diff --git a/src/ZF/List.thy b/src/ZF/List.thy --- a/src/ZF/List.thy +++ b/src/ZF/List.thy @@ -1,1271 +1,1270 @@ (* Title: ZF/List.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge *) section\Lists in Zermelo-Fraenkel Set Theory\ theory List imports Datatype ArithSimp begin consts list :: "i=>i" datatype "list(A)" = Nil | Cons ("a \ A", "l \ list(A)") syntax "_Nil" :: i (\[]\) "_List" :: "is => i" (\[(_)]\) translations "[x, xs]" == "CONST Cons(x, [xs])" "[x]" == "CONST Cons(x, [])" "[]" == "CONST Nil" consts length :: "i=>i" hd :: "i=>i" tl :: "i=>i" primrec "length([]) = 0" "length(Cons(a,l)) = succ(length(l))" primrec "hd([]) = 0" "hd(Cons(a,l)) = a" primrec "tl([]) = []" "tl(Cons(a,l)) = l" consts map :: "[i=>i, i] => i" set_of_list :: "i=>i" app :: "[i,i]=>i" (infixr \@\ 60) (*map is a binding operator -- it applies to meta-level functions, not object-level functions. This simplifies the final form of term_rec_conv, although complicating its derivation.*) primrec "map(f,[]) = []" "map(f,Cons(a,l)) = Cons(f(a), map(f,l))" primrec "set_of_list([]) = 0" "set_of_list(Cons(a,l)) = cons(a, set_of_list(l))" primrec app_Nil: "[] @ ys = ys" app_Cons: "(Cons(a,l)) @ ys = Cons(a, l @ ys)" consts rev :: "i=>i" flat :: "i=>i" list_add :: "i=>i" primrec "rev([]) = []" "rev(Cons(a,l)) = rev(l) @ [a]" primrec "flat([]) = []" "flat(Cons(l,ls)) = l @ flat(ls)" primrec "list_add([]) = 0" "list_add(Cons(a,l)) = a #+ list_add(l)" consts drop :: "[i,i]=>i" primrec drop_0: "drop(0,l) = l" drop_succ: "drop(succ(i), l) = tl (drop(i,l))" (*** Thanks to Sidi Ehmety for the following ***) definition (* Function `take' returns the first n elements of a list *) take :: "[i,i]=>i" where "take(n, as) == list_rec(\n\nat. [], %a l r. \n\nat. nat_case([], %m. Cons(a, r`m), n), as)`n" definition nth :: "[i, i]=>i" where \ \returns the (n+1)th element of a list, or 0 if the list is too short.\ "nth(n, as) == list_rec(\n\nat. 0, %a l r. \n\nat. nat_case(a, %m. r`m, n), as) ` n" definition list_update :: "[i, i, i]=>i" where "list_update(xs, i, v) == list_rec(\n\nat. Nil, %u us vs. \n\nat. nat_case(Cons(v, us), %m. Cons(u, vs`m), n), xs)`i" consts filter :: "[i=>o, i] => i" upt :: "[i, i] =>i" primrec "filter(P, Nil) = Nil" "filter(P, Cons(x, xs)) = (if P(x) then Cons(x, filter(P, xs)) else filter(P, xs))" primrec "upt(i, 0) = Nil" "upt(i, succ(j)) = (if i \ j then upt(i, j)@[j] else Nil)" definition min :: "[i,i] =>i" where "min(x, y) == (if x \ y then x else y)" definition max :: "[i, i] =>i" where "max(x, y) == (if x \ y then y else x)" (*** Aspects of the datatype definition ***) declare list.intros [simp,TC] (*An elimination rule, for type-checking*) inductive_cases ConsE: "Cons(a,l) \ list(A)" lemma Cons_type_iff [simp]: "Cons(a,l) \ list(A) \ a \ A & l \ list(A)" by (blast elim: ConsE) (*Proving freeness results*) lemma Cons_iff: "Cons(a,l)=Cons(a',l') \ a=a' & l=l'" by auto lemma Nil_Cons_iff: "~ Nil=Cons(a,l)" by auto lemma list_unfold: "list(A) = {0} + (A * list(A))" by (blast intro!: list.intros [unfolded list.con_defs] elim: list.cases [unfolded list.con_defs]) (** Lemmas to justify using "list" in other recursive type definitions **) lemma list_mono: "A<=B ==> list(A) \ list(B)" apply (unfold list.defs ) apply (rule lfp_mono) apply (simp_all add: list.bnd_mono) apply (assumption | rule univ_mono basic_monos)+ done (*There is a similar proof by list induction.*) lemma list_univ: "list(univ(A)) \ univ(A)" apply (unfold list.defs list.con_defs) apply (rule lfp_lowerbound) apply (rule_tac [2] A_subset_univ [THEN univ_mono]) apply (blast intro!: zero_in_univ Inl_in_univ Inr_in_univ Pair_in_univ) done (*These two theorems justify datatypes involving list(nat), list(A), ...*) lemmas list_subset_univ = subset_trans [OF list_mono list_univ] lemma list_into_univ: "[| l \ list(A); A \ univ(B) |] ==> l \ univ(B)" by (blast intro: list_subset_univ [THEN subsetD]) lemma list_case_type: "[| l \ list(A); c \ C(Nil); !!x y. [| x \ A; y \ list(A) |] ==> h(x,y): C(Cons(x,y)) |] ==> list_case(c,h,l) \ C(l)" by (erule list.induct, auto) lemma list_0_triv: "list(0) = {Nil}" apply (rule equalityI, auto) apply (induct_tac x, auto) done (*** List functions ***) lemma tl_type: "l \ list(A) ==> tl(l) \ list(A)" apply (induct_tac "l") apply (simp_all (no_asm_simp) add: list.intros) done (** drop **) lemma drop_Nil [simp]: "i \ nat ==> drop(i, Nil) = Nil" apply (induct_tac "i") apply (simp_all (no_asm_simp)) done lemma drop_succ_Cons [simp]: "i \ nat ==> drop(succ(i), Cons(a,l)) = drop(i,l)" apply (rule sym) apply (induct_tac "i") apply (simp (no_asm)) apply (simp (no_asm_simp)) done lemma drop_type [simp,TC]: "[| i \ nat; l \ list(A) |] ==> drop(i,l) \ list(A)" apply (induct_tac "i") apply (simp_all (no_asm_simp) add: tl_type) done declare drop_succ [simp del] (** Type checking -- proved by induction, as usual **) lemma list_rec_type [TC]: "[| l \ list(A); c \ C(Nil); !!x y r. [| x \ A; y \ list(A); r \ C(y) |] ==> h(x,y,r): C(Cons(x,y)) |] ==> list_rec(c,h,l) \ C(l)" by (induct_tac "l", auto) (** map **) lemma map_type [TC]: "[| l \ list(A); !!x. x \ A ==> h(x): B |] ==> map(h,l) \ list(B)" apply (simp add: map_list_def) apply (typecheck add: list.intros list_rec_type, blast) done lemma map_type2 [TC]: "l \ list(A) ==> map(h,l) \ list({h(u). u \ A})" apply (erule map_type) apply (erule RepFunI) done (** length **) lemma length_type [TC]: "l \ list(A) ==> length(l) \ nat" by (simp add: length_list_def) lemma lt_length_in_nat: "[|x < length(xs); xs \ list(A)|] ==> x \ nat" by (frule lt_nat_in_nat, typecheck) (** app **) lemma app_type [TC]: "[| xs: list(A); ys: list(A) |] ==> xs@ys \ list(A)" by (simp add: app_list_def) (** rev **) lemma rev_type [TC]: "xs: list(A) ==> rev(xs) \ list(A)" by (simp add: rev_list_def) (** flat **) lemma flat_type [TC]: "ls: list(list(A)) ==> flat(ls) \ list(A)" by (simp add: flat_list_def) (** set_of_list **) lemma set_of_list_type [TC]: "l \ list(A) ==> set_of_list(l) \ Pow(A)" apply (unfold set_of_list_list_def) apply (erule list_rec_type, auto) done lemma set_of_list_append: "xs: list(A) ==> set_of_list (xs@ys) = set_of_list(xs) \ set_of_list(ys)" apply (erule list.induct) apply (simp_all (no_asm_simp) add: Un_cons) done (** list_add **) lemma list_add_type [TC]: "xs: list(nat) ==> list_add(xs) \ nat" by (simp add: list_add_list_def) (*** theorems about map ***) lemma map_ident [simp]: "l \ list(A) ==> map(%u. u, l) = l" apply (induct_tac "l") apply (simp_all (no_asm_simp)) done lemma map_compose: "l \ list(A) ==> map(h, map(j,l)) = map(%u. h(j(u)), l)" apply (induct_tac "l") apply (simp_all (no_asm_simp)) done lemma map_app_distrib: "xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)" apply (induct_tac "xs") apply (simp_all (no_asm_simp)) done lemma map_flat: "ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))" apply (induct_tac "ls") apply (simp_all (no_asm_simp) add: map_app_distrib) done lemma list_rec_map: "l \ list(A) ==> list_rec(c, d, map(h,l)) = list_rec(c, %x xs r. d(h(x), map(h,xs), r), l)" apply (induct_tac "l") apply (simp_all (no_asm_simp)) done (** theorems about list(Collect(A,P)) -- used in Induct/Term.thy **) (* @{term"c \ list(Collect(B,P)) ==> c \ list"} *) lemmas list_CollectD = Collect_subset [THEN list_mono, THEN subsetD] lemma map_list_Collect: "l \ list({x \ A. h(x)=j(x)}) ==> map(h,l) = map(j,l)" apply (induct_tac "l") apply (simp_all (no_asm_simp)) done (*** theorems about length ***) lemma length_map [simp]: "xs: list(A) ==> length(map(h,xs)) = length(xs)" by (induct_tac "xs", simp_all) lemma length_app [simp]: "[| xs: list(A); ys: list(A) |] ==> length(xs@ys) = length(xs) #+ length(ys)" by (induct_tac "xs", simp_all) lemma length_rev [simp]: "xs: list(A) ==> length(rev(xs)) = length(xs)" apply (induct_tac "xs") apply (simp_all (no_asm_simp) add: length_app) done lemma length_flat: "ls: list(list(A)) ==> length(flat(ls)) = list_add(map(length,ls))" apply (induct_tac "ls") apply (simp_all (no_asm_simp) add: length_app) done (** Length and drop **) (*Lemma for the inductive step of drop_length*) lemma drop_length_Cons [rule_format]: "xs: list(A) ==> \x. \z zs. drop(length(xs), Cons(x,xs)) = Cons(z,zs)" by (erule list.induct, simp_all) lemma drop_length [rule_format]: "l \ list(A) ==> \i \ length(l). (\z zs. drop(i,l) = Cons(z,zs))" apply (erule list.induct, simp_all, safe) apply (erule drop_length_Cons) apply (rule natE) apply (erule Ord_trans [OF asm_rl length_type Ord_nat], assumption, simp_all) apply (blast intro: succ_in_naturalD length_type) done (*** theorems about app ***) lemma app_right_Nil [simp]: "xs: list(A) ==> xs@Nil=xs" by (erule list.induct, simp_all) lemma app_assoc: "xs: list(A) ==> (xs@ys)@zs = xs@(ys@zs)" by (induct_tac "xs", simp_all) lemma flat_app_distrib: "ls: list(list(A)) ==> flat(ls@ms) = flat(ls)@flat(ms)" apply (induct_tac "ls") apply (simp_all (no_asm_simp) add: app_assoc) done (*** theorems about rev ***) lemma rev_map_distrib: "l \ list(A) ==> rev(map(h,l)) = map(h,rev(l))" apply (induct_tac "l") apply (simp_all (no_asm_simp) add: map_app_distrib) done (*Simplifier needs the premises as assumptions because rewriting will not instantiate the variable ?A in the rules' typing conditions; note that rev_type does not instantiate ?A. Only the premises do. *) lemma rev_app_distrib: "[| xs: list(A); ys: list(A) |] ==> rev(xs@ys) = rev(ys)@rev(xs)" apply (erule list.induct) apply (simp_all add: app_assoc) done lemma rev_rev_ident [simp]: "l \ list(A) ==> rev(rev(l))=l" apply (induct_tac "l") apply (simp_all (no_asm_simp) add: rev_app_distrib) done lemma rev_flat: "ls: list(list(A)) ==> rev(flat(ls)) = flat(map(rev,rev(ls)))" apply (induct_tac "ls") apply (simp_all add: map_app_distrib flat_app_distrib rev_app_distrib) done (*** theorems about list_add ***) lemma list_add_app: "[| xs: list(nat); ys: list(nat) |] ==> list_add(xs@ys) = list_add(ys) #+ list_add(xs)" apply (induct_tac "xs", simp_all) done lemma list_add_rev: "l \ list(nat) ==> list_add(rev(l)) = list_add(l)" apply (induct_tac "l") apply (simp_all (no_asm_simp) add: list_add_app) done lemma list_add_flat: "ls: list(list(nat)) ==> list_add(flat(ls)) = list_add(map(list_add,ls))" apply (induct_tac "ls") apply (simp_all (no_asm_simp) add: list_add_app) done (** New induction rules **) lemma list_append_induct [case_names Nil snoc, consumes 1]: "[| l \ list(A); P(Nil); !!x y. [| x \ A; y \ list(A); P(y) |] ==> P(y @ [x]) |] ==> P(l)" apply (subgoal_tac "P(rev(rev(l)))", simp) apply (erule rev_type [THEN list.induct], simp_all) done lemma list_complete_induct_lemma [rule_format]: assumes ih: "\l. [| l \ list(A); \l' \ list(A). length(l') < length(l) \ P(l')|] ==> P(l)" shows "n \ nat ==> \l \ list(A). length(l) < n \ P(l)" apply (induct_tac n, simp) apply (blast intro: ih elim!: leE) done theorem list_complete_induct: "[| l \ list(A); \l. [| l \ list(A); \l' \ list(A). length(l') < length(l) \ P(l')|] ==> P(l) |] ==> P(l)" apply (rule list_complete_induct_lemma [of A]) prefer 4 apply (rule le_refl, simp) apply blast apply simp apply assumption done (*** Thanks to Sidi Ehmety for these results about min, take, etc. ***) (** min FIXME: replace by Int! **) (* Min theorems are also true for i, j ordinals *) lemma min_sym: "[| i \ nat; j \ nat |] ==> min(i,j)=min(j,i)" apply (unfold min_def) apply (auto dest!: not_lt_imp_le dest: lt_not_sym intro: le_anti_sym) done lemma min_type [simp,TC]: "[| i \ nat; j \ nat |] ==> min(i,j):nat" by (unfold min_def, auto) lemma min_0 [simp]: "i \ nat ==> min(0,i) = 0" apply (unfold min_def) apply (auto dest: not_lt_imp_le) done lemma min_02 [simp]: "i \ nat ==> min(i, 0) = 0" apply (unfold min_def) apply (auto dest: not_lt_imp_le) done lemma lt_min_iff: "[| i \ nat; j \ nat; k \ nat |] ==> i i nat; j \ nat |] ==> min(succ(i), succ(j))= succ(min(i, j))" apply (unfold min_def, auto) done (*** more theorems about lists ***) (** filter **) lemma filter_append [simp]: "xs:list(A) ==> filter(P, xs@ys) = filter(P, xs) @ filter(P, ys)" by (induct_tac "xs", auto) lemma filter_type [simp,TC]: "xs:list(A) ==> filter(P, xs):list(A)" by (induct_tac "xs", auto) lemma length_filter: "xs:list(A) ==> length(filter(P, xs)) \ length(xs)" apply (induct_tac "xs", auto) apply (rule_tac j = "length (l) " in le_trans) apply (auto simp add: le_iff) done lemma filter_is_subset: "xs:list(A) ==> set_of_list(filter(P,xs)) \ set_of_list(xs)" by (induct_tac "xs", auto) lemma filter_False [simp]: "xs:list(A) ==> filter(%p. False, xs) = Nil" by (induct_tac "xs", auto) lemma filter_True [simp]: "xs:list(A) ==> filter(%p. True, xs) = xs" by (induct_tac "xs", auto) (** length **) lemma length_is_0_iff [simp]: "xs:list(A) ==> length(xs)=0 \ xs=Nil" by (erule list.induct, auto) lemma length_is_0_iff2 [simp]: "xs:list(A) ==> 0 = length(xs) \ xs=Nil" by (erule list.induct, auto) lemma length_tl [simp]: "xs:list(A) ==> length(tl(xs)) = length(xs) #- 1" by (erule list.induct, auto) lemma length_greater_0_iff: "xs:list(A) ==> 0 xs \ Nil" by (erule list.induct, auto) lemma length_succ_iff: "xs:list(A) ==> length(xs)=succ(n) \ (\y ys. xs=Cons(y, ys) & length(ys)=n)" by (erule list.induct, auto) (** more theorems about append **) lemma append_is_Nil_iff [simp]: "xs:list(A) ==> (xs@ys = Nil) \ (xs=Nil & ys = Nil)" by (erule list.induct, auto) lemma append_is_Nil_iff2 [simp]: "xs:list(A) ==> (Nil = xs@ys) \ (xs=Nil & ys = Nil)" by (erule list.induct, auto) lemma append_left_is_self_iff [simp]: "xs:list(A) ==> (xs@ys = xs) \ (ys = Nil)" by (erule list.induct, auto) lemma append_left_is_self_iff2 [simp]: "xs:list(A) ==> (xs = xs@ys) \ (ys = Nil)" by (erule list.induct, auto) (*TOO SLOW as a default simprule!*) lemma append_left_is_Nil_iff [rule_format]: "[| xs:list(A); ys:list(A); zs:list(A) |] ==> length(ys)=length(zs) \ (xs@ys=zs \ (xs=Nil & ys=zs))" apply (erule list.induct) apply (auto simp add: length_app) done (*TOO SLOW as a default simprule!*) lemma append_left_is_Nil_iff2 [rule_format]: "[| xs:list(A); ys:list(A); zs:list(A) |] ==> length(ys)=length(zs) \ (zs=ys@xs \ (xs=Nil & ys=zs))" apply (erule list.induct) apply (auto simp add: length_app) done lemma append_eq_append_iff [rule_format]: "xs:list(A) ==> \ys \ list(A). length(xs)=length(ys) \ (xs@us = ys@vs) \ (xs=ys & us=vs)" apply (erule list.induct) apply (simp (no_asm_simp)) apply clarify apply (erule_tac a = ys in list.cases, auto) done declare append_eq_append_iff [simp] lemma append_eq_append [rule_format]: "xs:list(A) ==> \ys \ list(A). \us \ list(A). \vs \ list(A). length(us) = length(vs) \ (xs@us = ys@vs) \ (xs=ys & us=vs)" apply (induct_tac "xs") apply (force simp add: length_app, clarify) apply (erule_tac a = ys in list.cases, simp) apply (subgoal_tac "Cons (a, l) @ us =vs") apply (drule rev_iffD1 [OF _ append_left_is_Nil_iff], simp_all, blast) done lemma append_eq_append_iff2 [simp]: "[| xs:list(A); ys:list(A); us:list(A); vs:list(A); length(us)=length(vs) |] ==> xs@us = ys@vs \ (xs=ys & us=vs)" apply (rule iffI) apply (rule append_eq_append, auto) done lemma append_self_iff [simp]: "[| xs:list(A); ys:list(A); zs:list(A) |] ==> xs@ys=xs@zs \ ys=zs" by simp lemma append_self_iff2 [simp]: "[| xs:list(A); ys:list(A); zs:list(A) |] ==> ys@xs=zs@xs \ ys=zs" by simp (* Can also be proved from append_eq_append_iff2, but the proof requires two more hypotheses: x \ A and y \ A *) lemma append1_eq_iff [rule_format]: "xs:list(A) ==> \ys \ list(A). xs@[x] = ys@[y] \ (xs = ys & x=y)" apply (erule list.induct) apply clarify apply (erule list.cases) apply simp_all txt\Inductive step\ apply clarify apply (erule_tac a=ys in list.cases, simp_all) done declare append1_eq_iff [simp] lemma append_right_is_self_iff [simp]: "[| xs:list(A); ys:list(A) |] ==> (xs@ys = ys) \ (xs=Nil)" by (simp (no_asm_simp) add: append_left_is_Nil_iff) lemma append_right_is_self_iff2 [simp]: "[| xs:list(A); ys:list(A) |] ==> (ys = xs@ys) \ (xs=Nil)" apply (rule iffI) apply (drule sym, auto) done lemma hd_append [rule_format]: "xs:list(A) ==> xs \ Nil \ hd(xs @ ys) = hd(xs)" by (induct_tac "xs", auto) declare hd_append [simp] lemma tl_append [rule_format]: "xs:list(A) ==> xs\Nil \ tl(xs @ ys) = tl(xs)@ys" by (induct_tac "xs", auto) declare tl_append [simp] (** rev **) lemma rev_is_Nil_iff [simp]: "xs:list(A) ==> (rev(xs) = Nil \ xs = Nil)" by (erule list.induct, auto) lemma Nil_is_rev_iff [simp]: "xs:list(A) ==> (Nil = rev(xs) \ xs = Nil)" by (erule list.induct, auto) lemma rev_is_rev_iff [rule_format]: "xs:list(A) ==> \ys \ list(A). rev(xs)=rev(ys) \ xs=ys" apply (erule list.induct, force, clarify) apply (erule_tac a = ys in list.cases, auto) done declare rev_is_rev_iff [simp] lemma rev_list_elim [rule_format]: "xs:list(A) ==> (xs=Nil \ P) \ (\ys \ list(A). \y \ A. xs =ys@[y] \P)\P" by (erule list_append_induct, auto) (** more theorems about drop **) lemma length_drop [rule_format]: "n \ nat ==> \xs \ list(A). length(drop(n, xs)) = length(xs) #- n" apply (erule nat_induct) apply (auto elim: list.cases) done declare length_drop [simp] lemma drop_all [rule_format]: "n \ nat ==> \xs \ list(A). length(xs) \ n \ drop(n, xs)=Nil" apply (erule nat_induct) apply (auto elim: list.cases) done declare drop_all [simp] lemma drop_append [rule_format]: "n \ nat ==> \xs \ list(A). drop(n, xs@ys) = drop(n,xs) @ drop(n #- length(xs), ys)" apply (induct_tac "n") apply (auto elim: list.cases) done lemma drop_drop: "m \ nat ==> \xs \ list(A). \n \ nat. drop(n, drop(m, xs))=drop(n #+ m, xs)" apply (induct_tac "m") apply (auto elim: list.cases) done (** take **) lemma take_0 [simp]: "xs:list(A) ==> take(0, xs) = Nil" apply (unfold take_def) apply (erule list.induct, auto) done lemma take_succ_Cons [simp]: "n \ nat ==> take(succ(n), Cons(a, xs)) = Cons(a, take(n, xs))" by (simp add: take_def) (* Needed for proving take_all *) lemma take_Nil [simp]: "n \ nat ==> take(n, Nil) = Nil" by (unfold take_def, auto) lemma take_all [rule_format]: "n \ nat ==> \xs \ list(A). length(xs) \ n \ take(n, xs) = xs" apply (erule nat_induct) apply (auto elim: list.cases) done declare take_all [simp] lemma take_type [rule_format]: "xs:list(A) ==> \n \ nat. take(n, xs):list(A)" apply (erule list.induct, simp, clarify) apply (erule natE, auto) done declare take_type [simp,TC] lemma take_append [rule_format]: "xs:list(A) ==> \ys \ list(A). \n \ nat. take(n, xs @ ys) = take(n, xs) @ take(n #- length(xs), ys)" apply (erule list.induct, simp, clarify) apply (erule natE, auto) done declare take_append [simp] lemma take_take [rule_format]: "m \ nat ==> \xs \ list(A). \n \ nat. take(n, take(m,xs))= take(min(n, m), xs)" apply (induct_tac "m", auto) apply (erule_tac a = xs in list.cases) apply (auto simp add: take_Nil) apply (erule_tac n=n in natE) apply (auto intro: take_0 take_type) done (** nth **) lemma nth_0 [simp]: "nth(0, Cons(a, l)) = a" by (simp add: nth_def) lemma nth_Cons [simp]: "n \ nat ==> nth(succ(n), Cons(a,l)) = nth(n,l)" by (simp add: nth_def) lemma nth_empty [simp]: "nth(n, Nil) = 0" by (simp add: nth_def) lemma nth_type [rule_format]: "xs:list(A) ==> \n. n < length(xs) \ nth(n,xs) \ A" apply (erule list.induct, simp, clarify) apply (subgoal_tac "n \ nat") apply (erule natE, auto dest!: le_in_nat) done declare nth_type [simp,TC] lemma nth_eq_0 [rule_format]: "xs:list(A) ==> \n \ nat. length(xs) \ n \ nth(n,xs) = 0" apply (erule list.induct, simp, clarify) apply (erule natE, auto) done lemma nth_append [rule_format]: "xs:list(A) ==> \n \ nat. nth(n, xs @ ys) = (if n < length(xs) then nth(n,xs) else nth(n #- length(xs), ys))" apply (induct_tac "xs", simp, clarify) apply (erule natE, auto) done lemma set_of_list_conv_nth: "xs:list(A) ==> set_of_list(xs) = {x \ A. \i\nat. i nat ==> \xs \ list(A). (\ys \ list(A). k \ length(xs) \ k \ length(ys) \ (\i \ nat. i nth(i,xs) = nth(i,ys))\ take(k,xs) = take(k,ys))" apply (induct_tac "k") apply (simp_all (no_asm_simp) add: lt_succ_eq_0_disj all_conj_distrib) apply clarify (*Both lists are non-empty*) apply (erule_tac a=xs in list.cases, simp) apply (erule_tac a=ys in list.cases, clarify) apply (simp (no_asm_use) ) apply clarify apply (simp (no_asm_simp)) apply (rule conjI, force) apply (rename_tac y ys z zs) apply (drule_tac x = zs and x1 = ys in bspec [THEN bspec], auto) done lemma nth_equalityI [rule_format]: "[| xs:list(A); ys:list(A); length(xs) = length(ys); \i \ nat. i < length(xs) \ nth(i,xs) = nth(i,ys) |] ==> xs = ys" apply (subgoal_tac "length (xs) \ length (ys) ") apply (cut_tac k="length(xs)" and xs=xs and ys=ys in nth_take_lemma) apply (simp_all add: take_all) done (*The famous take-lemma*) lemma take_equalityI [rule_format]: "[| xs:list(A); ys:list(A); (\i \ nat. take(i, xs) = take(i,ys)) |] ==> xs = ys" apply (case_tac "length (xs) \ length (ys) ") apply (drule_tac x = "length (ys) " in bspec) apply (drule_tac [3] not_lt_imp_le) apply (subgoal_tac [5] "length (ys) \ length (xs) ") apply (rule_tac [6] j = "succ (length (ys))" in le_trans) apply (rule_tac [6] leI) apply (drule_tac [5] x = "length (xs) " in bspec) apply (simp_all add: take_all) done lemma nth_drop [rule_format]: "n \ nat ==> \i \ nat. \xs \ list(A). nth(i, drop(n, xs)) = nth(n #+ i, xs)" apply (induct_tac "n", simp_all, clarify) apply (erule list.cases, auto) done lemma take_succ [rule_format]: "xs\list(A) ==> \i. i < length(xs) \ take(succ(i), xs) = take(i,xs) @ [nth(i, xs)]" apply (induct_tac "xs", auto) apply (subgoal_tac "i\nat") apply (erule natE) apply (auto simp add: le_in_nat) done lemma take_add [rule_format]: "[|xs\list(A); j\nat|] ==> \i\nat. take(i #+ j, xs) = take(i,xs) @ take(j, drop(i,xs))" apply (induct_tac "xs", simp_all, clarify) apply (erule_tac n = i in natE, simp_all) done lemma length_take: "l\list(A) ==> \n\nat. length(take(n,l)) = min(n, length(l))" apply (induct_tac "l", safe, simp_all) apply (erule natE, simp_all) done subsection\The function zip\ text\Crafty definition to eliminate a type argument\ consts zip_aux :: "[i,i]=>i" primrec (*explicit lambda is required because both arguments of "un" vary*) "zip_aux(B,[]) = (\ys \ list(B). list_case([], %y l. [], ys))" "zip_aux(B,Cons(x,l)) = (\ys \ list(B). list_case(Nil, %y zs. Cons(, zip_aux(B,l)`zs), ys))" definition zip :: "[i, i]=>i" where "zip(xs, ys) == zip_aux(set_of_list(ys),xs)`ys" (* zip equations *) lemma list_on_set_of_list: "xs \ list(A) ==> xs \ list(set_of_list(xs))" apply (induct_tac xs, simp_all) apply (blast intro: list_mono [THEN subsetD]) done lemma zip_Nil [simp]: "ys:list(A) ==> zip(Nil, ys)=Nil" apply (simp add: zip_def list_on_set_of_list [of _ A]) apply (erule list.cases, simp_all) done lemma zip_Nil2 [simp]: "xs:list(A) ==> zip(xs, Nil)=Nil" apply (simp add: zip_def list_on_set_of_list [of _ A]) apply (erule list.cases, simp_all) done lemma zip_aux_unique [rule_format]: "[|B<=C; xs \ list(A)|] ==> \ys \ list(B). zip_aux(C,xs) ` ys = zip_aux(B,xs) ` ys" apply (induct_tac xs) apply simp_all apply (blast intro: list_mono [THEN subsetD], clarify) apply (erule_tac a=ys in list.cases, auto) apply (blast intro: list_mono [THEN subsetD]) done lemma zip_Cons_Cons [simp]: "[| xs:list(A); ys:list(B); x \ A; y \ B |] ==> zip(Cons(x,xs), Cons(y, ys)) = Cons(, zip(xs, ys))" apply (simp add: zip_def, auto) apply (rule zip_aux_unique, auto) apply (simp add: list_on_set_of_list [of _ B]) apply (blast intro: list_on_set_of_list list_mono [THEN subsetD]) done lemma zip_type [rule_format]: "xs:list(A) ==> \ys \ list(B). zip(xs, ys):list(A*B)" apply (induct_tac "xs") apply (simp (no_asm)) apply clarify apply (erule_tac a = ys in list.cases, auto) done declare zip_type [simp,TC] (* zip length *) lemma length_zip [rule_format]: "xs:list(A) ==> \ys \ list(B). length(zip(xs,ys)) = min(length(xs), length(ys))" apply (unfold min_def) apply (induct_tac "xs", simp_all, clarify) apply (erule_tac a = ys in list.cases, auto) done declare length_zip [simp] lemma zip_append1 [rule_format]: "[| ys:list(A); zs:list(B) |] ==> \xs \ list(A). zip(xs @ ys, zs) = zip(xs, take(length(xs), zs)) @ zip(ys, drop(length(xs),zs))" apply (induct_tac "zs", force, clarify) apply (erule_tac a = xs in list.cases, simp_all) done lemma zip_append2 [rule_format]: "[| xs:list(A); zs:list(B) |] ==> \ys \ list(B). zip(xs, ys@zs) = zip(take(length(ys), xs), ys) @ zip(drop(length(ys), xs), zs)" apply (induct_tac "xs", force, clarify) apply (erule_tac a = ys in list.cases, auto) done lemma zip_append [simp]: "[| length(xs) = length(us); length(ys) = length(vs); xs:list(A); us:list(B); ys:list(A); vs:list(B) |] ==> zip(xs@ys,us@vs) = zip(xs, us) @ zip(ys, vs)" by (simp (no_asm_simp) add: zip_append1 drop_append diff_self_eq_0) lemma zip_rev [rule_format]: "ys:list(B) ==> \xs \ list(A). length(xs) = length(ys) \ zip(rev(xs), rev(ys)) = rev(zip(xs, ys))" apply (induct_tac "ys", force, clarify) apply (erule_tac a = xs in list.cases) apply (auto simp add: length_rev) done declare zip_rev [simp] lemma nth_zip [rule_format]: "ys:list(B) ==> \i \ nat. \xs \ list(A). i < length(xs) \ i < length(ys) \ nth(i,zip(xs, ys)) = " apply (induct_tac "ys", force, clarify) apply (erule_tac a = xs in list.cases, simp) apply (auto elim: natE) done declare nth_zip [simp] lemma set_of_list_zip [rule_format]: "[| xs:list(A); ys:list(B); i \ nat |] ==> set_of_list(zip(xs, ys)) = {:A*B. \i\nat. i < min(length(xs), length(ys)) & x = nth(i, xs) & y = nth(i, ys)}" by (force intro!: Collect_cong simp add: lt_min_iff set_of_list_conv_nth) (** list_update **) lemma list_update_Nil [simp]: "i \ nat ==>list_update(Nil, i, v) = Nil" by (unfold list_update_def, auto) lemma list_update_Cons_0 [simp]: "list_update(Cons(x, xs), 0, v)= Cons(v, xs)" by (unfold list_update_def, auto) lemma list_update_Cons_succ [simp]: "n \ nat ==> list_update(Cons(x, xs), succ(n), v)= Cons(x, list_update(xs, n, v))" apply (unfold list_update_def, auto) done lemma list_update_type [rule_format]: "[| xs:list(A); v \ A |] ==> \n \ nat. list_update(xs, n, v):list(A)" apply (induct_tac "xs") apply (simp (no_asm)) apply clarify apply (erule natE, auto) done declare list_update_type [simp,TC] lemma length_list_update [rule_format]: "xs:list(A) ==> \i \ nat. length(list_update(xs, i, v))=length(xs)" apply (induct_tac "xs") apply (simp (no_asm)) apply clarify apply (erule natE, auto) done declare length_list_update [simp] lemma nth_list_update [rule_format]: "[| xs:list(A) |] ==> \i \ nat. \j \ nat. i < length(xs) \ nth(j, list_update(xs, i, x)) = (if i=j then x else nth(j, xs))" apply (induct_tac "xs") apply simp_all apply clarify apply (rename_tac i j) apply (erule_tac n=i in natE) apply (erule_tac [2] n=j in natE) apply (erule_tac n=j in natE, simp_all, force) done lemma nth_list_update_eq [simp]: "[| i < length(xs); xs:list(A) |] ==> nth(i, list_update(xs, i,x)) = x" by (simp (no_asm_simp) add: lt_length_in_nat nth_list_update) lemma nth_list_update_neq [rule_format]: "xs:list(A) ==> \i \ nat. \j \ nat. i \ j \ nth(j, list_update(xs,i,x)) = nth(j,xs)" apply (induct_tac "xs") apply (simp (no_asm)) apply clarify apply (erule natE) apply (erule_tac [2] natE, simp_all) apply (erule natE, simp_all) done declare nth_list_update_neq [simp] lemma list_update_overwrite [rule_format]: "xs:list(A) ==> \i \ nat. i < length(xs) \ list_update(list_update(xs, i, x), i, y) = list_update(xs, i,y)" apply (induct_tac "xs") apply (simp (no_asm)) apply clarify apply (erule natE, auto) done declare list_update_overwrite [simp] lemma list_update_same_conv [rule_format]: "xs:list(A) ==> \i \ nat. i < length(xs) \ (list_update(xs, i, x) = xs) \ (nth(i, xs) = x)" apply (induct_tac "xs") apply (simp (no_asm)) apply clarify apply (erule natE, auto) done lemma update_zip [rule_format]: "ys:list(B) ==> \i \ nat. \xy \ A*B. \xs \ list(A). length(xs) = length(ys) \ list_update(zip(xs, ys), i, xy) = zip(list_update(xs, i, fst(xy)), list_update(ys, i, snd(xy)))" apply (induct_tac "ys") apply auto apply (erule_tac a = xs in list.cases) apply (auto elim: natE) done lemma set_update_subset_cons [rule_format]: "xs:list(A) ==> \i \ nat. set_of_list(list_update(xs, i, x)) \ cons(x, set_of_list(xs))" apply (induct_tac "xs") apply simp apply (rule ballI) apply (erule natE, simp_all, auto) done lemma set_of_list_update_subsetI: "[| set_of_list(xs) \ A; xs:list(A); x \ A; i \ nat|] ==> set_of_list(list_update(xs, i,x)) \ A" apply (rule subset_trans) apply (rule set_update_subset_cons, auto) done (** upt **) lemma upt_rec: "j \ nat ==> upt(i,j) = (if i i; j \ nat |] ==> upt(i,j) = Nil" apply (subst upt_rec, auto) apply (auto simp add: le_iff) apply (drule lt_asym [THEN notE], auto) done (*Only needed if upt_Suc is deleted from the simpset*) lemma upt_succ_append: "[| i \ j; j \ nat |] ==> upt(i,succ(j)) = upt(i, j)@[j]" by simp lemma upt_conv_Cons: "[| i nat |] ==> upt(i,j) = Cons(i,upt(succ(i),j))" apply (rule trans) apply (rule upt_rec, auto) done lemma upt_type [simp,TC]: "j \ nat ==> upt(i,j):list(nat)" by (induct_tac "j", auto) (*LOOPS as a simprule, since j<=j*) lemma upt_add_eq_append: "[| i \ j; j \ nat; k \ nat |] ==> upt(i, j #+k) = upt(i,j)@upt(j,j#+k)" apply (induct_tac "k") apply (auto simp add: app_assoc app_type) apply (rule_tac j = j in le_trans, auto) done lemma length_upt [simp]: "[| i \ nat; j \ nat |] ==>length(upt(i,j)) = j #- i" apply (induct_tac "j") apply (rule_tac [2] sym) apply (auto dest!: not_lt_imp_le simp add: diff_succ diff_is_0_iff) done -lemma nth_upt [rule_format]: - "[| i \ nat; j \ nat; k \ nat |] ==> i #+ k < j \ nth(k, upt(i,j)) = i #+ k" +lemma nth_upt [simp]: + "[| i \ nat; j \ nat; k \ nat; i #+ k < j |] ==> nth(k, upt(i,j)) = i #+ k" +apply (rotate_tac -1, erule rev_mp) apply (induct_tac "j", simp) -apply (simp add: nth_append le_iff) apply (auto dest!: not_lt_imp_le - simp add: nth_append less_diff_conv add_commute) + simp add: nth_append le_iff less_diff_conv add_commute) done -declare nth_upt [simp] lemma take_upt [rule_format]: "[| m \ nat; n \ nat |] ==> \i \ nat. i #+ m \ n \ take(m, upt(i,n)) = upt(i,i#+m)" apply (induct_tac "m") apply (simp (no_asm_simp) add: take_0) apply clarify apply (subst upt_rec, simp) apply (rule sym) apply (subst upt_rec, simp) apply (simp_all del: upt.simps) apply (rule_tac j = "succ (i #+ x) " in lt_trans2) apply auto done declare take_upt [simp] lemma map_succ_upt: "[| m \ nat; n \ nat |] ==> map(succ, upt(m,n))= upt(succ(m), succ(n))" apply (induct_tac "n") apply (auto simp add: map_app_distrib) done lemma nth_map [rule_format]: "xs:list(A) ==> \n \ nat. n < length(xs) \ nth(n, map(f, xs)) = f(nth(n, xs))" apply (induct_tac "xs", simp) apply (rule ballI) apply (induct_tac "n", auto) done declare nth_map [simp] lemma nth_map_upt [rule_format]: "[| m \ nat; n \ nat |] ==> \i \ nat. i < n #- m \ nth(i, map(f, upt(m,n))) = f(m #+ i)" apply (rule_tac n = m and m = n in diff_induct, typecheck, simp, simp) apply (subst map_succ_upt [symmetric], simp_all, clarify) apply (subgoal_tac "i < length (upt (0, x))") prefer 2 apply (simp add: less_diff_conv) apply (rule_tac j = "succ (i #+ y) " in lt_trans2) apply simp apply simp apply (subgoal_tac "i < length (upt (y, x))") apply (simp_all add: add_commute less_diff_conv) done (** sublist (a generalization of nth to sets) **) definition sublist :: "[i, i] => i" where "sublist(xs, A)== map(fst, (filter(%p. snd(p): A, zip(xs, upt(0,length(xs))))))" lemma sublist_0 [simp]: "xs:list(A) ==>sublist(xs, 0) =Nil" by (unfold sublist_def, auto) lemma sublist_Nil [simp]: "sublist(Nil, A) = Nil" by (unfold sublist_def, auto) lemma sublist_shift_lemma: "[| xs:list(B); i \ nat |] ==> map(fst, filter(%p. snd(p):A, zip(xs, upt(i,i #+ length(xs))))) = map(fst, filter(%p. snd(p):nat & snd(p) #+ i \ A, zip(xs,upt(0,length(xs)))))" apply (erule list_append_induct) apply (simp (no_asm_simp)) apply (auto simp add: add_commute length_app filter_append map_app_distrib) done lemma sublist_type [simp,TC]: "xs:list(B) ==> sublist(xs, A):list(B)" apply (unfold sublist_def) apply (induct_tac "xs") apply (auto simp add: filter_append map_app_distrib) done lemma upt_add_eq_append2: "[| i \ nat; j \ nat |] ==> upt(0, i #+ j) = upt(0, i) @ upt(i, i #+ j)" by (simp add: upt_add_eq_append [of 0] nat_0_le) lemma sublist_append: "[| xs:list(B); ys:list(B) |] ==> sublist(xs@ys, A) = sublist(xs, A) @ sublist(ys, {j \ nat. j #+ length(xs): A})" apply (unfold sublist_def) apply (erule_tac l = ys in list_append_induct, simp) apply (simp (no_asm_simp) add: upt_add_eq_append2 app_assoc [symmetric]) apply (auto simp add: sublist_shift_lemma length_type map_app_distrib app_assoc) apply (simp_all add: add_commute) done lemma sublist_Cons: "[| xs:list(B); x \ B |] ==> sublist(Cons(x, xs), A) = (if 0 \ A then [x] else []) @ sublist(xs, {j \ nat. succ(j) \ A})" apply (erule_tac l = xs in list_append_induct) apply (simp (no_asm_simp) add: sublist_def) apply (simp del: app_Cons add: app_Cons [symmetric] sublist_append, simp) done lemma sublist_singleton [simp]: "sublist([x], A) = (if 0 \ A then [x] else [])" by (simp add: sublist_Cons) lemma sublist_upt_eq_take [rule_format]: "xs:list(A) ==> \n\nat. sublist(xs,n) = take(n,xs)" apply (erule list.induct, simp) apply (clarify ) apply (erule natE) apply (simp_all add: nat_eq_Collect_lt Ord_mem_iff_lt sublist_Cons) done declare sublist_upt_eq_take [simp] lemma sublist_Int_eq: "xs \ list(B) ==> sublist(xs, A \ nat) = sublist(xs, A)" apply (erule list.induct) apply (simp_all add: sublist_Cons) done text\Repetition of a List Element\ consts repeat :: "[i,i]=>i" primrec "repeat(a,0) = []" "repeat(a,succ(n)) = Cons(a,repeat(a,n))" lemma length_repeat: "n \ nat ==> length(repeat(a,n)) = n" by (induct_tac n, auto) lemma repeat_succ_app: "n \ nat ==> repeat(a,succ(n)) = repeat(a,n) @ [a]" apply (induct_tac n) apply (simp_all del: app_Cons add: app_Cons [symmetric]) done lemma repeat_type [TC]: "[|a \ A; n \ nat|] ==> repeat(a,n) \ list(A)" by (induct_tac n, auto) end