diff --git a/src/Pure/Isar/bundle.ML b/src/Pure/Isar/bundle.ML --- a/src/Pure/Isar/bundle.ML +++ b/src/Pure/Isar/bundle.ML @@ -1,229 +1,232 @@ (* Title: Pure/Isar/bundle.ML Author: Makarius Bundled declarations (notes etc.). *) signature BUNDLE = sig + type name = string val check: Proof.context -> xstring * Position.T -> string - val get: Proof.context -> string -> Attrib.thms + val get: Proof.context -> name -> Attrib.thms val read: Proof.context -> xstring * Position.T -> Attrib.thms val print_bundles: bool -> Proof.context -> unit val bundle: binding * Attrib.thms -> (binding * typ option * mixfix) list -> local_theory -> local_theory val bundle_cmd: binding * (Facts.ref * Token.src list) list -> (binding * string option * mixfix) list -> local_theory -> local_theory val init: binding -> theory -> local_theory - val unbundle: string list -> local_theory -> local_theory + val unbundle: name list -> local_theory -> local_theory val unbundle_cmd: (xstring * Position.T) list -> local_theory -> local_theory - val includes: string list -> Proof.context -> Proof.context + val includes: name list -> Proof.context -> Proof.context val includes_cmd: (xstring * Position.T) list -> Proof.context -> Proof.context - val include_: string list -> Proof.state -> Proof.state + val include_: name list -> Proof.state -> Proof.state val include_cmd: (xstring * Position.T) list -> Proof.state -> Proof.state - val including: string list -> Proof.state -> Proof.state + val including: name list -> Proof.state -> Proof.state val including_cmd: (xstring * Position.T) list -> Proof.state -> Proof.state end; structure Bundle: BUNDLE = struct (** context data **) structure Data = Generic_Data ( type T = Attrib.thms Name_Space.table * Attrib.thms option; val empty : T = (Name_Space.empty_table "bundle", NONE); val extend = I; fun merge ((tab1, target1), (tab2, target2)) = (Name_Space.merge_tables (tab1, tab2), merge_options (target1, target2)); ); (* bundles *) +type name = string + val get_all_generic = #1 o Data.get; val get_all = get_all_generic o Context.Proof; fun check ctxt = #1 o Name_Space.check (Context.Proof ctxt) (get_all ctxt); val get = Name_Space.get o get_all_generic o Context.Proof; fun read ctxt = get ctxt o check ctxt; fun define_bundle (b, bundle) context = let val bundle' = Attrib.trim_context_thms bundle; val (name, bundles') = Name_Space.define context true (b, bundle') (get_all_generic context); val context' = (Data.map o apfst o K) bundles' context; in (name, context') end; (* target -- bundle under construction *) fun the_target thy = (case #2 (Data.get (Context.Theory thy)) of SOME thms => thms | NONE => error "Missing bundle target"); val reset_target = (Context.theory_map o Data.map o apsnd o K) NONE; val set_target = Context.theory_map o Data.map o apsnd o K o SOME o Attrib.trim_context_thms; fun augment_target thms = Local_Theory.background_theory (fn thy => set_target (the_target thy @ thms) thy); (* print bundles *) fun pretty_bundle ctxt (markup_name, bundle) = let val prt_thm = Pretty.cartouche o Thm.pretty_thm ctxt; fun prt_thm_attribs atts th = Pretty.block (Pretty.breaks (prt_thm th :: Attrib.pretty_attribs ctxt atts)); fun prt_thms (ths, []) = map prt_thm ths | prt_thms (ths, atts) = map (prt_thm_attribs atts) ths; in Pretty.block ([Pretty.keyword1 "bundle", Pretty.str " ", Pretty.mark_str markup_name] @ (if null bundle then [] else Pretty.fbreaks (Pretty.str " =" :: maps prt_thms bundle))) end; fun print_bundles verbose ctxt = Pretty.writeln_chunks (map (pretty_bundle ctxt) (Name_Space.markup_table verbose ctxt (get_all ctxt))); (** define bundle **) fun transform_bundle phi = map (fn (fact, atts) => (Morphism.fact phi fact, (map o map) (Token.transform phi) atts)); (* command *) local fun gen_bundle prep_fact prep_att add_fixes (binding, raw_bundle) raw_fixes lthy = let val (_, ctxt') = add_fixes raw_fixes lthy; val bundle0 = raw_bundle |> map (fn (fact, atts) => (prep_fact ctxt' fact, map (prep_att ctxt') atts)); val bundle = Attrib.partial_evaluation ctxt' [(Binding.empty_atts, bundle0)] |> map snd |> flat |> transform_bundle (Proof_Context.export_morphism ctxt' lthy); in lthy |> Local_Theory.declaration {syntax = false, pervasive = true} (fn phi => #2 o define_bundle (Morphism.binding phi binding, transform_bundle phi bundle)) end; in val bundle = gen_bundle (K I) (K I) Proof_Context.add_fixes; val bundle_cmd = gen_bundle Proof_Context.get_fact Attrib.check_src Proof_Context.add_fixes_cmd; end; (* target *) local fun bad_operation _ = error "Not possible in bundle target"; fun conclude invisible binding = Local_Theory.background_theory_result (fn thy => thy |> invisible ? Context_Position.set_visible_global false |> Context.Theory |> define_bundle (binding, the_target thy) ||> (Context.the_theory #> invisible ? Context_Position.restore_visible_global thy #> reset_target)); fun pretty binding lthy = let val bundle = the_target (Proof_Context.theory_of lthy); val (name, lthy') = lthy |> Local_Theory.raw_theory (Context_Position.set_visible_global false) |> conclude true binding; val thy_ctxt' = Proof_Context.init_global (Proof_Context.theory_of lthy'); val markup_name = Name_Space.markup_extern thy_ctxt' (Name_Space.space_of_table (get_all thy_ctxt')) name; in [pretty_bundle lthy' (markup_name, bundle)] end; fun bundle_notes kind facts lthy = let val bundle = facts |> maps (fn ((_, more_atts), thms) => map (fn (ths, atts) => (ths, atts @ more_atts)) thms); in lthy |> augment_target (transform_bundle (Local_Theory.standard_morphism_theory lthy) bundle) |> Generic_Target.standard_notes (op <>) kind facts |> Attrib.local_notes kind facts end; fun bundle_declaration decl lthy = lthy |> (augment_target o Attrib.internal_declaration) (Morphism.transform (Local_Theory.standard_morphism_theory lthy) decl) |> Generic_Target.standard_declaration (K true) decl; in fun init binding thy = thy |> Local_Theory.init {background_naming = Sign.naming_of thy, setup = set_target [] #> Proof_Context.init_global, conclude = conclude false binding #> #2} {define = bad_operation, notes = bundle_notes, abbrev = bad_operation, declaration = K bundle_declaration, theory_registration = bad_operation, locale_dependency = bad_operation, pretty = pretty binding} end; (** activate bundles **) local fun gen_activate notes prep_bundle args ctxt = let val decls = maps (prep_bundle ctxt) args in ctxt |> Context_Position.set_visible false |> notes [(Binding.empty_atts, decls)] |> #2 |> Context_Position.restore_visible ctxt end; fun gen_unbundle prep_bundle = gen_activate Local_Theory.notes prep_bundle; fun gen_includes prep_bundle = gen_activate (Attrib.local_notes "") prep_bundle; fun gen_include prep_bundle bs = Proof.assert_forward #> Proof.map_context (gen_includes prep_bundle bs) #> Proof.reset_facts; fun gen_including prep_bundle bs = Proof.assert_backward #> Proof.map_context (gen_includes prep_bundle bs) in val unbundle = gen_unbundle get; val unbundle_cmd = gen_unbundle read; val includes = gen_includes get; val includes_cmd = gen_includes read; val include_ = gen_include get; val include_cmd = gen_include read; val including = gen_including get; val including_cmd = gen_including read; end; end; diff --git a/src/Pure/Isar/class_declaration.ML b/src/Pure/Isar/class_declaration.ML --- a/src/Pure/Isar/class_declaration.ML +++ b/src/Pure/Isar/class_declaration.ML @@ -1,395 +1,395 @@ (* Title: Pure/Isar/class_declaration.ML Author: Florian Haftmann, TU Muenchen Declaring classes and subclass relations. *) signature CLASS_DECLARATION = sig - val class: binding -> string list -> class list -> + val class: binding -> Bundle.name list -> class list -> Element.context_i list -> theory -> string * local_theory val class_cmd: binding -> (xstring * Position.T) list -> xstring list -> Element.context list -> theory -> string * local_theory val prove_subclass: tactic -> class -> local_theory -> local_theory val subclass: class -> local_theory -> Proof.state val subclass_cmd: xstring -> local_theory -> Proof.state end; structure Class_Declaration: CLASS_DECLARATION = struct (** class definitions **) local (* calculating class-related rules including canonical interpretation *) fun calculate thy class sups base_sort param_map assm_axiom = let val thy_ctxt = Proof_Context.init_global thy; val certT = Thm.trim_context_ctyp o Thm.global_ctyp_of thy; val cert = Thm.trim_context_cterm o Thm.global_cterm_of thy; (* instantiation of canonical interpretation *) val a_tfree = (Name.aT, base_sort); val a_type = TFree a_tfree; val param_map_const = (map o apsnd) Const param_map; val param_map_inst = param_map |> map (fn (x, (c, T)) => let val T' = map_atyps (K a_type) T in ((x, T'), cert (Const (c, T'))) end); val const_morph = Element.instantiate_normalize_morphism ([], param_map_inst); val typ_morph = Element.instantiate_normalize_morphism ([(a_tfree, certT (Term.aT [class]))], []) val (([raw_props], _, [(_, raw_inst_morph)], _, export_morph), _) = thy_ctxt |> Expression.cert_goal_expression ([(class, (("", false), (Expression.Named param_map_const, [])))], []); val (props, inst_morph) = if null param_map then (raw_props |> map (Morphism.term typ_morph), raw_inst_morph $> typ_morph) else (raw_props, raw_inst_morph); (*FIXME proper handling in locale.ML / expression.ML would be desirable*) (* witness for canonical interpretation *) val some_prop = try the_single props; val some_witn = Option.map (fn prop => let val sup_axioms = map_filter (fst o Class.rules thy) sups; val loc_intro_tac = (case Locale.intros_of thy class of (_, NONE) => all_tac | (_, SOME intro) => ALLGOALS (resolve_tac thy_ctxt [intro])); val tac = loc_intro_tac THEN ALLGOALS (Proof_Context.fact_tac thy_ctxt (sup_axioms @ the_list assm_axiom)); in Element.prove_witness thy_ctxt prop tac end) some_prop; val some_axiom = Option.map (Element.conclude_witness thy_ctxt) some_witn; (* canonical interpretation *) val base_morph = inst_morph $> Morphism.binding_morphism "class_binding" (Binding.prefix false (Class.class_prefix class)) $> Element.satisfy_morphism (the_list some_witn); val eq_morph = Element.eq_morphism thy (Class.these_defs thy sups); (* assm_intro *) fun prove_assm_intro thm = let val ((_, [thm']), _) = Variable.import true [thm] thy_ctxt; val const_eq_morph = (case eq_morph of SOME eq_morph => const_morph $> eq_morph | NONE => const_morph); val thm'' = Morphism.thm const_eq_morph thm'; in Goal.prove_sorry_global thy [] [] (Thm.prop_of thm'') (fn {context = ctxt, ...} => ALLGOALS (Proof_Context.fact_tac ctxt [thm''])) end; val some_assm_intro = Option.map prove_assm_intro (fst (Locale.intros_of thy class)); (* of_class *) val of_class_prop_concl = Logic.mk_of_class (a_type, class); val of_class_prop = (case some_prop of NONE => of_class_prop_concl | SOME prop => Logic.mk_implies (Morphism.term const_morph ((map_types o map_atyps) (K a_type) prop), of_class_prop_concl)); val sup_of_classes = map (snd o Class.rules thy) sups; val loc_axiom_intros = map Drule.export_without_context_open (Locale.axioms_of thy class); val axclass_intro = #intro (Axclass.get_info thy class); val base_sort_trivs = Thm.of_sort (Thm.global_ctyp_of thy a_type, base_sort); fun tac ctxt = REPEAT (SOMEGOAL (match_tac ctxt (axclass_intro :: sup_of_classes @ loc_axiom_intros @ base_sort_trivs) ORELSE' assume_tac ctxt)); val of_class = Goal.prove_sorry_global thy [] [] of_class_prop (tac o #context); in (base_morph, eq_morph, export_morph, some_axiom, some_assm_intro, of_class) end; (* reading and processing class specifications *) fun prep_class_elems prep_decl ctxt sups raw_elems = let (* user space type system: only permits 'a type variable, improves towards 'a *) val thy = Proof_Context.theory_of ctxt; val algebra = Sign.classes_of thy; val inter_sort = curry (Sorts.inter_sort algebra); val proto_base_sort = if null sups then Sign.defaultS thy else fold inter_sort (map (Class.base_sort thy) sups) []; val is_param = member (op =) (map fst (Class.these_params thy sups)); val base_constraints = (map o apsnd) (map_type_tfree (K (TVar ((Name.aT, 0), proto_base_sort))) o fst o fst o snd) (Class.these_operations thy sups); val singleton_fixate = burrow_types (fn Ts => let val tfrees = fold Term.add_tfreesT Ts []; val inferred_sort = (fold o fold_atyps) (fn TVar (_, S) => inter_sort S | _ => I) Ts []; val fixate_sort = (case tfrees of [] => inferred_sort | [(a, S)] => if a <> Name.aT then error ("No type variable other than " ^ Name.aT ^ " allowed in class specification") else if Sorts.sort_le algebra (S, inferred_sort) then S else error ("Type inference imposes additional sort constraint " ^ Syntax.string_of_sort_global thy inferred_sort ^ " of type parameter " ^ Name.aT ^ " of sort " ^ Syntax.string_of_sort_global thy S) | _ => error "Multiple type variables in class specification"); val fixateT = Term.aT fixate_sort; in (map o map_atyps) (fn T as TVar (xi, _) => if Type_Infer.is_param xi then fixateT else T | T => T) Ts end); fun unify_params ts = let val param_Ts = (fold o fold_aterms) (fn Free (v, T) => if is_param v then fold_atyps (insert (op =)) T else I | _ => I) ts []; val param_namesT = map_filter (try (fst o dest_TVar)) param_Ts; val param_T = if null param_namesT then NONE else SOME (case get_first (try dest_TFree) param_Ts of SOME v_sort => TFree v_sort | NONE => TVar (hd param_namesT, proto_base_sort)); in case param_T of NONE => ts | SOME T => map (subst_TVars (map (rpair T) param_namesT)) ts end; (* preprocessing elements, retrieving base sort from type-checked elements *) val raw_supexpr = (map (fn sup => (sup, (("", false), (Expression.Positional [], [])))) sups, []); val init_class_body = fold (Proof_Context.add_const_constraint o apsnd SOME) base_constraints #> Class.redeclare_operations thy sups #> Context.proof_map (Syntax_Phases.term_check 0 "singleton_fixate" (K singleton_fixate)); val ((raw_supparams, _, raw_inferred_elems, _), _) = ctxt |> Context.proof_map (Syntax_Phases.term_check 0 "unify_params" (K unify_params)) |> prep_decl raw_supexpr init_class_body raw_elems; fun filter_element (Element.Fixes []) = NONE | filter_element (e as Element.Fixes _) = SOME e | filter_element (Element.Constrains []) = NONE | filter_element (e as Element.Constrains _) = SOME e | filter_element (Element.Assumes []) = NONE | filter_element (e as Element.Assumes _) = SOME e | filter_element (Element.Defines _) = error ("\"defines\" element not allowed in class specification.") | filter_element (Element.Notes _) = error ("\"notes\" element not allowed in class specification.") | filter_element (Element.Lazy_Notes _) = error ("\"notes\" element not allowed in class specification."); val inferred_elems = map_filter filter_element raw_inferred_elems; fun fold_element_types f (Element.Fixes fxs) = fold (fn (_, SOME T, _) => f T) fxs | fold_element_types f (Element.Constrains cnstrs) = fold (f o snd) cnstrs | fold_element_types f (Element.Assumes assms) = fold (fold (fn (t, ts) => fold_types f t #> (fold o fold_types) f ts) o snd) assms; val base_sort = if null inferred_elems then proto_base_sort else (case (fold o fold_element_types) Term.add_tfreesT inferred_elems [] of [] => error "No type variable in class specification" | [(_, sort)] => sort | _ => error "Multiple type variables in class specification"); val supparams = map (fn ((c, T), _) => (c, map_atyps (K (Term.aT base_sort)) T)) raw_supparams; val supparam_names = map fst supparams; fun mk_param ((c, _), _) = Free (c, (the o AList.lookup (op =) supparams) c); val supexpr = (map (fn sup => (sup, (("", false), (Expression.Positional (map (SOME o mk_param) (Locale.params_of thy sup)), [])))) sups, map (fn (c, T) => (Binding.name c, SOME T, NoSyn)) supparams); in (base_sort, supparam_names, supexpr, inferred_elems) end; val cert_class_elems = prep_class_elems Expression.cert_declaration; val read_class_elems = prep_class_elems Expression.cert_read_declaration; fun prep_class_spec prep_class prep_include prep_class_elems ctxt raw_supclasses raw_includes raw_elems = let val thy = Proof_Context.theory_of ctxt; (* prepare import *) val inter_sort = curry (Sorts.inter_sort (Sign.classes_of thy)); val sups = Sign.minimize_sort thy (map (prep_class ctxt) raw_supclasses); val _ = (case filter_out (Class.is_class thy) sups of [] => () | no_classes => error ("No (proper) classes: " ^ commas_quote no_classes)); val raw_supparams = (map o apsnd) (snd o snd) (Class.these_params thy sups); val raw_supparam_names = map fst raw_supparams; val _ = if has_duplicates (op =) raw_supparam_names then error ("Duplicate parameter(s) in superclasses: " ^ (commas_quote (duplicates (op =) raw_supparam_names))) else (); (* infer types and base sort *) val includes = map (prep_include ctxt) raw_includes; val includes_ctxt = Bundle.includes includes ctxt; val (base_sort, supparam_names, supexpr, inferred_elems) = prep_class_elems includes_ctxt sups raw_elems; val sup_sort = inter_sort base_sort sups; (* process elements as class specification *) val class_ctxt = Class.begin sups base_sort includes_ctxt; val ((_, _, syntax_elems, _), _) = class_ctxt |> Expression.cert_declaration supexpr I inferred_elems; fun check_vars e vs = if null vs then error ("No type variable in part of specification element " ^ Pretty.string_of (Pretty.chunks (Element.pretty_ctxt class_ctxt e))) else (); fun check_element (e as Element.Fixes fxs) = List.app (fn (_, SOME T, _) => check_vars e (Term.add_tfreesT T [])) fxs | check_element (e as Element.Assumes assms) = List.app (fn (_, ts_pss) => List.app (fn (t, _) => check_vars e (Term.add_tfrees t [])) ts_pss) assms | check_element _ = (); val _ = List.app check_element syntax_elems; fun fork_syn (Element.Fixes xs) = fold_map (fn (c, ty, syn) => cons (c, syn) #> pair (c, ty, NoSyn)) xs #>> Element.Fixes | fork_syn x = pair x; val (elems, global_syntax) = fold_map fork_syn syntax_elems []; in (((sups, supparam_names), (sup_sort, base_sort, supexpr)), (includes, elems, global_syntax)) end; val cert_class_spec = prep_class_spec (K I) (K I) cert_class_elems; val read_class_spec = prep_class_spec Proof_Context.read_class Bundle.check read_class_elems; (* class establishment *) fun add_consts class base_sort sups supparam_names global_syntax thy = let (*FIXME simplify*) val supconsts = supparam_names |> AList.make (snd o the o AList.lookup (op =) (Class.these_params thy sups)) |> (map o apsnd o apsnd o map_atyps) (K (Term.aT [class])); val all_params = Locale.params_of thy class; val raw_params = (snd o chop (length supparam_names)) all_params; fun add_const ((raw_c, raw_ty), _) thy = let val b = Binding.name raw_c; val c = Sign.full_name thy b; val ty = map_atyps (K (Term.aT base_sort)) raw_ty; val ty0 = Type.strip_sorts ty; val ty' = map_atyps (K (Term.aT [class])) ty0; val syn = (the_default NoSyn o AList.lookup Binding.eq_name global_syntax) b; in thy |> Sign.declare_const_global ((b, ty0), syn) |> snd |> pair ((Variable.check_name b, ty), (c, ty')) end; in thy |> Sign.add_path (Class.class_prefix class) |> fold_map add_const raw_params ||> Sign.restore_naming thy |-> (fn params => pair (supconsts @ (map o apfst) fst params, params)) end; fun adjungate_axclass bname class base_sort sups supsort supparam_names global_syntax thy = let (*FIXME simplify*) fun globalize param_map = map_aterms (fn Free (v, ty) => Const ((fst o the o AList.lookup (op =) param_map) v, ty) | t => t); val raw_pred = Locale.intros_of thy class |> fst |> Option.map (Logic.unvarify_global o Logic.strip_imp_concl o Thm.prop_of); fun get_axiom thy = (case #axioms (Axclass.get_info thy class) of [] => NONE | [thm] => SOME thm); in thy |> add_consts class base_sort sups supparam_names global_syntax |-> (fn (param_map, params) => Axclass.define_class (bname, supsort) (map (fst o snd) params) [(Binding.empty_atts, Option.map (globalize param_map) raw_pred |> the_list)] #> snd #> `get_axiom #-> (fn assm_axiom => fold (Sign.add_const_constraint o apsnd SOME o snd) params #> pair (param_map, params, assm_axiom))) end; fun gen_class prep_class_spec b raw_includes raw_supclasses raw_elems thy = let val class = Sign.full_name thy b; val prefix = Binding.qualify true "class"; val ctxt = Proof_Context.init_global thy; val (((sups, supparam_names), (supsort, base_sort, supexpr)), (includes, elems, global_syntax)) = prep_class_spec ctxt raw_supclasses raw_includes raw_elems; in thy |> Expression.add_locale b (prefix b) includes supexpr elems |> snd |> Local_Theory.exit_global |> adjungate_axclass b class base_sort sups supsort supparam_names global_syntax |-> (fn (param_map, params, assm_axiom) => `(fn thy => calculate thy class sups base_sort param_map assm_axiom) #-> (fn (base_morph, eq_morph, export_morph, some_axiom, some_assm_intro, of_class) => Locale.add_registration_theory' {inst = (class, base_morph), mixin = Option.map (rpair true) eq_morph, export = export_morph} #> Class.register class sups params base_sort base_morph export_morph some_axiom some_assm_intro of_class #> Global_Theory.store_thm (prefix (Binding.qualified_name (class ^ ".of_class.intro")), of_class))) |> snd |> Named_Target.init includes class |> pair class end; in val class = gen_class cert_class_spec; val class_cmd = gen_class read_class_spec; end; (*local*) (** subclass relations **) local fun gen_subclass prep_class do_proof raw_sup lthy = let val thy = Proof_Context.theory_of lthy; val proto_sup = prep_class thy raw_sup; val proto_sub = (case Named_Target.class_of lthy of SOME class => class | NONE => error "Not in a class target"); val (sub, sup) = Axclass.cert_classrel thy (proto_sub, proto_sup); val expr = ([(sup, (("", false), (Expression.Positional [], [])))], []); val (([props], _, deps, _, export), goal_ctxt) = Expression.cert_goal_expression expr lthy; val some_prop = try the_single props; val some_dep_morph = try the_single (map snd deps); fun after_qed some_wit = Class.register_subclass (sub, sup) some_dep_morph some_wit export; in do_proof after_qed some_prop goal_ctxt end; fun user_proof after_qed some_prop = Element.witness_proof (after_qed o try the_single o the_single) [the_list some_prop]; fun tactic_proof tac after_qed some_prop ctxt = after_qed (Option.map (fn prop => Element.prove_witness ctxt prop tac) some_prop) ctxt; in fun prove_subclass tac = gen_subclass (K I) (tactic_proof tac); fun subclass x = gen_subclass (K I) user_proof x; fun subclass_cmd x = gen_subclass (Proof_Context.read_class o Proof_Context.init_global) user_proof x; end; (*local*) end; diff --git a/src/Pure/Isar/expression.ML b/src/Pure/Isar/expression.ML --- a/src/Pure/Isar/expression.ML +++ b/src/Pure/Isar/expression.ML @@ -1,877 +1,877 @@ (* Title: Pure/Isar/expression.ML Author: Clemens Ballarin, TU Muenchen Locale expressions and user interface layer of locales. *) signature EXPRESSION = sig (* Locale expressions *) datatype 'term map = Positional of 'term option list | Named of (string * 'term) list type 'term rewrites = (Attrib.binding * 'term) list type ('name, 'term) expr = ('name * ((string * bool) * ('term map * 'term rewrites))) list type expression_i = (string, term) expr * (binding * typ option * mixfix) list type expression = (xstring * Position.T, string) expr * (binding * string option * mixfix) list (* Processing of context statements *) val cert_statement: Element.context_i list -> Element.statement_i -> Proof.context -> (Attrib.binding * (term * term list) list) list * Proof.context val read_statement: Element.context list -> Element.statement -> Proof.context -> (Attrib.binding * (term * term list) list) list * Proof.context (* Declaring locales *) val cert_declaration: expression_i -> (Proof.context -> Proof.context) -> Element.context_i list -> Proof.context -> (((string * typ) * mixfix) list * (string * morphism) list * Element.context_i list * Proof.context) * ((string * typ) list * Proof.context) val cert_read_declaration: expression_i -> (Proof.context -> Proof.context) -> Element.context list -> Proof.context -> (((string * typ) * mixfix) list * (string * morphism) list * Element.context_i list * Proof.context) * ((string * typ) list * Proof.context) (*FIXME*) val read_declaration: expression -> (Proof.context -> Proof.context) -> Element.context list -> Proof.context -> (((string * typ) * mixfix) list * (string * morphism) list * Element.context_i list * Proof.context) * ((string * typ) list * Proof.context) - val add_locale: binding -> binding -> string list -> + val add_locale: binding -> binding -> Bundle.name list -> expression_i -> Element.context_i list -> theory -> string * local_theory val add_locale_cmd: binding -> binding -> (xstring * Position.T) list -> expression -> Element.context list -> theory -> string * local_theory (* Processing of locale expressions *) val cert_goal_expression: expression_i -> Proof.context -> (term list list * term list list * (string * morphism) list * (Attrib.binding * term) list list * morphism) * Proof.context val read_goal_expression: expression -> Proof.context -> (term list list * term list list * (string * morphism) list * (Attrib.binding * term) list list * morphism) * Proof.context end; structure Expression : EXPRESSION = struct datatype ctxt = datatype Element.ctxt; (*** Expressions ***) datatype 'term map = Positional of 'term option list | Named of (string * 'term) list; type 'term rewrites = (Attrib.binding * 'term) list; type ('name, 'term) expr = ('name * ((string * bool) * ('term map * 'term rewrites))) list; type expression_i = (string, term) expr * (binding * typ option * mixfix) list; type expression = (xstring * Position.T, string) expr * (binding * string option * mixfix) list; (** Internalise locale names in expr **) fun check_expr thy instances = map (apfst (Locale.check thy)) instances; (** Parameters of expression **) (*Sanity check of instantiations and extraction of implicit parameters. The latter only occurs iff strict = false. Positional instantiations are extended to match full length of parameter list of instantiated locale.*) fun parameters_of thy strict (expr, fixed) = let val ctxt = Proof_Context.init_global thy; fun reject_dups message xs = (case duplicates (op =) xs of [] => () | dups => error (message ^ commas dups)); fun parm_eq ((p1, mx1), (p2, mx2)) = p1 = p2 andalso (Mixfix.equal (mx1, mx2) orelse error ("Conflicting syntax for parameter " ^ quote p1 ^ " in expression" ^ Position.here_list [Mixfix.pos_of mx1, Mixfix.pos_of mx2])); fun params_loc loc = Locale.params_of thy loc |> map (apfst #1); fun params_inst (loc, (prfx, (Positional insts, eqns))) = let val ps = params_loc loc; val d = length ps - length insts; val insts' = if d < 0 then error ("More arguments than parameters in instantiation of locale " ^ quote (Locale.markup_name ctxt loc)) else insts @ replicate d NONE; val ps' = (ps ~~ insts') |> map_filter (fn (p, NONE) => SOME p | (_, SOME _) => NONE); in (ps', (loc, (prfx, (Positional insts', eqns)))) end | params_inst (loc, (prfx, (Named insts, eqns))) = let val _ = reject_dups "Duplicate instantiation of the following parameter(s): " (map fst insts); val ps' = (insts, params_loc loc) |-> fold (fn (p, _) => fn ps => if AList.defined (op =) ps p then AList.delete (op =) p ps else error (quote p ^ " not a parameter of instantiated expression")); in (ps', (loc, (prfx, (Named insts, eqns)))) end; fun params_expr is = let val (is', ps') = fold_map (fn i => fn ps => let val (ps', i') = params_inst i; val ps'' = distinct parm_eq (ps @ ps'); in (i', ps'') end) is [] in (ps', is') end; val (implicit, expr') = params_expr expr; val implicit' = map #1 implicit; val fixed' = map (Variable.check_name o #1) fixed; val _ = reject_dups "Duplicate fixed parameter(s): " fixed'; val implicit'' = if strict then [] else let val _ = reject_dups "Parameter(s) declared simultaneously in expression and for clause: " (implicit' @ fixed'); in map (fn (x, mx) => (Binding.name x, NONE, mx)) implicit end; in (expr', implicit'' @ fixed) end; (** Read instantiation **) (* Parse positional or named instantiation *) local fun prep_inst prep_term ctxt parms (Positional insts) = (insts ~~ parms) |> map (fn (NONE, p) => Free (p, dummyT) | (SOME t, _) => prep_term ctxt t) | prep_inst prep_term ctxt parms (Named insts) = parms |> map (fn p => (case AList.lookup (op =) insts p of SOME t => prep_term ctxt t | NONE => Free (p, dummyT))); in fun parse_inst x = prep_inst Syntax.parse_term x; fun make_inst x = prep_inst (K I) x; end; (* Instantiation morphism *) fun inst_morphism params ((prfx, mandatory), insts') ctxt = let (* parameters *) val parm_types = map #2 params; val type_parms = fold Term.add_tfreesT parm_types []; (* type inference *) val parm_types' = map (Type_Infer.paramify_vars o Logic.varifyT_global) parm_types; val type_parms' = fold Term.add_tvarsT parm_types' []; val checked = (map (Logic.mk_type o TVar) type_parms' @ map2 Type.constraint parm_types' insts') |> Syntax.check_terms (Config.put Type_Infer.object_logic false ctxt) val (type_parms'', insts'') = chop (length type_parms') checked; (* context *) val ctxt' = fold Proof_Context.augment checked ctxt; val certT = Thm.trim_context_ctyp o Thm.ctyp_of ctxt'; val cert = Thm.trim_context_cterm o Thm.cterm_of ctxt'; (* instantiation *) val instT = (type_parms ~~ map Logic.dest_type type_parms'') |> map_filter (fn (v, T) => if TFree v = T then NONE else SOME (v, T)); val cert_inst = ((map #1 params ~~ map (Term_Subst.instantiateT_frees instT) parm_types) ~~ insts'') |> map_filter (fn (v, t) => if Free v = t then NONE else SOME (v, cert t)); in (Element.instantiate_normalize_morphism (map (apsnd certT) instT, cert_inst) $> Morphism.binding_morphism "Expression.inst" (Binding.prefix mandatory prfx), ctxt') end; (*** Locale processing ***) (** Parsing **) fun parse_elem prep_typ prep_term ctxt = Element.map_ctxt {binding = I, typ = prep_typ ctxt, term = prep_term (Proof_Context.set_mode Proof_Context.mode_schematic ctxt), pattern = prep_term (Proof_Context.set_mode Proof_Context.mode_pattern ctxt), fact = I, attrib = I}; fun prepare_stmt prep_prop prep_obtains ctxt stmt = (case stmt of Element.Shows raw_shows => raw_shows |> (map o apsnd o map) (fn (t, ps) => (prep_prop (Proof_Context.set_mode Proof_Context.mode_schematic ctxt) t, map (prep_prop (Proof_Context.set_mode Proof_Context.mode_pattern ctxt)) ps)) | Element.Obtains raw_obtains => let val ((_, thesis), thesis_ctxt) = Obtain.obtain_thesis ctxt; val obtains = prep_obtains thesis_ctxt thesis raw_obtains; in map (fn (b, t) => ((b, []), [(t, [])])) obtains end); (** Simultaneous type inference: instantiations + elements + statement **) local fun mk_type T = (Logic.mk_type T, []); fun mk_term t = (t, []); fun mk_propp (p, pats) = (Type.constraint propT p, pats); fun dest_type (T, []) = Logic.dest_type T; fun dest_term (t, []) = t; fun dest_propp (p, pats) = (p, pats); fun extract_inst (_, (_, ts)) = map mk_term ts; fun restore_inst ((l, (p, _)), cs) = (l, (p, map dest_term cs)); fun extract_eqns es = map (mk_term o snd) es; fun restore_eqns (es, cs) = map2 (fn (b, _) => fn c => (b, dest_term c)) es cs; fun extract_elem (Fixes fixes) = map (#2 #> the_list #> map mk_type) fixes | extract_elem (Constrains csts) = map (#2 #> single #> map mk_type) csts | extract_elem (Assumes asms) = map (#2 #> map mk_propp) asms | extract_elem (Defines defs) = map (fn (_, (t, ps)) => [mk_propp (t, ps)]) defs | extract_elem (Notes _) = [] | extract_elem (Lazy_Notes _) = []; fun restore_elem (Fixes fixes, css) = (fixes ~~ css) |> map (fn ((x, _, mx), cs) => (x, cs |> map dest_type |> try hd, mx)) |> Fixes | restore_elem (Constrains csts, css) = (csts ~~ css) |> map (fn ((x, _), cs) => (x, cs |> map dest_type |> hd)) |> Constrains | restore_elem (Assumes asms, css) = (asms ~~ css) |> map (fn ((b, _), cs) => (b, map dest_propp cs)) |> Assumes | restore_elem (Defines defs, css) = (defs ~~ css) |> map (fn ((b, _), [c]) => (b, dest_propp c)) |> Defines | restore_elem (elem as Notes _, _) = elem | restore_elem (elem as Lazy_Notes _, _) = elem; fun prep (_, pats) (ctxt, t :: ts) = let val ctxt' = Proof_Context.augment t ctxt in ((t, Syntax.check_props (Proof_Context.set_mode Proof_Context.mode_pattern ctxt') pats), (ctxt', ts)) end; fun check cs ctxt = let val (cs', (ctxt', _)) = fold_map prep cs (ctxt, Syntax.check_terms (Proof_Context.set_mode Proof_Context.mode_schematic ctxt) (map fst cs)); in (cs', ctxt') end; in fun check_autofix insts eqnss elems concl ctxt = let val inst_cs = map extract_inst insts; val eqns_cs = map extract_eqns eqnss; val elem_css = map extract_elem elems; val concl_cs = (map o map) mk_propp (map snd concl); (* Type inference *) val (inst_cs' :: eqns_cs' :: css', ctxt') = (fold_burrow o fold_burrow) check (inst_cs :: eqns_cs :: elem_css @ [concl_cs]) ctxt; val (elem_css', [concl_cs']) = chop (length elem_css) css'; in ((map restore_inst (insts ~~ inst_cs'), map restore_eqns (eqnss ~~ eqns_cs'), map restore_elem (elems ~~ elem_css'), map fst concl ~~ concl_cs'), ctxt') end; end; (** Prepare locale elements **) fun declare_elem prep_var (Fixes fixes) ctxt = let val (vars, _) = fold_map prep_var fixes ctxt in ctxt |> Proof_Context.add_fixes vars |> snd end | declare_elem prep_var (Constrains csts) ctxt = ctxt |> fold_map (fn (x, T) => prep_var (Binding.name x, SOME T, NoSyn)) csts |> snd | declare_elem _ (Assumes _) ctxt = ctxt | declare_elem _ (Defines _) ctxt = ctxt | declare_elem _ (Notes _) ctxt = ctxt | declare_elem _ (Lazy_Notes _) ctxt = ctxt; (** Finish locale elements **) fun finish_inst ctxt (loc, (prfx, inst)) = let val thy = Proof_Context.theory_of ctxt; val (morph, _) = inst_morphism (map #1 (Locale.params_of thy loc)) (prfx, inst) ctxt; in (loc, morph) end; fun finish_fixes (parms: (string * typ) list) = map (fn (binding, _, mx) => let val x = Binding.name_of binding in (binding, AList.lookup (op =) parms x, mx) end); local fun closeup _ _ false elem = elem | closeup (outer_ctxt, ctxt) parms true elem = let (* FIXME consider closing in syntactic phase -- before type checking *) fun close_frees t = let val rev_frees = Term.fold_aterms (fn Free (x, T) => if Variable.is_fixed outer_ctxt x orelse AList.defined (op =) parms x then I else insert (op =) (x, T) | _ => I) t []; in fold (Logic.all o Free) rev_frees t end; fun no_binds [] = [] | no_binds _ = error "Illegal term bindings in context element"; in (case elem of Assumes asms => Assumes (asms |> map (fn (a, propps) => (a, map (fn (t, ps) => (close_frees t, no_binds ps)) propps))) | Defines defs => Defines (defs |> map (fn ((name, atts), (t, ps)) => let val ((c, _), t') = Local_Defs.cert_def ctxt (K []) (close_frees t) in ((Thm.def_binding_optional (Binding.name c) name, atts), (t', no_binds ps)) end)) | e => e) end; in fun finish_elem _ parms _ (Fixes fixes) = Fixes (finish_fixes parms fixes) | finish_elem _ _ _ (Constrains _) = Constrains [] | finish_elem ctxts parms do_close (Assumes asms) = closeup ctxts parms do_close (Assumes asms) | finish_elem ctxts parms do_close (Defines defs) = closeup ctxts parms do_close (Defines defs) | finish_elem _ _ _ (elem as Notes _) = elem | finish_elem _ _ _ (elem as Lazy_Notes _) = elem; end; (** Process full context statement: instantiations + elements + statement **) (* Interleave incremental parsing and type inference over entire parsed stretch. *) local fun abs_def ctxt = Thm.cterm_of ctxt #> Assumption.assume ctxt #> Local_Defs.abs_def_rule ctxt #> Thm.prop_of; fun prep_full_context_statement parse_typ parse_prop prep_obtains prep_var_elem prep_inst prep_eqns prep_attr prep_var_inst prep_expr {strict, do_close, fixed_frees} raw_import init_body raw_elems raw_stmt ctxt1 = let val thy = Proof_Context.theory_of ctxt1; val (raw_insts, fixed) = parameters_of thy strict (apfst (prep_expr thy) raw_import); fun prep_insts_cumulative (loc, (prfx, (inst, eqns))) (i, insts, eqnss, ctxt) = let val params = map #1 (Locale.params_of thy loc); val inst' = prep_inst ctxt (map #1 params) inst; val parm_types' = params |> map (#2 #> Logic.varifyT_global #> Term.map_type_tvar (fn ((x, _), S) => TVar ((x, i), S)) #> Type_Infer.paramify_vars); val inst'' = map2 Type.constraint parm_types' inst'; val insts' = insts @ [(loc, (prfx, inst''))]; val ((insts'', _, _, _), ctxt2) = check_autofix insts' [] [] [] ctxt; val inst''' = insts'' |> List.last |> snd |> snd; val (inst_morph, _) = inst_morphism params (prfx, inst''') ctxt; val ctxt' = Locale.activate_declarations (loc, inst_morph) ctxt2 handle ERROR msg => if null eqns then error msg else (Locale.tracing ctxt1 (msg ^ "\nFalling back to reading rewrites clause before activation."); ctxt2); val attrss = map (apsnd (map (prep_attr ctxt)) o fst) eqns; val eqns' = (prep_eqns ctxt' o map snd) eqns; val eqnss' = [attrss ~~ eqns']; val ((_, [eqns''], _, _), _) = check_autofix insts'' eqnss' [] [] ctxt'; val rewrite_morph = eqns' |> map (abs_def ctxt') |> Variable.export_terms ctxt' ctxt |> Element.eq_term_morphism (Proof_Context.theory_of ctxt) |> the_default Morphism.identity; val ctxt'' = Locale.activate_declarations (loc, inst_morph $> rewrite_morph) ctxt; val eqnss' = eqnss @ [attrss ~~ Variable.export_terms ctxt' ctxt eqns']; in (i + 1, insts', eqnss', ctxt'') end; fun prep_elem raw_elem ctxt = let val ctxt' = ctxt |> Context_Position.set_visible false |> declare_elem prep_var_elem raw_elem |> Context_Position.restore_visible ctxt; val elems' = parse_elem parse_typ parse_prop ctxt' raw_elem; in (elems', ctxt') end; val fors = fold_map prep_var_inst fixed ctxt1 |> fst; val ctxt2 = ctxt1 |> Proof_Context.add_fixes fors |> snd; val (_, insts', eqnss', ctxt3) = fold prep_insts_cumulative raw_insts (0, [], [], ctxt2); fun prep_stmt elems ctxt = check_autofix insts' [] elems (prepare_stmt parse_prop prep_obtains ctxt raw_stmt) ctxt; val _ = if fixed_frees then () else (case fold (fold (Variable.add_frees ctxt3) o snd o snd) insts' [] of [] => () | frees => error ("Illegal free variables in expression: " ^ commas_quote (map (Syntax.string_of_term ctxt3 o Free) (rev frees)))); val ((insts, _, elems', concl), ctxt4) = ctxt3 |> init_body |> fold_map prep_elem raw_elems |-> prep_stmt; (* parameters from expression and elements *) val xs = maps (fn Fixes fixes => map (Variable.check_name o #1) fixes | _ => []) (Fixes fors :: elems'); val (parms, ctxt5) = fold_map Proof_Context.inferred_param xs ctxt4; val fors' = finish_fixes parms fors; val fixed = map (fn (b, SOME T, mx) => ((Binding.name_of b, T), mx)) fors'; val deps = map (finish_inst ctxt5) insts; val elems'' = map (finish_elem (ctxt1, ctxt5) parms do_close) elems'; in ((fixed, deps, eqnss', elems'', concl), (parms, ctxt5)) end; in fun cert_full_context_statement x = prep_full_context_statement (K I) (K I) Obtain.cert_obtains Proof_Context.cert_var make_inst Syntax.check_props (K I) Proof_Context.cert_var (K I) x; fun cert_read_full_context_statement x = prep_full_context_statement Syntax.parse_typ Syntax.parse_prop Obtain.parse_obtains Proof_Context.read_var make_inst Syntax.check_props (K I) Proof_Context.cert_var (K I) x; fun read_full_context_statement x = prep_full_context_statement Syntax.parse_typ Syntax.parse_prop Obtain.parse_obtains Proof_Context.read_var parse_inst Syntax.read_props Attrib.check_src Proof_Context.read_var check_expr x; end; (* Context statement: elements + statement *) local fun prep_statement prep activate raw_elems raw_stmt ctxt = let val ((_, _, _, elems, concl), _) = prep {strict = true, do_close = false, fixed_frees = true} ([], []) I raw_elems raw_stmt ctxt; val ctxt' = ctxt |> Proof_Context.set_stmt true |> fold_map activate elems |> #2 |> Proof_Context.restore_stmt ctxt; in (concl, ctxt') end; in fun cert_statement x = prep_statement cert_full_context_statement Element.activate_i x; fun read_statement x = prep_statement read_full_context_statement Element.activate x; end; (* Locale declaration: import + elements *) fun fix_params params = Proof_Context.add_fixes (map (fn ((x, T), mx) => (Binding.name x, SOME T, mx)) params) #> snd; local fun prep_declaration prep activate raw_import init_body raw_elems ctxt = let val ((fixed, deps, eqnss, elems, _), (parms, ctxt0)) = prep {strict = false, do_close = true, fixed_frees = false} raw_import init_body raw_elems (Element.Shows []) ctxt; val _ = null (flat eqnss) orelse error "Illegal rewrites clause(s) in declaration of locale"; (* Declare parameters and imported facts *) val ctxt' = ctxt |> fix_params fixed |> fold (Context.proof_map o Locale.activate_facts NONE) deps; val (elems', ctxt'') = ctxt' |> Proof_Context.set_stmt true |> fold_map activate elems ||> Proof_Context.restore_stmt ctxt'; in ((fixed, deps, elems', ctxt''), (parms, ctxt0)) end; in fun cert_declaration x = prep_declaration cert_full_context_statement Element.activate_i x; fun cert_read_declaration x = prep_declaration cert_read_full_context_statement Element.activate x; fun read_declaration x = prep_declaration read_full_context_statement Element.activate x; end; (* Locale expression to set up a goal *) local fun props_of thy (name, morph) = let val (asm, defs) = Locale.specification_of thy name in map (Morphism.term morph) (the_list asm @ defs) end; fun prep_goal_expression prep expression ctxt = let val thy = Proof_Context.theory_of ctxt; val ((fixed, deps, eqnss, _, _), _) = prep {strict = true, do_close = true, fixed_frees = true} expression I [] (Element.Shows []) ctxt; (* proof obligations *) val propss = map (props_of thy) deps; val eq_propss = (map o map) snd eqnss; val goal_ctxt = ctxt |> fix_params fixed |> (fold o fold) Proof_Context.augment (propss @ eq_propss); val export = Proof_Context.export_morphism goal_ctxt ctxt; val exp_fact = Drule.zero_var_indexes_list o map Thm.strip_shyps o Morphism.fact export; val exp_term = Term_Subst.zero_var_indexes o Morphism.term export; val exp_typ = Logic.type_map exp_term; val export' = Morphism.morphism "Expression.prep_goal" {binding = [], typ = [exp_typ], term = [exp_term], fact = [exp_fact]}; in ((propss, eq_propss, deps, eqnss, export'), goal_ctxt) end; in fun cert_goal_expression x = prep_goal_expression cert_full_context_statement x; fun read_goal_expression x = prep_goal_expression read_full_context_statement x; end; (*** Locale declarations ***) (* extract specification text *) val norm_term = Envir.beta_norm oo Term.subst_atomic; fun bind_def ctxt eq (xs, env, eqs) = let val _ = Local_Defs.cert_def ctxt (K []) eq; val ((y, T), b) = Local_Defs.abs_def eq; val b' = norm_term env b; fun err msg = error (msg ^ ": " ^ quote y); in (case filter (fn (Free (y', _), _) => y = y' | _ => false) env of [] => (Term.add_frees b' xs, (Free (y, T), b') :: env, eq :: eqs) | dups => if forall (fn (_, b'') => b' aconv b'') dups then (xs, env, eqs) else err "Attempt to redefine variable") end; (* text has the following structure: (((exts, exts'), (ints, ints')), (xs, env, defs)) where exts: external assumptions (terms in assumes elements) exts': dito, normalised wrt. env ints: internal assumptions (terms in assumptions from insts) ints': dito, normalised wrt. env xs: the free variables in exts' and ints' and rhss of definitions, this includes parameters except defined parameters env: list of term pairs encoding substitutions, where the first term is a free variable; substitutions represent defines elements and the rhs is normalised wrt. the previous env defs: the equations from the defines elements *) fun eval_text _ _ (Fixes _) text = text | eval_text _ _ (Constrains _) text = text | eval_text _ is_ext (Assumes asms) (((exts, exts'), (ints, ints')), (xs, env, defs)) = let val ts = maps (map #1 o #2) asms; val ts' = map (norm_term env) ts; val spec' = if is_ext then ((exts @ ts, exts' @ ts'), (ints, ints')) else ((exts, exts'), (ints @ ts, ints' @ ts')); in (spec', (fold Term.add_frees ts' xs, env, defs)) end | eval_text ctxt _ (Defines defs) (spec, binds) = (spec, fold (bind_def ctxt o #1 o #2) defs binds) | eval_text _ _ (Notes _) text = text | eval_text _ _ (Lazy_Notes _) text = text; fun eval_inst ctxt (loc, morph) text = let val thy = Proof_Context.theory_of ctxt; val (asm, defs) = Locale.specification_of thy loc; val asm' = Option.map (Morphism.term morph) asm; val defs' = map (Morphism.term morph) defs; val text' = text |> (if is_some asm then eval_text ctxt false (Assumes [(Binding.empty_atts, [(the asm', [])])]) else I) |> (if not (null defs) then eval_text ctxt false (Defines (map (fn def => (Binding.empty_atts, (def, []))) defs')) else I) (* FIXME clone from locale.ML *) in text' end; fun eval_elem ctxt elem text = eval_text ctxt true elem text; fun eval ctxt deps elems = let val text' = fold (eval_inst ctxt) deps ((([], []), ([], [])), ([], [], [])); val ((spec, (_, _, defs))) = fold (eval_elem ctxt) elems text'; in (spec, defs) end; (* axiomsN: name of theorem set with destruct rules for locale predicates, also name suffix of delta predicates and assumptions. *) val axiomsN = "axioms"; local (* introN: name of theorems for introduction rules of locale and delta predicates *) val introN = "intro"; fun atomize_spec ctxt ts = let val t = Logic.mk_conjunction_balanced ts; val body = Object_Logic.atomize_term ctxt t; val bodyT = Term.fastype_of body; in if bodyT = propT then (t, propT, Thm.reflexive (Thm.cterm_of ctxt t)) else (body, bodyT, Object_Logic.atomize ctxt (Thm.cterm_of ctxt t)) end; (* achieve plain syntax for locale predicates (without "PROP") *) fun aprop_tr' n c = let val c' = Lexicon.mark_const c; fun tr' (_: Proof.context) T args = if T <> dummyT andalso length args = n then Syntax.const "_aprop" $ Term.list_comb (Syntax.const c', args) else raise Match; in (c', tr') end; (* define one predicate including its intro rule and axioms - binding: predicate name - parms: locale parameters - defs: thms representing substitutions from defines elements - ts: terms representing locale assumptions (not normalised wrt. defs) - norm_ts: terms representing locale assumptions (normalised wrt. defs) - thy: the theory *) fun def_pred binding parms defs ts norm_ts thy = let val name = Sign.full_name thy binding; val thy_ctxt = Proof_Context.init_global thy; val (body, bodyT, body_eq) = atomize_spec thy_ctxt norm_ts; val env = Term.add_free_names body []; val xs = filter (member (op =) env o #1) parms; val Ts = map #2 xs; val extraTs = (subtract (op =) (fold Term.add_tfreesT Ts []) (Term.add_tfrees body [])) |> sort_by #1 |> map TFree; val predT = map Term.itselfT extraTs ---> Ts ---> bodyT; val args = map Logic.mk_type extraTs @ map Free xs; val head = Term.list_comb (Const (name, predT), args); val statement = Object_Logic.ensure_propT thy_ctxt head; val ([pred_def], defs_thy) = thy |> bodyT = propT ? Sign.typed_print_translation [aprop_tr' (length args) name] |> Sign.declare_const_global ((binding, predT), NoSyn) |> snd |> Global_Theory.add_defs false [((Thm.def_binding binding, Logic.mk_equals (head, body)), [])]; val defs_ctxt = Proof_Context.init_global defs_thy |> Variable.declare_term head; val intro = Goal.prove_global defs_thy [] norm_ts statement (fn {context = ctxt, ...} => rewrite_goals_tac ctxt [pred_def] THEN compose_tac defs_ctxt (false, body_eq RS Drule.equal_elim_rule1, 1) 1 THEN compose_tac defs_ctxt (false, Conjunction.intr_balanced (map (Thm.assume o Thm.cterm_of defs_ctxt) norm_ts), 0) 1); val conjuncts = (Drule.equal_elim_rule2 OF [body_eq, rewrite_rule defs_ctxt [pred_def] (Thm.assume (Thm.cterm_of defs_ctxt statement))]) |> Conjunction.elim_balanced (length ts); val (_, axioms_ctxt) = defs_ctxt |> Assumption.add_assumes (maps Thm.chyps_of (defs @ conjuncts)); val axioms = ts ~~ conjuncts |> map (fn (t, ax) => Element.prove_witness axioms_ctxt t (rewrite_goals_tac axioms_ctxt defs THEN compose_tac axioms_ctxt (false, ax, 0) 1)); in ((statement, intro, axioms), defs_thy) end; in (* main predicate definition function *) fun define_preds binding parms (((exts, exts'), (ints, ints')), defs) thy = let val ctxt = Proof_Context.init_global thy; val defs' = map (Thm.cterm_of ctxt #> Assumption.assume ctxt #> Drule.abs_def) defs; val (a_pred, a_intro, a_axioms, thy'') = if null exts then (NONE, NONE, [], thy) else let val abinding = if null ints then binding else Binding.suffix_name ("_" ^ axiomsN) binding; val ((statement, intro, axioms), thy') = thy |> def_pred abinding parms defs' exts exts'; val ((_, [intro']), thy'') = thy' |> Sign.qualified_path true abinding |> Global_Theory.note_thms "" ((Binding.name introN, []), [([intro], [Locale.unfold_add])]) ||> Sign.restore_naming thy'; in (SOME statement, SOME intro', axioms, thy'') end; val (b_pred, b_intro, b_axioms, thy'''') = if null ints then (NONE, NONE, [], thy'') else let val ((statement, intro, axioms), thy''') = thy'' |> def_pred binding parms defs' (ints @ the_list a_pred) (ints' @ the_list a_pred); val ctxt''' = Proof_Context.init_global thy'''; val ([(_, [intro']), _], thy'''') = thy''' |> Sign.qualified_path true binding |> Global_Theory.note_thmss "" [((Binding.name introN, []), [([intro], [Locale.intro_add])]), ((Binding.name axiomsN, []), [(map (Drule.export_without_context o Element.conclude_witness ctxt''') axioms, [])])] ||> Sign.restore_naming thy'''; in (SOME statement, SOME intro', axioms, thy'''') end; in ((a_pred, a_intro, a_axioms), (b_pred, b_intro, b_axioms), thy'''') end; end; local fun assumes_to_notes (Assumes asms) axms = fold_map (fn (a, spec) => fn axs => let val (ps, qs) = chop (length spec) axs in ((a, [(ps, [])]), qs) end) asms axms |> apfst (curry Notes "") | assumes_to_notes e axms = (e, axms); fun defines_to_notes ctxt (Defines defs) = Notes ("", map (fn (a, (def, _)) => (a, [([Assumption.assume ctxt (Thm.cterm_of ctxt def)], [(Attrib.internal o K) Locale.witness_add])])) defs) | defines_to_notes _ e = e; val is_hyp = fn Assumes _ => true | Defines _ => true | _ => false; fun gen_add_locale prep_include prep_decl binding raw_predicate_binding raw_includes raw_import raw_body thy = let val name = Sign.full_name thy binding; val _ = Locale.defined thy name andalso error ("Duplicate definition of locale " ^ quote name); val ctxt = Proof_Context.init_global thy; val includes = map (prep_include ctxt) raw_includes; val ((fixed, deps, body_elems, _), (parms, ctxt')) = ctxt |> Bundle.includes includes |> prep_decl raw_import I raw_body; val text as (((_, exts'), _), defs) = eval ctxt' deps body_elems; val extraTs = subtract (op =) (fold Term.add_tfreesT (map snd parms) []) (fold Term.add_tfrees exts' []); val _ = if null extraTs then () else warning ("Additional type variable(s) in locale specification " ^ Binding.print binding ^ ": " ^ commas (map (Syntax.string_of_typ ctxt' o TFree) (sort_by #1 extraTs))); val predicate_binding = if Binding.is_empty raw_predicate_binding then binding else raw_predicate_binding; val ((a_statement, a_intro, a_axioms), (b_statement, b_intro, b_axioms), thy') = define_preds predicate_binding parms text thy; val pred_ctxt = Proof_Context.init_global thy'; val a_satisfy = Element.satisfy_morphism a_axioms; val b_satisfy = Element.satisfy_morphism b_axioms; val params = fixed @ maps (fn Fixes fixes => map (fn (b, SOME T, mx) => ((Binding.name_of b, T), mx)) fixes | _ => []) body_elems; val asm = if is_some b_statement then b_statement else a_statement; val hyp_spec = filter is_hyp body_elems; val notes = if is_some asm then [("", [((Binding.suffix_name ("_" ^ axiomsN) binding, []), [([Assumption.assume pred_ctxt (Thm.cterm_of pred_ctxt (the asm))], [(Attrib.internal o K) Locale.witness_add])])])] else []; val notes' = body_elems |> map (defines_to_notes pred_ctxt) |> map (Element.transform_ctxt a_satisfy) |> (fn elems => fold_map assumes_to_notes elems (map (Element.conclude_witness pred_ctxt) a_axioms)) |> fst |> map (Element.transform_ctxt b_satisfy) |> map_filter (fn Notes notes => SOME notes | _ => NONE); val deps' = map (fn (l, morph) => (l, morph $> b_satisfy)) deps; val axioms = map (Element.conclude_witness pred_ctxt) b_axioms; val loc_ctxt = thy' |> Locale.register_locale binding (extraTs, params) (asm, rev defs) (a_intro, b_intro) axioms hyp_spec [] (rev notes) (rev deps') |> Named_Target.init includes name |> fold (fn (kind, facts) => Local_Theory.notes_kind kind facts #> snd) notes'; in (name, loc_ctxt) end; in val add_locale = gen_add_locale (K I) cert_declaration; val add_locale_cmd = gen_add_locale Bundle.check read_declaration; end; end; diff --git a/src/Pure/Isar/named_target.ML b/src/Pure/Isar/named_target.ML --- a/src/Pure/Isar/named_target.ML +++ b/src/Pure/Isar/named_target.ML @@ -1,139 +1,139 @@ (* Title: Pure/Isar/named_target.ML Author: Makarius Author: Florian Haftmann, TU Muenchen Targets for theory, locale, class -- at the bottom of the nested structure. *) signature NAMED_TARGET = sig val is_theory: local_theory -> bool val locale_of: local_theory -> string option val bottom_locale_of: local_theory -> string option val class_of: local_theory -> string option - val init: string list -> string -> theory -> local_theory + val init: Bundle.name list -> string -> theory -> local_theory val theory_init: theory -> local_theory val theory_map: (local_theory -> local_theory) -> theory -> theory val theory_map_result: (morphism -> 'a -> 'b) -> (local_theory -> 'a * local_theory) -> theory -> 'b * theory val reinit: local_theory -> theory -> local_theory end; structure Named_Target: NAMED_TARGET = struct (* context data *) datatype target = Theory | Locale of string | Class of string; fun target_of_ident _ "" = Theory | target_of_ident thy ident = if Locale.defined thy ident then (if Class.is_class thy ident then Class else Locale) ident else error ("No such locale: " ^ quote ident); fun ident_of_target Theory = "" | ident_of_target (Locale locale) = locale | ident_of_target (Class class) = class; fun target_is_theory (SOME Theory) = true | target_is_theory _ = false; fun locale_of_target (SOME (Locale locale)) = SOME locale | locale_of_target (SOME (Class locale)) = SOME locale | locale_of_target _ = NONE; fun class_of_target (SOME (Class class)) = SOME class | class_of_target _ = NONE; structure Data = Proof_Data ( type T = target option; fun init _ = NONE; ); val get_bottom_target = Data.get; fun get_target lthy = if Local_Theory.level lthy = 1 then get_bottom_target lthy else NONE; fun ident_of lthy = case get_target lthy of NONE => error "Not in a named target" | SOME target => ident_of_target target; val is_theory = target_is_theory o get_target; val locale_of = locale_of_target o get_target; val bottom_locale_of = locale_of_target o get_bottom_target; val class_of = class_of_target o get_target; (* operations *) fun locale_foundation locale (((b, U), mx), (b_def, rhs)) params = Generic_Target.background_foundation (((b, U), NoSyn), (b_def, rhs)) params #-> (fn (lhs, def) => Generic_Target.locale_const locale Syntax.mode_default ((b, mx), lhs) #> pair (lhs, def)); fun class_foundation class (((b, U), mx), (b_def, rhs)) params = Generic_Target.background_foundation (((b, U), NoSyn), (b_def, rhs)) params #-> (fn (lhs, def) => Class.const class ((b, mx), lhs) params #> pair (lhs, def)); fun operations Theory = {define = Generic_Target.define Generic_Target.theory_target_foundation, notes = Generic_Target.notes Generic_Target.theory_target_notes, abbrev = Generic_Target.theory_abbrev, declaration = fn _ => Generic_Target.theory_declaration, theory_registration = Locale.add_registration_theory, locale_dependency = fn _ => error "Not possible in theory target", pretty = fn ctxt => [Pretty.block [Pretty.keyword1 "theory", Pretty.brk 1, Pretty.str (Context.theory_name (Proof_Context.theory_of ctxt))]]} | operations (Locale locale) = {define = Generic_Target.define (locale_foundation locale), notes = Generic_Target.notes (Generic_Target.locale_target_notes locale), abbrev = Generic_Target.locale_abbrev locale, declaration = Generic_Target.locale_declaration locale, theory_registration = fn _ => error "Not possible in locale target", locale_dependency = Locale.add_dependency locale, pretty = fn ctxt => [Locale.pretty_locale (Proof_Context.theory_of ctxt) false locale]} | operations (Class class) = {define = Generic_Target.define (class_foundation class), notes = Generic_Target.notes (Generic_Target.locale_target_notes class), abbrev = Class.abbrev class, declaration = Generic_Target.locale_declaration class, theory_registration = fn _ => error "Not possible in class target", locale_dependency = Locale.add_dependency class, pretty = fn ctxt => Class.pretty_specification (Proof_Context.theory_of ctxt) class}; fun setup_context Theory = Proof_Context.init_global | setup_context (Locale locale) = Locale.init locale | setup_context (Class class) = Class.init class; fun init includes ident thy = let val target = target_of_ident thy ident; in thy |> Local_Theory.init {background_naming = Sign.naming_of thy |> Name_Space.mandatory_path (Long_Name.base_name ident), setup = setup_context target #> Data.put (SOME target) #> Bundle.includes includes, conclude = I} (operations target) |> not (null includes) ? Local_Theory.mark_brittle end; val theory_init = init [] ""; fun theory_map g = theory_init #> g #> Local_Theory.exit_global; fun theory_map_result f g = theory_init #> g #> Local_Theory.exit_result_global f; fun reinit lthy = init [] (ident_of lthy); end;