY_METHODS = sig (*methods for verit proof rules*) val method_for: string -> Proof.context -> thm list -> term list -> term Symtab.table -> (string * term) list -> term -> thm val discharge: Proof.context -> thm list -> term -> thm end; structure CVC5_Replay_Methods: CVC5_REPLAY_METHODS = struct open Lethe_Replay_Methods fun cvc5_rule_of "bind" = Bind | cvc5_rule_of "cong" = Cong | cvc5_rule_of "refl" = Refl | cvc5_rule_of "equiv1" = Equiv1 | cvc5_rule_of "equiv2" = Equiv2 | cvc5_rule_of "equiv_pos1" = Equiv_pos1 (*Equiv_pos2 covered below*) | cvc5_rule_of "equiv_neg1" = Equiv_neg1 | cvc5_rule_of "equiv_neg2" = Equiv_neg2 | cvc5_rule_of "sko_forall" = Skolem_Forall | cvc5_rule_of "sko_ex" = Skolem_Ex | cvc5_rule_of "eq_reflexive" = Eq_Reflexive | cvc5_rule_of "forall_inst" = Forall_Inst | cvc5_rule_of "implies_pos" = Implies_Pos | cvc5_rule_of "or" = Or | cvc5_rule_of "not_or" = Not_Or | cvc5_rule_of "resolution" = Resolution | cvc5_rule_of "trans" = Trans | cvc5_rule_of "false" = False | cvc5_rule_of "ac_simp" = AC_Simp | cvc5_rule_of "and" = And | cvc5_rule_of "not_and" = Not_And | cvc5_rule_of "and_pos" = And_Pos | cvc5_rule_of "and_neg" = And_Neg | cvc5_rule_of "or_pos" = Or_Pos | cvc5_rule_of "or_neg" = Or_Neg | cvc5_rule_of "not_equiv1" = Not_Equiv1 | cvc5_rule_of "not_equiv2" = Not_Equiv2 | cvc5_rule_of "not_implies1" = Not_Implies1 | cvc5_rule_of "not_implies2" = Not_Implies2 | cvc5_rule_of "implies_neg1" = Implies_Neg1 | cvc5_rule_of "implies_neg2" = Implies_Neg2 | cvc5_rule_of "implies" = Implies | cvc5_rule_of "bfun_elim" = Bfun_Elim | cvc5_rule_of "ite1" = ITE1 | cvc5_rule_of "ite2" = ITE2 | cvc5_rule_of "not_ite1" = Not_ITE1 | cvc5_rule_of "not_ite2" = Not_ITE2 | cvc5_rule_of "ite_pos1" = ITE_Pos1 | cvc5_rule_of "ite_pos2" = ITE_Pos2 | cvc5_rule_of "ite_neg1" = ITE_Neg1 | cvc5_rule_of "ite_neg2" = ITE_Neg2 | cvc5_rule_of "la_disequality" = LA_Disequality | cvc5_rule_of "lia_generic" = LIA_Generic | cvc5_rule_of "la_generic" = LA_Generic | cvc5_rule_of "la_tautology" = LA_Tautology | cvc5_rule_of "la_totality" = LA_Totality | cvc5_rule_of "la_rw_eq"= LA_RW_Eq | cvc5_rule_of "nla_generic"= NLA_Generic | cvc5_rule_of "eq_transitive" = Eq_Transitive | cvc5_rule_of "qnt_rm_unused" = Qnt_Rm_Unused | cvc5_rule_of "onepoint" = Onepoint | cvc5_rule_of "qnt_join" = Qnt_Join | cvc5_rule_of "subproof" = Subproof | cvc5_rule_of "bool_simplify" = Bool_Simplify | cvc5_rule_of "or_simplify" = Or_Simplify | cvc5_rule_of "ite_simplify" = ITE_Simplify | cvc5_rule_of "and_simplify" = And_Simplify | cvc5_rule_of "not_simplify" = Not_Simplify | cvc5_rule_of "equiv_simplify" = Equiv_Simplify | cvc5_rule_of "eq_simplify" = Eq_Simplify | cvc5_rule_of "implies_simplify" = Implies_Simplify | cvc5_rule_of "connective_def" = Connective_Def | cvc5_rule_of "minus_simplify" = Minus_Simplify | cvc5_rule_of "sum_simplify" = Sum_Simplify | cvc5_rule_of "prod_simplify" = Prod_Simplify | cvc5_rule_of "comp_simplify" = Comp_Simplify | cvc5_rule_of "qnt_simplify" = Qnt_Simplify | cvc5_rule_of "tautology" = Tautological_Clause | cvc5_rule_of "qnt_cnf" = Qnt_CNF | cvc5_rule_of "symm" = Symm | cvc5_rule_of "not_symm" = Not_Symm | cvc5_rule_of "reordering" = Reordering | cvc5_rule_of "unary_minus_simplify" = Minus_Simplify | cvc5_rule_of "quantifier_simplify" = Tmp_Quantifier_Simplify (*TODO Remove*) | cvc5_rule_of r = if r = Lethe_Proof.normalized_input_rule then Normalized_Input else if r = Lethe_Proof.local_input_rule then Local_Input else if r = Lethe_Proof.lethe_def then Definition else if r = Lethe_Proof.not_not_rule then Not_Not else if r = Lethe_Proof.contract_rule orelse r = "duplicate_literals" then Duplicate_Literals else if r = Lethe_Proof.ite_intro_rule then ITE_Intro else if r = Lethe_Proof.eq_congruent_rule then Eq_Congruent else if r = Lethe_Proof.eq_congruent_pred_rule then Eq_Congruent_Pred else if r = Lethe_Proof.theory_resolution2_rule then Theory_Resolution2 else if r = Lethe_Proof.th_resolution_rule then Theory_Resolution else if r = Lethe_Proof.equiv_pos2_rule then Equiv_pos2 else if r = Lethe_Proof.hole orelse r = "undefined" then Hole - else (@{print} ("maybe unsupported rule", r); Other_Rule r) + else Other_Rule r fun normalized_input ctxt prems t = SMT_Replay_Methods.prove ctxt t (fn _ => let val _ = (SMT_Config.verit_msg ctxt) (fn () => \<^print> ("normalized input t =",t)) val _ = (SMT_Config.verit_msg ctxt) (fn () => \<^print> ("normalized ipput prems =",prems)) in resolve_tac ctxt prems (*TODO: should only be used for lambda encoding*) ORELSE' Clasimp.force_tac ctxt end) fun qnt_simplify ctxt _ t = SMT_Replay_Methods.prove ctxt t (fn _ => K (Clasimp.auto_tac ctxt)) fun hole ctxt prems t = SMT_Replay_Methods.prove ctxt t (fn _ => K (print_tac ctxt "stuff") THEN' Method.insert_tac ctxt prems (*TODO: should only be used for lambda encoding*) THEN' K (print_tac ctxt "stuff") THEN' Clasimp.force_tac ctxt THEN' K (print_tac ctxt "stuff") ) (* Example: lemma \(\x y. P x = Q y) \ (\ y z. Q y = R z) \ (\x z. P x = R z)\ *) fun trans ctxt prems t = SMT_Replay_Methods.prove ctxt t (fn _ => Method.insert_tac ctxt prems THEN' (REPEAT_CHANGED (resolve_tac ctxt @{thms trans} THEN' assume_tac ctxt)) THEN' (resolve_tac ctxt @{thms refl})) (* Combining all together *) fun unsupported rule ctxt thms _ _ _ = SMT_Replay_Methods.replay_error ctxt "Unsupported verit rule" rule thms fun ignore_args f ctxt thm _ _ _ t = f ctxt thm t fun ignore_decls f ctxt thm args insts _ t = f ctxt thm args insts t fun ignore_insts f ctxt thm args _ _ t = f ctxt thm args t fun choose _ And = ignore_args and_rule | choose _ And_Neg = ignore_args and_neg_rule | choose _ And_Pos = ignore_args and_pos | choose _ And_Simplify = ignore_args rewrite_and_simplify | choose _ Bind = ignore_insts bind | choose _ Bool_Simplify = ignore_args rewrite_bool_simplify | choose _ Comp_Simplify = ignore_args rewrite_comp_simplify | choose _ Cong = ignore_args (cong "cvc5") | choose _ Connective_Def = ignore_args rewrite_connective_def | choose _ Duplicate_Literals = ignore_args duplicate_literals | choose _ Eq_Congruent = ignore_args eq_congruent | choose _ Eq_Congruent_Pred = ignore_args eq_congruent_pred | choose _ Eq_Reflexive = ignore_args eq_reflexive | choose _ Eq_Simplify = ignore_args rewrite_eq_simplify | choose _ Eq_Transitive = ignore_args eq_transitive | choose _ Equiv1 = ignore_args equiv1 | choose _ Equiv2 = ignore_args equiv2 | choose _ Equiv_neg1 = ignore_args equiv_neg1 | choose _ Equiv_neg2 = ignore_args equiv_neg2 | choose _ Equiv_pos1 = ignore_args equiv_pos1 | choose _ Equiv_pos2 = ignore_args equiv_pos2 | choose _ Equiv_Simplify = ignore_args rewrite_equiv_simplify | choose _ False = ignore_args false_rule | choose _ Forall_Inst = ignore_decls forall_inst | choose _ Implies = ignore_args implies_rules | choose _ Implies_Neg1 = ignore_args implies_neg1 | choose _ Implies_Neg2 = ignore_args implies_neg2 | choose _ Implies_Pos = ignore_args implies_pos | choose _ Implies_Simplify = ignore_args rewrite_implies_simplify | choose _ ITE1 = ignore_args ite1 | choose _ ITE2 = ignore_args ite2 | choose _ ITE_Intro = ignore_args ite_intro | choose _ ITE_Neg1 = ignore_args ite_neg1 | choose _ ITE_Neg2 = ignore_args ite_neg2 | choose _ ITE_Pos1 = ignore_args ite_pos1 | choose _ ITE_Pos2 = ignore_args ite_pos2 | choose _ ITE_Simplify = ignore_args rewrite_ite_simplify | choose _ LA_Disequality = ignore_args la_disequality | choose _ LA_Generic = ignore_insts la_generic | choose _ LA_RW_Eq = ignore_args la_rw_eq | choose _ LA_Tautology = ignore_args SMT_Replay_Methods.arith_th_lemma_wo_shallow | choose _ LA_Totality = ignore_args SMT_Replay_Methods.arith_th_lemma_wo_shallow | choose _ LIA_Generic = ignore_args lia_generic | choose _ Local_Input = ignore_args (refl "cvc5") | choose _ Minus_Simplify = ignore_args rewrite_minus_simplify | choose _ NLA_Generic = ignore_args SMT_Replay_Methods.arith_th_lemma_wo_shallow | choose _ Normalized_Input = ignore_args normalized_input | choose _ Not_And = ignore_args not_and_rule | choose _ Not_Equiv1 = ignore_args not_equiv1 | choose _ Not_Equiv2 = ignore_args not_equiv2 | choose _ Not_Implies1 = ignore_args not_implies1 | choose _ Not_Implies2 = ignore_args not_implies2 | choose _ Not_ITE1 = ignore_args not_ite1 | choose _ Not_ITE2 = ignore_args not_ite2 | choose _ Not_Not = ignore_args not_not | choose _ Not_Or = ignore_args not_or_rule | choose _ Not_Simplify = ignore_args rewrite_not_simplify | choose _ Or = ignore_args or | choose _ Or_Neg = ignore_args or_neg_rule | choose _ Or_Pos = ignore_args or_pos_rule | choose _ Or_Simplify = ignore_args rewrite_or_simplify | choose _ Theory_Resolution2 = ignore_args theory_resolution2 | choose _ Prod_Simplify = ignore_args prod_simplify | choose _ Qnt_Join = ignore_args qnt_join | choose _ Qnt_Rm_Unused = ignore_args qnt_rm_unused | choose _ Onepoint = ignore_args onepoint | choose _ Qnt_Simplify = ignore_args qnt_simplify | choose _ Refl = ignore_args (refl "cvc5") | choose _ Resolution = ignore_args unit_res | choose _ Skolem_Ex = ignore_args skolem_ex | choose _ Skolem_Forall = ignore_args skolem_forall | choose _ Subproof = ignore_args subproof | choose _ Sum_Simplify = ignore_args sum_simplify | choose _ Tautological_Clause = ignore_args tautological_clause | choose _ Theory_Resolution = ignore_args unit_res | choose _ AC_Simp = ignore_args tmp_AC_rule | choose _ Bfun_Elim = ignore_args bfun_elim | choose _ Qnt_CNF = ignore_args qnt_cnf | choose _ Trans = ignore_args trans | choose _ Symm = ignore_args symm | choose _ Not_Symm = ignore_args not_symm | choose _ Reordering = ignore_args reordering | choose _ Tmp_Quantifier_Simplify = ignore_args qnt_simplify | choose ctxt (x as Other_Rule r) = (case get_alethe_tac r ctxt of NONE => unsupported (string_of_verit_rule x) | SOME a => ignore_insts a) | choose _ Hole = ignore_args hole | choose _ r = (@{print} ("unknown rule, using hole", r); ignore_args hole) (*unsupported (string_of_verit_rule r)*) type verit_method = Proof.context -> thm list -> term -> thm type abs_context = int * term Termtab.table fun with_tracing rule method ctxt thms args insts decls t = let val _ = SMT_Replay_Methods.trace_goal ctxt rule thms t in method ctxt thms args insts decls t end fun method_for rule ctxt = with_tracing rule (choose (Context.Proof ctxt) (cvc5_rule_of rule)) ctxt fun discharge ctxt [thm] t = SMT_Replay_Methods.prove ctxt t (fn _ => resolve_tac ctxt [thm] THEN_ALL_NEW (resolve_tac ctxt @{thms refl})) end;