diff --git a/src/HOL/Divides.thy b/src/HOL/Divides.thy --- a/src/HOL/Divides.thy +++ b/src/HOL/Divides.thy @@ -1,1276 +1,1312 @@ (* Title: HOL/Divides.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1999 University of Cambridge *) section \More on quotient and remainder\ theory Divides imports Parity begin subsection \More on division\ inductive eucl_rel_int :: "int \ int \ int \ int \ bool" where eucl_rel_int_by0: "eucl_rel_int k 0 (0, k)" | eucl_rel_int_dividesI: "l \ 0 \ k = q * l \ eucl_rel_int k l (q, 0)" | eucl_rel_int_remainderI: "sgn r = sgn l \ \r\ < \l\ \ k = q * l + r \ eucl_rel_int k l (q, r)" lemma eucl_rel_int_iff: "eucl_rel_int k l (q, r) \ k = l * q + r \ (if 0 < l then 0 \ r \ r < l else if l < 0 then l < r \ r \ 0 else q = 0)" by (cases "r = 0") (auto elim!: eucl_rel_int.cases intro: eucl_rel_int_by0 eucl_rel_int_dividesI eucl_rel_int_remainderI simp add: ac_simps sgn_1_pos sgn_1_neg) lemma unique_quotient_lemma: assumes "b * q' + r' \ b * q + r" "0 \ r'" "r' < b" "r < b" shows "q' \ (q::int)" proof - have "r' + b * (q'-q) \ r" using assms by (simp add: right_diff_distrib) moreover have "0 < b * (1 + q - q') " using assms by (simp add: right_diff_distrib distrib_left) moreover have "b * q' < b * (1 + q)" using assms by (simp add: right_diff_distrib distrib_left) ultimately show ?thesis using assms by (simp add: mult_less_cancel_left) qed lemma unique_quotient_lemma_neg: "b * q' + r' \ b*q + r \ r \ 0 \ b < r \ b < r' \ q \ (q'::int)" by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma) auto lemma unique_quotient: "eucl_rel_int a b (q, r) \ eucl_rel_int a b (q', r') \ q = q'" apply (rule order_antisym) apply (simp_all add: eucl_rel_int_iff linorder_neq_iff split: if_split_asm) apply (blast intro: order_eq_refl [THEN unique_quotient_lemma] order_eq_refl [THEN unique_quotient_lemma_neg] sym)+ done lemma unique_remainder: "eucl_rel_int a b (q, r) \ eucl_rel_int a b (q', r') \ r = r'" apply (subgoal_tac "q = q'") apply (simp add: eucl_rel_int_iff) apply (blast intro: unique_quotient) done lemma eucl_rel_int: "eucl_rel_int k l (k div l, k mod l)" proof (cases k rule: int_cases3) case zero then show ?thesis by (simp add: eucl_rel_int_iff divide_int_def modulo_int_def) next case (pos n) then show ?thesis using div_mult_mod_eq [of n] by (cases l rule: int_cases3) (auto simp del: of_nat_mult of_nat_add simp add: mod_greater_zero_iff_not_dvd of_nat_mult [symmetric] of_nat_add [symmetric] algebra_simps eucl_rel_int_iff divide_int_def modulo_int_def) next case (neg n) then show ?thesis using div_mult_mod_eq [of n] by (cases l rule: int_cases3) (auto simp del: of_nat_mult of_nat_add simp add: mod_greater_zero_iff_not_dvd of_nat_mult [symmetric] of_nat_add [symmetric] algebra_simps eucl_rel_int_iff divide_int_def modulo_int_def) qed lemma divmod_int_unique: assumes "eucl_rel_int k l (q, r)" shows div_int_unique: "k div l = q" and mod_int_unique: "k mod l = r" using assms eucl_rel_int [of k l] using unique_quotient [of k l] unique_remainder [of k l] by auto lemma div_abs_eq_div_nat: "\k\ div \l\ = int (nat \k\ div nat \l\)" by (simp add: divide_int_def) lemma mod_abs_eq_div_nat: "\k\ mod \l\ = int (nat \k\ mod nat \l\)" by (simp add: modulo_int_def) lemma zdiv_int: "int (a div b) = int a div int b" by (simp add: divide_int_def) lemma zmod_int: "int (a mod b) = int a mod int b" by (simp add: modulo_int_def) lemma div_sgn_abs_cancel: fixes k l v :: int assumes "v \ 0" shows "(sgn v * \k\) div (sgn v * \l\) = \k\ div \l\" proof - from assms have "sgn v = - 1 \ sgn v = 1" by (cases "v \ 0") auto then show ?thesis using assms unfolding divide_int_def [of "sgn v * \k\" "sgn v * \l\"] by (fastforce simp add: not_less div_abs_eq_div_nat) qed lemma div_eq_sgn_abs: fixes k l v :: int assumes "sgn k = sgn l" shows "k div l = \k\ div \l\" proof (cases "l = 0") case True then show ?thesis by simp next case False with assms have "(sgn k * \k\) div (sgn l * \l\) = \k\ div \l\" using div_sgn_abs_cancel [of l k l] by simp then show ?thesis by (simp add: sgn_mult_abs) qed lemma div_dvd_sgn_abs: fixes k l :: int assumes "l dvd k" shows "k div l = (sgn k * sgn l) * (\k\ div \l\)" proof (cases "k = 0 \ l = 0") case True then show ?thesis by auto next case False then have "k \ 0" and "l \ 0" by auto show ?thesis proof (cases "sgn l = sgn k") case True then show ?thesis by (simp add: div_eq_sgn_abs) next case False with \k \ 0\ \l \ 0\ have "sgn l * sgn k = - 1" by (simp add: sgn_if split: if_splits) with assms show ?thesis unfolding divide_int_def [of k l] by (auto simp add: zdiv_int ac_simps) qed qed lemma div_noneq_sgn_abs: fixes k l :: int assumes "l \ 0" assumes "sgn k \ sgn l" shows "k div l = - (\k\ div \l\) - of_bool (\ l dvd k)" using assms by (simp only: divide_int_def [of k l], auto simp add: not_less zdiv_int) subsubsection \General Properties of div and mod\ lemma div_pos_pos_trivial [simp]: "k div l = 0" if "k \ 0" and "k < l" for k l :: int using that by (simp add: unique_euclidean_semiring_class.div_eq_0_iff division_segment_int_def) lemma mod_pos_pos_trivial [simp]: "k mod l = k" if "k \ 0" and "k < l" for k l :: int using that by (simp add: mod_eq_self_iff_div_eq_0) lemma div_neg_neg_trivial [simp]: "k div l = 0" if "k \ 0" and "l < k" for k l :: int using that by (cases "k = 0") (simp, simp add: unique_euclidean_semiring_class.div_eq_0_iff division_segment_int_def) lemma mod_neg_neg_trivial [simp]: "k mod l = k" if "k \ 0" and "l < k" for k l :: int using that by (simp add: mod_eq_self_iff_div_eq_0) lemma div_pos_neg_trivial: "k div l = - 1" if "0 < k" and "k + l \ 0" for k l :: int apply (rule div_int_unique [of _ _ _ "k + l"]) apply (use that in \auto simp add: eucl_rel_int_iff\) done lemma mod_pos_neg_trivial: "k mod l = k + l" if "0 < k" and "k + l \ 0" for k l :: int apply (rule mod_int_unique [of _ _ "- 1"]) apply (use that in \auto simp add: eucl_rel_int_iff\) done text \There is neither \div_neg_pos_trivial\ nor \mod_neg_pos_trivial\ because \<^term>\0 div l = 0\ would supersede it.\ subsubsection \Laws for div and mod with Unary Minus\ lemma zminus1_lemma: "eucl_rel_int a b (q, r) ==> b \ 0 ==> eucl_rel_int (-a) b (if r=0 then -q else -q - 1, if r=0 then 0 else b-r)" by (force simp add: eucl_rel_int_iff right_diff_distrib) lemma zdiv_zminus1_eq_if: "b \ (0::int) \ (-a) div b = (if a mod b = 0 then - (a div b) else - (a div b) - 1)" by (blast intro: eucl_rel_int [THEN zminus1_lemma, THEN div_int_unique]) lemma zmod_zminus1_eq_if: "(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))" proof (cases "b = 0") case False then show ?thesis by (blast intro: eucl_rel_int [THEN zminus1_lemma, THEN mod_int_unique]) qed auto lemma zmod_zminus1_not_zero: fixes k l :: int shows "- k mod l \ 0 \ k mod l \ 0" by (simp add: mod_eq_0_iff_dvd) lemma zmod_zminus2_not_zero: fixes k l :: int shows "k mod - l \ 0 \ k mod l \ 0" by (simp add: mod_eq_0_iff_dvd) lemma zdiv_zminus2_eq_if: "b \ (0::int) ==> a div (-b) = (if a mod b = 0 then - (a div b) else - (a div b) - 1)" by (auto simp add: zdiv_zminus1_eq_if div_minus_right) lemma zmod_zminus2_eq_if: "a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)" by (auto simp add: zmod_zminus1_eq_if mod_minus_right) subsubsection \Monotonicity in the First Argument (Dividend)\ lemma zdiv_mono1: fixes b::int assumes "a \ a'" "0 < b" shows "a div b \ a' div b" proof (rule unique_quotient_lemma) show "b * (a div b) + a mod b \ b * (a' div b) + a' mod b" using assms(1) by auto qed (use assms in auto) lemma zdiv_mono1_neg: fixes b::int assumes "a \ a'" "b < 0" shows "a' div b \ a div b" proof (rule unique_quotient_lemma_neg) show "b * (a div b) + a mod b \ b * (a' div b) + a' mod b" using assms(1) by auto qed (use assms in auto) subsubsection \Monotonicity in the Second Argument (Divisor)\ lemma q_pos_lemma: fixes q'::int assumes "0 \ b'*q' + r'" "r' < b'" "0 < b'" shows "0 \ q'" proof - have "0 < b'* (q' + 1)" using assms by (simp add: distrib_left) with assms show ?thesis by (simp add: zero_less_mult_iff) qed lemma zdiv_mono2_lemma: fixes q'::int assumes eq: "b*q + r = b'*q' + r'" and le: "0 \ b'*q' + r'" and "r' < b'" "0 \ r" "0 < b'" "b' \ b" shows "q \ q'" proof - have "0 \ q'" using q_pos_lemma le \r' < b'\ \0 < b'\ by blast moreover have "b*q = r' - r + b'*q'" using eq by linarith ultimately have "b*q < b* (q' + 1)" using mult_right_mono assms unfolding distrib_left by fastforce with assms show ?thesis by (simp add: mult_less_cancel_left_pos) qed lemma zdiv_mono2: fixes a::int assumes "0 \ a" "0 < b'" "b' \ b" shows "a div b \ a div b'" proof (rule zdiv_mono2_lemma) have "b \ 0" using assms by linarith show "b * (a div b) + a mod b = b' * (a div b') + a mod b'" by simp qed (use assms in auto) lemma zdiv_mono2_neg_lemma: fixes q'::int assumes "b*q + r = b'*q' + r'" "b'*q' + r' < 0" "r < b" "0 \ r'" "0 < b'" "b' \ b" shows "q' \ q" proof - have "b'*q' < 0" using assms by linarith with assms have "q' \ 0" by (simp add: mult_less_0_iff) have "b*q' \ b'*q'" by (simp add: \q' \ 0\ assms(6) mult_right_mono_neg) then have "b*q' < b* (q + 1)" using assms by (simp add: distrib_left) then show ?thesis using assms by (simp add: mult_less_cancel_left) qed lemma zdiv_mono2_neg: fixes a::int assumes "a < 0" "0 < b'" "b' \ b" shows "a div b' \ a div b" proof (rule zdiv_mono2_neg_lemma) have "b \ 0" using assms by linarith show "b * (a div b) + a mod b = b' * (a div b') + a mod b'" by simp qed (use assms in auto) lemma div_pos_geq: fixes k l :: int assumes "0 < l" and "l \ k" shows "k div l = (k - l) div l + 1" proof - have "k = (k - l) + l" by simp then obtain j where k: "k = j + l" .. with assms show ?thesis by (simp add: div_add_self2) qed lemma mod_pos_geq: fixes k l :: int assumes "0 < l" and "l \ k" shows "k mod l = (k - l) mod l" proof - have "k = (k - l) + l" by simp then obtain j where k: "k = j + l" .. with assms show ?thesis by simp qed subsubsection \Splitting Rules for div and mod\ text\The proofs of the two lemmas below are essentially identical\ lemma split_pos_lemma: "0 P(n div k :: int)(n mod k) = (\i j. 0\j \ j n = k*i + j \ P i j)" by auto lemma split_neg_lemma: "k<0 \ P(n div k :: int)(n mod k) = (\i j. k j\0 \ n = k*i + j \ P i j)" by auto lemma split_zdiv: "P(n div k :: int) = ((k = 0 \ P 0) \ (0 (\i j. 0\j \ j n = k*i + j \ P i)) \ (k<0 \ (\i j. k j\0 \ n = k*i + j \ P i)))" proof (cases "k = 0") case False then show ?thesis unfolding linorder_neq_iff by (auto simp add: split_pos_lemma [of concl: "\x y. P x"] split_neg_lemma [of concl: "\x y. P x"]) qed auto lemma split_zmod: "P(n mod k :: int) = ((k = 0 \ P n) \ (0 (\i j. 0\j \ j n = k*i + j \ P j)) \ (k<0 \ (\i j. k j\0 \ n = k*i + j \ P j)))" proof (cases "k = 0") case False then show ?thesis unfolding linorder_neq_iff by (auto simp add: split_pos_lemma [of concl: "\x y. P y"] split_neg_lemma [of concl: "\x y. P y"]) qed auto text \Enable (lin)arith to deal with \<^const>\divide\ and \<^const>\modulo\ when these are applied to some constant that is of the form \<^term>\numeral k\:\ declare split_zdiv [of _ _ "numeral k", arith_split] for k declare split_zmod [of _ _ "numeral k", arith_split] for k subsubsection \Computing \div\ and \mod\ with shifting\ lemma pos_eucl_rel_int_mult_2: assumes "0 \ b" assumes "eucl_rel_int a b (q, r)" shows "eucl_rel_int (1 + 2*a) (2*b) (q, 1 + 2*r)" using assms unfolding eucl_rel_int_iff by auto lemma neg_eucl_rel_int_mult_2: assumes "b \ 0" assumes "eucl_rel_int (a + 1) b (q, r)" shows "eucl_rel_int (1 + 2*a) (2*b) (q, 2*r - 1)" using assms unfolding eucl_rel_int_iff by auto text\computing div by shifting\ lemma pos_zdiv_mult_2: "(0::int) \ a ==> (1 + 2*b) div (2*a) = b div a" using pos_eucl_rel_int_mult_2 [OF _ eucl_rel_int] by (rule div_int_unique) lemma neg_zdiv_mult_2: assumes A: "a \ (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a" using neg_eucl_rel_int_mult_2 [OF A eucl_rel_int] by (rule div_int_unique) lemma zdiv_numeral_Bit0 [simp]: "numeral (Num.Bit0 v) div numeral (Num.Bit0 w) = numeral v div (numeral w :: int)" unfolding numeral.simps unfolding mult_2 [symmetric] by (rule div_mult_mult1, simp) lemma zdiv_numeral_Bit1 [simp]: "numeral (Num.Bit1 v) div numeral (Num.Bit0 w) = (numeral v div (numeral w :: int))" unfolding numeral.simps unfolding mult_2 [symmetric] add.commute [of _ 1] by (rule pos_zdiv_mult_2, simp) lemma pos_zmod_mult_2: fixes a b :: int assumes "0 \ a" shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)" using pos_eucl_rel_int_mult_2 [OF assms eucl_rel_int] by (rule mod_int_unique) lemma neg_zmod_mult_2: fixes a b :: int assumes "a \ 0" shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1" using neg_eucl_rel_int_mult_2 [OF assms eucl_rel_int] by (rule mod_int_unique) lemma zmod_numeral_Bit0 [simp]: "numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) = (2::int) * (numeral v mod numeral w)" unfolding numeral_Bit0 [of v] numeral_Bit0 [of w] unfolding mult_2 [symmetric] by (rule mod_mult_mult1) lemma zmod_numeral_Bit1 [simp]: "numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) = 2 * (numeral v mod numeral w) + (1::int)" unfolding numeral_Bit1 [of v] numeral_Bit0 [of w] unfolding mult_2 [symmetric] add.commute [of _ 1] by (rule pos_zmod_mult_2, simp) lemma zdiv_eq_0_iff: "i div k = 0 \ k = 0 \ 0 \ i \ i < k \ i \ 0 \ k < i" (is "?L = ?R") for i k :: int proof assume ?L moreover have "?L \ ?R" by (rule split_zdiv [THEN iffD2]) simp ultimately show ?R by blast next assume ?R then show ?L by auto qed lemma zmod_trival_iff: fixes i k :: int shows "i mod k = i \ k = 0 \ 0 \ i \ i < k \ i \ 0 \ k < i" proof - have "i mod k = i \ i div k = 0" by safe (insert div_mult_mod_eq [of i k], auto) with zdiv_eq_0_iff show ?thesis by simp qed subsubsection \Quotients of Signs\ lemma div_eq_minus1: "0 < b \ - 1 div b = - 1" for b :: int by (simp add: divide_int_def) lemma zmod_minus1: "0 < b \ - 1 mod b = b - 1" for b :: int by (auto simp add: modulo_int_def) +lemma minus_mod_int_eq: + \- k mod l = l - 1 - (k - 1) mod l\ if \l \ 0\ for k l :: int +proof (cases \l = 0\) + case True + then show ?thesis + by simp +next + case False + with that have \l > 0\ + by simp + then show ?thesis + proof (cases \l dvd k\) + case True + then obtain j where \k = l * j\ .. + moreover have \(l * j mod l - 1) mod l = l - 1\ + using \l > 0\ by (simp add: zmod_minus1) + then have \(l * j - 1) mod l = l - 1\ + by (simp only: mod_simps) + ultimately show ?thesis + by simp + next + case False + moreover have \0 < k mod l\ \k mod l < 1 + l\ + using \0 < l\ le_imp_0_less False apply auto + using le_less apply fastforce + using pos_mod_bound [of l k] apply linarith + done + with \l > 0\ have \(k mod l - 1) mod l = k mod l - 1\ + by (simp add: zmod_trival_iff) + ultimately show ?thesis + apply (simp only: zmod_zminus1_eq_if) + apply (simp add: mod_eq_0_iff_dvd algebra_simps mod_simps) + done + qed +qed + lemma div_neg_pos_less0: fixes a::int assumes "a < 0" "0 < b" shows "a div b < 0" proof - have "a div b \ - 1 div b" using zdiv_mono1 assms by auto also have "... \ -1" by (simp add: assms(2) div_eq_minus1) finally show ?thesis by force qed lemma div_nonneg_neg_le0: "[| (0::int) \ a; b < 0 |] ==> a div b \ 0" by (drule zdiv_mono1_neg, auto) lemma div_nonpos_pos_le0: "[| (a::int) \ 0; b > 0 |] ==> a div b \ 0" by (drule zdiv_mono1, auto) text\Now for some equivalences of the form \a div b >=< 0 \ \\ conditional upon the sign of \a\ or \b\. There are many more. They should all be simp rules unless that causes too much search.\ lemma pos_imp_zdiv_nonneg_iff: fixes a::int assumes "0 < b" shows "(0 \ a div b) = (0 \ a)" proof show "0 \ a div b \ 0 \ a" using assms by (simp add: linorder_not_less [symmetric]) (blast intro: div_neg_pos_less0) next assume "0 \ a" then have "0 div b \ a div b" using zdiv_mono1 assms by blast then show "0 \ a div b" by auto qed lemma pos_imp_zdiv_pos_iff: "0 0 < (i::int) div k \ k \ i" using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k] by arith lemma neg_imp_zdiv_nonneg_iff: fixes a::int assumes "b < 0" shows "(0 \ a div b) = (a \ 0)" using assms by (simp add: div_minus_minus [of a, symmetric] pos_imp_zdiv_nonneg_iff del: div_minus_minus) (*But not (a div b \ 0 iff a\0); consider a=1, b=2 when a div b = 0.*) lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)" by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff) (*Again the law fails for \: consider a = -1, b = -2 when a div b = 0*) lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)" by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff) lemma nonneg1_imp_zdiv_pos_iff: fixes a::int assumes "0 \ a" shows "a div b > 0 \ a \ b \ b>0" proof - have "0 < a div b \ b \ a" using div_pos_pos_trivial[of a b] assms by arith moreover have "0 < a div b \ b > 0" using assms div_nonneg_neg_le0[of a b] by(cases "b=0"; force) moreover have "b \ a \ 0 < b \ 0 < a div b" using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b] by simp ultimately show ?thesis by blast qed lemma zmod_le_nonneg_dividend: "(m::int) \ 0 \ m mod k \ m" by (rule split_zmod[THEN iffD2]) (fastforce dest: q_pos_lemma intro: split_mult_pos_le) subsubsection \Further properties\ lemma div_int_pos_iff: "k div l \ 0 \ k = 0 \ l = 0 \ k \ 0 \ l \ 0 \ k < 0 \ l < 0" for k l :: int proof (cases "k = 0 \ l = 0") case False then show ?thesis apply (auto simp add: pos_imp_zdiv_nonneg_iff neg_imp_zdiv_nonneg_iff) by (meson neg_imp_zdiv_neg_iff not_le not_less_iff_gr_or_eq) qed auto lemma mod_int_pos_iff: "k mod l \ 0 \ l dvd k \ l = 0 \ k \ 0 \ l > 0" for k l :: int proof (cases "l > 0") case False then show ?thesis by (simp add: dvd_eq_mod_eq_0) (use neg_mod_sign [of l k] in \auto simp add: le_less not_less\) qed auto text \Simplify expressions in which div and mod combine numerical constants\ lemma int_div_pos_eq: "\(a::int) = b * q + r; 0 \ r; r < b\ \ a div b = q" by (rule div_int_unique [of a b q r]) (simp add: eucl_rel_int_iff) lemma int_div_neg_eq: "\(a::int) = b * q + r; r \ 0; b < r\ \ a div b = q" by (rule div_int_unique [of a b q r], simp add: eucl_rel_int_iff) lemma int_mod_pos_eq: "\(a::int) = b * q + r; 0 \ r; r < b\ \ a mod b = r" by (rule mod_int_unique [of a b q r], simp add: eucl_rel_int_iff) lemma int_mod_neg_eq: "\(a::int) = b * q + r; r \ 0; b < r\ \ a mod b = r" by (rule mod_int_unique [of a b q r], simp add: eucl_rel_int_iff) lemma abs_div: "(y::int) dvd x \ \x div y\ = \x\ div \y\" unfolding dvd_def by (cases "y=0") (auto simp add: abs_mult) text\Suggested by Matthias Daum\ lemma int_power_div_base: fixes k :: int assumes "0 < m" "0 < k" shows "k ^ m div k = (k::int) ^ (m - Suc 0)" proof - have eq: "k ^ m = k ^ ((m - Suc 0) + Suc 0)" by (simp add: assms) show ?thesis using assms by (simp only: power_add eq) auto qed text \Distributive laws for function \nat\.\ lemma nat_div_distrib: assumes "0 \ x" shows "nat (x div y) = nat x div nat y" proof (cases y "0::int" rule: linorder_cases) case less with assms show ?thesis using div_nonneg_neg_le0 by auto next case greater then show ?thesis by (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int) qed auto (*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*) lemma nat_mod_distrib: assumes "0 \ x" "0 \ y" shows "nat (x mod y) = nat x mod nat y" proof (cases "y = 0") case False with assms show ?thesis by (simp add: nat_eq_iff zmod_int) qed auto text\Suggested by Matthias Daum\ lemma int_div_less_self: fixes x::int assumes "0 < x" "1 < k" shows "x div k < x" proof - have "nat x div nat k < nat x" by (simp add: assms) with assms show ?thesis by (simp add: nat_div_distrib [symmetric]) qed lemma mod_eq_dvd_iff_nat: "m mod q = n mod q \ q dvd m - n" if "m \ n" for m n q :: nat proof - have "int m mod int q = int n mod int q \ int q dvd int m - int n" by (simp add: mod_eq_dvd_iff) with that have "int (m mod q) = int (n mod q) \ int q dvd int (m - n)" by (simp only: of_nat_mod of_nat_diff) then show ?thesis by simp qed lemma mod_eq_nat1E: fixes m n q :: nat assumes "m mod q = n mod q" and "m \ n" obtains s where "m = n + q * s" proof - from assms have "q dvd m - n" by (simp add: mod_eq_dvd_iff_nat) then obtain s where "m - n = q * s" .. with \m \ n\ have "m = n + q * s" by simp with that show thesis . qed lemma mod_eq_nat2E: fixes m n q :: nat assumes "m mod q = n mod q" and "n \ m" obtains s where "n = m + q * s" using assms mod_eq_nat1E [of n q m] by (auto simp add: ac_simps) lemma nat_mod_eq_lemma: assumes "(x::nat) mod n = y mod n" and "y \ x" shows "\q. x = y + n * q" using assms by (rule mod_eq_nat1E) rule lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \ (\q1 q2. x + n * q1 = y + n * q2)" (is "?lhs = ?rhs") proof assume H: "x mod n = y mod n" {assume xy: "x \ y" from H have th: "y mod n = x mod n" by simp from nat_mod_eq_lemma[OF th xy] have ?rhs apply clarify apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)} moreover {assume xy: "y \ x" from nat_mod_eq_lemma[OF H xy] have ?rhs apply clarify apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)} ultimately show ?rhs using linear[of x y] by blast next assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp thus ?lhs by simp qed subsection \Numeral division with a pragmatic type class\ text \ The following type class contains everything necessary to formulate a division algorithm in ring structures with numerals, restricted to its positive segments. This is its primary motivation, and it could surely be formulated using a more fine-grained, more algebraic and less technical class hierarchy. \ class unique_euclidean_semiring_numeral = unique_euclidean_semiring_with_nat + linordered_semidom + assumes div_less: "0 \ a \ a < b \ a div b = 0" and mod_less: " 0 \ a \ a < b \ a mod b = a" and div_positive: "0 < b \ b \ a \ a div b > 0" and mod_less_eq_dividend: "0 \ a \ a mod b \ a" and pos_mod_bound: "0 < b \ a mod b < b" and pos_mod_sign: "0 < b \ 0 \ a mod b" and mod_mult2_eq: "0 \ c \ a mod (b * c) = b * (a div b mod c) + a mod b" and div_mult2_eq: "0 \ c \ a div (b * c) = a div b div c" assumes discrete: "a < b \ a + 1 \ b" fixes divmod :: "num \ num \ 'a \ 'a" and divmod_step :: "num \ 'a \ 'a \ 'a \ 'a" assumes divmod_def: "divmod m n = (numeral m div numeral n, numeral m mod numeral n)" and divmod_step_def: "divmod_step l qr = (let (q, r) = qr in if r \ numeral l then (2 * q + 1, r - numeral l) else (2 * q, r))" \ \These are conceptually definitions but force generated code to be monomorphic wrt. particular instances of this class which yields a significant speedup.\ begin lemma divmod_digit_1: assumes "0 \ a" "0 < b" and "b \ a mod (2 * b)" shows "2 * (a div (2 * b)) + 1 = a div b" (is "?P") and "a mod (2 * b) - b = a mod b" (is "?Q") proof - from assms mod_less_eq_dividend [of a "2 * b"] have "b \ a" by (auto intro: trans) with \0 < b\ have "0 < a div b" by (auto intro: div_positive) then have [simp]: "1 \ a div b" by (simp add: discrete) with \0 < b\ have mod_less: "a mod b < b" by (simp add: pos_mod_bound) define w where "w = a div b mod 2" then have w_exhaust: "w = 0 \ w = 1" by auto have mod_w: "a mod (2 * b) = a mod b + b * w" by (simp add: w_def mod_mult2_eq ac_simps) from assms w_exhaust have "w = 1" by (auto simp add: mod_w) (insert mod_less, auto) with mod_w have mod: "a mod (2 * b) = a mod b + b" by simp have "2 * (a div (2 * b)) = a div b - w" by (simp add: w_def div_mult2_eq minus_mod_eq_mult_div ac_simps) with \w = 1\ have div: "2 * (a div (2 * b)) = a div b - 1" by simp then show ?P and ?Q by (simp_all add: div mod add_implies_diff [symmetric]) qed lemma divmod_digit_0: assumes "0 < b" and "a mod (2 * b) < b" shows "2 * (a div (2 * b)) = a div b" (is "?P") and "a mod (2 * b) = a mod b" (is "?Q") proof - define w where "w = a div b mod 2" then have w_exhaust: "w = 0 \ w = 1" by auto have mod_w: "a mod (2 * b) = a mod b + b * w" by (simp add: w_def mod_mult2_eq ac_simps) moreover have "b \ a mod b + b" proof - from \0 < b\ pos_mod_sign have "0 \ a mod b" by blast then have "0 + b \ a mod b + b" by (rule add_right_mono) then show ?thesis by simp qed moreover note assms w_exhaust ultimately have "w = 0" by auto with mod_w have mod: "a mod (2 * b) = a mod b" by simp have "2 * (a div (2 * b)) = a div b - w" by (simp add: w_def div_mult2_eq minus_mod_eq_mult_div ac_simps) with \w = 0\ have div: "2 * (a div (2 * b)) = a div b" by simp then show ?P and ?Q by (simp_all add: div mod) qed lemma mod_double_modulus: assumes "m > 0" "x \ 0" shows "x mod (2 * m) = x mod m \ x mod (2 * m) = x mod m + m" proof (cases "x mod (2 * m) < m") case True thus ?thesis using assms using divmod_digit_0(2)[of m x] by auto next case False hence *: "x mod (2 * m) - m = x mod m" using assms by (intro divmod_digit_1) auto hence "x mod (2 * m) = x mod m + m" by (subst * [symmetric], subst le_add_diff_inverse2) (use False in auto) thus ?thesis by simp qed lemma fst_divmod: "fst (divmod m n) = numeral m div numeral n" by (simp add: divmod_def) lemma snd_divmod: "snd (divmod m n) = numeral m mod numeral n" by (simp add: divmod_def) text \ This is a formulation of one step (referring to one digit position) in school-method division: compare the dividend at the current digit position with the remainder from previous division steps and evaluate accordingly. \ lemma divmod_step_eq [simp]: "divmod_step l (q, r) = (if numeral l \ r then (2 * q + 1, r - numeral l) else (2 * q, r))" by (simp add: divmod_step_def) text \ This is a formulation of school-method division. If the divisor is smaller than the dividend, terminate. If not, shift the dividend to the right until termination occurs and then reiterate single division steps in the opposite direction. \ lemma divmod_divmod_step: "divmod m n = (if m < n then (0, numeral m) else divmod_step n (divmod m (Num.Bit0 n)))" proof (cases "m < n") case True then have "numeral m < numeral n" by simp then show ?thesis by (simp add: prod_eq_iff div_less mod_less fst_divmod snd_divmod) next case False have "divmod m n = divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n))" proof (cases "numeral n \ numeral m mod (2 * numeral n)") case True with divmod_step_eq have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) = (2 * (numeral m div (2 * numeral n)) + 1, numeral m mod (2 * numeral n) - numeral n)" by simp moreover from True divmod_digit_1 [of "numeral m" "numeral n"] have "2 * (numeral m div (2 * numeral n)) + 1 = numeral m div numeral n" and "numeral m mod (2 * numeral n) - numeral n = numeral m mod numeral n" by simp_all ultimately show ?thesis by (simp only: divmod_def) next case False then have *: "numeral m mod (2 * numeral n) < numeral n" by (simp add: not_le) with divmod_step_eq have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) = (2 * (numeral m div (2 * numeral n)), numeral m mod (2 * numeral n))" by auto moreover from * divmod_digit_0 [of "numeral n" "numeral m"] have "2 * (numeral m div (2 * numeral n)) = numeral m div numeral n" and "numeral m mod (2 * numeral n) = numeral m mod numeral n" by (simp_all only: zero_less_numeral) ultimately show ?thesis by (simp only: divmod_def) qed then have "divmod m n = divmod_step n (numeral m div numeral (Num.Bit0 n), numeral m mod numeral (Num.Bit0 n))" by (simp only: numeral.simps distrib mult_1) then have "divmod m n = divmod_step n (divmod m (Num.Bit0 n))" by (simp add: divmod_def) with False show ?thesis by simp qed text \The division rewrite proper -- first, trivial results involving \1\\ lemma divmod_trivial [simp]: "divmod m Num.One = (numeral m, 0)" "divmod num.One (num.Bit0 n) = (0, Numeral1)" "divmod num.One (num.Bit1 n) = (0, Numeral1)" using divmod_divmod_step [of "Num.One"] by (simp_all add: divmod_def) text \Division by an even number is a right-shift\ lemma divmod_cancel [simp]: "divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) \ (q, 2 * r))" (is ?P) "divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) \ (q, 2 * r + 1))" (is ?Q) proof - have *: "\q. numeral (Num.Bit0 q) = 2 * numeral q" "\q. numeral (Num.Bit1 q) = 2 * numeral q + 1" by (simp_all only: numeral_mult numeral.simps distrib) simp_all have "1 div 2 = 0" "1 mod 2 = 1" by (auto intro: div_less mod_less) then show ?P and ?Q by (simp_all add: fst_divmod snd_divmod prod_eq_iff split_def * [of m] * [of n] mod_mult_mult1 div_mult2_eq [of _ _ 2] mod_mult2_eq [of _ _ 2] add.commute del: numeral_times_numeral) qed text \The really hard work\ lemma divmod_steps [simp]: "divmod (num.Bit0 m) (num.Bit1 n) = (if m \ n then (0, numeral (num.Bit0 m)) else divmod_step (num.Bit1 n) (divmod (num.Bit0 m) (num.Bit0 (num.Bit1 n))))" "divmod (num.Bit1 m) (num.Bit1 n) = (if m < n then (0, numeral (num.Bit1 m)) else divmod_step (num.Bit1 n) (divmod (num.Bit1 m) (num.Bit0 (num.Bit1 n))))" by (simp_all add: divmod_divmod_step) lemmas divmod_algorithm_code = divmod_step_eq divmod_trivial divmod_cancel divmod_steps text \Special case: divisibility\ definition divides_aux :: "'a \ 'a \ bool" where "divides_aux qr \ snd qr = 0" lemma divides_aux_eq [simp]: "divides_aux (q, r) \ r = 0" by (simp add: divides_aux_def) lemma dvd_numeral_simp [simp]: "numeral m dvd numeral n \ divides_aux (divmod n m)" by (simp add: divmod_def mod_eq_0_iff_dvd) text \Generic computation of quotient and remainder\ lemma numeral_div_numeral [simp]: "numeral k div numeral l = fst (divmod k l)" by (simp add: fst_divmod) lemma numeral_mod_numeral [simp]: "numeral k mod numeral l = snd (divmod k l)" by (simp add: snd_divmod) lemma one_div_numeral [simp]: "1 div numeral n = fst (divmod num.One n)" by (simp add: fst_divmod) lemma one_mod_numeral [simp]: "1 mod numeral n = snd (divmod num.One n)" by (simp add: snd_divmod) text \Computing congruences modulo \2 ^ q\\ lemma cong_exp_iff_simps: "numeral n mod numeral Num.One = 0 \ True" "numeral (Num.Bit0 n) mod numeral (Num.Bit0 q) = 0 \ numeral n mod numeral q = 0" "numeral (Num.Bit1 n) mod numeral (Num.Bit0 q) = 0 \ False" "numeral m mod numeral Num.One = (numeral n mod numeral Num.One) \ True" "numeral Num.One mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q)) \ True" "numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q)) \ False" "numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q)) \ (numeral n mod numeral q) = 0" "numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q)) \ False" "numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q)) \ numeral m mod numeral q = (numeral n mod numeral q)" "numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q)) \ False" "numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q)) \ (numeral m mod numeral q) = 0" "numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q)) \ False" "numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q)) \ numeral m mod numeral q = (numeral n mod numeral q)" by (auto simp add: case_prod_beta dest: arg_cong [of _ _ even]) end hide_fact (open) div_less mod_less mod_less_eq_dividend mod_mult2_eq div_mult2_eq instantiation nat :: unique_euclidean_semiring_numeral begin definition divmod_nat :: "num \ num \ nat \ nat" where divmod'_nat_def: "divmod_nat m n = (numeral m div numeral n, numeral m mod numeral n)" definition divmod_step_nat :: "num \ nat \ nat \ nat \ nat" where "divmod_step_nat l qr = (let (q, r) = qr in if r \ numeral l then (2 * q + 1, r - numeral l) else (2 * q, r))" instance by standard (auto simp add: divmod'_nat_def divmod_step_nat_def div_greater_zero_iff div_mult2_eq mod_mult2_eq) end declare divmod_algorithm_code [where ?'a = nat, code] lemma Suc_0_div_numeral [simp]: fixes k l :: num shows "Suc 0 div numeral k = fst (divmod Num.One k)" by (simp_all add: fst_divmod) lemma Suc_0_mod_numeral [simp]: fixes k l :: num shows "Suc 0 mod numeral k = snd (divmod Num.One k)" by (simp_all add: snd_divmod) instantiation int :: unique_euclidean_semiring_numeral begin definition divmod_int :: "num \ num \ int \ int" where "divmod_int m n = (numeral m div numeral n, numeral m mod numeral n)" definition divmod_step_int :: "num \ int \ int \ int \ int" where "divmod_step_int l qr = (let (q, r) = qr in if r \ numeral l then (2 * q + 1, r - numeral l) else (2 * q, r))" instance by standard (auto intro: zmod_le_nonneg_dividend simp add: divmod_int_def divmod_step_int_def pos_imp_zdiv_pos_iff zmod_zmult2_eq zdiv_zmult2_eq) end declare divmod_algorithm_code [where ?'a = int, code] context begin qualified definition adjust_div :: "int \ int \ int" where "adjust_div qr = (let (q, r) = qr in q + of_bool (r \ 0))" qualified lemma adjust_div_eq [simp, code]: "adjust_div (q, r) = q + of_bool (r \ 0)" by (simp add: adjust_div_def) qualified definition adjust_mod :: "int \ int \ int" where [simp]: "adjust_mod l r = (if r = 0 then 0 else l - r)" lemma minus_numeral_div_numeral [simp]: "- numeral m div numeral n = - (adjust_div (divmod m n) :: int)" proof - have "int (fst (divmod m n)) = fst (divmod m n)" by (simp only: fst_divmod divide_int_def) auto then show ?thesis by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def) qed lemma minus_numeral_mod_numeral [simp]: "- numeral m mod numeral n = adjust_mod (numeral n) (snd (divmod m n) :: int)" proof (cases "snd (divmod m n) = (0::int)") case True then show ?thesis by (simp add: mod_eq_0_iff_dvd divides_aux_def) next case False then have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \ (0::int)" by (simp only: snd_divmod modulo_int_def) auto then show ?thesis by (simp add: divides_aux_def adjust_div_def) (simp add: divides_aux_def modulo_int_def) qed lemma numeral_div_minus_numeral [simp]: "numeral m div - numeral n = - (adjust_div (divmod m n) :: int)" proof - have "int (fst (divmod m n)) = fst (divmod m n)" by (simp only: fst_divmod divide_int_def) auto then show ?thesis by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def) qed lemma numeral_mod_minus_numeral [simp]: "numeral m mod - numeral n = - adjust_mod (numeral n) (snd (divmod m n) :: int)" proof (cases "snd (divmod m n) = (0::int)") case True then show ?thesis by (simp add: mod_eq_0_iff_dvd divides_aux_def) next case False then have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \ (0::int)" by (simp only: snd_divmod modulo_int_def) auto then show ?thesis by (simp add: divides_aux_def adjust_div_def) (simp add: divides_aux_def modulo_int_def) qed lemma minus_one_div_numeral [simp]: "- 1 div numeral n = - (adjust_div (divmod Num.One n) :: int)" using minus_numeral_div_numeral [of Num.One n] by simp lemma minus_one_mod_numeral [simp]: "- 1 mod numeral n = adjust_mod (numeral n) (snd (divmod Num.One n) :: int)" using minus_numeral_mod_numeral [of Num.One n] by simp lemma one_div_minus_numeral [simp]: "1 div - numeral n = - (adjust_div (divmod Num.One n) :: int)" using numeral_div_minus_numeral [of Num.One n] by simp lemma one_mod_minus_numeral [simp]: "1 mod - numeral n = - adjust_mod (numeral n) (snd (divmod Num.One n) :: int)" using numeral_mod_minus_numeral [of Num.One n] by simp end lemma divmod_BitM_2_eq [simp]: \divmod (Num.BitM m) (Num.Bit0 Num.One) = (numeral m - 1, (1 :: int))\ by (cases m) simp_all lemma bit_numeral_Bit0_Suc_iff [simp]: \bit (numeral (Num.Bit0 m) :: int) (Suc n) \ bit (numeral m :: int) n\ by (simp add: bit_Suc) lemma bit_numeral_Bit1_Suc_iff [simp]: \bit (numeral (Num.Bit1 m) :: int) (Suc n) \ bit (numeral m :: int) n\ by (simp add: bit_Suc) lemma div_positive_int: "k div l > 0" if "k \ l" and "l > 0" for k l :: int using that div_positive [of l k] by blast subsubsection \Dedicated simproc for calculation\ text \ There is space for improvement here: the calculation itself could be carried out outside the logic, and a generic simproc (simplifier setup) for generic calculation would be helpful. \ simproc_setup numeral_divmod ("0 div 0 :: 'a :: unique_euclidean_semiring_numeral" | "0 mod 0 :: 'a :: unique_euclidean_semiring_numeral" | "0 div 1 :: 'a :: unique_euclidean_semiring_numeral" | "0 mod 1 :: 'a :: unique_euclidean_semiring_numeral" | "0 div - 1 :: int" | "0 mod - 1 :: int" | "0 div numeral b :: 'a :: unique_euclidean_semiring_numeral" | "0 mod numeral b :: 'a :: unique_euclidean_semiring_numeral" | "0 div - numeral b :: int" | "0 mod - numeral b :: int" | "1 div 0 :: 'a :: unique_euclidean_semiring_numeral" | "1 mod 0 :: 'a :: unique_euclidean_semiring_numeral" | "1 div 1 :: 'a :: unique_euclidean_semiring_numeral" | "1 mod 1 :: 'a :: unique_euclidean_semiring_numeral" | "1 div - 1 :: int" | "1 mod - 1 :: int" | "1 div numeral b :: 'a :: unique_euclidean_semiring_numeral" | "1 mod numeral b :: 'a :: unique_euclidean_semiring_numeral" | "1 div - numeral b :: int" |"1 mod - numeral b :: int" | "- 1 div 0 :: int" | "- 1 mod 0 :: int" | "- 1 div 1 :: int" | "- 1 mod 1 :: int" | "- 1 div - 1 :: int" | "- 1 mod - 1 :: int" | "- 1 div numeral b :: int" | "- 1 mod numeral b :: int" | "- 1 div - numeral b :: int" | "- 1 mod - numeral b :: int" | "numeral a div 0 :: 'a :: unique_euclidean_semiring_numeral" | "numeral a mod 0 :: 'a :: unique_euclidean_semiring_numeral" | "numeral a div 1 :: 'a :: unique_euclidean_semiring_numeral" | "numeral a mod 1 :: 'a :: unique_euclidean_semiring_numeral" | "numeral a div - 1 :: int" | "numeral a mod - 1 :: int" | "numeral a div numeral b :: 'a :: unique_euclidean_semiring_numeral" | "numeral a mod numeral b :: 'a :: unique_euclidean_semiring_numeral" | "numeral a div - numeral b :: int" | "numeral a mod - numeral b :: int" | "- numeral a div 0 :: int" | "- numeral a mod 0 :: int" | "- numeral a div 1 :: int" | "- numeral a mod 1 :: int" | "- numeral a div - 1 :: int" | "- numeral a mod - 1 :: int" | "- numeral a div numeral b :: int" | "- numeral a mod numeral b :: int" | "- numeral a div - numeral b :: int" | "- numeral a mod - numeral b :: int") = \ let val if_cong = the (Code.get_case_cong \<^theory> \<^const_name>\If\); fun successful_rewrite ctxt ct = let val thm = Simplifier.rewrite ctxt ct in if Thm.is_reflexive thm then NONE else SOME thm end; in fn phi => let val simps = Morphism.fact phi (@{thms div_0 mod_0 div_by_0 mod_by_0 div_by_1 mod_by_1 one_div_numeral one_mod_numeral minus_one_div_numeral minus_one_mod_numeral one_div_minus_numeral one_mod_minus_numeral numeral_div_numeral numeral_mod_numeral minus_numeral_div_numeral minus_numeral_mod_numeral numeral_div_minus_numeral numeral_mod_minus_numeral div_minus_minus mod_minus_minus Divides.adjust_div_eq of_bool_eq one_neq_zero numeral_neq_zero neg_equal_0_iff_equal arith_simps arith_special divmod_trivial divmod_cancel divmod_steps divmod_step_eq fst_conv snd_conv numeral_One case_prod_beta rel_simps Divides.adjust_mod_def div_minus1_right mod_minus1_right minus_minus numeral_times_numeral mult_zero_right mult_1_right} @ [@{lemma "0 = 0 \ True" by simp}]); fun prepare_simpset ctxt = HOL_ss |> Simplifier.simpset_map ctxt (Simplifier.add_cong if_cong #> fold Simplifier.add_simp simps) in fn ctxt => successful_rewrite (Simplifier.put_simpset (prepare_simpset ctxt) ctxt) end end \ subsubsection \Code generation\ definition divmod_nat :: "nat \ nat \ nat \ nat" where "divmod_nat m n = (m div n, m mod n)" lemma fst_divmod_nat [simp]: "fst (divmod_nat m n) = m div n" by (simp add: divmod_nat_def) lemma snd_divmod_nat [simp]: "snd (divmod_nat m n) = m mod n" by (simp add: divmod_nat_def) lemma divmod_nat_if [code]: "Divides.divmod_nat m n = (if n = 0 \ m < n then (0, m) else let (q, r) = Divides.divmod_nat (m - n) n in (Suc q, r))" by (simp add: prod_eq_iff case_prod_beta not_less le_div_geq le_mod_geq) lemma [code]: "m div n = fst (divmod_nat m n)" "m mod n = snd (divmod_nat m n)" by simp_all lemma [code]: fixes k :: int shows "k div 0 = 0" "k mod 0 = k" "0 div k = 0" "0 mod k = 0" "k div Int.Pos Num.One = k" "k mod Int.Pos Num.One = 0" "k div Int.Neg Num.One = - k" "k mod Int.Neg Num.One = 0" "Int.Pos m div Int.Pos n = (fst (divmod m n) :: int)" "Int.Pos m mod Int.Pos n = (snd (divmod m n) :: int)" "Int.Neg m div Int.Pos n = - (Divides.adjust_div (divmod m n) :: int)" "Int.Neg m mod Int.Pos n = Divides.adjust_mod (Int.Pos n) (snd (divmod m n) :: int)" "Int.Pos m div Int.Neg n = - (Divides.adjust_div (divmod m n) :: int)" "Int.Pos m mod Int.Neg n = - Divides.adjust_mod (Int.Pos n) (snd (divmod m n) :: int)" "Int.Neg m div Int.Neg n = (fst (divmod m n) :: int)" "Int.Neg m mod Int.Neg n = - (snd (divmod m n) :: int)" by simp_all code_identifier code_module Divides \ (SML) Arith and (OCaml) Arith and (Haskell) Arith subsection \Lemmas of doubtful value\ lemma div_geq: "m div n = Suc ((m - n) div n)" if "0 < n" and " \ m < n" for m n :: nat by (rule le_div_geq) (use that in \simp_all add: not_less\) lemma mod_geq: "m mod n = (m - n) mod n" if "\ m < n" for m n :: nat by (rule le_mod_geq) (use that in \simp add: not_less\) lemma mod_eq_0D: "\q. m = d * q" if "m mod d = 0" for m d :: nat using that by (auto simp add: mod_eq_0_iff_dvd) lemma pos_mod_conj: "0 < b \ 0 \ a mod b \ a mod b < b" for a b :: int by simp lemma neg_mod_conj: "b < 0 \ a mod b \ 0 \ b < a mod b" for a b :: int by simp lemma zmod_eq_0_iff: "m mod d = 0 \ (\q. m = d * q)" for m d :: int by (auto simp add: mod_eq_0_iff_dvd) (* REVISIT: should this be generalized to all semiring_div types? *) lemma zmod_eq_0D [dest!]: "\q. m = d * q" if "m mod d = 0" for m d :: int using that by auto end diff --git a/src/HOL/Library/Bit_Operations.thy b/src/HOL/Library/Bit_Operations.thy --- a/src/HOL/Library/Bit_Operations.thy +++ b/src/HOL/Library/Bit_Operations.thy @@ -1,828 +1,828 @@ (* Author: Florian Haftmann, TUM *) section \Bit operations in suitable algebraic structures\ theory Bit_Operations imports "HOL-Library.Boolean_Algebra" Main begin subsection \Bit operations\ class semiring_bit_operations = semiring_bit_shifts + fixes "and" :: \'a \ 'a \ 'a\ (infixr \AND\ 64) and or :: \'a \ 'a \ 'a\ (infixr \OR\ 59) and xor :: \'a \ 'a \ 'a\ (infixr \XOR\ 59) assumes bit_and_iff: \\n. bit (a AND b) n \ bit a n \ bit b n\ and bit_or_iff: \\n. bit (a OR b) n \ bit a n \ bit b n\ and bit_xor_iff: \\n. bit (a XOR b) n \ bit a n \ bit b n\ begin text \ We want the bitwise operations to bind slightly weaker than \+\ and \-\. For the sake of code generation the operations \<^const>\and\, \<^const>\or\ and \<^const>\xor\ are specified as definitional class operations. \ sublocale "and": semilattice \(AND)\ by standard (auto simp add: bit_eq_iff bit_and_iff) sublocale or: semilattice_neutr \(OR)\ 0 by standard (auto simp add: bit_eq_iff bit_or_iff) sublocale xor: comm_monoid \(XOR)\ 0 by standard (auto simp add: bit_eq_iff bit_xor_iff) lemma even_and_iff: \even (a AND b) \ even a \ even b\ using bit_and_iff [of a b 0] by auto lemma even_or_iff: \even (a OR b) \ even a \ even b\ using bit_or_iff [of a b 0] by auto lemma even_xor_iff: \even (a XOR b) \ (even a \ even b)\ using bit_xor_iff [of a b 0] by auto lemma zero_and_eq [simp]: "0 AND a = 0" by (simp add: bit_eq_iff bit_and_iff) lemma and_zero_eq [simp]: "a AND 0 = 0" by (simp add: bit_eq_iff bit_and_iff) lemma one_and_eq: "1 AND a = a mod 2" by (simp add: bit_eq_iff bit_and_iff) (auto simp add: bit_1_iff) lemma and_one_eq: "a AND 1 = a mod 2" using one_and_eq [of a] by (simp add: ac_simps) lemma one_or_eq: "1 OR a = a + of_bool (even a)" by (simp add: bit_eq_iff bit_or_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff) lemma or_one_eq: "a OR 1 = a + of_bool (even a)" using one_or_eq [of a] by (simp add: ac_simps) lemma one_xor_eq: "1 XOR a = a + of_bool (even a) - of_bool (odd a)" by (simp add: bit_eq_iff bit_xor_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff odd_bit_iff_bit_pred elim: oddE) lemma xor_one_eq: "a XOR 1 = a + of_bool (even a) - of_bool (odd a)" using one_xor_eq [of a] by (simp add: ac_simps) lemma take_bit_and [simp]: \take_bit n (a AND b) = take_bit n a AND take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_and_iff) lemma take_bit_or [simp]: \take_bit n (a OR b) = take_bit n a OR take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_or_iff) lemma take_bit_xor [simp]: \take_bit n (a XOR b) = take_bit n a XOR take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff) definition mask :: \nat \ 'a\ where mask_eq_exp_minus_1: \mask n = 2 ^ n - 1\ lemma bit_mask_iff: \bit (mask m) n \ 2 ^ n \ 0 \ n < m\ by (simp add: mask_eq_exp_minus_1 bit_mask_iff) lemma even_mask_iff: \even (mask n) \ n = 0\ using bit_mask_iff [of n 0] by auto lemma mask_0 [simp, code]: \mask 0 = 0\ by (simp add: mask_eq_exp_minus_1) lemma mask_Suc_exp [code]: \mask (Suc n) = 2 ^ n OR mask n\ by (rule bit_eqI) (auto simp add: bit_or_iff bit_mask_iff bit_exp_iff not_less le_less_Suc_eq) lemma mask_Suc_double: \mask (Suc n) = 2 * mask n OR 1\ proof (rule bit_eqI) fix q assume \2 ^ q \ 0\ show \bit (mask (Suc n)) q \ bit (2 * mask n OR 1) q\ by (cases q) (simp_all add: even_mask_iff even_or_iff bit_or_iff bit_mask_iff bit_exp_iff bit_double_iff not_less le_less_Suc_eq bit_1_iff, auto simp add: mult_2) qed lemma take_bit_eq_mask: \take_bit n a = a AND mask n\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_and_iff bit_mask_iff) end class ring_bit_operations = semiring_bit_operations + ring_parity + fixes not :: \'a \ 'a\ (\NOT\) assumes bit_not_iff: \\n. bit (NOT a) n \ 2 ^ n \ 0 \ \ bit a n\ assumes minus_eq_not_minus_1: \- a = NOT (a - 1)\ begin text \ For the sake of code generation \<^const>\not\ is specified as definitional class operation. Note that \<^const>\not\ has no sensible definition for unlimited but only positive bit strings (type \<^typ>\nat\). \ lemma bits_minus_1_mod_2_eq [simp]: \(- 1) mod 2 = 1\ by (simp add: mod_2_eq_odd) lemma not_eq_complement: \NOT a = - a - 1\ using minus_eq_not_minus_1 [of \a + 1\] by simp lemma minus_eq_not_plus_1: \- a = NOT a + 1\ using not_eq_complement [of a] by simp lemma bit_minus_iff: \bit (- a) n \ 2 ^ n \ 0 \ \ bit (a - 1) n\ by (simp add: minus_eq_not_minus_1 bit_not_iff) lemma even_not_iff [simp]: "even (NOT a) \ odd a" using bit_not_iff [of a 0] by auto lemma bit_not_exp_iff: \bit (NOT (2 ^ m)) n \ 2 ^ n \ 0 \ n \ m\ by (auto simp add: bit_not_iff bit_exp_iff) lemma bit_minus_1_iff [simp]: \bit (- 1) n \ 2 ^ n \ 0\ by (simp add: bit_minus_iff) lemma bit_minus_exp_iff: \bit (- (2 ^ m)) n \ 2 ^ n \ 0 \ n \ m\ oops lemma bit_minus_2_iff [simp]: \bit (- 2) n \ 2 ^ n \ 0 \ n > 0\ by (simp add: bit_minus_iff bit_1_iff) lemma not_one [simp]: "NOT 1 = - 2" by (simp add: bit_eq_iff bit_not_iff) (simp add: bit_1_iff) sublocale "and": semilattice_neutr \(AND)\ \- 1\ apply standard apply (simp add: bit_eq_iff bit_and_iff) apply (auto simp add: exp_eq_0_imp_not_bit bit_exp_iff) done sublocale bit: boolean_algebra \(AND)\ \(OR)\ NOT 0 \- 1\ rewrites \bit.xor = (XOR)\ proof - interpret bit: boolean_algebra \(AND)\ \(OR)\ NOT 0 \- 1\ apply standard apply (simp_all add: bit_eq_iff) apply (auto simp add: bit_and_iff bit_or_iff bit_not_iff bit_exp_iff exp_eq_0_imp_not_bit) done show \boolean_algebra (AND) (OR) NOT 0 (- 1)\ by standard show \boolean_algebra.xor (AND) (OR) NOT = (XOR)\ apply (simp add: fun_eq_iff bit_eq_iff bit.xor_def) apply (auto simp add: bit_and_iff bit_or_iff bit_not_iff bit_xor_iff exp_eq_0_imp_not_bit) done qed lemma and_eq_not_not_or: \a AND b = NOT (NOT a OR NOT b)\ by simp lemma or_eq_not_not_and: \a OR b = NOT (NOT a AND NOT b)\ by simp lemma push_bit_minus: \push_bit n (- a) = - push_bit n a\ by (simp add: push_bit_eq_mult) lemma take_bit_not_take_bit: \take_bit n (NOT (take_bit n a)) = take_bit n (NOT a)\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff) lemma take_bit_not_iff: "take_bit n (NOT a) = take_bit n (NOT b) \ take_bit n a = take_bit n b" apply (simp add: bit_eq_iff bit_not_iff bit_take_bit_iff) apply (simp add: bit_exp_iff) apply (use local.exp_eq_0_imp_not_bit in blast) done lemma take_bit_minus_one_eq_mask: \take_bit n (- 1) = mask n\ by (simp add: bit_eq_iff bit_mask_iff bit_take_bit_iff conj_commute) lemma push_bit_minus_one_eq_not_mask: \push_bit n (- 1) = NOT (mask n)\ proof (rule bit_eqI) fix m assume \2 ^ m \ 0\ show \bit (push_bit n (- 1)) m \ bit (NOT (mask n)) m\ proof (cases \n \ m\) case True moreover define q where \q = m - n\ ultimately have \m = n + q\ \m - n = q\ by simp_all with \2 ^ m \ 0\ have \2 ^ n * 2 ^ q \ 0\ by (simp add: power_add) then have \2 ^ q \ 0\ using mult_not_zero by blast with \m - n = q\ show ?thesis by (auto simp add: bit_not_iff bit_mask_iff bit_push_bit_iff not_less) next case False then show ?thesis by (simp add: bit_not_iff bit_mask_iff bit_push_bit_iff not_le) qed qed definition set_bit :: \nat \ 'a \ 'a\ - where \set_bit n a = a OR 2 ^ n\ + where \set_bit n a = a OR push_bit n 1\ definition unset_bit :: \nat \ 'a \ 'a\ - where \unset_bit n a = a AND NOT (2 ^ n)\ + where \unset_bit n a = a AND NOT (push_bit n 1)\ definition flip_bit :: \nat \ 'a \ 'a\ - where \flip_bit n a = a XOR 2 ^ n\ + where \flip_bit n a = a XOR push_bit n 1\ lemma bit_set_bit_iff: \bit (set_bit m a) n \ bit a n \ (m = n \ 2 ^ n \ 0)\ - by (auto simp add: set_bit_def bit_or_iff bit_exp_iff) + by (auto simp add: set_bit_def push_bit_of_1 bit_or_iff bit_exp_iff) lemma even_set_bit_iff: \even (set_bit m a) \ even a \ m \ 0\ using bit_set_bit_iff [of m a 0] by auto lemma bit_unset_bit_iff: \bit (unset_bit m a) n \ bit a n \ m \ n\ - by (auto simp add: unset_bit_def bit_and_iff bit_not_iff bit_exp_iff exp_eq_0_imp_not_bit) + by (auto simp add: unset_bit_def push_bit_of_1 bit_and_iff bit_not_iff bit_exp_iff exp_eq_0_imp_not_bit) lemma even_unset_bit_iff: \even (unset_bit m a) \ even a \ m = 0\ using bit_unset_bit_iff [of m a 0] by auto lemma bit_flip_bit_iff: \bit (flip_bit m a) n \ (m = n \ \ bit a n) \ 2 ^ n \ 0\ - by (auto simp add: flip_bit_def bit_xor_iff bit_exp_iff exp_eq_0_imp_not_bit) + by (auto simp add: flip_bit_def push_bit_of_1 bit_xor_iff bit_exp_iff exp_eq_0_imp_not_bit) lemma even_flip_bit_iff: \even (flip_bit m a) \ \ (even a \ m = 0)\ using bit_flip_bit_iff [of m a 0] by auto lemma set_bit_0 [simp]: \set_bit 0 a = 1 + 2 * (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ then show \bit (set_bit 0 a) m = bit (1 + 2 * (a div 2)) m\ by (simp add: bit_set_bit_iff bit_double_iff even_bit_succ_iff) (cases m, simp_all add: bit_Suc) qed lemma set_bit_Suc: \set_bit (Suc n) a = a mod 2 + 2 * set_bit n (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ show \bit (set_bit (Suc n) a) m \ bit (a mod 2 + 2 * set_bit n (a div 2)) m\ proof (cases m) case 0 then show ?thesis by (simp add: even_set_bit_iff) next case (Suc m) with * have \2 ^ m \ 0\ using mult_2 by auto show ?thesis by (cases a rule: parity_cases) (simp_all add: bit_set_bit_iff bit_double_iff even_bit_succ_iff *, simp_all add: Suc \2 ^ m \ 0\ bit_Suc) qed qed lemma unset_bit_0 [simp]: \unset_bit 0 a = 2 * (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ then show \bit (unset_bit 0 a) m = bit (2 * (a div 2)) m\ by (simp add: bit_unset_bit_iff bit_double_iff) (cases m, simp_all add: bit_Suc) qed lemma unset_bit_Suc: \unset_bit (Suc n) a = a mod 2 + 2 * unset_bit n (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ then show \bit (unset_bit (Suc n) a) m \ bit (a mod 2 + 2 * unset_bit n (a div 2)) m\ proof (cases m) case 0 then show ?thesis by (simp add: even_unset_bit_iff) next case (Suc m) show ?thesis by (cases a rule: parity_cases) (simp_all add: bit_unset_bit_iff bit_double_iff even_bit_succ_iff *, simp_all add: Suc bit_Suc) qed qed lemma flip_bit_0 [simp]: \flip_bit 0 a = of_bool (even a) + 2 * (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ then show \bit (flip_bit 0 a) m = bit (of_bool (even a) + 2 * (a div 2)) m\ by (simp add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff) (cases m, simp_all add: bit_Suc) qed lemma flip_bit_Suc: \flip_bit (Suc n) a = a mod 2 + 2 * flip_bit n (a div 2)\ proof (rule bit_eqI) fix m assume *: \2 ^ m \ 0\ show \bit (flip_bit (Suc n) a) m \ bit (a mod 2 + 2 * flip_bit n (a div 2)) m\ proof (cases m) case 0 then show ?thesis by (simp add: even_flip_bit_iff) next case (Suc m) with * have \2 ^ m \ 0\ using mult_2 by auto show ?thesis by (cases a rule: parity_cases) (simp_all add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff, simp_all add: Suc \2 ^ m \ 0\ bit_Suc) qed qed lemma take_bit_set_bit_eq: \take_bit n (set_bit m w) = (if n \ m then take_bit n w else set_bit m (take_bit n w))\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_set_bit_iff) lemma take_bit_unset_bit_eq: \take_bit n (unset_bit m w) = (if n \ m then take_bit n w else unset_bit m (take_bit n w))\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_unset_bit_iff) lemma take_bit_flip_bit_eq: \take_bit n (flip_bit m w) = (if n \ m then take_bit n w else flip_bit m (take_bit n w))\ by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_flip_bit_iff) end subsection \Instance \<^typ>\int\\ instantiation int :: ring_bit_operations begin definition not_int :: \int \ int\ where \not_int k = - k - 1\ lemma not_int_rec: "NOT k = of_bool (even k) + 2 * NOT (k div 2)" for k :: int by (auto simp add: not_int_def elim: oddE) lemma even_not_iff_int: \even (NOT k) \ odd k\ for k :: int by (simp add: not_int_def) lemma not_int_div_2: \NOT k div 2 = NOT (k div 2)\ for k :: int by (simp add: not_int_def) lemma bit_not_int_iff: \bit (NOT k) n \ \ bit k n\ for k :: int by (induction n arbitrary: k) (simp_all add: not_int_div_2 even_not_iff_int bit_Suc) function and_int :: \int \ int \ int\ where \(k::int) AND l = (if k \ {0, - 1} \ l \ {0, - 1} then - of_bool (odd k \ odd l) else of_bool (odd k \ odd l) + 2 * ((k div 2) AND (l div 2)))\ by auto termination by (relation \measure (\(k, l). nat (\k\ + \l\))\) auto declare and_int.simps [simp del] lemma and_int_rec: \k AND l = of_bool (odd k \ odd l) + 2 * ((k div 2) AND (l div 2))\ for k l :: int proof (cases \k \ {0, - 1} \ l \ {0, - 1}\) case True then show ?thesis by auto (simp_all add: and_int.simps) next case False then show ?thesis by (auto simp add: ac_simps and_int.simps [of k l]) qed lemma bit_and_int_iff: \bit (k AND l) n \ bit k n \ bit l n\ for k l :: int proof (induction n arbitrary: k l) case 0 then show ?case by (simp add: and_int_rec [of k l]) next case (Suc n) then show ?case by (simp add: and_int_rec [of k l] bit_Suc) qed lemma even_and_iff_int: \even (k AND l) \ even k \ even l\ for k l :: int using bit_and_int_iff [of k l 0] by auto definition or_int :: \int \ int \ int\ where \k OR l = NOT (NOT k AND NOT l)\ for k l :: int lemma or_int_rec: \k OR l = of_bool (odd k \ odd l) + 2 * ((k div 2) OR (l div 2))\ for k l :: int using and_int_rec [of \NOT k\ \NOT l\] by (simp add: or_int_def even_not_iff_int not_int_div_2) (simp add: not_int_def) lemma bit_or_int_iff: \bit (k OR l) n \ bit k n \ bit l n\ for k l :: int by (simp add: or_int_def bit_not_int_iff bit_and_int_iff) definition xor_int :: \int \ int \ int\ where \k XOR l = k AND NOT l OR NOT k AND l\ for k l :: int lemma xor_int_rec: \k XOR l = of_bool (odd k \ odd l) + 2 * ((k div 2) XOR (l div 2))\ for k l :: int by (simp add: xor_int_def or_int_rec [of \k AND NOT l\ \NOT k AND l\] even_and_iff_int even_not_iff_int) (simp add: and_int_rec [of \NOT k\ \l\] and_int_rec [of \k\ \NOT l\] not_int_div_2) lemma bit_xor_int_iff: \bit (k XOR l) n \ bit k n \ bit l n\ for k l :: int by (auto simp add: xor_int_def bit_or_int_iff bit_and_int_iff bit_not_int_iff) instance proof fix k l :: int and n :: nat show \- k = NOT (k - 1)\ by (simp add: not_int_def) show \bit (k AND l) n \ bit k n \ bit l n\ by (fact bit_and_int_iff) show \bit (k OR l) n \ bit k n \ bit l n\ by (fact bit_or_int_iff) show \bit (k XOR l) n \ bit k n \ bit l n\ by (fact bit_xor_int_iff) qed (simp_all add: bit_not_int_iff) end lemma not_nonnegative_int_iff [simp]: \NOT k \ 0 \ k < 0\ for k :: int by (simp add: not_int_def) lemma not_negative_int_iff [simp]: \NOT k < 0 \ k \ 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less not_le) lemma and_nonnegative_int_iff [simp]: \k AND l \ 0 \ k \ 0 \ l \ 0\ for k l :: int proof (induction k arbitrary: l rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) then show ?case using and_int_rec [of \k * 2\ l] by (simp add: pos_imp_zdiv_nonneg_iff) next case (odd k) from odd have \0 \ k AND l div 2 \ 0 \ k \ 0 \ l div 2\ by simp then have \0 \ (1 + k * 2) div 2 AND l div 2 \ 0 \ (1 + k * 2) div 2\ 0 \ l div 2\ by simp with and_int_rec [of \1 + k * 2\ l] show ?case by auto qed lemma and_negative_int_iff [simp]: \k AND l < 0 \ k < 0 \ l < 0\ for k l :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma or_nonnegative_int_iff [simp]: \k OR l \ 0 \ k \ 0 \ l \ 0\ for k l :: int by (simp only: or_eq_not_not_and not_nonnegative_int_iff) simp lemma or_negative_int_iff [simp]: \k OR l < 0 \ k < 0 \ l < 0\ for k l :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma xor_nonnegative_int_iff [simp]: \k XOR l \ 0 \ (k \ 0 \ l \ 0)\ for k l :: int by (simp only: bit.xor_def or_nonnegative_int_iff) auto lemma xor_negative_int_iff [simp]: \k XOR l < 0 \ (k < 0) \ (l < 0)\ for k l :: int by (subst Not_eq_iff [symmetric]) (auto simp add: not_less) lemma set_bit_nonnegative_int_iff [simp]: \set_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: set_bit_def) lemma set_bit_negative_int_iff [simp]: \set_bit n k < 0 \ k < 0\ for k :: int by (simp add: set_bit_def) lemma unset_bit_nonnegative_int_iff [simp]: \unset_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: unset_bit_def) lemma unset_bit_negative_int_iff [simp]: \unset_bit n k < 0 \ k < 0\ for k :: int by (simp add: unset_bit_def) lemma flip_bit_nonnegative_int_iff [simp]: \flip_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: flip_bit_def) lemma flip_bit_negative_int_iff [simp]: \flip_bit n k < 0 \ k < 0\ for k :: int by (simp add: flip_bit_def) lemma and_less_eq: \k AND l \ k\ if \l < 0\ for k l :: int using that proof (induction k arbitrary: l rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) from even.IH [of \l div 2\] even.hyps even.prems show ?case by (simp add: and_int_rec [of _ l]) next case (odd k) from odd.IH [of \l div 2\] odd.hyps odd.prems show ?case by (simp add: and_int_rec [of _ l]) qed lemma or_greater_eq: \k OR l \ k\ if \l \ 0\ for k l :: int using that proof (induction k arbitrary: l rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even k) from even.IH [of \l div 2\] even.hyps even.prems show ?case by (simp add: or_int_rec [of _ l]) next case (odd k) from odd.IH [of \l div 2\] odd.hyps odd.prems show ?case by (simp add: or_int_rec [of _ l]) qed lemma set_bit_greater_eq: \set_bit n k \ k\ for k :: int by (simp add: set_bit_def or_greater_eq) lemma unset_bit_less_eq: \unset_bit n k \ k\ for k :: int by (simp add: unset_bit_def and_less_eq) subsection \Instance \<^typ>\nat\\ instantiation nat :: semiring_bit_operations begin definition and_nat :: \nat \ nat \ nat\ where \m AND n = nat (int m AND int n)\ for m n :: nat definition or_nat :: \nat \ nat \ nat\ where \m OR n = nat (int m OR int n)\ for m n :: nat definition xor_nat :: \nat \ nat \ nat\ where \m XOR n = nat (int m XOR int n)\ for m n :: nat instance proof fix m n q :: nat show \bit (m AND n) q \ bit m q \ bit n q\ by (auto simp add: and_nat_def bit_and_iff less_le bit_eq_iff) show \bit (m OR n) q \ bit m q \ bit n q\ by (auto simp add: or_nat_def bit_or_iff less_le bit_eq_iff) show \bit (m XOR n) q \ bit m q \ bit n q\ by (auto simp add: xor_nat_def bit_xor_iff less_le bit_eq_iff) qed end lemma and_nat_rec: \m AND n = of_bool (odd m \ odd n) + 2 * ((m div 2) AND (n div 2))\ for m n :: nat by (simp add: and_nat_def and_int_rec [of \int m\ \int n\] zdiv_int nat_add_distrib nat_mult_distrib) lemma or_nat_rec: \m OR n = of_bool (odd m \ odd n) + 2 * ((m div 2) OR (n div 2))\ for m n :: nat by (simp add: or_nat_def or_int_rec [of \int m\ \int n\] zdiv_int nat_add_distrib nat_mult_distrib) lemma xor_nat_rec: \m XOR n = of_bool (odd m \ odd n) + 2 * ((m div 2) XOR (n div 2))\ for m n :: nat by (simp add: xor_nat_def xor_int_rec [of \int m\ \int n\] zdiv_int nat_add_distrib nat_mult_distrib) lemma Suc_0_and_eq [simp]: \Suc 0 AND n = n mod 2\ using one_and_eq [of n] by simp lemma and_Suc_0_eq [simp]: \n AND Suc 0 = n mod 2\ using and_one_eq [of n] by simp lemma Suc_0_or_eq: \Suc 0 OR n = n + of_bool (even n)\ using one_or_eq [of n] by simp lemma or_Suc_0_eq: \n OR Suc 0 = n + of_bool (even n)\ using or_one_eq [of n] by simp lemma Suc_0_xor_eq: \Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)\ using one_xor_eq [of n] by simp lemma xor_Suc_0_eq: \n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)\ using xor_one_eq [of n] by simp subsection \Instances for \<^typ>\integer\ and \<^typ>\natural\\ unbundle integer.lifting natural.lifting instantiation integer :: ring_bit_operations begin lift_definition not_integer :: \integer \ integer\ is not . lift_definition and_integer :: \integer \ integer \ integer\ is \and\ . lift_definition or_integer :: \integer \ integer \ integer\ is or . lift_definition xor_integer :: \integer \ integer \ integer\ is xor . instance proof fix k l :: \integer\ and n :: nat show \- k = NOT (k - 1)\ by transfer (simp add: minus_eq_not_minus_1) show \bit (NOT k) n \ (2 :: integer) ^ n \ 0 \ \ bit k n\ by transfer (fact bit_not_iff) show \bit (k AND l) n \ bit k n \ bit l n\ by transfer (fact bit_and_iff) show \bit (k OR l) n \ bit k n \ bit l n\ by transfer (fact bit_or_iff) show \bit (k XOR l) n \ bit k n \ bit l n\ by transfer (fact bit_xor_iff) qed end instantiation natural :: semiring_bit_operations begin lift_definition and_natural :: \natural \ natural \ natural\ is \and\ . lift_definition or_natural :: \natural \ natural \ natural\ is or . lift_definition xor_natural :: \natural \ natural \ natural\ is xor . instance proof fix m n :: \natural\ and q :: nat show \bit (m AND n) q \ bit m q \ bit n q\ by transfer (fact bit_and_iff) show \bit (m OR n) q \ bit m q \ bit n q\ by transfer (fact bit_or_iff) show \bit (m XOR n) q \ bit m q \ bit n q\ by transfer (fact bit_xor_iff) qed end lifting_update integer.lifting lifting_forget integer.lifting lifting_update natural.lifting lifting_forget natural.lifting subsection \Key ideas of bit operations\ text \ When formalizing bit operations, it is tempting to represent bit values as explicit lists over a binary type. This however is a bad idea, mainly due to the inherent ambiguities in representation concerning repeating leading bits. Hence this approach avoids such explicit lists altogether following an algebraic path: \<^item> Bit values are represented by numeric types: idealized unbounded bit values can be represented by type \<^typ>\int\, bounded bit values by quotient types over \<^typ>\int\. \<^item> (A special case are idealized unbounded bit values ending in @{term [source] 0} which can be represented by type \<^typ>\nat\ but only support a restricted set of operations). \<^item> From this idea follows that \<^item> multiplication by \<^term>\2 :: int\ is a bit shift to the left and \<^item> division by \<^term>\2 :: int\ is a bit shift to the right. \<^item> Concerning bounded bit values, iterated shifts to the left may result in eliminating all bits by shifting them all beyond the boundary. The property \<^prop>\(2 :: int) ^ n \ 0\ represents that \<^term>\n\ is \<^emph>\not\ beyond that boundary. \<^item> The projection on a single bit is then @{thm bit_iff_odd [where ?'a = int, no_vars]}. \<^item> This leads to the most fundamental properties of bit values: \<^item> Equality rule: @{thm bit_eqI [where ?'a = int, no_vars]} \<^item> Induction rule: @{thm bits_induct [where ?'a = int, no_vars]} \<^item> Typical operations are characterized as follows: \<^item> Singleton \<^term>\n\th bit: \<^term>\(2 :: int) ^ n\ \<^item> Bit mask upto bit \<^term>\n\: @{thm mask_eq_exp_minus_1 [where ?'a = int, no_vars]} \<^item> Left shift: @{thm push_bit_eq_mult [where ?'a = int, no_vars]} \<^item> Right shift: @{thm drop_bit_eq_div [where ?'a = int, no_vars]} \<^item> Truncation: @{thm take_bit_eq_mod [where ?'a = int, no_vars]} \<^item> Negation: @{thm bit_not_iff [where ?'a = int, no_vars]} \<^item> And: @{thm bit_and_iff [where ?'a = int, no_vars]} \<^item> Or: @{thm bit_or_iff [where ?'a = int, no_vars]} \<^item> Xor: @{thm bit_xor_iff [where ?'a = int, no_vars]} \<^item> Set a single bit: @{thm set_bit_def [where ?'a = int, no_vars]} \<^item> Unset a single bit: @{thm unset_bit_def [where ?'a = int, no_vars]} \<^item> Flip a single bit: @{thm flip_bit_def [where ?'a = int, no_vars]} \ end diff --git a/src/HOL/List.thy b/src/HOL/List.thy --- a/src/HOL/List.thy +++ b/src/HOL/List.thy @@ -1,8077 +1,8088 @@ (* Title: HOL/List.thy Author: Tobias Nipkow; proofs tidied by LCP *) section \The datatype of finite lists\ theory List imports Sledgehammer Code_Numeral Lifting_Set begin datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype_compat list lemma [case_names Nil Cons, cases type: list]: \ \for backward compatibility -- names of variables differ\ "(y = [] \ P) \ (\a list. y = a # list \ P) \ P" by (rule list.exhaust) lemma [case_names Nil Cons, induct type: list]: \ \for backward compatibility -- names of variables differ\ "P [] \ (\a list. P list \ P (a # list)) \ P list" by (rule list.induct) text \Compatibility:\ setup \Sign.mandatory_path "list"\ lemmas inducts = list.induct lemmas recs = list.rec lemmas cases = list.case setup \Sign.parent_path\ lemmas set_simps = list.set (* legacy *) syntax \ \list Enumeration\ "_list" :: "args => 'a list" ("[(_)]") translations "[x, xs]" == "x#[xs]" "[x]" == "x#[]" subsection \Basic list processing functions\ primrec (nonexhaustive) last :: "'a list \ 'a" where "last (x # xs) = (if xs = [] then x else last xs)" primrec butlast :: "'a list \ 'a list" where "butlast [] = []" | "butlast (x # xs) = (if xs = [] then [] else x # butlast xs)" lemma set_rec: "set xs = rec_list {} (\x _. insert x) xs" by (induct xs) auto definition coset :: "'a list \ 'a set" where [simp]: "coset xs = - set xs" primrec append :: "'a list \ 'a list \ 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" primrec rev :: "'a list \ 'a list" where "rev [] = []" | "rev (x # xs) = rev xs @ [x]" primrec filter:: "('a \ bool) \ 'a list \ 'a list" where "filter P [] = []" | "filter P (x # xs) = (if P x then x # filter P xs else filter P xs)" text \Special input syntax for filter:\ syntax (ASCII) "_filter" :: "[pttrn, 'a list, bool] => 'a list" ("(1[_<-_./ _])") syntax "_filter" :: "[pttrn, 'a list, bool] => 'a list" ("(1[_\_ ./ _])") translations "[x<-xs . P]" \ "CONST filter (\x. P) xs" primrec fold :: "('a \ 'b \ 'b) \ 'a list \ 'b \ 'b" where fold_Nil: "fold f [] = id" | fold_Cons: "fold f (x # xs) = fold f xs \ f x" primrec foldr :: "('a \ 'b \ 'b) \ 'a list \ 'b \ 'b" where foldr_Nil: "foldr f [] = id" | foldr_Cons: "foldr f (x # xs) = f x \ foldr f xs" primrec foldl :: "('b \ 'a \ 'b) \ 'b \ 'a list \ 'b" where foldl_Nil: "foldl f a [] = a" | foldl_Cons: "foldl f a (x # xs) = foldl f (f a x) xs" primrec concat:: "'a list list \ 'a list" where "concat [] = []" | "concat (x # xs) = x @ concat xs" primrec drop:: "nat \ 'a list \ 'a list" where drop_Nil: "drop n [] = []" | drop_Cons: "drop n (x # xs) = (case n of 0 \ x # xs | Suc m \ drop m xs)" \ \Warning: simpset does not contain this definition, but separate theorems for \n = 0\ and \n = Suc k\\ primrec take:: "nat \ 'a list \ 'a list" where take_Nil:"take n [] = []" | take_Cons: "take n (x # xs) = (case n of 0 \ [] | Suc m \ x # take m xs)" \ \Warning: simpset does not contain this definition, but separate theorems for \n = 0\ and \n = Suc k\\ primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \ x | Suc k \ xs ! k)" \ \Warning: simpset does not contain this definition, but separate theorems for \n = 0\ and \n = Suc k\\ primrec list_update :: "'a list \ nat \ 'a \ 'a list" where "list_update [] i v = []" | "list_update (x # xs) i v = (case i of 0 \ v # xs | Suc j \ x # list_update xs j v)" nonterminal lupdbinds and lupdbind syntax "_lupdbind":: "['a, 'a] => lupdbind" ("(2_ :=/ _)") "" :: "lupdbind => lupdbinds" ("_") "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds" ("_,/ _") "_LUpdate" :: "['a, lupdbinds] => 'a" ("_/[(_)]" [1000,0] 900) translations "_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs" "xs[i:=x]" == "CONST list_update xs i x" primrec takeWhile :: "('a \ bool) \ 'a list \ 'a list" where "takeWhile P [] = []" | "takeWhile P (x # xs) = (if P x then x # takeWhile P xs else [])" primrec dropWhile :: "('a \ bool) \ 'a list \ 'a list" where "dropWhile P [] = []" | "dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)" primrec zip :: "'a list \ 'b list \ ('a \ 'b) list" where "zip xs [] = []" | zip_Cons: "zip xs (y # ys) = (case xs of [] \ [] | z # zs \ (z, y) # zip zs ys)" \ \Warning: simpset does not contain this definition, but separate theorems for \xs = []\ and \xs = z # zs\\ abbreviation map2 :: "('a \ 'b \ 'c) \ 'a list \ 'b list \ 'c list" where "map2 f xs ys \ map (\(x,y). f x y) (zip xs ys)" primrec product :: "'a list \ 'b list \ ('a \ 'b) list" where "product [] _ = []" | "product (x#xs) ys = map (Pair x) ys @ product xs ys" hide_const (open) product primrec product_lists :: "'a list list \ 'a list list" where "product_lists [] = [[]]" | "product_lists (xs # xss) = concat (map (\x. map (Cons x) (product_lists xss)) xs)" primrec upt :: "nat \ nat \ nat list" ("(1[_.. j then [i.. 'a list \ 'a list" where "insert x xs = (if x \ set xs then xs else x # xs)" definition union :: "'a list \ 'a list \ 'a list" where "union = fold insert" hide_const (open) insert union hide_fact (open) insert_def union_def primrec find :: "('a \ bool) \ 'a list \ 'a option" where "find _ [] = None" | "find P (x#xs) = (if P x then Some x else find P xs)" text \In the context of multisets, \count_list\ is equivalent to \<^term>\count \ mset\ and it it advisable to use the latter.\ primrec count_list :: "'a list \ 'a \ nat" where "count_list [] y = 0" | "count_list (x#xs) y = (if x=y then count_list xs y + 1 else count_list xs y)" definition "extract" :: "('a \ bool) \ 'a list \ ('a list * 'a * 'a list) option" where "extract P xs = (case dropWhile (Not \ P) xs of [] \ None | y#ys \ Some(takeWhile (Not \ P) xs, y, ys))" hide_const (open) "extract" primrec those :: "'a option list \ 'a list option" where "those [] = Some []" | "those (x # xs) = (case x of None \ None | Some y \ map_option (Cons y) (those xs))" primrec remove1 :: "'a \ 'a list \ 'a list" where "remove1 x [] = []" | "remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)" primrec removeAll :: "'a \ 'a list \ 'a list" where "removeAll x [] = []" | "removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)" primrec distinct :: "'a list \ bool" where "distinct [] \ True" | "distinct (x # xs) \ x \ set xs \ distinct xs" fun successively :: "('a \ 'a \ bool) \ 'a list \ bool" where "successively P [] = True" | "successively P [x] = True" | "successively P (x # y # xs) = (P x y \ successively P (y#xs))" definition distinct_adj where "distinct_adj = successively (\)" primrec remdups :: "'a list \ 'a list" where "remdups [] = []" | "remdups (x # xs) = (if x \ set xs then remdups xs else x # remdups xs)" fun remdups_adj :: "'a list \ 'a list" where "remdups_adj [] = []" | "remdups_adj [x] = [x]" | "remdups_adj (x # y # xs) = (if x = y then remdups_adj (x # xs) else x # remdups_adj (y # xs))" primrec replicate :: "nat \ 'a \ 'a list" where replicate_0: "replicate 0 x = []" | replicate_Suc: "replicate (Suc n) x = x # replicate n x" text \ Function \size\ is overloaded for all datatypes. Users may refer to the list version as \length\.\ abbreviation length :: "'a list \ nat" where "length \ size" definition enumerate :: "nat \ 'a list \ (nat \ 'a) list" where enumerate_eq_zip: "enumerate n xs = zip [n.. 'a list" where "rotate1 [] = []" | "rotate1 (x # xs) = xs @ [x]" definition rotate :: "nat \ 'a list \ 'a list" where "rotate n = rotate1 ^^ n" definition nths :: "'a list => nat set => 'a list" where "nths xs A = map fst (filter (\p. snd p \ A) (zip xs [0.. 'a list list" where "subseqs [] = [[]]" | "subseqs (x#xs) = (let xss = subseqs xs in map (Cons x) xss @ xss)" primrec n_lists :: "nat \ 'a list \ 'a list list" where "n_lists 0 xs = [[]]" | "n_lists (Suc n) xs = concat (map (\ys. map (\y. y # ys) xs) (n_lists n xs))" hide_const (open) n_lists function splice :: "'a list \ 'a list \ 'a list" where "splice [] ys = ys" | "splice (x#xs) ys = x # splice ys xs" by pat_completeness auto termination by(relation "measure(\(xs,ys). size xs + size ys)") auto function shuffles where "shuffles [] ys = {ys}" | "shuffles xs [] = {xs}" | "shuffles (x # xs) (y # ys) = (#) x ` shuffles xs (y # ys) \ (#) y ` shuffles (x # xs) ys" by pat_completeness simp_all termination by lexicographic_order text\Use only if you cannot use \<^const>\Min\ instead:\ fun min_list :: "'a::ord list \ 'a" where "min_list (x # xs) = (case xs of [] \ x | _ \ min x (min_list xs))" text\Returns first minimum:\ fun arg_min_list :: "('a \ ('b::linorder)) \ 'a list \ 'a" where "arg_min_list f [x] = x" | "arg_min_list f (x#y#zs) = (let m = arg_min_list f (y#zs) in if f x \ f m then x else m)" text\ \begin{figure}[htbp] \fbox{ \begin{tabular}{l} @{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\ @{lemma "length [a,b,c] = 3" by simp}\\ @{lemma "set [a,b,c] = {a,b,c}" by simp}\\ @{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\ @{lemma "rev [a,b,c] = [c,b,a]" by simp}\\ @{lemma "hd [a,b,c,d] = a" by simp}\\ @{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\ @{lemma "last [a,b,c,d] = d" by simp}\\ @{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\ @{lemma[source] "filter (\n::nat. n<2) [0,2,1] = [0,1]" by simp}\\ @{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\ @{lemma "fold f [a,b,c] x = f c (f b (f a x))" by simp}\\ @{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\ @{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\ @{lemma "successively (\) [True,False,True,False]" by simp}\\ @{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\ @{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\ @{lemma "enumerate 3 [a,b,c] = [(3,a),(4,b),(5,c)]" by normalization}\\ @{lemma "List.product [a,b] [c,d] = [(a, c), (a, d), (b, c), (b, d)]" by simp}\\ @{lemma "product_lists [[a,b], [c], [d,e]] = [[a,c,d], [a,c,e], [b,c,d], [b,c,e]]" by simp}\\ @{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\ @{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\ @{lemma "shuffles [a,b] [c,d] = {[a,b,c,d],[a,c,b,d],[a,c,d,b],[c,a,b,d],[c,a,d,b],[c,d,a,b]}" by (simp add: insert_commute)}\\ @{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\ @{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\ @{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\ @{lemma "drop 6 [a,b,c,d] = []" by simp}\\ @{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\ @{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\ @{lemma "distinct [2,0,1::nat]" by simp}\\ @{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\ @{lemma "remdups_adj [2,2,3,1,1::nat,2,1] = [2,3,1,2,1]" by simp}\\ @{lemma "List.insert 2 [0::nat,1,2] = [0,1,2]" by (simp add: List.insert_def)}\\ @{lemma "List.insert 3 [0::nat,1,2] = [3,0,1,2]" by (simp add: List.insert_def)}\\ @{lemma "List.union [2,3,4] [0::int,1,2] = [4,3,0,1,2]" by (simp add: List.insert_def List.union_def)}\\ @{lemma "List.find (%i::int. i>0) [0,0] = None" by simp}\\ @{lemma "List.find (%i::int. i>0) [0,1,0,2] = Some 1" by simp}\\ @{lemma "count_list [0,1,0,2::int] 0 = 2" by (simp)}\\ @{lemma "List.extract (%i::int. i>0) [0,0] = None" by(simp add: extract_def)}\\ @{lemma "List.extract (%i::int. i>0) [0,1,0,2] = Some([0], 1, [0,2])" by(simp add: extract_def)}\\ @{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\ @{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\ @{lemma "nth [a,b,c,d] 2 = c" by simp}\\ @{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\ @{lemma "nths [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:nths_def)}\\ @{lemma "subseqs [a,b] = [[a, b], [a], [b], []]" by simp}\\ @{lemma "List.n_lists 2 [a,b,c] = [[a, a], [b, a], [c, a], [a, b], [b, b], [c, b], [a, c], [b, c], [c, c]]" by (simp add: eval_nat_numeral)}\\ @{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by simp}\\ @{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate_def eval_nat_numeral)}\\ @{lemma "replicate 4 a = [a,a,a,a]" by (simp add:eval_nat_numeral)}\\ @{lemma "[2..<5] = [2,3,4]" by (simp add:eval_nat_numeral)}\\ @{lemma "min_list [3,1,-2::int] = -2" by (simp)}\\ @{lemma "arg_min_list (\i. i*i) [3,-1,1,-2::int] = -1" by (simp)} \end{tabular}} \caption{Characteristic examples} \label{fig:Characteristic} \end{figure} Figure~\ref{fig:Characteristic} shows characteristic examples that should give an intuitive understanding of the above functions. \ text\The following simple sort(ed) functions are intended for proofs, not for efficient implementations.\ text \A sorted predicate w.r.t. a relation:\ fun sorted_wrt :: "('a \ 'a \ bool) \ 'a list \ bool" where "sorted_wrt P [] = True" | "sorted_wrt P (x # ys) = ((\y \ set ys. P x y) \ sorted_wrt P ys)" text \A class-based sorted predicate:\ context linorder begin fun sorted :: "'a list \ bool" where "sorted [] = True" | "sorted (x # ys) = ((\y \ set ys. x \ y) \ sorted ys)" fun strict_sorted :: "'a list \ bool" where "strict_sorted [] = True" | "strict_sorted (x # ys) = ((\y \ List.set ys. x < y) \ strict_sorted ys)" lemma sorted_sorted_wrt: "sorted = sorted_wrt (\)" proof (rule ext) fix xs show "sorted xs = sorted_wrt (\) xs" by(induction xs rule: sorted.induct) auto qed lemma strict_sorted_sorted_wrt: "strict_sorted = sorted_wrt (<)" proof (rule ext) fix xs show "strict_sorted xs = sorted_wrt (<) xs" by(induction xs rule: strict_sorted.induct) auto qed primrec insort_key :: "('b \ 'a) \ 'b \ 'b list \ 'b list" where "insort_key f x [] = [x]" | "insort_key f x (y#ys) = (if f x \ f y then (x#y#ys) else y#(insort_key f x ys))" definition sort_key :: "('b \ 'a) \ 'b list \ 'b list" where "sort_key f xs = foldr (insort_key f) xs []" definition insort_insert_key :: "('b \ 'a) \ 'b \ 'b list \ 'b list" where "insort_insert_key f x xs = (if f x \ f ` set xs then xs else insort_key f x xs)" abbreviation "sort \ sort_key (\x. x)" abbreviation "insort \ insort_key (\x. x)" abbreviation "insort_insert \ insort_insert_key (\x. x)" definition stable_sort_key :: "(('b \ 'a) \ 'b list \ 'b list) \ bool" where "stable_sort_key sk = (\f xs k. filter (\y. f y = k) (sk f xs) = filter (\y. f y = k) xs)" lemma strict_sorted_iff: "strict_sorted l \ sorted l \ distinct l" by (induction l) (auto iff: antisym_conv1) end subsubsection \List comprehension\ text\Input syntax for Haskell-like list comprehension notation. Typical example: \[(x,y). x \ xs, y \ ys, x \ y]\, the list of all pairs of distinct elements from \xs\ and \ys\. The syntax is as in Haskell, except that \|\ becomes a dot (like in Isabelle's set comprehension): \[e. x \ xs, \]\ rather than \verb![e| x <- xs, ...]!. The qualifiers after the dot are \begin{description} \item[generators] \p \ xs\, where \p\ is a pattern and \xs\ an expression of list type, or \item[guards] \b\, where \b\ is a boolean expression. %\item[local bindings] @ {text"let x = e"}. \end{description} Just like in Haskell, list comprehension is just a shorthand. To avoid misunderstandings, the translation into desugared form is not reversed upon output. Note that the translation of \[e. x \ xs]\ is optmized to \<^term>\map (%x. e) xs\. It is easy to write short list comprehensions which stand for complex expressions. During proofs, they may become unreadable (and mangled). In such cases it can be advisable to introduce separate definitions for the list comprehensions in question.\ nonterminal lc_qual and lc_quals syntax "_listcompr" :: "'a \ lc_qual \ lc_quals \ 'a list" ("[_ . __") "_lc_gen" :: "'a \ 'a list \ lc_qual" ("_ \ _") "_lc_test" :: "bool \ lc_qual" ("_") (*"_lc_let" :: "letbinds => lc_qual" ("let _")*) "_lc_end" :: "lc_quals" ("]") "_lc_quals" :: "lc_qual \ lc_quals \ lc_quals" (", __") syntax (ASCII) "_lc_gen" :: "'a \ 'a list \ lc_qual" ("_ <- _") parse_translation \ let val NilC = Syntax.const \<^const_syntax>\Nil\; val ConsC = Syntax.const \<^const_syntax>\Cons\; val mapC = Syntax.const \<^const_syntax>\map\; val concatC = Syntax.const \<^const_syntax>\concat\; val IfC = Syntax.const \<^const_syntax>\If\; val dummyC = Syntax.const \<^const_syntax>\Pure.dummy_pattern\ fun single x = ConsC $ x $ NilC; fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *) let (* FIXME proper name context!? *) val x = Free (singleton (Name.variant_list (fold Term.add_free_names [p, e] [])) "x", dummyT); val e = if opti then single e else e; val case1 = Syntax.const \<^syntax_const>\_case1\ $ p $ e; val case2 = Syntax.const \<^syntax_const>\_case1\ $ dummyC $ NilC; val cs = Syntax.const \<^syntax_const>\_case2\ $ case1 $ case2; in Syntax_Trans.abs_tr [x, Case_Translation.case_tr false ctxt [x, cs]] end; fun pair_pat_tr (x as Free _) e = Syntax_Trans.abs_tr [x, e] | pair_pat_tr (_ $ p1 $ p2) e = Syntax.const \<^const_syntax>\case_prod\ $ pair_pat_tr p1 (pair_pat_tr p2 e) | pair_pat_tr dummy e = Syntax_Trans.abs_tr [Syntax.const "_idtdummy", e] fun pair_pat ctxt (Const (\<^const_syntax>\Pair\,_) $ s $ t) = pair_pat ctxt s andalso pair_pat ctxt t | pair_pat ctxt (Free (s,_)) = let val thy = Proof_Context.theory_of ctxt; val s' = Proof_Context.intern_const ctxt s; in not (Sign.declared_const thy s') end | pair_pat _ t = (t = dummyC); fun abs_tr ctxt p e opti = let val p = Term_Position.strip_positions p in if pair_pat ctxt p then (pair_pat_tr p e, true) else (pat_tr ctxt p e opti, false) end fun lc_tr ctxt [e, Const (\<^syntax_const>\_lc_test\, _) $ b, qs] = let val res = (case qs of Const (\<^syntax_const>\_lc_end\, _) => single e | Const (\<^syntax_const>\_lc_quals\, _) $ q $ qs => lc_tr ctxt [e, q, qs]); in IfC $ b $ res $ NilC end | lc_tr ctxt [e, Const (\<^syntax_const>\_lc_gen\, _) $ p $ es, Const(\<^syntax_const>\_lc_end\, _)] = (case abs_tr ctxt p e true of (f, true) => mapC $ f $ es | (f, false) => concatC $ (mapC $ f $ es)) | lc_tr ctxt [e, Const (\<^syntax_const>\_lc_gen\, _) $ p $ es, Const (\<^syntax_const>\_lc_quals\, _) $ q $ qs] = let val e' = lc_tr ctxt [e, q, qs]; in concatC $ (mapC $ (fst (abs_tr ctxt p e' false)) $ es) end; in [(\<^syntax_const>\_listcompr\, lc_tr)] end \ ML_val \ let val read = Syntax.read_term \<^context> o Syntax.implode_input; fun check s1 s2 = read s1 aconv read s2 orelse error ("Check failed: " ^ quote (#1 (Input.source_content s1)) ^ Position.here_list [Input.pos_of s1, Input.pos_of s2]); in check \[(x,y,z). b]\ \if b then [(x, y, z)] else []\; check \[(x,y,z). (x,_,y)\xs]\ \map (\(x,_,y). (x, y, z)) xs\; check \[e x y. (x,_)\xs, y\ys]\ \concat (map (\(x,_). map (\y. e x y) ys) xs)\; check \[(x,y,z). xb]\ \if x < a then if b < x then [(x, y, z)] else [] else []\; check \[(x,y,z). x\xs, x>b]\ \concat (map (\x. if b < x then [(x, y, z)] else []) xs)\; check \[(x,y,z). xxs]\ \if x < a then map (\x. (x, y, z)) xs else []\; check \[(x,y). Cons True x \ xs]\ \concat (map (\xa. case xa of [] \ [] | True # x \ [(x, y)] | False # x \ []) xs)\; check \[(x,y,z). Cons x [] \ xs]\ \concat (map (\xa. case xa of [] \ [] | [x] \ [(x, y, z)] | x # aa # lista \ []) xs)\; check \[(x,y,z). xb, x=d]\ \if x < a then if b < x then if x = d then [(x, y, z)] else [] else [] else []\; check \[(x,y,z). xb, y\ys]\ \if x < a then if b < x then map (\y. (x, y, z)) ys else [] else []\; check \[(x,y,z). xxs,y>b]\ \if x < a then concat (map (\(_,x). if b < y then [(x, y, z)] else []) xs) else []\; check \[(x,y,z). xxs, y\ys]\ \if x < a then concat (map (\x. map (\y. (x, y, z)) ys) xs) else []\; check \[(x,y,z). x\xs, x>b, y \concat (map (\x. if b < x then if y < a then [(x, y, z)] else [] else []) xs)\; check \[(x,y,z). x\xs, x>b, y\ys]\ \concat (map (\x. if b < x then map (\y. (x, y, z)) ys else []) xs)\; check \[(x,y,z). x\xs, (y,_)\ys,y>x]\ \concat (map (\x. concat (map (\(y,_). if x < y then [(x, y, z)] else []) ys)) xs)\; check \[(x,y,z). x\xs, y\ys,z\zs]\ \concat (map (\x. concat (map (\y. map (\z. (x, y, z)) zs) ys)) xs)\ end; \ ML \ (* Simproc for rewriting list comprehensions applied to List.set to set comprehension. *) signature LIST_TO_SET_COMPREHENSION = sig val simproc : Proof.context -> cterm -> thm option end structure List_to_Set_Comprehension : LIST_TO_SET_COMPREHENSION = struct (* conversion *) fun all_exists_conv cv ctxt ct = (case Thm.term_of ct of Const (\<^const_name>\Ex\, _) $ Abs _ => Conv.arg_conv (Conv.abs_conv (all_exists_conv cv o #2) ctxt) ct | _ => cv ctxt ct) fun all_but_last_exists_conv cv ctxt ct = (case Thm.term_of ct of Const (\<^const_name>\Ex\, _) $ Abs (_, _, Const (\<^const_name>\Ex\, _) $ _) => Conv.arg_conv (Conv.abs_conv (all_but_last_exists_conv cv o #2) ctxt) ct | _ => cv ctxt ct) fun Collect_conv cv ctxt ct = (case Thm.term_of ct of Const (\<^const_name>\Collect\, _) $ Abs _ => Conv.arg_conv (Conv.abs_conv cv ctxt) ct | _ => raise CTERM ("Collect_conv", [ct])) fun rewr_conv' th = Conv.rewr_conv (mk_meta_eq th) fun conjunct_assoc_conv ct = Conv.try_conv (rewr_conv' @{thm conj_assoc} then_conv HOLogic.conj_conv Conv.all_conv conjunct_assoc_conv) ct fun right_hand_set_comprehension_conv conv ctxt = HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv (Collect_conv (all_exists_conv conv o #2) ctxt)) (* term abstraction of list comprehension patterns *) datatype termlets = If | Case of typ * int local val set_Nil_I = @{lemma "set [] = {x. False}" by (simp add: empty_def [symmetric])} val set_singleton = @{lemma "set [a] = {x. x = a}" by simp} val inst_Collect_mem_eq = @{lemma "set A = {x. x \ set A}" by simp} val del_refl_eq = @{lemma "(t = t \ P) \ P" by simp} fun mk_set T = Const (\<^const_name>\set\, HOLogic.listT T --> HOLogic.mk_setT T) fun dest_set (Const (\<^const_name>\set\, _) $ xs) = xs fun dest_singleton_list (Const (\<^const_name>\Cons\, _) $ t $ (Const (\<^const_name>\Nil\, _))) = t | dest_singleton_list t = raise TERM ("dest_singleton_list", [t]) (*We check that one case returns a singleton list and all other cases return [], and return the index of the one singleton list case.*) fun possible_index_of_singleton_case cases = let fun check (i, case_t) s = (case strip_abs_body case_t of (Const (\<^const_name>\Nil\, _)) => s | _ => (case s of SOME NONE => SOME (SOME i) | _ => NONE)) in fold_index check cases (SOME NONE) |> the_default NONE end (*returns condition continuing term option*) fun dest_if (Const (\<^const_name>\If\, _) $ cond $ then_t $ Const (\<^const_name>\Nil\, _)) = SOME (cond, then_t) | dest_if _ = NONE (*returns (case_expr type index chosen_case constr_name) option*) fun dest_case ctxt case_term = let val (case_const, args) = strip_comb case_term in (case try dest_Const case_const of SOME (c, T) => (case Ctr_Sugar.ctr_sugar_of_case ctxt c of SOME {ctrs, ...} => (case possible_index_of_singleton_case (fst (split_last args)) of SOME i => let val constr_names = map (fst o dest_Const) ctrs val (Ts, _) = strip_type T val T' = List.last Ts in SOME (List.last args, T', i, nth args i, nth constr_names i) end | NONE => NONE) | NONE => NONE) | NONE => NONE) end fun tac ctxt [] = resolve_tac ctxt [set_singleton] 1 ORELSE resolve_tac ctxt [inst_Collect_mem_eq] 1 | tac ctxt (If :: cont) = Splitter.split_tac ctxt @{thms if_split} 1 THEN resolve_tac ctxt @{thms conjI} 1 THEN resolve_tac ctxt @{thms impI} 1 THEN Subgoal.FOCUS (fn {prems, context = ctxt', ...} => CONVERSION (right_hand_set_comprehension_conv (K (HOLogic.conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_TrueI})) Conv.all_conv then_conv rewr_conv' @{lemma "(True \ P) = P" by simp})) ctxt') 1) ctxt 1 THEN tac ctxt cont THEN resolve_tac ctxt @{thms impI} 1 THEN Subgoal.FOCUS (fn {prems, context = ctxt', ...} => CONVERSION (right_hand_set_comprehension_conv (K (HOLogic.conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_FalseI})) Conv.all_conv then_conv rewr_conv' @{lemma "(False \ P) = False" by simp})) ctxt') 1) ctxt 1 THEN resolve_tac ctxt [set_Nil_I] 1 | tac ctxt (Case (T, i) :: cont) = let val SOME {injects, distincts, case_thms, split, ...} = Ctr_Sugar.ctr_sugar_of ctxt (fst (dest_Type T)) in (* do case distinction *) Splitter.split_tac ctxt [split] 1 THEN EVERY (map_index (fn (i', _) => (if i' < length case_thms - 1 then resolve_tac ctxt @{thms conjI} 1 else all_tac) THEN REPEAT_DETERM (resolve_tac ctxt @{thms allI} 1) THEN resolve_tac ctxt @{thms impI} 1 THEN (if i' = i then (* continue recursively *) Subgoal.FOCUS (fn {prems, context = ctxt', ...} => CONVERSION (Thm.eta_conversion then_conv right_hand_set_comprehension_conv (K ((HOLogic.conj_conv (HOLogic.eq_conv Conv.all_conv (rewr_conv' (List.last prems)) then_conv (Conv.try_conv (Conv.rewrs_conv (map mk_meta_eq injects)))) Conv.all_conv) then_conv (Conv.try_conv (Conv.rewr_conv del_refl_eq)) then_conv conjunct_assoc_conv)) ctxt' then_conv (HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv (Collect_conv (fn (_, ctxt'') => Conv.repeat_conv (all_but_last_exists_conv (K (rewr_conv' @{lemma "(\x. x = t \ P x) = P t" by simp})) ctxt'')) ctxt')))) 1) ctxt 1 THEN tac ctxt cont else Subgoal.FOCUS (fn {prems, context = ctxt', ...} => CONVERSION (right_hand_set_comprehension_conv (K (HOLogic.conj_conv ((HOLogic.eq_conv Conv.all_conv (rewr_conv' (List.last prems))) then_conv (Conv.rewrs_conv (map (fn th => th RS @{thm Eq_FalseI}) distincts))) Conv.all_conv then_conv (rewr_conv' @{lemma "(False \ P) = False" by simp}))) ctxt' then_conv HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv (Collect_conv (fn (_, ctxt'') => Conv.repeat_conv (Conv.bottom_conv (K (rewr_conv' @{lemma "(\x. P) = P" by simp})) ctxt'')) ctxt'))) 1) ctxt 1 THEN resolve_tac ctxt [set_Nil_I] 1)) case_thms) end in fun simproc ctxt redex = let fun make_inner_eqs bound_vs Tis eqs t = (case dest_case ctxt t of SOME (x, T, i, cont, constr_name) => let val (vs, body) = strip_abs (Envir.eta_long (map snd bound_vs) cont) val x' = incr_boundvars (length vs) x val eqs' = map (incr_boundvars (length vs)) eqs val constr_t = list_comb (Const (constr_name, map snd vs ---> T), map Bound (((length vs) - 1) downto 0)) val constr_eq = Const (\<^const_name>\HOL.eq\, T --> T --> \<^typ>\bool\) $ constr_t $ x' in make_inner_eqs (rev vs @ bound_vs) (Case (T, i) :: Tis) (constr_eq :: eqs') body end | NONE => (case dest_if t of SOME (condition, cont) => make_inner_eqs bound_vs (If :: Tis) (condition :: eqs) cont | NONE => if null eqs then NONE (*no rewriting, nothing to be done*) else let val Type (\<^type_name>\list\, [rT]) = fastype_of1 (map snd bound_vs, t) val pat_eq = (case try dest_singleton_list t of SOME t' => Const (\<^const_name>\HOL.eq\, rT --> rT --> \<^typ>\bool\) $ Bound (length bound_vs) $ t' | NONE => Const (\<^const_name>\Set.member\, rT --> HOLogic.mk_setT rT --> \<^typ>\bool\) $ Bound (length bound_vs) $ (mk_set rT $ t)) val reverse_bounds = curry subst_bounds ((map Bound ((length bound_vs - 1) downto 0)) @ [Bound (length bound_vs)]) val eqs' = map reverse_bounds eqs val pat_eq' = reverse_bounds pat_eq val inner_t = fold (fn (_, T) => fn t => HOLogic.exists_const T $ absdummy T t) (rev bound_vs) (fold (curry HOLogic.mk_conj) eqs' pat_eq') val lhs = Thm.term_of redex val rhs = HOLogic.mk_Collect ("x", rT, inner_t) val rewrite_rule_t = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) in SOME ((Goal.prove ctxt [] [] rewrite_rule_t (fn {context = ctxt', ...} => tac ctxt' (rev Tis))) RS @{thm eq_reflection}) end)) in make_inner_eqs [] [] [] (dest_set (Thm.term_of redex)) end end end \ simproc_setup list_to_set_comprehension ("set xs") = \K List_to_Set_Comprehension.simproc\ code_datatype set coset hide_const (open) coset subsubsection \\<^const>\Nil\ and \<^const>\Cons\\ lemma not_Cons_self [simp]: "xs \ x # xs" by (induct xs) auto lemma not_Cons_self2 [simp]: "x # xs \ xs" by (rule not_Cons_self [symmetric]) lemma neq_Nil_conv: "(xs \ []) = (\y ys. xs = y # ys)" by (induct xs) auto lemma tl_Nil: "tl xs = [] \ xs = [] \ (\x. xs = [x])" by (cases xs) auto lemma Nil_tl: "[] = tl xs \ xs = [] \ (\x. xs = [x])" by (cases xs) auto lemma length_induct: "(\xs. \ys. length ys < length xs \ P ys \ P xs) \ P xs" by (fact measure_induct) lemma induct_list012: "\P []; \x. P [x]; \x y zs. \ P zs; P (y # zs) \ \ P (x # y # zs)\ \ P xs" by induction_schema (pat_completeness, lexicographic_order) lemma list_nonempty_induct [consumes 1, case_names single cons]: "\ xs \ []; \x. P [x]; \x xs. xs \ [] \ P xs \ P (x # xs)\ \ P xs" by(induction xs rule: induct_list012) auto lemma inj_split_Cons: "inj_on (\(xs, n). n#xs) X" by (auto intro!: inj_onI) lemma inj_on_Cons1 [simp]: "inj_on ((#) x) A" by(simp add: inj_on_def) subsubsection \\<^const>\length\\ text \ Needs to come before \@\ because of theorem \append_eq_append_conv\. \ lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" by (induct xs) auto lemma length_map [simp]: "length (map f xs) = length xs" by (induct xs) auto lemma length_rev [simp]: "length (rev xs) = length xs" by (induct xs) auto lemma length_tl [simp]: "length (tl xs) = length xs - 1" by (cases xs) auto lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" by (induct xs) auto lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \ [])" by (induct xs) auto lemma length_pos_if_in_set: "x \ set xs \ length xs > 0" by auto lemma length_Suc_conv: "(length xs = Suc n) = (\y ys. xs = y # ys \ length ys = n)" by (induct xs) auto lemma Suc_length_conv: "(Suc n = length xs) = (\y ys. xs = y # ys \ length ys = n)" by (induct xs; simp; blast) lemma Suc_le_length_iff: "(Suc n \ length xs) = (\x ys. xs = x # ys \ n \ length ys)" by (metis Suc_le_D[of n] Suc_le_mono[of n] Suc_length_conv[of _ xs]) lemma impossible_Cons: "length xs \ length ys \ xs = x # ys = False" by (induct xs) auto lemma list_induct2 [consumes 1, case_names Nil Cons]: "length xs = length ys \ P [] [] \ (\x xs y ys. length xs = length ys \ P xs ys \ P (x#xs) (y#ys)) \ P xs ys" proof (induct xs arbitrary: ys) case (Cons x xs ys) then show ?case by (cases ys) simp_all qed simp lemma list_induct3 [consumes 2, case_names Nil Cons]: "length xs = length ys \ length ys = length zs \ P [] [] [] \ (\x xs y ys z zs. length xs = length ys \ length ys = length zs \ P xs ys zs \ P (x#xs) (y#ys) (z#zs)) \ P xs ys zs" proof (induct xs arbitrary: ys zs) case Nil then show ?case by simp next case (Cons x xs ys zs) then show ?case by (cases ys, simp_all) (cases zs, simp_all) qed lemma list_induct4 [consumes 3, case_names Nil Cons]: "length xs = length ys \ length ys = length zs \ length zs = length ws \ P [] [] [] [] \ (\x xs y ys z zs w ws. length xs = length ys \ length ys = length zs \ length zs = length ws \ P xs ys zs ws \ P (x#xs) (y#ys) (z#zs) (w#ws)) \ P xs ys zs ws" proof (induct xs arbitrary: ys zs ws) case Nil then show ?case by simp next case (Cons x xs ys zs ws) then show ?case by ((cases ys, simp_all), (cases zs,simp_all)) (cases ws, simp_all) qed lemma list_induct2': "\ P [] []; \x xs. P (x#xs) []; \y ys. P [] (y#ys); \x xs y ys. P xs ys \ P (x#xs) (y#ys) \ \ P xs ys" by (induct xs arbitrary: ys) (case_tac x, auto)+ lemma list_all2_iff: "list_all2 P xs ys \ length xs = length ys \ (\(x, y) \ set (zip xs ys). P x y)" by (induct xs ys rule: list_induct2') auto lemma neq_if_length_neq: "length xs \ length ys \ (xs = ys) == False" by (rule Eq_FalseI) auto simproc_setup list_neq ("(xs::'a list) = ys") = \ (* Reduces xs=ys to False if xs and ys cannot be of the same length. This is the case if the atomic sublists of one are a submultiset of those of the other list and there are fewer Cons's in one than the other. *) let fun len (Const(\<^const_name>\Nil\,_)) acc = acc | len (Const(\<^const_name>\Cons\,_) $ _ $ xs) (ts,n) = len xs (ts,n+1) | len (Const(\<^const_name>\append\,_) $ xs $ ys) acc = len xs (len ys acc) | len (Const(\<^const_name>\rev\,_) $ xs) acc = len xs acc | len (Const(\<^const_name>\map\,_) $ _ $ xs) acc = len xs acc | len t (ts,n) = (t::ts,n); val ss = simpset_of \<^context>; fun list_neq ctxt ct = let val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct; val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0); fun prove_neq() = let val Type(_,listT::_) = eqT; val size = HOLogic.size_const listT; val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs); val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len); val thm = Goal.prove ctxt [] [] neq_len (K (simp_tac (put_simpset ss ctxt) 1)); in SOME (thm RS @{thm neq_if_length_neq}) end in if m < n andalso submultiset (op aconv) (ls,rs) orelse n < m andalso submultiset (op aconv) (rs,ls) then prove_neq() else NONE end; in K list_neq end \ subsubsection \\@\ -- append\ global_interpretation append: monoid append Nil proof fix xs ys zs :: "'a list" show "(xs @ ys) @ zs = xs @ (ys @ zs)" by (induct xs) simp_all show "xs @ [] = xs" by (induct xs) simp_all qed simp lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" by (fact append.assoc) lemma append_Nil2: "xs @ [] = xs" by (fact append.right_neutral) lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \ ys = [])" by (induct xs) auto lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \ ys = [])" by (induct xs) auto lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" by (induct xs) auto lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" by (induct xs) auto lemma append_eq_append_conv [simp]: "length xs = length ys \ length us = length vs \ (xs@us = ys@vs) = (xs=ys \ us=vs)" by (induct xs arbitrary: ys; case_tac ys; force) lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) = (\us. xs = zs @ us \ us @ ys = ts \ xs @ us = zs \ ys = us @ ts)" proof (induct xs arbitrary: ys zs ts) case (Cons x xs) then show ?case by (cases zs) auto qed fastforce lemma same_append_eq [iff, induct_simp]: "(xs @ ys = xs @ zs) = (ys = zs)" by simp lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \ x = y)" by simp lemma append_same_eq [iff, induct_simp]: "(ys @ xs = zs @ xs) = (ys = zs)" by simp lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" using append_same_eq [of _ _ "[]"] by auto lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" using append_same_eq [of "[]"] by auto lemma hd_Cons_tl: "xs \ [] \ hd xs # tl xs = xs" by (fact list.collapse) lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" by (induct xs) auto lemma hd_append2 [simp]: "xs \ [] \ hd (xs @ ys) = hd xs" by (simp add: hd_append split: list.split) lemma tl_append: "tl (xs @ ys) = (case xs of [] \ tl ys | z#zs \ zs @ ys)" by (simp split: list.split) lemma tl_append2 [simp]: "xs \ [] \ tl (xs @ ys) = tl xs @ ys" by (simp add: tl_append split: list.split) lemma Cons_eq_append_conv: "x#xs = ys@zs = (ys = [] \ x#xs = zs \ (\ys'. x#ys' = ys \ xs = ys'@zs))" by(cases ys) auto lemma append_eq_Cons_conv: "(ys@zs = x#xs) = (ys = [] \ zs = x#xs \ (\ys'. ys = x#ys' \ ys'@zs = xs))" by(cases ys) auto lemma longest_common_prefix: "\ps xs' ys'. xs = ps @ xs' \ ys = ps @ ys' \ (xs' = [] \ ys' = [] \ hd xs' \ hd ys')" by (induct xs ys rule: list_induct2') (blast, blast, blast, metis (no_types, hide_lams) append_Cons append_Nil list.sel(1)) text \Trivial rules for solving \@\-equations automatically.\ lemma eq_Nil_appendI: "xs = ys \ xs = [] @ ys" by simp lemma Cons_eq_appendI: "\x # xs1 = ys; xs = xs1 @ zs\ \ x # xs = ys @ zs" by auto lemma append_eq_appendI: "\xs @ xs1 = zs; ys = xs1 @ us\ \ xs @ ys = zs @ us" by auto text \ Simplification procedure for all list equalities. Currently only tries to rearrange \@\ to see if - both lists end in a singleton list, - or both lists end in the same list. \ simproc_setup list_eq ("(xs::'a list) = ys") = \ let fun last (cons as Const (\<^const_name>\Cons\, _) $ _ $ xs) = (case xs of Const (\<^const_name>\Nil\, _) => cons | _ => last xs) | last (Const(\<^const_name>\append\,_) $ _ $ ys) = last ys | last t = t; fun list1 (Const(\<^const_name>\Cons\,_) $ _ $ Const(\<^const_name>\Nil\,_)) = true | list1 _ = false; fun butlast ((cons as Const(\<^const_name>\Cons\,_) $ x) $ xs) = (case xs of Const (\<^const_name>\Nil\, _) => xs | _ => cons $ butlast xs) | butlast ((app as Const (\<^const_name>\append\, _) $ xs) $ ys) = app $ butlast ys | butlast xs = Const(\<^const_name>\Nil\, fastype_of xs); val rearr_ss = simpset_of (put_simpset HOL_basic_ss \<^context> addsimps [@{thm append_assoc}, @{thm append_Nil}, @{thm append_Cons}]); fun list_eq ctxt (F as (eq as Const(_,eqT)) $ lhs $ rhs) = let val lastl = last lhs and lastr = last rhs; fun rearr conv = let val lhs1 = butlast lhs and rhs1 = butlast rhs; val Type(_,listT::_) = eqT val appT = [listT,listT] ---> listT val app = Const(\<^const_name>\append\,appT) val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2)); val thm = Goal.prove ctxt [] [] eq (K (simp_tac (put_simpset rearr_ss ctxt) 1)); in SOME ((conv RS (thm RS trans)) RS eq_reflection) end; in if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv} else if lastl aconv lastr then rearr @{thm append_same_eq} else NONE end; in fn _ => fn ctxt => fn ct => list_eq ctxt (Thm.term_of ct) end \ subsubsection \\<^const>\map\\ lemma hd_map: "xs \ [] \ hd (map f xs) = f (hd xs)" by (cases xs) simp_all lemma map_tl: "map f (tl xs) = tl (map f xs)" by (cases xs) simp_all lemma map_ext: "(\x. x \ set xs \ f x = g x) \ map f xs = map g xs" by (induct xs) simp_all lemma map_ident [simp]: "map (\x. x) = (\xs. xs)" by (rule ext, induct_tac xs) auto lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" by (induct xs) auto lemma map_map [simp]: "map f (map g xs) = map (f \ g) xs" by (induct xs) auto lemma map_comp_map[simp]: "((map f) \ (map g)) = map(f \ g)" by (rule ext) simp lemma rev_map: "rev (map f xs) = map f (rev xs)" by (induct xs) auto lemma map_eq_conv[simp]: "(map f xs = map g xs) = (\x \ set xs. f x = g x)" by (induct xs) auto lemma map_cong [fundef_cong]: "xs = ys \ (\x. x \ set ys \ f x = g x) \ map f xs = map g ys" by simp lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" by (cases xs) auto lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" by (cases xs) auto lemma map_eq_Cons_conv: "(map f xs = y#ys) = (\z zs. xs = z#zs \ f z = y \ map f zs = ys)" by (cases xs) auto lemma Cons_eq_map_conv: "(x#xs = map f ys) = (\z zs. ys = z#zs \ x = f z \ xs = map f zs)" by (cases ys) auto lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1] lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1] declare map_eq_Cons_D [dest!] Cons_eq_map_D [dest!] lemma ex_map_conv: "(\xs. ys = map f xs) = (\y \ set ys. \x. y = f x)" by(induct ys, auto simp add: Cons_eq_map_conv) lemma map_eq_imp_length_eq: assumes "map f xs = map g ys" shows "length xs = length ys" using assms proof (induct ys arbitrary: xs) case Nil then show ?case by simp next case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto from Cons xs have "map f zs = map g ys" by simp with Cons have "length zs = length ys" by blast with xs show ?case by simp qed lemma map_inj_on: assumes map: "map f xs = map f ys" and inj: "inj_on f (set xs Un set ys)" shows "xs = ys" using map_eq_imp_length_eq [OF map] assms proof (induct rule: list_induct2) case (Cons x xs y ys) then show ?case by (auto intro: sym) qed auto lemma inj_on_map_eq_map: "inj_on f (set xs Un set ys) \ (map f xs = map f ys) = (xs = ys)" by(blast dest:map_inj_on) lemma map_injective: "map f xs = map f ys \ inj f \ xs = ys" by (induct ys arbitrary: xs) (auto dest!:injD) lemma inj_map_eq_map[simp]: "inj f \ (map f xs = map f ys) = (xs = ys)" by(blast dest:map_injective) lemma inj_mapI: "inj f \ inj (map f)" by (iprover dest: map_injective injD intro: inj_onI) lemma inj_mapD: "inj (map f) \ inj f" by (metis (no_types, hide_lams) injI list.inject list.simps(9) the_inv_f_f) lemma inj_map[iff]: "inj (map f) = inj f" by (blast dest: inj_mapD intro: inj_mapI) lemma inj_on_mapI: "inj_on f (\(set ` A)) \ inj_on (map f) A" by (blast intro:inj_onI dest:inj_onD map_inj_on) lemma map_idI: "(\x. x \ set xs \ f x = x) \ map f xs = xs" by (induct xs, auto) lemma map_fun_upd [simp]: "y \ set xs \ map (f(y:=v)) xs = map f xs" by (induct xs) auto lemma map_fst_zip[simp]: "length xs = length ys \ map fst (zip xs ys) = xs" by (induct rule:list_induct2, simp_all) lemma map_snd_zip[simp]: "length xs = length ys \ map snd (zip xs ys) = ys" by (induct rule:list_induct2, simp_all) lemma map_fst_zip_take: "map fst (zip xs ys) = take (min (length xs) (length ys)) xs" by (induct xs ys rule: list_induct2') simp_all lemma map_snd_zip_take: "map snd (zip xs ys) = take (min (length xs) (length ys)) ys" by (induct xs ys rule: list_induct2') simp_all lemma map2_map_map: "map2 h (map f xs) (map g xs) = map (\x. h (f x) (g x)) xs" by (induction xs) (auto) functor map: map by (simp_all add: id_def) declare map.id [simp] subsubsection \\<^const>\rev\\ lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" by (induct xs) auto lemma rev_rev_ident [simp]: "rev (rev xs) = xs" by (induct xs) auto lemma rev_swap: "(rev xs = ys) = (xs = rev ys)" by auto lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" by (induct xs) auto lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" by (induct xs) auto lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])" by (cases xs) auto lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])" by (cases xs) auto lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)" proof (induct xs arbitrary: ys) case Nil then show ?case by force next case Cons then show ?case by (cases ys) auto qed lemma inj_on_rev[iff]: "inj_on rev A" by(simp add:inj_on_def) lemma rev_induct [case_names Nil snoc]: assumes "P []" and "\x xs. P xs \ P (xs @ [x])" shows "P xs" proof - have "P (rev (rev xs))" by (rule_tac list = "rev xs" in list.induct, simp_all add: assms) then show ?thesis by simp qed lemma rev_exhaust [case_names Nil snoc]: "(xs = [] \ P) \(\ys y. xs = ys @ [y] \ P) \ P" by (induct xs rule: rev_induct) auto lemmas rev_cases = rev_exhaust lemma rev_nonempty_induct [consumes 1, case_names single snoc]: assumes "xs \ []" and single: "\x. P [x]" and snoc': "\x xs. xs \ [] \ P xs \ P (xs@[x])" shows "P xs" using \xs \ []\ proof (induct xs rule: rev_induct) case (snoc x xs) then show ?case proof (cases xs) case Nil thus ?thesis by (simp add: single) next case Cons with snoc show ?thesis by (fastforce intro!: snoc') qed qed simp lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])" by(rule rev_cases[of xs]) auto subsubsection \\<^const>\set\\ declare list.set[code_post] \ \pretty output\ lemma finite_set [iff]: "finite (set xs)" by (induct xs) auto lemma set_append [simp]: "set (xs @ ys) = (set xs \ set ys)" by (induct xs) auto lemma hd_in_set[simp]: "xs \ [] \ hd xs \ set xs" by(cases xs) auto lemma set_subset_Cons: "set xs \ set (x # xs)" by auto lemma set_ConsD: "y \ set (x # xs) \ y=x \ y \ set xs" by auto lemma set_empty [iff]: "(set xs = {}) = (xs = [])" by (induct xs) auto lemma set_empty2[iff]: "({} = set xs) = (xs = [])" by(induct xs) auto lemma set_rev [simp]: "set (rev xs) = set xs" by (induct xs) auto lemma set_map [simp]: "set (map f xs) = f`(set xs)" by (induct xs) auto lemma set_filter [simp]: "set (filter P xs) = {x. x \ set xs \ P x}" by (induct xs) auto lemma set_upt [simp]: "set[i.. set xs \ \ys zs. xs = ys @ x # zs" proof (induct xs) case Nil thus ?case by simp next case Cons thus ?case by (auto intro: Cons_eq_appendI) qed lemma in_set_conv_decomp: "x \ set xs \ (\ys zs. xs = ys @ x # zs)" by (auto elim: split_list) lemma split_list_first: "x \ set xs \ \ys zs. xs = ys @ x # zs \ x \ set ys" proof (induct xs) case Nil thus ?case by simp next case (Cons a xs) show ?case proof cases assume "x = a" thus ?case using Cons by fastforce next assume "x \ a" thus ?case using Cons by(fastforce intro!: Cons_eq_appendI) qed qed lemma in_set_conv_decomp_first: "(x \ set xs) = (\ys zs. xs = ys @ x # zs \ x \ set ys)" by (auto dest!: split_list_first) lemma split_list_last: "x \ set xs \ \ys zs. xs = ys @ x # zs \ x \ set zs" proof (induct xs rule: rev_induct) case Nil thus ?case by simp next case (snoc a xs) show ?case proof cases assume "x = a" thus ?case using snoc by (auto intro!: exI) next assume "x \ a" thus ?case using snoc by fastforce qed qed lemma in_set_conv_decomp_last: "(x \ set xs) = (\ys zs. xs = ys @ x # zs \ x \ set zs)" by (auto dest!: split_list_last) lemma split_list_prop: "\x \ set xs. P x \ \ys x zs. xs = ys @ x # zs \ P x" proof (induct xs) case Nil thus ?case by simp next case Cons thus ?case by(simp add:Bex_def)(metis append_Cons append.simps(1)) qed lemma split_list_propE: assumes "\x \ set xs. P x" obtains ys x zs where "xs = ys @ x # zs" and "P x" using split_list_prop [OF assms] by blast lemma split_list_first_prop: "\x \ set xs. P x \ \ys x zs. xs = ys@x#zs \ P x \ (\y \ set ys. \ P y)" proof (induct xs) case Nil thus ?case by simp next case (Cons x xs) show ?case proof cases assume "P x" hence "x # xs = [] @ x # xs \ P x \ (\y\set []. \ P y)" by simp thus ?thesis by fast next assume "\ P x" hence "\x\set xs. P x" using Cons(2) by simp thus ?thesis using \\ P x\ Cons(1) by (metis append_Cons set_ConsD) qed qed lemma split_list_first_propE: assumes "\x \ set xs. P x" obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\y \ set ys. \ P y" using split_list_first_prop [OF assms] by blast lemma split_list_first_prop_iff: "(\x \ set xs. P x) \ (\ys x zs. xs = ys@x#zs \ P x \ (\y \ set ys. \ P y))" by (rule, erule split_list_first_prop) auto lemma split_list_last_prop: "\x \ set xs. P x \ \ys x zs. xs = ys@x#zs \ P x \ (\z \ set zs. \ P z)" proof(induct xs rule:rev_induct) case Nil thus ?case by simp next case (snoc x xs) show ?case proof cases assume "P x" thus ?thesis by (auto intro!: exI) next assume "\ P x" hence "\x\set xs. P x" using snoc(2) by simp thus ?thesis using \\ P x\ snoc(1) by fastforce qed qed lemma split_list_last_propE: assumes "\x \ set xs. P x" obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\z \ set zs. \ P z" using split_list_last_prop [OF assms] by blast lemma split_list_last_prop_iff: "(\x \ set xs. P x) \ (\ys x zs. xs = ys@x#zs \ P x \ (\z \ set zs. \ P z))" by rule (erule split_list_last_prop, auto) lemma finite_list: "finite A \ \xs. set xs = A" by (erule finite_induct) (auto simp add: list.set(2)[symmetric] simp del: list.set(2)) lemma card_length: "card (set xs) \ length xs" by (induct xs) (auto simp add: card_insert_if) lemma set_minus_filter_out: "set xs - {y} = set (filter (\x. \ (x = y)) xs)" by (induct xs) auto lemma append_Cons_eq_iff: "\ x \ set xs; x \ set ys \ \ xs @ x # ys = xs' @ x # ys' \ (xs = xs' \ ys = ys')" by(auto simp: append_eq_Cons_conv Cons_eq_append_conv append_eq_append_conv2) subsubsection \\<^const>\filter\\ lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" by (induct xs) auto lemma rev_filter: "rev (filter P xs) = filter P (rev xs)" by (induct xs) simp_all lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\x. Q x \ P x) xs" by (induct xs) auto lemma length_filter_le [simp]: "length (filter P xs) \ length xs" by (induct xs) (auto simp add: le_SucI) lemma sum_length_filter_compl: "length(filter P xs) + length(filter (\x. \P x) xs) = length xs" by(induct xs) simp_all lemma filter_True [simp]: "\x \ set xs. P x \ filter P xs = xs" by (induct xs) auto lemma filter_False [simp]: "\x \ set xs. \ P x \ filter P xs = []" by (induct xs) auto lemma filter_empty_conv: "(filter P xs = []) = (\x\set xs. \ P x)" by (induct xs) simp_all lemma filter_id_conv: "(filter P xs = xs) = (\x\set xs. P x)" proof (induct xs) case (Cons x xs) then show ?case using length_filter_le by (simp add: impossible_Cons) qed auto lemma filter_map: "filter P (map f xs) = map f (filter (P \ f) xs)" by (induct xs) simp_all lemma length_filter_map[simp]: "length (filter P (map f xs)) = length(filter (P \ f) xs)" by (simp add:filter_map) lemma filter_is_subset [simp]: "set (filter P xs) \ set xs" by auto lemma length_filter_less: "\ x \ set xs; \ P x \ \ length(filter P xs) < length xs" proof (induct xs) case Nil thus ?case by simp next case (Cons x xs) thus ?case using Suc_le_eq by fastforce qed lemma length_filter_conv_card: "length(filter p xs) = card{i. i < length xs \ p(xs!i)}" proof (induct xs) case Nil thus ?case by simp next case (Cons x xs) let ?S = "{i. i < length xs \ p(xs!i)}" have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite) show ?case (is "?l = card ?S'") proof (cases) assume "p x" hence eq: "?S' = insert 0 (Suc ` ?S)" by(auto simp: image_def split:nat.split dest:gr0_implies_Suc) have "length (filter p (x # xs)) = Suc(card ?S)" using Cons \p x\ by simp also have "\ = Suc(card(Suc ` ?S))" using fin by (simp add: card_image) also have "\ = card ?S'" using eq fin by (simp add:card_insert_if) finally show ?thesis . next assume "\ p x" hence eq: "?S' = Suc ` ?S" by(auto simp add: image_def split:nat.split elim:lessE) have "length (filter p (x # xs)) = card ?S" using Cons \\ p x\ by simp also have "\ = card(Suc ` ?S)" using fin by (simp add: card_image) also have "\ = card ?S'" using eq fin by (simp add:card_insert_if) finally show ?thesis . qed qed lemma Cons_eq_filterD: "x#xs = filter P ys \ \us vs. ys = us @ x # vs \ (\u\set us. \ P u) \ P x \ xs = filter P vs" (is "_ \ \us vs. ?P ys us vs") proof(induct ys) case Nil thus ?case by simp next case (Cons y ys) show ?case (is "\x. ?Q x") proof cases assume Py: "P y" show ?thesis proof cases assume "x = y" with Py Cons.prems have "?Q []" by simp then show ?thesis .. next assume "x \ y" with Py Cons.prems show ?thesis by simp qed next assume "\ P y" with Cons obtain us vs where "?P (y#ys) (y#us) vs" by fastforce then have "?Q (y#us)" by simp then show ?thesis .. qed qed lemma filter_eq_ConsD: "filter P ys = x#xs \ \us vs. ys = us @ x # vs \ (\u\set us. \ P u) \ P x \ xs = filter P vs" by(rule Cons_eq_filterD) simp lemma filter_eq_Cons_iff: "(filter P ys = x#xs) = (\us vs. ys = us @ x # vs \ (\u\set us. \ P u) \ P x \ xs = filter P vs)" by(auto dest:filter_eq_ConsD) lemma Cons_eq_filter_iff: "(x#xs = filter P ys) = (\us vs. ys = us @ x # vs \ (\u\set us. \ P u) \ P x \ xs = filter P vs)" by(auto dest:Cons_eq_filterD) lemma inj_on_filter_key_eq: assumes "inj_on f (insert y (set xs))" shows "filter (\x. f y = f x) xs = filter (HOL.eq y) xs" using assms by (induct xs) auto lemma filter_cong[fundef_cong]: "xs = ys \ (\x. x \ set ys \ P x = Q x) \ filter P xs = filter Q ys" by (induct ys arbitrary: xs) auto subsubsection \List partitioning\ primrec partition :: "('a \ bool) \'a list \ 'a list \ 'a list" where "partition P [] = ([], [])" | "partition P (x # xs) = (let (yes, no) = partition P xs in if P x then (x # yes, no) else (yes, x # no))" lemma partition_filter1: "fst (partition P xs) = filter P xs" by (induct xs) (auto simp add: Let_def split_def) lemma partition_filter2: "snd (partition P xs) = filter (Not \ P) xs" by (induct xs) (auto simp add: Let_def split_def) lemma partition_P: assumes "partition P xs = (yes, no)" shows "(\p \ set yes. P p) \ (\p \ set no. \ P p)" proof - from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" by simp_all then show ?thesis by (simp_all add: partition_filter1 partition_filter2) qed lemma partition_set: assumes "partition P xs = (yes, no)" shows "set yes \ set no = set xs" proof - from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" by simp_all then show ?thesis by (auto simp add: partition_filter1 partition_filter2) qed lemma partition_filter_conv[simp]: "partition f xs = (filter f xs,filter (Not \ f) xs)" unfolding partition_filter2[symmetric] unfolding partition_filter1[symmetric] by simp declare partition.simps[simp del] subsubsection \\<^const>\concat\\ lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" by (induct xs) auto lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\xs \ set xss. xs = [])" by (induct xss) auto lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\xs \ set xss. xs = [])" by (induct xss) auto lemma set_concat [simp]: "set (concat xs) = (\x\set xs. set x)" by (induct xs) auto lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs" by (induct xs) auto lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" by (induct xs) auto lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" by (induct xs) auto lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" by (induct xs) auto lemma concat_eq_concat_iff: "\(x, y) \ set (zip xs ys). length x = length y \ length xs = length ys \ (concat xs = concat ys) = (xs = ys)" proof (induct xs arbitrary: ys) case (Cons x xs ys) thus ?case by (cases ys) auto qed (auto) lemma concat_injective: "concat xs = concat ys \ length xs = length ys \ \(x, y) \ set (zip xs ys). length x = length y \ xs = ys" by (simp add: concat_eq_concat_iff) lemma concat_eq_appendD: assumes "concat xss = ys @ zs" "xss \ []" shows "\xss1 xs xs' xss2. xss = xss1 @ (xs @ xs') # xss2 \ ys = concat xss1 @ xs \ zs = xs' @ concat xss2" using assms proof(induction xss arbitrary: ys) case (Cons xs xss) from Cons.prems consider us where "xs @ us = ys" "concat xss = us @ zs" | us where "xs = ys @ us" "us @ concat xss = zs" by(auto simp add: append_eq_append_conv2) then show ?case proof cases case 1 then show ?thesis using Cons.IH[OF 1(2)] by(cases xss)(auto intro: exI[where x="[]"], metis append.assoc append_Cons concat.simps(2)) qed(auto intro: exI[where x="[]"]) qed simp lemma concat_eq_append_conv: "concat xss = ys @ zs \ (if xss = [] then ys = [] \ zs = [] else \xss1 xs xs' xss2. xss = xss1 @ (xs @ xs') # xss2 \ ys = concat xss1 @ xs \ zs = xs' @ concat xss2)" by(auto dest: concat_eq_appendD) lemma hd_concat: "\xs \ []; hd xs \ []\ \ hd (concat xs) = hd (hd xs)" by (metis concat.simps(2) hd_Cons_tl hd_append2) subsubsection \\<^const>\nth\\ lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x" by auto lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n" by auto declare nth.simps [simp del] lemma nth_Cons_pos[simp]: "0 < n \ (x#xs) ! n = xs ! (n - 1)" by(auto simp: Nat.gr0_conv_Suc) lemma nth_append: "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" proof (induct xs arbitrary: n) case (Cons x xs) then show ?case using less_Suc_eq_0_disj by auto qed simp lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x" by (induct xs) auto lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n" by (induct xs) auto lemma nth_map [simp]: "n < length xs \ (map f xs)!n = f(xs!n)" proof (induct xs arbitrary: n) case (Cons x xs) then show ?case using less_Suc_eq_0_disj by auto qed simp lemma nth_tl: "n < length (tl xs) \ tl xs ! n = xs ! Suc n" by (induction xs) auto lemma hd_conv_nth: "xs \ [] \ hd xs = xs!0" by(cases xs) simp_all lemma list_eq_iff_nth_eq: "(xs = ys) = (length xs = length ys \ (\i ?R" by force show "?R \ ?L" using less_Suc_eq_0_disj by auto qed with Cons show ?case by simp qed simp lemma in_set_conv_nth: "(x \ set xs) = (\i < length xs. xs!i = x)" by(auto simp:set_conv_nth) lemma nth_equal_first_eq: assumes "x \ set xs" assumes "n \ length xs" shows "(x # xs) ! n = x \ n = 0" (is "?lhs \ ?rhs") proof assume ?lhs show ?rhs proof (rule ccontr) assume "n \ 0" then have "n > 0" by simp with \?lhs\ have "xs ! (n - 1) = x" by simp moreover from \n > 0\ \n \ length xs\ have "n - 1 < length xs" by simp ultimately have "\ix \ set xs\ in_set_conv_nth [of x xs] show False by simp qed next assume ?rhs then show ?lhs by simp qed lemma nth_non_equal_first_eq: assumes "x \ y" shows "(x # xs) ! n = y \ xs ! (n - 1) = y \ n > 0" (is "?lhs \ ?rhs") proof assume "?lhs" with assms have "n > 0" by (cases n) simp_all with \?lhs\ show ?rhs by simp next assume "?rhs" then show "?lhs" by simp qed lemma list_ball_nth: "\n < length xs; \x \ set xs. P x\ \ P(xs!n)" by (auto simp add: set_conv_nth) lemma nth_mem [simp]: "n < length xs \ xs!n \ set xs" by (auto simp add: set_conv_nth) lemma all_nth_imp_all_set: "\\i < length xs. P(xs!i); x \ set xs\ \ P x" by (auto simp add: set_conv_nth) lemma all_set_conv_all_nth: "(\x \ set xs. P x) = (\i. i < length xs \ P (xs ! i))" by (auto simp add: set_conv_nth) lemma rev_nth: "n < size xs \ rev xs ! n = xs ! (length xs - Suc n)" proof (induct xs arbitrary: n) case Nil thus ?case by simp next case (Cons x xs) hence n: "n < Suc (length xs)" by simp moreover { assume "n < length xs" with n obtain n' where n': "length xs - n = Suc n'" by (cases "length xs - n", auto) moreover from n' have "length xs - Suc n = n'" by simp ultimately have "xs ! (length xs - Suc n) = (x # xs) ! (length xs - n)" by simp } ultimately show ?case by (clarsimp simp add: Cons nth_append) qed lemma Skolem_list_nth: "(\ix. P i x) = (\xs. size xs = k \ (\ixs. ?P k xs)") proof(induct k) case 0 show ?case by simp next case (Suc k) show ?case (is "?L = ?R" is "_ = (\xs. ?P' xs)") proof assume "?R" thus "?L" using Suc by auto next assume "?L" with Suc obtain x xs where "?P k xs \ P k x" by (metis less_Suc_eq) hence "?P'(xs@[x])" by(simp add:nth_append less_Suc_eq) thus "?R" .. qed qed subsubsection \\<^const>\list_update\\ lemma length_list_update [simp]: "length(xs[i:=x]) = length xs" by (induct xs arbitrary: i) (auto split: nat.split) lemma nth_list_update: "i < length xs\ (xs[i:=x])!j = (if i = j then x else xs!j)" by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) lemma nth_list_update_eq [simp]: "i < length xs \ (xs[i:=x])!i = x" by (simp add: nth_list_update) lemma nth_list_update_neq [simp]: "i \ j \ xs[i:=x]!j = xs!j" by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) lemma list_update_id[simp]: "xs[i := xs!i] = xs" by (induct xs arbitrary: i) (simp_all split:nat.splits) lemma list_update_beyond[simp]: "length xs \ i \ xs[i:=x] = xs" proof (induct xs arbitrary: i) case (Cons x xs i) then show ?case by (metis leD length_list_update list_eq_iff_nth_eq nth_list_update_neq) qed simp lemma list_update_nonempty[simp]: "xs[k:=x] = [] \ xs=[]" by (simp only: length_0_conv[symmetric] length_list_update) lemma list_update_same_conv: "i < length xs \ (xs[i := x] = xs) = (xs!i = x)" by (induct xs arbitrary: i) (auto split: nat.split) lemma list_update_append1: "i < size xs \ (xs @ ys)[i:=x] = xs[i:=x] @ ys" by (induct xs arbitrary: i)(auto split:nat.split) lemma list_update_append: "(xs @ ys) [n:= x] = (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))" by (induct xs arbitrary: n) (auto split:nat.splits) lemma list_update_length [simp]: "(xs @ x # ys)[length xs := y] = (xs @ y # ys)" by (induct xs, auto) lemma map_update: "map f (xs[k:= y]) = (map f xs)[k := f y]" by(induct xs arbitrary: k)(auto split:nat.splits) lemma rev_update: "k < length xs \ rev (xs[k:= y]) = (rev xs)[length xs - k - 1 := y]" by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits) lemma update_zip: "(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split) lemma set_update_subset_insert: "set(xs[i:=x]) \ insert x (set xs)" by (induct xs arbitrary: i) (auto split: nat.split) lemma set_update_subsetI: "\set xs \ A; x \ A\ \ set(xs[i := x]) \ A" by (blast dest!: set_update_subset_insert [THEN subsetD]) lemma set_update_memI: "n < length xs \ x \ set (xs[n := x])" by (induct xs arbitrary: n) (auto split:nat.splits) lemma list_update_overwrite[simp]: "xs [i := x, i := y] = xs [i := y]" by (induct xs arbitrary: i) (simp_all split: nat.split) lemma list_update_swap: "i \ i' \ xs [i := x, i' := x'] = xs [i' := x', i := x]" by (induct xs arbitrary: i i') (simp_all split: nat.split) lemma list_update_code [code]: "[][i := y] = []" "(x # xs)[0 := y] = y # xs" "(x # xs)[Suc i := y] = x # xs[i := y]" by simp_all subsubsection \\<^const>\last\ and \<^const>\butlast\\ lemma last_snoc [simp]: "last (xs @ [x]) = x" by (induct xs) auto lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" by (induct xs) auto lemma last_ConsL: "xs = [] \ last(x#xs) = x" by simp lemma last_ConsR: "xs \ [] \ last(x#xs) = last xs" by simp lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)" by (induct xs) (auto) lemma last_appendL[simp]: "ys = [] \ last(xs @ ys) = last xs" by(simp add:last_append) lemma last_appendR[simp]: "ys \ [] \ last(xs @ ys) = last ys" by(simp add:last_append) lemma last_tl: "xs = [] \ tl xs \ [] \last (tl xs) = last xs" by (induct xs) simp_all lemma butlast_tl: "butlast (tl xs) = tl (butlast xs)" by (induct xs) simp_all lemma hd_rev: "xs \ [] \ hd(rev xs) = last xs" by(rule rev_exhaust[of xs]) simp_all lemma last_rev: "xs \ [] \ last(rev xs) = hd xs" by(cases xs) simp_all lemma last_in_set[simp]: "as \ [] \ last as \ set as" by (induct as) auto lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" by (induct xs rule: rev_induct) auto lemma butlast_append: "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" by (induct xs arbitrary: ys) auto lemma append_butlast_last_id [simp]: "xs \ [] \ butlast xs @ [last xs] = xs" by (induct xs) auto lemma in_set_butlastD: "x \ set (butlast xs) \ x \ set xs" by (induct xs) (auto split: if_split_asm) lemma in_set_butlast_appendI: "x \ set (butlast xs) \ x \ set (butlast ys) \ x \ set (butlast (xs @ ys))" by (auto dest: in_set_butlastD simp add: butlast_append) lemma last_drop[simp]: "n < length xs \ last (drop n xs) = last xs" by (induct xs arbitrary: n)(auto split:nat.split) lemma nth_butlast: assumes "n < length (butlast xs)" shows "butlast xs ! n = xs ! n" proof (cases xs) case (Cons y ys) moreover from assms have "butlast xs ! n = (butlast xs @ [last xs]) ! n" by (simp add: nth_append) ultimately show ?thesis using append_butlast_last_id by simp qed simp lemma last_conv_nth: "xs\[] \ last xs = xs!(length xs - 1)" by(induct xs)(auto simp:neq_Nil_conv) lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs" by (induction xs rule: induct_list012) simp_all lemma last_list_update: "xs \ [] \ last(xs[k:=x]) = (if k = size xs - 1 then x else last xs)" by (auto simp: last_conv_nth) lemma butlast_list_update: "butlast(xs[k:=x]) = (if k = size xs - 1 then butlast xs else (butlast xs)[k:=x])" by(cases xs rule:rev_cases)(auto simp: list_update_append split: nat.splits) lemma last_map: "xs \ [] \ last (map f xs) = f (last xs)" by (cases xs rule: rev_cases) simp_all lemma map_butlast: "map f (butlast xs) = butlast (map f xs)" by (induct xs) simp_all lemma snoc_eq_iff_butlast: "xs @ [x] = ys \ (ys \ [] \ butlast ys = xs \ last ys = x)" by fastforce corollary longest_common_suffix: "\ss xs' ys'. xs = xs' @ ss \ ys = ys' @ ss \ (xs' = [] \ ys' = [] \ last xs' \ last ys')" using longest_common_prefix[of "rev xs" "rev ys"] unfolding rev_swap rev_append by (metis last_rev rev_is_Nil_conv) lemma butlast_rev [simp]: "butlast (rev xs) = rev (tl xs)" by (cases xs) simp_all subsubsection \\<^const>\take\ and \<^const>\drop\\ lemma take_0: "take 0 xs = []" by (induct xs) auto lemma drop_0: "drop 0 xs = xs" by (induct xs) auto lemma take0[simp]: "take 0 = (\xs. [])" by(rule ext) (rule take_0) lemma drop0[simp]: "drop 0 = (\x. x)" by(rule ext) (rule drop_0) lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" by simp lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" by simp declare take_Cons [simp del] and drop_Cons [simp del] lemma take_Suc: "xs \ [] \ take (Suc n) xs = hd xs # take n (tl xs)" by(clarsimp simp add:neq_Nil_conv) lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)" by(cases xs, simp_all) lemma hd_take[simp]: "j > 0 \ hd (take j xs) = hd xs" by (metis gr0_conv_Suc list.sel(1) take.simps(1) take_Suc) lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)" by (induct xs arbitrary: n) simp_all lemma drop_tl: "drop n (tl xs) = tl(drop n xs)" by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split) lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)" by (cases n, simp, cases xs, auto) lemma tl_drop: "tl (drop n xs) = drop n (tl xs)" by (simp only: drop_tl) lemma nth_via_drop: "drop n xs = y#ys \ xs!n = y" by (induct xs arbitrary: n, simp)(auto simp: drop_Cons nth_Cons split: nat.splits) lemma take_Suc_conv_app_nth: "i < length xs \ take (Suc i) xs = take i xs @ [xs!i]" proof (induct xs arbitrary: i) case Nil then show ?case by simp next case Cons then show ?case by (cases i) auto qed lemma Cons_nth_drop_Suc: "i < length xs \ (xs!i) # (drop (Suc i) xs) = drop i xs" proof (induct xs arbitrary: i) case Nil then show ?case by simp next case Cons then show ?case by (cases i) auto qed lemma length_take [simp]: "length (take n xs) = min (length xs) n" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma length_drop [simp]: "length (drop n xs) = (length xs - n)" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma take_all [simp]: "length xs \ n \ take n xs = xs" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma drop_all [simp]: "length xs \ n \ drop n xs = []" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma take_append [simp]: "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma drop_append [simp]: "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" by (induct n arbitrary: xs) (auto, case_tac xs, auto) lemma take_take [simp]: "take n (take m xs) = take (min n m) xs" proof (induct m arbitrary: xs n) case 0 then show ?case by simp next case Suc then show ?case by (cases xs; cases n) simp_all qed lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs" proof (induct m arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)" proof (induct m arbitrary: xs n) case 0 then show ?case by simp next case Suc then show ?case by (cases xs; cases n) simp_all qed lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)" by(induct xs arbitrary: m n)(auto simp: take_Cons drop_Cons split: nat.split) lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs" proof (induct n arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \ xs = [])" by(induct xs arbitrary: n)(auto simp: take_Cons split:nat.split) lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs \ n)" by (induct xs arbitrary: n) (auto simp: drop_Cons split:nat.split) lemma take_map: "take n (map f xs) = map f (take n xs)" proof (induct n arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma drop_map: "drop n (map f xs) = map f (drop n xs)" proof (induct n arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)" proof (induct xs arbitrary: i) case Nil then show ?case by simp next case Cons then show ?case by (cases i) auto qed lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)" proof (induct xs arbitrary: i) case Nil then show ?case by simp next case Cons then show ?case by (cases i) auto qed lemma drop_rev: "drop n (rev xs) = rev (take (length xs - n) xs)" by (cases "length xs < n") (auto simp: rev_take) lemma take_rev: "take n (rev xs) = rev (drop (length xs - n) xs)" by (cases "length xs < n") (auto simp: rev_drop) lemma nth_take [simp]: "i < n \ (take n xs)!i = xs!i" proof (induct xs arbitrary: i n) case Nil then show ?case by simp next case Cons then show ?case by (cases n; cases i) simp_all qed lemma nth_drop [simp]: "n \ length xs \ (drop n xs)!i = xs!(n + i)" proof (induct n arbitrary: xs) case 0 then show ?case by simp next case Suc then show ?case by (cases xs) simp_all qed lemma butlast_take: "n \ length xs \ butlast (take n xs) = take (n - 1) xs" by (simp add: butlast_conv_take min.absorb1 min.absorb2) lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)" by (simp add: butlast_conv_take drop_take ac_simps) lemma take_butlast: "n < length xs \ take n (butlast xs) = take n xs" by (simp add: butlast_conv_take min.absorb1) lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)" by (simp add: butlast_conv_take drop_take ac_simps) lemma hd_drop_conv_nth: "n < length xs \ hd(drop n xs) = xs!n" by(simp add: hd_conv_nth) lemma set_take_subset_set_take: "m \ n \ set(take m xs) \ set(take n xs)" proof (induct xs arbitrary: m n) case (Cons x xs m n) then show ?case by (cases n) (auto simp: take_Cons) qed simp lemma set_take_subset: "set(take n xs) \ set xs" by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split) lemma set_drop_subset: "set(drop n xs) \ set xs" by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split) lemma set_drop_subset_set_drop: "m \ n \ set(drop m xs) \ set(drop n xs)" proof (induct xs arbitrary: m n) case (Cons x xs m n) then show ?case by (clarsimp simp: drop_Cons split: nat.split) (metis set_drop_subset subset_iff) qed simp lemma in_set_takeD: "x \ set(take n xs) \ x \ set xs" using set_take_subset by fast lemma in_set_dropD: "x \ set(drop n xs) \ x \ set xs" using set_drop_subset by fast lemma append_eq_conv_conj: "(xs @ ys = zs) = (xs = take (length xs) zs \ ys = drop (length xs) zs)" proof (induct xs arbitrary: zs) case (Cons x xs zs) then show ?case by (cases zs, auto) qed auto lemma map_eq_append_conv: "map f xs = ys @ zs \ (\us vs. xs = us @ vs \ ys = map f us \ zs = map f vs)" proof - have "map f xs \ ys @ zs \ map f xs \ ys @ zs \ map f xs \ ys @ zs \ map f xs = ys @ zs \ (\bs bsa. xs = bs @ bsa \ ys = map f bs \ zs = map f bsa)" by (metis append_eq_conv_conj append_take_drop_id drop_map take_map) then show ?thesis using map_append by blast qed lemma append_eq_map_conv: "ys @ zs = map f xs \ (\us vs. xs = us @ vs \ ys = map f us \ zs = map f vs)" by (metis map_eq_append_conv) lemma take_add: "take (i+j) xs = take i xs @ take j (drop i xs)" proof (induct xs arbitrary: i) case (Cons x xs i) then show ?case by (cases i, auto) qed auto lemma append_eq_append_conv_if: "(xs\<^sub>1 @ xs\<^sub>2 = ys\<^sub>1 @ ys\<^sub>2) = (if size xs\<^sub>1 \ size ys\<^sub>1 then xs\<^sub>1 = take (size xs\<^sub>1) ys\<^sub>1 \ xs\<^sub>2 = drop (size xs\<^sub>1) ys\<^sub>1 @ ys\<^sub>2 else take (size ys\<^sub>1) xs\<^sub>1 = ys\<^sub>1 \ drop (size ys\<^sub>1) xs\<^sub>1 @ xs\<^sub>2 = ys\<^sub>2)" proof (induct xs\<^sub>1 arbitrary: ys\<^sub>1) case (Cons a xs\<^sub>1 ys\<^sub>1) then show ?case by (cases ys\<^sub>1, auto) qed auto lemma take_hd_drop: "n < length xs \ take n xs @ [hd (drop n xs)] = take (Suc n) xs" by (induct xs arbitrary: n) (simp_all add:drop_Cons split:nat.split) lemma id_take_nth_drop: "i < length xs \ xs = take i xs @ xs!i # drop (Suc i) xs" proof - assume si: "i < length xs" hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto moreover from si have "take (Suc i) xs = take i xs @ [xs!i]" using take_Suc_conv_app_nth by blast ultimately show ?thesis by auto qed lemma take_update_cancel[simp]: "n \ m \ take n (xs[m := y]) = take n xs" by(simp add: list_eq_iff_nth_eq) lemma drop_update_cancel[simp]: "n < m \ drop m (xs[n := x]) = drop m xs" by(simp add: list_eq_iff_nth_eq) lemma upd_conv_take_nth_drop: "i < length xs \ xs[i:=a] = take i xs @ a # drop (Suc i) xs" proof - assume i: "i < length xs" have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]" by(rule arg_cong[OF id_take_nth_drop[OF i]]) also have "\ = take i xs @ a # drop (Suc i) xs" using i by (simp add: list_update_append) finally show ?thesis . qed lemma take_update_swap: "take m (xs[n := x]) = (take m xs)[n := x]" proof (cases "n \ length xs") case False then show ?thesis by (simp add: upd_conv_take_nth_drop take_Cons drop_take min_def diff_Suc split: nat.split) qed auto lemma drop_update_swap: assumes "m \ n" shows "drop m (xs[n := x]) = (drop m xs)[n-m := x]" proof (cases "n \ length xs") case False with assms show ?thesis by (simp add: upd_conv_take_nth_drop drop_take) qed auto lemma nth_image: "l \ size xs \ nth xs ` {0..\<^const>\takeWhile\ and \<^const>\dropWhile\\ lemma length_takeWhile_le: "length (takeWhile P xs) \ length xs" by (induct xs) auto lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" by (induct xs) auto lemma takeWhile_append1 [simp]: "\x \ set xs; \P(x)\ \ takeWhile P (xs @ ys) = takeWhile P xs" by (induct xs) auto lemma takeWhile_append2 [simp]: "(\x. x \ set xs \ P x) \ takeWhile P (xs @ ys) = xs @ takeWhile P ys" by (induct xs) auto lemma takeWhile_append: "takeWhile P (xs @ ys) = (if \x\set xs. P x then xs @ takeWhile P ys else takeWhile P xs)" using takeWhile_append1[of _ xs P ys] takeWhile_append2[of xs P ys] by auto lemma takeWhile_tail: "\ P x \ takeWhile P (xs @ (x#l)) = takeWhile P xs" by (induct xs) auto lemma takeWhile_eq_Nil_iff: "takeWhile P xs = [] \ xs = [] \ \P (hd xs)" by (cases xs) auto lemma takeWhile_nth: "j < length (takeWhile P xs) \ takeWhile P xs ! j = xs ! j" by (metis nth_append takeWhile_dropWhile_id) lemma dropWhile_nth: "j < length (dropWhile P xs) \ dropWhile P xs ! j = xs ! (j + length (takeWhile P xs))" by (metis add.commute nth_append_length_plus takeWhile_dropWhile_id) lemma length_dropWhile_le: "length (dropWhile P xs) \ length xs" by (induct xs) auto lemma dropWhile_append1 [simp]: "\x \ set xs; \P(x)\ \ dropWhile P (xs @ ys) = (dropWhile P xs)@ys" by (induct xs) auto lemma dropWhile_append2 [simp]: "(\x. x \ set xs \ P(x)) \ dropWhile P (xs @ ys) = dropWhile P ys" by (induct xs) auto lemma dropWhile_append3: "\ P y \dropWhile P (xs @ y # ys) = dropWhile P xs @ y # ys" by (induct xs) auto lemma dropWhile_append: "dropWhile P (xs @ ys) = (if \x\set xs. P x then dropWhile P ys else dropWhile P xs @ ys)" using dropWhile_append1[of _ xs P ys] dropWhile_append2[of xs P ys] by auto lemma dropWhile_last: "x \ set xs \ \ P x \ last (dropWhile P xs) = last xs" by (auto simp add: dropWhile_append3 in_set_conv_decomp) lemma set_dropWhileD: "x \ set (dropWhile P xs) \ x \ set xs" by (induct xs) (auto split: if_split_asm) lemma set_takeWhileD: "x \ set (takeWhile P xs) \ x \ set xs \ P x" by (induct xs) (auto split: if_split_asm) lemma takeWhile_eq_all_conv[simp]: "(takeWhile P xs = xs) = (\x \ set xs. P x)" by(induct xs, auto) lemma dropWhile_eq_Nil_conv[simp]: "(dropWhile P xs = []) = (\x \ set xs. P x)" by(induct xs, auto) lemma dropWhile_eq_Cons_conv: "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys \ \ P y)" by(induct xs, auto) lemma dropWhile_eq_self_iff: "dropWhile P xs = xs \ xs = [] \ \P (hd xs)" by (cases xs) (auto simp: dropWhile_eq_Cons_conv) lemma distinct_takeWhile[simp]: "distinct xs \ distinct (takeWhile P xs)" by (induct xs) (auto dest: set_takeWhileD) lemma distinct_dropWhile[simp]: "distinct xs \ distinct (dropWhile P xs)" by (induct xs) auto lemma takeWhile_map: "takeWhile P (map f xs) = map f (takeWhile (P \ f) xs)" by (induct xs) auto lemma dropWhile_map: "dropWhile P (map f xs) = map f (dropWhile (P \ f) xs)" by (induct xs) auto lemma takeWhile_eq_take: "takeWhile P xs = take (length (takeWhile P xs)) xs" by (induct xs) auto lemma dropWhile_eq_drop: "dropWhile P xs = drop (length (takeWhile P xs)) xs" by (induct xs) auto lemma hd_dropWhile: "dropWhile P xs \ [] \ \ P (hd (dropWhile P xs))" by (induct xs) auto lemma takeWhile_eq_filter: assumes "\ x. x \ set (dropWhile P xs) \ \ P x" shows "takeWhile P xs = filter P xs" proof - have A: "filter P xs = filter P (takeWhile P xs @ dropWhile P xs)" by simp have B: "filter P (dropWhile P xs) = []" unfolding filter_empty_conv using assms by blast have "filter P xs = takeWhile P xs" unfolding A filter_append B by (auto simp add: filter_id_conv dest: set_takeWhileD) thus ?thesis .. qed lemma takeWhile_eq_take_P_nth: "\ \ i. \ i < n ; i < length xs \ \ P (xs ! i) ; n < length xs \ \ P (xs ! n) \ \ takeWhile P xs = take n xs" proof (induct xs arbitrary: n) case Nil thus ?case by simp next case (Cons x xs) show ?case proof (cases n) case 0 with Cons show ?thesis by simp next case [simp]: (Suc n') have "P x" using Cons.prems(1)[of 0] by simp moreover have "takeWhile P xs = take n' xs" proof (rule Cons.hyps) fix i assume "i < n'" "i < length xs" thus "P (xs ! i)" using Cons.prems(1)[of "Suc i"] by simp next assume "n' < length xs" thus "\ P (xs ! n')" using Cons by auto qed ultimately show ?thesis by simp qed qed lemma nth_length_takeWhile: "length (takeWhile P xs) < length xs \ \ P (xs ! length (takeWhile P xs))" by (induct xs) auto lemma length_takeWhile_less_P_nth: assumes all: "\ i. i < j \ P (xs ! i)" and "j \ length xs" shows "j \ length (takeWhile P xs)" proof (rule classical) assume "\ ?thesis" hence "length (takeWhile P xs) < length xs" using assms by simp thus ?thesis using all \\ ?thesis\ nth_length_takeWhile[of P xs] by auto qed lemma takeWhile_neq_rev: "\distinct xs; x \ set xs\ \ takeWhile (\y. y \ x) (rev xs) = rev (tl (dropWhile (\y. y \ x) xs))" by(induct xs) (auto simp: takeWhile_tail[where l="[]"]) lemma dropWhile_neq_rev: "\distinct xs; x \ set xs\ \ dropWhile (\y. y \ x) (rev xs) = x # rev (takeWhile (\y. y \ x) xs)" proof (induct xs) case (Cons a xs) then show ?case by(auto, subst dropWhile_append2, auto) qed simp lemma takeWhile_not_last: "distinct xs \ takeWhile (\y. y \ last xs) xs = butlast xs" by(induction xs rule: induct_list012) auto lemma takeWhile_cong [fundef_cong]: "\l = k; \x. x \ set l \ P x = Q x\ \ takeWhile P l = takeWhile Q k" by (induct k arbitrary: l) (simp_all) lemma dropWhile_cong [fundef_cong]: "\l = k; \x. x \ set l \ P x = Q x\ \ dropWhile P l = dropWhile Q k" by (induct k arbitrary: l, simp_all) lemma takeWhile_idem [simp]: "takeWhile P (takeWhile P xs) = takeWhile P xs" by (induct xs) auto lemma dropWhile_idem [simp]: "dropWhile P (dropWhile P xs) = dropWhile P xs" by (induct xs) auto subsubsection \\<^const>\zip\\ lemma zip_Nil [simp]: "zip [] ys = []" by (induct ys) auto lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" by simp declare zip_Cons [simp del] lemma [code]: "zip [] ys = []" "zip xs [] = []" "zip (x # xs) (y # ys) = (x, y) # zip xs ys" by (fact zip_Nil zip.simps(1) zip_Cons_Cons)+ lemma zip_Cons1: "zip (x#xs) ys = (case ys of [] \ [] | y#ys \ (x,y)#zip xs ys)" by(auto split:list.split) lemma length_zip [simp]: "length (zip xs ys) = min (length xs) (length ys)" by (induct xs ys rule:list_induct2') auto lemma zip_obtain_same_length: assumes "\zs ws n. length zs = length ws \ n = min (length xs) (length ys) \ zs = take n xs \ ws = take n ys \ P (zip zs ws)" shows "P (zip xs ys)" proof - let ?n = "min (length xs) (length ys)" have "P (zip (take ?n xs) (take ?n ys))" by (rule assms) simp_all moreover have "zip xs ys = zip (take ?n xs) (take ?n ys)" proof (induct xs arbitrary: ys) case Nil then show ?case by simp next case (Cons x xs) then show ?case by (cases ys) simp_all qed ultimately show ?thesis by simp qed lemma zip_append1: "zip (xs @ ys) zs = zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" by (induct xs zs rule:list_induct2') auto lemma zip_append2: "zip xs (ys @ zs) = zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" by (induct xs ys rule:list_induct2') auto lemma zip_append [simp]: "\length xs = length us\ \ zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" by (simp add: zip_append1) lemma zip_rev: "length xs = length ys \ zip (rev xs) (rev ys) = rev (zip xs ys)" by (induct rule:list_induct2, simp_all) lemma zip_map_map: "zip (map f xs) (map g ys) = map (\ (x, y). (f x, g y)) (zip xs ys)" proof (induct xs arbitrary: ys) case (Cons x xs) note Cons_x_xs = Cons.hyps show ?case proof (cases ys) case (Cons y ys') show ?thesis unfolding Cons using Cons_x_xs by simp qed simp qed simp lemma zip_map1: "zip (map f xs) ys = map (\(x, y). (f x, y)) (zip xs ys)" using zip_map_map[of f xs "\x. x" ys] by simp lemma zip_map2: "zip xs (map f ys) = map (\(x, y). (x, f y)) (zip xs ys)" using zip_map_map[of "\x. x" xs f ys] by simp lemma map_zip_map: "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)" by (auto simp: zip_map1) lemma map_zip_map2: "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)" by (auto simp: zip_map2) text\Courtesy of Andreas Lochbihler:\ lemma zip_same_conv_map: "zip xs xs = map (\x. (x, x)) xs" by(induct xs) auto lemma nth_zip [simp]: "\i < length xs; i < length ys\ \ (zip xs ys)!i = (xs!i, ys!i)" proof (induct ys arbitrary: i xs) case (Cons y ys) then show ?case by (cases xs) (simp_all add: nth.simps split: nat.split) qed auto lemma set_zip: "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}" by(simp add: set_conv_nth cong: rev_conj_cong) lemma zip_same: "((a,b) \ set (zip xs xs)) = (a \ set xs \ a = b)" by(induct xs) auto lemma zip_update: "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" by (simp add: update_zip) lemma zip_replicate [simp]: "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" proof (induct i arbitrary: j) case (Suc i) then show ?case by (cases j, auto) qed auto lemma zip_replicate1: "zip (replicate n x) ys = map (Pair x) (take n ys)" by(induction ys arbitrary: n)(case_tac [2] n, simp_all) lemma take_zip: "take n (zip xs ys) = zip (take n xs) (take n ys)" proof (induct n arbitrary: xs ys) case 0 then show ?case by simp next case Suc then show ?case by (cases xs; cases ys) simp_all qed lemma drop_zip: "drop n (zip xs ys) = zip (drop n xs) (drop n ys)" proof (induct n arbitrary: xs ys) case 0 then show ?case by simp next case Suc then show ?case by (cases xs; cases ys) simp_all qed lemma zip_takeWhile_fst: "zip (takeWhile P xs) ys = takeWhile (P \ fst) (zip xs ys)" proof (induct xs arbitrary: ys) case Nil then show ?case by simp next case Cons then show ?case by (cases ys) auto qed lemma zip_takeWhile_snd: "zip xs (takeWhile P ys) = takeWhile (P \ snd) (zip xs ys)" proof (induct xs arbitrary: ys) case Nil then show ?case by simp next case Cons then show ?case by (cases ys) auto qed lemma set_zip_leftD: "(x,y)\ set (zip xs ys) \ x \ set xs" by (induct xs ys rule:list_induct2') auto lemma set_zip_rightD: "(x,y)\ set (zip xs ys) \ y \ set ys" by (induct xs ys rule:list_induct2') auto lemma in_set_zipE: "(x,y) \ set(zip xs ys) \ (\ x \ set xs; y \ set ys \ \ R) \ R" by(blast dest: set_zip_leftD set_zip_rightD) lemma zip_map_fst_snd: "zip (map fst zs) (map snd zs) = zs" by (induct zs) simp_all lemma zip_eq_conv: "length xs = length ys \ zip xs ys = zs \ map fst zs = xs \ map snd zs = ys" by (auto simp add: zip_map_fst_snd) lemma in_set_zip: "p \ set (zip xs ys) \ (\n. xs ! n = fst p \ ys ! n = snd p \ n < length xs \ n < length ys)" by (cases p) (auto simp add: set_zip) lemma in_set_impl_in_set_zip1: assumes "length xs = length ys" assumes "x \ set xs" obtains y where "(x, y) \ set (zip xs ys)" proof - from assms have "x \ set (map fst (zip xs ys))" by simp from this that show ?thesis by fastforce qed lemma in_set_impl_in_set_zip2: assumes "length xs = length ys" assumes "y \ set ys" obtains x where "(x, y) \ set (zip xs ys)" proof - from assms have "y \ set (map snd (zip xs ys))" by simp from this that show ?thesis by fastforce qed lemma zip_eq_Nil_iff: "zip xs ys = [] \ xs = [] \ ys = []" by (cases xs; cases ys) simp_all lemma zip_eq_ConsE: assumes "zip xs ys = xy # xys" obtains x xs' y ys' where "xs = x # xs'" and "ys = y # ys'" and "xy = (x, y)" and "xys = zip xs' ys'" proof - from assms have "xs \ []" and "ys \ []" using zip_eq_Nil_iff [of xs ys] by simp_all then obtain x xs' y ys' where xs: "xs = x # xs'" and ys: "ys = y # ys'" by (cases xs; cases ys) auto with assms have "xy = (x, y)" and "xys = zip xs' ys'" by simp_all with xs ys show ?thesis .. qed lemma semilattice_map2: "semilattice (map2 (\<^bold>*))" if "semilattice (\<^bold>*)" for f (infixl "\<^bold>*" 70) proof - from that interpret semilattice f . show ?thesis proof show "map2 (\<^bold>*) (map2 (\<^bold>*) xs ys) zs = map2 (\<^bold>*) xs (map2 (\<^bold>*) ys zs)" for xs ys zs :: "'a list" proof (induction "zip xs (zip ys zs)" arbitrary: xs ys zs) case Nil from Nil [symmetric] show ?case by (auto simp add: zip_eq_Nil_iff) next case (Cons xyz xyzs) from Cons.hyps(2) [symmetric] show ?case by (rule zip_eq_ConsE) (erule zip_eq_ConsE, auto intro: Cons.hyps(1) simp add: ac_simps) qed show "map2 (\<^bold>*) xs ys = map2 (\<^bold>*) ys xs" for xs ys :: "'a list" proof (induction "zip xs ys" arbitrary: xs ys) case Nil then show ?case by (auto simp add: zip_eq_Nil_iff dest: sym) next case (Cons xy xys) from Cons.hyps(2) [symmetric] show ?case by (rule zip_eq_ConsE) (auto intro: Cons.hyps(1) simp add: ac_simps) qed show "map2 (\<^bold>*) xs xs = xs" for xs :: "'a list" by (induction xs) simp_all qed qed lemma pair_list_eqI: assumes "map fst xs = map fst ys" and "map snd xs = map snd ys" shows "xs = ys" proof - from assms(1) have "length xs = length ys" by (rule map_eq_imp_length_eq) from this assms show ?thesis by (induct xs ys rule: list_induct2) (simp_all add: prod_eqI) qed lemma hd_zip: \hd (zip xs ys) = (hd xs, hd ys)\ if \xs \ []\ and \ys \ []\ using that by (cases xs; cases ys) simp_all lemma last_zip: \last (zip xs ys) = (last xs, last ys)\ if \xs \ []\ and \ys \ []\ and \length xs = length ys\ using that by (cases xs rule: rev_cases; cases ys rule: rev_cases) simp_all subsubsection \\<^const>\list_all2\\ lemma list_all2_lengthD [intro?]: "list_all2 P xs ys \ length xs = length ys" by (simp add: list_all2_iff) lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])" by (simp add: list_all2_iff) lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])" by (simp add: list_all2_iff) lemma list_all2_Cons [iff, code]: "list_all2 P (x # xs) (y # ys) = (P x y \ list_all2 P xs ys)" by (auto simp add: list_all2_iff) lemma list_all2_Cons1: "list_all2 P (x # xs) ys = (\z zs. ys = z # zs \ P x z \ list_all2 P xs zs)" by (cases ys) auto lemma list_all2_Cons2: "list_all2 P xs (y # ys) = (\z zs. xs = z # zs \ P z y \ list_all2 P zs ys)" by (cases xs) auto lemma list_all2_induct [consumes 1, case_names Nil Cons, induct set: list_all2]: assumes P: "list_all2 P xs ys" assumes Nil: "R [] []" assumes Cons: "\x xs y ys. \P x y; list_all2 P xs ys; R xs ys\ \ R (x # xs) (y # ys)" shows "R xs ys" using P by (induct xs arbitrary: ys) (auto simp add: list_all2_Cons1 Nil Cons) lemma list_all2_rev [iff]: "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" by (simp add: list_all2_iff zip_rev cong: conj_cong) lemma list_all2_rev1: "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)" by (subst list_all2_rev [symmetric]) simp lemma list_all2_append1: "list_all2 P (xs @ ys) zs = (\us vs. zs = us @ vs \ length us = length xs \ length vs = length ys \ list_all2 P xs us \ list_all2 P ys vs)" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs apply (rule_tac x = "take (length xs) zs" in exI) apply (rule_tac x = "drop (length xs) zs" in exI) apply (force split: nat_diff_split simp add: list_all2_iff zip_append1) done next assume ?rhs then show ?lhs by (auto simp add: list_all2_iff) qed lemma list_all2_append2: "list_all2 P xs (ys @ zs) = (\us vs. xs = us @ vs \ length us = length ys \ length vs = length zs \ list_all2 P us ys \ list_all2 P vs zs)" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs apply (rule_tac x = "take (length ys) xs" in exI) apply (rule_tac x = "drop (length ys) xs" in exI) apply (force split: nat_diff_split simp add: list_all2_iff zip_append2) done next assume ?rhs then show ?lhs by (auto simp add: list_all2_iff) qed lemma list_all2_append: "length xs = length ys \ list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \ list_all2 P us vs)" by (induct rule:list_induct2, simp_all) lemma list_all2_appendI [intro?, trans]: "\ list_all2 P a b; list_all2 P c d \ \ list_all2 P (a@c) (b@d)" by (simp add: list_all2_append list_all2_lengthD) lemma list_all2_conv_all_nth: "list_all2 P xs ys = (length xs = length ys \ (\i < length xs. P (xs!i) (ys!i)))" by (force simp add: list_all2_iff set_zip) lemma list_all2_trans: assumes tr: "!!a b c. P1 a b \ P2 b c \ P3 a c" shows "!!bs cs. list_all2 P1 as bs \ list_all2 P2 bs cs \ list_all2 P3 as cs" (is "!!bs cs. PROP ?Q as bs cs") proof (induct as) fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs" show "!!cs. PROP ?Q (x # xs) bs cs" proof (induct bs) fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs" show "PROP ?Q (x # xs) (y # ys) cs" by (induct cs) (auto intro: tr I1 I2) qed simp qed simp lemma list_all2_all_nthI [intro?]: "length a = length b \ (\n. n < length a \ P (a!n) (b!n)) \ list_all2 P a b" by (simp add: list_all2_conv_all_nth) lemma list_all2I: "\x \ set (zip a b). case_prod P x \ length a = length b \ list_all2 P a b" by (simp add: list_all2_iff) lemma list_all2_nthD: "\ list_all2 P xs ys; p < size xs \ \ P (xs!p) (ys!p)" by (simp add: list_all2_conv_all_nth) lemma list_all2_nthD2: "\list_all2 P xs ys; p < size ys\ \ P (xs!p) (ys!p)" by (frule list_all2_lengthD) (auto intro: list_all2_nthD) lemma list_all2_map1: "list_all2 P (map f as) bs = list_all2 (\x y. P (f x) y) as bs" by (simp add: list_all2_conv_all_nth) lemma list_all2_map2: "list_all2 P as (map f bs) = list_all2 (\x y. P x (f y)) as bs" by (auto simp add: list_all2_conv_all_nth) lemma list_all2_refl [intro?]: "(\x. P x x) \ list_all2 P xs xs" by (simp add: list_all2_conv_all_nth) lemma list_all2_update_cong: "\ list_all2 P xs ys; P x y \ \ list_all2 P (xs[i:=x]) (ys[i:=y])" by (cases "i < length ys") (auto simp add: list_all2_conv_all_nth nth_list_update) lemma list_all2_takeI [simp,intro?]: "list_all2 P xs ys \ list_all2 P (take n xs) (take n ys)" proof (induct xs arbitrary: n ys) case (Cons x xs) then show ?case by (cases n) (auto simp: list_all2_Cons1) qed auto lemma list_all2_dropI [simp,intro?]: "list_all2 P xs ys \ list_all2 P (drop n xs) (drop n ys)" proof (induct xs arbitrary: n ys) case (Cons x xs) then show ?case by (cases n) (auto simp: list_all2_Cons1) qed auto lemma list_all2_mono [intro?]: "list_all2 P xs ys \ (\xs ys. P xs ys \ Q xs ys) \ list_all2 Q xs ys" by (rule list.rel_mono_strong) lemma list_all2_eq: "xs = ys \ list_all2 (=) xs ys" by (induct xs ys rule: list_induct2') auto lemma list_eq_iff_zip_eq: "xs = ys \ length xs = length ys \ (\(x,y) \ set (zip xs ys). x = y)" by(auto simp add: set_zip list_all2_eq list_all2_conv_all_nth cong: conj_cong) lemma list_all2_same: "list_all2 P xs xs \ (\x\set xs. P x x)" by(auto simp add: list_all2_conv_all_nth set_conv_nth) lemma zip_assoc: "zip xs (zip ys zs) = map (\((x, y), z). (x, y, z)) (zip (zip xs ys) zs)" by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all lemma zip_commute: "zip xs ys = map (\(x, y). (y, x)) (zip ys xs)" by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all lemma zip_left_commute: "zip xs (zip ys zs) = map (\(y, (x, z)). (x, y, z)) (zip ys (zip xs zs))" by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all lemma zip_replicate2: "zip xs (replicate n y) = map (\x. (x, y)) (take n xs)" by(subst zip_commute)(simp add: zip_replicate1) subsubsection \\<^const>\List.product\ and \<^const>\product_lists\\ lemma product_concat_map: "List.product xs ys = concat (map (\x. map (\y. (x,y)) ys) xs)" by(induction xs) (simp)+ lemma set_product[simp]: "set (List.product xs ys) = set xs \ set ys" by (induct xs) auto lemma length_product [simp]: "length (List.product xs ys) = length xs * length ys" by (induct xs) simp_all lemma product_nth: assumes "n < length xs * length ys" shows "List.product xs ys ! n = (xs ! (n div length ys), ys ! (n mod length ys))" using assms proof (induct xs arbitrary: n) case Nil then show ?case by simp next case (Cons x xs n) then have "length ys > 0" by auto with Cons show ?case by (auto simp add: nth_append not_less le_mod_geq le_div_geq) qed lemma in_set_product_lists_length: "xs \ set (product_lists xss) \ length xs = length xss" by (induct xss arbitrary: xs) auto lemma product_lists_set: "set (product_lists xss) = {xs. list_all2 (\x ys. x \ set ys) xs xss}" (is "?L = Collect ?R") proof (intro equalityI subsetI, unfold mem_Collect_eq) fix xs assume "xs \ ?L" then have "length xs = length xss" by (rule in_set_product_lists_length) from this \xs \ ?L\ show "?R xs" by (induct xs xss rule: list_induct2) auto next fix xs assume "?R xs" then show "xs \ ?L" by induct auto qed subsubsection \\<^const>\fold\ with natural argument order\ lemma fold_simps [code]: \ \eta-expanded variant for generated code -- enables tail-recursion optimisation in Scala\ "fold f [] s = s" "fold f (x # xs) s = fold f xs (f x s)" by simp_all lemma fold_remove1_split: "\ \x y. x \ set xs \ y \ set xs \ f x \ f y = f y \ f x; x \ set xs \ \ fold f xs = fold f (remove1 x xs) \ f x" by (induct xs) (auto simp add: comp_assoc) lemma fold_cong [fundef_cong]: "a = b \ xs = ys \ (\x. x \ set xs \ f x = g x) \ fold f xs a = fold g ys b" by (induct ys arbitrary: a b xs) simp_all lemma fold_id: "(\x. x \ set xs \ f x = id) \ fold f xs = id" by (induct xs) simp_all lemma fold_commute: "(\x. x \ set xs \ h \ g x = f x \ h) \ h \ fold g xs = fold f xs \ h" by (induct xs) (simp_all add: fun_eq_iff) lemma fold_commute_apply: assumes "\x. x \ set xs \ h \ g x = f x \ h" shows "h (fold g xs s) = fold f xs (h s)" proof - from assms have "h \ fold g xs = fold f xs \ h" by (rule fold_commute) then show ?thesis by (simp add: fun_eq_iff) qed lemma fold_invariant: "\ \x. x \ set xs \ Q x; P s; \x s. Q x \ P s \ P (f x s) \ \ P (fold f xs s)" by (induct xs arbitrary: s) simp_all lemma fold_append [simp]: "fold f (xs @ ys) = fold f ys \ fold f xs" by (induct xs) simp_all lemma fold_map [code_unfold]: "fold g (map f xs) = fold (g \ f) xs" by (induct xs) simp_all lemma fold_filter: "fold f (filter P xs) = fold (\x. if P x then f x else id) xs" by (induct xs) simp_all lemma fold_rev: "(\x y. x \ set xs \ y \ set xs \ f y \ f x = f x \ f y) \ fold f (rev xs) = fold f xs" by (induct xs) (simp_all add: fold_commute_apply fun_eq_iff) lemma fold_Cons_rev: "fold Cons xs = append (rev xs)" by (induct xs) simp_all lemma rev_conv_fold [code]: "rev xs = fold Cons xs []" by (simp add: fold_Cons_rev) lemma fold_append_concat_rev: "fold append xss = append (concat (rev xss))" by (induct xss) simp_all text \\<^const>\Finite_Set.fold\ and \<^const>\fold\\ lemma (in comp_fun_commute) fold_set_fold_remdups: "Finite_Set.fold f y (set xs) = fold f (remdups xs) y" by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_left_comm insert_absorb) lemma (in comp_fun_idem) fold_set_fold: "Finite_Set.fold f y (set xs) = fold f xs y" by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_left_comm) lemma union_set_fold [code]: "set xs \ A = fold Set.insert xs A" proof - interpret comp_fun_idem Set.insert by (fact comp_fun_idem_insert) show ?thesis by (simp add: union_fold_insert fold_set_fold) qed lemma union_coset_filter [code]: "List.coset xs \ A = List.coset (List.filter (\x. x \ A) xs)" by auto lemma minus_set_fold [code]: "A - set xs = fold Set.remove xs A" proof - interpret comp_fun_idem Set.remove by (fact comp_fun_idem_remove) show ?thesis by (simp add: minus_fold_remove [of _ A] fold_set_fold) qed lemma minus_coset_filter [code]: "A - List.coset xs = set (List.filter (\x. x \ A) xs)" by auto lemma inter_set_filter [code]: "A \ set xs = set (List.filter (\x. x \ A) xs)" by auto lemma inter_coset_fold [code]: "A \ List.coset xs = fold Set.remove xs A" by (simp add: Diff_eq [symmetric] minus_set_fold) lemma (in semilattice_set) set_eq_fold [code]: "F (set (x # xs)) = fold f xs x" proof - interpret comp_fun_idem f by standard (simp_all add: fun_eq_iff left_commute) show ?thesis by (simp add: eq_fold fold_set_fold) qed lemma (in complete_lattice) Inf_set_fold: "Inf (set xs) = fold inf xs top" proof - interpret comp_fun_idem "inf :: 'a \ 'a \ 'a" by (fact comp_fun_idem_inf) show ?thesis by (simp add: Inf_fold_inf fold_set_fold inf_commute) qed declare Inf_set_fold [where 'a = "'a set", code] lemma (in complete_lattice) Sup_set_fold: "Sup (set xs) = fold sup xs bot" proof - interpret comp_fun_idem "sup :: 'a \ 'a \ 'a" by (fact comp_fun_idem_sup) show ?thesis by (simp add: Sup_fold_sup fold_set_fold sup_commute) qed declare Sup_set_fold [where 'a = "'a set", code] lemma (in complete_lattice) INF_set_fold: "\(f ` set xs) = fold (inf \ f) xs top" using Inf_set_fold [of "map f xs"] by (simp add: fold_map) lemma (in complete_lattice) SUP_set_fold: "\(f ` set xs) = fold (sup \ f) xs bot" using Sup_set_fold [of "map f xs"] by (simp add: fold_map) subsubsection \Fold variants: \<^const>\foldr\ and \<^const>\foldl\\ text \Correspondence\ lemma foldr_conv_fold [code_abbrev]: "foldr f xs = fold f (rev xs)" by (induct xs) simp_all lemma foldl_conv_fold: "foldl f s xs = fold (\x s. f s x) xs s" by (induct xs arbitrary: s) simp_all lemma foldr_conv_foldl: \ \The ``Third Duality Theorem'' in Bird \& Wadler:\ "foldr f xs a = foldl (\x y. f y x) a (rev xs)" by (simp add: foldr_conv_fold foldl_conv_fold) lemma foldl_conv_foldr: "foldl f a xs = foldr (\x y. f y x) (rev xs) a" by (simp add: foldr_conv_fold foldl_conv_fold) lemma foldr_fold: "(\x y. x \ set xs \ y \ set xs \ f y \ f x = f x \ f y) \ foldr f xs = fold f xs" unfolding foldr_conv_fold by (rule fold_rev) lemma foldr_cong [fundef_cong]: "a = b \ l = k \ (\a x. x \ set l \ f x a = g x a) \ foldr f l a = foldr g k b" by (auto simp add: foldr_conv_fold intro!: fold_cong) lemma foldl_cong [fundef_cong]: "a = b \ l = k \ (\a x. x \ set l \ f a x = g a x) \ foldl f a l = foldl g b k" by (auto simp add: foldl_conv_fold intro!: fold_cong) lemma foldr_append [simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)" by (simp add: foldr_conv_fold) lemma foldl_append [simp]: "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" by (simp add: foldl_conv_fold) lemma foldr_map [code_unfold]: "foldr g (map f xs) a = foldr (g \ f) xs a" by (simp add: foldr_conv_fold fold_map rev_map) lemma foldr_filter: "foldr f (filter P xs) = foldr (\x. if P x then f x else id) xs" by (simp add: foldr_conv_fold rev_filter fold_filter) lemma foldl_map [code_unfold]: "foldl g a (map f xs) = foldl (\a x. g a (f x)) a xs" by (simp add: foldl_conv_fold fold_map comp_def) lemma concat_conv_foldr [code]: "concat xss = foldr append xss []" by (simp add: fold_append_concat_rev foldr_conv_fold) subsubsection \\<^const>\upt\\ lemma upt_rec[code]: "[i.. \simp does not terminate!\ by (induct j) auto lemmas upt_rec_numeral[simp] = upt_rec[of "numeral m" "numeral n"] for m n lemma upt_conv_Nil [simp]: "j \ i \ [i.. j \ i)" by(induct j)simp_all lemma upt_eq_Cons_conv: "([i.. i = x \ [i+1.. j \ [i..<(Suc j)] = [i.. \Only needed if \upt_Suc\ is deleted from the simpset.\ by simp lemma upt_conv_Cons: "i < j \ [i.. \no precondition\ "m # n # ns = [m.. n # ns = [Suc m.. [i.. \LOOPS as a simprule, since \j \ j\.\ by (induct k) auto lemma length_upt [simp]: "length [i.. [i.. hd[i.. last[i.. n \ take m [i..i. i + n) [0.. (map f [m..n. n - Suc 0) [Suc m..i. f (Suc i)) [0 ..< n]" by (induct n arbitrary: f) auto lemma nth_take_lemma: "k \ length xs \ k \ length ys \ (\i. i < k \ xs!i = ys!i) \ take k xs = take k ys" proof (induct k arbitrary: xs ys) case (Suc k) then show ?case apply (simp add: less_Suc_eq_0_disj) by (simp add: Suc.prems(3) take_Suc_conv_app_nth) qed simp lemma nth_equalityI: "\length xs = length ys; \i. i < length xs \ xs!i = ys!i\ \ xs = ys" by (frule nth_take_lemma [OF le_refl eq_imp_le]) simp_all lemma map_nth: "map (\i. xs ! i) [0.. (\x y. \P x y; Q y x\ \ x = y); list_all2 P xs ys; list_all2 Q ys xs \ \ xs = ys" by (simp add: list_all2_conv_all_nth nth_equalityI) lemma take_equalityI: "(\i. take i xs = take i ys) \ xs = ys" \ \The famous take-lemma.\ by (metis length_take min.commute order_refl take_all) lemma take_Cons': "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" by (cases n) simp_all lemma drop_Cons': "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" by (cases n) simp_all lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" by (cases n) simp_all lemma take_Cons_numeral [simp]: "take (numeral v) (x # xs) = x # take (numeral v - 1) xs" by (simp add: take_Cons') lemma drop_Cons_numeral [simp]: "drop (numeral v) (x # xs) = drop (numeral v - 1) xs" by (simp add: drop_Cons') lemma nth_Cons_numeral [simp]: "(x # xs) ! numeral v = xs ! (numeral v - 1)" by (simp add: nth_Cons') subsubsection \\upto\: interval-list on \<^typ>\int\\ function upto :: "int \ int \ int list" ("(1[_../_])") where "upto i j = (if i \ j then i # [i+1..j] else [])" by auto termination by(relation "measure(%(i::int,j). nat(j - i + 1))") auto declare upto.simps[simp del] lemmas upto_rec_numeral [simp] = upto.simps[of "numeral m" "numeral n"] upto.simps[of "numeral m" "- numeral n"] upto.simps[of "- numeral m" "numeral n"] upto.simps[of "- numeral m" "- numeral n"] for m n lemma upto_empty[simp]: "j < i \ [i..j] = []" by(simp add: upto.simps) lemma upto_single[simp]: "[i..i] = [i]" by(simp add: upto.simps) lemma upto_Nil[simp]: "[i..j] = [] \ j < i" by (simp add: upto.simps) lemma upto_Nil2[simp]: "[] = [i..j] \ j < i" by (simp add: upto.simps) lemma upto_rec1: "i \ j \ [i..j] = i#[i+1..j]" by(simp add: upto.simps) lemma upto_rec2: "i \ j \ [i..j] = [i..j - 1]@[j]" proof(induct "nat(j-i)" arbitrary: i j) case 0 thus ?case by(simp add: upto.simps) next case (Suc n) hence "n = nat (j - (i + 1))" "i < j" by linarith+ from this(2) Suc.hyps(1)[OF this(1)] Suc(2,3) upto_rec1 show ?case by simp qed lemma length_upto[simp]: "length [i..j] = nat(j - i + 1)" by(induction i j rule: upto.induct) (auto simp: upto.simps) lemma set_upto[simp]: "set[i..j] = {i..j}" proof(induct i j rule:upto.induct) case (1 i j) from this show ?case unfolding upto.simps[of i j] by auto qed lemma nth_upto[simp]: "i + int k \ j \ [i..j] ! k = i + int k" proof(induction i j arbitrary: k rule: upto.induct) case (1 i j) then show ?case by (auto simp add: upto_rec1 [of i j] nth_Cons') qed lemma upto_split1: "i \ j \ j \ k \ [i..k] = [i..j-1] @ [j..k]" proof (induction j rule: int_ge_induct) case base thus ?case by (simp add: upto_rec1) next case step thus ?case using upto_rec1 upto_rec2 by simp qed lemma upto_split2: "i \ j \ j \ k \ [i..k] = [i..j] @ [j+1..k]" using upto_rec1 upto_rec2 upto_split1 by auto lemma upto_split3: "\ i \ j; j \ k \ \ [i..k] = [i..j-1] @ j # [j+1..k]" using upto_rec1 upto_split1 by auto text\Tail recursive version for code generation:\ definition upto_aux :: "int \ int \ int list \ int list" where "upto_aux i j js = [i..j] @ js" lemma upto_aux_rec [code]: "upto_aux i j js = (if j\<^const>\successively\\ lemma successively_Cons: "successively P (x # xs) \ xs = [] \ P x (hd xs) \ successively P xs" by (cases xs) auto lemma successively_cong [cong]: assumes "\x y. x \ set xs \ y \ set xs \ P x y \ Q x y" "xs = ys" shows "successively P xs \ successively Q ys" unfolding assms(2) [symmetric] using assms(1) by (induction xs) (auto simp: successively_Cons) lemma successively_append_iff: "successively P (xs @ ys) \ successively P xs \ successively P ys \ (xs = [] \ ys = [] \ P (last xs) (hd ys))" by (induction xs) (auto simp: successively_Cons) lemma successively_if_sorted_wrt: "sorted_wrt P xs \ successively P xs" by (induction xs rule: induct_list012) auto lemma successively_iff_sorted_wrt_strong: assumes "\x y z. x \ set xs \ y \ set xs \ z \ set xs \ P x y \ P y z \ P x z" shows "successively P xs \ sorted_wrt P xs" proof assume "successively P xs" from this and assms show "sorted_wrt P xs" proof (induction xs rule: induct_list012) case (3 x y xs) from "3.prems" have "P x y" by auto have IH: "sorted_wrt P (y # xs)" using "3.prems" by(intro "3.IH"(2) list.set_intros(2))(simp, blast intro: list.set_intros(2)) have "P x z" if asm: "z \ set xs" for z proof - from IH and asm have "P y z" by auto with \P x y\ show "P x z" using "3.prems" asm by auto qed with IH and \P x y\ show ?case by auto qed auto qed (use successively_if_sorted_wrt in blast) lemma successively_conv_sorted_wrt: assumes "transp P" shows "successively P xs \ sorted_wrt P xs" using assms unfolding transp_def by (intro successively_iff_sorted_wrt_strong) blast lemma successively_rev [simp]: "successively P (rev xs) \ successively (\x y. P y x) xs" by (induction xs rule: remdups_adj.induct) (auto simp: successively_append_iff successively_Cons) lemma successively_map: "successively P (map f xs) \ successively (\x y. P (f x) (f y)) xs" by (induction xs rule: induct_list012) auto lemma successively_mono: assumes "successively P xs" assumes "\x y. x \ set xs \ y \ set xs \ P x y \ Q x y" shows "successively Q xs" using assms by (induction Q xs rule: successively.induct) auto lemma successively_altdef: "successively = (\P. rec_list True (\x xs b. case xs of [] \ True | y # _ \ P x y \ b))" proof (intro ext) fix P and xs :: "'a list" show "successively P xs = rec_list True (\x xs b. case xs of [] \ True | y # _ \ P x y \ b) xs" by (induction xs) (auto simp: successively_Cons split: list.splits) qed subsubsection \\<^const>\distinct\ and \<^const>\remdups\ and \<^const>\remdups_adj\\ lemma distinct_tl: "distinct xs \ distinct (tl xs)" by (cases xs) simp_all lemma distinct_append [simp]: "distinct (xs @ ys) = (distinct xs \ distinct ys \ set xs \ set ys = {})" by (induct xs) auto lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs" by(induct xs) auto lemma set_remdups [simp]: "set (remdups xs) = set xs" by (induct xs) (auto simp add: insert_absorb) lemma distinct_remdups [iff]: "distinct (remdups xs)" by (induct xs) auto lemma distinct_remdups_id: "distinct xs \ remdups xs = xs" by (induct xs, auto) lemma remdups_id_iff_distinct [simp]: "remdups xs = xs \ distinct xs" by (metis distinct_remdups distinct_remdups_id) lemma finite_distinct_list: "finite A \ \xs. set xs = A \ distinct xs" by (metis distinct_remdups finite_list set_remdups) lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])" by (induct x, auto) lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])" by (induct x, auto) lemma length_remdups_leq[iff]: "length(remdups xs) \ length xs" by (induct xs) auto lemma length_remdups_eq[iff]: "(length (remdups xs) = length xs) = (remdups xs = xs)" proof (induct xs) case (Cons a xs) then show ?case by simp (metis Suc_n_not_le_n impossible_Cons length_remdups_leq) qed auto lemma remdups_filter: "remdups(filter P xs) = filter P (remdups xs)" by (induct xs) auto lemma distinct_map: "distinct(map f xs) = (distinct xs \ inj_on f (set xs))" by (induct xs) auto lemma distinct_map_filter: "distinct (map f xs) \ distinct (map f (filter P xs))" by (induct xs) auto lemma distinct_filter [simp]: "distinct xs \ distinct (filter P xs)" by (induct xs) auto lemma distinct_upt[simp]: "distinct[i.. distinct (take i xs)" proof (induct xs arbitrary: i) case (Cons a xs) then show ?case by (metis Cons.prems append_take_drop_id distinct_append) qed auto lemma distinct_drop[simp]: "distinct xs \ distinct (drop i xs)" proof (induct xs arbitrary: i) case (Cons a xs) then show ?case by (metis Cons.prems append_take_drop_id distinct_append) qed auto lemma distinct_list_update: assumes d: "distinct xs" and a: "a \ set xs - {xs!i}" shows "distinct (xs[i:=a])" proof (cases "i < length xs") case True with a have anot: "a \ set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}" by simp (metis in_set_dropD in_set_takeD) show ?thesis proof (cases "a = xs!i") case True with d show ?thesis by auto next case False have "set (take i xs) \ set (drop (Suc i) xs) = {}" by (metis True d disjoint_insert(1) distinct_append id_take_nth_drop list.set(2)) then show ?thesis using d False anot \i < length xs\ by (simp add: upd_conv_take_nth_drop) qed next case False with d show ?thesis by auto qed lemma distinct_concat: "\ distinct xs; \ ys. ys \ set xs \ distinct ys; \ ys zs. \ ys \ set xs ; zs \ set xs ; ys \ zs \ \ set ys \ set zs = {} \ \ distinct (concat xs)" by (induct xs) auto text \An iff-version of @{thm distinct_concat} is available further down as \distinct_concat_iff\.\ text \It is best to avoid the following indexed version of distinct, but sometimes it is useful.\ lemma distinct_conv_nth: "distinct xs = (\i < size xs. \j < size xs. i \ j \ xs!i \ xs!j)" proof (induct xs) case (Cons x xs) show ?case apply (auto simp add: Cons nth_Cons split: nat.split_asm) apply (metis Suc_less_eq2 in_set_conv_nth less_not_refl zero_less_Suc)+ done qed auto lemma nth_eq_iff_index_eq: "\ distinct xs; i < length xs; j < length xs \ \ (xs!i = xs!j) = (i = j)" by(auto simp: distinct_conv_nth) lemma distinct_Ex1: "distinct xs \ x \ set xs \ (\!i. i < length xs \ xs ! i = x)" by (auto simp: in_set_conv_nth nth_eq_iff_index_eq) lemma inj_on_nth: "distinct xs \ \i \ I. i < length xs \ inj_on (nth xs) I" by (rule inj_onI) (simp add: nth_eq_iff_index_eq) lemma bij_betw_nth: assumes "distinct xs" "A = {.. distinct xs; n < length xs \ \ set(xs[n := x]) = insert x (set xs - {xs!n})" by(auto simp: set_eq_iff in_set_conv_nth nth_list_update nth_eq_iff_index_eq) lemma distinct_swap[simp]: "\ i < size xs; j < size xs\ \ distinct(xs[i := xs!j, j := xs!i]) = distinct xs" apply (simp add: distinct_conv_nth nth_list_update) apply (safe; metis) done lemma set_swap[simp]: "\ i < size xs; j < size xs \ \ set(xs[i := xs!j, j := xs!i]) = set xs" by(simp add: set_conv_nth nth_list_update) metis lemma distinct_card: "distinct xs \ card (set xs) = size xs" by (induct xs) auto lemma card_distinct: "card (set xs) = size xs \ distinct xs" proof (induct xs) case (Cons x xs) show ?case proof (cases "x \ set xs") case False with Cons show ?thesis by simp next case True with Cons.prems have "card (set xs) = Suc (length xs)" by (simp add: card_insert_if split: if_split_asm) moreover have "card (set xs) \ length xs" by (rule card_length) ultimately have False by simp thus ?thesis .. qed qed simp lemma distinct_length_filter: "distinct xs \ length (filter P xs) = card ({x. P x} Int set xs)" by (induct xs) (auto) lemma not_distinct_decomp: "\ distinct ws \ \xs ys zs y. ws = xs@[y]@ys@[y]@zs" proof (induct n == "length ws" arbitrary:ws) case (Suc n ws) then show ?case using length_Suc_conv [of ws n] apply (auto simp: eq_commute) apply (metis append_Nil in_set_conv_decomp_first) by (metis append_Cons) qed simp lemma not_distinct_conv_prefix: defines "dec as xs y ys \ y \ set xs \ distinct xs \ as = xs @ y # ys" shows "\distinct as \ (\xs y ys. dec as xs y ys)" (is "?L = ?R") proof assume "?L" then show "?R" proof (induct "length as" arbitrary: as rule: less_induct) case less obtain xs ys zs y where decomp: "as = (xs @ y # ys) @ y # zs" using not_distinct_decomp[OF less.prems] by auto show ?case proof (cases "distinct (xs @ y # ys)") case True with decomp have "dec as (xs @ y # ys) y zs" by (simp add: dec_def) then show ?thesis by blast next case False with less decomp obtain xs' y' ys' where "dec (xs @ y # ys) xs' y' ys'" by atomize_elim auto with decomp have "dec as xs' y' (ys' @ y # zs)" by (simp add: dec_def) then show ?thesis by blast qed qed qed (auto simp: dec_def) lemma distinct_product: "distinct xs \ distinct ys \ distinct (List.product xs ys)" by (induct xs) (auto intro: inj_onI simp add: distinct_map) lemma distinct_product_lists: assumes "\xs \ set xss. distinct xs" shows "distinct (product_lists xss)" using assms proof (induction xss) case (Cons xs xss) note * = this then show ?case proof (cases "product_lists xss") case Nil then show ?thesis by (induct xs) simp_all next case (Cons ps pss) with * show ?thesis by (auto intro!: inj_onI distinct_concat simp add: distinct_map) qed qed simp lemma length_remdups_concat: "length (remdups (concat xss)) = card (\xs\set xss. set xs)" by (simp add: distinct_card [symmetric]) lemma remdups_append2: "remdups (xs @ remdups ys) = remdups (xs @ ys)" by(induction xs) auto lemma length_remdups_card_conv: "length(remdups xs) = card(set xs)" proof - have xs: "concat[xs] = xs" by simp from length_remdups_concat[of "[xs]"] show ?thesis unfolding xs by simp qed lemma remdups_remdups: "remdups (remdups xs) = remdups xs" by (induct xs) simp_all lemma distinct_butlast: assumes "distinct xs" shows "distinct (butlast xs)" proof (cases "xs = []") case False from \xs \ []\ obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto with \distinct xs\ show ?thesis by simp qed (auto) lemma remdups_map_remdups: "remdups (map f (remdups xs)) = remdups (map f xs)" by (induct xs) simp_all lemma distinct_zipI1: assumes "distinct xs" shows "distinct (zip xs ys)" proof (rule zip_obtain_same_length) fix xs' :: "'a list" and ys' :: "'b list" and n assume "length xs' = length ys'" assume "xs' = take n xs" with assms have "distinct xs'" by simp with \length xs' = length ys'\ show "distinct (zip xs' ys')" by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE) qed lemma distinct_zipI2: assumes "distinct ys" shows "distinct (zip xs ys)" proof (rule zip_obtain_same_length) fix xs' :: "'b list" and ys' :: "'a list" and n assume "length xs' = length ys'" assume "ys' = take n ys" with assms have "distinct ys'" by simp with \length xs' = length ys'\ show "distinct (zip xs' ys')" by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE) qed lemma set_take_disj_set_drop_if_distinct: "distinct vs \ i \ j \ set (take i vs) \ set (drop j vs) = {}" by (auto simp: in_set_conv_nth distinct_conv_nth) (* The next two lemmas help Sledgehammer. *) lemma distinct_singleton: "distinct [x]" by simp lemma distinct_length_2_or_more: "distinct (a # b # xs) \ (a \ b \ distinct (a # xs) \ distinct (b # xs))" by force lemma remdups_adj_altdef: "(remdups_adj xs = ys) \ (\f::nat => nat. mono f \ f ` {0 ..< size xs} = {0 ..< size ys} \ (\i < size xs. xs!i = ys!(f i)) \ (\i. i + 1 < size xs \ (xs!i = xs!(i+1) \ f i = f(i+1))))" (is "?L \ (\f. ?p f xs ys)") proof assume ?L then show "\f. ?p f xs ys" proof (induct xs arbitrary: ys rule: remdups_adj.induct) case (1 ys) thus ?case by (intro exI[of _ id]) (auto simp: mono_def) next case (2 x ys) thus ?case by (intro exI[of _ id]) (auto simp: mono_def) next case (3 x1 x2 xs ys) let ?xs = "x1 # x2 # xs" let ?cond = "x1 = x2" define zs where "zs = remdups_adj (x2 # xs)" from 3(1-2)[of zs] obtain f where p: "?p f (x2 # xs) zs" unfolding zs_def by (cases ?cond) auto then have f0: "f 0 = 0" by (intro mono_image_least[where f=f]) blast+ from p have mono: "mono f" and f_xs_zs: "f ` {0.. []" unfolding zs_def by (induct xs) auto let ?Succ = "if ?cond then id else Suc" let ?x1 = "if ?cond then id else Cons x1" let ?f = "\ i. if i = 0 then 0 else ?Succ (f (i - 1))" have ys: "ys = ?x1 zs" unfolding ys by (cases ?cond, auto) have mono: "mono ?f" using \mono f\ unfolding mono_def by auto show ?case unfolding ys proof (intro exI[of _ ?f] conjI allI impI) show "mono ?f" by fact next fix i assume i: "i < length ?xs" with p show "?xs ! i = ?x1 zs ! (?f i)" using zs0 by auto next fix i assume i: "i + 1 < length ?xs" with p show "(?xs ! i = ?xs ! (i + 1)) = (?f i = ?f (i + 1))" by (cases i) (auto simp: f0) next have id: "{0 ..< length (?x1 zs)} = insert 0 (?Succ ` {0 ..< length zs})" using zsne by (cases ?cond, auto) { fix i assume "i < Suc (length xs)" hence "Suc i \ {0.. Collect ((<) 0)" by auto from imageI[OF this, of "\i. ?Succ (f (i - Suc 0))"] have "?Succ (f i) \ (\i. ?Succ (f (i - Suc 0))) ` ({0.. Collect ((<) 0))" by auto } then show "?f ` {0 ..< length ?xs} = {0 ..< length (?x1 zs)}" unfolding id f_xs_zs[symmetric] by auto qed qed next assume "\ f. ?p f xs ys" then show ?L proof (induct xs arbitrary: ys rule: remdups_adj.induct) case 1 then show ?case by auto next case (2 x) then obtain f where f_img: "f ` {0 ..< size [x]} = {0 ..< size ys}" and f_nth: "\i. i < size [x] \ [x]!i = ys!(f i)" by blast have "length ys = card (f ` {0 ..< size [x]})" using f_img by auto then have *: "length ys = 1" by auto then have "f 0 = 0" using f_img by auto with * show ?case using f_nth by (cases ys) auto next case (3 x1 x2 xs) from "3.prems" obtain f where f_mono: "mono f" and f_img: "f ` {0..i. i < length (x1 # x2 # xs) \ (x1 # x2 # xs) ! i = ys ! f i" "\i. i + 1 < length (x1 # x2 #xs) \ ((x1 # x2 # xs) ! i = (x1 # x2 # xs) ! (i + 1)) = (f i = f (i + 1))" by blast show ?case proof cases assume "x1 = x2" let ?f' = "f \ Suc" have "remdups_adj (x1 # xs) = ys" proof (intro "3.hyps" exI conjI impI allI) show "mono ?f'" using f_mono by (simp add: mono_iff_le_Suc) next have "?f' ` {0 ..< length (x1 # xs)} = f ` {Suc 0 ..< length (x1 # x2 # xs)}" using less_Suc_eq_0_disj by auto also have "\ = f ` {0 ..< length (x1 # x2 # xs)}" proof - have "f 0 = f (Suc 0)" using \x1 = x2\ f_nth[of 0] by simp then show ?thesis using less_Suc_eq_0_disj by auto qed also have "\ = {0 ..< length ys}" by fact finally show "?f' ` {0 ..< length (x1 # xs)} = {0 ..< length ys}" . qed (insert f_nth[of "Suc i" for i], auto simp: \x1 = x2\) then show ?thesis using \x1 = x2\ by simp next assume "x1 \ x2" have two: "Suc (Suc 0) \ length ys" proof - have "2 = card {f 0, f 1}" using \x1 \ x2\ f_nth[of 0] by auto also have "\ \ card (f ` {0..< length (x1 # x2 # xs)})" by (rule card_mono) auto finally show ?thesis using f_img by simp qed have "f 0 = 0" using f_mono f_img by (rule mono_image_least) simp have "f (Suc 0) = Suc 0" proof (rule ccontr) assume "f (Suc 0) \ Suc 0" then have "Suc 0 < f (Suc 0)" using f_nth[of 0] \x1 \ x2\ \f 0 = 0\ by auto then have "\i. Suc 0 < f (Suc i)" using f_mono by (meson Suc_le_mono le0 less_le_trans monoD) then have "Suc 0 \ f i" for i using \f 0 = 0\ by (cases i) fastforce+ then have "Suc 0 \ f ` {0 ..< length (x1 # x2 # xs)}" by auto then show False using f_img two by auto qed obtain ys' where "ys = x1 # x2 # ys'" using two f_nth[of 0] f_nth[of 1] by (auto simp: Suc_le_length_iff \f 0 = 0\ \f (Suc 0) = Suc 0\) have Suc0_le_f_Suc: "Suc 0 \ f (Suc i)" for i by (metis Suc_le_mono \f (Suc 0) = Suc 0\ f_mono le0 mono_def) define f' where "f' x = f (Suc x) - 1" for x have f_Suc: "f (Suc i) = Suc (f' i)" for i using Suc0_le_f_Suc[of i] by (auto simp: f'_def) have "remdups_adj (x2 # xs) = (x2 # ys')" proof (intro "3.hyps" exI conjI impI allI) show "mono f'" using Suc0_le_f_Suc f_mono by (auto simp: f'_def mono_iff_le_Suc le_diff_iff) next have "f' ` {0 ..< length (x2 # xs)} = (\x. f x - 1) ` {0 ..< length (x1 # x2 #xs)}" by (auto simp: f'_def \f 0 = 0\ \f (Suc 0) = Suc 0\ image_def Bex_def less_Suc_eq_0_disj) also have "\ = (\x. x - 1) ` f ` {0 ..< length (x1 # x2 #xs)}" by (auto simp: image_comp) also have "\ = (\x. x - 1) ` {0 ..< length ys}" by (simp only: f_img) also have "\ = {0 ..< length (x2 # ys')}" using \ys = _\ by (fastforce intro: rev_image_eqI) finally show "f' ` {0 ..< length (x2 # xs)} = {0 ..< length (x2 # ys')}" . qed (insert f_nth[of "Suc i" for i] \x1 \ x2\, auto simp add: f_Suc \ys = _\) then show ?case using \ys = _\ \x1 \ x2\ by simp qed qed qed lemma hd_remdups_adj[simp]: "hd (remdups_adj xs) = hd xs" by (induction xs rule: remdups_adj.induct) simp_all lemma remdups_adj_Cons: "remdups_adj (x # xs) = (case remdups_adj xs of [] \ [x] | y # xs \ if x = y then y # xs else x # y # xs)" by (induct xs arbitrary: x) (auto split: list.splits) lemma remdups_adj_append_two: "remdups_adj (xs @ [x,y]) = remdups_adj (xs @ [x]) @ (if x = y then [] else [y])" by (induct xs rule: remdups_adj.induct, simp_all) lemma remdups_adj_adjacent: "Suc i < length (remdups_adj xs) \ remdups_adj xs ! i \ remdups_adj xs ! Suc i" proof (induction xs arbitrary: i rule: remdups_adj.induct) case (3 x y xs i) thus ?case by (cases i, cases "x = y") (simp, auto simp: hd_conv_nth[symmetric]) qed simp_all lemma remdups_adj_rev[simp]: "remdups_adj (rev xs) = rev (remdups_adj xs)" by (induct xs rule: remdups_adj.induct, simp_all add: remdups_adj_append_two) lemma remdups_adj_length[simp]: "length (remdups_adj xs) \ length xs" by (induct xs rule: remdups_adj.induct, auto) lemma remdups_adj_length_ge1[simp]: "xs \ [] \ length (remdups_adj xs) \ Suc 0" by (induct xs rule: remdups_adj.induct, simp_all) lemma remdups_adj_Nil_iff[simp]: "remdups_adj xs = [] \ xs = []" by (induct xs rule: remdups_adj.induct, simp_all) lemma remdups_adj_set[simp]: "set (remdups_adj xs) = set xs" by (induct xs rule: remdups_adj.induct, simp_all) lemma last_remdups_adj [simp]: "last (remdups_adj xs) = last xs" by (induction xs rule: remdups_adj.induct) auto lemma remdups_adj_Cons_alt[simp]: "x # tl (remdups_adj (x # xs)) = remdups_adj (x # xs)" by (induct xs rule: remdups_adj.induct, auto) lemma remdups_adj_distinct: "distinct xs \ remdups_adj xs = xs" by (induct xs rule: remdups_adj.induct, simp_all) lemma remdups_adj_append: "remdups_adj (xs\<^sub>1 @ x # xs\<^sub>2) = remdups_adj (xs\<^sub>1 @ [x]) @ tl (remdups_adj (x # xs\<^sub>2))" by (induct xs\<^sub>1 rule: remdups_adj.induct, simp_all) lemma remdups_adj_singleton: "remdups_adj xs = [x] \ xs = replicate (length xs) x" by (induct xs rule: remdups_adj.induct, auto split: if_split_asm) lemma remdups_adj_map_injective: assumes "inj f" shows "remdups_adj (map f xs) = map f (remdups_adj xs)" by (induct xs rule: remdups_adj.induct) (auto simp add: injD[OF assms]) lemma remdups_adj_replicate: "remdups_adj (replicate n x) = (if n = 0 then [] else [x])" by (induction n) (auto simp: remdups_adj_Cons) lemma remdups_upt [simp]: "remdups [m.. n") case False then show ?thesis by simp next case True then obtain q where "n = m + q" by (auto simp add: le_iff_add) moreover have "remdups [m.. successively P (remdups_adj xs)" by (induction xs rule: remdups_adj.induct) (auto simp: successively_Cons) lemma successively_remdups_adj_iff: "(\x. x \ set xs \ P x x) \ successively P (remdups_adj xs) \ successively P xs" by (induction xs rule: remdups_adj.induct)(auto simp: successively_Cons) lemma remdups_adj_Cons': "remdups_adj (x # xs) = x # remdups_adj (dropWhile (\y. y = x) xs)" by (induction xs) auto lemma remdups_adj_singleton_iff: "length (remdups_adj xs) = Suc 0 \ xs \ [] \ xs = replicate (length xs) (hd xs)" proof safe assume *: "xs = replicate (length xs) (hd xs)" and [simp]: "xs \ []" show "length (remdups_adj xs) = Suc 0" by (subst *) (auto simp: remdups_adj_replicate) next assume "length (remdups_adj xs) = Suc 0" thus "xs = replicate (length xs) (hd xs)" by (induction xs rule: remdups_adj.induct) (auto split: if_splits) qed auto lemma tl_remdups_adj: "ys \ [] \ tl (remdups_adj ys) = remdups_adj (dropWhile (\x. x = hd ys) (tl ys))" by (cases ys) (simp_all add: remdups_adj_Cons') lemma remdups_adj_append_dropWhile: "remdups_adj (xs @ y # ys) = remdups_adj (xs @ [y]) @ remdups_adj (dropWhile (\x. x = y) ys)" by (subst remdups_adj_append) (simp add: tl_remdups_adj) lemma remdups_adj_append': assumes "xs = [] \ ys = [] \ last xs \ hd ys" shows "remdups_adj (xs @ ys) = remdups_adj xs @ remdups_adj ys" proof - have ?thesis if [simp]: "xs \ []" "ys \ []" and "last xs \ hd ys" proof - obtain x xs' where xs: "xs = xs' @ [x]" by (cases xs rule: rev_cases) auto have "remdups_adj (xs' @ x # ys) = remdups_adj (xs' @ [x]) @ remdups_adj ys" using \last xs \ hd ys\ unfolding xs by (metis (full_types) dropWhile_eq_self_iff last_snoc remdups_adj_append_dropWhile) thus ?thesis by (simp add: xs) qed thus ?thesis using assms by (cases "xs = []"; cases "ys = []") auto qed lemma remdups_adj_append'': "xs \ [] \ remdups_adj (xs @ ys) = remdups_adj xs @ remdups_adj (dropWhile (\y. y = last xs) ys)" by (induction xs rule: remdups_adj.induct) (auto simp: remdups_adj_Cons') subsection \@{const distinct_adj}\ lemma distinct_adj_Nil [simp]: "distinct_adj []" and distinct_adj_singleton [simp]: "distinct_adj [x]" and distinct_adj_Cons_Cons [simp]: "distinct_adj (x # y # xs) \ x \ y \ distinct_adj (y # xs)" by (auto simp: distinct_adj_def) lemma distinct_adj_Cons: "distinct_adj (x # xs) \ xs = [] \ x \ hd xs \ distinct_adj xs" by (cases xs) auto lemma distinct_adj_ConsD: "distinct_adj (x # xs) \ distinct_adj xs" by (cases xs) auto lemma distinct_adj_remdups_adj[simp]: "distinct_adj (remdups_adj xs)" by (induction xs rule: remdups_adj.induct) (auto simp: distinct_adj_Cons) lemma distinct_adj_altdef: "distinct_adj xs \ remdups_adj xs = xs" proof assume "remdups_adj xs = xs" with distinct_adj_remdups_adj[of xs] show "distinct_adj xs" by simp next assume "distinct_adj xs" thus "remdups_adj xs = xs" by (induction xs rule: induct_list012) auto qed lemma distinct_adj_rev [simp]: "distinct_adj (rev xs) \ distinct_adj xs" by (simp add: distinct_adj_def eq_commute) lemma distinct_adj_append_iff: "distinct_adj (xs @ ys) \ distinct_adj xs \ distinct_adj ys \ (xs = [] \ ys = [] \ last xs \ hd ys)" by (auto simp: distinct_adj_def successively_append_iff) lemma distinct_adj_appendD1 [dest]: "distinct_adj (xs @ ys) \ distinct_adj xs" and distinct_adj_appendD2 [dest]: "distinct_adj (xs @ ys) \ distinct_adj ys" by (auto simp: distinct_adj_append_iff) lemma distinct_adj_mapI: "distinct_adj xs \ inj_on f (set xs) \ distinct_adj (map f xs)" unfolding distinct_adj_def successively_map by (erule successively_mono) (auto simp: inj_on_def) lemma distinct_adj_mapD: "distinct_adj (map f xs) \ distinct_adj xs" unfolding distinct_adj_def successively_map by (erule successively_mono) auto lemma distinct_adj_map_iff: "inj_on f (set xs) \ distinct_adj (map f xs) \ distinct_adj xs" using distinct_adj_mapD distinct_adj_mapI by blast subsubsection \\<^const>\insert\\ lemma in_set_insert [simp]: "x \ set xs \ List.insert x xs = xs" by (simp add: List.insert_def) lemma not_in_set_insert [simp]: "x \ set xs \ List.insert x xs = x # xs" by (simp add: List.insert_def) lemma insert_Nil [simp]: "List.insert x [] = [x]" by simp lemma set_insert [simp]: "set (List.insert x xs) = insert x (set xs)" by (auto simp add: List.insert_def) lemma distinct_insert [simp]: "distinct (List.insert x xs) = distinct xs" by (simp add: List.insert_def) lemma insert_remdups: "List.insert x (remdups xs) = remdups (List.insert x xs)" by (simp add: List.insert_def) subsubsection \\<^const>\List.union\\ text\This is all one should need to know about union:\ lemma set_union[simp]: "set (List.union xs ys) = set xs \ set ys" unfolding List.union_def by(induct xs arbitrary: ys) simp_all lemma distinct_union[simp]: "distinct(List.union xs ys) = distinct ys" unfolding List.union_def by(induct xs arbitrary: ys) simp_all subsubsection \\<^const>\List.find\\ lemma find_None_iff: "List.find P xs = None \ \ (\x. x \ set xs \ P x)" proof (induction xs) case Nil thus ?case by simp next case (Cons x xs) thus ?case by (fastforce split: if_splits) qed lemma find_Some_iff: "List.find P xs = Some x \ (\i x = xs!i \ (\j P (xs!j)))" proof (induction xs) case Nil thus ?case by simp next case (Cons x xs) thus ?case apply(auto simp: nth_Cons' split: if_splits) using diff_Suc_1[unfolded One_nat_def] less_Suc_eq_0_disj by fastforce qed lemma find_cong[fundef_cong]: assumes "xs = ys" and "\x. x \ set ys \ P x = Q x" shows "List.find P xs = List.find Q ys" proof (cases "List.find P xs") case None thus ?thesis by (metis find_None_iff assms) next case (Some x) hence "List.find Q ys = Some x" using assms by (auto simp add: find_Some_iff) thus ?thesis using Some by auto qed lemma find_dropWhile: "List.find P xs = (case dropWhile (Not \ P) xs of [] \ None | x # _ \ Some x)" by (induct xs) simp_all subsubsection \\<^const>\count_list\\ lemma count_notin[simp]: "x \ set xs \ count_list xs x = 0" by (induction xs) auto lemma count_le_length: "count_list xs x \ length xs" by (induction xs) auto lemma sum_count_set: "set xs \ X \ finite X \ sum (count_list xs) X = length xs" proof (induction xs arbitrary: X) case (Cons x xs) then show ?case using sum.remove [of X x "count_list xs"] by (auto simp: sum.If_cases simp flip: diff_eq) qed simp subsubsection \\<^const>\List.extract\\ lemma extract_None_iff: "List.extract P xs = None \ \ (\ x\set xs. P x)" by(auto simp: extract_def dropWhile_eq_Cons_conv split: list.splits) (metis in_set_conv_decomp) lemma extract_SomeE: "List.extract P xs = Some (ys, y, zs) \ xs = ys @ y # zs \ P y \ \ (\ y \ set ys. P y)" by(auto simp: extract_def dropWhile_eq_Cons_conv split: list.splits) lemma extract_Some_iff: "List.extract P xs = Some (ys, y, zs) \ xs = ys @ y # zs \ P y \ \ (\ y \ set ys. P y)" by(auto simp: extract_def dropWhile_eq_Cons_conv dest: set_takeWhileD split: list.splits) lemma extract_Nil_code[code]: "List.extract P [] = None" by(simp add: extract_def) lemma extract_Cons_code[code]: "List.extract P (x # xs) = (if P x then Some ([], x, xs) else (case List.extract P xs of None \ None | Some (ys, y, zs) \ Some (x#ys, y, zs)))" by(auto simp add: extract_def comp_def split: list.splits) (metis dropWhile_eq_Nil_conv list.distinct(1)) subsubsection \\<^const>\remove1\\ lemma remove1_append: "remove1 x (xs @ ys) = (if x \ set xs then remove1 x xs @ ys else xs @ remove1 x ys)" by (induct xs) auto lemma remove1_commute: "remove1 x (remove1 y zs) = remove1 y (remove1 x zs)" by (induct zs) auto lemma in_set_remove1[simp]: "a \ b \ a \ set(remove1 b xs) = (a \ set xs)" by (induct xs) auto lemma set_remove1_subset: "set(remove1 x xs) \ set xs" by (induct xs) auto lemma set_remove1_eq [simp]: "distinct xs \ set(remove1 x xs) = set xs - {x}" by (induct xs) auto lemma length_remove1: "length(remove1 x xs) = (if x \ set xs then length xs - 1 else length xs)" by (induct xs) (auto dest!:length_pos_if_in_set) lemma remove1_filter_not[simp]: "\ P x \ remove1 x (filter P xs) = filter P xs" by(induct xs) auto lemma filter_remove1: "filter Q (remove1 x xs) = remove1 x (filter Q xs)" by (induct xs) auto lemma notin_set_remove1[simp]: "x \ set xs \ x \ set(remove1 y xs)" by(insert set_remove1_subset) fast lemma distinct_remove1[simp]: "distinct xs \ distinct(remove1 x xs)" by (induct xs) simp_all lemma remove1_remdups: "distinct xs \ remove1 x (remdups xs) = remdups (remove1 x xs)" by (induct xs) simp_all lemma remove1_idem: "x \ set xs \ remove1 x xs = xs" by (induct xs) simp_all subsubsection \\<^const>\removeAll\\ lemma removeAll_filter_not_eq: "removeAll x = filter (\y. x \ y)" proof fix xs show "removeAll x xs = filter (\y. x \ y) xs" by (induct xs) auto qed lemma removeAll_append[simp]: "removeAll x (xs @ ys) = removeAll x xs @ removeAll x ys" by (induct xs) auto lemma set_removeAll[simp]: "set(removeAll x xs) = set xs - {x}" by (induct xs) auto lemma removeAll_id[simp]: "x \ set xs \ removeAll x xs = xs" by (induct xs) auto (* Needs count:: 'a \ 'a list \ nat lemma length_removeAll: "length(removeAll x xs) = length xs - count x xs" *) lemma removeAll_filter_not[simp]: "\ P x \ removeAll x (filter P xs) = filter P xs" by(induct xs) auto lemma distinct_removeAll: "distinct xs \ distinct (removeAll x xs)" by (simp add: removeAll_filter_not_eq) lemma distinct_remove1_removeAll: "distinct xs \ remove1 x xs = removeAll x xs" by (induct xs) simp_all lemma map_removeAll_inj_on: "inj_on f (insert x (set xs)) \ map f (removeAll x xs) = removeAll (f x) (map f xs)" by (induct xs) (simp_all add:inj_on_def) lemma map_removeAll_inj: "inj f \ map f (removeAll x xs) = removeAll (f x) (map f xs)" by (rule map_removeAll_inj_on, erule subset_inj_on, rule subset_UNIV) lemma length_removeAll_less_eq [simp]: "length (removeAll x xs) \ length xs" by (simp add: removeAll_filter_not_eq) lemma length_removeAll_less [termination_simp]: "x \ set xs \ length (removeAll x xs) < length xs" by (auto dest: length_filter_less simp add: removeAll_filter_not_eq) lemma distinct_concat_iff: "distinct (concat xs) \ distinct (removeAll [] xs) \ (\ys. ys \ set xs \ distinct ys) \ (\ys zs. ys \ set xs \ zs \ set xs \ ys \ zs \ set ys \ set zs = {})" apply (induct xs) apply(simp_all, safe, auto) by (metis Int_iff UN_I empty_iff equals0I set_empty) subsubsection \\<^const>\replicate\\ lemma length_replicate [simp]: "length (replicate n x) = n" by (induct n) auto lemma replicate_eqI: assumes "length xs = n" and "\y. y \ set xs \ y = x" shows "xs = replicate n x" using assms proof (induct xs arbitrary: n) case Nil then show ?case by simp next case (Cons x xs) then show ?case by (cases n) simp_all qed lemma Ex_list_of_length: "\xs. length xs = n" by (rule exI[of _ "replicate n undefined"]) simp lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" by (induct n) auto lemma map_replicate_const: "map (\ x. k) lst = replicate (length lst) k" by (induct lst) auto lemma replicate_app_Cons_same: "(replicate n x) @ (x # xs) = x # replicate n x @ xs" by (induct n) auto lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" by (induct n) (auto simp: replicate_app_Cons_same) lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" by (induct n) auto text\Courtesy of Matthias Daum:\ lemma append_replicate_commute: "replicate n x @ replicate k x = replicate k x @ replicate n x" by (metis add.commute replicate_add) text\Courtesy of Andreas Lochbihler:\ lemma filter_replicate: "filter P (replicate n x) = (if P x then replicate n x else [])" by(induct n) auto lemma hd_replicate [simp]: "n \ 0 \ hd (replicate n x) = x" by (induct n) auto lemma tl_replicate [simp]: "tl (replicate n x) = replicate (n - 1) x" by (induct n) auto lemma last_replicate [simp]: "n \ 0 \ last (replicate n x) = x" by (atomize (full), induct n) auto lemma nth_replicate[simp]: "i < n \ (replicate n x)!i = x" by (induct n arbitrary: i)(auto simp: nth_Cons split: nat.split) text\Courtesy of Matthias Daum (2 lemmas):\ lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x" proof (cases "k \ i") case True then show ?thesis by (simp add: min_def) next case False then have "replicate k x = replicate i x @ replicate (k - i) x" by (simp add: replicate_add [symmetric]) then show ?thesis by (simp add: min_def) qed lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x" proof (induct k arbitrary: i) case (Suc k) then show ?case by (simp add: drop_Cons') qed simp lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}" by (induct n) auto lemma set_replicate [simp]: "n \ 0 \ set (replicate n x) = {x}" by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})" by auto lemma in_set_replicate[simp]: "(x \ set (replicate n y)) = (x = y \ n \ 0)" by (simp add: set_replicate_conv_if) lemma Ball_set_replicate[simp]: "(\x \ set(replicate n a). P x) = (P a \ n=0)" by(simp add: set_replicate_conv_if) lemma Bex_set_replicate[simp]: "(\x \ set(replicate n a). P x) = (P a \ n\0)" by(simp add: set_replicate_conv_if) lemma replicate_append_same: "replicate i x @ [x] = x # replicate i x" by (induct i) simp_all lemma map_replicate_trivial: "map (\i. x) [0.. n=0" by (induct n) auto lemma empty_replicate[simp]: "([] = replicate n x) \ n=0" by (induct n) auto lemma replicate_eq_replicate[simp]: "(replicate m x = replicate n y) \ (m=n \ (m\0 \ x=y))" proof (induct m arbitrary: n) case (Suc m n) then show ?case by (induct n) auto qed simp lemma takeWhile_replicate[simp]: "takeWhile P (replicate n x) = (if P x then replicate n x else [])" using takeWhile_eq_Nil_iff by fastforce lemma dropWhile_replicate[simp]: "dropWhile P (replicate n x) = (if P x then [] else replicate n x)" using dropWhile_eq_self_iff by fastforce lemma replicate_length_filter: "replicate (length (filter (\y. x = y) xs)) x = filter (\y. x = y) xs" by (induct xs) auto lemma comm_append_are_replicate: "\ xs \ []; ys \ []; xs @ ys = ys @ xs \ \ \m n zs. concat (replicate m zs) = xs \ concat (replicate n zs) = ys" proof (induction "length (xs @ ys)" arbitrary: xs ys rule: less_induct) case less define xs' ys' where "xs' = (if (length xs \ length ys) then xs else ys)" and "ys' = (if (length xs \ length ys) then ys else xs)" then have prems': "length xs' \ length ys'" "xs' @ ys' = ys' @ xs'" and "xs' \ []" and len: "length (xs @ ys) = length (xs' @ ys')" using less by (auto intro: less.hyps) from prems' obtain ws where "ys' = xs' @ ws" by (auto simp: append_eq_append_conv2) have "\m n zs. concat (replicate m zs) = xs' \ concat (replicate n zs) = ys'" proof (cases "ws = []") case True then have "concat (replicate 1 xs') = xs'" and "concat (replicate 1 xs') = ys'" using \ys' = xs' @ ws\ by auto then show ?thesis by blast next case False from \ys' = xs' @ ws\ and \xs' @ ys' = ys' @ xs'\ have "xs' @ ws = ws @ xs'" by simp then have "\m n zs. concat (replicate m zs) = xs' \ concat (replicate n zs) = ws" using False and \xs' \ []\ and \ys' = xs' @ ws\ and len by (intro less.hyps) auto then obtain m n zs where *: "concat (replicate m zs) = xs'" and "concat (replicate n zs) = ws" by blast then have "concat (replicate (m + n) zs) = ys'" using \ys' = xs' @ ws\ by (simp add: replicate_add) with * show ?thesis by blast qed then show ?case using xs'_def ys'_def by meson qed lemma comm_append_is_replicate: fixes xs ys :: "'a list" assumes "xs \ []" "ys \ []" assumes "xs @ ys = ys @ xs" shows "\n zs. n > 1 \ concat (replicate n zs) = xs @ ys" proof - obtain m n zs where "concat (replicate m zs) = xs" and "concat (replicate n zs) = ys" using comm_append_are_replicate[of xs ys, OF assms] by blast then have "m + n > 1" and "concat (replicate (m+n) zs) = xs @ ys" using \xs \ []\ and \ys \ []\ by (auto simp: replicate_add) then show ?thesis by blast qed lemma Cons_replicate_eq: "x # xs = replicate n y \ x = y \ n > 0 \ xs = replicate (n - 1) x" by (induct n) auto lemma replicate_length_same: "(\y\set xs. y = x) \ replicate (length xs) x = xs" by (induct xs) simp_all lemma foldr_replicate [simp]: "foldr f (replicate n x) = f x ^^ n" by (induct n) (simp_all) lemma fold_replicate [simp]: "fold f (replicate n x) = f x ^^ n" by (subst foldr_fold [symmetric]) simp_all subsubsection \\<^const>\enumerate\\ lemma enumerate_simps [simp, code]: "enumerate n [] = []" "enumerate n (x # xs) = (n, x) # enumerate (Suc n) xs" by (simp_all add: enumerate_eq_zip upt_rec) lemma length_enumerate [simp]: "length (enumerate n xs) = length xs" by (simp add: enumerate_eq_zip) lemma map_fst_enumerate [simp]: "map fst (enumerate n xs) = [n.. set (enumerate n xs) \ n \ fst p \ fst p < length xs + n \ nth xs (fst p - n) = snd p" proof - { fix m assume "n \ m" moreover assume "m < length xs + n" ultimately have "[n.. xs ! (m - n) = xs ! (m - n) \ m - n < length xs" by auto then have "\q. [n.. xs ! q = xs ! (m - n) \ q < length xs" .. } then show ?thesis by (cases p) (auto simp add: enumerate_eq_zip in_set_zip) qed lemma nth_enumerate_eq: "m < length xs \ enumerate n xs ! m = (n + m, xs ! m)" by (simp add: enumerate_eq_zip) lemma enumerate_replicate_eq: "enumerate n (replicate m a) = map (\q. (q, a)) [n..k. (k, f k)) [n.. m") (simp_all add: zip_map2 zip_same_conv_map enumerate_eq_zip) subsubsection \\<^const>\rotate1\ and \<^const>\rotate\\ lemma rotate0[simp]: "rotate 0 = id" by(simp add:rotate_def) lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)" by(simp add:rotate_def) lemma rotate_add: "rotate (m+n) = rotate m \ rotate n" by(simp add:rotate_def funpow_add) lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs" by(simp add:rotate_add) lemma rotate1_map: "rotate1 (map f xs) = map f (rotate1 xs)" by(cases xs) simp_all lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)" by(simp add:rotate_def funpow_swap1) lemma rotate1_length01[simp]: "length xs \ 1 \ rotate1 xs = xs" by(cases xs) simp_all lemma rotate_length01[simp]: "length xs \ 1 \ rotate n xs = xs" by (induct n) (simp_all add:rotate_def) lemma rotate1_hd_tl: "xs \ [] \ rotate1 xs = tl xs @ [hd xs]" by (cases xs) simp_all lemma rotate_drop_take: "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs" proof (induct n) case (Suc n) show ?case proof (cases "xs = []") case False then show ?thesis proof (cases "n mod length xs = 0") case True then show ?thesis by (auto simp add: mod_Suc False Suc.hyps drop_Suc rotate1_hd_tl take_Suc Suc_length_conv) next case False with \xs \ []\ Suc show ?thesis by (simp add: rotate_def mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric] take_hd_drop linorder_not_le) qed qed simp qed simp lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs" by(simp add:rotate_drop_take) lemma rotate_id[simp]: "n mod length xs = 0 \ rotate n xs = xs" by(simp add:rotate_drop_take) lemma length_rotate1[simp]: "length(rotate1 xs) = length xs" by (cases xs) simp_all lemma length_rotate[simp]: "length(rotate n xs) = length xs" by (induct n arbitrary: xs) (simp_all add:rotate_def) lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs" by (cases xs) auto lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs" by (induct n) (simp_all add:rotate_def) lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)" by(simp add:rotate_drop_take take_map drop_map) lemma set_rotate1[simp]: "set(rotate1 xs) = set xs" by (cases xs) auto lemma set_rotate[simp]: "set(rotate n xs) = set xs" by (induct n) (simp_all add:rotate_def) lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])" by (cases xs) auto lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])" by (induct n) (simp_all add:rotate_def) lemma rotate_rev: "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)" proof (cases "length xs = 0 \ n mod length xs = 0") case False then show ?thesis by(simp add:rotate_drop_take rev_drop rev_take) qed force lemma hd_rotate_conv_nth: assumes "xs \ []" shows "hd(rotate n xs) = xs!(n mod length xs)" proof - have "n mod length xs < length xs" using assms by simp then show ?thesis by (metis drop_eq_Nil hd_append2 hd_drop_conv_nth leD rotate_drop_take) qed lemma rotate_append: "rotate (length l) (l @ q) = q @ l" by (induct l arbitrary: q) (auto simp add: rotate1_rotate_swap) +lemma nth_rotate: + \rotate m xs ! n = xs ! ((m + n) mod length xs)\ if \n < length xs\ + using that apply (auto simp add: rotate_drop_take nth_append not_less less_diff_conv ac_simps dest!: le_Suc_ex) + apply (metis add.commute mod_add_right_eq mod_less) + apply (metis (no_types, lifting) Nat.diff_diff_right add.commute add_diff_cancel_right' diff_le_self dual_order.strict_trans2 length_greater_0_conv less_nat_zero_code list.size(3) mod_add_right_eq mod_add_self2 mod_le_divisor mod_less) + done + +lemma nth_rotate1: + \rotate1 xs ! n = xs ! (Suc n mod length xs)\ if \n < length xs\ + using that nth_rotate [of n xs 1] by simp + subsubsection \\<^const>\nths\ --- a generalization of \<^const>\nth\ to sets\ lemma nths_empty [simp]: "nths xs {} = []" by (auto simp add: nths_def) lemma nths_nil [simp]: "nths [] A = []" by (auto simp add: nths_def) lemma nths_all: "\i < length xs. i \ I \ nths xs I = xs" apply (simp add: nths_def) apply (subst filter_True) apply (auto simp: in_set_zip subset_iff) done lemma length_nths: "length (nths xs I) = card{i. i < length xs \ i \ I}" by(simp add: nths_def length_filter_conv_card cong:conj_cong) lemma nths_shift_lemma_Suc: "map fst (filter (\p. P(Suc(snd p))) (zip xs is)) = map fst (filter (\p. P(snd p)) (zip xs (map Suc is)))" proof (induct xs arbitrary: "is") case (Cons x xs "is") show ?case by (cases "is") (auto simp add: Cons.hyps) qed simp lemma nths_shift_lemma: "map fst (filter (\p. snd p \ A) (zip xs [i..p. snd p + i \ A) (zip xs [0.. A}" unfolding nths_def proof (induct l' rule: rev_induct) case (snoc x xs) then show ?case by (simp add: upt_add_eq_append[of 0] nths_shift_lemma add.commute) qed auto lemma nths_Cons: "nths (x # l) A = (if 0 \ A then [x] else []) @ nths l {j. Suc j \ A}" proof (induct l rule: rev_induct) case (snoc x xs) then show ?case by (simp flip: append_Cons add: nths_append) qed (auto simp: nths_def) lemma nths_map: "nths (map f xs) I = map f (nths xs I)" by(induction xs arbitrary: I) (simp_all add: nths_Cons) lemma set_nths: "set(nths xs I) = {xs!i|i. i i \ I}" by (induct xs arbitrary: I) (auto simp: nths_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc) lemma set_nths_subset: "set(nths xs I) \ set xs" by(auto simp add:set_nths) lemma notin_set_nthsI[simp]: "x \ set xs \ x \ set(nths xs I)" by(auto simp add:set_nths) lemma in_set_nthsD: "x \ set(nths xs I) \ x \ set xs" by(auto simp add:set_nths) lemma nths_singleton [simp]: "nths [x] A = (if 0 \ A then [x] else [])" by (simp add: nths_Cons) lemma distinct_nthsI[simp]: "distinct xs \ distinct (nths xs I)" by (induct xs arbitrary: I) (auto simp: nths_Cons) lemma nths_upt_eq_take [simp]: "nths l {.. A. \j \ B. card {i' \ A. i' < i} = j}" by (induction xs arbitrary: A B) (auto simp add: nths_Cons card_less_Suc card_less_Suc2) lemma drop_eq_nths: "drop n xs = nths xs {i. i \ n}" by (induction xs arbitrary: n) (auto simp add: nths_Cons nths_all drop_Cons' intro: arg_cong2[where f=nths, OF refl]) lemma nths_drop: "nths (drop n xs) I = nths xs ((+) n ` I)" by(force simp: drop_eq_nths nths_nths simp flip: atLeastLessThan_iff intro: arg_cong2[where f=nths, OF refl]) lemma filter_eq_nths: "filter P xs = nths xs {i. i P(xs!i)}" by(induction xs) (auto simp: nths_Cons) lemma filter_in_nths: "distinct xs \ filter (%x. x \ set (nths xs s)) xs = nths xs s" proof (induct xs arbitrary: s) case Nil thus ?case by simp next case (Cons a xs) then have "\x. x \ set xs \ x \ a" by auto with Cons show ?case by(simp add: nths_Cons cong:filter_cong) qed subsubsection \\<^const>\subseqs\ and \<^const>\List.n_lists\\ lemma length_subseqs: "length (subseqs xs) = 2 ^ length xs" by (induct xs) (simp_all add: Let_def) lemma subseqs_powset: "set ` set (subseqs xs) = Pow (set xs)" proof - have aux: "\x A. set ` Cons x ` A = insert x ` set ` A" by (auto simp add: image_def) have "set (map set (subseqs xs)) = Pow (set xs)" by (induct xs) (simp_all add: aux Let_def Pow_insert Un_commute comp_def del: map_map) then show ?thesis by simp qed lemma distinct_set_subseqs: assumes "distinct xs" shows "distinct (map set (subseqs xs))" proof (rule card_distinct) have "finite (set xs)" .. then have "card (Pow (set xs)) = 2 ^ card (set xs)" by (rule card_Pow) with assms distinct_card [of xs] have "card (Pow (set xs)) = 2 ^ length xs" by simp then show "card (set (map set (subseqs xs))) = length (map set (subseqs xs))" by (simp add: subseqs_powset length_subseqs) qed lemma n_lists_Nil [simp]: "List.n_lists n [] = (if n = 0 then [[]] else [])" by (induct n) simp_all lemma length_n_lists_elem: "ys \ set (List.n_lists n xs) \ length ys = n" by (induct n arbitrary: ys) auto lemma set_n_lists: "set (List.n_lists n xs) = {ys. length ys = n \ set ys \ set xs}" proof (rule set_eqI) fix ys :: "'a list" show "ys \ set (List.n_lists n xs) \ ys \ {ys. length ys = n \ set ys \ set xs}" proof - have "ys \ set (List.n_lists n xs) \ length ys = n" by (induct n arbitrary: ys) auto moreover have "\x. ys \ set (List.n_lists n xs) \ x \ set ys \ x \ set xs" by (induct n arbitrary: ys) auto moreover have "set ys \ set xs \ ys \ set (List.n_lists (length ys) xs)" by (induct ys) auto ultimately show ?thesis by auto qed qed lemma subseqs_refl: "xs \ set (subseqs xs)" by (induct xs) (simp_all add: Let_def) lemma subset_subseqs: "X \ set xs \ X \ set ` set (subseqs xs)" unfolding subseqs_powset by simp lemma Cons_in_subseqsD: "y # ys \ set (subseqs xs) \ ys \ set (subseqs xs)" by (induct xs) (auto simp: Let_def) lemma subseqs_distinctD: "\ ys \ set (subseqs xs); distinct xs \ \ distinct ys" proof (induct xs arbitrary: ys) case (Cons x xs ys) then show ?case by (auto simp: Let_def) (metis Pow_iff contra_subsetD image_eqI subseqs_powset) qed simp subsubsection \\<^const>\splice\\ lemma splice_Nil2 [simp]: "splice xs [] = xs" by (cases xs) simp_all lemma length_splice[simp]: "length(splice xs ys) = length xs + length ys" by (induct xs ys rule: splice.induct) auto lemma split_Nil_iff[simp]: "splice xs ys = [] \ xs = [] \ ys = []" by (induct xs ys rule: splice.induct) auto lemma splice_replicate[simp]: "splice (replicate m x) (replicate n x) = replicate (m+n) x" proof (induction "replicate m x" "replicate n x" arbitrary: m n rule: splice.induct) case (2 x xs) then show ?case by (auto simp add: Cons_replicate_eq dest: gr0_implies_Suc) qed auto subsubsection \\<^const>\shuffles\\ lemma shuffles_commutes: "shuffles xs ys = shuffles ys xs" by (induction xs ys rule: shuffles.induct) (simp_all add: Un_commute) lemma Nil_in_shuffles[simp]: "[] \ shuffles xs ys \ xs = [] \ ys = []" by (induct xs ys rule: shuffles.induct) auto lemma shufflesE: "zs \ shuffles xs ys \ (zs = xs \ ys = [] \ P) \ (zs = ys \ xs = [] \ P) \ (\x xs' z zs'. xs = x # xs' \ zs = z # zs' \ x = z \ zs' \ shuffles xs' ys \ P) \ (\y ys' z zs'. ys = y # ys' \ zs = z # zs' \ y = z \ zs' \ shuffles xs ys' \ P) \ P" by (induct xs ys rule: shuffles.induct) auto lemma Cons_in_shuffles_iff: "z # zs \ shuffles xs ys \ (xs \ [] \ hd xs = z \ zs \ shuffles (tl xs) ys \ ys \ [] \ hd ys = z \ zs \ shuffles xs (tl ys))" by (induct xs ys rule: shuffles.induct) auto lemma splice_in_shuffles [simp, intro]: "splice xs ys \ shuffles xs ys" by (induction xs ys rule: splice.induct) (simp_all add: Cons_in_shuffles_iff shuffles_commutes) lemma Nil_in_shufflesI: "xs = [] \ ys = [] \ [] \ shuffles xs ys" by simp lemma Cons_in_shuffles_leftI: "zs \ shuffles xs ys \ z # zs \ shuffles (z # xs) ys" by (cases ys) auto lemma Cons_in_shuffles_rightI: "zs \ shuffles xs ys \ z # zs \ shuffles xs (z # ys)" by (cases xs) auto lemma finite_shuffles [simp, intro]: "finite (shuffles xs ys)" by (induction xs ys rule: shuffles.induct) simp_all lemma length_shuffles: "zs \ shuffles xs ys \ length zs = length xs + length ys" by (induction xs ys arbitrary: zs rule: shuffles.induct) auto lemma set_shuffles: "zs \ shuffles xs ys \ set zs = set xs \ set ys" by (induction xs ys arbitrary: zs rule: shuffles.induct) auto lemma distinct_disjoint_shuffles: assumes "distinct xs" "distinct ys" "set xs \ set ys = {}" "zs \ shuffles xs ys" shows "distinct zs" using assms proof (induction xs ys arbitrary: zs rule: shuffles.induct) case (3 x xs y ys) show ?case proof (cases zs) case (Cons z zs') with "3.prems" and "3.IH"[of zs'] show ?thesis by (force dest: set_shuffles) qed simp_all qed simp_all lemma Cons_shuffles_subset1: "(#) x ` shuffles xs ys \ shuffles (x # xs) ys" by (cases ys) auto lemma Cons_shuffles_subset2: "(#) y ` shuffles xs ys \ shuffles xs (y # ys)" by (cases xs) auto lemma filter_shuffles: "filter P ` shuffles xs ys = shuffles (filter P xs) (filter P ys)" proof - have *: "filter P ` (#) x ` A = (if P x then (#) x ` filter P ` A else filter P ` A)" for x A by (auto simp: image_image) show ?thesis by (induction xs ys rule: shuffles.induct) (simp_all split: if_splits add: image_Un * Un_absorb1 Un_absorb2 Cons_shuffles_subset1 Cons_shuffles_subset2) qed lemma filter_shuffles_disjoint1: assumes "set xs \ set ys = {}" "zs \ shuffles xs ys" shows "filter (\x. x \ set xs) zs = xs" (is "filter ?P _ = _") and "filter (\x. x \ set xs) zs = ys" (is "filter ?Q _ = _") using assms proof - from assms have "filter ?P zs \ filter ?P ` shuffles xs ys" by blast also have "filter ?P ` shuffles xs ys = shuffles (filter ?P xs) (filter ?P ys)" by (rule filter_shuffles) also have "filter ?P xs = xs" by (rule filter_True) simp_all also have "filter ?P ys = []" by (rule filter_False) (insert assms(1), auto) also have "shuffles xs [] = {xs}" by simp finally show "filter ?P zs = xs" by simp next from assms have "filter ?Q zs \ filter ?Q ` shuffles xs ys" by blast also have "filter ?Q ` shuffles xs ys = shuffles (filter ?Q xs) (filter ?Q ys)" by (rule filter_shuffles) also have "filter ?Q ys = ys" by (rule filter_True) (insert assms(1), auto) also have "filter ?Q xs = []" by (rule filter_False) (insert assms(1), auto) also have "shuffles [] ys = {ys}" by simp finally show "filter ?Q zs = ys" by simp qed lemma filter_shuffles_disjoint2: assumes "set xs \ set ys = {}" "zs \ shuffles xs ys" shows "filter (\x. x \ set ys) zs = ys" "filter (\x. x \ set ys) zs = xs" using filter_shuffles_disjoint1[of ys xs zs] assms by (simp_all add: shuffles_commutes Int_commute) lemma partition_in_shuffles: "xs \ shuffles (filter P xs) (filter (\x. \P x) xs)" proof (induction xs) case (Cons x xs) show ?case proof (cases "P x") case True hence "x # xs \ (#) x ` shuffles (filter P xs) (filter (\x. \P x) xs)" by (intro imageI Cons.IH) also have "\ \ shuffles (filter P (x # xs)) (filter (\x. \P x) (x # xs))" by (simp add: True Cons_shuffles_subset1) finally show ?thesis . next case False hence "x # xs \ (#) x ` shuffles (filter P xs) (filter (\x. \P x) xs)" by (intro imageI Cons.IH) also have "\ \ shuffles (filter P (x # xs)) (filter (\x. \P x) (x # xs))" by (simp add: False Cons_shuffles_subset2) finally show ?thesis . qed qed auto lemma inv_image_partition: assumes "\x. x \ set xs \ P x" "\y. y \ set ys \ \P y" shows "partition P -` {(xs, ys)} = shuffles xs ys" proof (intro equalityI subsetI) fix zs assume zs: "zs \ shuffles xs ys" hence [simp]: "set zs = set xs \ set ys" by (rule set_shuffles) from assms have "filter P zs = filter (\x. x \ set xs) zs" "filter (\x. \P x) zs = filter (\x. x \ set ys) zs" by (intro filter_cong refl; force)+ moreover from assms have "set xs \ set ys = {}" by auto ultimately show "zs \ partition P -` {(xs, ys)}" using zs by (simp add: o_def filter_shuffles_disjoint1 filter_shuffles_disjoint2) next fix zs assume "zs \ partition P -` {(xs, ys)}" thus "zs \ shuffles xs ys" using partition_in_shuffles[of zs] by (auto simp: o_def) qed subsubsection \Transpose\ function transpose where "transpose [] = []" | "transpose ([] # xss) = transpose xss" | "transpose ((x#xs) # xss) = (x # [h. (h#t) \ xss]) # transpose (xs # [t. (h#t) \ xss])" by pat_completeness auto lemma transpose_aux_filter_head: "concat (map (case_list [] (\h t. [h])) xss) = map (\xs. hd xs) (filter (\ys. ys \ []) xss)" by (induct xss) (auto split: list.split) lemma transpose_aux_filter_tail: "concat (map (case_list [] (\h t. [t])) xss) = map (\xs. tl xs) (filter (\ys. ys \ []) xss)" by (induct xss) (auto split: list.split) lemma transpose_aux_max: "max (Suc (length xs)) (foldr (\xs. max (length xs)) xss 0) = Suc (max (length xs) (foldr (\x. max (length x - Suc 0)) (filter (\ys. ys \ []) xss) 0))" (is "max _ ?foldB = Suc (max _ ?foldA)") proof (cases "(filter (\ys. ys \ []) xss) = []") case True hence "foldr (\xs. max (length xs)) xss 0 = 0" proof (induct xss) case (Cons x xs) then have "x = []" by (cases x) auto with Cons show ?case by auto qed simp thus ?thesis using True by simp next case False have foldA: "?foldA = foldr (\x. max (length x)) (filter (\ys. ys \ []) xss) 0 - 1" by (induct xss) auto have foldB: "?foldB = foldr (\x. max (length x)) (filter (\ys. ys \ []) xss) 0" by (induct xss) auto have "0 < ?foldB" proof - from False obtain z zs where zs: "(filter (\ys. ys \ []) xss) = z#zs" by (auto simp: neq_Nil_conv) hence "z \ set (filter (\ys. ys \ []) xss)" by auto hence "z \ []" by auto thus ?thesis unfolding foldB zs by (auto simp: max_def intro: less_le_trans) qed thus ?thesis unfolding foldA foldB max_Suc_Suc[symmetric] by simp qed termination transpose by (relation "measure (\xs. foldr (\xs. max (length xs)) xs 0 + length xs)") (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max less_Suc_eq_le) lemma transpose_empty: "(transpose xs = []) \ (\x \ set xs. x = [])" by (induct rule: transpose.induct) simp_all lemma length_transpose: fixes xs :: "'a list list" shows "length (transpose xs) = foldr (\xs. max (length xs)) xs 0" by (induct rule: transpose.induct) (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max max_Suc_Suc[symmetric] simp del: max_Suc_Suc) lemma nth_transpose: fixes xs :: "'a list list" assumes "i < length (transpose xs)" shows "transpose xs ! i = map (\xs. xs ! i) (filter (\ys. i < length ys) xs)" using assms proof (induct arbitrary: i rule: transpose.induct) case (3 x xs xss) define XS where "XS = (x # xs) # xss" hence [simp]: "XS \ []" by auto thus ?case proof (cases i) case 0 thus ?thesis by (simp add: transpose_aux_filter_head hd_conv_nth) next case (Suc j) have *: "\xss. xs # map tl xss = map tl ((x#xs)#xss)" by simp have **: "\xss. (x#xs) # filter (\ys. ys \ []) xss = filter (\ys. ys \ []) ((x#xs)#xss)" by simp { fix x have "Suc j < length x \ x \ [] \ j < length x - Suc 0" by (cases x) simp_all } note *** = this have j_less: "j < length (transpose (xs # concat (map (case_list [] (\h t. [t])) xss)))" using "3.prems" by (simp add: transpose_aux_filter_tail length_transpose Suc) show ?thesis unfolding transpose.simps \i = Suc j\ nth_Cons_Suc "3.hyps"[OF j_less] apply (auto simp: transpose_aux_filter_tail filter_map comp_def length_transpose * ** *** XS_def[symmetric]) by (simp add: nth_tl) qed qed simp_all lemma transpose_map_map: "transpose (map (map f) xs) = map (map f) (transpose xs)" proof (rule nth_equalityI) have [simp]: "length (transpose (map (map f) xs)) = length (transpose xs)" by (simp add: length_transpose foldr_map comp_def) show "length (transpose (map (map f) xs)) = length (map (map f) (transpose xs))" by simp fix i assume "i < length (transpose (map (map f) xs))" thus "transpose (map (map f) xs) ! i = map (map f) (transpose xs) ! i" by (simp add: nth_transpose filter_map comp_def) qed subsubsection \\<^const>\min\ and \<^const>\arg_min\\ lemma min_list_Min: "xs \ [] \ min_list xs = Min (set xs)" by (induction xs rule: induct_list012)(auto) lemma f_arg_min_list_f: "xs \ [] \ f (arg_min_list f xs) = Min (f ` (set xs))" by(induction f xs rule: arg_min_list.induct) (auto simp: min_def intro!: antisym) lemma arg_min_list_in: "xs \ [] \ arg_min_list f xs \ set xs" by(induction xs rule: induct_list012) (auto simp: Let_def) subsubsection \(In)finiteness\ lemma finite_maxlen: "finite (M::'a list set) \ \n. \s\M. size s < n" proof (induct rule: finite.induct) case emptyI show ?case by simp next case (insertI M xs) then obtain n where "\s\M. length s < n" by blast hence "\s\insert xs M. size s < max n (size xs) + 1" by auto thus ?case .. qed lemma lists_length_Suc_eq: "{xs. set xs \ A \ length xs = Suc n} = (\(xs, n). n#xs) ` ({xs. set xs \ A \ length xs = n} \ A)" by (auto simp: length_Suc_conv) lemma assumes "finite A" shows finite_lists_length_eq: "finite {xs. set xs \ A \ length xs = n}" and card_lists_length_eq: "card {xs. set xs \ A \ length xs = n} = (card A)^n" using \finite A\ by (induct n) (auto simp: card_image inj_split_Cons lists_length_Suc_eq cong: conj_cong) lemma finite_lists_length_le: assumes "finite A" shows "finite {xs. set xs \ A \ length xs \ n}" (is "finite ?S") proof- have "?S = (\n\{0..n}. {xs. set xs \ A \ length xs = n})" by auto thus ?thesis by (auto intro!: finite_lists_length_eq[OF \finite A\] simp only:) qed lemma card_lists_length_le: assumes "finite A" shows "card {xs. set xs \ A \ length xs \ n} = (\i\n. card A^i)" proof - have "(\i\n. card A^i) = card (\i\n. {xs. set xs \ A \ length xs = i})" using \finite A\ by (subst card_UN_disjoint) (auto simp add: card_lists_length_eq finite_lists_length_eq) also have "(\i\n. {xs. set xs \ A \ length xs = i}) = {xs. set xs \ A \ length xs \ n}" by auto finally show ?thesis by simp qed lemma finite_lists_distinct_length_eq [intro]: assumes "finite A" shows "finite {xs. length xs = n \ distinct xs \ set xs \ A}" (is "finite ?S") proof - have "finite {xs. set xs \ A \ length xs = n}" using \finite A\ by (rule finite_lists_length_eq) moreover have "?S \ {xs. set xs \ A \ length xs = n}" by auto ultimately show ?thesis using finite_subset by auto qed lemma card_lists_distinct_length_eq: assumes "finite A" "k \ card A" shows "card {xs. length xs = k \ distinct xs \ set xs \ A} = \{card A - k + 1 .. card A}" using assms proof (induct k) case 0 then have "{xs. length xs = 0 \ distinct xs \ set xs \ A} = {[]}" by auto then show ?case by simp next case (Suc k) let "?k_list" = "\k xs. length xs = k \ distinct xs \ set xs \ A" have inj_Cons: "\A. inj_on (\(xs, n). n # xs) A" by (rule inj_onI) auto from Suc have "k \ card A" by simp moreover note \finite A\ moreover have "finite {xs. ?k_list k xs}" by (rule finite_subset) (use finite_lists_length_eq[OF \finite A\, of k] in auto) moreover have "\i j. i \ j \ {i} \ (A - set i) \ {j} \ (A - set j) = {}" by auto moreover have "\i. i \ {xs. ?k_list k xs} \ card (A - set i) = card A - k" by (simp add: card_Diff_subset distinct_card) moreover have "{xs. ?k_list (Suc k) xs} = (\(xs, n). n#xs) ` \((\xs. {xs} \ (A - set xs)) ` {xs. ?k_list k xs})" by (auto simp: length_Suc_conv) moreover have "Suc (card A - Suc k) = card A - k" using Suc.prems by simp then have "(card A - k) * \{Suc (card A - k)..card A} = \{Suc (card A - Suc k)..card A}" by (subst prod.insert[symmetric]) (simp add: atLeastAtMost_insertL)+ ultimately show ?case by (simp add: card_image inj_Cons card_UN_disjoint Suc.hyps algebra_simps) qed lemma card_lists_distinct_length_eq': assumes "k < card A" shows "card {xs. length xs = k \ distinct xs \ set xs \ A} = \{card A - k + 1 .. card A}" proof - from \k < card A\ have "finite A" and "k \ card A" using card_infinite by force+ from this show ?thesis by (rule card_lists_distinct_length_eq) qed lemma infinite_UNIV_listI: "\ finite(UNIV::'a list set)" by (metis UNIV_I finite_maxlen length_replicate less_irrefl) lemma same_length_different: assumes "xs \ ys" and "length xs = length ys" shows "\pre x xs' y ys'. x\y \ xs = pre @ [x] @ xs' \ ys = pre @ [y] @ ys'" using assms proof (induction xs arbitrary: ys) case Nil then show ?case by auto next case (Cons x xs) then obtain z zs where ys: "ys = Cons z zs" by (metis length_Suc_conv) show ?case proof (cases "x=z") case True then have "xs \ zs" "length xs = length zs" using Cons.prems ys by auto then obtain pre u xs' v ys' where "u\v" and xs: "xs = pre @ [u] @ xs'" and zs: "zs = pre @ [v] @ys'" using Cons.IH by meson then have "x # xs = (z#pre) @ [u] @ xs' \ ys = (z#pre) @ [v] @ ys'" by (simp add: True ys) with \u\v\ show ?thesis by blast next case False then have "x # xs = [] @ [x] @ xs \ ys = [] @ [z] @ zs" by (simp add: ys) then show ?thesis using False by blast qed qed subsection \Sorting\ subsubsection \\<^const>\sorted_wrt\\ text \Sometimes the second equation in the definition of \<^const>\sorted_wrt\ is too aggressive because it relates each list element to \emph{all} its successors. Then this equation should be removed and \sorted_wrt2_simps\ should be added instead.\ lemma sorted_wrt1: "sorted_wrt P [x] = True" by(simp) lemma sorted_wrt2: "transp P \ sorted_wrt P (x # y # zs) = (P x y \ sorted_wrt P (y # zs))" proof (induction zs arbitrary: x y) case (Cons z zs) then show ?case by simp (meson transpD)+ qed auto lemmas sorted_wrt2_simps = sorted_wrt1 sorted_wrt2 lemma sorted_wrt_true [simp]: "sorted_wrt (\_ _. True) xs" by (induction xs) simp_all lemma sorted_wrt_append: "sorted_wrt P (xs @ ys) \ sorted_wrt P xs \ sorted_wrt P ys \ (\x\set xs. \y\set ys. P x y)" by (induction xs) auto lemma sorted_wrt_map: "sorted_wrt R (map f xs) = sorted_wrt (\x y. R (f x) (f y)) xs" by (induction xs) simp_all lemma assumes "sorted_wrt f xs" shows sorted_wrt_take: "sorted_wrt f (take n xs)" and sorted_wrt_drop: "sorted_wrt f (drop n xs)" proof - from assms have "sorted_wrt f (take n xs @ drop n xs)" by simp thus "sorted_wrt f (take n xs)" and "sorted_wrt f (drop n xs)" unfolding sorted_wrt_append by simp_all qed lemma sorted_wrt_filter: "sorted_wrt f xs \ sorted_wrt f (filter P xs)" by (induction xs) auto lemma sorted_wrt_rev: "sorted_wrt P (rev xs) = sorted_wrt (\x y. P y x) xs" by (induction xs) (auto simp add: sorted_wrt_append) lemma sorted_wrt_mono_rel: "(\x y. \ x \ set xs; y \ set xs; P x y \ \ Q x y) \ sorted_wrt P xs \ sorted_wrt Q xs" by(induction xs)(auto) lemma sorted_wrt01: "length xs \ 1 \ sorted_wrt P xs" by(auto simp: le_Suc_eq length_Suc_conv) lemma sorted_wrt_iff_nth_less: "sorted_wrt P xs = (\i j. i < j \ j < length xs \ P (xs ! i) (xs ! j))" by (induction xs) (auto simp add: in_set_conv_nth Ball_def nth_Cons split: nat.split) lemma sorted_wrt_nth_less: "\ sorted_wrt P xs; i < j; j < length xs \ \ P (xs ! i) (xs ! j)" by(auto simp: sorted_wrt_iff_nth_less) lemma sorted_wrt_upt[simp]: "sorted_wrt (<) [m..Each element is greater or equal to its index:\ lemma sorted_wrt_less_idx: "sorted_wrt (<) ns \ i < length ns \ i \ ns!i" proof (induction ns arbitrary: i rule: rev_induct) case Nil thus ?case by simp next case snoc thus ?case by (auto simp: nth_append sorted_wrt_append) (metis less_antisym not_less nth_mem) qed subsubsection \\<^const>\sorted\\ context linorder begin text \Sometimes the second equation in the definition of \<^const>\sorted\ is too aggressive because it relates each list element to \emph{all} its successors. Then this equation should be removed and \sorted2_simps\ should be added instead. Executable code is one such use case.\ lemma sorted1: "sorted [x] = True" by simp lemma sorted2: "sorted (x # y # zs) = (x \ y \ sorted (y # zs))" by(induction zs) auto lemmas sorted2_simps = sorted1 sorted2 lemmas [code] = sorted.simps(1) sorted2_simps lemma sorted_append: "sorted (xs@ys) = (sorted xs \ sorted ys \ (\x \ set xs. \y \ set ys. x\y))" by (simp add: sorted_sorted_wrt sorted_wrt_append) lemma sorted_map: "sorted (map f xs) = sorted_wrt (\x y. f x \ f y) xs" by (simp add: sorted_sorted_wrt sorted_wrt_map) lemma sorted01: "length xs \ 1 \ sorted xs" by (simp add: sorted_sorted_wrt sorted_wrt01) lemma sorted_tl: "sorted xs \ sorted (tl xs)" by (cases xs) (simp_all) lemma sorted_iff_nth_mono_less: "sorted xs = (\i j. i < j \ j < length xs \ xs ! i \ xs ! j)" by (simp add: sorted_sorted_wrt sorted_wrt_iff_nth_less) lemma sorted_iff_nth_mono: "sorted xs = (\i j. i \ j \ j < length xs \ xs ! i \ xs ! j)" by (auto simp: sorted_iff_nth_mono_less nat_less_le) lemma sorted_nth_mono: "sorted xs \ i \ j \ j < length xs \ xs!i \ xs!j" by (auto simp: sorted_iff_nth_mono) lemma sorted_rev_nth_mono: "sorted (rev xs) \ i \ j \ j < length xs \ xs!j \ xs!i" using sorted_nth_mono[ of "rev xs" "length xs - j - 1" "length xs - i - 1"] rev_nth[of "length xs - i - 1" "xs"] rev_nth[of "length xs - j - 1" "xs"] by auto lemma sorted_map_remove1: "sorted (map f xs) \ sorted (map f (remove1 x xs))" by (induct xs) (auto) lemma sorted_remove1: "sorted xs \ sorted (remove1 a xs)" using sorted_map_remove1 [of "\x. x"] by simp lemma sorted_butlast: assumes "xs \ []" and "sorted xs" shows "sorted (butlast xs)" proof - from \xs \ []\ obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto with \sorted xs\ show ?thesis by (simp add: sorted_append) qed lemma sorted_replicate [simp]: "sorted(replicate n x)" by(induction n) (auto) lemma sorted_remdups[simp]: "sorted xs \ sorted (remdups xs)" by (induct xs) (auto) lemma sorted_remdups_adj[simp]: "sorted xs \ sorted (remdups_adj xs)" by (induct xs rule: remdups_adj.induct, simp_all split: if_split_asm) lemma sorted_nths: "sorted xs \ sorted (nths xs I)" by(induction xs arbitrary: I)(auto simp: nths_Cons) lemma sorted_distinct_set_unique: assumes "sorted xs" "distinct xs" "sorted ys" "distinct ys" "set xs = set ys" shows "xs = ys" proof - from assms have 1: "length xs = length ys" by (auto dest!: distinct_card) from assms show ?thesis proof(induct rule:list_induct2[OF 1]) case 1 show ?case by simp next case 2 thus ?case by simp (metis Diff_insert_absorb antisym insertE insert_iff) qed qed lemma map_sorted_distinct_set_unique: assumes "inj_on f (set xs \ set ys)" assumes "sorted (map f xs)" "distinct (map f xs)" "sorted (map f ys)" "distinct (map f ys)" assumes "set xs = set ys" shows "xs = ys" proof - from assms have "map f xs = map f ys" by (simp add: sorted_distinct_set_unique) with \inj_on f (set xs \ set ys)\ show "xs = ys" by (blast intro: map_inj_on) qed lemma assumes "sorted xs" shows sorted_take: "sorted (take n xs)" and sorted_drop: "sorted (drop n xs)" proof - from assms have "sorted (take n xs @ drop n xs)" by simp then show "sorted (take n xs)" and "sorted (drop n xs)" unfolding sorted_append by simp_all qed lemma sorted_dropWhile: "sorted xs \ sorted (dropWhile P xs)" by (auto dest: sorted_drop simp add: dropWhile_eq_drop) lemma sorted_takeWhile: "sorted xs \ sorted (takeWhile P xs)" by (subst takeWhile_eq_take) (auto dest: sorted_take) lemma sorted_filter: "sorted (map f xs) \ sorted (map f (filter P xs))" by (induct xs) simp_all lemma foldr_max_sorted: assumes "sorted (rev xs)" shows "foldr max xs y = (if xs = [] then y else max (xs ! 0) y)" using assms proof (induct xs) case (Cons x xs) then have "sorted (rev xs)" using sorted_append by auto with Cons show ?case by (cases xs) (auto simp add: sorted_append max_def) qed simp lemma filter_equals_takeWhile_sorted_rev: assumes sorted: "sorted (rev (map f xs))" shows "filter (\x. t < f x) xs = takeWhile (\ x. t < f x) xs" (is "filter ?P xs = ?tW") proof (rule takeWhile_eq_filter[symmetric]) let "?dW" = "dropWhile ?P xs" fix x assume "x \ set ?dW" then obtain i where i: "i < length ?dW" and nth_i: "x = ?dW ! i" unfolding in_set_conv_nth by auto hence "length ?tW + i < length (?tW @ ?dW)" unfolding length_append by simp hence i': "length (map f ?tW) + i < length (map f xs)" by simp have "(map f ?tW @ map f ?dW) ! (length (map f ?tW) + i) \ (map f ?tW @ map f ?dW) ! (length (map f ?tW) + 0)" using sorted_rev_nth_mono[OF sorted _ i', of "length ?tW"] unfolding map_append[symmetric] by simp hence "f x \ f (?dW ! 0)" unfolding nth_append_length_plus nth_i using i preorder_class.le_less_trans[OF le0 i] by simp also have "... \ t" using hd_dropWhile[of "?P" xs] le0[THEN preorder_class.le_less_trans, OF i] using hd_conv_nth[of "?dW"] by simp finally show "\ t < f x" by simp qed lemma sorted_map_same: "sorted (map f (filter (\x. f x = g xs) xs))" proof (induct xs arbitrary: g) case Nil then show ?case by simp next case (Cons x xs) then have "sorted (map f (filter (\y. f y = (\xs. f x) xs) xs))" . moreover from Cons have "sorted (map f (filter (\y. f y = (g \ Cons x) xs) xs))" . ultimately show ?case by simp_all qed lemma sorted_same: "sorted (filter (\x. x = g xs) xs)" using sorted_map_same [of "\x. x"] by simp end lemma sorted_upt[simp]: "sorted [m..Sorting functions\ text\Currently it is not shown that \<^const>\sort\ returns a permutation of its input because the nicest proof is via multisets, which are not part of Main. Alternatively one could define a function that counts the number of occurrences of an element in a list and use that instead of multisets to state the correctness property.\ context linorder begin lemma set_insort_key: "set (insort_key f x xs) = insert x (set xs)" by (induct xs) auto lemma length_insort [simp]: "length (insort_key f x xs) = Suc (length xs)" by (induct xs) simp_all lemma insort_key_left_comm: assumes "f x \ f y" shows "insort_key f y (insort_key f x xs) = insort_key f x (insort_key f y xs)" by (induct xs) (auto simp add: assms dest: antisym) lemma insort_left_comm: "insort x (insort y xs) = insort y (insort x xs)" by (cases "x = y") (auto intro: insort_key_left_comm) lemma comp_fun_commute_insort: "comp_fun_commute insort" proof qed (simp add: insort_left_comm fun_eq_iff) lemma sort_key_simps [simp]: "sort_key f [] = []" "sort_key f (x#xs) = insort_key f x (sort_key f xs)" by (simp_all add: sort_key_def) lemma sort_key_conv_fold: assumes "inj_on f (set xs)" shows "sort_key f xs = fold (insort_key f) xs []" proof - have "fold (insort_key f) (rev xs) = fold (insort_key f) xs" proof (rule fold_rev, rule ext) fix zs fix x y assume "x \ set xs" "y \ set xs" with assms have *: "f y = f x \ y = x" by (auto dest: inj_onD) have **: "x = y \ y = x" by auto show "(insort_key f y \ insort_key f x) zs = (insort_key f x \ insort_key f y) zs" by (induct zs) (auto intro: * simp add: **) qed then show ?thesis by (simp add: sort_key_def foldr_conv_fold) qed lemma sort_conv_fold: "sort xs = fold insort xs []" by (rule sort_key_conv_fold) simp lemma length_sort[simp]: "length (sort_key f xs) = length xs" by (induct xs, auto) lemma set_sort[simp]: "set(sort_key f xs) = set xs" by (induct xs) (simp_all add: set_insort_key) lemma distinct_insort: "distinct (insort_key f x xs) = (x \ set xs \ distinct xs)" by(induct xs)(auto simp: set_insort_key) lemma distinct_sort[simp]: "distinct (sort_key f xs) = distinct xs" by (induct xs) (simp_all add: distinct_insort) lemma sorted_insort_key: "sorted (map f (insort_key f x xs)) = sorted (map f xs)" by (induct xs) (auto simp: set_insort_key) lemma sorted_insort: "sorted (insort x xs) = sorted xs" using sorted_insort_key [where f="\x. x"] by simp theorem sorted_sort_key [simp]: "sorted (map f (sort_key f xs))" by (induct xs) (auto simp:sorted_insort_key) theorem sorted_sort [simp]: "sorted (sort xs)" using sorted_sort_key [where f="\x. x"] by simp lemma insort_not_Nil [simp]: "insort_key f a xs \ []" by (induction xs) simp_all lemma insort_is_Cons: "\x\set xs. f a \ f x \ insort_key f a xs = a # xs" by (cases xs) auto lemma sorted_sort_id: "sorted xs \ sort xs = xs" by (induct xs) (auto simp add: insort_is_Cons) lemma insort_key_remove1: assumes "a \ set xs" and "sorted (map f xs)" and "hd (filter (\x. f a = f x) xs) = a" shows "insort_key f a (remove1 a xs) = xs" using assms proof (induct xs) case (Cons x xs) then show ?case proof (cases "x = a") case False then have "f x \ f a" using Cons.prems by auto then have "f x < f a" using Cons.prems by auto with \f x \ f a\ show ?thesis using Cons by (auto simp: insort_is_Cons) qed (auto simp: insort_is_Cons) qed simp lemma insort_remove1: assumes "a \ set xs" and "sorted xs" shows "insort a (remove1 a xs) = xs" proof (rule insort_key_remove1) define n where "n = length (filter ((=) a) xs) - 1" from \a \ set xs\ show "a \ set xs" . from \sorted xs\ show "sorted (map (\x. x) xs)" by simp from \a \ set xs\ have "a \ set (filter ((=) a) xs)" by auto then have "set (filter ((=) a) xs) \ {}" by auto then have "filter ((=) a) xs \ []" by (auto simp only: set_empty) then have "length (filter ((=) a) xs) > 0" by simp then have n: "Suc n = length (filter ((=) a) xs)" by (simp add: n_def) moreover have "replicate (Suc n) a = a # replicate n a" by simp ultimately show "hd (filter ((=) a) xs) = a" by (simp add: replicate_length_filter) qed lemma finite_sorted_distinct_unique: assumes "finite A" shows "\!xs. set xs = A \ sorted xs \ distinct xs" proof - obtain xs where "distinct xs" "A = set xs" using finite_distinct_list [OF assms] by metis then show ?thesis by (rule_tac a="sort xs" in ex1I) (auto simp: sorted_distinct_set_unique) qed lemma insort_insert_key_triv: "f x \ f ` set xs \ insort_insert_key f x xs = xs" by (simp add: insort_insert_key_def) lemma insort_insert_triv: "x \ set xs \ insort_insert x xs = xs" using insort_insert_key_triv [of "\x. x"] by simp lemma insort_insert_insort_key: "f x \ f ` set xs \ insort_insert_key f x xs = insort_key f x xs" by (simp add: insort_insert_key_def) lemma insort_insert_insort: "x \ set xs \ insort_insert x xs = insort x xs" using insort_insert_insort_key [of "\x. x"] by simp lemma set_insort_insert: "set (insort_insert x xs) = insert x (set xs)" by (auto simp add: insort_insert_key_def set_insort_key) lemma distinct_insort_insert: assumes "distinct xs" shows "distinct (insort_insert_key f x xs)" using assms by (induct xs) (auto simp add: insort_insert_key_def set_insort_key) lemma sorted_insort_insert_key: assumes "sorted (map f xs)" shows "sorted (map f (insort_insert_key f x xs))" using assms by (simp add: insort_insert_key_def sorted_insort_key) lemma sorted_insort_insert: assumes "sorted xs" shows "sorted (insort_insert x xs)" using assms sorted_insort_insert_key [of "\x. x"] by simp lemma filter_insort_triv: "\ P x \ filter P (insort_key f x xs) = filter P xs" by (induct xs) simp_all lemma filter_insort: "sorted (map f xs) \ P x \ filter P (insort_key f x xs) = insort_key f x (filter P xs)" by (induct xs) (auto, subst insort_is_Cons, auto) lemma filter_sort: "filter P (sort_key f xs) = sort_key f (filter P xs)" by (induct xs) (simp_all add: filter_insort_triv filter_insort) lemma remove1_insort [simp]: "remove1 x (insort x xs) = xs" by (induct xs) simp_all end lemma sort_upt [simp]: "sort [m.. \x \ set xs. P x \ List.find P xs = Some (Min {x\set xs. P x})" proof (induct xs) case Nil then show ?case by simp next case (Cons x xs) show ?case proof (cases "P x") case True with Cons show ?thesis by (auto intro: Min_eqI [symmetric]) next case False then have "{y. (y = x \ y \ set xs) \ P y} = {y \ set xs. P y}" by auto with Cons False show ?thesis by (simp_all) qed qed lemma sorted_enumerate [simp]: "sorted (map fst (enumerate n xs))" by (simp add: enumerate_eq_zip) text \Stability of \<^const>\sort_key\:\ lemma sort_key_stable: "filter (\y. f y = k) (sort_key f xs) = filter (\y. f y = k) xs" by (induction xs) (auto simp: filter_insort insort_is_Cons filter_insort_triv) corollary stable_sort_key_sort_key: "stable_sort_key sort_key" by(simp add: stable_sort_key_def sort_key_stable) lemma sort_key_const: "sort_key (\x. c) xs = xs" by (metis (mono_tags) filter_True sort_key_stable) subsubsection \\<^const>\transpose\ on sorted lists\ lemma sorted_transpose[simp]: "sorted (rev (map length (transpose xs)))" by (auto simp: sorted_iff_nth_mono rev_nth nth_transpose length_filter_conv_card intro: card_mono) lemma transpose_max_length: "foldr (\xs. max (length xs)) (transpose xs) 0 = length (filter (\x. x \ []) xs)" (is "?L = ?R") proof (cases "transpose xs = []") case False have "?L = foldr max (map length (transpose xs)) 0" by (simp add: foldr_map comp_def) also have "... = length (transpose xs ! 0)" using False sorted_transpose by (simp add: foldr_max_sorted) finally show ?thesis using False by (simp add: nth_transpose) next case True hence "filter (\x. x \ []) xs = []" by (auto intro!: filter_False simp: transpose_empty) thus ?thesis by (simp add: transpose_empty True) qed lemma length_transpose_sorted: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" shows "length (transpose xs) = (if xs = [] then 0 else length (xs ! 0))" proof (cases "xs = []") case False thus ?thesis using foldr_max_sorted[OF sorted] False unfolding length_transpose foldr_map comp_def by simp qed simp lemma nth_nth_transpose_sorted[simp]: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" and i: "i < length (transpose xs)" and j: "j < length (filter (\ys. i < length ys) xs)" shows "transpose xs ! i ! j = xs ! j ! i" using j filter_equals_takeWhile_sorted_rev[OF sorted, of i] nth_transpose[OF i] nth_map[OF j] by (simp add: takeWhile_nth) lemma transpose_column_length: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" and "i < length xs" shows "length (filter (\ys. i < length ys) (transpose xs)) = length (xs ! i)" proof - have "xs \ []" using \i < length xs\ by auto note filter_equals_takeWhile_sorted_rev[OF sorted, simp] { fix j assume "j \ i" note sorted_rev_nth_mono[OF sorted, of j i, simplified, OF this \i < length xs\] } note sortedE = this[consumes 1] have "{j. j < length (transpose xs) \ i < length (transpose xs ! j)} = {..< length (xs ! i)}" proof safe fix j assume "j < length (transpose xs)" and "i < length (transpose xs ! j)" with this(2) nth_transpose[OF this(1)] have "i < length (takeWhile (\ys. j < length ys) xs)" by simp from nth_mem[OF this] takeWhile_nth[OF this] show "j < length (xs ! i)" by (auto dest: set_takeWhileD) next fix j assume "j < length (xs ! i)" thus "j < length (transpose xs)" using foldr_max_sorted[OF sorted] \xs \ []\ sortedE[OF le0] by (auto simp: length_transpose comp_def foldr_map) have "Suc i \ length (takeWhile (\ys. j < length ys) xs)" using \i < length xs\ \j < length (xs ! i)\ less_Suc_eq_le by (auto intro!: length_takeWhile_less_P_nth dest!: sortedE) with nth_transpose[OF \j < length (transpose xs)\] show "i < length (transpose xs ! j)" by simp qed thus ?thesis by (simp add: length_filter_conv_card) qed lemma transpose_column: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" and "i < length xs" shows "map (\ys. ys ! i) (filter (\ys. i < length ys) (transpose xs)) = xs ! i" (is "?R = _") proof (rule nth_equalityI) show length: "length ?R = length (xs ! i)" using transpose_column_length[OF assms] by simp fix j assume j: "j < length ?R" note * = less_le_trans[OF this, unfolded length_map, OF length_filter_le] from j have j_less: "j < length (xs ! i)" using length by simp have i_less_tW: "Suc i \ length (takeWhile (\ys. Suc j \ length ys) xs)" proof (rule length_takeWhile_less_P_nth) show "Suc i \ length xs" using \i < length xs\ by simp fix k assume "k < Suc i" hence "k \ i" by auto with sorted_rev_nth_mono[OF sorted this] \i < length xs\ have "length (xs ! i) \ length (xs ! k)" by simp thus "Suc j \ length (xs ! k)" using j_less by simp qed have i_less_filter: "i < length (filter (\ys. j < length ys) xs) " unfolding filter_equals_takeWhile_sorted_rev[OF sorted, of j] using i_less_tW by (simp_all add: Suc_le_eq) from j show "?R ! j = xs ! i ! j" unfolding filter_equals_takeWhile_sorted_rev[OF sorted_transpose, of i] by (simp add: takeWhile_nth nth_nth_transpose_sorted[OF sorted * i_less_filter]) qed lemma transpose_transpose: fixes xs :: "'a list list" assumes sorted: "sorted (rev (map length xs))" shows "transpose (transpose xs) = takeWhile (\x. x \ []) xs" (is "?L = ?R") proof - have len: "length ?L = length ?R" unfolding length_transpose transpose_max_length using filter_equals_takeWhile_sorted_rev[OF sorted, of 0] by simp { fix i assume "i < length ?R" with less_le_trans[OF _ length_takeWhile_le[of _ xs]] have "i < length xs" by simp } note * = this show ?thesis by (rule nth_equalityI) (simp_all add: len nth_transpose transpose_column[OF sorted] * takeWhile_nth) qed theorem transpose_rectangle: assumes "xs = [] \ n = 0" assumes rect: "\ i. i < length xs \ length (xs ! i) = n" shows "transpose xs = map (\ i. map (\ j. xs ! j ! i) [0..ys. i < length ys) xs = xs" using rect by (auto simp: in_set_conv_nth intro!: filter_True) } ultimately show "\i. i < length (transpose xs) \ ?trans ! i = ?map ! i" by (auto simp: nth_transpose intro: nth_equalityI) qed subsubsection \\sorted_list_of_set\\ text\This function maps (finite) linearly ordered sets to sorted lists. Warning: in most cases it is not a good idea to convert from sets to lists but one should convert in the other direction (via \<^const>\set\).\ context linorder begin definition sorted_list_of_set :: "'a set \ 'a list" where "sorted_list_of_set = folding.F insort []" sublocale sorted_list_of_set: folding insort Nil rewrites "folding.F insort [] = sorted_list_of_set" proof - interpret comp_fun_commute insort by (fact comp_fun_commute_insort) show "folding insort" by standard (fact comp_fun_commute) show "folding.F insort [] = sorted_list_of_set" by (simp only: sorted_list_of_set_def) qed lemma sorted_list_of_set_empty: "sorted_list_of_set {} = []" by (fact sorted_list_of_set.empty) lemma sorted_list_of_set_insert [simp]: "finite A \ sorted_list_of_set (insert x A) = insort x (sorted_list_of_set (A - {x}))" by (fact sorted_list_of_set.insert_remove) lemma sorted_list_of_set_eq_Nil_iff [simp]: "finite A \ sorted_list_of_set A = [] \ A = {}" by (auto simp: sorted_list_of_set.remove) lemma set_sorted_list_of_set [simp]: "finite A \ set (sorted_list_of_set A) = A" by(induct A rule: finite_induct) (simp_all add: set_insort_key) lemma sorted_sorted_list_of_set [simp]: "sorted (sorted_list_of_set A)" proof (cases "finite A") case True thus ?thesis by(induction A) (simp_all add: sorted_insort) next case False thus ?thesis by simp qed lemma distinct_sorted_list_of_set [simp]: "distinct (sorted_list_of_set A)" proof (cases "finite A") case True thus ?thesis by(induction A) (simp_all add: distinct_insort) next case False thus ?thesis by simp qed lemma length_sorted_list_of_set [simp]: "length (sorted_list_of_set A) = card A" proof (cases "finite A") case True then show ?thesis by(metis distinct_card distinct_sorted_list_of_set set_sorted_list_of_set) qed auto lemmas sorted_list_of_set = set_sorted_list_of_set sorted_sorted_list_of_set distinct_sorted_list_of_set lemma sorted_list_of_set_sort_remdups [code]: "sorted_list_of_set (set xs) = sort (remdups xs)" proof - interpret comp_fun_commute insort by (fact comp_fun_commute_insort) show ?thesis by (simp add: sorted_list_of_set.eq_fold sort_conv_fold fold_set_fold_remdups) qed lemma sorted_list_of_set_remove: assumes "finite A" shows "sorted_list_of_set (A - {x}) = remove1 x (sorted_list_of_set A)" proof (cases "x \ A") case False with assms have "x \ set (sorted_list_of_set A)" by simp with False show ?thesis by (simp add: remove1_idem) next case True then obtain B where A: "A = insert x B" by (rule Set.set_insert) with assms show ?thesis by simp qed lemma strict_sorted_list_of_set [simp]: "strict_sorted (sorted_list_of_set A)" by (simp add: strict_sorted_iff) lemma finite_set_strict_sorted: assumes "finite A" obtains l where "strict_sorted l" "set l = A" "length l = card A" by (metis assms distinct_card distinct_sorted_list_of_set set_sorted_list_of_set strict_sorted_list_of_set) lemma strict_sorted_equal: assumes "strict_sorted xs" and "strict_sorted ys" and "set ys = set xs" shows "ys = xs" using assms proof (induction xs arbitrary: ys) case (Cons x xs) show ?case proof (cases ys) case Nil then show ?thesis using Cons.prems by auto next case (Cons y ys') then have "xs = ys'" by (metis Cons.prems list.inject sorted_distinct_set_unique strict_sorted_iff) moreover have "x = y" using Cons.prems \xs = ys'\ local.Cons by fastforce ultimately show ?thesis using local.Cons by blast qed qed auto lemma strict_sorted_equal_Uniq: "\\<^sub>\\<^sub>1xs. strict_sorted xs \ set xs = A" by (simp add: Uniq_def strict_sorted_equal) lemma sorted_list_of_set_inject: assumes "sorted_list_of_set A = sorted_list_of_set B" "finite A" "finite B" shows "A = B" using assms set_sorted_list_of_set by fastforce lemma sorted_list_of_set_unique: assumes "finite A" shows "strict_sorted l \ set l = A \ length l = card A \ sorted_list_of_set A = l" using assms strict_sorted_equal by force end lemma sorted_list_of_set_range [simp]: "sorted_list_of_set {m.. j" shows "sorted_list_of_set {i<..j} = Suc i # sorted_list_of_set {Suc i<..j}" using sorted_list_of_set_greaterThanLessThan [of i "Suc j"] by (metis assms greaterThanAtMost_def greaterThanLessThan_eq le_imp_less_Suc lessThan_Suc_atMost) lemma nth_sorted_list_of_set_greaterThanLessThan: "n < j - Suc i \ sorted_list_of_set {i<.. sorted_list_of_set {i<..j} ! n = Suc (i+n)" using nth_sorted_list_of_set_greaterThanLessThan [of n "Suc j" i] by (simp add: greaterThanAtMost_def greaterThanLessThan_eq lessThan_Suc_atMost) subsubsection \\lists\: the list-forming operator over sets\ inductive_set lists :: "'a set => 'a list set" for A :: "'a set" where Nil [intro!, simp]: "[] \ lists A" | Cons [intro!, simp]: "\a \ A; l \ lists A\ \ a#l \ lists A" inductive_cases listsE [elim!]: "x#l \ lists A" inductive_cases listspE [elim!]: "listsp A (x # l)" inductive_simps listsp_simps[code]: "listsp A []" "listsp A (x # xs)" lemma listsp_mono [mono]: "A \ B \ listsp A \ listsp B" by (rule predicate1I, erule listsp.induct, blast+) lemmas lists_mono = listsp_mono [to_set] lemma listsp_infI: assumes l: "listsp A l" shows "listsp B l \ listsp (inf A B) l" using l by induct blast+ lemmas lists_IntI = listsp_infI [to_set] lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)" proof (rule mono_inf [where f=listsp, THEN order_antisym]) show "mono listsp" by (simp add: mono_def listsp_mono) show "inf (listsp A) (listsp B) \ listsp (inf A B)" by (blast intro!: listsp_infI) qed lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_def inf_bool_def] lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set] lemma Cons_in_lists_iff[simp]: "x#xs \ lists A \ x \ A \ xs \ lists A" by auto lemma append_in_listsp_conv [iff]: "(listsp A (xs @ ys)) = (listsp A xs \ listsp A ys)" by (induct xs) auto lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set] lemma in_listsp_conv_set: "(listsp A xs) = (\x \ set xs. A x)" \ \eliminate \listsp\ in favour of \set\\ by (induct xs) auto lemmas in_lists_conv_set [code_unfold] = in_listsp_conv_set [to_set] lemma in_listspD [dest!]: "listsp A xs \ \x\set xs. A x" by (rule in_listsp_conv_set [THEN iffD1]) lemmas in_listsD [dest!] = in_listspD [to_set] lemma in_listspI [intro!]: "\x\set xs. A x \ listsp A xs" by (rule in_listsp_conv_set [THEN iffD2]) lemmas in_listsI [intro!] = in_listspI [to_set] lemma lists_eq_set: "lists A = {xs. set xs \ A}" by auto lemma lists_empty [simp]: "lists {} = {[]}" by auto lemma lists_UNIV [simp]: "lists UNIV = UNIV" by auto lemma lists_image: "lists (f`A) = map f ` lists A" proof - { fix xs have "\x\set xs. x \ f ` A \ xs \ map f ` lists A" by (induct xs) (auto simp del: list.map simp add: list.map[symmetric] intro!: imageI) } then show ?thesis by auto qed subsubsection \Inductive definition for membership\ inductive ListMem :: "'a \ 'a list \ bool" where elem: "ListMem x (x # xs)" | insert: "ListMem x xs \ ListMem x (y # xs)" lemma ListMem_iff: "(ListMem x xs) = (x \ set xs)" proof show "ListMem x xs \ x \ set xs" by (induct set: ListMem) auto show "x \ set xs \ ListMem x xs" by (induct xs) (auto intro: ListMem.intros) qed subsubsection \Lists as Cartesian products\ text\\set_Cons A Xs\: the set of lists with head drawn from \<^term>\A\ and tail drawn from \<^term>\Xs\.\ definition set_Cons :: "'a set \ 'a list set \ 'a list set" where "set_Cons A XS = {z. \x xs. z = x # xs \ x \ A \ xs \ XS}" lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A" by (auto simp add: set_Cons_def) text\Yields the set of lists, all of the same length as the argument and with elements drawn from the corresponding element of the argument.\ primrec listset :: "'a set list \ 'a list set" where "listset [] = {[]}" | "listset (A # As) = set_Cons A (listset As)" subsection \Relations on Lists\ subsubsection \Length Lexicographic Ordering\ text\These orderings preserve well-foundedness: shorter lists precede longer lists. These ordering are not used in dictionaries.\ primrec \ \The lexicographic ordering for lists of the specified length\ lexn :: "('a \ 'a) set \ nat \ ('a list \ 'a list) set" where "lexn r 0 = {}" | "lexn r (Suc n) = (map_prod (%(x, xs). x#xs) (%(x, xs). x#xs) ` (r <*lex*> lexn r n)) Int {(xs, ys). length xs = Suc n \ length ys = Suc n}" definition lex :: "('a \ 'a) set \ ('a list \ 'a list) set" where "lex r = (\n. lexn r n)" \ \Holds only between lists of the same length\ definition lenlex :: "('a \ 'a) set => ('a list \ 'a list) set" where "lenlex r = inv_image (less_than <*lex*> lex r) (\xs. (length xs, xs))" \ \Compares lists by their length and then lexicographically\ lemma wf_lexn: assumes "wf r" shows "wf (lexn r n)" proof (induct n) case (Suc n) have inj: "inj (\(x, xs). x # xs)" using assms by (auto simp: inj_on_def) have wf: "wf (map_prod (\(x, xs). x # xs) (\(x, xs). x # xs) ` (r <*lex*> lexn r n))" by (simp add: Suc.hyps assms wf_lex_prod wf_map_prod_image [OF _ inj]) then show ?case by (rule wf_subset) auto qed auto lemma lexn_length: "(xs, ys) \ lexn r n \ length xs = n \ length ys = n" by (induct n arbitrary: xs ys) auto lemma wf_lex [intro!]: assumes "wf r" shows "wf (lex r)" unfolding lex_def proof (rule wf_UN) show "wf (lexn r i)" for i by (simp add: assms wf_lexn) show "\i j. lexn r i \ lexn r j \ Domain (lexn r i) \ Range (lexn r j) = {}" by (metis DomainE Int_emptyI RangeE lexn_length) qed lemma lexn_conv: "lexn r n = {(xs,ys). length xs = n \ length ys = n \ (\xys x y xs' ys'. xs= xys @ x#xs' \ ys= xys @ y # ys' \ (x, y) \ r)}" proof (induction n) case (Suc n) then show ?case apply (simp add: image_Collect lex_prod_def, safe, blast) apply (rule_tac x = "ab # xys" in exI, simp) apply (case_tac xys; force) done qed auto text\By Mathias Fleury:\ proposition lexn_transI: assumes "trans r" shows "trans (lexn r n)" unfolding trans_def proof (intro allI impI) fix as bs cs assume asbs: "(as, bs) \ lexn r n" and bscs: "(bs, cs) \ lexn r n" obtain abs a b as' bs' where n: "length as = n" and "length bs = n" and as: "as = abs @ a # as'" and bs: "bs = abs @ b # bs'" and abr: "(a, b) \ r" using asbs unfolding lexn_conv by blast obtain bcs b' c' cs' bs' where n': "length cs = n" and "length bs = n" and bs': "bs = bcs @ b' # bs'" and cs: "cs = bcs @ c' # cs'" and b'c'r: "(b', c') \ r" using bscs unfolding lexn_conv by blast consider (le) "length bcs < length abs" | (eq) "length bcs = length abs" | (ge) "length bcs > length abs" by linarith thus "(as, cs) \ lexn r n" proof cases let ?k = "length bcs" case le hence "as ! ?k = bs ! ?k" unfolding as bs by (simp add: nth_append) hence "(as ! ?k, cs ! ?k) \ r" using b'c'r unfolding bs' cs by auto moreover have "length bcs < length as" using le unfolding as by simp from id_take_nth_drop[OF this] have "as = take ?k as @ as ! ?k # drop (Suc ?k) as" . moreover have "length bcs < length cs" unfolding cs by simp from id_take_nth_drop[OF this] have "cs = take ?k cs @ cs ! ?k # drop (Suc ?k) cs" . moreover have "take ?k as = take ?k cs" using le arg_cong[OF bs, of "take (length bcs)"] unfolding cs as bs' by auto ultimately show ?thesis using n n' unfolding lexn_conv by auto next let ?k = "length abs" case ge hence "bs ! ?k = cs ! ?k" unfolding bs' cs by (simp add: nth_append) hence "(as ! ?k, cs ! ?k) \ r" using abr unfolding as bs by auto moreover have "length abs < length as" using ge unfolding as by simp from id_take_nth_drop[OF this] have "as = take ?k as @ as ! ?k # drop (Suc ?k) as" . moreover have "length abs < length cs" using n n' unfolding as by simp from id_take_nth_drop[OF this] have "cs = take ?k cs @ cs ! ?k # drop (Suc ?k) cs" . moreover have "take ?k as = take ?k cs" using ge arg_cong[OF bs', of "take (length abs)"] unfolding cs as bs by auto ultimately show ?thesis using n n' unfolding lexn_conv by auto next let ?k = "length abs" case eq hence *: "abs = bcs" "b = b'" using bs bs' by auto hence "(a, c') \ r" using abr b'c'r assms unfolding trans_def by blast with * show ?thesis using n n' unfolding lexn_conv as bs cs by auto qed qed corollary lex_transI: assumes "trans r" shows "trans (lex r)" using lexn_transI [OF assms] by (clarsimp simp add: lex_def trans_def) (metis lexn_length) lemma lex_conv: "lex r = {(xs,ys). length xs = length ys \ (\xys x y xs' ys'. xs = xys @ x # xs' \ ys = xys @ y # ys' \ (x, y) \ r)}" by (force simp add: lex_def lexn_conv) lemma wf_lenlex [intro!]: "wf r \ wf (lenlex r)" by (unfold lenlex_def) blast lemma lenlex_conv: "lenlex r = {(xs,ys). length xs < length ys \ length xs = length ys \ (xs, ys) \ lex r}" by (simp add: lenlex_def Id_on_def lex_prod_def inv_image_def) lemma total_lenlex: assumes "total r" shows "total (lenlex r)" proof - have "(xs,ys) \ lexn r (length xs) \ (ys,xs) \ lexn r (length xs)" if "xs \ ys" and len: "length xs = length ys" for xs ys proof - obtain pre x xs' y ys' where "x\y" and xs: "xs = pre @ [x] @ xs'" and ys: "ys = pre @ [y] @ys'" by (meson len \xs \ ys\ same_length_different) then consider "(x,y) \ r" | "(y,x) \ r" by (meson UNIV_I assms total_on_def) then show ?thesis by cases (use len in \(force simp add: lexn_conv xs ys)+\) qed then show ?thesis by (fastforce simp: lenlex_def total_on_def lex_def) qed lemma lenlex_transI [intro]: "trans r \ trans (lenlex r)" unfolding lenlex_def by (meson lex_transI trans_inv_image trans_less_than trans_lex_prod) lemma Nil_notin_lex [iff]: "([], ys) \ lex r" by (simp add: lex_conv) lemma Nil2_notin_lex [iff]: "(xs, []) \ lex r" by (simp add:lex_conv) lemma Cons_in_lex [simp]: "(x # xs, y # ys) \ lex r \ (x, y) \ r \ length xs = length ys \ x = y \ (xs, ys) \ lex r" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs by (simp add: lex_conv) (metis hd_append list.sel(1) list.sel(3) tl_append2) next assume ?rhs then show ?lhs by (simp add: lex_conv) (blast intro: Cons_eq_appendI) qed lemma Nil_lenlex_iff1 [simp]: "([], ns) \ lenlex r \ ns \ []" and Nil_lenlex_iff2 [simp]: "(ns,[]) \ lenlex r" by (auto simp: lenlex_def) lemma Cons_lenlex_iff: "((m # ms, n # ns) \ lenlex r) \ length ms < length ns \ length ms = length ns \ (m,n) \ r \ (m = n \ (ms,ns) \ lenlex r)" by (auto simp: lenlex_def) lemma lenlex_irreflexive: "(\x. (x,x) \ r) \ (xs,xs) \ lenlex r" by (induction xs) (auto simp add: Cons_lenlex_iff) lemma lenlex_trans: "\(x,y) \ lenlex r; (y,z) \ lenlex r; trans r\ \ (x,z) \ lenlex r" by (meson lenlex_transI transD) lemma lenlex_length: "(ms, ns) \ lenlex r \ length ms \ length ns" by (auto simp: lenlex_def) lemma lex_append_rightI: "(xs, ys) \ lex r \ length vs = length us \ (xs @ us, ys @ vs) \ lex r" by (fastforce simp: lex_def lexn_conv) lemma lex_append_leftI: "(ys, zs) \ lex r \ (xs @ ys, xs @ zs) \ lex r" by (induct xs) auto lemma lex_append_leftD: "\x. (x,x) \ r \ (xs @ ys, xs @ zs) \ lex r \ (ys, zs) \ lex r" by (induct xs) auto lemma lex_append_left_iff: "\x. (x,x) \ r \ (xs @ ys, xs @ zs) \ lex r \ (ys, zs) \ lex r" by(metis lex_append_leftD lex_append_leftI) lemma lex_take_index: assumes "(xs, ys) \ lex r" obtains i where "i < length xs" and "i < length ys" and "take i xs = take i ys" and "(xs ! i, ys ! i) \ r" proof - obtain n us x xs' y ys' where "(xs, ys) \ lexn r n" and "length xs = n" and "length ys = n" and "xs = us @ x # xs'" and "ys = us @ y # ys'" and "(x, y) \ r" using assms by (fastforce simp: lex_def lexn_conv) then show ?thesis by (intro that [of "length us"]) auto qed lemma irrefl_lex: "irrefl r \ irrefl (lex r)" by (meson irrefl_def lex_take_index) subsubsection \Lexicographic Ordering\ text \Classical lexicographic ordering on lists, ie. "a" < "ab" < "b". This ordering does \emph{not} preserve well-foundedness. Author: N. Voelker, March 2005.\ definition lexord :: "('a \ 'a) set \ ('a list \ 'a list) set" where "lexord r = {(x,y). \ a v. y = x @ a # v \ (\ u a b v w. (a,b) \ r \ x = u @ (a # v) \ y = u @ (b # w))}" lemma lexord_Nil_left[simp]: "([],y) \ lexord r = (\ a x. y = a # x)" by (unfold lexord_def, induct_tac y, auto) lemma lexord_Nil_right[simp]: "(x,[]) \ lexord r" by (unfold lexord_def, induct_tac x, auto) lemma lexord_cons_cons[simp]: "(a # x, b # y) \ lexord r \ (a,b)\ r \ (a = b \ (x,y)\ lexord r)" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs apply (simp add: lexord_def) apply (metis hd_append list.sel(1) list.sel(3) tl_append2) done qed (auto simp add: lexord_def; (blast | meson Cons_eq_appendI)) lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons lemma lexord_append_rightI: "\ b z. y = b # z \ (x, x @ y) \ lexord r" by (induct_tac x, auto) lemma lexord_append_left_rightI: "(a,b) \ r \ (u @ a # x, u @ b # y) \ lexord r" by (induct_tac u, auto) lemma lexord_append_leftI: " (u,v) \ lexord r \ (x @ u, x @ v) \ lexord r" by (induct x, auto) lemma lexord_append_leftD: "\(x @ u, x @ v) \ lexord r; (\a. (a,a) \ r) \ \ (u,v) \ lexord r" by (erule rev_mp, induct_tac x, auto) lemma lexord_take_index_conv: "((x,y) \ lexord r) = ((length x < length y \ take (length x) y = x) \ (\i. i < min(length x)(length y) \ take i x = take i y \ (x!i,y!i) \ r))" proof - have "(\a v. y = x @ a # v) = (length x < length y \ take (length x) y = x)" by (metis Cons_nth_drop_Suc append_eq_conv_conj drop_all list.simps(3) not_le) moreover have "(\u a b. (a, b) \ r \ (\v. x = u @ a # v) \ (\w. y = u @ b # w)) = (\i take i x = take i y \ (x ! i, y ! i) \ r)" apply safe using less_iff_Suc_add apply auto[1] by (metis id_take_nth_drop) ultimately show ?thesis by (auto simp: lexord_def Let_def) qed \ \lexord is extension of partial ordering List.lex\ lemma lexord_lex: "(x,y) \ lex r = ((x,y) \ lexord r \ length x = length y)" proof (induction x arbitrary: y) case (Cons a x y) then show ?case by (cases y) (force+) qed auto lemma lexord_irreflexive: "\x. (x,x) \ r \ (xs,xs) \ lexord r" by (induct xs) auto text\By Ren\'e Thiemann:\ lemma lexord_partial_trans: "(\x y z. x \ set xs \ (x,y) \ r \ (y,z) \ r \ (x,z) \ r) \ (xs,ys) \ lexord r \ (ys,zs) \ lexord r \ (xs,zs) \ lexord r" proof (induct xs arbitrary: ys zs) case Nil from Nil(3) show ?case unfolding lexord_def by (cases zs, auto) next case (Cons x xs yys zzs) from Cons(3) obtain y ys where yys: "yys = y # ys" unfolding lexord_def by (cases yys, auto) note Cons = Cons[unfolded yys] from Cons(3) have one: "(x,y) \ r \ x = y \ (xs,ys) \ lexord r" by auto from Cons(4) obtain z zs where zzs: "zzs = z # zs" unfolding lexord_def by (cases zzs, auto) note Cons = Cons[unfolded zzs] from Cons(4) have two: "(y,z) \ r \ y = z \ (ys,zs) \ lexord r" by auto { assume "(xs,ys) \ lexord r" and "(ys,zs) \ lexord r" from Cons(1)[OF _ this] Cons(2) have "(xs,zs) \ lexord r" by auto } note ind1 = this { assume "(x,y) \ r" and "(y,z) \ r" from Cons(2)[OF _ this] have "(x,z) \ r" by auto } note ind2 = this from one two ind1 ind2 have "(x,z) \ r \ x = z \ (xs,zs) \ lexord r" by blast thus ?case unfolding zzs by auto qed lemma lexord_trans: "\ (x, y) \ lexord r; (y, z) \ lexord r; trans r \ \ (x, z) \ lexord r" by(auto simp: trans_def intro:lexord_partial_trans) lemma lexord_transI: "trans r \ trans (lexord r)" by (meson lexord_trans transI) lemma total_lexord: "total r \ total (lexord r)" unfolding total_on_def proof clarsimp fix x y assume "\x y. x \ y \ (x, y) \ r \ (y, x) \ r" and "(x::'a list) \ y" and "(y, x) \ lexord r" then show "(x, y) \ lexord r" proof (induction x arbitrary: y) case Nil then show ?case by (metis lexord_Nil_left list.exhaust) next case (Cons a x y) then show ?case by (cases y) (force+) qed qed corollary lexord_linear: "(\a b. (a,b) \ r \ a = b \ (b,a) \ r) \ (x,y) \ lexord r \ x = y \ (y,x) \ lexord r" using total_lexord by (metis UNIV_I total_on_def) lemma lexord_irrefl: "irrefl R \ irrefl (lexord R)" by (simp add: irrefl_def lexord_irreflexive) lemma lexord_asym: assumes "asym R" shows "asym (lexord R)" proof fix xs ys assume "(xs, ys) \ lexord R" then show "(ys, xs) \ lexord R" proof (induct xs arbitrary: ys) case Nil then show ?case by simp next case (Cons x xs) then obtain z zs where ys: "ys = z # zs" by (cases ys) auto with assms Cons show ?case by (auto elim: asym.cases) qed qed lemma lexord_asymmetric: assumes "asym R" assumes hyp: "(a, b) \ lexord R" shows "(b, a) \ lexord R" proof - from \asym R\ have "asym (lexord R)" by (rule lexord_asym) then show ?thesis by (rule asym.cases) (auto simp add: hyp) qed lemma asym_lex: "asym R \ asym (lex R)" by (meson asym.simps irrefl_lex lexord_asym lexord_lex) lemma asym_lenlex: "asym R \ asym (lenlex R)" by (simp add: lenlex_def asym_inv_image asym_less_than asym_lex asym_lex_prod) lemma lenlex_append1: assumes len: "(us,xs) \ lenlex R" and eq: "length vs = length ys" shows "(us @ vs, xs @ ys) \ lenlex R" using len proof (induction us) case Nil then show ?case by (simp add: lenlex_def eq) next case (Cons u us) with lex_append_rightI show ?case by (fastforce simp add: lenlex_def eq) qed lemma lenlex_append2 [simp]: assumes "irrefl R" shows "(us @ xs, us @ ys) \ lenlex R \ (xs, ys) \ lenlex R" proof (induction us) case Nil then show ?case by (simp add: lenlex_def) next case (Cons u us) with assms show ?case by (auto simp: lenlex_def irrefl_def) qed text \ Predicate version of lexicographic order integrated with Isabelle's order type classes. Author: Andreas Lochbihler \ context ord begin context notes [[inductive_internals]] begin inductive lexordp :: "'a list \ 'a list \ bool" where Nil: "lexordp [] (y # ys)" | Cons: "x < y \ lexordp (x # xs) (y # ys)" | Cons_eq: "\ \ x < y; \ y < x; lexordp xs ys \ \ lexordp (x # xs) (y # ys)" end lemma lexordp_simps [simp]: "lexordp [] ys = (ys \ [])" "lexordp xs [] = False" "lexordp (x # xs) (y # ys) \ x < y \ \ y < x \ lexordp xs ys" by(subst lexordp.simps, fastforce simp add: neq_Nil_conv)+ inductive lexordp_eq :: "'a list \ 'a list \ bool" where Nil: "lexordp_eq [] ys" | Cons: "x < y \ lexordp_eq (x # xs) (y # ys)" | Cons_eq: "\ \ x < y; \ y < x; lexordp_eq xs ys \ \ lexordp_eq (x # xs) (y # ys)" lemma lexordp_eq_simps [simp]: "lexordp_eq [] ys = True" "lexordp_eq xs [] \ xs = []" "lexordp_eq (x # xs) [] = False" "lexordp_eq (x # xs) (y # ys) \ x < y \ \ y < x \ lexordp_eq xs ys" by(subst lexordp_eq.simps, fastforce)+ lemma lexordp_append_rightI: "ys \ Nil \ lexordp xs (xs @ ys)" by(induct xs)(auto simp add: neq_Nil_conv) lemma lexordp_append_left_rightI: "x < y \ lexordp (us @ x # xs) (us @ y # ys)" by(induct us) auto lemma lexordp_eq_refl: "lexordp_eq xs xs" by(induct xs) simp_all lemma lexordp_append_leftI: "lexordp us vs \ lexordp (xs @ us) (xs @ vs)" by(induct xs) auto lemma lexordp_append_leftD: "\ lexordp (xs @ us) (xs @ vs); \a. \ a < a \ \ lexordp us vs" by(induct xs) auto lemma lexordp_irreflexive: assumes irrefl: "\x. \ x < x" shows "\ lexordp xs xs" proof assume "lexordp xs xs" thus False by(induct xs ys\xs)(simp_all add: irrefl) qed lemma lexordp_into_lexordp_eq: assumes "lexordp xs ys" shows "lexordp_eq xs ys" using assms by induct simp_all end declare ord.lexordp_simps [simp, code] declare ord.lexordp_eq_simps [code, simp] lemma lexord_code [code, code_unfold]: "lexordp = ord.lexordp less" unfolding lexordp_def ord.lexordp_def .. context order begin lemma lexordp_antisym: assumes "lexordp xs ys" "lexordp ys xs" shows False using assms by induct auto lemma lexordp_irreflexive': "\ lexordp xs xs" by(rule lexordp_irreflexive) simp end context linorder begin lemma lexordp_cases [consumes 1, case_names Nil Cons Cons_eq, cases pred: lexordp]: assumes "lexordp xs ys" obtains (Nil) y ys' where "xs = []" "ys = y # ys'" | (Cons) x xs' y ys' where "xs = x # xs'" "ys = y # ys'" "x < y" | (Cons_eq) x xs' ys' where "xs = x # xs'" "ys = x # ys'" "lexordp xs' ys'" using assms by cases (fastforce simp add: not_less_iff_gr_or_eq)+ lemma lexordp_induct [consumes 1, case_names Nil Cons Cons_eq, induct pred: lexordp]: assumes major: "lexordp xs ys" and Nil: "\y ys. P [] (y # ys)" and Cons: "\x xs y ys. x < y \ P (x # xs) (y # ys)" and Cons_eq: "\x xs ys. \ lexordp xs ys; P xs ys \ \ P (x # xs) (x # ys)" shows "P xs ys" using major by induct (simp_all add: Nil Cons not_less_iff_gr_or_eq Cons_eq) lemma lexordp_iff: "lexordp xs ys \ (\x vs. ys = xs @ x # vs) \ (\us a b vs ws. a < b \ xs = us @ a # vs \ ys = us @ b # ws)" (is "?lhs = ?rhs") proof assume ?lhs thus ?rhs proof induct case Cons_eq thus ?case by simp (metis append.simps(2)) qed(fastforce intro: disjI2 del: disjCI intro: exI[where x="[]"])+ next assume ?rhs thus ?lhs by(auto intro: lexordp_append_leftI[where us="[]", simplified] lexordp_append_leftI) qed lemma lexordp_conv_lexord: "lexordp xs ys \ (xs, ys) \ lexord {(x, y). x < y}" by(simp add: lexordp_iff lexord_def) lemma lexordp_eq_antisym: assumes "lexordp_eq xs ys" "lexordp_eq ys xs" shows "xs = ys" using assms by induct simp_all lemma lexordp_eq_trans: assumes "lexordp_eq xs ys" and "lexordp_eq ys zs" shows "lexordp_eq xs zs" using assms by (induct arbitrary: zs) (case_tac zs; auto)+ lemma lexordp_trans: assumes "lexordp xs ys" "lexordp ys zs" shows "lexordp xs zs" using assms by (induct arbitrary: zs) (case_tac zs; auto)+ lemma lexordp_linear: "lexordp xs ys \ xs = ys \ lexordp ys xs" by(induct xs arbitrary: ys; case_tac ys; fastforce) lemma lexordp_conv_lexordp_eq: "lexordp xs ys \ lexordp_eq xs ys \ \ lexordp_eq ys xs" (is "?lhs \ ?rhs") proof assume ?lhs hence "\ lexordp_eq ys xs" by induct simp_all with \?lhs\ show ?rhs by (simp add: lexordp_into_lexordp_eq) next assume ?rhs hence "lexordp_eq xs ys" "\ lexordp_eq ys xs" by simp_all thus ?lhs by induct simp_all qed lemma lexordp_eq_conv_lexord: "lexordp_eq xs ys \ xs = ys \ lexordp xs ys" by(auto simp add: lexordp_conv_lexordp_eq lexordp_eq_refl dest: lexordp_eq_antisym) lemma lexordp_eq_linear: "lexordp_eq xs ys \ lexordp_eq ys xs" by (induct xs arbitrary: ys) (case_tac ys; auto)+ lemma lexordp_linorder: "class.linorder lexordp_eq lexordp" by unfold_locales (auto simp add: lexordp_conv_lexordp_eq lexordp_eq_refl lexordp_eq_antisym intro: lexordp_eq_trans del: disjCI intro: lexordp_eq_linear) end lemma sorted_insort_is_snoc: "sorted xs \ \x \ set xs. a \ x \ insort a xs = xs @ [a]" by (induct xs) (auto dest!: insort_is_Cons) subsubsection \Lexicographic combination of measure functions\ text \These are useful for termination proofs\ definition "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)" lemma wf_measures[simp]: "wf (measures fs)" unfolding measures_def by blast lemma in_measures[simp]: "(x, y) \ measures [] = False" "(x, y) \ measures (f # fs) = (f x < f y \ (f x = f y \ (x, y) \ measures fs))" unfolding measures_def by auto lemma measures_less: "f x < f y \ (x, y) \ measures (f#fs)" by simp lemma measures_lesseq: "f x \ f y \ (x, y) \ measures fs \ (x, y) \ measures (f#fs)" by auto subsubsection \Lifting Relations to Lists: one element\ definition listrel1 :: "('a \ 'a) set \ ('a list \ 'a list) set" where "listrel1 r = {(xs,ys). \us z z' vs. xs = us @ z # vs \ (z,z') \ r \ ys = us @ z' # vs}" lemma listrel1I: "\ (x, y) \ r; xs = us @ x # vs; ys = us @ y # vs \ \ (xs, ys) \ listrel1 r" unfolding listrel1_def by auto lemma listrel1E: "\ (xs, ys) \ listrel1 r; !!x y us vs. \ (x, y) \ r; xs = us @ x # vs; ys = us @ y # vs \ \ P \ \ P" unfolding listrel1_def by auto lemma not_Nil_listrel1 [iff]: "([], xs) \ listrel1 r" unfolding listrel1_def by blast lemma not_listrel1_Nil [iff]: "(xs, []) \ listrel1 r" unfolding listrel1_def by blast lemma Cons_listrel1_Cons [iff]: "(x # xs, y # ys) \ listrel1 r \ (x,y) \ r \ xs = ys \ x = y \ (xs, ys) \ listrel1 r" by (simp add: listrel1_def Cons_eq_append_conv) (blast) lemma listrel1I1: "(x,y) \ r \ (x # xs, y # xs) \ listrel1 r" by fast lemma listrel1I2: "(xs, ys) \ listrel1 r \ (x # xs, x # ys) \ listrel1 r" by fast lemma append_listrel1I: "(xs, ys) \ listrel1 r \ us = vs \ xs = ys \ (us, vs) \ listrel1 r \ (xs @ us, ys @ vs) \ listrel1 r" unfolding listrel1_def by auto (blast intro: append_eq_appendI)+ lemma Cons_listrel1E1[elim!]: assumes "(x # xs, ys) \ listrel1 r" and "\y. ys = y # xs \ (x, y) \ r \ R" and "\zs. ys = x # zs \ (xs, zs) \ listrel1 r \ R" shows R using assms by (cases ys) blast+ lemma Cons_listrel1E2[elim!]: assumes "(xs, y # ys) \ listrel1 r" and "\x. xs = x # ys \ (x, y) \ r \ R" and "\zs. xs = y # zs \ (zs, ys) \ listrel1 r \ R" shows R using assms by (cases xs) blast+ lemma snoc_listrel1_snoc_iff: "(xs @ [x], ys @ [y]) \ listrel1 r \ (xs, ys) \ listrel1 r \ x = y \ xs = ys \ (x,y) \ r" (is "?L \ ?R") proof assume ?L thus ?R by (fastforce simp: listrel1_def snoc_eq_iff_butlast butlast_append) next assume ?R then show ?L unfolding listrel1_def by force qed lemma listrel1_eq_len: "(xs,ys) \ listrel1 r \ length xs = length ys" unfolding listrel1_def by auto lemma listrel1_mono: "r \ s \ listrel1 r \ listrel1 s" unfolding listrel1_def by blast lemma listrel1_converse: "listrel1 (r\) = (listrel1 r)\" unfolding listrel1_def by blast lemma in_listrel1_converse: "(x,y) \ listrel1 (r\) \ (x,y) \ (listrel1 r)\" unfolding listrel1_def by blast lemma listrel1_iff_update: "(xs,ys) \ (listrel1 r) \ (\y n. (xs ! n, y) \ r \ n < length xs \ ys = xs[n:=y])" (is "?L \ ?R") proof assume "?L" then obtain x y u v where "xs = u @ x # v" "ys = u @ y # v" "(x,y) \ r" unfolding listrel1_def by auto then have "ys = xs[length u := y]" and "length u < length xs" and "(xs ! length u, y) \ r" by auto then show "?R" by auto next assume "?R" then obtain x y n where "(xs!n, y) \ r" "n < size xs" "ys = xs[n:=y]" "x = xs!n" by auto then obtain u v where "xs = u @ x # v" and "ys = u @ y # v" and "(x, y) \ r" by (auto intro: upd_conv_take_nth_drop id_take_nth_drop) then show "?L" by (auto simp: listrel1_def) qed text\Accessible part and wellfoundedness:\ lemma Cons_acc_listrel1I [intro!]: "x \ Wellfounded.acc r \ xs \ Wellfounded.acc (listrel1 r) \ (x # xs) \ Wellfounded.acc (listrel1 r)" apply (induct arbitrary: xs set: Wellfounded.acc) apply (erule thin_rl) apply (erule acc_induct) apply (rule accI) apply (blast) done lemma lists_accD: "xs \ lists (Wellfounded.acc r) \ xs \ Wellfounded.acc (listrel1 r)" proof (induct set: lists) case Nil then show ?case by (meson acc.intros not_listrel1_Nil) next case (Cons a l) then show ?case by blast qed lemma lists_accI: "xs \ Wellfounded.acc (listrel1 r) \ xs \ lists (Wellfounded.acc r)" apply (induct set: Wellfounded.acc) apply clarify apply (rule accI) apply (fastforce dest!: in_set_conv_decomp[THEN iffD1] simp: listrel1_def) done lemma wf_listrel1_iff[simp]: "wf(listrel1 r) = wf r" by (auto simp: wf_acc_iff intro: lists_accD lists_accI[THEN Cons_in_lists_iff[THEN iffD1, THEN conjunct1]]) subsubsection \Lifting Relations to Lists: all elements\ inductive_set listrel :: "('a \ 'b) set \ ('a list \ 'b list) set" for r :: "('a \ 'b) set" where Nil: "([],[]) \ listrel r" | Cons: "\(x,y) \ r; (xs,ys) \ listrel r\ \ (x#xs, y#ys) \ listrel r" inductive_cases listrel_Nil1 [elim!]: "([],xs) \ listrel r" inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \ listrel r" inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \ listrel r" inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \ listrel r" lemma listrel_eq_len: "(xs, ys) \ listrel r \ length xs = length ys" by(induct rule: listrel.induct) auto lemma listrel_iff_zip [code_unfold]: "(xs,ys) \ listrel r \ length xs = length ys \ (\(x,y) \ set(zip xs ys). (x,y) \ r)" (is "?L \ ?R") proof assume ?L thus ?R by induct (auto intro: listrel_eq_len) next assume ?R thus ?L apply (clarify) by (induct rule: list_induct2) (auto intro: listrel.intros) qed lemma listrel_iff_nth: "(xs,ys) \ listrel r \ length xs = length ys \ (\n < length xs. (xs!n, ys!n) \ r)" (is "?L \ ?R") by (auto simp add: all_set_conv_all_nth listrel_iff_zip) lemma listrel_mono: "r \ s \ listrel r \ listrel s" by (meson listrel_iff_nth subrelI subset_eq) lemma listrel_subset: assumes "r \ A \ A" shows "listrel r \ lists A \ lists A" proof clarify show "a \ lists A \ b \ lists A" if "(a, b) \ listrel r" for a b using that assms by (induction rule: listrel.induct, auto) qed lemma listrel_refl_on: assumes "refl_on A r" shows "refl_on (lists A) (listrel r)" proof - have "l \ lists A \ (l, l) \ listrel r" for l using assms unfolding refl_on_def by (induction l, auto intro: listrel.intros) then show ?thesis by (meson assms listrel_subset refl_on_def) qed lemma listrel_sym: "sym r \ sym (listrel r)" by (simp add: listrel_iff_nth sym_def) lemma listrel_trans: assumes "trans r" shows "trans (listrel r)" proof - have "(x, z) \ listrel r" if "(x, y) \ listrel r" "(y, z) \ listrel r" for x y z using that proof induction case (Cons x y xs ys) then show ?case by clarsimp (metis assms listrel.Cons listrel_iff_nth transD) qed auto then show ?thesis using transI by blast qed theorem equiv_listrel: "equiv A r \ equiv (lists A) (listrel r)" by (simp add: equiv_def listrel_refl_on listrel_sym listrel_trans) lemma listrel_rtrancl_refl[iff]: "(xs,xs) \ listrel(r\<^sup>*)" using listrel_refl_on[of UNIV, OF refl_rtrancl] by(auto simp: refl_on_def) lemma listrel_rtrancl_trans: "\(xs,ys) \ listrel(r\<^sup>*); (ys,zs) \ listrel(r\<^sup>*)\ \ (xs,zs) \ listrel(r\<^sup>*)" by (metis listrel_trans trans_def trans_rtrancl) lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}" by (blast intro: listrel.intros) lemma listrel_Cons: "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})" by (auto simp add: set_Cons_def intro: listrel.intros) text \Relating \<^term>\listrel1\, \<^term>\listrel\ and closures:\ lemma listrel1_rtrancl_subset_rtrancl_listrel1: "listrel1 (r\<^sup>*) \ (listrel1 r)\<^sup>*" proof (rule subrelI) fix xs ys assume 1: "(xs,ys) \ listrel1 (r\<^sup>*)" { fix x y us vs have "(x,y) \ r\<^sup>* \ (us @ x # vs, us @ y # vs) \ (listrel1 r)\<^sup>*" proof(induct rule: rtrancl.induct) case rtrancl_refl show ?case by simp next case rtrancl_into_rtrancl thus ?case by (metis listrel1I rtrancl.rtrancl_into_rtrancl) qed } thus "(xs,ys) \ (listrel1 r)\<^sup>*" using 1 by(blast elim: listrel1E) qed lemma rtrancl_listrel1_eq_len: "(x,y) \ (listrel1 r)\<^sup>* \ length x = length y" by (induct rule: rtrancl.induct) (auto intro: listrel1_eq_len) lemma rtrancl_listrel1_ConsI1: "(xs,ys) \ (listrel1 r)\<^sup>* \ (x#xs,x#ys) \ (listrel1 r)\<^sup>*" proof (induction rule: rtrancl.induct) case (rtrancl_into_rtrancl a b c) then show ?case by (metis listrel1I2 rtrancl.rtrancl_into_rtrancl) qed auto lemma rtrancl_listrel1_ConsI2: "(x,y) \ r\<^sup>* \ (xs, ys) \ (listrel1 r)\<^sup>* \ (x # xs, y # ys) \ (listrel1 r)\<^sup>*" by (meson in_mono listrel1I1 listrel1_rtrancl_subset_rtrancl_listrel1 rtrancl_listrel1_ConsI1 rtrancl_trans) lemma listrel1_subset_listrel: "r \ r' \ refl r' \ listrel1 r \ listrel(r')" by(auto elim!: listrel1E simp add: listrel_iff_zip set_zip refl_on_def) lemma listrel_reflcl_if_listrel1: "(xs,ys) \ listrel1 r \ (xs,ys) \ listrel(r\<^sup>*)" by(erule listrel1E)(auto simp add: listrel_iff_zip set_zip) lemma listrel_rtrancl_eq_rtrancl_listrel1: "listrel (r\<^sup>*) = (listrel1 r)\<^sup>*" proof { fix x y assume "(x,y) \ listrel (r\<^sup>*)" then have "(x,y) \ (listrel1 r)\<^sup>*" by induct (auto intro: rtrancl_listrel1_ConsI2) } then show "listrel (r\<^sup>*) \ (listrel1 r)\<^sup>*" by (rule subrelI) next show "listrel (r\<^sup>*) \ (listrel1 r)\<^sup>*" proof(rule subrelI) fix xs ys assume "(xs,ys) \ (listrel1 r)\<^sup>*" then show "(xs,ys) \ listrel (r\<^sup>*)" proof induct case base show ?case by(auto simp add: listrel_iff_zip set_zip) next case (step ys zs) thus ?case by (metis listrel_reflcl_if_listrel1 listrel_rtrancl_trans) qed qed qed lemma rtrancl_listrel1_if_listrel: "(xs,ys) \ listrel r \ (xs,ys) \ (listrel1 r)\<^sup>*" by(metis listrel_rtrancl_eq_rtrancl_listrel1 subsetD[OF listrel_mono] r_into_rtrancl subsetI) lemma listrel_subset_rtrancl_listrel1: "listrel r \ (listrel1 r)\<^sup>*" by(fast intro:rtrancl_listrel1_if_listrel) subsection \Size function\ lemma [measure_function]: "is_measure f \ is_measure (size_list f)" by (rule is_measure_trivial) lemma [measure_function]: "is_measure f \ is_measure (size_option f)" by (rule is_measure_trivial) lemma size_list_estimation[termination_simp]: "x \ set xs \ y < f x \ y < size_list f xs" by (induct xs) auto lemma size_list_estimation'[termination_simp]: "x \ set xs \ y \ f x \ y \ size_list f xs" by (induct xs) auto lemma size_list_map[simp]: "size_list f (map g xs) = size_list (f \ g) xs" by (induct xs) auto lemma size_list_append[simp]: "size_list f (xs @ ys) = size_list f xs + size_list f ys" by (induct xs, auto) lemma size_list_pointwise[termination_simp]: "(\x. x \ set xs \ f x \ g x) \ size_list f xs \ size_list g xs" by (induct xs) force+ subsection \Monad operation\ definition bind :: "'a list \ ('a \ 'b list) \ 'b list" where "bind xs f = concat (map f xs)" hide_const (open) bind lemma bind_simps [simp]: "List.bind [] f = []" "List.bind (x # xs) f = f x @ List.bind xs f" by (simp_all add: bind_def) lemma list_bind_cong [fundef_cong]: assumes "xs = ys" "(\x. x \ set xs \ f x = g x)" shows "List.bind xs f = List.bind ys g" proof - from assms(2) have "List.bind xs f = List.bind xs g" by (induction xs) simp_all with assms(1) show ?thesis by simp qed lemma set_list_bind: "set (List.bind xs f) = (\x\set xs. set (f x))" by (induction xs) simp_all subsection \Code generation\ text\Optional tail recursive version of \<^const>\map\. Can avoid stack overflow in some target languages.\ fun map_tailrec_rev :: "('a \ 'b) \ 'a list \ 'b list \ 'b list" where "map_tailrec_rev f [] bs = bs" | "map_tailrec_rev f (a#as) bs = map_tailrec_rev f as (f a # bs)" lemma map_tailrec_rev: "map_tailrec_rev f as bs = rev(map f as) @ bs" by(induction as arbitrary: bs) simp_all definition map_tailrec :: "('a \ 'b) \ 'a list \ 'b list" where "map_tailrec f as = rev (map_tailrec_rev f as [])" text\Code equation:\ lemma map_eq_map_tailrec: "map = map_tailrec" by(simp add: fun_eq_iff map_tailrec_def map_tailrec_rev) subsubsection \Counterparts for set-related operations\ definition member :: "'a list \ 'a \ bool" where [code_abbrev]: "member xs x \ x \ set xs" text \ Use \member\ only for generating executable code. Otherwise use \<^prop>\x \ set xs\ instead --- it is much easier to reason about. \ lemma member_rec [code]: "member (x # xs) y \ x = y \ member xs y" "member [] y \ False" by (auto simp add: member_def) lemma in_set_member (* FIXME delete candidate *): "x \ set xs \ member xs x" by (simp add: member_def) lemmas list_all_iff [code_abbrev] = fun_cong[OF list.pred_set] definition list_ex :: "('a \ bool) \ 'a list \ bool" where list_ex_iff [code_abbrev]: "list_ex P xs \ Bex (set xs) P" definition list_ex1 :: "('a \ bool) \ 'a list \ bool" where list_ex1_iff [code_abbrev]: "list_ex1 P xs \ (\! x. x \ set xs \ P x)" text \ Usually you should prefer \\x\set xs\, \\x\set xs\ and \\!x. x\set xs \ _\ over \<^const>\list_all\, \<^const>\list_ex\ and \<^const>\list_ex1\ in specifications. \ lemma list_all_simps [code]: "list_all P (x # xs) \ P x \ list_all P xs" "list_all P [] \ True" by (simp_all add: list_all_iff) lemma list_ex_simps [simp, code]: "list_ex P (x # xs) \ P x \ list_ex P xs" "list_ex P [] \ False" by (simp_all add: list_ex_iff) lemma list_ex1_simps [simp, code]: "list_ex1 P [] = False" "list_ex1 P (x # xs) = (if P x then list_all (\y. \ P y \ x = y) xs else list_ex1 P xs)" by (auto simp add: list_ex1_iff list_all_iff) lemma Ball_set_list_all: (* FIXME delete candidate *) "Ball (set xs) P \ list_all P xs" by (simp add: list_all_iff) lemma Bex_set_list_ex: (* FIXME delete candidate *) "Bex (set xs) P \ list_ex P xs" by (simp add: list_ex_iff) lemma list_all_append [simp]: "list_all P (xs @ ys) \ list_all P xs \ list_all P ys" by (auto simp add: list_all_iff) lemma list_ex_append [simp]: "list_ex P (xs @ ys) \ list_ex P xs \ list_ex P ys" by (auto simp add: list_ex_iff) lemma list_all_rev [simp]: "list_all P (rev xs) \ list_all P xs" by (simp add: list_all_iff) lemma list_ex_rev [simp]: "list_ex P (rev xs) \ list_ex P xs" by (simp add: list_ex_iff) lemma list_all_length: "list_all P xs \ (\n < length xs. P (xs ! n))" by (auto simp add: list_all_iff set_conv_nth) lemma list_ex_length: "list_ex P xs \ (\n < length xs. P (xs ! n))" by (auto simp add: list_ex_iff set_conv_nth) lemmas list_all_cong [fundef_cong] = list.pred_cong lemma list_ex_cong [fundef_cong]: "xs = ys \ (\x. x \ set ys \ f x = g x) \ list_ex f xs = list_ex g ys" by (simp add: list_ex_iff) definition can_select :: "('a \ bool) \ 'a set \ bool" where [code_abbrev]: "can_select P A = (\!x\A. P x)" lemma can_select_set_list_ex1 [code]: "can_select P (set A) = list_ex1 P A" by (simp add: list_ex1_iff can_select_def) text \Executable checks for relations on sets\ definition listrel1p :: "('a \ 'a \ bool) \ 'a list \ 'a list \ bool" where "listrel1p r xs ys = ((xs, ys) \ listrel1 {(x, y). r x y})" lemma [code_unfold]: "(xs, ys) \ listrel1 r = listrel1p (\x y. (x, y) \ r) xs ys" unfolding listrel1p_def by auto lemma [code]: "listrel1p r [] xs = False" "listrel1p r xs [] = False" "listrel1p r (x # xs) (y # ys) \ r x y \ xs = ys \ x = y \ listrel1p r xs ys" by (simp add: listrel1p_def)+ definition lexordp :: "('a \ 'a \ bool) \ 'a list \ 'a list \ bool" where "lexordp r xs ys = ((xs, ys) \ lexord {(x, y). r x y})" lemma [code_unfold]: "(xs, ys) \ lexord r = lexordp (\x y. (x, y) \ r) xs ys" unfolding lexordp_def by auto lemma [code]: "lexordp r xs [] = False" "lexordp r [] (y#ys) = True" "lexordp r (x # xs) (y # ys) = (r x y \ (x = y \ lexordp r xs ys))" unfolding lexordp_def by auto text \Bounded quantification and summation over nats.\ lemma atMost_upto [code_unfold]: "{..n} = set [0..m (\m \ {0..m (\m \ {0..m\n::nat. P m) \ (\m \ {0..n}. P m)" by auto lemma ex_nat_less [code_unfold]: "(\m\n::nat. P m) \ (\m \ {0..n}. P m)" by auto text\Bounded \LEAST\ operator:\ definition "Bleast S P = (LEAST x. x \ S \ P x)" definition "abort_Bleast S P = (LEAST x. x \ S \ P x)" declare [[code abort: abort_Bleast]] lemma Bleast_code [code]: "Bleast (set xs) P = (case filter P (sort xs) of x#xs \ x | [] \ abort_Bleast (set xs) P)" proof (cases "filter P (sort xs)") case Nil thus ?thesis by (simp add: Bleast_def abort_Bleast_def) next case (Cons x ys) have "(LEAST x. x \ set xs \ P x) = x" proof (rule Least_equality) show "x \ set xs \ P x" by (metis Cons Cons_eq_filter_iff in_set_conv_decomp set_sort) next fix y assume "y \ set xs \ P y" hence "y \ set (filter P xs)" by auto thus "x \ y" by (metis Cons eq_iff filter_sort set_ConsD set_sort sorted.simps(2) sorted_sort) qed thus ?thesis using Cons by (simp add: Bleast_def) qed declare Bleast_def[symmetric, code_unfold] text \Summation over ints.\ lemma greaterThanLessThan_upto [code_unfold]: "{i<..Optimizing by rewriting\ definition null :: "'a list \ bool" where [code_abbrev]: "null xs \ xs = []" text \ Efficient emptyness check is implemented by \<^const>\null\. \ lemma null_rec [code]: "null (x # xs) \ False" "null [] \ True" by (simp_all add: null_def) lemma eq_Nil_null: (* FIXME delete candidate *) "xs = [] \ null xs" by (simp add: null_def) lemma equal_Nil_null [code_unfold]: "HOL.equal xs [] \ null xs" "HOL.equal [] = null" by (auto simp add: equal null_def) definition maps :: "('a \ 'b list) \ 'a list \ 'b list" where [code_abbrev]: "maps f xs = concat (map f xs)" definition map_filter :: "('a \ 'b option) \ 'a list \ 'b list" where [code_post]: "map_filter f xs = map (the \ f) (filter (\x. f x \ None) xs)" text \ Operations \<^const>\maps\ and \<^const>\map_filter\ avoid intermediate lists on execution -- do not use for proving. \ lemma maps_simps [code]: "maps f (x # xs) = f x @ maps f xs" "maps f [] = []" by (simp_all add: maps_def) lemma map_filter_simps [code]: "map_filter f (x # xs) = (case f x of None \ map_filter f xs | Some y \ y # map_filter f xs)" "map_filter f [] = []" by (simp_all add: map_filter_def split: option.split) lemma concat_map_maps: (* FIXME delete candidate *) "concat (map f xs) = maps f xs" by (simp add: maps_def) lemma map_filter_map_filter [code_unfold]: "map f (filter P xs) = map_filter (\x. if P x then Some (f x) else None) xs" by (simp add: map_filter_def) text \Optimized code for \\i\{a..b::int}\ and \\n:{a.. and similiarly for \\\.\ definition all_interval_nat :: "(nat \ bool) \ nat \ nat \ bool" where "all_interval_nat P i j \ (\n \ {i.. i \ j \ P i \ all_interval_nat P (Suc i) j" proof - have *: "\n. P i \ \n\{Suc i.. i \ n \ n < j \ P n" proof - fix n assume "P i" "\n\{Suc i.. n" "n < j" then show "P n" by (cases "n = i") simp_all qed show ?thesis by (auto simp add: all_interval_nat_def intro: *) qed lemma list_all_iff_all_interval_nat [code_unfold]: "list_all P [i.. all_interval_nat P i j" by (simp add: list_all_iff all_interval_nat_def) lemma list_ex_iff_not_all_inverval_nat [code_unfold]: "list_ex P [i.. \ (all_interval_nat (Not \ P) i j)" by (simp add: list_ex_iff all_interval_nat_def) definition all_interval_int :: "(int \ bool) \ int \ int \ bool" where "all_interval_int P i j \ (\k \ {i..j}. P k)" lemma [code]: "all_interval_int P i j \ i > j \ P i \ all_interval_int P (i + 1) j" proof - have *: "\k. P i \ \k\{i+1..j}. P k \ i \ k \ k \ j \ P k" proof - fix k assume "P i" "\k\{i+1..j}. P k" "i \ k" "k \ j" then show "P k" by (cases "k = i") simp_all qed show ?thesis by (auto simp add: all_interval_int_def intro: *) qed lemma list_all_iff_all_interval_int [code_unfold]: "list_all P [i..j] \ all_interval_int P i j" by (simp add: list_all_iff all_interval_int_def) lemma list_ex_iff_not_all_inverval_int [code_unfold]: "list_ex P [i..j] \ \ (all_interval_int (Not \ P) i j)" by (simp add: list_ex_iff all_interval_int_def) text \optimized code (tail-recursive) for \<^term>\length\\ definition gen_length :: "nat \ 'a list \ nat" where "gen_length n xs = n + length xs" lemma gen_length_code [code]: "gen_length n [] = n" "gen_length n (x # xs) = gen_length (Suc n) xs" by(simp_all add: gen_length_def) declare list.size(3-4)[code del] lemma length_code [code]: "length = gen_length 0" by(simp add: gen_length_def fun_eq_iff) hide_const (open) member null maps map_filter all_interval_nat all_interval_int gen_length subsubsection \Pretty lists\ ML \ (* Code generation for list literals. *) signature LIST_CODE = sig val add_literal_list: string -> theory -> theory end; structure List_Code : LIST_CODE = struct open Basic_Code_Thingol; fun implode_list t = let fun dest_cons (IConst { sym = Code_Symbol.Constant \<^const_name>\Cons\, ... } `$ t1 `$ t2) = SOME (t1, t2) | dest_cons _ = NONE; val (ts, t') = Code_Thingol.unfoldr dest_cons t; in case t' of IConst { sym = Code_Symbol.Constant \<^const_name>\Nil\, ... } => SOME ts | _ => NONE end; fun print_list (target_fxy, target_cons) pr fxy t1 t2 = Code_Printer.brackify_infix (target_fxy, Code_Printer.R) fxy ( pr (Code_Printer.INFX (target_fxy, Code_Printer.X)) t1, Code_Printer.str target_cons, pr (Code_Printer.INFX (target_fxy, Code_Printer.R)) t2 ); fun add_literal_list target = let fun pretty literals pr _ vars fxy [(t1, _), (t2, _)] = case Option.map (cons t1) (implode_list t2) of SOME ts => Code_Printer.literal_list literals (map (pr vars Code_Printer.NOBR) ts) | NONE => print_list (Code_Printer.infix_cons literals) (pr vars) fxy t1 t2; in Code_Target.set_printings (Code_Symbol.Constant (\<^const_name>\Cons\, [(target, SOME (Code_Printer.complex_const_syntax (2, pretty)))])) end end; \ code_printing type_constructor list \ (SML) "_ list" and (OCaml) "_ list" and (Haskell) "![(_)]" and (Scala) "List[(_)]" | constant Nil \ (SML) "[]" and (OCaml) "[]" and (Haskell) "[]" and (Scala) "!Nil" | class_instance list :: equal \ (Haskell) - | constant "HOL.equal :: 'a list \ 'a list \ bool" \ (Haskell) infix 4 "==" setup \fold (List_Code.add_literal_list) ["SML", "OCaml", "Haskell", "Scala"]\ code_reserved SML list code_reserved OCaml list subsubsection \Use convenient predefined operations\ code_printing constant "(@)" \ (SML) infixr 7 "@" and (OCaml) infixr 6 "@" and (Haskell) infixr 5 "++" and (Scala) infixl 7 "++" | constant map \ (Haskell) "map" | constant filter \ (Haskell) "filter" | constant concat \ (Haskell) "concat" | constant List.maps \ (Haskell) "concatMap" | constant rev \ (Haskell) "reverse" | constant zip \ (Haskell) "zip" | constant List.null \ (Haskell) "null" | constant takeWhile \ (Haskell) "takeWhile" | constant dropWhile \ (Haskell) "dropWhile" | constant list_all \ (Haskell) "all" | constant list_ex \ (Haskell) "any" subsubsection \Implementation of sets by lists\ lemma is_empty_set [code]: "Set.is_empty (set xs) \ List.null xs" by (simp add: Set.is_empty_def null_def) lemma empty_set [code]: "{} = set []" by simp lemma UNIV_coset [code]: "UNIV = List.coset []" by simp lemma compl_set [code]: "- set xs = List.coset xs" by simp lemma compl_coset [code]: "- List.coset xs = set xs" by simp lemma [code]: "x \ set xs \ List.member xs x" "x \ List.coset xs \ \ List.member xs x" by (simp_all add: member_def) lemma insert_code [code]: "insert x (set xs) = set (List.insert x xs)" "insert x (List.coset xs) = List.coset (removeAll x xs)" by simp_all lemma remove_code [code]: "Set.remove x (set xs) = set (removeAll x xs)" "Set.remove x (List.coset xs) = List.coset (List.insert x xs)" by (simp_all add: remove_def Compl_insert) lemma filter_set [code]: "Set.filter P (set xs) = set (filter P xs)" by auto lemma image_set [code]: "image f (set xs) = set (map f xs)" by simp lemma subset_code [code]: "set xs \ B \ (\x\set xs. x \ B)" "A \ List.coset ys \ (\y\set ys. y \ A)" "List.coset [] \ set [] \ False" by auto text \A frequent case -- avoid intermediate sets\ lemma [code_unfold]: "set xs \ set ys \ list_all (\x. x \ set ys) xs" by (auto simp: list_all_iff) lemma Ball_set [code]: "Ball (set xs) P \ list_all P xs" by (simp add: list_all_iff) lemma Bex_set [code]: "Bex (set xs) P \ list_ex P xs" by (simp add: list_ex_iff) lemma card_set [code]: "card (set xs) = length (remdups xs)" proof - have "card (set (remdups xs)) = length (remdups xs)" by (rule distinct_card) simp then show ?thesis by simp qed lemma the_elem_set [code]: "the_elem (set [x]) = x" by simp lemma Pow_set [code]: "Pow (set []) = {{}}" "Pow (set (x # xs)) = (let A = Pow (set xs) in A \ insert x ` A)" by (simp_all add: Pow_insert Let_def) definition map_project :: "('a \ 'b option) \ 'a set \ 'b set" where "map_project f A = {b. \ a \ A. f a = Some b}" lemma [code]: "map_project f (set xs) = set (List.map_filter f xs)" by (auto simp add: map_project_def map_filter_def image_def) hide_const (open) map_project text \Operations on relations\ lemma product_code [code]: "Product_Type.product (set xs) (set ys) = set [(x, y). x \ xs, y \ ys]" by (auto simp add: Product_Type.product_def) lemma Id_on_set [code]: "Id_on (set xs) = set [(x, x). x \ xs]" by (auto simp add: Id_on_def) lemma [code]: "R `` S = List.map_project (\(x, y). if x \ S then Some y else None) R" unfolding map_project_def by (auto split: prod.split if_split_asm) lemma trancl_set_ntrancl [code]: "trancl (set xs) = ntrancl (card (set xs) - 1) (set xs)" by (simp add: finite_trancl_ntranl) lemma set_relcomp [code]: "set xys O set yzs = set ([(fst xy, snd yz). xy \ xys, yz \ yzs, snd xy = fst yz])" by auto (auto simp add: Bex_def image_def) lemma wf_set [code]: "wf (set xs) = acyclic (set xs)" by (simp add: wf_iff_acyclic_if_finite) subsection \Setup for Lifting/Transfer\ subsubsection \Transfer rules for the Transfer package\ context includes lifting_syntax begin lemma tl_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A) tl tl" unfolding tl_def[abs_def] by transfer_prover lemma butlast_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A) butlast butlast" by (rule rel_funI, erule list_all2_induct, auto) lemma map_rec: "map f xs = rec_list Nil (%x _ y. Cons (f x) y) xs" by (induct xs) auto lemma append_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A ===> list_all2 A) append append" unfolding List.append_def by transfer_prover lemma rev_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A) rev rev" unfolding List.rev_def by transfer_prover lemma filter_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> list_all2 A) filter filter" unfolding List.filter_def by transfer_prover lemma fold_transfer [transfer_rule]: "((A ===> B ===> B) ===> list_all2 A ===> B ===> B) fold fold" unfolding List.fold_def by transfer_prover lemma foldr_transfer [transfer_rule]: "((A ===> B ===> B) ===> list_all2 A ===> B ===> B) foldr foldr" unfolding List.foldr_def by transfer_prover lemma foldl_transfer [transfer_rule]: "((B ===> A ===> B) ===> B ===> list_all2 A ===> B) foldl foldl" unfolding List.foldl_def by transfer_prover lemma concat_transfer [transfer_rule]: "(list_all2 (list_all2 A) ===> list_all2 A) concat concat" unfolding List.concat_def by transfer_prover lemma drop_transfer [transfer_rule]: "((=) ===> list_all2 A ===> list_all2 A) drop drop" unfolding List.drop_def by transfer_prover lemma take_transfer [transfer_rule]: "((=) ===> list_all2 A ===> list_all2 A) take take" unfolding List.take_def by transfer_prover lemma list_update_transfer [transfer_rule]: "(list_all2 A ===> (=) ===> A ===> list_all2 A) list_update list_update" unfolding list_update_def by transfer_prover lemma takeWhile_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> list_all2 A) takeWhile takeWhile" unfolding takeWhile_def by transfer_prover lemma dropWhile_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> list_all2 A) dropWhile dropWhile" unfolding dropWhile_def by transfer_prover lemma zip_transfer [transfer_rule]: "(list_all2 A ===> list_all2 B ===> list_all2 (rel_prod A B)) zip zip" unfolding zip_def by transfer_prover lemma product_transfer [transfer_rule]: "(list_all2 A ===> list_all2 B ===> list_all2 (rel_prod A B)) List.product List.product" unfolding List.product_def by transfer_prover lemma product_lists_transfer [transfer_rule]: "(list_all2 (list_all2 A) ===> list_all2 (list_all2 A)) product_lists product_lists" unfolding product_lists_def by transfer_prover lemma insert_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(A ===> list_all2 A ===> list_all2 A) List.insert List.insert" unfolding List.insert_def [abs_def] by transfer_prover lemma find_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> rel_option A) List.find List.find" unfolding List.find_def by transfer_prover lemma those_transfer [transfer_rule]: "(list_all2 (rel_option P) ===> rel_option (list_all2 P)) those those" unfolding List.those_def by transfer_prover lemma remove1_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(A ===> list_all2 A ===> list_all2 A) remove1 remove1" unfolding remove1_def by transfer_prover lemma removeAll_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(A ===> list_all2 A ===> list_all2 A) removeAll removeAll" unfolding removeAll_def by transfer_prover lemma successively_transfer [transfer_rule]: "((A ===> A ===> (=)) ===> list_all2 A ===> (=)) successively successively" unfolding successively_altdef by transfer_prover lemma distinct_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(list_all2 A ===> (=)) distinct distinct" unfolding distinct_def by transfer_prover lemma distinct_adj_transfer [transfer_rule]: assumes "bi_unique A" shows "(list_all2 A ===> (=)) distinct_adj distinct_adj" unfolding rel_fun_def proof (intro allI impI) fix xs ys assume "list_all2 A xs ys" thus "distinct_adj xs \ distinct_adj ys" proof (induction rule: list_all2_induct) case (Cons x xs y ys) note * = this show ?case proof (cases xs) case [simp]: (Cons x' xs') with * obtain y' ys' where [simp]: "ys = y' # ys'" by (cases ys) auto from * show ?thesis using assms by (auto simp: distinct_adj_Cons bi_unique_def) qed (use * in auto) qed auto qed lemma remdups_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(list_all2 A ===> list_all2 A) remdups remdups" unfolding remdups_def by transfer_prover lemma remdups_adj_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(list_all2 A ===> list_all2 A) remdups_adj remdups_adj" proof (rule rel_funI, erule list_all2_induct) qed (auto simp: remdups_adj_Cons assms[unfolded bi_unique_def] split: list.splits) lemma replicate_transfer [transfer_rule]: "((=) ===> A ===> list_all2 A) replicate replicate" unfolding replicate_def by transfer_prover lemma length_transfer [transfer_rule]: "(list_all2 A ===> (=)) length length" unfolding size_list_overloaded_def size_list_def by transfer_prover lemma rotate1_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A) rotate1 rotate1" unfolding rotate1_def by transfer_prover lemma rotate_transfer [transfer_rule]: "((=) ===> list_all2 A ===> list_all2 A) rotate rotate" unfolding rotate_def [abs_def] by transfer_prover lemma nths_transfer [transfer_rule]: "(list_all2 A ===> rel_set (=) ===> list_all2 A) nths nths" unfolding nths_def [abs_def] by transfer_prover lemma subseqs_transfer [transfer_rule]: "(list_all2 A ===> list_all2 (list_all2 A)) subseqs subseqs" unfolding subseqs_def [abs_def] by transfer_prover lemma partition_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> rel_prod (list_all2 A) (list_all2 A)) partition partition" unfolding partition_def by transfer_prover lemma lists_transfer [transfer_rule]: "(rel_set A ===> rel_set (list_all2 A)) lists lists" proof (rule rel_funI, rule rel_setI) show "\l \ lists X; rel_set A X Y\ \ \y\lists Y. list_all2 A l y" for X Y l proof (induction l rule: lists.induct) case (Cons a l) then show ?case by (simp only: rel_set_def list_all2_Cons1, metis lists.Cons) qed auto show "\l \ lists Y; rel_set A X Y\ \ \x\lists X. list_all2 A x l" for X Y l proof (induction l rule: lists.induct) case (Cons a l) then show ?case by (simp only: rel_set_def list_all2_Cons2, metis lists.Cons) qed auto qed lemma set_Cons_transfer [transfer_rule]: "(rel_set A ===> rel_set (list_all2 A) ===> rel_set (list_all2 A)) set_Cons set_Cons" unfolding rel_fun_def rel_set_def set_Cons_def by (fastforce simp add: list_all2_Cons1 list_all2_Cons2) lemma listset_transfer [transfer_rule]: "(list_all2 (rel_set A) ===> rel_set (list_all2 A)) listset listset" unfolding listset_def by transfer_prover lemma null_transfer [transfer_rule]: "(list_all2 A ===> (=)) List.null List.null" unfolding rel_fun_def List.null_def by auto lemma list_all_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> (=)) list_all list_all" unfolding list_all_iff [abs_def] by transfer_prover lemma list_ex_transfer [transfer_rule]: "((A ===> (=)) ===> list_all2 A ===> (=)) list_ex list_ex" unfolding list_ex_iff [abs_def] by transfer_prover lemma splice_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A ===> list_all2 A) splice splice" apply (rule rel_funI, erule list_all2_induct, simp add: rel_fun_def, simp) apply (rule rel_funI) apply (erule_tac xs=x in list_all2_induct, simp, simp add: rel_fun_def) done lemma shuffles_transfer [transfer_rule]: "(list_all2 A ===> list_all2 A ===> rel_set (list_all2 A)) shuffles shuffles" proof (intro rel_funI, goal_cases) case (1 xs xs' ys ys') thus ?case proof (induction xs ys arbitrary: xs' ys' rule: shuffles.induct) case (3 x xs y ys xs' ys') from "3.prems" obtain x' xs'' where xs': "xs' = x' # xs''" by (cases xs') auto from "3.prems" obtain y' ys'' where ys': "ys' = y' # ys''" by (cases ys') auto have [transfer_rule]: "A x x'" "A y y'" "list_all2 A xs xs''" "list_all2 A ys ys''" using "3.prems" by (simp_all add: xs' ys') have [transfer_rule]: "rel_set (list_all2 A) (shuffles xs (y # ys)) (shuffles xs'' ys')" and [transfer_rule]: "rel_set (list_all2 A) (shuffles (x # xs) ys) (shuffles xs' ys'')" using "3.prems" by (auto intro!: "3.IH" simp: xs' ys') have "rel_set (list_all2 A) ((#) x ` shuffles xs (y # ys) \ (#) y ` shuffles (x # xs) ys) ((#) x' ` shuffles xs'' ys' \ (#) y' ` shuffles xs' ys'')" by transfer_prover thus ?case by (simp add: xs' ys') qed (auto simp: rel_set_def) qed lemma rtrancl_parametric [transfer_rule]: assumes [transfer_rule]: "bi_unique A" "bi_total A" shows "(rel_set (rel_prod A A) ===> rel_set (rel_prod A A)) rtrancl rtrancl" unfolding rtrancl_def by transfer_prover lemma monotone_parametric [transfer_rule]: assumes [transfer_rule]: "bi_total A" shows "((A ===> A ===> (=)) ===> (B ===> B ===> (=)) ===> (A ===> B) ===> (=)) monotone monotone" unfolding monotone_def[abs_def] by transfer_prover lemma fun_ord_parametric [transfer_rule]: assumes [transfer_rule]: "bi_total C" shows "((A ===> B ===> (=)) ===> (C ===> A) ===> (C ===> B) ===> (=)) fun_ord fun_ord" unfolding fun_ord_def[abs_def] by transfer_prover lemma fun_lub_parametric [transfer_rule]: assumes [transfer_rule]: "bi_total A" "bi_unique A" shows "((rel_set A ===> B) ===> rel_set (C ===> A) ===> C ===> B) fun_lub fun_lub" unfolding fun_lub_def[abs_def] by transfer_prover end end diff --git a/src/HOL/Num.thy b/src/HOL/Num.thy --- a/src/HOL/Num.thy +++ b/src/HOL/Num.thy @@ -1,1481 +1,1493 @@ (* Title: HOL/Num.thy Author: Florian Haftmann Author: Brian Huffman *) section \Binary Numerals\ theory Num imports BNF_Least_Fixpoint Transfer begin subsection \The \num\ type\ datatype num = One | Bit0 num | Bit1 num text \Increment function for type \<^typ>\num\\ primrec inc :: "num \ num" where "inc One = Bit0 One" | "inc (Bit0 x) = Bit1 x" | "inc (Bit1 x) = Bit0 (inc x)" text \Converting between type \<^typ>\num\ and type \<^typ>\nat\\ primrec nat_of_num :: "num \ nat" where "nat_of_num One = Suc 0" | "nat_of_num (Bit0 x) = nat_of_num x + nat_of_num x" | "nat_of_num (Bit1 x) = Suc (nat_of_num x + nat_of_num x)" primrec num_of_nat :: "nat \ num" where "num_of_nat 0 = One" | "num_of_nat (Suc n) = (if 0 < n then inc (num_of_nat n) else One)" lemma nat_of_num_pos: "0 < nat_of_num x" by (induct x) simp_all lemma nat_of_num_neq_0: " nat_of_num x \ 0" by (induct x) simp_all lemma nat_of_num_inc: "nat_of_num (inc x) = Suc (nat_of_num x)" by (induct x) simp_all lemma num_of_nat_double: "0 < n \ num_of_nat (n + n) = Bit0 (num_of_nat n)" by (induct n) simp_all text \Type \<^typ>\num\ is isomorphic to the strictly positive natural numbers.\ lemma nat_of_num_inverse: "num_of_nat (nat_of_num x) = x" by (induct x) (simp_all add: num_of_nat_double nat_of_num_pos) lemma num_of_nat_inverse: "0 < n \ nat_of_num (num_of_nat n) = n" by (induct n) (simp_all add: nat_of_num_inc) lemma num_eq_iff: "x = y \ nat_of_num x = nat_of_num y" apply safe apply (drule arg_cong [where f=num_of_nat]) apply (simp add: nat_of_num_inverse) done lemma num_induct [case_names One inc]: fixes P :: "num \ bool" assumes One: "P One" and inc: "\x. P x \ P (inc x)" shows "P x" proof - obtain n where n: "Suc n = nat_of_num x" by (cases "nat_of_num x") (simp_all add: nat_of_num_neq_0) have "P (num_of_nat (Suc n))" proof (induct n) case 0 from One show ?case by simp next case (Suc n) then have "P (inc (num_of_nat (Suc n)))" by (rule inc) then show "P (num_of_nat (Suc (Suc n)))" by simp qed with n show "P x" by (simp add: nat_of_num_inverse) qed text \ From now on, there are two possible models for \<^typ>\num\: as positive naturals (rule \num_induct\) and as digit representation (rules \num.induct\, \num.cases\). \ subsection \Numeral operations\ instantiation num :: "{plus,times,linorder}" begin definition [code del]: "m + n = num_of_nat (nat_of_num m + nat_of_num n)" definition [code del]: "m * n = num_of_nat (nat_of_num m * nat_of_num n)" definition [code del]: "m \ n \ nat_of_num m \ nat_of_num n" definition [code del]: "m < n \ nat_of_num m < nat_of_num n" instance by standard (auto simp add: less_num_def less_eq_num_def num_eq_iff) end lemma nat_of_num_add: "nat_of_num (x + y) = nat_of_num x + nat_of_num y" unfolding plus_num_def by (intro num_of_nat_inverse add_pos_pos nat_of_num_pos) lemma nat_of_num_mult: "nat_of_num (x * y) = nat_of_num x * nat_of_num y" unfolding times_num_def by (intro num_of_nat_inverse mult_pos_pos nat_of_num_pos) lemma add_num_simps [simp, code]: "One + One = Bit0 One" "One + Bit0 n = Bit1 n" "One + Bit1 n = Bit0 (n + One)" "Bit0 m + One = Bit1 m" "Bit0 m + Bit0 n = Bit0 (m + n)" "Bit0 m + Bit1 n = Bit1 (m + n)" "Bit1 m + One = Bit0 (m + One)" "Bit1 m + Bit0 n = Bit1 (m + n)" "Bit1 m + Bit1 n = Bit0 (m + n + One)" by (simp_all add: num_eq_iff nat_of_num_add) lemma mult_num_simps [simp, code]: "m * One = m" "One * n = n" "Bit0 m * Bit0 n = Bit0 (Bit0 (m * n))" "Bit0 m * Bit1 n = Bit0 (m * Bit1 n)" "Bit1 m * Bit0 n = Bit0 (Bit1 m * n)" "Bit1 m * Bit1 n = Bit1 (m + n + Bit0 (m * n))" by (simp_all add: num_eq_iff nat_of_num_add nat_of_num_mult distrib_right distrib_left) lemma eq_num_simps: "One = One \ True" "One = Bit0 n \ False" "One = Bit1 n \ False" "Bit0 m = One \ False" "Bit1 m = One \ False" "Bit0 m = Bit0 n \ m = n" "Bit0 m = Bit1 n \ False" "Bit1 m = Bit0 n \ False" "Bit1 m = Bit1 n \ m = n" by simp_all lemma le_num_simps [simp, code]: "One \ n \ True" "Bit0 m \ One \ False" "Bit1 m \ One \ False" "Bit0 m \ Bit0 n \ m \ n" "Bit0 m \ Bit1 n \ m \ n" "Bit1 m \ Bit1 n \ m \ n" "Bit1 m \ Bit0 n \ m < n" using nat_of_num_pos [of n] nat_of_num_pos [of m] by (auto simp add: less_eq_num_def less_num_def) lemma less_num_simps [simp, code]: "m < One \ False" "One < Bit0 n \ True" "One < Bit1 n \ True" "Bit0 m < Bit0 n \ m < n" "Bit0 m < Bit1 n \ m \ n" "Bit1 m < Bit1 n \ m < n" "Bit1 m < Bit0 n \ m < n" using nat_of_num_pos [of n] nat_of_num_pos [of m] by (auto simp add: less_eq_num_def less_num_def) lemma le_num_One_iff: "x \ num.One \ x = num.One" by (simp add: antisym_conv) text \Rules using \One\ and \inc\ as constructors.\ lemma add_One: "x + One = inc x" by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc) lemma add_One_commute: "One + n = n + One" by (induct n) simp_all lemma add_inc: "x + inc y = inc (x + y)" by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc) lemma mult_inc: "x * inc y = x * y + x" by (simp add: num_eq_iff nat_of_num_mult nat_of_num_add nat_of_num_inc) text \The \<^const>\num_of_nat\ conversion.\ lemma num_of_nat_One: "n \ 1 \ num_of_nat n = One" by (cases n) simp_all lemma num_of_nat_plus_distrib: "0 < m \ 0 < n \ num_of_nat (m + n) = num_of_nat m + num_of_nat n" by (induct n) (auto simp add: add_One add_One_commute add_inc) text \A double-and-decrement function.\ primrec BitM :: "num \ num" where "BitM One = One" | "BitM (Bit0 n) = Bit1 (BitM n)" | "BitM (Bit1 n) = Bit1 (Bit0 n)" lemma BitM_plus_one: "BitM n + One = Bit0 n" by (induct n) simp_all lemma one_plus_BitM: "One + BitM n = Bit0 n" unfolding add_One_commute BitM_plus_one .. +lemma BitM_inc_eq: + \Num.BitM (Num.inc n) = Num.Bit1 n\ + by (induction n) simp_all + +lemma inc_BitM_eq: + \Num.inc (Num.BitM n) = num.Bit0 n\ + by (simp add: BitM_plus_one[symmetric] add_One) + text \Squaring and exponentiation.\ primrec sqr :: "num \ num" where "sqr One = One" | "sqr (Bit0 n) = Bit0 (Bit0 (sqr n))" | "sqr (Bit1 n) = Bit1 (Bit0 (sqr n + n))" primrec pow :: "num \ num \ num" where "pow x One = x" | "pow x (Bit0 y) = sqr (pow x y)" | "pow x (Bit1 y) = sqr (pow x y) * x" lemma nat_of_num_sqr: "nat_of_num (sqr x) = nat_of_num x * nat_of_num x" by (induct x) (simp_all add: algebra_simps nat_of_num_add) lemma sqr_conv_mult: "sqr x = x * x" by (simp add: num_eq_iff nat_of_num_sqr nat_of_num_mult) lemma num_double [simp]: "num.Bit0 num.One * n = num.Bit0 n" by (simp add: num_eq_iff nat_of_num_mult) subsection \Binary numerals\ text \ We embed binary representations into a generic algebraic structure using \numeral\. \ class numeral = one + semigroup_add begin primrec numeral :: "num \ 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" lemma numeral_code [code]: "numeral One = 1" "numeral (Bit0 n) = (let m = numeral n in m + m)" "numeral (Bit1 n) = (let m = numeral n in m + m + 1)" by (simp_all add: Let_def) lemma one_plus_numeral_commute: "1 + numeral x = numeral x + 1" proof (induct x) case One then show ?case by simp next case Bit0 then show ?case by (simp add: add.assoc [symmetric]) (simp add: add.assoc) next case Bit1 then show ?case by (simp add: add.assoc [symmetric]) (simp add: add.assoc) qed lemma numeral_inc: "numeral (inc x) = numeral x + 1" proof (induct x) case One then show ?case by simp next case Bit0 then show ?case by simp next case (Bit1 x) have "numeral x + (1 + numeral x) + 1 = numeral x + (numeral x + 1) + 1" by (simp only: one_plus_numeral_commute) with Bit1 show ?case by (simp add: add.assoc) qed declare numeral.simps [simp del] abbreviation "Numeral1 \ numeral One" declare numeral_One [code_post] end text \Numeral syntax.\ syntax "_Numeral" :: "num_const \ 'a" ("_") ML_file \Tools/numeral.ML\ parse_translation \ let fun numeral_tr [(c as Const (\<^syntax_const>\_constrain\, _)) $ t $ u] = c $ numeral_tr [t] $ u | numeral_tr [Const (num, _)] = (Numeral.mk_number_syntax o #value o Lexicon.read_num) num | numeral_tr ts = raise TERM ("numeral_tr", ts); in [(\<^syntax_const>\_Numeral\, K numeral_tr)] end \ typed_print_translation \ let fun num_tr' ctxt T [n] = let val k = Numeral.dest_num_syntax n; val t' = Syntax.const \<^syntax_const>\_Numeral\ $ Syntax.free (string_of_int k); in (case T of Type (\<^type_name>\fun\, [_, T']) => if Printer.type_emphasis ctxt T' then Syntax.const \<^syntax_const>\_constrain\ $ t' $ Syntax_Phases.term_of_typ ctxt T' else t' | _ => if T = dummyT then t' else raise Match) end; in [(\<^const_syntax>\numeral\, num_tr')] end \ subsection \Class-specific numeral rules\ text \\<^const>\numeral\ is a morphism.\ subsubsection \Structures with addition: class \numeral\\ context numeral begin lemma numeral_add: "numeral (m + n) = numeral m + numeral n" by (induct n rule: num_induct) (simp_all only: numeral_One add_One add_inc numeral_inc add.assoc) lemma numeral_plus_numeral: "numeral m + numeral n = numeral (m + n)" by (rule numeral_add [symmetric]) lemma numeral_plus_one: "numeral n + 1 = numeral (n + One)" using numeral_add [of n One] by (simp add: numeral_One) lemma one_plus_numeral: "1 + numeral n = numeral (One + n)" using numeral_add [of One n] by (simp add: numeral_One) lemma one_add_one: "1 + 1 = 2" using numeral_add [of One One] by (simp add: numeral_One) lemmas add_numeral_special = numeral_plus_one one_plus_numeral one_add_one end subsubsection \Structures with negation: class \neg_numeral\\ class neg_numeral = numeral + group_add begin lemma uminus_numeral_One: "- Numeral1 = - 1" by (simp add: numeral_One) text \Numerals form an abelian subgroup.\ inductive is_num :: "'a \ bool" where "is_num 1" | "is_num x \ is_num (- x)" | "is_num x \ is_num y \ is_num (x + y)" lemma is_num_numeral: "is_num (numeral k)" by (induct k) (simp_all add: numeral.simps is_num.intros) lemma is_num_add_commute: "is_num x \ is_num y \ x + y = y + x" apply (induct x rule: is_num.induct) apply (induct y rule: is_num.induct) apply simp apply (rule_tac a=x in add_left_imp_eq) apply (rule_tac a=x in add_right_imp_eq) apply (simp add: add.assoc) apply (simp add: add.assoc [symmetric]) apply (simp add: add.assoc) apply (rule_tac a=x in add_left_imp_eq) apply (rule_tac a=x in add_right_imp_eq) apply (simp add: add.assoc) apply (simp add: add.assoc) apply (simp add: add.assoc [symmetric]) done lemma is_num_add_left_commute: "is_num x \ is_num y \ x + (y + z) = y + (x + z)" by (simp only: add.assoc [symmetric] is_num_add_commute) lemmas is_num_normalize = add.assoc is_num_add_commute is_num_add_left_commute is_num.intros is_num_numeral minus_add definition dbl :: "'a \ 'a" where "dbl x = x + x" definition dbl_inc :: "'a \ 'a" where "dbl_inc x = x + x + 1" definition dbl_dec :: "'a \ 'a" where "dbl_dec x = x + x - 1" definition sub :: "num \ num \ 'a" where "sub k l = numeral k - numeral l" lemma numeral_BitM: "numeral (BitM n) = numeral (Bit0 n) - 1" by (simp only: BitM_plus_one [symmetric] numeral_add numeral_One eq_diff_eq) +lemma sub_inc_One_eq: + \Num.sub (Num.inc n) num.One = numeral n\ + by (simp_all add: sub_def diff_eq_eq numeral_inc numeral.numeral_One) + lemma dbl_simps [simp]: "dbl (- numeral k) = - dbl (numeral k)" "dbl 0 = 0" "dbl 1 = 2" "dbl (- 1) = - 2" "dbl (numeral k) = numeral (Bit0 k)" by (simp_all add: dbl_def numeral.simps minus_add) lemma dbl_inc_simps [simp]: "dbl_inc (- numeral k) = - dbl_dec (numeral k)" "dbl_inc 0 = 1" "dbl_inc 1 = 3" "dbl_inc (- 1) = - 1" "dbl_inc (numeral k) = numeral (Bit1 k)" by (simp_all add: dbl_inc_def dbl_dec_def numeral.simps numeral_BitM is_num_normalize algebra_simps del: add_uminus_conv_diff) lemma dbl_dec_simps [simp]: "dbl_dec (- numeral k) = - dbl_inc (numeral k)" "dbl_dec 0 = - 1" "dbl_dec 1 = 1" "dbl_dec (- 1) = - 3" "dbl_dec (numeral k) = numeral (BitM k)" by (simp_all add: dbl_dec_def dbl_inc_def numeral.simps numeral_BitM is_num_normalize) lemma sub_num_simps [simp]: "sub One One = 0" "sub One (Bit0 l) = - numeral (BitM l)" "sub One (Bit1 l) = - numeral (Bit0 l)" "sub (Bit0 k) One = numeral (BitM k)" "sub (Bit1 k) One = numeral (Bit0 k)" "sub (Bit0 k) (Bit0 l) = dbl (sub k l)" "sub (Bit0 k) (Bit1 l) = dbl_dec (sub k l)" "sub (Bit1 k) (Bit0 l) = dbl_inc (sub k l)" "sub (Bit1 k) (Bit1 l) = dbl (sub k l)" by (simp_all add: dbl_def dbl_dec_def dbl_inc_def sub_def numeral.simps numeral_BitM is_num_normalize del: add_uminus_conv_diff add: diff_conv_add_uminus) lemma add_neg_numeral_simps: "numeral m + - numeral n = sub m n" "- numeral m + numeral n = sub n m" "- numeral m + - numeral n = - (numeral m + numeral n)" by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize del: add_uminus_conv_diff add: diff_conv_add_uminus) lemma add_neg_numeral_special: "1 + - numeral m = sub One m" "- numeral m + 1 = sub One m" "numeral m + - 1 = sub m One" "- 1 + numeral n = sub n One" "- 1 + - numeral n = - numeral (inc n)" "- numeral m + - 1 = - numeral (inc m)" "1 + - 1 = 0" "- 1 + 1 = 0" "- 1 + - 1 = - 2" by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize right_minus numeral_inc del: add_uminus_conv_diff add: diff_conv_add_uminus) lemma diff_numeral_simps: "numeral m - numeral n = sub m n" "numeral m - - numeral n = numeral (m + n)" "- numeral m - numeral n = - numeral (m + n)" "- numeral m - - numeral n = sub n m" by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize del: add_uminus_conv_diff add: diff_conv_add_uminus) lemma diff_numeral_special: "1 - numeral n = sub One n" "numeral m - 1 = sub m One" "1 - - numeral n = numeral (One + n)" "- numeral m - 1 = - numeral (m + One)" "- 1 - numeral n = - numeral (inc n)" "numeral m - - 1 = numeral (inc m)" "- 1 - - numeral n = sub n One" "- numeral m - - 1 = sub One m" "1 - 1 = 0" "- 1 - 1 = - 2" "1 - - 1 = 2" "- 1 - - 1 = 0" by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize numeral_inc del: add_uminus_conv_diff add: diff_conv_add_uminus) end subsubsection \Structures with multiplication: class \semiring_numeral\\ class semiring_numeral = semiring + monoid_mult begin subclass numeral .. lemma numeral_mult: "numeral (m * n) = numeral m * numeral n" by (induct n rule: num_induct) (simp_all add: numeral_One mult_inc numeral_inc numeral_add distrib_left) lemma numeral_times_numeral: "numeral m * numeral n = numeral (m * n)" by (rule numeral_mult [symmetric]) lemma mult_2: "2 * z = z + z" by (simp add: one_add_one [symmetric] distrib_right) lemma mult_2_right: "z * 2 = z + z" by (simp add: one_add_one [symmetric] distrib_left) lemma left_add_twice: "a + (a + b) = 2 * a + b" by (simp add: mult_2 ac_simps) end subsubsection \Structures with a zero: class \semiring_1\\ context semiring_1 begin subclass semiring_numeral .. lemma of_nat_numeral [simp]: "of_nat (numeral n) = numeral n" by (induct n) (simp_all only: numeral.simps numeral_class.numeral.simps of_nat_add of_nat_1) end lemma nat_of_num_numeral [code_abbrev]: "nat_of_num = numeral" proof fix n have "numeral n = nat_of_num n" by (induct n) (simp_all add: numeral.simps) then show "nat_of_num n = numeral n" by simp qed lemma nat_of_num_code [code]: "nat_of_num One = 1" "nat_of_num (Bit0 n) = (let m = nat_of_num n in m + m)" "nat_of_num (Bit1 n) = (let m = nat_of_num n in Suc (m + m))" by (simp_all add: Let_def) subsubsection \Equality: class \semiring_char_0\\ context semiring_char_0 begin lemma numeral_eq_iff: "numeral m = numeral n \ m = n" by (simp only: of_nat_numeral [symmetric] nat_of_num_numeral [symmetric] of_nat_eq_iff num_eq_iff) lemma numeral_eq_one_iff: "numeral n = 1 \ n = One" by (rule numeral_eq_iff [of n One, unfolded numeral_One]) lemma one_eq_numeral_iff: "1 = numeral n \ One = n" by (rule numeral_eq_iff [of One n, unfolded numeral_One]) lemma numeral_neq_zero: "numeral n \ 0" by (simp add: of_nat_numeral [symmetric] nat_of_num_numeral [symmetric] nat_of_num_pos) lemma zero_neq_numeral: "0 \ numeral n" unfolding eq_commute [of 0] by (rule numeral_neq_zero) lemmas eq_numeral_simps [simp] = numeral_eq_iff numeral_eq_one_iff one_eq_numeral_iff numeral_neq_zero zero_neq_numeral end subsubsection \Comparisons: class \linordered_nonzero_semiring\\ context linordered_nonzero_semiring begin lemma numeral_le_iff: "numeral m \ numeral n \ m \ n" proof - have "of_nat (numeral m) \ of_nat (numeral n) \ m \ n" by (simp only: less_eq_num_def nat_of_num_numeral of_nat_le_iff) then show ?thesis by simp qed lemma one_le_numeral: "1 \ numeral n" using numeral_le_iff [of num.One n] by (simp add: numeral_One) lemma numeral_le_one_iff: "numeral n \ 1 \ n \ num.One" using numeral_le_iff [of n num.One] by (simp add: numeral_One) lemma numeral_less_iff: "numeral m < numeral n \ m < n" proof - have "of_nat (numeral m) < of_nat (numeral n) \ m < n" unfolding less_num_def nat_of_num_numeral of_nat_less_iff .. then show ?thesis by simp qed lemma not_numeral_less_one: "\ numeral n < 1" using numeral_less_iff [of n num.One] by (simp add: numeral_One) lemma one_less_numeral_iff: "1 < numeral n \ num.One < n" using numeral_less_iff [of num.One n] by (simp add: numeral_One) lemma zero_le_numeral: "0 \ numeral n" using dual_order.trans one_le_numeral zero_le_one by blast lemma zero_less_numeral: "0 < numeral n" using less_linear not_numeral_less_one order.strict_trans zero_less_one by blast lemma not_numeral_le_zero: "\ numeral n \ 0" by (simp add: not_le zero_less_numeral) lemma not_numeral_less_zero: "\ numeral n < 0" by (simp add: not_less zero_le_numeral) lemmas le_numeral_extra = zero_le_one not_one_le_zero order_refl [of 0] order_refl [of 1] lemmas less_numeral_extra = zero_less_one not_one_less_zero less_irrefl [of 0] less_irrefl [of 1] lemmas le_numeral_simps [simp] = numeral_le_iff one_le_numeral numeral_le_one_iff zero_le_numeral not_numeral_le_zero lemmas less_numeral_simps [simp] = numeral_less_iff one_less_numeral_iff not_numeral_less_one zero_less_numeral not_numeral_less_zero lemma min_0_1 [simp]: fixes min' :: "'a \ 'a \ 'a" defines "min' \ min" shows "min' 0 1 = 0" "min' 1 0 = 0" "min' 0 (numeral x) = 0" "min' (numeral x) 0 = 0" "min' 1 (numeral x) = 1" "min' (numeral x) 1 = 1" by (simp_all add: min'_def min_def le_num_One_iff) lemma max_0_1 [simp]: fixes max' :: "'a \ 'a \ 'a" defines "max' \ max" shows "max' 0 1 = 1" "max' 1 0 = 1" "max' 0 (numeral x) = numeral x" "max' (numeral x) 0 = numeral x" "max' 1 (numeral x) = numeral x" "max' (numeral x) 1 = numeral x" by (simp_all add: max'_def max_def le_num_One_iff) end text \Unfold \min\ and \max\ on numerals.\ lemmas max_number_of [simp] = max_def [of "numeral u" "numeral v"] max_def [of "numeral u" "- numeral v"] max_def [of "- numeral u" "numeral v"] max_def [of "- numeral u" "- numeral v"] for u v lemmas min_number_of [simp] = min_def [of "numeral u" "numeral v"] min_def [of "numeral u" "- numeral v"] min_def [of "- numeral u" "numeral v"] min_def [of "- numeral u" "- numeral v"] for u v subsubsection \Multiplication and negation: class \ring_1\\ context ring_1 begin subclass neg_numeral .. lemma mult_neg_numeral_simps: "- numeral m * - numeral n = numeral (m * n)" "- numeral m * numeral n = - numeral (m * n)" "numeral m * - numeral n = - numeral (m * n)" by (simp_all only: mult_minus_left mult_minus_right minus_minus numeral_mult) lemma mult_minus1 [simp]: "- 1 * z = - z" by (simp add: numeral.simps) lemma mult_minus1_right [simp]: "z * - 1 = - z" by (simp add: numeral.simps) lemma minus_sub_one_diff_one [simp]: \- sub m One - 1 = - numeral m\ proof - have \sub m One + 1 = numeral m\ by (simp flip: eq_diff_eq add: diff_numeral_special) then have \- (sub m One + 1) = - numeral m\ by simp then show ?thesis by simp qed end subsubsection \Equality using \iszero\ for rings with non-zero characteristic\ context ring_1 begin definition iszero :: "'a \ bool" where "iszero z \ z = 0" lemma iszero_0 [simp]: "iszero 0" by (simp add: iszero_def) lemma not_iszero_1 [simp]: "\ iszero 1" by (simp add: iszero_def) lemma not_iszero_Numeral1: "\ iszero Numeral1" by (simp add: numeral_One) lemma not_iszero_neg_1 [simp]: "\ iszero (- 1)" by (simp add: iszero_def) lemma not_iszero_neg_Numeral1: "\ iszero (- Numeral1)" by (simp add: numeral_One) lemma iszero_neg_numeral [simp]: "iszero (- numeral w) \ iszero (numeral w)" unfolding iszero_def by (rule neg_equal_0_iff_equal) lemma eq_iff_iszero_diff: "x = y \ iszero (x - y)" unfolding iszero_def by (rule eq_iff_diff_eq_0) text \ The \eq_numeral_iff_iszero\ lemmas are not declared \[simp]\ by default, because for rings of characteristic zero, better simp rules are possible. For a type like integers mod \n\, type-instantiated versions of these rules should be added to the simplifier, along with a type-specific rule for deciding propositions of the form \iszero (numeral w)\. bh: Maybe it would not be so bad to just declare these as simp rules anyway? I should test whether these rules take precedence over the \ring_char_0\ rules in the simplifier. \ lemma eq_numeral_iff_iszero: "numeral x = numeral y \ iszero (sub x y)" "numeral x = - numeral y \ iszero (numeral (x + y))" "- numeral x = numeral y \ iszero (numeral (x + y))" "- numeral x = - numeral y \ iszero (sub y x)" "numeral x = 1 \ iszero (sub x One)" "1 = numeral y \ iszero (sub One y)" "- numeral x = 1 \ iszero (numeral (x + One))" "1 = - numeral y \ iszero (numeral (One + y))" "numeral x = 0 \ iszero (numeral x)" "0 = numeral y \ iszero (numeral y)" "- numeral x = 0 \ iszero (numeral x)" "0 = - numeral y \ iszero (numeral y)" unfolding eq_iff_iszero_diff diff_numeral_simps diff_numeral_special by simp_all end subsubsection \Equality and negation: class \ring_char_0\\ context ring_char_0 begin lemma not_iszero_numeral [simp]: "\ iszero (numeral w)" by (simp add: iszero_def) lemma neg_numeral_eq_iff: "- numeral m = - numeral n \ m = n" by simp lemma numeral_neq_neg_numeral: "numeral m \ - numeral n" by (simp add: eq_neg_iff_add_eq_0 numeral_plus_numeral) lemma neg_numeral_neq_numeral: "- numeral m \ numeral n" by (rule numeral_neq_neg_numeral [symmetric]) lemma zero_neq_neg_numeral: "0 \ - numeral n" by simp lemma neg_numeral_neq_zero: "- numeral n \ 0" by simp lemma one_neq_neg_numeral: "1 \ - numeral n" using numeral_neq_neg_numeral [of One n] by (simp add: numeral_One) lemma neg_numeral_neq_one: "- numeral n \ 1" using neg_numeral_neq_numeral [of n One] by (simp add: numeral_One) lemma neg_one_neq_numeral: "- 1 \ numeral n" using neg_numeral_neq_numeral [of One n] by (simp add: numeral_One) lemma numeral_neq_neg_one: "numeral n \ - 1" using numeral_neq_neg_numeral [of n One] by (simp add: numeral_One) lemma neg_one_eq_numeral_iff: "- 1 = - numeral n \ n = One" using neg_numeral_eq_iff [of One n] by (auto simp add: numeral_One) lemma numeral_eq_neg_one_iff: "- numeral n = - 1 \ n = One" using neg_numeral_eq_iff [of n One] by (auto simp add: numeral_One) lemma neg_one_neq_zero: "- 1 \ 0" by simp lemma zero_neq_neg_one: "0 \ - 1" by simp lemma neg_one_neq_one: "- 1 \ 1" using neg_numeral_neq_numeral [of One One] by (simp only: numeral_One not_False_eq_True) lemma one_neq_neg_one: "1 \ - 1" using numeral_neq_neg_numeral [of One One] by (simp only: numeral_One not_False_eq_True) lemmas eq_neg_numeral_simps [simp] = neg_numeral_eq_iff numeral_neq_neg_numeral neg_numeral_neq_numeral one_neq_neg_numeral neg_numeral_neq_one zero_neq_neg_numeral neg_numeral_neq_zero neg_one_neq_numeral numeral_neq_neg_one neg_one_eq_numeral_iff numeral_eq_neg_one_iff neg_one_neq_zero zero_neq_neg_one neg_one_neq_one one_neq_neg_one end subsubsection \Structures with negation and order: class \linordered_idom\\ context linordered_idom begin subclass ring_char_0 .. lemma neg_numeral_le_iff: "- numeral m \ - numeral n \ n \ m" by (simp only: neg_le_iff_le numeral_le_iff) lemma neg_numeral_less_iff: "- numeral m < - numeral n \ n < m" by (simp only: neg_less_iff_less numeral_less_iff) lemma neg_numeral_less_zero: "- numeral n < 0" by (simp only: neg_less_0_iff_less zero_less_numeral) lemma neg_numeral_le_zero: "- numeral n \ 0" by (simp only: neg_le_0_iff_le zero_le_numeral) lemma not_zero_less_neg_numeral: "\ 0 < - numeral n" by (simp only: not_less neg_numeral_le_zero) lemma not_zero_le_neg_numeral: "\ 0 \ - numeral n" by (simp only: not_le neg_numeral_less_zero) lemma neg_numeral_less_numeral: "- numeral m < numeral n" using neg_numeral_less_zero zero_less_numeral by (rule less_trans) lemma neg_numeral_le_numeral: "- numeral m \ numeral n" by (simp only: less_imp_le neg_numeral_less_numeral) lemma not_numeral_less_neg_numeral: "\ numeral m < - numeral n" by (simp only: not_less neg_numeral_le_numeral) lemma not_numeral_le_neg_numeral: "\ numeral m \ - numeral n" by (simp only: not_le neg_numeral_less_numeral) lemma neg_numeral_less_one: "- numeral m < 1" by (rule neg_numeral_less_numeral [of m One, unfolded numeral_One]) lemma neg_numeral_le_one: "- numeral m \ 1" by (rule neg_numeral_le_numeral [of m One, unfolded numeral_One]) lemma not_one_less_neg_numeral: "\ 1 < - numeral m" by (simp only: not_less neg_numeral_le_one) lemma not_one_le_neg_numeral: "\ 1 \ - numeral m" by (simp only: not_le neg_numeral_less_one) lemma not_numeral_less_neg_one: "\ numeral m < - 1" using not_numeral_less_neg_numeral [of m One] by (simp add: numeral_One) lemma not_numeral_le_neg_one: "\ numeral m \ - 1" using not_numeral_le_neg_numeral [of m One] by (simp add: numeral_One) lemma neg_one_less_numeral: "- 1 < numeral m" using neg_numeral_less_numeral [of One m] by (simp add: numeral_One) lemma neg_one_le_numeral: "- 1 \ numeral m" using neg_numeral_le_numeral [of One m] by (simp add: numeral_One) lemma neg_numeral_less_neg_one_iff: "- numeral m < - 1 \ m \ One" by (cases m) simp_all lemma neg_numeral_le_neg_one: "- numeral m \ - 1" by simp lemma not_neg_one_less_neg_numeral: "\ - 1 < - numeral m" by simp lemma not_neg_one_le_neg_numeral_iff: "\ - 1 \ - numeral m \ m \ One" by (cases m) simp_all lemma sub_non_negative: "sub n m \ 0 \ n \ m" by (simp only: sub_def le_diff_eq) simp lemma sub_positive: "sub n m > 0 \ n > m" by (simp only: sub_def less_diff_eq) simp lemma sub_non_positive: "sub n m \ 0 \ n \ m" by (simp only: sub_def diff_le_eq) simp lemma sub_negative: "sub n m < 0 \ n < m" by (simp only: sub_def diff_less_eq) simp lemmas le_neg_numeral_simps [simp] = neg_numeral_le_iff neg_numeral_le_numeral not_numeral_le_neg_numeral neg_numeral_le_zero not_zero_le_neg_numeral neg_numeral_le_one not_one_le_neg_numeral neg_one_le_numeral not_numeral_le_neg_one neg_numeral_le_neg_one not_neg_one_le_neg_numeral_iff lemma le_minus_one_simps [simp]: "- 1 \ 0" "- 1 \ 1" "\ 0 \ - 1" "\ 1 \ - 1" by simp_all lemmas less_neg_numeral_simps [simp] = neg_numeral_less_iff neg_numeral_less_numeral not_numeral_less_neg_numeral neg_numeral_less_zero not_zero_less_neg_numeral neg_numeral_less_one not_one_less_neg_numeral neg_one_less_numeral not_numeral_less_neg_one neg_numeral_less_neg_one_iff not_neg_one_less_neg_numeral lemma less_minus_one_simps [simp]: "- 1 < 0" "- 1 < 1" "\ 0 < - 1" "\ 1 < - 1" by (simp_all add: less_le) lemma abs_numeral [simp]: "\numeral n\ = numeral n" by simp lemma abs_neg_numeral [simp]: "\- numeral n\ = numeral n" by (simp only: abs_minus_cancel abs_numeral) lemma abs_neg_one [simp]: "\- 1\ = 1" by simp end subsubsection \Natural numbers\ lemma numeral_num_of_nat: "numeral (num_of_nat n) = n" if "n > 0" using that nat_of_num_numeral num_of_nat_inverse by simp lemma Suc_1 [simp]: "Suc 1 = 2" unfolding Suc_eq_plus1 by (rule one_add_one) lemma Suc_numeral [simp]: "Suc (numeral n) = numeral (n + One)" unfolding Suc_eq_plus1 by (rule numeral_plus_one) definition pred_numeral :: "num \ nat" where "pred_numeral k = numeral k - 1" declare [[code drop: pred_numeral]] lemma numeral_eq_Suc: "numeral k = Suc (pred_numeral k)" by (simp add: pred_numeral_def) lemma eval_nat_numeral: "numeral One = Suc 0" "numeral (Bit0 n) = Suc (numeral (BitM n))" "numeral (Bit1 n) = Suc (numeral (Bit0 n))" by (simp_all add: numeral.simps BitM_plus_one) lemma pred_numeral_simps [simp]: "pred_numeral One = 0" "pred_numeral (Bit0 k) = numeral (BitM k)" "pred_numeral (Bit1 k) = numeral (Bit0 k)" by (simp_all only: pred_numeral_def eval_nat_numeral diff_Suc_Suc diff_0) lemma pred_numeral_inc [simp]: "pred_numeral (Num.inc k) = numeral k" by (simp only: pred_numeral_def numeral_inc diff_add_inverse2) lemma numeral_2_eq_2: "2 = Suc (Suc 0)" by (simp add: eval_nat_numeral) lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))" by (simp add: eval_nat_numeral) lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0" by (simp only: numeral_One One_nat_def) lemma Suc_nat_number_of_add: "Suc (numeral v + n) = numeral (v + One) + n" by simp lemma numerals: "Numeral1 = (1::nat)" "2 = Suc (Suc 0)" by (rule numeral_One) (rule numeral_2_eq_2) lemmas numeral_nat = eval_nat_numeral BitM.simps One_nat_def text \Comparisons involving \<^term>\Suc\.\ lemma eq_numeral_Suc [simp]: "numeral k = Suc n \ pred_numeral k = n" by (simp add: numeral_eq_Suc) lemma Suc_eq_numeral [simp]: "Suc n = numeral k \ n = pred_numeral k" by (simp add: numeral_eq_Suc) lemma less_numeral_Suc [simp]: "numeral k < Suc n \ pred_numeral k < n" by (simp add: numeral_eq_Suc) lemma less_Suc_numeral [simp]: "Suc n < numeral k \ n < pred_numeral k" by (simp add: numeral_eq_Suc) lemma le_numeral_Suc [simp]: "numeral k \ Suc n \ pred_numeral k \ n" by (simp add: numeral_eq_Suc) lemma le_Suc_numeral [simp]: "Suc n \ numeral k \ n \ pred_numeral k" by (simp add: numeral_eq_Suc) lemma diff_Suc_numeral [simp]: "Suc n - numeral k = n - pred_numeral k" by (simp add: numeral_eq_Suc) lemma diff_numeral_Suc [simp]: "numeral k - Suc n = pred_numeral k - n" by (simp add: numeral_eq_Suc) lemma max_Suc_numeral [simp]: "max (Suc n) (numeral k) = Suc (max n (pred_numeral k))" by (simp add: numeral_eq_Suc) lemma max_numeral_Suc [simp]: "max (numeral k) (Suc n) = Suc (max (pred_numeral k) n)" by (simp add: numeral_eq_Suc) lemma min_Suc_numeral [simp]: "min (Suc n) (numeral k) = Suc (min n (pred_numeral k))" by (simp add: numeral_eq_Suc) lemma min_numeral_Suc [simp]: "min (numeral k) (Suc n) = Suc (min (pred_numeral k) n)" by (simp add: numeral_eq_Suc) text \For \<^term>\case_nat\ and \<^term>\rec_nat\.\ lemma case_nat_numeral [simp]: "case_nat a f (numeral v) = (let pv = pred_numeral v in f pv)" by (simp add: numeral_eq_Suc) lemma case_nat_add_eq_if [simp]: "case_nat a f ((numeral v) + n) = (let pv = pred_numeral v in f (pv + n))" by (simp add: numeral_eq_Suc) lemma rec_nat_numeral [simp]: "rec_nat a f (numeral v) = (let pv = pred_numeral v in f pv (rec_nat a f pv))" by (simp add: numeral_eq_Suc Let_def) lemma rec_nat_add_eq_if [simp]: "rec_nat a f (numeral v + n) = (let pv = pred_numeral v in f (pv + n) (rec_nat a f (pv + n)))" by (simp add: numeral_eq_Suc Let_def) text \Case analysis on \<^term>\n < 2\.\ lemma less_2_cases: "n < 2 \ n = 0 \ n = Suc 0" by (auto simp add: numeral_2_eq_2) lemma less_2_cases_iff: "n < 2 \ n = 0 \ n = Suc 0" by (auto simp add: numeral_2_eq_2) text \Removal of Small Numerals: 0, 1 and (in additive positions) 2.\ text \bh: Are these rules really a good idea? LCP: well, it already happens for 0 and 1!\ lemma add_2_eq_Suc [simp]: "2 + n = Suc (Suc n)" by simp lemma add_2_eq_Suc' [simp]: "n + 2 = Suc (Suc n)" by simp text \Can be used to eliminate long strings of Sucs, but not by default.\ lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n" by simp lemmas nat_1_add_1 = one_add_one [where 'a=nat] (* legacy *) context semiring_numeral begin lemma numeral_add_unfold_funpow: \numeral k + a = ((+) 1 ^^ numeral k) a\ proof (rule sym, induction k arbitrary: a) case One then show ?case by (simp add: numeral_One Num.numeral_One) next case (Bit0 k) then show ?case by (simp add: numeral_Bit0 Num.numeral_Bit0 ac_simps funpow_add) next case (Bit1 k) then show ?case by (simp add: numeral_Bit1 Num.numeral_Bit1 ac_simps funpow_add) qed end context semiring_1 begin lemma numeral_unfold_funpow: \numeral k = ((+) 1 ^^ numeral k) 0\ using numeral_add_unfold_funpow [of k 0] by simp end context includes lifting_syntax begin lemma transfer_rule_numeral: \((=) ===> R) numeral numeral\ if [transfer_rule]: \R 0 0\ \R 1 1\ \(R ===> R ===> R) (+) (+)\ for R :: \'a::{semiring_numeral,monoid_add} \ 'b::{semiring_numeral,monoid_add} \ bool\ proof - have "((=) ===> R) (\k. ((+) 1 ^^ numeral k) 0) (\k. ((+) 1 ^^ numeral k) 0)" by transfer_prover moreover have \numeral = (\k. ((+) (1::'a) ^^ numeral k) 0)\ using numeral_add_unfold_funpow [where ?'a = 'a, of _ 0] by (simp add: fun_eq_iff) moreover have \numeral = (\k. ((+) (1::'b) ^^ numeral k) 0)\ using numeral_add_unfold_funpow [where ?'a = 'b, of _ 0] by (simp add: fun_eq_iff) ultimately show ?thesis by simp qed end subsection \Particular lemmas concerning \<^term>\2\\ context linordered_field begin subclass field_char_0 .. lemma half_gt_zero_iff: "0 < a / 2 \ 0 < a" by (auto simp add: field_simps) lemma half_gt_zero [simp]: "0 < a \ 0 < a / 2" by (simp add: half_gt_zero_iff) end subsection \Numeral equations as default simplification rules\ declare (in numeral) numeral_One [simp] declare (in numeral) numeral_plus_numeral [simp] declare (in numeral) add_numeral_special [simp] declare (in neg_numeral) add_neg_numeral_simps [simp] declare (in neg_numeral) add_neg_numeral_special [simp] declare (in neg_numeral) diff_numeral_simps [simp] declare (in neg_numeral) diff_numeral_special [simp] declare (in semiring_numeral) numeral_times_numeral [simp] declare (in ring_1) mult_neg_numeral_simps [simp] subsubsection \Special Simplification for Constants\ text \These distributive laws move literals inside sums and differences.\ lemmas distrib_right_numeral [simp] = distrib_right [of _ _ "numeral v"] for v lemmas distrib_left_numeral [simp] = distrib_left [of "numeral v"] for v lemmas left_diff_distrib_numeral [simp] = left_diff_distrib [of _ _ "numeral v"] for v lemmas right_diff_distrib_numeral [simp] = right_diff_distrib [of "numeral v"] for v text \These are actually for fields, like real\ lemmas zero_less_divide_iff_numeral [simp, no_atp] = zero_less_divide_iff [of "numeral w"] for w lemmas divide_less_0_iff_numeral [simp, no_atp] = divide_less_0_iff [of "numeral w"] for w lemmas zero_le_divide_iff_numeral [simp, no_atp] = zero_le_divide_iff [of "numeral w"] for w lemmas divide_le_0_iff_numeral [simp, no_atp] = divide_le_0_iff [of "numeral w"] for w text \Replaces \inverse #nn\ by \1/#nn\. It looks strange, but then other simprocs simplify the quotient.\ lemmas inverse_eq_divide_numeral [simp] = inverse_eq_divide [of "numeral w"] for w lemmas inverse_eq_divide_neg_numeral [simp] = inverse_eq_divide [of "- numeral w"] for w text \These laws simplify inequalities, moving unary minus from a term into the literal.\ lemmas equation_minus_iff_numeral [no_atp] = equation_minus_iff [of "numeral v"] for v lemmas minus_equation_iff_numeral [no_atp] = minus_equation_iff [of _ "numeral v"] for v lemmas le_minus_iff_numeral [no_atp] = le_minus_iff [of "numeral v"] for v lemmas minus_le_iff_numeral [no_atp] = minus_le_iff [of _ "numeral v"] for v lemmas less_minus_iff_numeral [no_atp] = less_minus_iff [of "numeral v"] for v lemmas minus_less_iff_numeral [no_atp] = minus_less_iff [of _ "numeral v"] for v (* FIXME maybe simproc *) text \Cancellation of constant factors in comparisons (\<\ and \\\)\ lemmas mult_less_cancel_left_numeral [simp, no_atp] = mult_less_cancel_left [of "numeral v"] for v lemmas mult_less_cancel_right_numeral [simp, no_atp] = mult_less_cancel_right [of _ "numeral v"] for v lemmas mult_le_cancel_left_numeral [simp, no_atp] = mult_le_cancel_left [of "numeral v"] for v lemmas mult_le_cancel_right_numeral [simp, no_atp] = mult_le_cancel_right [of _ "numeral v"] for v text \Multiplying out constant divisors in comparisons (\<\, \\\ and \=\)\ named_theorems divide_const_simps "simplification rules to simplify comparisons involving constant divisors" lemmas le_divide_eq_numeral1 [simp,divide_const_simps] = pos_le_divide_eq [of "numeral w", OF zero_less_numeral] neg_le_divide_eq [of "- numeral w", OF neg_numeral_less_zero] for w lemmas divide_le_eq_numeral1 [simp,divide_const_simps] = pos_divide_le_eq [of "numeral w", OF zero_less_numeral] neg_divide_le_eq [of "- numeral w", OF neg_numeral_less_zero] for w lemmas less_divide_eq_numeral1 [simp,divide_const_simps] = pos_less_divide_eq [of "numeral w", OF zero_less_numeral] neg_less_divide_eq [of "- numeral w", OF neg_numeral_less_zero] for w lemmas divide_less_eq_numeral1 [simp,divide_const_simps] = pos_divide_less_eq [of "numeral w", OF zero_less_numeral] neg_divide_less_eq [of "- numeral w", OF neg_numeral_less_zero] for w lemmas eq_divide_eq_numeral1 [simp,divide_const_simps] = eq_divide_eq [of _ _ "numeral w"] eq_divide_eq [of _ _ "- numeral w"] for w lemmas divide_eq_eq_numeral1 [simp,divide_const_simps] = divide_eq_eq [of _ "numeral w"] divide_eq_eq [of _ "- numeral w"] for w subsubsection \Optional Simplification Rules Involving Constants\ text \Simplify quotients that are compared with a literal constant.\ lemmas le_divide_eq_numeral [divide_const_simps] = le_divide_eq [of "numeral w"] le_divide_eq [of "- numeral w"] for w lemmas divide_le_eq_numeral [divide_const_simps] = divide_le_eq [of _ _ "numeral w"] divide_le_eq [of _ _ "- numeral w"] for w lemmas less_divide_eq_numeral [divide_const_simps] = less_divide_eq [of "numeral w"] less_divide_eq [of "- numeral w"] for w lemmas divide_less_eq_numeral [divide_const_simps] = divide_less_eq [of _ _ "numeral w"] divide_less_eq [of _ _ "- numeral w"] for w lemmas eq_divide_eq_numeral [divide_const_simps] = eq_divide_eq [of "numeral w"] eq_divide_eq [of "- numeral w"] for w lemmas divide_eq_eq_numeral [divide_const_simps] = divide_eq_eq [of _ _ "numeral w"] divide_eq_eq [of _ _ "- numeral w"] for w text \Not good as automatic simprules because they cause case splits.\ lemmas [divide_const_simps] = le_divide_eq_1 divide_le_eq_1 less_divide_eq_1 divide_less_eq_1 subsection \Setting up simprocs\ lemma mult_numeral_1: "Numeral1 * a = a" for a :: "'a::semiring_numeral" by simp lemma mult_numeral_1_right: "a * Numeral1 = a" for a :: "'a::semiring_numeral" by simp lemma divide_numeral_1: "a / Numeral1 = a" for a :: "'a::field" by simp lemma inverse_numeral_1: "inverse Numeral1 = (Numeral1::'a::division_ring)" by simp text \ Theorem lists for the cancellation simprocs. The use of a binary numeral for 1 reduces the number of special cases. \ lemma mult_1s_semiring_numeral: "Numeral1 * a = a" "a * Numeral1 = a" for a :: "'a::semiring_numeral" by simp_all lemma mult_1s_ring_1: "- Numeral1 * b = - b" "b * - Numeral1 = - b" for b :: "'a::ring_1" by simp_all lemmas mult_1s = mult_1s_semiring_numeral mult_1s_ring_1 setup \ Reorient_Proc.add (fn Const (\<^const_name>\numeral\, _) $ _ => true | Const (\<^const_name>\uminus\, _) $ (Const (\<^const_name>\numeral\, _) $ _) => true | _ => false) \ simproc_setup reorient_numeral ("numeral w = x" | "- numeral w = y") = Reorient_Proc.proc subsubsection \Simplification of arithmetic operations on integer constants\ lemmas arith_special = (* already declared simp above *) add_numeral_special add_neg_numeral_special diff_numeral_special lemmas arith_extra_simps = (* rules already in simpset *) numeral_plus_numeral add_neg_numeral_simps add_0_left add_0_right minus_zero diff_numeral_simps diff_0 diff_0_right numeral_times_numeral mult_neg_numeral_simps mult_zero_left mult_zero_right abs_numeral abs_neg_numeral text \ For making a minimal simpset, one must include these default simprules. Also include \simp_thms\. \ lemmas arith_simps = add_num_simps mult_num_simps sub_num_simps BitM.simps dbl_simps dbl_inc_simps dbl_dec_simps abs_zero abs_one arith_extra_simps lemmas more_arith_simps = neg_le_iff_le minus_zero left_minus right_minus mult_1_left mult_1_right mult_minus_left mult_minus_right minus_add_distrib minus_minus mult.assoc lemmas of_nat_simps = of_nat_0 of_nat_1 of_nat_Suc of_nat_add of_nat_mult text \Simplification of relational operations.\ lemmas eq_numeral_extra = zero_neq_one one_neq_zero lemmas rel_simps = le_num_simps less_num_simps eq_num_simps le_numeral_simps le_neg_numeral_simps le_minus_one_simps le_numeral_extra less_numeral_simps less_neg_numeral_simps less_minus_one_simps less_numeral_extra eq_numeral_simps eq_neg_numeral_simps eq_numeral_extra lemma Let_numeral [simp]: "Let (numeral v) f = f (numeral v)" \ \Unfold all \let\s involving constants\ unfolding Let_def .. lemma Let_neg_numeral [simp]: "Let (- numeral v) f = f (- numeral v)" \ \Unfold all \let\s involving constants\ unfolding Let_def .. declaration \ let fun number_of ctxt T n = if not (Sign.of_sort (Proof_Context.theory_of ctxt) (T, \<^sort>\numeral\)) then raise CTERM ("number_of", []) else Numeral.mk_cnumber (Thm.ctyp_of ctxt T) n; in K ( Lin_Arith.set_number_of number_of #> Lin_Arith.add_simps @{thms arith_simps more_arith_simps rel_simps pred_numeral_simps arith_special numeral_One of_nat_simps uminus_numeral_One Suc_numeral Let_numeral Let_neg_numeral Let_0 Let_1 le_Suc_numeral le_numeral_Suc less_Suc_numeral less_numeral_Suc Suc_eq_numeral eq_numeral_Suc mult_Suc mult_Suc_right of_nat_numeral}) end \ subsubsection \Simplification of arithmetic when nested to the right\ lemma add_numeral_left [simp]: "numeral v + (numeral w + z) = (numeral(v + w) + z)" by (simp_all add: add.assoc [symmetric]) lemma add_neg_numeral_left [simp]: "numeral v + (- numeral w + y) = (sub v w + y)" "- numeral v + (numeral w + y) = (sub w v + y)" "- numeral v + (- numeral w + y) = (- numeral(v + w) + y)" by (simp_all add: add.assoc [symmetric]) lemma mult_numeral_left_semiring_numeral: "numeral v * (numeral w * z) = (numeral(v * w) * z :: 'a::semiring_numeral)" by (simp add: mult.assoc [symmetric]) lemma mult_numeral_left_ring_1: "- numeral v * (numeral w * y) = (- numeral(v * w) * y :: 'a::ring_1)" "numeral v * (- numeral w * y) = (- numeral(v * w) * y :: 'a::ring_1)" "- numeral v * (- numeral w * y) = (numeral(v * w) * y :: 'a::ring_1)" by (simp_all add: mult.assoc [symmetric]) lemmas mult_numeral_left [simp] = mult_numeral_left_semiring_numeral mult_numeral_left_ring_1 hide_const (open) One Bit0 Bit1 BitM inc pow sqr sub dbl dbl_inc dbl_dec subsection \Code module namespace\ code_identifier code_module Num \ (SML) Arith and (OCaml) Arith and (Haskell) Arith subsection \Printing of evaluated natural numbers as numerals\ lemma [code_post]: "Suc 0 = 1" "Suc 1 = 2" "Suc (numeral n) = numeral (Num.inc n)" by (simp_all add: numeral_inc) lemmas [code_post] = Num.inc.simps end diff --git a/src/HOL/Parity.thy b/src/HOL/Parity.thy --- a/src/HOL/Parity.thy +++ b/src/HOL/Parity.thy @@ -1,1712 +1,1712 @@ (* Title: HOL/Parity.thy Author: Jeremy Avigad Author: Jacques D. Fleuriot *) section \Parity in rings and semirings\ theory Parity imports Euclidean_Division begin subsection \Ring structures with parity and \even\/\odd\ predicates\ class semiring_parity = comm_semiring_1 + semiring_modulo + assumes even_iff_mod_2_eq_zero: "2 dvd a \ a mod 2 = 0" and odd_iff_mod_2_eq_one: "\ 2 dvd a \ a mod 2 = 1" and odd_one [simp]: "\ 2 dvd 1" begin abbreviation even :: "'a \ bool" where "even a \ 2 dvd a" abbreviation odd :: "'a \ bool" where "odd a \ \ 2 dvd a" lemma parity_cases [case_names even odd]: assumes "even a \ a mod 2 = 0 \ P" assumes "odd a \ a mod 2 = 1 \ P" shows P using assms by (cases "even a") (simp_all add: even_iff_mod_2_eq_zero [symmetric] odd_iff_mod_2_eq_one [symmetric]) lemma odd_of_bool_self [simp]: \odd (of_bool p) \ p\ by (cases p) simp_all lemma not_mod_2_eq_0_eq_1 [simp]: "a mod 2 \ 0 \ a mod 2 = 1" by (cases a rule: parity_cases) simp_all lemma not_mod_2_eq_1_eq_0 [simp]: "a mod 2 \ 1 \ a mod 2 = 0" by (cases a rule: parity_cases) simp_all lemma evenE [elim?]: assumes "even a" obtains b where "a = 2 * b" using assms by (rule dvdE) lemma oddE [elim?]: assumes "odd a" obtains b where "a = 2 * b + 1" proof - have "a = 2 * (a div 2) + a mod 2" by (simp add: mult_div_mod_eq) with assms have "a = 2 * (a div 2) + 1" by (simp add: odd_iff_mod_2_eq_one) then show ?thesis .. qed lemma mod_2_eq_odd: "a mod 2 = of_bool (odd a)" by (auto elim: oddE simp add: even_iff_mod_2_eq_zero) lemma of_bool_odd_eq_mod_2: "of_bool (odd a) = a mod 2" by (simp add: mod_2_eq_odd) lemma even_mod_2_iff [simp]: \even (a mod 2) \ even a\ by (simp add: mod_2_eq_odd) lemma mod2_eq_if: "a mod 2 = (if even a then 0 else 1)" by (simp add: mod_2_eq_odd) lemma even_zero [simp]: "even 0" by (fact dvd_0_right) lemma odd_even_add: "even (a + b)" if "odd a" and "odd b" proof - from that obtain c d where "a = 2 * c + 1" and "b = 2 * d + 1" by (blast elim: oddE) then have "a + b = 2 * c + 2 * d + (1 + 1)" by (simp only: ac_simps) also have "\ = 2 * (c + d + 1)" by (simp add: algebra_simps) finally show ?thesis .. qed lemma even_add [simp]: "even (a + b) \ (even a \ even b)" by (auto simp add: dvd_add_right_iff dvd_add_left_iff odd_even_add) lemma odd_add [simp]: "odd (a + b) \ \ (odd a \ odd b)" by simp lemma even_plus_one_iff [simp]: "even (a + 1) \ odd a" by (auto simp add: dvd_add_right_iff intro: odd_even_add) lemma even_mult_iff [simp]: "even (a * b) \ even a \ even b" (is "?P \ ?Q") proof assume ?Q then show ?P by auto next assume ?P show ?Q proof (rule ccontr) assume "\ (even a \ even b)" then have "odd a" and "odd b" by auto then obtain r s where "a = 2 * r + 1" and "b = 2 * s + 1" by (blast elim: oddE) then have "a * b = (2 * r + 1) * (2 * s + 1)" by simp also have "\ = 2 * (2 * r * s + r + s) + 1" by (simp add: algebra_simps) finally have "odd (a * b)" by simp with \?P\ show False by auto qed qed lemma even_numeral [simp]: "even (numeral (Num.Bit0 n))" proof - have "even (2 * numeral n)" unfolding even_mult_iff by simp then have "even (numeral n + numeral n)" unfolding mult_2 . then show ?thesis unfolding numeral.simps . qed lemma odd_numeral [simp]: "odd (numeral (Num.Bit1 n))" proof assume "even (numeral (num.Bit1 n))" then have "even (numeral n + numeral n + 1)" unfolding numeral.simps . then have "even (2 * numeral n + 1)" unfolding mult_2 . then have "2 dvd numeral n * 2 + 1" by (simp add: ac_simps) then have "2 dvd 1" using dvd_add_times_triv_left_iff [of 2 "numeral n" 1] by simp then show False by simp qed lemma odd_numeral_BitM [simp]: \odd (numeral (Num.BitM w))\ by (cases w) simp_all lemma even_power [simp]: "even (a ^ n) \ even a \ n > 0" by (induct n) auto lemma mask_eq_sum_exp: \2 ^ n - 1 = (\m\{q. q < n}. 2 ^ m)\ proof - have *: \{q. q < Suc m} = insert m {q. q < m}\ for m by auto have \2 ^ n = (\m\{q. q < n}. 2 ^ m) + 1\ by (induction n) (simp_all add: ac_simps mult_2 *) then have \2 ^ n - 1 = (\m\{q. q < n}. 2 ^ m) + 1 - 1\ by simp then show ?thesis by simp qed lemma mask_eq_seq_sum: \2 ^ n - 1 = ((\k. 1 + k * 2) ^^ n) 0\ proof - have \2 ^ n = ((\k. 1 + k * 2) ^^ n) 0 + 1\ by (induction n) (simp_all add: ac_simps mult_2) then show ?thesis by simp qed end class ring_parity = ring + semiring_parity begin subclass comm_ring_1 .. lemma even_minus: "even (- a) \ even a" by (fact dvd_minus_iff) lemma even_diff [simp]: "even (a - b) \ even (a + b)" using even_add [of a "- b"] by simp end subsection \Special case: euclidean rings containing the natural numbers\ context unique_euclidean_semiring_with_nat begin subclass semiring_parity proof show "2 dvd a \ a mod 2 = 0" for a by (fact dvd_eq_mod_eq_0) show "\ 2 dvd a \ a mod 2 = 1" for a proof assume "a mod 2 = 1" then show "\ 2 dvd a" by auto next assume "\ 2 dvd a" have eucl: "euclidean_size (a mod 2) = 1" proof (rule order_antisym) show "euclidean_size (a mod 2) \ 1" using mod_size_less [of 2 a] by simp show "1 \ euclidean_size (a mod 2)" using \\ 2 dvd a\ by (simp add: Suc_le_eq dvd_eq_mod_eq_0) qed from \\ 2 dvd a\ have "\ of_nat 2 dvd division_segment a * of_nat (euclidean_size a)" by simp then have "\ of_nat 2 dvd of_nat (euclidean_size a)" by (auto simp only: dvd_mult_unit_iff' is_unit_division_segment) then have "\ 2 dvd euclidean_size a" using of_nat_dvd_iff [of 2] by simp then have "euclidean_size a mod 2 = 1" by (simp add: semidom_modulo_class.dvd_eq_mod_eq_0) then have "of_nat (euclidean_size a mod 2) = of_nat 1" by simp then have "of_nat (euclidean_size a) mod 2 = 1" by (simp add: of_nat_mod) from \\ 2 dvd a\ eucl show "a mod 2 = 1" by (auto intro: division_segment_eq_iff simp add: division_segment_mod) qed show "\ is_unit 2" proof (rule notI) assume "is_unit 2" then have "of_nat 2 dvd of_nat 1" by simp then have "is_unit (2::nat)" by (simp only: of_nat_dvd_iff) then show False by simp qed qed lemma even_of_nat [simp]: "even (of_nat a) \ even a" proof - have "even (of_nat a) \ of_nat 2 dvd of_nat a" by simp also have "\ \ even a" by (simp only: of_nat_dvd_iff) finally show ?thesis . qed lemma even_succ_div_two [simp]: "even a \ (a + 1) div 2 = a div 2" by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero) lemma odd_succ_div_two [simp]: "odd a \ (a + 1) div 2 = a div 2 + 1" by (auto elim!: oddE simp add: add.assoc) lemma even_two_times_div_two: "even a \ 2 * (a div 2) = a" by (fact dvd_mult_div_cancel) lemma odd_two_times_div_two_succ [simp]: "odd a \ 2 * (a div 2) + 1 = a" using mult_div_mod_eq [of 2 a] by (simp add: even_iff_mod_2_eq_zero) lemma coprime_left_2_iff_odd [simp]: "coprime 2 a \ odd a" proof assume "odd a" show "coprime 2 a" proof (rule coprimeI) fix b assume "b dvd 2" "b dvd a" then have "b dvd a mod 2" by (auto intro: dvd_mod) with \odd a\ show "is_unit b" by (simp add: mod_2_eq_odd) qed next assume "coprime 2 a" show "odd a" proof (rule notI) assume "even a" then obtain b where "a = 2 * b" .. with \coprime 2 a\ have "coprime 2 (2 * b)" by simp moreover have "\ coprime 2 (2 * b)" by (rule not_coprimeI [of 2]) simp_all ultimately show False by blast qed qed lemma coprime_right_2_iff_odd [simp]: "coprime a 2 \ odd a" using coprime_left_2_iff_odd [of a] by (simp add: ac_simps) end context unique_euclidean_ring_with_nat begin subclass ring_parity .. lemma minus_1_mod_2_eq [simp]: "- 1 mod 2 = 1" by (simp add: mod_2_eq_odd) lemma minus_1_div_2_eq [simp]: "- 1 div 2 = - 1" proof - from div_mult_mod_eq [of "- 1" 2] have "- 1 div 2 * 2 = - 1 * 2" using add_implies_diff by fastforce then show ?thesis using mult_right_cancel [of 2 "- 1 div 2" "- 1"] by simp qed end subsection \Instance for \<^typ>\nat\\ instance nat :: unique_euclidean_semiring_with_nat by standard (simp_all add: dvd_eq_mod_eq_0) lemma even_Suc_Suc_iff [simp]: "even (Suc (Suc n)) \ even n" using dvd_add_triv_right_iff [of 2 n] by simp lemma even_Suc [simp]: "even (Suc n) \ odd n" using even_plus_one_iff [of n] by simp lemma even_diff_nat [simp]: "even (m - n) \ m < n \ even (m + n)" for m n :: nat proof (cases "n \ m") case True then have "m - n + n * 2 = m + n" by (simp add: mult_2_right) moreover have "even (m - n) \ even (m - n + n * 2)" by simp ultimately have "even (m - n) \ even (m + n)" by (simp only:) then show ?thesis by auto next case False then show ?thesis by simp qed lemma odd_pos: "odd n \ 0 < n" for n :: nat by (auto elim: oddE) lemma Suc_double_not_eq_double: "Suc (2 * m) \ 2 * n" proof assume "Suc (2 * m) = 2 * n" moreover have "odd (Suc (2 * m))" and "even (2 * n)" by simp_all ultimately show False by simp qed lemma double_not_eq_Suc_double: "2 * m \ Suc (2 * n)" using Suc_double_not_eq_double [of n m] by simp lemma odd_Suc_minus_one [simp]: "odd n \ Suc (n - Suc 0) = n" by (auto elim: oddE) lemma even_Suc_div_two [simp]: "even n \ Suc n div 2 = n div 2" using even_succ_div_two [of n] by simp lemma odd_Suc_div_two [simp]: "odd n \ Suc n div 2 = Suc (n div 2)" using odd_succ_div_two [of n] by simp lemma odd_two_times_div_two_nat [simp]: assumes "odd n" shows "2 * (n div 2) = n - (1 :: nat)" proof - from assms have "2 * (n div 2) + 1 = n" by (rule odd_two_times_div_two_succ) then have "Suc (2 * (n div 2)) - 1 = n - 1" by simp then show ?thesis by simp qed lemma not_mod2_eq_Suc_0_eq_0 [simp]: "n mod 2 \ Suc 0 \ n mod 2 = 0" using not_mod_2_eq_1_eq_0 [of n] by simp lemma odd_card_imp_not_empty: \A \ {}\ if \odd (card A)\ using that by auto lemma nat_induct2 [case_names 0 1 step]: assumes "P 0" "P 1" and step: "\n::nat. P n \ P (n + 2)" shows "P n" proof (induct n rule: less_induct) case (less n) show ?case proof (cases "n < Suc (Suc 0)") case True then show ?thesis using assms by (auto simp: less_Suc_eq) next case False then obtain k where k: "n = Suc (Suc k)" by (force simp: not_less nat_le_iff_add) then have "k2 ^ n - Suc 0 = (\m\{q. q < n}. 2 ^ m)\ using mask_eq_sum_exp [where ?'a = nat] by simp context semiring_parity begin lemma even_sum_iff: \even (sum f A) \ even (card {a\A. odd (f a)})\ if \finite A\ using that proof (induction A) case empty then show ?case by simp next case (insert a A) moreover have \{b \ insert a A. odd (f b)} = (if odd (f a) then {a} else {}) \ {b \ A. odd (f b)}\ by auto ultimately show ?case by simp qed lemma even_prod_iff: \even (prod f A) \ (\a\A. even (f a))\ if \finite A\ using that by (induction A) simp_all lemma even_mask_iff [simp]: \even (2 ^ n - 1) \ n = 0\ proof (cases \n = 0\) case True then show ?thesis by simp next case False then have \{a. a = 0 \ a < n} = {0}\ by auto then show ?thesis by (auto simp add: mask_eq_sum_exp even_sum_iff) qed end subsection \Parity and powers\ context ring_1 begin lemma power_minus_even [simp]: "even n \ (- a) ^ n = a ^ n" by (auto elim: evenE) lemma power_minus_odd [simp]: "odd n \ (- a) ^ n = - (a ^ n)" by (auto elim: oddE) lemma uminus_power_if: "(- a) ^ n = (if even n then a ^ n else - (a ^ n))" by auto lemma neg_one_even_power [simp]: "even n \ (- 1) ^ n = 1" by simp lemma neg_one_odd_power [simp]: "odd n \ (- 1) ^ n = - 1" by simp lemma neg_one_power_add_eq_neg_one_power_diff: "k \ n \ (- 1) ^ (n + k) = (- 1) ^ (n - k)" by (cases "even (n + k)") auto lemma minus_one_power_iff: "(- 1) ^ n = (if even n then 1 else - 1)" by (induct n) auto end context linordered_idom begin lemma zero_le_even_power: "even n \ 0 \ a ^ n" by (auto elim: evenE) lemma zero_le_odd_power: "odd n \ 0 \ a ^ n \ 0 \ a" by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE) lemma zero_le_power_eq: "0 \ a ^ n \ even n \ odd n \ 0 \ a" by (auto simp add: zero_le_even_power zero_le_odd_power) lemma zero_less_power_eq: "0 < a ^ n \ n = 0 \ even n \ a \ 0 \ odd n \ 0 < a" proof - have [simp]: "0 = a ^ n \ a = 0 \ n > 0" unfolding power_eq_0_iff [of a n, symmetric] by blast show ?thesis unfolding less_le zero_le_power_eq by auto qed lemma power_less_zero_eq [simp]: "a ^ n < 0 \ odd n \ a < 0" unfolding not_le [symmetric] zero_le_power_eq by auto lemma power_le_zero_eq: "a ^ n \ 0 \ n > 0 \ (odd n \ a \ 0 \ even n \ a = 0)" unfolding not_less [symmetric] zero_less_power_eq by auto lemma power_even_abs: "even n \ \a\ ^ n = a ^ n" using power_abs [of a n] by (simp add: zero_le_even_power) lemma power_mono_even: assumes "even n" and "\a\ \ \b\" shows "a ^ n \ b ^ n" proof - have "0 \ \a\" by auto with \\a\ \ \b\\ have "\a\ ^ n \ \b\ ^ n" by (rule power_mono) with \even n\ show ?thesis by (simp add: power_even_abs) qed lemma power_mono_odd: assumes "odd n" and "a \ b" shows "a ^ n \ b ^ n" proof (cases "b < 0") case True with \a \ b\ have "- b \ - a" and "0 \ - b" by auto then have "(- b) ^ n \ (- a) ^ n" by (rule power_mono) with \odd n\ show ?thesis by simp next case False then have "0 \ b" by auto show ?thesis proof (cases "a < 0") case True then have "n \ 0" and "a \ 0" using \odd n\ [THEN odd_pos] by auto then have "a ^ n \ 0" unfolding power_le_zero_eq using \odd n\ by auto moreover from \0 \ b\ have "0 \ b ^ n" by auto ultimately show ?thesis by auto next case False then have "0 \ a" by auto with \a \ b\ show ?thesis using power_mono by auto qed qed text \Simplify, when the exponent is a numeral\ lemma zero_le_power_eq_numeral [simp]: "0 \ a ^ numeral w \ even (numeral w :: nat) \ odd (numeral w :: nat) \ 0 \ a" by (fact zero_le_power_eq) lemma zero_less_power_eq_numeral [simp]: "0 < a ^ numeral w \ numeral w = (0 :: nat) \ even (numeral w :: nat) \ a \ 0 \ odd (numeral w :: nat) \ 0 < a" by (fact zero_less_power_eq) lemma power_le_zero_eq_numeral [simp]: "a ^ numeral w \ 0 \ (0 :: nat) < numeral w \ (odd (numeral w :: nat) \ a \ 0 \ even (numeral w :: nat) \ a = 0)" by (fact power_le_zero_eq) lemma power_less_zero_eq_numeral [simp]: "a ^ numeral w < 0 \ odd (numeral w :: nat) \ a < 0" by (fact power_less_zero_eq) lemma power_even_abs_numeral [simp]: "even (numeral w :: nat) \ \a\ ^ numeral w = a ^ numeral w" by (fact power_even_abs) end context unique_euclidean_semiring_with_nat begin lemma even_mask_div_iff': \even ((2 ^ m - 1) div 2 ^ n) \ m \ n\ proof - have \even ((2 ^ m - 1) div 2 ^ n) \ even (of_nat ((2 ^ m - Suc 0) div 2 ^ n))\ by (simp only: of_nat_div) (simp add: of_nat_diff) also have \\ \ even ((2 ^ m - Suc 0) div 2 ^ n)\ by simp also have \\ \ m \ n\ proof (cases \m \ n\) case True then show ?thesis by (simp add: Suc_le_lessD) next case False then obtain r where r: \m = n + Suc r\ using less_imp_Suc_add by fastforce from r have \{q. q < m} \ {q. 2 ^ n dvd (2::nat) ^ q} = {q. n \ q \ q < m}\ by (auto simp add: dvd_power_iff_le) moreover from r have \{q. q < m} \ {q. \ 2 ^ n dvd (2::nat) ^ q} = {q. q < n}\ by (auto simp add: dvd_power_iff_le) moreover from False have \{q. n \ q \ q < m \ q \ n} = {n}\ by auto then have \odd ((\a\{q. n \ q \ q < m}. 2 ^ a div (2::nat) ^ n) + sum ((^) 2) {q. q < n} div 2 ^ n)\ by (simp_all add: euclidean_semiring_cancel_class.power_diff_power_eq semiring_parity_class.even_sum_iff not_less mask_eq_sum_exp_nat [symmetric]) ultimately have \odd (sum ((^) (2::nat)) {q. q < m} div 2 ^ n)\ by (subst euclidean_semiring_cancel_class.sum_div_partition) simp_all with False show ?thesis by (simp add: mask_eq_sum_exp_nat) qed finally show ?thesis . qed end subsection \Instance for \<^typ>\int\\ lemma even_diff_iff: "even (k - l) \ even (k + l)" for k l :: int by (fact even_diff) lemma even_abs_add_iff: "even (\k\ + l) \ even (k + l)" for k l :: int by simp lemma even_add_abs_iff: "even (k + \l\) \ even (k + l)" for k l :: int by simp lemma even_nat_iff: "0 \ k \ even (nat k) \ even k" by (simp add: even_of_nat [of "nat k", where ?'a = int, symmetric]) lemma zdiv_zmult2_eq: \a div (b * c) = (a div b) div c\ if \c \ 0\ for a b c :: int proof (cases \b \ 0\) case True with that show ?thesis using div_mult2_eq' [of a \nat b\ \nat c\] by simp next case False with that show ?thesis using div_mult2_eq' [of \- a\ \nat (- b)\ \nat c\] by simp qed lemma zmod_zmult2_eq: \a mod (b * c) = b * (a div b mod c) + a mod b\ if \c \ 0\ for a b c :: int proof (cases \b \ 0\) case True with that show ?thesis using mod_mult2_eq' [of a \nat b\ \nat c\] by simp next case False with that show ?thesis using mod_mult2_eq' [of \- a\ \nat (- b)\ \nat c\] by simp qed context assumes "SORT_CONSTRAINT('a::division_ring)" begin lemma power_int_minus_left: "power_int (-a :: 'a) n = (if even n then power_int a n else -power_int a n)" by (auto simp: power_int_def minus_one_power_iff even_nat_iff) lemma power_int_minus_left_even [simp]: "even n \ power_int (-a :: 'a) n = power_int a n" by (simp add: power_int_minus_left) lemma power_int_minus_left_odd [simp]: "odd n \ power_int (-a :: 'a) n = -power_int a n" by (simp add: power_int_minus_left) lemma power_int_minus_left_distrib: "NO_MATCH (-1) x \ power_int (-a :: 'a) n = power_int (-1) n * power_int a n" by (simp add: power_int_minus_left) lemma power_int_minus_one_minus: "power_int (-1 :: 'a) (-n) = power_int (-1) n" by (simp add: power_int_minus_left) lemma power_int_minus_one_diff_commute: "power_int (-1 :: 'a) (a - b) = power_int (-1) (b - a)" by (subst power_int_minus_one_minus [symmetric]) auto lemma power_int_minus_one_mult_self [simp]: "power_int (-1 :: 'a) m * power_int (-1) m = 1" by (simp add: power_int_minus_left) lemma power_int_minus_one_mult_self' [simp]: "power_int (-1 :: 'a) m * (power_int (-1) m * b) = b" by (simp add: power_int_minus_left) end subsection \Abstract bit structures\ class semiring_bits = semiring_parity + assumes bits_induct [case_names stable rec]: \(\a. a div 2 = a \ P a) \ (\a b. P a \ (of_bool b + 2 * a) div 2 = a \ P (of_bool b + 2 * a)) \ P a\ assumes bits_div_0 [simp]: \0 div a = 0\ and bits_div_by_1 [simp]: \a div 1 = a\ and bits_mod_div_trivial [simp]: \a mod b div b = 0\ and even_succ_div_2 [simp]: \even a \ (1 + a) div 2 = a div 2\ and even_mask_div_iff: \even ((2 ^ m - 1) div 2 ^ n) \ 2 ^ n = 0 \ m \ n\ and exp_div_exp_eq: \2 ^ m div 2 ^ n = of_bool (2 ^ m \ 0 \ m \ n) * 2 ^ (m - n)\ and div_exp_eq: \a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)\ and mod_exp_eq: \a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n\ and mult_exp_mod_exp_eq: \m \ n \ (a * 2 ^ m) mod (2 ^ n) = (a mod 2 ^ (n - m)) * 2 ^ m\ and div_exp_mod_exp_eq: \a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\ and even_mult_exp_div_exp_iff: \even (a * 2 ^ m div 2 ^ n) \ m > n \ 2 ^ n = 0 \ (m \ n \ even (a div 2 ^ (n - m)))\ fixes bit :: \'a \ nat \ bool\ assumes bit_iff_odd: \bit a n \ odd (a div 2 ^ n)\ begin text \ Having \<^const>\bit\ as definitional class operation takes into account that specific instances can be implemented differently wrt. code generation. \ lemma bits_div_by_0 [simp]: \a div 0 = 0\ by (metis add_cancel_right_right bits_mod_div_trivial mod_mult_div_eq mult_not_zero) lemma bits_1_div_2 [simp]: \1 div 2 = 0\ using even_succ_div_2 [of 0] by simp lemma bits_1_div_exp [simp]: \1 div 2 ^ n = of_bool (n = 0)\ using div_exp_eq [of 1 1] by (cases n) simp_all lemma even_succ_div_exp [simp]: \(1 + a) div 2 ^ n = a div 2 ^ n\ if \even a\ and \n > 0\ proof (cases n) case 0 with that show ?thesis by simp next case (Suc n) with \even a\ have \(1 + a) div 2 ^ Suc n = a div 2 ^ Suc n\ proof (induction n) case 0 then show ?case by simp next case (Suc n) then show ?case using div_exp_eq [of _ 1 \Suc n\, symmetric] by simp qed with Suc show ?thesis by simp qed lemma even_succ_mod_exp [simp]: \(1 + a) mod 2 ^ n = 1 + (a mod 2 ^ n)\ if \even a\ and \n > 0\ using div_mult_mod_eq [of \1 + a\ \2 ^ n\] that apply simp by (metis local.add.left_commute local.add_left_cancel local.div_mult_mod_eq) lemma bits_mod_by_1 [simp]: \a mod 1 = 0\ using div_mult_mod_eq [of a 1] by simp lemma bits_mod_0 [simp]: \0 mod a = 0\ using div_mult_mod_eq [of 0 a] by simp lemma bits_one_mod_two_eq_one [simp]: \1 mod 2 = 1\ by (simp add: mod2_eq_if) lemma bit_0 [simp]: \bit a 0 \ odd a\ by (simp add: bit_iff_odd) lemma bit_Suc: \bit a (Suc n) \ bit (a div 2) n\ using div_exp_eq [of a 1 n] by (simp add: bit_iff_odd) lemma bit_rec: \bit a n \ (if n = 0 then odd a else bit (a div 2) (n - 1))\ by (cases n) (simp_all add: bit_Suc) lemma bit_0_eq [simp]: \bit 0 = bot\ by (simp add: fun_eq_iff bit_iff_odd) context fixes a assumes stable: \a div 2 = a\ begin lemma bits_stable_imp_add_self: \a + a mod 2 = 0\ proof - have \a div 2 * 2 + a mod 2 = a\ by (fact div_mult_mod_eq) then have \a * 2 + a mod 2 = a\ by (simp add: stable) then show ?thesis by (simp add: mult_2_right ac_simps) qed lemma stable_imp_bit_iff_odd: \bit a n \ odd a\ by (induction n) (simp_all add: stable bit_Suc) end lemma bit_iff_idd_imp_stable: \a div 2 = a\ if \\n. bit a n \ odd a\ using that proof (induction a rule: bits_induct) case (stable a) then show ?case by simp next case (rec a b) from rec.prems [of 1] have [simp]: \b = odd a\ by (simp add: rec.hyps bit_Suc) from rec.hyps have hyp: \(of_bool (odd a) + 2 * a) div 2 = a\ by simp have \bit a n \ odd a\ for n using rec.prems [of \Suc n\] by (simp add: hyp bit_Suc) then have \a div 2 = a\ by (rule rec.IH) then have \of_bool (odd a) + 2 * a = 2 * (a div 2) + of_bool (odd a)\ by (simp add: ac_simps) also have \\ = a\ using mult_div_mod_eq [of 2 a] by (simp add: of_bool_odd_eq_mod_2) finally show ?case using \a div 2 = a\ by (simp add: hyp) qed lemma exp_eq_0_imp_not_bit: \\ bit a n\ if \2 ^ n = 0\ using that by (simp add: bit_iff_odd) lemma bit_eqI: \a = b\ if \\n. 2 ^ n \ 0 \ bit a n \ bit b n\ proof - have \bit a n \ bit b n\ for n proof (cases \2 ^ n = 0\) case True then show ?thesis by (simp add: exp_eq_0_imp_not_bit) next case False then show ?thesis by (rule that) qed then show ?thesis proof (induction a arbitrary: b rule: bits_induct) case (stable a) from stable(2) [of 0] have **: \even b \ even a\ by simp have \b div 2 = b\ proof (rule bit_iff_idd_imp_stable) fix n from stable have *: \bit b n \ bit a n\ by simp also have \bit a n \ odd a\ using stable by (simp add: stable_imp_bit_iff_odd) finally show \bit b n \ odd b\ by (simp add: **) qed from ** have \a mod 2 = b mod 2\ by (simp add: mod2_eq_if) then have \a mod 2 + (a + b) = b mod 2 + (a + b)\ by simp then have \a + a mod 2 + b = b + b mod 2 + a\ by (simp add: ac_simps) with \a div 2 = a\ \b div 2 = b\ show ?case by (simp add: bits_stable_imp_add_self) next case (rec a p) from rec.prems [of 0] have [simp]: \p = odd b\ by simp from rec.hyps have \bit a n \ bit (b div 2) n\ for n using rec.prems [of \Suc n\] by (simp add: bit_Suc) then have \a = b div 2\ by (rule rec.IH) then have \2 * a = 2 * (b div 2)\ by simp then have \b mod 2 + 2 * a = b mod 2 + 2 * (b div 2)\ by simp also have \\ = b\ by (fact mod_mult_div_eq) finally show ?case by (auto simp add: mod2_eq_if) qed qed lemma bit_eq_iff: \a = b \ (\n. bit a n \ bit b n)\ by (auto intro: bit_eqI) lemma bit_exp_iff: \bit (2 ^ m) n \ 2 ^ m \ 0 \ m = n\ by (auto simp add: bit_iff_odd exp_div_exp_eq) lemma bit_1_iff: \bit 1 n \ 1 \ 0 \ n = 0\ using bit_exp_iff [of 0 n] by simp lemma bit_2_iff: \bit 2 n \ 2 \ 0 \ n = 1\ using bit_exp_iff [of 1 n] by auto lemma even_bit_succ_iff: \bit (1 + a) n \ bit a n \ n = 0\ if \even a\ using that by (cases \n = 0\) (simp_all add: bit_iff_odd) lemma odd_bit_iff_bit_pred: \bit a n \ bit (a - 1) n \ n = 0\ if \odd a\ proof - from \odd a\ obtain b where \a = 2 * b + 1\ .. moreover have \bit (2 * b) n \ n = 0 \ bit (1 + 2 * b) n\ using even_bit_succ_iff by simp ultimately show ?thesis by (simp add: ac_simps) qed lemma bit_double_iff: \bit (2 * a) n \ bit a (n - 1) \ n \ 0 \ 2 ^ n \ 0\ using even_mult_exp_div_exp_iff [of a 1 n] by (cases n, auto simp add: bit_iff_odd ac_simps) lemma bit_eq_rec: \a = b \ (even a \ even b) \ a div 2 = b div 2\ (is \?P = ?Q\) proof assume ?P then show ?Q by simp next assume ?Q then have \even a \ even b\ and \a div 2 = b div 2\ by simp_all show ?P proof (rule bit_eqI) fix n show \bit a n \ bit b n\ proof (cases n) case 0 with \even a \ even b\ show ?thesis by simp next case (Suc n) moreover from \a div 2 = b div 2\ have \bit (a div 2) n = bit (b div 2) n\ by simp ultimately show ?thesis by (simp add: bit_Suc) qed qed qed lemma bit_mod_2_iff [simp]: \bit (a mod 2) n \ n = 0 \ odd a\ by (cases a rule: parity_cases) (simp_all add: bit_iff_odd) lemma bit_mask_iff: \bit (2 ^ m - 1) n \ 2 ^ n \ 0 \ n < m\ by (simp add: bit_iff_odd even_mask_div_iff not_le) lemma bit_Numeral1_iff [simp]: \bit (numeral Num.One) n \ n = 0\ by (simp add: bit_rec) end lemma nat_bit_induct [case_names zero even odd]: "P n" if zero: "P 0" and even: "\n. P n \ n > 0 \ P (2 * n)" and odd: "\n. P n \ P (Suc (2 * n))" proof (induction n rule: less_induct) case (less n) show "P n" proof (cases "n = 0") case True with zero show ?thesis by simp next case False with less have hyp: "P (n div 2)" by simp show ?thesis proof (cases "even n") case True then have "n \ 1" by auto with \n \ 0\ have "n div 2 > 0" by simp with \even n\ hyp even [of "n div 2"] show ?thesis by simp next case False with hyp odd [of "n div 2"] show ?thesis by simp qed qed qed instantiation nat :: semiring_bits begin definition bit_nat :: \nat \ nat \ bool\ where \bit_nat m n \ odd (m div 2 ^ n)\ instance proof show \P n\ if stable: \\n. n div 2 = n \ P n\ and rec: \\n b. P n \ (of_bool b + 2 * n) div 2 = n \ P (of_bool b + 2 * n)\ for P and n :: nat proof (induction n rule: nat_bit_induct) case zero from stable [of 0] show ?case by simp next case (even n) with rec [of n False] show ?case by simp next case (odd n) with rec [of n True] show ?case by simp qed show \q mod 2 ^ m mod 2 ^ n = q mod 2 ^ min m n\ for q m n :: nat apply (auto simp add: less_iff_Suc_add power_add mod_mod_cancel split: split_min_lin) apply (metis div_mult2_eq mod_div_trivial mod_eq_self_iff_div_eq_0 mod_mult_self2_is_0 power_commutes) done show \(q * 2 ^ m) mod (2 ^ n) = (q mod 2 ^ (n - m)) * 2 ^ m\ if \m \ n\ for q m n :: nat using that apply (auto simp add: mod_mod_cancel div_mult2_eq power_add mod_mult2_eq le_iff_add split: split_min_lin) apply (simp add: mult.commute) done show \even ((2 ^ m - (1::nat)) div 2 ^ n) \ 2 ^ n = (0::nat) \ m \ n\ for m n :: nat using even_mask_div_iff' [where ?'a = nat, of m n] by simp show \even (q * 2 ^ m div 2 ^ n) \ n < m \ (2::nat) ^ n = 0 \ m \ n \ even (q div 2 ^ (n - m))\ for m n q r :: nat apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex) apply (metis (full_types) dvd_mult dvd_mult_imp_div dvd_power_iff_le not_less not_less_eq order_refl power_Suc) done qed (auto simp add: div_mult2_eq mod_mult2_eq power_add power_diff bit_nat_def) end lemma int_bit_induct [case_names zero minus even odd]: "P k" if zero_int: "P 0" and minus_int: "P (- 1)" and even_int: "\k. P k \ k \ 0 \ P (k * 2)" and odd_int: "\k. P k \ k \ - 1 \ P (1 + (k * 2))" for k :: int proof (cases "k \ 0") case True define n where "n = nat k" with True have "k = int n" by simp then show "P k" proof (induction n arbitrary: k rule: nat_bit_induct) case zero then show ?case by (simp add: zero_int) next case (even n) have "P (int n * 2)" by (rule even_int) (use even in simp_all) with even show ?case by (simp add: ac_simps) next case (odd n) have "P (1 + (int n * 2))" by (rule odd_int) (use odd in simp_all) with odd show ?case by (simp add: ac_simps) qed next case False define n where "n = nat (- k - 1)" with False have "k = - int n - 1" by simp then show "P k" proof (induction n arbitrary: k rule: nat_bit_induct) case zero then show ?case by (simp add: minus_int) next case (even n) have "P (1 + (- int (Suc n) * 2))" by (rule odd_int) (use even in \simp_all add: algebra_simps\) also have "\ = - int (2 * n) - 1" by (simp add: algebra_simps) finally show ?case using even by simp next case (odd n) have "P (- int (Suc n) * 2)" by (rule even_int) (use odd in \simp_all add: algebra_simps\) also have "\ = - int (Suc (2 * n)) - 1" by (simp add: algebra_simps) finally show ?case using odd by simp qed qed instantiation int :: semiring_bits begin definition bit_int :: \int \ nat \ bool\ where \bit_int k n \ odd (k div 2 ^ n)\ instance proof show \P k\ if stable: \\k. k div 2 = k \ P k\ and rec: \\k b. P k \ (of_bool b + 2 * k) div 2 = k \ P (of_bool b + 2 * k)\ for P and k :: int proof (induction k rule: int_bit_induct) case zero from stable [of 0] show ?case by simp next case minus from stable [of \- 1\] show ?case by simp next case (even k) with rec [of k False] show ?case by (simp add: ac_simps) next case (odd k) with rec [of k True] show ?case by (simp add: ac_simps) qed show \(2::int) ^ m div 2 ^ n = of_bool ((2::int) ^ m \ 0 \ n \ m) * 2 ^ (m - n)\ for m n :: nat proof (cases \m < n\) case True then have \n = m + (n - m)\ by simp then have \(2::int) ^ m div 2 ^ n = (2::int) ^ m div 2 ^ (m + (n - m))\ by simp also have \\ = (2::int) ^ m div (2 ^ m * 2 ^ (n - m))\ by (simp add: power_add) also have \\ = (2::int) ^ m div 2 ^ m div 2 ^ (n - m)\ by (simp add: zdiv_zmult2_eq) finally show ?thesis using \m < n\ by simp next case False then show ?thesis by (simp add: power_diff) qed show \k mod 2 ^ m mod 2 ^ n = k mod 2 ^ min m n\ for m n :: nat and k :: int using mod_exp_eq [of \nat k\ m n] apply (auto simp add: mod_mod_cancel zdiv_zmult2_eq power_add zmod_zmult2_eq le_iff_add split: split_min_lin) apply (auto simp add: less_iff_Suc_add mod_mod_cancel power_add) apply (simp only: flip: mult.left_commute [of \2 ^ m\]) apply (subst zmod_zmult2_eq) apply simp_all done show \(k * 2 ^ m) mod (2 ^ n) = (k mod 2 ^ (n - m)) * 2 ^ m\ if \m \ n\ for m n :: nat and k :: int using that apply (auto simp add: power_add zmod_zmult2_eq le_iff_add split: split_min_lin) apply (simp add: ac_simps) done show \even ((2 ^ m - (1::int)) div 2 ^ n) \ 2 ^ n = (0::int) \ m \ n\ for m n :: nat using even_mask_div_iff' [where ?'a = int, of m n] by simp show \even (k * 2 ^ m div 2 ^ n) \ n < m \ (2::int) ^ n = 0 \ m \ n \ even (k div 2 ^ (n - m))\ for m n :: nat and k l :: int apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex) apply (metis Suc_leI dvd_mult dvd_mult_imp_div dvd_power_le dvd_refl power.simps(2)) done qed (auto simp add: zdiv_zmult2_eq zmod_zmult2_eq power_add power_diff not_le bit_int_def) end class semiring_bit_shifts = semiring_bits + fixes push_bit :: \nat \ 'a \ 'a\ assumes push_bit_eq_mult: \push_bit n a = a * 2 ^ n\ fixes drop_bit :: \nat \ 'a \ 'a\ assumes drop_bit_eq_div: \drop_bit n a = a div 2 ^ n\ fixes take_bit :: \nat \ 'a \ 'a\ assumes take_bit_eq_mod: \take_bit n a = a mod 2 ^ n\ begin text \ Logically, \<^const>\push_bit\, \<^const>\drop_bit\ and \<^const>\take_bit\ are just aliases; having them as separate operations makes proofs easier, otherwise proof automation would fiddle with concrete expressions \<^term>\2 ^ n\ in a way obfuscating the basic algebraic relationships between those operations. Having them as definitional class operations takes into account that specific instances of these can be implemented differently wrt. code generation. \ lemma bit_iff_odd_drop_bit: \bit a n \ odd (drop_bit n a)\ by (simp add: bit_iff_odd drop_bit_eq_div) lemma even_drop_bit_iff_not_bit: \even (drop_bit n a) \ \ bit a n\ by (simp add: bit_iff_odd_drop_bit) lemma div_push_bit_of_1_eq_drop_bit: \a div push_bit n 1 = drop_bit n a\ by (simp add: push_bit_eq_mult drop_bit_eq_div) lemma bits_ident: "push_bit n (drop_bit n a) + take_bit n a = a" using div_mult_mod_eq by (simp add: push_bit_eq_mult take_bit_eq_mod drop_bit_eq_div) lemma push_bit_push_bit [simp]: "push_bit m (push_bit n a) = push_bit (m + n) a" by (simp add: push_bit_eq_mult power_add ac_simps) lemma push_bit_0_id [simp]: "push_bit 0 = id" by (simp add: fun_eq_iff push_bit_eq_mult) lemma push_bit_of_0 [simp]: "push_bit n 0 = 0" by (simp add: push_bit_eq_mult) lemma push_bit_of_1: "push_bit n 1 = 2 ^ n" by (simp add: push_bit_eq_mult) lemma push_bit_Suc [simp]: "push_bit (Suc n) a = push_bit n (a * 2)" by (simp add: push_bit_eq_mult ac_simps) lemma push_bit_double: "push_bit n (a * 2) = push_bit n a * 2" by (simp add: push_bit_eq_mult ac_simps) lemma push_bit_add: "push_bit n (a + b) = push_bit n a + push_bit n b" by (simp add: push_bit_eq_mult algebra_simps) +lemma push_bit_numeral [simp]: + \push_bit (numeral l) (numeral k) = push_bit (pred_numeral l) (numeral (Num.Bit0 k))\ + by (simp add: numeral_eq_Suc mult_2_right) (simp add: numeral_Bit0) + lemma take_bit_0 [simp]: "take_bit 0 a = 0" by (simp add: take_bit_eq_mod) lemma take_bit_Suc: \take_bit (Suc n) a = take_bit n (a div 2) * 2 + a mod 2\ proof - have \take_bit (Suc n) (a div 2 * 2 + of_bool (odd a)) = take_bit n (a div 2) * 2 + of_bool (odd a)\ using even_succ_mod_exp [of \2 * (a div 2)\ \Suc n\] mult_exp_mod_exp_eq [of 1 \Suc n\ \a div 2\] by (auto simp add: take_bit_eq_mod ac_simps) then show ?thesis using div_mult_mod_eq [of a 2] by (simp add: mod_2_eq_odd) qed lemma take_bit_rec: \take_bit n a = (if n = 0 then 0 else take_bit (n - 1) (a div 2) * 2 + a mod 2)\ by (cases n) (simp_all add: take_bit_Suc) lemma take_bit_Suc_0 [simp]: \take_bit (Suc 0) a = a mod 2\ by (simp add: take_bit_eq_mod) lemma take_bit_of_0 [simp]: "take_bit n 0 = 0" by (simp add: take_bit_eq_mod) lemma take_bit_of_1 [simp]: "take_bit n 1 = of_bool (n > 0)" by (cases n) (simp_all add: take_bit_Suc) lemma drop_bit_of_0 [simp]: "drop_bit n 0 = 0" by (simp add: drop_bit_eq_div) lemma drop_bit_of_1 [simp]: "drop_bit n 1 = of_bool (n = 0)" by (simp add: drop_bit_eq_div) lemma drop_bit_0 [simp]: "drop_bit 0 = id" by (simp add: fun_eq_iff drop_bit_eq_div) lemma drop_bit_Suc: "drop_bit (Suc n) a = drop_bit n (a div 2)" using div_exp_eq [of a 1] by (simp add: drop_bit_eq_div) lemma drop_bit_rec: "drop_bit n a = (if n = 0 then a else drop_bit (n - 1) (a div 2))" by (cases n) (simp_all add: drop_bit_Suc) lemma drop_bit_half: "drop_bit n (a div 2) = drop_bit n a div 2" by (induction n arbitrary: a) (simp_all add: drop_bit_Suc) lemma drop_bit_of_bool [simp]: "drop_bit n (of_bool b) = of_bool (n = 0 \ b)" by (cases n) simp_all lemma even_take_bit_eq [simp]: \even (take_bit n a) \ n = 0 \ even a\ by (simp add: take_bit_rec [of n a]) lemma take_bit_take_bit [simp]: "take_bit m (take_bit n a) = take_bit (min m n) a" by (simp add: take_bit_eq_mod mod_exp_eq ac_simps) lemma drop_bit_drop_bit [simp]: "drop_bit m (drop_bit n a) = drop_bit (m + n) a" by (simp add: drop_bit_eq_div power_add div_exp_eq ac_simps) lemma push_bit_take_bit: "push_bit m (take_bit n a) = take_bit (m + n) (push_bit m a)" apply (simp add: push_bit_eq_mult take_bit_eq_mod power_add ac_simps) using mult_exp_mod_exp_eq [of m \m + n\ a] apply (simp add: ac_simps power_add) done lemma take_bit_push_bit: "take_bit m (push_bit n a) = push_bit n (take_bit (m - n) a)" proof (cases "m \ n") case True then show ?thesis apply (simp add:) apply (simp_all add: push_bit_eq_mult take_bit_eq_mod) apply (auto dest!: le_Suc_ex simp add: power_add ac_simps) using mult_exp_mod_exp_eq [of m m \a * 2 ^ n\ for n] apply (simp add: ac_simps) done next case False then show ?thesis using push_bit_take_bit [of n "m - n" a] by simp qed lemma take_bit_drop_bit: "take_bit m (drop_bit n a) = drop_bit n (take_bit (m + n) a)" by (simp add: drop_bit_eq_div take_bit_eq_mod ac_simps div_exp_mod_exp_eq) lemma drop_bit_take_bit: "drop_bit m (take_bit n a) = take_bit (n - m) (drop_bit m a)" proof (cases "m \ n") case True then show ?thesis using take_bit_drop_bit [of "n - m" m a] by simp next case False then obtain q where \m = n + q\ by (auto simp add: not_le dest: less_imp_Suc_add) then have \drop_bit m (take_bit n a) = 0\ using div_exp_eq [of \a mod 2 ^ n\ n q] by (simp add: take_bit_eq_mod drop_bit_eq_div) with False show ?thesis by simp qed lemma even_push_bit_iff [simp]: \even (push_bit n a) \ n \ 0 \ even a\ by (simp add: push_bit_eq_mult) auto lemma bit_push_bit_iff: - \bit (push_bit m a) n \ n \ m \ 2 ^ n \ 0 \ (n < m \ bit a (n - m))\ + \bit (push_bit m a) n \ m \ n \ 2 ^ n \ 0 \ bit a (n - m)\ by (auto simp add: bit_iff_odd push_bit_eq_mult even_mult_exp_div_exp_iff) lemma bit_drop_bit_eq: \bit (drop_bit n a) = bit a \ (+) n\ by (simp add: bit_iff_odd fun_eq_iff ac_simps flip: drop_bit_eq_div) lemma bit_take_bit_iff: \bit (take_bit m a) n \ n < m \ bit a n\ by (simp add: bit_iff_odd drop_bit_take_bit not_le flip: drop_bit_eq_div) lemma stable_imp_drop_bit_eq: \drop_bit n a = a\ if \a div 2 = a\ by (induction n) (simp_all add: that drop_bit_Suc) lemma stable_imp_take_bit_eq: \take_bit n a = (if even a then 0 else 2 ^ n - 1)\ if \a div 2 = a\ proof (rule bit_eqI) fix m assume \2 ^ m \ 0\ with that show \bit (take_bit n a) m \ bit (if even a then 0 else 2 ^ n - 1) m\ by (simp add: bit_take_bit_iff bit_mask_iff stable_imp_bit_iff_odd) qed lemma exp_dvdE: assumes \2 ^ n dvd a\ obtains b where \a = push_bit n b\ proof - from assms obtain b where \a = 2 ^ n * b\ .. then have \a = push_bit n b\ by (simp add: push_bit_eq_mult ac_simps) with that show thesis . qed lemma take_bit_eq_0_iff: \take_bit n a = 0 \ 2 ^ n dvd a\ (is \?P \ ?Q\) proof assume ?P then show ?Q by (simp add: take_bit_eq_mod mod_0_imp_dvd) next assume ?Q then obtain b where \a = push_bit n b\ by (rule exp_dvdE) then show ?P by (simp add: take_bit_push_bit) qed end instantiation nat :: semiring_bit_shifts begin definition push_bit_nat :: \nat \ nat \ nat\ where \push_bit_nat n m = m * 2 ^ n\ definition drop_bit_nat :: \nat \ nat \ nat\ where \drop_bit_nat n m = m div 2 ^ n\ definition take_bit_nat :: \nat \ nat \ nat\ where \take_bit_nat n m = m mod 2 ^ n\ instance by standard (simp_all add: push_bit_nat_def drop_bit_nat_def take_bit_nat_def) end instantiation int :: semiring_bit_shifts begin definition push_bit_int :: \nat \ int \ int\ where \push_bit_int n k = k * 2 ^ n\ definition drop_bit_int :: \nat \ int \ int\ where \drop_bit_int n k = k div 2 ^ n\ definition take_bit_int :: \nat \ int \ int\ where \take_bit_int n k = k mod 2 ^ n\ instance by standard (simp_all add: push_bit_int_def drop_bit_int_def take_bit_int_def) end lemma bit_push_bit_iff_nat: \bit (push_bit m q) n \ m \ n \ bit q (n - m)\ for q :: nat by (auto simp add: bit_push_bit_iff) lemma bit_push_bit_iff_int: \bit (push_bit m k) n \ m \ n \ bit k (n - m)\ for k :: int by (auto simp add: bit_push_bit_iff) class unique_euclidean_semiring_with_bit_shifts = unique_euclidean_semiring_with_nat + semiring_bit_shifts begin lemma take_bit_of_exp [simp]: \take_bit m (2 ^ n) = of_bool (n < m) * 2 ^ n\ by (simp add: take_bit_eq_mod exp_mod_exp) lemma take_bit_of_2 [simp]: \take_bit n 2 = of_bool (2 \ n) * 2\ using take_bit_of_exp [of n 1] by simp lemma take_bit_of_mask: \take_bit m (2 ^ n - 1) = 2 ^ min m n - 1\ by (simp add: take_bit_eq_mod mask_mod_exp) lemma push_bit_eq_0_iff [simp]: "push_bit n a = 0 \ a = 0" by (simp add: push_bit_eq_mult) -lemma push_bit_numeral [simp]: - "push_bit (numeral l) (numeral k) = push_bit (pred_numeral l) (numeral (Num.Bit0 k))" - by (simp only: numeral_eq_Suc power_Suc numeral_Bit0 [of k] mult_2 [symmetric]) (simp add: ac_simps) - lemma push_bit_of_nat: "push_bit n (of_nat m) = of_nat (push_bit n m)" by (simp add: push_bit_eq_mult Parity.push_bit_eq_mult) lemma take_bit_add: "take_bit n (take_bit n a + take_bit n b) = take_bit n (a + b)" by (simp add: take_bit_eq_mod mod_simps) lemma take_bit_of_1_eq_0_iff [simp]: "take_bit n 1 = 0 \ n = 0" by (simp add: take_bit_eq_mod) lemma take_bit_Suc_bit0 [simp]: \take_bit (Suc n) (numeral (Num.Bit0 k)) = take_bit n (numeral k) * 2\ by (simp add: take_bit_Suc numeral_Bit0_div_2) lemma take_bit_Suc_bit1 [simp]: \take_bit (Suc n) (numeral (Num.Bit1 k)) = take_bit n (numeral k) * 2 + 1\ by (simp add: take_bit_Suc numeral_Bit1_div_2 mod_2_eq_odd) lemma take_bit_numeral_bit0 [simp]: \take_bit (numeral l) (numeral (Num.Bit0 k)) = take_bit (pred_numeral l) (numeral k) * 2\ by (simp add: take_bit_rec numeral_Bit0_div_2) lemma take_bit_numeral_bit1 [simp]: \take_bit (numeral l) (numeral (Num.Bit1 k)) = take_bit (pred_numeral l) (numeral k) * 2 + 1\ by (simp add: take_bit_rec numeral_Bit1_div_2 mod_2_eq_odd) lemma take_bit_of_nat: "take_bit n (of_nat m) = of_nat (take_bit n m)" by (simp add: take_bit_eq_mod Parity.take_bit_eq_mod of_nat_mod [of m "2 ^ n"]) lemma drop_bit_Suc_bit0 [simp]: \drop_bit (Suc n) (numeral (Num.Bit0 k)) = drop_bit n (numeral k)\ by (simp add: drop_bit_Suc numeral_Bit0_div_2) lemma drop_bit_Suc_bit1 [simp]: \drop_bit (Suc n) (numeral (Num.Bit1 k)) = drop_bit n (numeral k)\ by (simp add: drop_bit_Suc numeral_Bit1_div_2) lemma drop_bit_numeral_bit0 [simp]: \drop_bit (numeral l) (numeral (Num.Bit0 k)) = drop_bit (pred_numeral l) (numeral k)\ by (simp add: drop_bit_rec numeral_Bit0_div_2) lemma drop_bit_numeral_bit1 [simp]: \drop_bit (numeral l) (numeral (Num.Bit1 k)) = drop_bit (pred_numeral l) (numeral k)\ by (simp add: drop_bit_rec numeral_Bit1_div_2) lemma drop_bit_of_nat: "drop_bit n (of_nat m) = of_nat (drop_bit n m)" by (simp add: drop_bit_eq_div Parity.drop_bit_eq_div of_nat_div [of m "2 ^ n"]) lemma bit_of_nat_iff_bit [simp]: \bit (of_nat m) n \ bit m n\ proof - have \even (m div 2 ^ n) \ even (of_nat (m div 2 ^ n))\ by simp also have \of_nat (m div 2 ^ n) = of_nat m div of_nat (2 ^ n)\ by (simp add: of_nat_div) finally show ?thesis by (simp add: bit_iff_odd semiring_bits_class.bit_iff_odd) qed lemma of_nat_push_bit: \of_nat (push_bit m n) = push_bit m (of_nat n)\ by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult) lemma of_nat_drop_bit: \of_nat (drop_bit m n) = drop_bit m (of_nat n)\ by (simp add: drop_bit_eq_div semiring_bit_shifts_class.drop_bit_eq_div of_nat_div) lemma of_nat_take_bit: \of_nat (take_bit m n) = take_bit m (of_nat n)\ by (simp add: take_bit_eq_mod semiring_bit_shifts_class.take_bit_eq_mod of_nat_mod) lemma bit_push_bit_iff_of_nat_iff: \bit (push_bit m (of_nat r)) n \ m \ n \ bit (of_nat r) (n - m)\ by (auto simp add: bit_push_bit_iff) end instance nat :: unique_euclidean_semiring_with_bit_shifts .. instance int :: unique_euclidean_semiring_with_bit_shifts .. lemma bit_nat_iff [simp]: \bit (nat k) n \ k > 0 \ bit k n\ proof (cases \k > 0\) case True moreover define m where \m = nat k\ ultimately have \k = int m\ by simp then show ?thesis by (auto intro: ccontr) next case False then show ?thesis by simp qed lemma not_exp_less_eq_0_int [simp]: \\ 2 ^ n \ (0::int)\ by (simp add: power_le_zero_eq) lemma half_nonnegative_int_iff [simp]: \k div 2 \ 0 \ k \ 0\ for k :: int proof (cases \k \ 0\) case True then show ?thesis by (auto simp add: divide_int_def sgn_1_pos) next case False then show ?thesis apply (auto simp add: divide_int_def not_le elim!: evenE) apply (simp only: minus_mult_right) apply (subst nat_mult_distrib) apply simp_all done qed lemma half_negative_int_iff [simp]: \k div 2 < 0 \ k < 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma push_bit_of_Suc_0 [simp]: "push_bit n (Suc 0) = 2 ^ n" using push_bit_of_1 [where ?'a = nat] by simp lemma take_bit_of_Suc_0 [simp]: "take_bit n (Suc 0) = of_bool (0 < n)" using take_bit_of_1 [where ?'a = nat] by simp lemma drop_bit_of_Suc_0 [simp]: "drop_bit n (Suc 0) = of_bool (n = 0)" using drop_bit_of_1 [where ?'a = nat] by simp lemma take_bit_eq_self: \take_bit n m = m\ if \m < 2 ^ n\ for n m :: nat using that by (simp add: take_bit_eq_mod) lemma push_bit_minus_one: "push_bit n (- 1 :: int) = - (2 ^ n)" by (simp add: push_bit_eq_mult) lemma minus_1_div_exp_eq_int: \- 1 div (2 :: int) ^ n = - 1\ by (induction n) (use div_exp_eq [symmetric, of \- 1 :: int\ 1] in \simp_all add: ac_simps\) lemma drop_bit_minus_one [simp]: \drop_bit n (- 1 :: int) = - 1\ by (simp add: drop_bit_eq_div minus_1_div_exp_eq_int) lemma take_bit_minus: \take_bit n (- take_bit n k) = take_bit n (- k)\ for k :: int by (simp add: take_bit_eq_mod mod_minus_eq) lemma take_bit_diff: \take_bit n (take_bit n k - take_bit n l) = take_bit n (k - l)\ for k l :: int by (simp add: take_bit_eq_mod mod_diff_eq) lemma take_bit_nonnegative [simp]: \take_bit n k \ 0\ for k :: int by (simp add: take_bit_eq_mod) lemma (in ring_1) of_nat_nat_take_bit_eq [simp]: \of_nat (nat (take_bit n k)) = of_int (take_bit n k)\ by simp lemma take_bit_minus_small_eq: \take_bit n (- k) = 2 ^ n - k\ if \0 < k\ \k \ 2 ^ n\ for k :: int proof - define m where \m = nat k\ with that have \k = int m\ and \0 < m\ and \m \ 2 ^ n\ by simp_all have \(2 ^ n - m) mod 2 ^ n = 2 ^ n - m\ using \0 < m\ by simp then have \int ((2 ^ n - m) mod 2 ^ n) = int (2 ^ n - m)\ by simp then have \(2 ^ n - int m) mod 2 ^ n = 2 ^ n - int m\ using \m \ 2 ^ n\ by (simp only: of_nat_mod of_nat_diff) simp with \k = int m\ have \(2 ^ n - k) mod 2 ^ n = 2 ^ n - k\ by simp then show ?thesis by (simp add: take_bit_eq_mod) qed lemma drop_bit_push_bit_int: \drop_bit m (push_bit n k) = drop_bit (m - n) (push_bit (n - m) k)\ for k :: int by (cases \m \ n\) (auto simp add: mult.left_commute [of _ \2 ^ n\] mult.commute [of _ \2 ^ n\] mult.assoc mult.commute [of k] drop_bit_eq_div push_bit_eq_mult not_le power_add dest!: le_Suc_ex less_imp_Suc_add) lemma push_bit_nonnegative_int_iff [simp]: \push_bit n k \ 0 \ k \ 0\ for k :: int by (simp add: push_bit_eq_mult zero_le_mult_iff) lemma push_bit_negative_int_iff [simp]: \push_bit n k < 0 \ k < 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) lemma drop_bit_nonnegative_int_iff [simp]: \drop_bit n k \ 0 \ k \ 0\ for k :: int by (induction n) (simp_all add: drop_bit_Suc drop_bit_half) lemma drop_bit_negative_int_iff [simp]: \drop_bit n k < 0 \ k < 0\ for k :: int by (subst Not_eq_iff [symmetric]) (simp add: not_less) code_identifier code_module Parity \ (SML) Arith and (OCaml) Arith and (Haskell) Arith end diff --git a/src/HOL/Word/Ancient_Numeral.thy b/src/HOL/Word/Ancient_Numeral.thy --- a/src/HOL/Word/Ancient_Numeral.thy +++ b/src/HOL/Word/Ancient_Numeral.thy @@ -1,229 +1,229 @@ theory Ancient_Numeral imports Main Bits_Int begin definition Bit :: "int \ bool \ int" (infixl "BIT" 90) where "k BIT b = (if b then 1 else 0) + k + k" lemma Bit_B0: "k BIT False = k + k" by (simp add: Bit_def) lemma Bit_B1: "k BIT True = k + k + 1" by (simp add: Bit_def) lemma Bit_B0_2t: "k BIT False = 2 * k" by (rule trans, rule Bit_B0) simp lemma Bit_B1_2t: "k BIT True = 2 * k + 1" by (rule trans, rule Bit_B1) simp lemma uminus_Bit_eq: "- k BIT b = (- k - of_bool b) BIT b" by (cases b) (simp_all add: Bit_def) lemma power_BIT: "2 ^ Suc n - 1 = (2 ^ n - 1) BIT True" by (simp add: Bit_B1) lemma bin_rl_simp [simp]: "bin_rest w BIT bin_last w = w" by (simp add: Bit_def) lemma bin_rest_BIT [simp]: "bin_rest (x BIT b) = x" by (simp add: Bit_def) lemma even_BIT [simp]: "even (x BIT b) \ \ b" by (simp add: Bit_def) lemma bin_last_BIT [simp]: "bin_last (x BIT b) = b" by simp lemma BIT_eq_iff [iff]: "u BIT b = v BIT c \ u = v \ b = c" by (auto simp: Bit_def) arith+ lemma BIT_bin_simps [simp]: "numeral k BIT False = numeral (Num.Bit0 k)" "numeral k BIT True = numeral (Num.Bit1 k)" "(- numeral k) BIT False = - numeral (Num.Bit0 k)" "(- numeral k) BIT True = - numeral (Num.BitM k)" by (simp_all only: Bit_B0 Bit_B1 numeral.simps numeral_BitM) lemma BIT_special_simps [simp]: shows "0 BIT False = 0" and "0 BIT True = 1" and "1 BIT False = 2" and "1 BIT True = 3" and "(- 1) BIT False = - 2" and "(- 1) BIT True = - 1" by (simp_all add: Bit_def) lemma Bit_eq_0_iff: "w BIT b = 0 \ w = 0 \ \ b" by (auto simp: Bit_def) arith lemma Bit_eq_m1_iff: "w BIT b = -1 \ w = -1 \ b" by (auto simp: Bit_def) arith lemma expand_BIT: "numeral (Num.Bit0 w) = numeral w BIT False" "numeral (Num.Bit1 w) = numeral w BIT True" "- numeral (Num.Bit0 w) = (- numeral w) BIT False" "- numeral (Num.Bit1 w) = (- numeral (w + Num.One)) BIT True" - by (simp_all add: add_One BitM_inc) + by (simp_all add: BitM_inc_eq add_One) lemma less_Bits: "v BIT b < w BIT c \ v < w \ v \ w \ \ b \ c" by (auto simp: Bit_def) lemma le_Bits: "v BIT b \ w BIT c \ v < w \ v \ w \ (\ b \ c)" by (auto simp: Bit_def) lemma pred_BIT_simps [simp]: "x BIT False - 1 = (x - 1) BIT True" "x BIT True - 1 = x BIT False" by (simp_all add: Bit_B0_2t Bit_B1_2t) lemma succ_BIT_simps [simp]: "x BIT False + 1 = x BIT True" "x BIT True + 1 = (x + 1) BIT False" by (simp_all add: Bit_B0_2t Bit_B1_2t) lemma add_BIT_simps [simp]: "x BIT False + y BIT False = (x + y) BIT False" "x BIT False + y BIT True = (x + y) BIT True" "x BIT True + y BIT False = (x + y) BIT True" "x BIT True + y BIT True = (x + y + 1) BIT False" by (simp_all add: Bit_B0_2t Bit_B1_2t) lemma mult_BIT_simps [simp]: "x BIT False * y = (x * y) BIT False" "x * y BIT False = (x * y) BIT False" "x BIT True * y = (x * y) BIT False + y" by (simp_all add: Bit_B0_2t Bit_B1_2t algebra_simps) lemma B_mod_2': "X = 2 \ (w BIT True) mod X = 1 \ (w BIT False) mod X = 0" by (simp add: Bit_B0 Bit_B1) lemma bin_ex_rl: "\w b. w BIT b = bin" by (metis bin_rl_simp) lemma bin_exhaust: "(\x b. bin = x BIT b \ Q) \ Q" by (metis bin_ex_rl) lemma bin_abs_lem: "bin = (w BIT b) \ bin \ -1 \ bin \ 0 \ nat \w\ < nat \bin\" apply clarsimp apply (unfold Bit_def) apply (cases b) apply (clarsimp, arith) apply (clarsimp, arith) done lemma bin_induct: assumes PPls: "P 0" and PMin: "P (- 1)" and PBit: "\bin bit. P bin \ P (bin BIT bit)" shows "P bin" apply (rule_tac P=P and a=bin and f1="nat \ abs" in wf_measure [THEN wf_induct]) apply (simp add: measure_def inv_image_def) apply (case_tac x rule: bin_exhaust) apply (frule bin_abs_lem) apply (auto simp add : PPls PMin PBit) done lemma Bit_div2: "(w BIT b) div 2 = w" by (fact bin_rest_BIT) lemma twice_conv_BIT: "2 * x = x BIT False" by (simp add: Bit_def) lemma BIT_lt0 [simp]: "x BIT b < 0 \ x < 0" by(cases b)(auto simp add: Bit_def) lemma BIT_ge0 [simp]: "x BIT b \ 0 \ x \ 0" by(cases b)(auto simp add: Bit_def) lemma bin_to_bl_aux_Bit_minus_simp [simp]: "0 < n \ bin_to_bl_aux n (w BIT b) bl = bin_to_bl_aux (n - 1) w (b # bl)" by (cases n) auto lemma bl_to_bin_BIT: "bl_to_bin bs BIT b = bl_to_bin (bs @ [b])" by (simp add: bl_to_bin_append Bit_def) lemma bin_nth_0_BIT: "bin_nth (w BIT b) 0 \ b" by simp lemma bin_nth_Suc_BIT: "bin_nth (w BIT b) (Suc n) = bin_nth w n" by (simp add: bit_Suc) lemma bin_nth_minus [simp]: "0 < n \ bin_nth (w BIT b) n = bin_nth w (n - 1)" by (cases n) (simp_all add: bit_Suc) lemma bin_sign_simps [simp]: "bin_sign (w BIT b) = bin_sign w" by (simp add: bin_sign_def Bit_def) lemma bin_nth_Bit: "bin_nth (w BIT b) n \ n = 0 \ b \ (\m. n = Suc m \ bin_nth w m)" by (cases n) auto lemmas sbintrunc_Suc_BIT [simp] = sbintrunc.Suc [where bin="w BIT b", simplified bin_last_BIT bin_rest_BIT] for w b lemmas sbintrunc_0_BIT_B0 [simp] = sbintrunc.Z [where bin="w BIT False", simplified bin_last_numeral_simps bin_rest_numeral_simps] for w lemmas sbintrunc_0_BIT_B1 [simp] = sbintrunc.Z [where bin="w BIT True", simplified bin_last_BIT bin_rest_numeral_simps] for w lemma sbintrunc_Suc_minus_Is: \0 < n \ sbintrunc (n - 1) w = y \ sbintrunc n (w BIT b) = y BIT b\ by (cases n) (simp_all add: Bit_def) lemma bin_cat_Suc_Bit: "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b" by (auto simp add: Bit_def) lemma int_not_BIT [simp]: "NOT (w BIT b) = (NOT w) BIT (\ b)" by (simp add: not_int_def Bit_def) lemma int_and_Bits [simp]: "(x BIT b) AND (y BIT c) = (x AND y) BIT (b \ c)" using and_int_rec [of \x BIT b\ \y BIT c\] by (auto simp add: Bit_B0_2t Bit_B1_2t) lemma int_or_Bits [simp]: "(x BIT b) OR (y BIT c) = (x OR y) BIT (b \ c)" using or_int_rec [of \x BIT b\ \y BIT c\] by (auto simp add: Bit_B0_2t Bit_B1_2t) lemma int_xor_Bits [simp]: "(x BIT b) XOR (y BIT c) = (x XOR y) BIT ((b \ c) \ \ (b \ c))" using xor_int_rec [of \x BIT b\ \y BIT c\] by (auto simp add: Bit_B0_2t Bit_B1_2t) lemma mod_BIT: "bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit" for bit proof - have "2 * (bin mod 2 ^ n) + 1 = (2 * bin mod 2 ^ Suc n) + 1" by (simp add: mod_mult_mult1) also have "\ = ((2 * bin mod 2 ^ Suc n) + 1) mod 2 ^ Suc n" by (simp add: ac_simps pos_zmod_mult_2) also have "\ = (2 * bin + 1) mod 2 ^ Suc n" by (simp only: mod_simps) finally show ?thesis by (auto simp add: Bit_def) qed lemma minus_BIT_0: fixes x y :: int shows "x BIT b - y BIT False = (x - y) BIT b" by(simp add: Bit_def) lemma int_lsb_BIT [simp]: fixes x :: int shows "lsb (x BIT b) \ b" by(simp add: lsb_int_def) lemma int_shiftr_BIT [simp]: fixes x :: int shows int_shiftr0: "x >> 0 = x" and int_shiftr_Suc: "x BIT b >> Suc n = x >> n" proof - show "x >> 0 = x" by (simp add: shiftr_int_def) show "x BIT b >> Suc n = x >> n" by (cases b) (simp_all add: shiftr_int_def Bit_def add.commute pos_zdiv_mult_2) qed lemma msb_BIT [simp]: "msb (x BIT b) = msb x" by(simp add: msb_int_def) end \ No newline at end of file diff --git a/src/HOL/Word/Bits_Int.thy b/src/HOL/Word/Bits_Int.thy --- a/src/HOL/Word/Bits_Int.thy +++ b/src/HOL/Word/Bits_Int.thy @@ -1,2331 +1,2343 @@ (* Title: HOL/Word/Bits_Int.thy Author: Jeremy Dawson and Gerwin Klein, NICTA Definitions and basic theorems for bit-wise logical operations for integers expressed using Pls, Min, BIT, and converting them to and from lists of bools. *) section \Bitwise Operations on integers\ theory Bits_Int imports Misc_Auxiliary Bits begin subsection \Implicit bit representation of \<^typ>\int\\ abbreviation (input) bin_last :: "int \ bool" where "bin_last \ odd" lemma bin_last_def: "bin_last w \ w mod 2 = 1" by (fact odd_iff_mod_2_eq_one) abbreviation (input) bin_rest :: "int \ int" where "bin_rest w \ w div 2" -lemma BitM_inc: "Num.BitM (Num.inc w) = Num.Bit1 w" - by (induct w) simp_all - lemma bin_last_numeral_simps [simp]: "\ bin_last 0" "bin_last 1" "bin_last (- 1)" "bin_last Numeral1" "\ bin_last (numeral (Num.Bit0 w))" "bin_last (numeral (Num.Bit1 w))" "\ bin_last (- numeral (Num.Bit0 w))" "bin_last (- numeral (Num.Bit1 w))" by simp_all lemma bin_rest_numeral_simps [simp]: "bin_rest 0 = 0" "bin_rest 1 = 0" "bin_rest (- 1) = - 1" "bin_rest Numeral1 = 0" "bin_rest (numeral (Num.Bit0 w)) = numeral w" "bin_rest (numeral (Num.Bit1 w)) = numeral w" "bin_rest (- numeral (Num.Bit0 w)) = - numeral w" "bin_rest (- numeral (Num.Bit1 w)) = - numeral (w + Num.One)" by simp_all lemma bin_rl_eqI: "\bin_rest x = bin_rest y; bin_last x = bin_last y\ \ x = y" by (auto elim: oddE) lemma [simp]: shows bin_rest_lt0: "bin_rest i < 0 \ i < 0" and bin_rest_ge_0: "bin_rest i \ 0 \ i \ 0" by auto lemma bin_rest_gt_0 [simp]: "bin_rest x > 0 \ x > 1" by auto subsection \Explicit bit representation of \<^typ>\int\\ primrec bl_to_bin_aux :: "bool list \ int \ int" where Nil: "bl_to_bin_aux [] w = w" | Cons: "bl_to_bin_aux (b # bs) w = bl_to_bin_aux bs (of_bool b + 2 * w)" definition bl_to_bin :: "bool list \ int" where "bl_to_bin bs = bl_to_bin_aux bs 0" primrec bin_to_bl_aux :: "nat \ int \ bool list \ bool list" where Z: "bin_to_bl_aux 0 w bl = bl" | Suc: "bin_to_bl_aux (Suc n) w bl = bin_to_bl_aux n (bin_rest w) ((bin_last w) # bl)" definition bin_to_bl :: "nat \ int \ bool list" where "bin_to_bl n w = bin_to_bl_aux n w []" lemma bin_to_bl_aux_zero_minus_simp [simp]: "0 < n \ bin_to_bl_aux n 0 bl = bin_to_bl_aux (n - 1) 0 (False # bl)" by (cases n) auto lemma bin_to_bl_aux_minus1_minus_simp [simp]: "0 < n \ bin_to_bl_aux n (- 1) bl = bin_to_bl_aux (n - 1) (- 1) (True # bl)" by (cases n) auto lemma bin_to_bl_aux_one_minus_simp [simp]: "0 < n \ bin_to_bl_aux n 1 bl = bin_to_bl_aux (n - 1) 0 (True # bl)" by (cases n) auto lemma bin_to_bl_aux_Bit0_minus_simp [simp]: "0 < n \ bin_to_bl_aux n (numeral (Num.Bit0 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (False # bl)" by (cases n) simp_all lemma bin_to_bl_aux_Bit1_minus_simp [simp]: "0 < n \ bin_to_bl_aux n (numeral (Num.Bit1 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (True # bl)" by (cases n) simp_all lemma bl_to_bin_aux_append: "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)" by (induct bs arbitrary: w) auto lemma bin_to_bl_aux_append: "bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)" by (induct n arbitrary: w bs) auto lemma bl_to_bin_append: "bl_to_bin (bs @ cs) = bl_to_bin_aux cs (bl_to_bin bs)" unfolding bl_to_bin_def by (rule bl_to_bin_aux_append) lemma bin_to_bl_aux_alt: "bin_to_bl_aux n w bs = bin_to_bl n w @ bs" by (simp add: bin_to_bl_def bin_to_bl_aux_append) lemma bin_to_bl_0 [simp]: "bin_to_bl 0 bs = []" by (auto simp: bin_to_bl_def) lemma size_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs" by (induct n arbitrary: w bs) auto lemma size_bin_to_bl [simp]: "length (bin_to_bl n w) = n" by (simp add: bin_to_bl_def size_bin_to_bl_aux) lemma bl_bin_bl': "bin_to_bl (n + length bs) (bl_to_bin_aux bs w) = bin_to_bl_aux n w bs" apply (induct bs arbitrary: w n) apply auto apply (simp_all only: add_Suc [symmetric]) apply (auto simp add: bin_to_bl_def) done lemma bl_bin_bl [simp]: "bin_to_bl (length bs) (bl_to_bin bs) = bs" unfolding bl_to_bin_def apply (rule box_equals) apply (rule bl_bin_bl') prefer 2 apply (rule bin_to_bl_aux.Z) apply simp done lemma bl_to_bin_inj: "bl_to_bin bs = bl_to_bin cs \ length bs = length cs \ bs = cs" apply (rule_tac box_equals) defer apply (rule bl_bin_bl) apply (rule bl_bin_bl) apply simp done lemma bl_to_bin_False [simp]: "bl_to_bin (False # bl) = bl_to_bin bl" by (auto simp: bl_to_bin_def) lemma bl_to_bin_Nil [simp]: "bl_to_bin [] = 0" by (auto simp: bl_to_bin_def) lemma bin_to_bl_zero_aux: "bin_to_bl_aux n 0 bl = replicate n False @ bl" by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) lemma bin_to_bl_zero: "bin_to_bl n 0 = replicate n False" by (simp add: bin_to_bl_def bin_to_bl_zero_aux) lemma bin_to_bl_minus1_aux: "bin_to_bl_aux n (- 1) bl = replicate n True @ bl" by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) lemma bin_to_bl_minus1: "bin_to_bl n (- 1) = replicate n True" by (simp add: bin_to_bl_def bin_to_bl_minus1_aux) subsection \Bit projection\ abbreviation (input) bin_nth :: \int \ nat \ bool\ where \bin_nth \ bit\ lemma bin_nth_eq_iff: "bin_nth x = bin_nth y \ x = y" by (simp add: bit_eq_iff fun_eq_iff) lemma bin_eqI: "x = y" if "\n. bin_nth x n \ bin_nth y n" using that bin_nth_eq_iff [of x y] by (simp add: fun_eq_iff) lemma bin_eq_iff: "x = y \ (\n. bin_nth x n = bin_nth y n)" by (fact bit_eq_iff) lemma bin_nth_zero [simp]: "\ bin_nth 0 n" by simp lemma bin_nth_1 [simp]: "bin_nth 1 n \ n = 0" by (cases n) (simp_all add: bit_Suc) lemma bin_nth_minus1 [simp]: "bin_nth (- 1) n" by (induction n) (simp_all add: bit_Suc) lemma bin_nth_numeral: "bin_rest x = y \ bin_nth x (numeral n) = bin_nth y (pred_numeral n)" by (simp add: numeral_eq_Suc bit_Suc) lemmas bin_nth_numeral_simps [simp] = bin_nth_numeral [OF bin_rest_numeral_simps(2)] bin_nth_numeral [OF bin_rest_numeral_simps(5)] bin_nth_numeral [OF bin_rest_numeral_simps(6)] bin_nth_numeral [OF bin_rest_numeral_simps(7)] bin_nth_numeral [OF bin_rest_numeral_simps(8)] lemmas bin_nth_simps = bit_0 bit_Suc bin_nth_zero bin_nth_minus1 bin_nth_numeral_simps lemma nth_2p_bin: "bin_nth (2 ^ n) m = (m = n)" \ \for use when simplifying with \bin_nth_Bit\\ by (auto simp add: bit_exp_iff) lemma nth_rest_power_bin: "bin_nth ((bin_rest ^^ k) w) n = bin_nth w (n + k)" apply (induct k arbitrary: n) apply clarsimp apply clarsimp apply (simp only: bit_Suc [symmetric] add_Suc) done lemma bin_nth_numeral_unfold: "bin_nth (numeral (num.Bit0 x)) n \ n > 0 \ bin_nth (numeral x) (n - 1)" "bin_nth (numeral (num.Bit1 x)) n \ (n > 0 \ bin_nth (numeral x) (n - 1))" by (cases n; simp)+ subsection \Truncating\ definition bin_sign :: "int \ int" where "bin_sign k = (if k \ 0 then 0 else - 1)" lemma bin_sign_simps [simp]: "bin_sign 0 = 0" "bin_sign 1 = 0" "bin_sign (- 1) = - 1" "bin_sign (numeral k) = 0" "bin_sign (- numeral k) = -1" by (simp_all add: bin_sign_def) lemma bin_sign_rest [simp]: "bin_sign (bin_rest w) = bin_sign w" by (simp add: bin_sign_def) abbreviation (input) bintrunc :: "nat \ int \ int" where \bintrunc \ take_bit\ lemma bintrunc_mod2p: "bintrunc n w = w mod 2 ^ n" by (fact take_bit_eq_mod) primrec sbintrunc :: "nat \ int \ int" where Z : "sbintrunc 0 bin = (if odd bin then - 1 else 0)" | Suc : "sbintrunc (Suc n) bin = of_bool (odd bin) + 2 * sbintrunc n (bin div 2)" lemma sbintrunc_mod2p: "sbintrunc n w = (w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n" proof (induction n arbitrary: w) case 0 then show ?case by (auto simp add: odd_iff_mod_2_eq_one) next case (Suc n) from Suc [of \w div 2\] show ?case using even_succ_mod_exp [of \(b * 2 + 2 * 2 ^ n)\ \Suc (Suc n)\ for b :: int] by (auto elim!: evenE oddE simp add: mult_mod_right ac_simps) qed lemma sign_bintr: "bin_sign (bintrunc n w) = 0" by (simp add: bintrunc_mod2p bin_sign_def) lemma bintrunc_n_0 [simp]: "bintrunc n 0 = 0" by (simp add: bintrunc_mod2p) lemma sbintrunc_n_0 [simp]: "sbintrunc n 0 = 0" by (simp add: sbintrunc_mod2p) lemma sbintrunc_n_minus1 [simp]: "sbintrunc n (- 1) = -1" by (induct n) auto lemma bintrunc_Suc_numeral: "bintrunc (Suc n) 1 = 1" "bintrunc (Suc n) (- 1) = 1 + 2 * bintrunc n (- 1)" "bintrunc (Suc n) (numeral (Num.Bit0 w)) = 2 * bintrunc n (numeral w)" "bintrunc (Suc n) (numeral (Num.Bit1 w)) = 1 + 2 * bintrunc n (numeral w)" "bintrunc (Suc n) (- numeral (Num.Bit0 w)) = 2 * bintrunc n (- numeral w)" "bintrunc (Suc n) (- numeral (Num.Bit1 w)) = 1 + 2 * bintrunc n (- numeral (w + Num.One))" by (simp_all add: take_bit_Suc) lemma sbintrunc_0_numeral [simp]: "sbintrunc 0 1 = -1" "sbintrunc 0 (numeral (Num.Bit0 w)) = 0" "sbintrunc 0 (numeral (Num.Bit1 w)) = -1" "sbintrunc 0 (- numeral (Num.Bit0 w)) = 0" "sbintrunc 0 (- numeral (Num.Bit1 w)) = -1" by simp_all lemma sbintrunc_Suc_numeral: "sbintrunc (Suc n) 1 = 1" "sbintrunc (Suc n) (numeral (Num.Bit0 w)) = 2 * sbintrunc n (numeral w)" "sbintrunc (Suc n) (numeral (Num.Bit1 w)) = 1 + 2 * sbintrunc n (numeral w)" "sbintrunc (Suc n) (- numeral (Num.Bit0 w)) = 2 * sbintrunc n (- numeral w)" "sbintrunc (Suc n) (- numeral (Num.Bit1 w)) = 1 + 2 * sbintrunc n (- numeral (w + Num.One))" by simp_all lemma bin_sign_lem: "(bin_sign (sbintrunc n bin) = -1) = bin_nth bin n" apply (rule sym) apply (induct n arbitrary: bin) apply (simp_all add: bit_Suc bin_sign_def) done lemma nth_bintr: "bin_nth (bintrunc m w) n \ n < m \ bin_nth w n" by (fact bit_take_bit_iff) lemma nth_sbintr: "bin_nth (sbintrunc m w) n = (if n < m then bin_nth w n else bin_nth w m)" apply (induct n arbitrary: w m) apply (case_tac m) apply simp_all apply (case_tac m) apply (simp_all add: bit_Suc) done lemma bin_nth_Bit0: "bin_nth (numeral (Num.Bit0 w)) n \ (\m. n = Suc m \ bin_nth (numeral w) m)" using bit_double_iff [of \numeral w :: int\ n] by (auto intro: exI [of _ \n - 1\]) lemma bin_nth_Bit1: "bin_nth (numeral (Num.Bit1 w)) n \ n = 0 \ (\m. n = Suc m \ bin_nth (numeral w) m)" using even_bit_succ_iff [of \2 * numeral w :: int\ n] bit_double_iff [of \numeral w :: int\ n] by auto lemma bintrunc_bintrunc_l: "n \ m \ bintrunc m (bintrunc n w) = bintrunc n w" by (simp add: min.absorb2) lemma sbintrunc_sbintrunc_l: "n \ m \ sbintrunc m (sbintrunc n w) = sbintrunc n w" by (rule bin_eqI) (auto simp: nth_sbintr) lemma bintrunc_bintrunc_ge: "n \ m \ bintrunc n (bintrunc m w) = bintrunc n w" by (rule bin_eqI) (auto simp: nth_bintr) lemma bintrunc_bintrunc_min [simp]: "bintrunc m (bintrunc n w) = bintrunc (min m n) w" by (rule bin_eqI) (auto simp: nth_bintr) lemma sbintrunc_sbintrunc_min [simp]: "sbintrunc m (sbintrunc n w) = sbintrunc (min m n) w" by (rule bin_eqI) (auto simp: nth_sbintr min.absorb1 min.absorb2) lemmas sbintrunc_Suc_Pls = sbintrunc.Suc [where bin="0", simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_Suc_Min = sbintrunc.Suc [where bin="-1", simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_Sucs = sbintrunc_Suc_Pls sbintrunc_Suc_Min sbintrunc_Suc_numeral lemmas sbintrunc_Pls = sbintrunc.Z [where bin="0", simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_Min = sbintrunc.Z [where bin="-1", simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_0_simps = sbintrunc_Pls sbintrunc_Min lemmas sbintrunc_simps = sbintrunc_0_simps sbintrunc_Sucs lemma bintrunc_minus: "0 < n \ bintrunc (Suc (n - 1)) w = bintrunc n w" by auto lemma sbintrunc_minus: "0 < n \ sbintrunc (Suc (n - 1)) w = sbintrunc n w" by auto lemmas sbintrunc_minus_simps = sbintrunc_Sucs [THEN [2] sbintrunc_minus [symmetric, THEN trans]] lemma sbintrunc_BIT_I: \0 < n \ sbintrunc (n - 1) 0 = y \ sbintrunc n 0 = 2 * y\ by simp lemma sbintrunc_Suc_Is: \sbintrunc n (- 1) = y \ sbintrunc (Suc n) (- 1) = 1 + 2 * y\ by auto lemma sbintrunc_Suc_lem: "sbintrunc (Suc n) x = y \ m = Suc n \ sbintrunc m x = y" by auto lemmas sbintrunc_Suc_Ialts = sbintrunc_Suc_Is [THEN sbintrunc_Suc_lem] lemma sbintrunc_bintrunc_lt: "m > n \ sbintrunc n (bintrunc m w) = sbintrunc n w" by (rule bin_eqI) (auto simp: nth_sbintr nth_bintr) lemma bintrunc_sbintrunc_le: "m \ Suc n \ bintrunc m (sbintrunc n w) = bintrunc m w" apply (rule bin_eqI) using le_Suc_eq less_Suc_eq_le apply (auto simp: nth_sbintr nth_bintr) done lemmas bintrunc_sbintrunc [simp] = order_refl [THEN bintrunc_sbintrunc_le] lemmas sbintrunc_bintrunc [simp] = lessI [THEN sbintrunc_bintrunc_lt] lemmas bintrunc_bintrunc [simp] = order_refl [THEN bintrunc_bintrunc_l] lemmas sbintrunc_sbintrunc [simp] = order_refl [THEN sbintrunc_sbintrunc_l] lemma bintrunc_sbintrunc' [simp]: "0 < n \ bintrunc n (sbintrunc (n - 1) w) = bintrunc n w" by (cases n) simp_all lemma sbintrunc_bintrunc' [simp]: "0 < n \ sbintrunc (n - 1) (bintrunc n w) = sbintrunc (n - 1) w" by (cases n) simp_all lemma bin_sbin_eq_iff: "bintrunc (Suc n) x = bintrunc (Suc n) y \ sbintrunc n x = sbintrunc n y" apply (rule iffI) apply (rule box_equals [OF _ sbintrunc_bintrunc sbintrunc_bintrunc]) apply simp apply (rule box_equals [OF _ bintrunc_sbintrunc bintrunc_sbintrunc]) apply simp done lemma bin_sbin_eq_iff': "0 < n \ bintrunc n x = bintrunc n y \ sbintrunc (n - 1) x = sbintrunc (n - 1) y" by (cases n) (simp_all add: bin_sbin_eq_iff) lemmas bintrunc_sbintruncS0 [simp] = bintrunc_sbintrunc' [unfolded One_nat_def] lemmas sbintrunc_bintruncS0 [simp] = sbintrunc_bintrunc' [unfolded One_nat_def] lemmas bintrunc_bintrunc_l' = le_add1 [THEN bintrunc_bintrunc_l] lemmas sbintrunc_sbintrunc_l' = le_add1 [THEN sbintrunc_sbintrunc_l] (* although bintrunc_minus_simps, if added to default simpset, tends to get applied where it's not wanted in developing the theories, we get a version for when the word length is given literally *) lemmas nat_non0_gr = trans [OF iszero_def [THEN Not_eq_iff [THEN iffD2]] refl] lemma bintrunc_numeral: "bintrunc (numeral k) x = of_bool (odd x) + 2 * bintrunc (pred_numeral k) (x div 2)" by (simp add: numeral_eq_Suc take_bit_Suc mod_2_eq_odd) lemma sbintrunc_numeral: "sbintrunc (numeral k) x = of_bool (odd x) + 2 * sbintrunc (pred_numeral k) (x div 2)" by (simp add: numeral_eq_Suc) lemma bintrunc_numeral_simps [simp]: "bintrunc (numeral k) (numeral (Num.Bit0 w)) = 2 * bintrunc (pred_numeral k) (numeral w)" "bintrunc (numeral k) (numeral (Num.Bit1 w)) = 1 + 2 * bintrunc (pred_numeral k) (numeral w)" "bintrunc (numeral k) (- numeral (Num.Bit0 w)) = 2 * bintrunc (pred_numeral k) (- numeral w)" "bintrunc (numeral k) (- numeral (Num.Bit1 w)) = 1 + 2 * bintrunc (pred_numeral k) (- numeral (w + Num.One))" "bintrunc (numeral k) 1 = 1" by (simp_all add: bintrunc_numeral) lemma sbintrunc_numeral_simps [simp]: "sbintrunc (numeral k) (numeral (Num.Bit0 w)) = 2 * sbintrunc (pred_numeral k) (numeral w)" "sbintrunc (numeral k) (numeral (Num.Bit1 w)) = 1 + 2 * sbintrunc (pred_numeral k) (numeral w)" "sbintrunc (numeral k) (- numeral (Num.Bit0 w)) = 2 * sbintrunc (pred_numeral k) (- numeral w)" "sbintrunc (numeral k) (- numeral (Num.Bit1 w)) = 1 + 2 * sbintrunc (pred_numeral k) (- numeral (w + Num.One))" "sbintrunc (numeral k) 1 = 1" by (simp_all add: sbintrunc_numeral) lemma no_bintr_alt1: "bintrunc n = (\w. w mod 2 ^ n :: int)" by (rule ext) (rule bintrunc_mod2p) lemma range_bintrunc: "range (bintrunc n) = {i. 0 \ i \ i < 2 ^ n}" apply (unfold no_bintr_alt1) apply (auto simp add: image_iff) apply (rule exI) apply (rule sym) using int_mod_lem [symmetric, of "2 ^ n"] apply auto done lemma no_sbintr_alt2: "sbintrunc n = (\w. (w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n :: int)" by (rule ext) (simp add : sbintrunc_mod2p) lemma range_sbintrunc: "range (sbintrunc n) = {i. - (2 ^ n) \ i \ i < 2 ^ n}" apply (unfold no_sbintr_alt2) apply (auto simp add: image_iff eq_diff_eq) apply (rule exI) apply (auto intro: int_mod_lem [THEN iffD1, symmetric]) done lemma sb_inc_lem: "a + 2^k < 0 \ a + 2^k + 2^(Suc k) \ (a + 2^k) mod 2^(Suc k)" for a :: int using int_mod_ge' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k"] by simp lemma sb_inc_lem': "a < - (2^k) \ a + 2^k + 2^(Suc k) \ (a + 2^k) mod 2^(Suc k)" for a :: int by (rule sb_inc_lem) simp lemma sbintrunc_inc: "x < - (2^n) \ x + 2^(Suc n) \ sbintrunc n x" unfolding no_sbintr_alt2 by (drule sb_inc_lem') simp lemma sb_dec_lem: "0 \ - (2 ^ k) + a \ (a + 2 ^ k) mod (2 * 2 ^ k) \ - (2 ^ k) + a" for a :: int using int_mod_le'[where n = "2 ^ (Suc k)" and b = "a + 2 ^ k"] by simp lemma sb_dec_lem': "2 ^ k \ a \ (a + 2 ^ k) mod (2 * 2 ^ k) \ - (2 ^ k) + a" for a :: int by (rule sb_dec_lem) simp lemma sbintrunc_dec: "x \ (2 ^ n) \ x - 2 ^ (Suc n) >= sbintrunc n x" unfolding no_sbintr_alt2 by (drule sb_dec_lem') simp lemma bintr_ge0: "0 \ bintrunc n w" by (simp add: bintrunc_mod2p) lemma bintr_lt2p: "bintrunc n w < 2 ^ n" by (simp add: bintrunc_mod2p) lemma bintr_Min: "bintrunc n (- 1) = 2 ^ n - 1" by (simp add: bintrunc_mod2p m1mod2k) lemma sbintr_ge: "- (2 ^ n) \ sbintrunc n w" by (simp add: sbintrunc_mod2p) lemma sbintr_lt: "sbintrunc n w < 2 ^ n" by (simp add: sbintrunc_mod2p) lemma sign_Pls_ge_0: "bin_sign bin = 0 \ bin \ 0" for bin :: int by (simp add: bin_sign_def) lemma sign_Min_lt_0: "bin_sign bin = -1 \ bin < 0" for bin :: int by (simp add: bin_sign_def) lemma bin_rest_trunc: "bin_rest (bintrunc n bin) = bintrunc (n - 1) (bin_rest bin)" by (simp add: take_bit_rec [of n bin]) lemma bin_rest_power_trunc: "(bin_rest ^^ k) (bintrunc n bin) = bintrunc (n - k) ((bin_rest ^^ k) bin)" by (induct k) (auto simp: bin_rest_trunc) lemma bin_rest_trunc_i: "bintrunc n (bin_rest bin) = bin_rest (bintrunc (Suc n) bin)" by (auto simp add: take_bit_Suc) lemma bin_rest_strunc: "bin_rest (sbintrunc (Suc n) bin) = sbintrunc n (bin_rest bin)" by (induct n arbitrary: bin) auto lemma bintrunc_rest [simp]: "bintrunc n (bin_rest (bintrunc n bin)) = bin_rest (bintrunc n bin)" by (induct n arbitrary: bin) (simp_all add: take_bit_Suc) lemma sbintrunc_rest [simp]: "sbintrunc n (bin_rest (sbintrunc n bin)) = bin_rest (sbintrunc n bin)" by (induct n arbitrary: bin) simp_all lemma bintrunc_rest': "bintrunc n \ bin_rest \ bintrunc n = bin_rest \ bintrunc n" by (rule ext) auto lemma sbintrunc_rest': "sbintrunc n \ bin_rest \ sbintrunc n = bin_rest \ sbintrunc n" by (rule ext) auto lemma rco_lem: "f \ g \ f = g \ f \ f \ (g \ f) ^^ n = g ^^ n \ f" apply (rule ext) apply (induct_tac n) apply (simp_all (no_asm)) apply (drule fun_cong) apply (unfold o_def) apply (erule trans) apply simp done lemmas rco_bintr = bintrunc_rest' [THEN rco_lem [THEN fun_cong], unfolded o_def] lemmas rco_sbintr = sbintrunc_rest' [THEN rco_lem [THEN fun_cong], unfolded o_def] +lemma sbintrunc_code [code]: + "sbintrunc n k = + (let l = take_bit (Suc n) k + in if bit l n then l - push_bit n 2 else l)" +proof (induction n arbitrary: k) + case 0 + then show ?case + by (simp add: mod_2_eq_odd and_one_eq) +next + case (Suc n) + from Suc [of \k div 2\] + show ?case + by (auto simp add: Let_def push_bit_eq_mult algebra_simps take_bit_Suc [of \Suc n\] bit_Suc elim!: evenE oddE) +qed + subsection \Splitting and concatenation\ definition bin_split :: \nat \ int \ int \ int\ where [simp]: \bin_split n k = (drop_bit n k, take_bit n k)\ lemma [code]: "bin_split (Suc n) w = (let (w1, w2) = bin_split n (w div 2) in (w1, of_bool (odd w) + 2 * w2))" "bin_split 0 w = (w, 0)" by (simp_all add: drop_bit_Suc take_bit_Suc mod_2_eq_odd) primrec bin_cat :: "int \ nat \ int \ int" where Z: "bin_cat w 0 v = w" | Suc: "bin_cat w (Suc n) v = of_bool (odd v) + 2 * bin_cat w n (v div 2)" lemma bin_cat_eq_push_bit_add_take_bit: \bin_cat k n l = push_bit n k + take_bit n l\ by (induction n arbitrary: k l) (simp_all add: take_bit_Suc push_bit_double mod_2_eq_odd) lemma bin_sign_cat: "bin_sign (bin_cat x n y) = bin_sign x" proof - have \0 \ x\ if \0 \ x * 2 ^ n + y mod 2 ^ n\ proof - from that have \x \ - 1\ using int_mod_le' [of \y mod 2 ^ n\ \2 ^ n\] by auto have *: \- 1 \ (- (y mod 2 ^ n)) div 2 ^ n\ by (simp add: zdiv_zminus1_eq_if) from that have \- (y mod 2 ^ n) \ x * 2 ^ n\ by simp then have \(- (y mod 2 ^ n)) div 2 ^ n \ (x * 2 ^ n) div 2 ^ n\ using zdiv_mono1 zero_less_numeral zero_less_power by blast with * have \- 1 \ x * 2 ^ n div 2 ^ n\ by simp with \x \ - 1\ show ?thesis by simp qed then show ?thesis by (simp add: bin_sign_def not_le not_less bin_cat_eq_push_bit_add_take_bit push_bit_eq_mult take_bit_eq_mod) qed lemma bin_cat_assoc: "bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" by (induct n arbitrary: z) auto lemma bin_cat_assoc_sym: "bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z" apply (induct n arbitrary: z m) apply clarsimp apply (case_tac m, auto) done definition bin_rcat :: "nat \ int list \ int" where "bin_rcat n = foldl (\u v. bin_cat u n v) 0" fun bin_rsplit_aux :: "nat \ nat \ int \ int list \ int list" where "bin_rsplit_aux n m c bs = (if m = 0 \ n = 0 then bs else let (a, b) = bin_split n c in bin_rsplit_aux n (m - n) a (b # bs))" definition bin_rsplit :: "nat \ nat \ int \ int list" where "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []" fun bin_rsplitl_aux :: "nat \ nat \ int \ int list \ int list" where "bin_rsplitl_aux n m c bs = (if m = 0 \ n = 0 then bs else let (a, b) = bin_split (min m n) c in bin_rsplitl_aux n (m - n) a (b # bs))" definition bin_rsplitl :: "nat \ nat \ int \ int list" where "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []" declare bin_rsplit_aux.simps [simp del] declare bin_rsplitl_aux.simps [simp del] lemma bin_nth_cat: "bin_nth (bin_cat x k y) n = (if n < k then bin_nth y n else bin_nth x (n - k))" apply (induct k arbitrary: n y) apply simp apply (case_tac n) apply (simp_all add: bit_Suc) done lemma bin_nth_drop_bit_iff: \bin_nth (drop_bit n c) k \ bin_nth c (n + k)\ by (simp add: bit_drop_bit_eq) lemma bin_nth_take_bit_iff: \bin_nth (take_bit n c) k \ k < n \ bin_nth c k\ by (fact bit_take_bit_iff) lemma bin_nth_split: "bin_split n c = (a, b) \ (\k. bin_nth a k = bin_nth c (n + k)) \ (\k. bin_nth b k = (k < n \ bin_nth c k))" by (auto simp add: bin_nth_drop_bit_iff bin_nth_take_bit_iff) lemma bin_cat_zero [simp]: "bin_cat 0 n w = bintrunc n w" by (simp add: bin_cat_eq_push_bit_add_take_bit) lemma bintr_cat1: "bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b" by (metis bin_cat_assoc bin_cat_zero) lemma bintr_cat: "bintrunc m (bin_cat a n b) = bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)" by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr) lemma bintr_cat_same [simp]: "bintrunc n (bin_cat a n b) = bintrunc n b" by (auto simp add : bintr_cat) lemma cat_bintr [simp]: "bin_cat a n (bintrunc n b) = bin_cat a n b" by (simp add: bin_cat_eq_push_bit_add_take_bit) lemma split_bintrunc: "bin_split n c = (a, b) \ b = bintrunc n c" by simp lemma bin_cat_split: "bin_split n w = (u, v) \ w = bin_cat u n v" by (auto simp add: bin_cat_eq_push_bit_add_take_bit bits_ident) lemma drop_bit_bin_cat_eq: \drop_bit n (bin_cat v n w) = v\ by (induct n arbitrary: w) (simp_all add: drop_bit_Suc) lemma take_bit_bin_cat_eq: \take_bit n (bin_cat v n w) = take_bit n w\ by (induct n arbitrary: w) (simp_all add: take_bit_Suc mod_2_eq_odd) lemma bin_split_cat: "bin_split n (bin_cat v n w) = (v, bintrunc n w)" by (simp add: drop_bit_bin_cat_eq take_bit_bin_cat_eq) lemma bin_split_zero [simp]: "bin_split n 0 = (0, 0)" by simp lemma bin_split_minus1 [simp]: "bin_split n (- 1) = (- 1, bintrunc n (- 1))" by simp lemma bin_split_trunc: "bin_split (min m n) c = (a, b) \ bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)" apply (induct n arbitrary: m b c, clarsimp) apply (simp add: bin_rest_trunc Let_def split: prod.split_asm) apply (case_tac m) apply (auto simp: Let_def drop_bit_Suc take_bit_Suc mod_2_eq_odd split: prod.split_asm) done lemma bin_split_trunc1: "bin_split n c = (a, b) \ bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)" apply (induct n arbitrary: m b c, clarsimp) apply (simp add: bin_rest_trunc Let_def split: prod.split_asm) apply (case_tac m) apply (auto simp: Let_def drop_bit_Suc take_bit_Suc mod_2_eq_odd split: prod.split_asm) done lemma bin_cat_num: "bin_cat a n b = a * 2 ^ n + bintrunc n b" by (simp add: bin_cat_eq_push_bit_add_take_bit push_bit_eq_mult) lemma bin_split_num: "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)" by (simp add: drop_bit_eq_div take_bit_eq_mod) lemmas bin_rsplit_aux_simps = bin_rsplit_aux.simps bin_rsplitl_aux.simps lemmas rsplit_aux_simps = bin_rsplit_aux_simps lemmas th_if_simp1 = if_split [where P = "(=) l", THEN iffD1, THEN conjunct1, THEN mp] for l lemmas th_if_simp2 = if_split [where P = "(=) l", THEN iffD1, THEN conjunct2, THEN mp] for l lemmas rsplit_aux_simp1s = rsplit_aux_simps [THEN th_if_simp1] lemmas rsplit_aux_simp2ls = rsplit_aux_simps [THEN th_if_simp2] \ \these safe to \[simp add]\ as require calculating \m - n\\ lemmas bin_rsplit_aux_simp2s [simp] = rsplit_aux_simp2ls [unfolded Let_def] lemmas rbscl = bin_rsplit_aux_simp2s (2) lemmas rsplit_aux_0_simps [simp] = rsplit_aux_simp1s [OF disjI1] rsplit_aux_simp1s [OF disjI2] lemma bin_rsplit_aux_append: "bin_rsplit_aux n m c (bs @ cs) = bin_rsplit_aux n m c bs @ cs" apply (induct n m c bs rule: bin_rsplit_aux.induct) apply (subst bin_rsplit_aux.simps) apply (subst bin_rsplit_aux.simps) apply (clarsimp split: prod.split) done lemma bin_rsplitl_aux_append: "bin_rsplitl_aux n m c (bs @ cs) = bin_rsplitl_aux n m c bs @ cs" apply (induct n m c bs rule: bin_rsplitl_aux.induct) apply (subst bin_rsplitl_aux.simps) apply (subst bin_rsplitl_aux.simps) apply (clarsimp split: prod.split) done lemmas rsplit_aux_apps [where bs = "[]"] = bin_rsplit_aux_append bin_rsplitl_aux_append lemmas rsplit_def_auxs = bin_rsplit_def bin_rsplitl_def lemmas rsplit_aux_alts = rsplit_aux_apps [unfolded append_Nil rsplit_def_auxs [symmetric]] lemma bin_split_minus: "0 < n \ bin_split (Suc (n - 1)) w = bin_split n w" by auto lemma bin_split_pred_simp [simp]: "(0::nat) < numeral bin \ bin_split (numeral bin) w = (let (w1, w2) = bin_split (numeral bin - 1) (bin_rest w) in (w1, of_bool (odd w) + 2 * w2))" by (simp add: take_bit_rec drop_bit_rec mod_2_eq_odd) lemma bin_rsplit_aux_simp_alt: "bin_rsplit_aux n m c bs = (if m = 0 \ n = 0 then bs else let (a, b) = bin_split n c in bin_rsplit n (m - n, a) @ b # bs)" apply (simp add: bin_rsplit_aux.simps [of n m c bs]) apply (subst rsplit_aux_alts) apply (simp add: bin_rsplit_def) done lemmas bin_rsplit_simp_alt = trans [OF bin_rsplit_def bin_rsplit_aux_simp_alt] lemmas bthrs = bin_rsplit_simp_alt [THEN [2] trans] lemma bin_rsplit_size_sign' [rule_format]: "n > 0 \ rev sw = bin_rsplit n (nw, w) \ \v\set sw. bintrunc n v = v" apply (induct sw arbitrary: nw w) apply clarsimp apply clarsimp apply (drule bthrs) apply (simp (no_asm_use) add: Let_def split: prod.split_asm if_split_asm) apply clarify apply simp done lemmas bin_rsplit_size_sign = bin_rsplit_size_sign' [OF asm_rl rev_rev_ident [THEN trans] set_rev [THEN equalityD2 [THEN subsetD]]] lemma bin_nth_rsplit [rule_format] : "n > 0 \ m < n \ \w k nw. rev sw = bin_rsplit n (nw, w) \ k < size sw \ bin_nth (sw ! k) m = bin_nth w (k * n + m)" apply (induct sw) apply clarsimp apply clarsimp apply (drule bthrs) apply (simp (no_asm_use) add: Let_def split: prod.split_asm if_split_asm) apply (erule allE, erule impE, erule exI) apply (case_tac k) apply clarsimp prefer 2 apply clarsimp apply (erule allE) apply (erule (1) impE) apply (simp add: bit_drop_bit_eq ac_simps) apply (simp add: bit_take_bit_iff ac_simps) done lemma bin_rsplit_all: "0 < nw \ nw \ n \ bin_rsplit n (nw, w) = [bintrunc n w]" by (auto simp: bin_rsplit_def rsplit_aux_simp2ls split: prod.split dest!: split_bintrunc) lemma bin_rsplit_l [rule_format]: "\bin. bin_rsplitl n (m, bin) = bin_rsplit n (m, bintrunc m bin)" apply (rule_tac a = "m" in wf_less_than [THEN wf_induct]) apply (simp (no_asm) add: bin_rsplitl_def bin_rsplit_def) apply (rule allI) apply (subst bin_rsplitl_aux.simps) apply (subst bin_rsplit_aux.simps) apply (clarsimp simp: Let_def split: prod.split) apply (simp add: ac_simps) apply (subst rsplit_aux_alts(1)) apply (subst rsplit_aux_alts(2)) apply clarsimp unfolding bin_rsplit_def bin_rsplitl_def apply (simp add: drop_bit_take_bit) apply (case_tac \x < n\) apply (simp_all add: not_less min_def) done lemma bin_rsplit_rcat [rule_format]: "n > 0 \ bin_rsplit n (n * size ws, bin_rcat n ws) = map (bintrunc n) ws" apply (unfold bin_rsplit_def bin_rcat_def) apply (rule_tac xs = ws in rev_induct) apply clarsimp apply clarsimp apply (subst rsplit_aux_alts) apply (simp add: drop_bit_bin_cat_eq take_bit_bin_cat_eq) done lemma bin_rsplit_aux_len_le [rule_format] : "\ws m. n \ 0 \ ws = bin_rsplit_aux n nw w bs \ length ws \ m \ nw + length bs * n \ m * n" proof - have *: R if d: "i \ j \ m < j'" and R1: "i * k \ j * k \ R" and R2: "Suc m * k' \ j' * k' \ R" for i j j' k k' m :: nat and R using d apply safe apply (rule R1, erule mult_le_mono1) apply (rule R2, erule Suc_le_eq [THEN iffD2 [THEN mult_le_mono1]]) done have **: "0 < sc \ sc - n + (n + lb * n) \ m * n \ sc + lb * n \ m * n" for sc m n lb :: nat apply safe apply arith apply (case_tac "sc \ n") apply arith apply (insert linorder_le_less_linear [of m lb]) apply (erule_tac k=n and k'=n in *) apply arith apply simp done show ?thesis apply (induct n nw w bs rule: bin_rsplit_aux.induct) apply (subst bin_rsplit_aux.simps) apply (simp add: ** Let_def split: prod.split) done qed lemma bin_rsplit_len_le: "n \ 0 \ ws = bin_rsplit n (nw, w) \ length ws \ m \ nw \ m * n" by (auto simp: bin_rsplit_def bin_rsplit_aux_len_le) lemma bin_rsplit_aux_len: "n \ 0 \ length (bin_rsplit_aux n nw w cs) = (nw + n - 1) div n + length cs" apply (induct n nw w cs rule: bin_rsplit_aux.induct) apply (subst bin_rsplit_aux.simps) apply (clarsimp simp: Let_def split: prod.split) apply (erule thin_rl) apply (case_tac m) apply simp apply (case_tac "m \ n") apply (auto simp add: div_add_self2) done lemma bin_rsplit_len: "n \ 0 \ length (bin_rsplit n (nw, w)) = (nw + n - 1) div n" by (auto simp: bin_rsplit_def bin_rsplit_aux_len) lemma bin_rsplit_aux_len_indep: "n \ 0 \ length bs = length cs \ length (bin_rsplit_aux n nw v bs) = length (bin_rsplit_aux n nw w cs)" proof (induct n nw w cs arbitrary: v bs rule: bin_rsplit_aux.induct) case (1 n m w cs v bs) show ?case proof (cases "m = 0") case True with \length bs = length cs\ show ?thesis by simp next case False from "1.hyps" [of \bin_split n w\ \drop_bit n w\ \take_bit n w\] \m \ 0\ \n \ 0\ have hyp: "\v bs. length bs = Suc (length cs) \ length (bin_rsplit_aux n (m - n) v bs) = length (bin_rsplit_aux n (m - n) (drop_bit n w) (take_bit n w # cs))" using bin_rsplit_aux_len by fastforce from \length bs = length cs\ \n \ 0\ show ?thesis by (auto simp add: bin_rsplit_aux_simp_alt Let_def bin_rsplit_len split: prod.split) qed qed lemma bin_rsplit_len_indep: "n \ 0 \ length (bin_rsplit n (nw, v)) = length (bin_rsplit n (nw, w))" apply (unfold bin_rsplit_def) apply (simp (no_asm)) apply (erule bin_rsplit_aux_len_indep) apply (rule refl) done subsection \Logical operations\ primrec bin_sc :: "nat \ bool \ int \ int" where Z: "bin_sc 0 b w = of_bool b + 2 * bin_rest w" | Suc: "bin_sc (Suc n) b w = of_bool (odd w) + 2 * bin_sc n b (w div 2)" lemma bin_nth_sc [simp]: "bit (bin_sc n b w) n \ b" by (induction n arbitrary: w) (simp_all add: bit_Suc) lemma bin_sc_sc_same [simp]: "bin_sc n c (bin_sc n b w) = bin_sc n c w" by (induction n arbitrary: w) (simp_all add: bit_Suc) lemma bin_sc_sc_diff: "m \ n \ bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)" apply (induct n arbitrary: w m) apply (case_tac [!] m) apply auto done lemma bin_nth_sc_gen: "bin_nth (bin_sc n b w) m = (if m = n then b else bin_nth w m)" apply (induct n arbitrary: w m) apply (case_tac m; simp add: bit_Suc) apply (case_tac m; simp add: bit_Suc) done lemma bin_sc_eq: \bin_sc n False = unset_bit n\ \bin_sc n True = Bit_Operations.set_bit n\ by (simp_all add: fun_eq_iff bit_eq_iff) (simp_all add: bin_nth_sc_gen bit_set_bit_iff bit_unset_bit_iff) lemma bin_sc_nth [simp]: "bin_sc n (bin_nth w n) w = w" by (rule bit_eqI) (simp add: bin_nth_sc_gen) lemma bin_sign_sc [simp]: "bin_sign (bin_sc n b w) = bin_sign w" proof (induction n arbitrary: w) case 0 then show ?case by (auto simp add: bin_sign_def) (use bin_rest_ge_0 in fastforce) next case (Suc n) from Suc [of \w div 2\] show ?case by (auto simp add: bin_sign_def split: if_splits) qed lemma bin_sc_bintr [simp]: "bintrunc m (bin_sc n x (bintrunc m w)) = bintrunc m (bin_sc n x w)" apply (cases x) apply (simp_all add: bin_sc_eq bit_eq_iff) apply (auto simp add: bit_take_bit_iff bit_set_bit_iff bit_unset_bit_iff) done lemma bin_clr_le: "bin_sc n False w \ w" by (simp add: bin_sc_eq unset_bit_less_eq) lemma bin_set_ge: "bin_sc n True w \ w" by (simp add: bin_sc_eq set_bit_greater_eq) lemma bintr_bin_clr_le: "bintrunc n (bin_sc m False w) \ bintrunc n w" by (simp add: bin_sc_eq take_bit_unset_bit_eq unset_bit_less_eq) lemma bintr_bin_set_ge: "bintrunc n (bin_sc m True w) \ bintrunc n w" by (simp add: bin_sc_eq take_bit_set_bit_eq set_bit_greater_eq) lemma bin_sc_FP [simp]: "bin_sc n False 0 = 0" by (induct n) auto lemma bin_sc_TM [simp]: "bin_sc n True (- 1) = - 1" by (induct n) auto lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP lemma bin_sc_minus: "0 < n \ bin_sc (Suc (n - 1)) b w = bin_sc n b w" by auto lemmas bin_sc_Suc_minus = trans [OF bin_sc_minus [symmetric] bin_sc.Suc] lemma bin_sc_numeral [simp]: "bin_sc (numeral k) b w = of_bool (odd w) + 2 * bin_sc (pred_numeral k) b (w div 2)" by (simp add: numeral_eq_Suc) instantiation int :: bit_operations begin definition [iff]: "i !! n \ bin_nth i n" definition "lsb i = i !! 0" for i :: int definition "set_bit i n b = bin_sc n b i" definition "shiftl x n = x * 2 ^ n" for x :: int definition "shiftr x n = x div 2 ^ n" for x :: int definition "msb x \ x < 0" for x :: int instance .. end lemma shiftl_eq_push_bit: \k << n = push_bit n k\ for k :: int by (simp add: shiftl_int_def push_bit_eq_mult) lemma shiftr_eq_drop_bit: \k >> n = drop_bit n k\ for k :: int by (simp add: shiftr_int_def drop_bit_eq_div) subsubsection \Basic simplification rules\ lemmas int_not_def = not_int_def lemma int_not_simps [simp]: "NOT (0::int) = -1" "NOT (1::int) = -2" "NOT (- 1::int) = 0" "NOT (numeral w::int) = - numeral (w + Num.One)" "NOT (- numeral (Num.Bit0 w)::int) = numeral (Num.BitM w)" "NOT (- numeral (Num.Bit1 w)::int) = numeral (Num.Bit0 w)" by (simp_all add: not_int_def) lemma int_not_not: "NOT (NOT x) = x" for x :: int by (fact bit.double_compl) lemma int_and_0 [simp]: "0 AND x = 0" for x :: int by (fact bit.conj_zero_left) lemma int_and_m1 [simp]: "-1 AND x = x" for x :: int by (fact bit.conj_one_left) lemma int_or_zero [simp]: "0 OR x = x" for x :: int by (fact bit.disj_zero_left) lemma int_or_minus1 [simp]: "-1 OR x = -1" for x :: int by (fact bit.disj_one_left) lemma int_xor_zero [simp]: "0 XOR x = x" for x :: int by (fact bit.xor_zero_left) subsubsection \Binary destructors\ lemma bin_rest_NOT [simp]: "bin_rest (NOT x) = NOT (bin_rest x)" by (fact not_int_div_2) lemma bin_last_NOT [simp]: "bin_last (NOT x) \ \ bin_last x" by simp lemma bin_rest_AND [simp]: "bin_rest (x AND y) = bin_rest x AND bin_rest y" by (subst and_int_rec) auto lemma bin_last_AND [simp]: "bin_last (x AND y) \ bin_last x \ bin_last y" by (subst and_int_rec) auto lemma bin_rest_OR [simp]: "bin_rest (x OR y) = bin_rest x OR bin_rest y" by (subst or_int_rec) auto lemma bin_last_OR [simp]: "bin_last (x OR y) \ bin_last x \ bin_last y" by (subst or_int_rec) auto lemma bin_rest_XOR [simp]: "bin_rest (x XOR y) = bin_rest x XOR bin_rest y" by (subst xor_int_rec) auto lemma bin_last_XOR [simp]: "bin_last (x XOR y) \ (bin_last x \ bin_last y) \ \ (bin_last x \ bin_last y)" by (subst xor_int_rec) auto lemma bin_nth_ops: "\x y. bin_nth (x AND y) n \ bin_nth x n \ bin_nth y n" "\x y. bin_nth (x OR y) n \ bin_nth x n \ bin_nth y n" "\x y. bin_nth (x XOR y) n \ bin_nth x n \ bin_nth y n" "\x. bin_nth (NOT x) n \ \ bin_nth x n" by (simp_all add: bit_and_iff bit_or_iff bit_xor_iff bit_not_iff) subsubsection \Derived properties\ lemma int_xor_minus1 [simp]: "-1 XOR x = NOT x" for x :: int by (fact bit.xor_one_left) lemma int_xor_extra_simps [simp]: "w XOR 0 = w" "w XOR -1 = NOT w" for w :: int by simp_all lemma int_or_extra_simps [simp]: "w OR 0 = w" "w OR -1 = -1" for w :: int by simp_all lemma int_and_extra_simps [simp]: "w AND 0 = 0" "w AND -1 = w" for w :: int by simp_all text \Commutativity of the above.\ lemma bin_ops_comm: fixes x y :: int shows int_and_comm: "x AND y = y AND x" and int_or_comm: "x OR y = y OR x" and int_xor_comm: "x XOR y = y XOR x" by (simp_all add: ac_simps) lemma bin_ops_same [simp]: "x AND x = x" "x OR x = x" "x XOR x = 0" for x :: int by simp_all lemmas bin_log_esimps = int_and_extra_simps int_or_extra_simps int_xor_extra_simps int_and_0 int_and_m1 int_or_zero int_or_minus1 int_xor_zero int_xor_minus1 subsubsection \Basic properties of logical (bit-wise) operations\ lemma bbw_ao_absorb: "x AND (y OR x) = x \ x OR (y AND x) = x" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_ao_absorbs_other: "x AND (x OR y) = x \ (y AND x) OR x = x" "(y OR x) AND x = x \ x OR (x AND y) = x" "(x OR y) AND x = x \ (x AND y) OR x = x" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other lemma int_xor_not: "(NOT x) XOR y = NOT (x XOR y) \ x XOR (NOT y) = NOT (x XOR y)" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_and_assoc: "(x AND y) AND z = x AND (y AND z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_or_assoc: "(x OR y) OR z = x OR (y OR z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_xor_assoc: "(x XOR y) XOR z = x XOR (y XOR z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc (* BH: Why are these declared as simp rules??? *) lemma bbw_lcs [simp]: "y AND (x AND z) = x AND (y AND z)" "y OR (x OR z) = x OR (y OR z)" "y XOR (x XOR z) = x XOR (y XOR z)" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_not_dist: "NOT (x OR y) = (NOT x) AND (NOT y)" "NOT (x AND y) = (NOT x) OR (NOT y)" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_oa_dist: "(x AND y) OR z = (x OR z) AND (y OR z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_ao_dist: "(x OR y) AND z = (x AND z) OR (y AND z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) (* Why were these declared simp??? declare bin_ops_comm [simp] bbw_assocs [simp] *) subsubsection \Simplification with numerals\ text \Cases for \0\ and \-1\ are already covered by other simp rules.\ lemma bin_rest_neg_numeral_BitM [simp]: "bin_rest (- numeral (Num.BitM w)) = - numeral w" by simp lemma bin_last_neg_numeral_BitM [simp]: "bin_last (- numeral (Num.BitM w))" by simp (* FIXME: The rule sets below are very large (24 rules for each operator). Is there a simpler way to do this? *) lemma int_and_numerals [simp]: "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND numeral y)" "numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (2 :: int) * (numeral x AND numeral y)" "numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND numeral y)" "numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x AND numeral y)" "numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND - numeral y)" "numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (2 :: int) * (numeral x AND - numeral (y + Num.One))" "numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND - numeral y)" "numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x AND - numeral (y + Num.One))" "- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (2 :: int) * (- numeral x AND numeral y)" "- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (2 :: int) * (- numeral x AND numeral y)" "- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (2 :: int) * (- numeral (x + Num.One) AND numeral y)" "- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) AND numeral y)" "- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x AND - numeral y)" "- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (2 :: int) * (- numeral x AND - numeral (y + Num.One))" "- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (- numeral (x + Num.One) AND - numeral y)" "- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) AND - numeral (y + Num.One))" "(1::int) AND numeral (Num.Bit0 y) = 0" "(1::int) AND numeral (Num.Bit1 y) = 1" "(1::int) AND - numeral (Num.Bit0 y) = 0" "(1::int) AND - numeral (Num.Bit1 y) = 1" "numeral (Num.Bit0 x) AND (1::int) = 0" "numeral (Num.Bit1 x) AND (1::int) = 1" "- numeral (Num.Bit0 x) AND (1::int) = 0" "- numeral (Num.Bit1 x) AND (1::int) = 1" by (rule bin_rl_eqI; simp)+ lemma int_or_numerals [simp]: "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (2 :: int) * (numeral x OR numeral y)" "numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR numeral y)" "numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x OR numeral y)" "numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR numeral y)" "numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (2 :: int) * (numeral x OR - numeral y)" "numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR - numeral (y + Num.One))" "numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x OR - numeral y)" "numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR - numeral (y + Num.One))" "- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (2 :: int) * (- numeral x OR numeral y)" "- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x OR numeral y)" "- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR numeral y)" "- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR numeral y)" "- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x OR - numeral y)" "- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x OR - numeral (y + Num.One))" "- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR - numeral y)" "- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR - numeral (y + Num.One))" "(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" "(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)" "(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" "(1::int) OR - numeral (Num.Bit1 y) = - numeral (Num.Bit1 y)" "numeral (Num.Bit0 x) OR (1::int) = numeral (Num.Bit1 x)" "numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)" "- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)" "- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)" by (rule bin_rl_eqI; simp)+ lemma int_xor_numerals [simp]: "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (2 :: int) * (numeral x XOR numeral y)" "numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x XOR numeral y)" "numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x XOR numeral y)" "numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (2 :: int) * (numeral x XOR numeral y)" "numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (2 :: int) * (numeral x XOR - numeral y)" "numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x XOR - numeral (y + Num.One))" "numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x XOR - numeral y)" "numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (2 :: int) * (numeral x XOR - numeral (y + Num.One))" "- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (2 :: int) * (- numeral x XOR numeral y)" "- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x XOR numeral y)" "- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) XOR numeral y)" "- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (2 :: int) * (- numeral (x + Num.One) XOR numeral y)" "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x XOR - numeral y)" "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x XOR - numeral (y + Num.One))" "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) XOR - numeral y)" "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (2 :: int) * (- numeral (x + Num.One) XOR - numeral (y + Num.One))" "(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" "(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)" "(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" "(1::int) XOR - numeral (Num.Bit1 y) = - numeral (Num.Bit0 (y + Num.One))" "numeral (Num.Bit0 x) XOR (1::int) = numeral (Num.Bit1 x)" "numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)" "- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)" "- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))" by (rule bin_rl_eqI; simp)+ subsubsection \Interactions with arithmetic\ lemma plus_and_or: "(x AND y) + (x OR y) = x + y" for x y :: int proof (induction x arbitrary: y rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even x) from even.IH [of \y div 2\] show ?case by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE) next case (odd x) from odd.IH [of \y div 2\] show ?case by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE) qed lemma le_int_or: "bin_sign y = 0 \ x \ x OR y" for x y :: int by (simp add: bin_sign_def or_greater_eq split: if_splits) lemmas int_and_le = xtrans(3) [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] text \Interaction between bit-wise and arithmetic: good example of \bin_induction\.\ lemma bin_add_not: "x + NOT x = (-1::int)" by (simp add: not_int_def) lemma AND_mod: "x AND (2 ^ n - 1) = x mod 2 ^ n" for x :: int by (simp flip: take_bit_eq_mod add: take_bit_eq_mask mask_eq_exp_minus_1) subsubsection \Comparison\ lemma AND_lower [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" shows "0 \ x AND y" using assms by simp lemma OR_lower [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" "0 \ y" shows "0 \ x OR y" using assms by simp lemma XOR_lower [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" "0 \ y" shows "0 \ x XOR y" using assms by simp lemma AND_upper1 [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" shows "x AND y \ x" using assms by (induction x arbitrary: y rule: int_bit_induct) (simp_all add: and_int_rec [of \_ * 2\] and_int_rec [of \1 + _ * 2\] add_increasing) lemmas AND_upper1' [simp] = order_trans [OF AND_upper1] \<^marker>\contributor \Stefan Berghofer\\ lemmas AND_upper1'' [simp] = order_le_less_trans [OF AND_upper1] \<^marker>\contributor \Stefan Berghofer\\ lemma AND_upper2 [simp]: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ y" shows "x AND y \ y" using assms AND_upper1 [of y x] by (simp add: ac_simps) lemmas AND_upper2' [simp] = order_trans [OF AND_upper2] \<^marker>\contributor \Stefan Berghofer\\ lemmas AND_upper2'' [simp] = order_le_less_trans [OF AND_upper2] \<^marker>\contributor \Stefan Berghofer\\ lemma OR_upper: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" "x < 2 ^ n" "y < 2 ^ n" shows "x OR y < 2 ^ n" using assms proof (induction x arbitrary: y n rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even x) from even.IH [of \n - 1\ \y div 2\] even.prems even.hyps show ?case by (cases n) (auto simp add: or_int_rec [of \_ * 2\] elim: oddE) next case (odd x) from odd.IH [of \n - 1\ \y div 2\] odd.prems odd.hyps show ?case by (cases n) (auto simp add: or_int_rec [of \1 + _ * 2\], linarith) qed lemma XOR_upper: \<^marker>\contributor \Stefan Berghofer\\ fixes x y :: int assumes "0 \ x" "x < 2 ^ n" "y < 2 ^ n" shows "x XOR y < 2 ^ n" using assms proof (induction x arbitrary: y n rule: int_bit_induct) case zero then show ?case by simp next case minus then show ?case by simp next case (even x) from even.IH [of \n - 1\ \y div 2\] even.prems even.hyps show ?case by (cases n) (auto simp add: xor_int_rec [of \_ * 2\] elim: oddE) next case (odd x) from odd.IH [of \n - 1\ \y div 2\] odd.prems odd.hyps show ?case by (cases n) (auto simp add: xor_int_rec [of \1 + _ * 2\]) qed subsubsection \Truncating results of bit-wise operations\ lemma bin_trunc_ao: "bintrunc n x AND bintrunc n y = bintrunc n (x AND y)" "bintrunc n x OR bintrunc n y = bintrunc n (x OR y)" by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) lemma bin_trunc_xor: "bintrunc n (bintrunc n x XOR bintrunc n y) = bintrunc n (x XOR y)" by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) lemma bin_trunc_not: "bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)" by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) text \Want theorems of the form of \bin_trunc_xor\.\ lemma bintr_bintr_i: "x = bintrunc n y \ bintrunc n x = bintrunc n y" by auto lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i] lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i] subsubsection \More lemmas\ lemma not_int_cmp_0 [simp]: fixes i :: int shows "0 < NOT i \ i < -1" "0 \ NOT i \ i < 0" "NOT i < 0 \ i \ 0" "NOT i \ 0 \ i \ -1" by(simp_all add: int_not_def) arith+ lemma bbw_ao_dist2: "(x :: int) AND (y OR z) = x AND y OR x AND z" by (fact bit.conj_disj_distrib) lemmas int_and_ac = bbw_lcs(1) int_and_comm int_and_assoc lemma int_nand_same [simp]: fixes x :: int shows "x AND NOT x = 0" by simp lemma int_nand_same_middle: fixes x :: int shows "x AND y AND NOT x = 0" by (simp add: bit_eq_iff bit_and_iff bit_not_iff) lemma and_xor_dist: fixes x :: int shows "x AND (y XOR z) = (x AND y) XOR (x AND z)" by (fact bit.conj_xor_distrib) lemma int_and_lt0 [simp]: \x AND y < 0 \ x < 0 \ y < 0\ for x y :: int by (fact and_negative_int_iff) lemma int_and_ge0 [simp]: \x AND y \ 0 \ x \ 0 \ y \ 0\ for x y :: int by (fact and_nonnegative_int_iff) lemma int_and_1: fixes x :: int shows "x AND 1 = x mod 2" by (fact and_one_eq) lemma int_1_and: fixes x :: int shows "1 AND x = x mod 2" by (fact one_and_eq) lemma int_or_lt0 [simp]: \x OR y < 0 \ x < 0 \ y < 0\ for x y :: int by (fact or_negative_int_iff) lemma int_or_ge0 [simp]: \x OR y \ 0 \ x \ 0 \ y \ 0\ for x y :: int by (fact or_nonnegative_int_iff) lemma int_xor_lt0 [simp]: \x XOR y < 0 \ (x < 0) \ (y < 0)\ for x y :: int by (fact xor_negative_int_iff) lemma int_xor_ge0 [simp]: \x XOR y \ 0 \ (x \ 0 \ y \ 0)\ for x y :: int by (fact xor_nonnegative_int_iff) lemma even_conv_AND: \even i \ i AND 1 = 0\ for i :: int by (simp add: and_one_eq mod2_eq_if) lemma bin_last_conv_AND: "bin_last i \ i AND 1 \ 0" by (simp add: and_one_eq mod2_eq_if) lemma bitval_bin_last: "of_bool (bin_last i) = i AND 1" by (simp add: and_one_eq mod2_eq_if) lemma bin_sign_and: "bin_sign (i AND j) = - (bin_sign i * bin_sign j)" by(simp add: bin_sign_def) lemma int_not_neg_numeral: "NOT (- numeral n) = (Num.sub n num.One :: int)" by(simp add: int_not_def) lemma int_neg_numeral_pOne_conv_not: "- numeral (n + num.One) = (NOT (numeral n) :: int)" by(simp add: int_not_def) subsection \Setting and clearing bits\ lemma bin_last_conv_lsb: "bin_last = lsb" by(clarsimp simp add: lsb_int_def fun_eq_iff) lemma int_lsb_numeral [simp]: "lsb (0 :: int) = False" "lsb (1 :: int) = True" "lsb (Numeral1 :: int) = True" "lsb (- 1 :: int) = True" "lsb (- Numeral1 :: int) = True" "lsb (numeral (num.Bit0 w) :: int) = False" "lsb (numeral (num.Bit1 w) :: int) = True" "lsb (- numeral (num.Bit0 w) :: int) = False" "lsb (- numeral (num.Bit1 w) :: int) = True" by (simp_all add: lsb_int_def) lemma int_set_bit_0 [simp]: fixes x :: int shows "set_bit x 0 b = of_bool b + 2 * (x div 2)" by (auto simp add: set_bit_int_def intro: bin_rl_eqI) lemma int_set_bit_Suc: fixes x :: int shows "set_bit x (Suc n) b = of_bool (odd x) + 2 * set_bit (x div 2) n b" by (auto simp add: set_bit_int_def intro: bin_rl_eqI) lemma bin_last_set_bit: "bin_last (set_bit x n b) = (if n > 0 then bin_last x else b)" by (cases n) (simp_all add: int_set_bit_Suc) lemma bin_rest_set_bit: "bin_rest (set_bit x n b) = (if n > 0 then set_bit (x div 2) (n - 1) b else x div 2)" by (cases n) (simp_all add: int_set_bit_Suc) lemma int_set_bit_numeral: fixes x :: int shows "set_bit x (numeral w) b = of_bool (odd x) + 2 * set_bit (x div 2) (pred_numeral w) b" by (simp add: set_bit_int_def) lemmas int_set_bit_numerals [simp] = int_set_bit_numeral[where x="numeral w'"] int_set_bit_numeral[where x="- numeral w'"] int_set_bit_numeral[where x="Numeral1"] int_set_bit_numeral[where x="1"] int_set_bit_numeral[where x="0"] int_set_bit_Suc[where x="numeral w'"] int_set_bit_Suc[where x="- numeral w'"] int_set_bit_Suc[where x="Numeral1"] int_set_bit_Suc[where x="1"] int_set_bit_Suc[where x="0"] for w' lemma int_shiftl_BIT: fixes x :: int shows int_shiftl0 [simp]: "x << 0 = x" and int_shiftl_Suc [simp]: "x << Suc n = 2 * (x << n)" by (auto simp add: shiftl_int_def) lemma int_0_shiftl [simp]: "0 << n = (0 :: int)" by(induct n) simp_all lemma bin_last_shiftl: "bin_last (x << n) \ n = 0 \ bin_last x" by(cases n)(simp_all) lemma bin_rest_shiftl: "bin_rest (x << n) = (if n > 0 then x << (n - 1) else bin_rest x)" by(cases n)(simp_all) lemma bin_nth_shiftl [simp]: "bin_nth (x << n) m \ n \ m \ bin_nth x (m - n)" by (simp add: bit_push_bit_iff_int shiftl_eq_push_bit) lemma bin_last_shiftr: "odd (x >> n) \ x !! n" for x :: int by (simp add: shiftr_eq_drop_bit bit_iff_odd_drop_bit) lemma bin_rest_shiftr [simp]: "bin_rest (x >> n) = x >> Suc n" by (simp add: bit_eq_iff shiftr_eq_drop_bit drop_bit_Suc bit_drop_bit_eq drop_bit_half) lemma bin_nth_shiftr [simp]: "bin_nth (x >> n) m = bin_nth x (n + m)" by (simp add: shiftr_eq_drop_bit bit_drop_bit_eq) lemma bin_nth_conv_AND: fixes x :: int shows "bin_nth x n \ x AND (1 << n) \ 0" by (simp add: bit_eq_iff) (auto simp add: shiftl_eq_push_bit bit_and_iff bit_push_bit_iff bit_exp_iff) lemma int_shiftl_numeral [simp]: "(numeral w :: int) << numeral w' = numeral (num.Bit0 w) << pred_numeral w'" "(- numeral w :: int) << numeral w' = - numeral (num.Bit0 w) << pred_numeral w'" by(simp_all add: numeral_eq_Suc shiftl_int_def) (metis add_One mult_inc semiring_norm(11) semiring_norm(13) semiring_norm(2) semiring_norm(6) semiring_norm(87))+ lemma int_shiftl_One_numeral [simp]: "(1 :: int) << numeral w = 2 << pred_numeral w" using int_shiftl_numeral [of Num.One w] by simp lemma shiftl_ge_0 [simp]: fixes i :: int shows "i << n \ 0 \ i \ 0" by(induct n) simp_all lemma shiftl_lt_0 [simp]: fixes i :: int shows "i << n < 0 \ i < 0" by (metis not_le shiftl_ge_0) lemma int_shiftl_test_bit: "(n << i :: int) !! m \ m \ i \ n !! (m - i)" by simp lemma int_0shiftr [simp]: "(0 :: int) >> x = 0" by(simp add: shiftr_int_def) lemma int_minus1_shiftr [simp]: "(-1 :: int) >> x = -1" by(simp add: shiftr_int_def div_eq_minus1) lemma int_shiftr_ge_0 [simp]: fixes i :: int shows "i >> n \ 0 \ i \ 0" by (simp add: shiftr_eq_drop_bit) lemma int_shiftr_lt_0 [simp]: fixes i :: int shows "i >> n < 0 \ i < 0" by (metis int_shiftr_ge_0 not_less) lemma int_shiftr_numeral [simp]: "(1 :: int) >> numeral w' = 0" "(numeral num.One :: int) >> numeral w' = 0" "(numeral (num.Bit0 w) :: int) >> numeral w' = numeral w >> pred_numeral w'" "(numeral (num.Bit1 w) :: int) >> numeral w' = numeral w >> pred_numeral w'" "(- numeral (num.Bit0 w) :: int) >> numeral w' = - numeral w >> pred_numeral w'" "(- numeral (num.Bit1 w) :: int) >> numeral w' = - numeral (Num.inc w) >> pred_numeral w'" by (simp_all add: shiftr_eq_drop_bit numeral_eq_Suc add_One drop_bit_Suc) lemma int_shiftr_numeral_Suc0 [simp]: "(1 :: int) >> Suc 0 = 0" "(numeral num.One :: int) >> Suc 0 = 0" "(numeral (num.Bit0 w) :: int) >> Suc 0 = numeral w" "(numeral (num.Bit1 w) :: int) >> Suc 0 = numeral w" "(- numeral (num.Bit0 w) :: int) >> Suc 0 = - numeral w" "(- numeral (num.Bit1 w) :: int) >> Suc 0 = - numeral (Num.inc w)" by (simp_all add: shiftr_eq_drop_bit drop_bit_Suc add_One) lemma bin_nth_minus_p2: assumes sign: "bin_sign x = 0" and y: "y = 1 << n" and m: "m < n" and x: "x < y" shows "bin_nth (x - y) m = bin_nth x m" proof - from sign y x have \x \ 0\ and \y = 2 ^ n\ and \x < 2 ^ n\ by (simp_all add: bin_sign_def shiftl_eq_push_bit push_bit_eq_mult split: if_splits) from \0 \ x\ \x < 2 ^ n\ \m < n\ have \bit x m \ bit (x - 2 ^ n) m\ proof (induction m arbitrary: x n) case 0 then show ?case by simp next case (Suc m) moreover define q where \q = n - 1\ ultimately have n: \n = Suc q\ by simp have \(x - 2 ^ Suc q) div 2 = x div 2 - 2 ^ q\ by simp moreover from Suc.IH [of \x div 2\ q] Suc.prems have \bit (x div 2) m \ bit (x div 2 - 2 ^ q) m\ by (simp add: n) ultimately show ?case by (simp add: bit_Suc n) qed with \y = 2 ^ n\ show ?thesis by simp qed lemma bin_clr_conv_NAND: "bin_sc n False i = i AND NOT (1 << n)" by (induct n arbitrary: i) (rule bin_rl_eqI; simp)+ lemma bin_set_conv_OR: "bin_sc n True i = i OR (1 << n)" by (induct n arbitrary: i) (rule bin_rl_eqI; simp)+ lemma msb_conv_bin_sign: "msb x \ bin_sign x = -1" by(simp add: bin_sign_def not_le msb_int_def) lemma msb_bin_rest [simp]: "msb (bin_rest x) = msb x" by(simp add: msb_int_def) lemma int_msb_and [simp]: "msb ((x :: int) AND y) \ msb x \ msb y" by(simp add: msb_int_def) lemma int_msb_or [simp]: "msb ((x :: int) OR y) \ msb x \ msb y" by(simp add: msb_int_def) lemma int_msb_xor [simp]: "msb ((x :: int) XOR y) \ msb x \ msb y" by(simp add: msb_int_def) lemma int_msb_not [simp]: "msb (NOT (x :: int)) \ \ msb x" by(simp add: msb_int_def not_less) lemma msb_shiftl [simp]: "msb ((x :: int) << n) \ msb x" by(simp add: msb_int_def) lemma msb_shiftr [simp]: "msb ((x :: int) >> r) \ msb x" by(simp add: msb_int_def) lemma msb_bin_sc [simp]: "msb (bin_sc n b x) \ msb x" by(simp add: msb_conv_bin_sign) lemma msb_set_bit [simp]: "msb (set_bit (x :: int) n b) \ msb x" by(simp add: msb_conv_bin_sign set_bit_int_def) lemma msb_0 [simp]: "msb (0 :: int) = False" by(simp add: msb_int_def) lemma msb_1 [simp]: "msb (1 :: int) = False" by(simp add: msb_int_def) lemma msb_numeral [simp]: "msb (numeral n :: int) = False" "msb (- numeral n :: int) = True" by(simp_all add: msb_int_def) subsection \Semantic interpretation of \<^typ>\bool list\ as \<^typ>\int\\ lemma bin_bl_bin': "bl_to_bin (bin_to_bl_aux n w bs) = bl_to_bin_aux bs (bintrunc n w)" by (induct n arbitrary: w bs) (auto simp: bl_to_bin_def take_bit_Suc ac_simps mod_2_eq_odd) lemma bin_bl_bin [simp]: "bl_to_bin (bin_to_bl n w) = bintrunc n w" by (auto simp: bin_to_bl_def bin_bl_bin') lemma bl_to_bin_rep_F: "bl_to_bin (replicate n False @ bl) = bl_to_bin bl" by (simp add: bin_to_bl_zero_aux [symmetric] bin_bl_bin') (simp add: bl_to_bin_def) lemma bin_to_bl_trunc [simp]: "n \ m \ bin_to_bl n (bintrunc m w) = bin_to_bl n w" by (auto intro: bl_to_bin_inj) lemma bin_to_bl_aux_bintr: "bin_to_bl_aux n (bintrunc m bin) bl = replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl" apply (induct n arbitrary: m bin bl) apply clarsimp apply clarsimp apply (case_tac "m") apply (clarsimp simp: bin_to_bl_zero_aux) apply (erule thin_rl) apply (induct_tac n) apply (auto simp add: take_bit_Suc) done lemma bin_to_bl_bintr: "bin_to_bl n (bintrunc m bin) = replicate (n - m) False @ bin_to_bl (min n m) bin" unfolding bin_to_bl_def by (rule bin_to_bl_aux_bintr) lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = 0" by (induct n) auto lemma len_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs" by (fact size_bin_to_bl_aux) lemma len_bin_to_bl: "length (bin_to_bl n w) = n" by (fact size_bin_to_bl) (* FIXME: duplicate *) lemma sign_bl_bin': "bin_sign (bl_to_bin_aux bs w) = bin_sign w" by (induction bs arbitrary: w) (simp_all add: bin_sign_def) lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = 0" by (simp add: bl_to_bin_def sign_bl_bin') lemma bl_sbin_sign_aux: "hd (bin_to_bl_aux (Suc n) w bs) = (bin_sign (sbintrunc n w) = -1)" by (induction n arbitrary: w bs) (simp_all add: bin_sign_def) lemma bl_sbin_sign: "hd (bin_to_bl (Suc n) w) = (bin_sign (sbintrunc n w) = -1)" unfolding bin_to_bl_def by (rule bl_sbin_sign_aux) lemma bin_nth_of_bl_aux: "bin_nth (bl_to_bin_aux bl w) n = (n < size bl \ rev bl ! n \ n \ length bl \ bin_nth w (n - size bl))" apply (induction bl arbitrary: w) apply simp_all apply safe apply (simp_all add: not_le nth_append bit_double_iff even_bit_succ_iff split: if_splits) done lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl \ rev bl ! n)" by (simp add: bl_to_bin_def bin_nth_of_bl_aux) lemma bin_nth_bl: "n < m \ bin_nth w n = nth (rev (bin_to_bl m w)) n" apply (induct n arbitrary: m w) apply clarsimp apply (case_tac m, clarsimp) apply (clarsimp simp: bin_to_bl_def) apply (simp add: bin_to_bl_aux_alt) apply (case_tac m, clarsimp) apply (clarsimp simp: bin_to_bl_def) apply (simp add: bin_to_bl_aux_alt bit_Suc) done lemma nth_bin_to_bl_aux: "n < m + length bl \ (bin_to_bl_aux m w bl) ! n = (if n < m then bin_nth w (m - 1 - n) else bl ! (n - m))" apply (induction bl arbitrary: w) apply simp_all apply (metis add.right_neutral bin_nth_bl bin_to_bl_def diff_Suc_less less_Suc_eq_0_disj less_imp_Suc_add list.size(3) nth_rev_alt size_bin_to_bl_aux) apply (metis One_nat_def Suc_pred add_diff_cancel_left' add_diff_cancel_right' bin_to_bl_aux_alt bin_to_bl_def cancel_comm_monoid_add_class.diff_cancel diff_Suc_Suc diff_is_0_eq diff_zero le_add_diff_inverse le_eq_less_or_eq less_Suc_eq_0_disj less_antisym less_imp_Suc_add list.size(3) nat_less_le nth_append order_refl size_bin_to_bl_aux) done lemma nth_bin_to_bl: "n < m \ (bin_to_bl m w) ! n = bin_nth w (m - Suc n)" by (simp add: bin_to_bl_def nth_bin_to_bl_aux) lemma bl_to_bin_lt2p_aux: "bl_to_bin_aux bs w < (w + 1) * (2 ^ length bs)" proof (induction bs arbitrary: w) case Nil then show ?case by simp next case (Cons b bs) from Cons.IH [of \1 + 2 * w\] Cons.IH [of \2 * w\] show ?case apply (auto simp add: algebra_simps) apply (subst mult_2 [of \2 ^ length bs\]) apply (simp only: add.assoc) apply (rule pos_add_strict) apply simp_all done qed lemma bl_to_bin_lt2p_drop: "bl_to_bin bs < 2 ^ length (dropWhile Not bs)" proof (induct bs) case Nil then show ?case by simp next case (Cons b bs) with bl_to_bin_lt2p_aux[where w=1] show ?case by (simp add: bl_to_bin_def) qed lemma bl_to_bin_lt2p: "bl_to_bin bs < 2 ^ length bs" by (metis bin_bl_bin bintr_lt2p bl_bin_bl) lemma bl_to_bin_ge2p_aux: "bl_to_bin_aux bs w \ w * (2 ^ length bs)" proof (induction bs arbitrary: w) case Nil then show ?case by simp next case (Cons b bs) from Cons.IH [of \1 + 2 * w\] Cons.IH [of \2 * w\] show ?case apply (auto simp add: algebra_simps) apply (rule add_le_imp_le_left [of \2 ^ length bs\]) apply (rule add_increasing) apply simp_all done qed lemma bl_to_bin_ge0: "bl_to_bin bs \ 0" apply (unfold bl_to_bin_def) apply (rule xtrans(4)) apply (rule bl_to_bin_ge2p_aux) apply simp done lemma butlast_rest_bin: "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (bin_rest w)" apply (unfold bin_to_bl_def) apply (cases n, clarsimp) apply clarsimp apply (auto simp add: bin_to_bl_aux_alt) done lemma butlast_bin_rest: "butlast bl = bin_to_bl (length bl - Suc 0) (bin_rest (bl_to_bin bl))" using butlast_rest_bin [where w="bl_to_bin bl" and n="length bl"] by simp lemma butlast_rest_bl2bin_aux: "bl \ [] \ bl_to_bin_aux (butlast bl) w = bin_rest (bl_to_bin_aux bl w)" by (induct bl arbitrary: w) auto lemma butlast_rest_bl2bin: "bl_to_bin (butlast bl) = bin_rest (bl_to_bin bl)" by (cases bl) (auto simp: bl_to_bin_def butlast_rest_bl2bin_aux) lemma trunc_bl2bin_aux: "bintrunc m (bl_to_bin_aux bl w) = bl_to_bin_aux (drop (length bl - m) bl) (bintrunc (m - length bl) w)" proof (induct bl arbitrary: w) case Nil show ?case by simp next case (Cons b bl) show ?case proof (cases "m - length bl") case 0 then have "Suc (length bl) - m = Suc (length bl - m)" by simp with Cons show ?thesis by simp next case (Suc n) then have "m - Suc (length bl) = n" by simp with Cons Suc show ?thesis by (simp add: take_bit_Suc ac_simps) qed qed lemma trunc_bl2bin: "bintrunc m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)" by (simp add: bl_to_bin_def trunc_bl2bin_aux) lemma trunc_bl2bin_len [simp]: "bintrunc (length bl) (bl_to_bin bl) = bl_to_bin bl" by (simp add: trunc_bl2bin) lemma bl2bin_drop: "bl_to_bin (drop k bl) = bintrunc (length bl - k) (bl_to_bin bl)" apply (rule trans) prefer 2 apply (rule trunc_bl2bin [symmetric]) apply (cases "k \ length bl") apply auto done lemma take_rest_power_bin: "m \ n \ take m (bin_to_bl n w) = bin_to_bl m ((bin_rest ^^ (n - m)) w)" apply (rule nth_equalityI) apply simp apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin) done lemma last_bin_last': "size xs > 0 \ last xs \ bin_last (bl_to_bin_aux xs w)" by (induct xs arbitrary: w) auto lemma last_bin_last: "size xs > 0 \ last xs \ bin_last (bl_to_bin xs)" unfolding bl_to_bin_def by (erule last_bin_last') lemma bin_last_last: "bin_last w \ last (bin_to_bl (Suc n) w)" by (simp add: bin_to_bl_def) (auto simp: bin_to_bl_aux_alt) lemma drop_bin2bl_aux: "drop m (bin_to_bl_aux n bin bs) = bin_to_bl_aux (n - m) bin (drop (m - n) bs)" apply (induction n arbitrary: m bin bs) apply auto apply (case_tac "m \ n") apply (auto simp add: not_le Suc_diff_le) apply (case_tac "m - n") apply auto apply (use Suc_diff_Suc in fastforce) done lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin" by (simp add: bin_to_bl_def drop_bin2bl_aux) lemma take_bin2bl_lem1: "take m (bin_to_bl_aux m w bs) = bin_to_bl m w" apply (induct m arbitrary: w bs) apply clarsimp apply clarsimp apply (simp add: bin_to_bl_aux_alt) apply (simp add: bin_to_bl_def) apply (simp add: bin_to_bl_aux_alt) done lemma take_bin2bl_lem: "take m (bin_to_bl_aux (m + n) w bs) = take m (bin_to_bl (m + n) w)" by (induct n arbitrary: w bs) (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1, simp) lemma bin_split_take: "bin_split n c = (a, b) \ bin_to_bl m a = take m (bin_to_bl (m + n) c)" apply (induct n arbitrary: b c) apply clarsimp apply (clarsimp simp: Let_def split: prod.split_asm) apply (simp add: bin_to_bl_def) apply (simp add: take_bin2bl_lem drop_bit_Suc) done lemma bin_to_bl_drop_bit: "k = m + n \ bin_to_bl m (drop_bit n c) = take m (bin_to_bl k c)" using bin_split_take by simp lemma bin_split_take1: "k = m + n \ bin_split n c = (a, b) \ bin_to_bl m a = take m (bin_to_bl k c)" using bin_split_take by simp lemma takefill_bintrunc: "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))" apply (rule nth_equalityI) apply simp apply (clarsimp simp: nth_takefill nth_rev nth_bin_to_bl bin_nth_of_bl) done lemma bl_bin_bl_rtf: "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))" by (simp add: takefill_bintrunc) lemma bl_bin_bl_rep_drop: "bin_to_bl n (bl_to_bin bl) = replicate (n - length bl) False @ drop (length bl - n) bl" by (simp add: bl_bin_bl_rtf takefill_alt rev_take) lemma bl_to_bin_aux_cat: "bl_to_bin_aux bs (bin_cat w nv v) = bin_cat w (nv + length bs) (bl_to_bin_aux bs v)" by (rule bit_eqI) (auto simp add: bin_nth_of_bl_aux bin_nth_cat algebra_simps) lemma bin_to_bl_aux_cat: "\w bs. bin_to_bl_aux (nv + nw) (bin_cat v nw w) bs = bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)" by (induct nw) auto lemma bl_to_bin_aux_alt: "bl_to_bin_aux bs w = bin_cat w (length bs) (bl_to_bin bs)" using bl_to_bin_aux_cat [where nv = "0" and v = "0"] by (simp add: bl_to_bin_def [symmetric]) lemma bin_to_bl_cat: "bin_to_bl (nv + nw) (bin_cat v nw w) = bin_to_bl_aux nv v (bin_to_bl nw w)" by (simp add: bin_to_bl_def bin_to_bl_aux_cat) lemmas bl_to_bin_aux_app_cat = trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt] lemmas bin_to_bl_aux_cat_app = trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt] lemma bl_to_bin_app_cat: "bl_to_bin (bsa @ bs) = bin_cat (bl_to_bin bsa) (length bs) (bl_to_bin bs)" by (simp only: bl_to_bin_aux_app_cat bl_to_bin_def) lemma bin_to_bl_cat_app: "bin_to_bl (n + nw) (bin_cat w nw wa) = bin_to_bl n w @ bin_to_bl nw wa" by (simp only: bin_to_bl_def bin_to_bl_aux_cat_app) text \\bl_to_bin_app_cat_alt\ and \bl_to_bin_app_cat\ are easily interderivable.\ lemma bl_to_bin_app_cat_alt: "bin_cat (bl_to_bin cs) n w = bl_to_bin (cs @ bin_to_bl n w)" by (simp add: bl_to_bin_app_cat) lemma mask_lem: "(bl_to_bin (True # replicate n False)) = bl_to_bin (replicate n True) + 1" apply (unfold bl_to_bin_def) apply (induct n) apply simp apply (simp only: Suc_eq_plus1 replicate_add append_Cons [symmetric] bl_to_bin_aux_append) apply simp done lemma bin_exhaust: "(\x b. bin = of_bool b + 2 * x \ Q) \ Q" for bin :: int apply (cases \even bin\) apply (auto elim!: evenE oddE) apply fastforce apply fastforce done primrec rbl_succ :: "bool list \ bool list" where Nil: "rbl_succ Nil = Nil" | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)" primrec rbl_pred :: "bool list \ bool list" where Nil: "rbl_pred Nil = Nil" | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)" primrec rbl_add :: "bool list \ bool list \ bool list" where \ \result is length of first arg, second arg may be longer\ Nil: "rbl_add Nil x = Nil" | Cons: "rbl_add (y # ys) x = (let ws = rbl_add ys (tl x) in (y \ hd x) # (if hd x \ y then rbl_succ ws else ws))" primrec rbl_mult :: "bool list \ bool list \ bool list" where \ \result is length of first arg, second arg may be longer\ Nil: "rbl_mult Nil x = Nil" | Cons: "rbl_mult (y # ys) x = (let ws = False # rbl_mult ys x in if y then rbl_add ws x else ws)" lemma size_rbl_pred: "length (rbl_pred bl) = length bl" by (induct bl) auto lemma size_rbl_succ: "length (rbl_succ bl) = length bl" by (induct bl) auto lemma size_rbl_add: "length (rbl_add bl cl) = length bl" by (induct bl arbitrary: cl) (auto simp: Let_def size_rbl_succ) lemma size_rbl_mult: "length (rbl_mult bl cl) = length bl" by (induct bl arbitrary: cl) (auto simp add: Let_def size_rbl_add) lemmas rbl_sizes [simp] = size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult lemmas rbl_Nils = rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil lemma rbl_add_app2: "length blb \ length bla \ rbl_add bla (blb @ blc) = rbl_add bla blb" apply (induct bla arbitrary: blb) apply simp apply clarsimp apply (case_tac blb, clarsimp) apply (clarsimp simp: Let_def) done lemma rbl_add_take2: "length blb \ length bla \ rbl_add bla (take (length bla) blb) = rbl_add bla blb" apply (induct bla arbitrary: blb) apply simp apply clarsimp apply (case_tac blb, clarsimp) apply (clarsimp simp: Let_def) done lemma rbl_mult_app2: "length blb \ length bla \ rbl_mult bla (blb @ blc) = rbl_mult bla blb" apply (induct bla arbitrary: blb) apply simp apply clarsimp apply (case_tac blb, clarsimp) apply (clarsimp simp: Let_def rbl_add_app2) done lemma rbl_mult_take2: "length blb \ length bla \ rbl_mult bla (take (length bla) blb) = rbl_mult bla blb" apply (rule trans) apply (rule rbl_mult_app2 [symmetric]) apply simp apply (rule_tac f = "rbl_mult bla" in arg_cong) apply (rule append_take_drop_id) done lemma rbl_add_split: "P (rbl_add (y # ys) (x # xs)) = (\ws. length ws = length ys \ ws = rbl_add ys xs \ (y \ ((x \ P (False # rbl_succ ws)) \ (\ x \ P (True # ws)))) \ (\ y \ P (x # ws)))" by (cases y) (auto simp: Let_def) lemma rbl_mult_split: "P (rbl_mult (y # ys) xs) = (\ws. length ws = Suc (length ys) \ ws = False # rbl_mult ys xs \ (y \ P (rbl_add ws xs)) \ (\ y \ P ws))" by (auto simp: Let_def) lemma rbl_pred: "rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin - 1))" proof (unfold bin_to_bl_def, induction n arbitrary: bin) case 0 then show ?case by simp next case (Suc n) obtain b k where \bin = of_bool b + 2 * k\ using bin_exhaust by blast moreover have \(2 * k - 1) div 2 = k - 1\ using even_succ_div_2 [of \2 * (k - 1)\] by simp ultimately show ?case using Suc [of \bin div 2\] by simp (simp add: bin_to_bl_aux_alt) qed lemma rbl_succ: "rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin + 1))" apply (unfold bin_to_bl_def) apply (induction n arbitrary: bin) apply simp_all apply (case_tac bin rule: bin_exhaust) apply simp apply (simp add: bin_to_bl_aux_alt ac_simps) done lemma rbl_add: "\bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = rev (bin_to_bl n (bina + binb))" apply (unfold bin_to_bl_def) apply (induct n) apply simp apply clarsimp apply (case_tac bina rule: bin_exhaust) apply (case_tac binb rule: bin_exhaust) apply (case_tac b) apply (case_tac [!] "ba") apply (auto simp: rbl_succ bin_to_bl_aux_alt Let_def ac_simps) done lemma rbl_add_long: "m \ n \ rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = rev (bin_to_bl n (bina + binb))" apply (rule box_equals [OF _ rbl_add_take2 rbl_add]) apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong) apply (rule rev_swap [THEN iffD1]) apply (simp add: rev_take drop_bin2bl) apply simp done lemma rbl_mult_gt1: "m \ length bl \ rbl_mult bl (rev (bin_to_bl m binb)) = rbl_mult bl (rev (bin_to_bl (length bl) binb))" apply (rule trans) apply (rule rbl_mult_take2 [symmetric]) apply simp_all apply (rule_tac f = "rbl_mult bl" in arg_cong) apply (rule rev_swap [THEN iffD1]) apply (simp add: rev_take drop_bin2bl) done lemma rbl_mult_gt: "m > n \ rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))" by (auto intro: trans [OF rbl_mult_gt1]) lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt] lemma rbbl_Cons: "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (of_bool b + 2 * x))" by (simp add: bin_to_bl_def) (simp add: bin_to_bl_aux_alt) lemma rbl_mult: "rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = rev (bin_to_bl n (bina * binb))" apply (induct n arbitrary: bina binb) apply simp_all apply (unfold bin_to_bl_def) apply clarsimp apply (case_tac bina rule: bin_exhaust) apply (case_tac binb rule: bin_exhaust) apply simp apply (simp add: bin_to_bl_aux_alt) apply (simp add: rbbl_Cons rbl_mult_Suc rbl_add algebra_simps) done lemma sclem: "size (concat (map (bin_to_bl n) xs)) = length xs * n" by (induct xs) auto lemma bin_cat_foldl_lem: "foldl (\u. bin_cat u n) x xs = bin_cat x (size xs * n) (foldl (\u. bin_cat u n) y xs)" apply (induct xs arbitrary: x) apply simp apply (simp (no_asm)) apply (frule asm_rl) apply (drule meta_spec) apply (erule trans) apply (drule_tac x = "bin_cat y n a" in meta_spec) apply (simp add: bin_cat_assoc_sym min.absorb2) done lemma bin_rcat_bl: "bin_rcat n wl = bl_to_bin (concat (map (bin_to_bl n) wl))" apply (unfold bin_rcat_def) apply (rule sym) apply (induct wl) apply (auto simp add: bl_to_bin_append) apply (simp add: bl_to_bin_aux_alt sclem) apply (simp add: bin_cat_foldl_lem [symmetric]) done lemma bin_last_bl_to_bin: "bin_last (bl_to_bin bs) \ bs \ [] \ last bs" by(cases "bs = []")(auto simp add: bl_to_bin_def last_bin_last'[where w=0]) lemma bin_rest_bl_to_bin: "bin_rest (bl_to_bin bs) = bl_to_bin (butlast bs)" by(cases "bs = []")(simp_all add: bl_to_bin_def butlast_rest_bl2bin_aux) lemma bl_xor_aux_bin: "map2 (\x y. x \ y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = bin_to_bl_aux n (v XOR w) (map2 (\x y. x \ y) bs cs)" apply (induction n arbitrary: v w bs cs) apply auto apply (case_tac v rule: bin_exhaust) apply (case_tac w rule: bin_exhaust) apply clarsimp done lemma bl_or_aux_bin: "map2 (\) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = bin_to_bl_aux n (v OR w) (map2 (\) bs cs)" by (induct n arbitrary: v w bs cs) simp_all lemma bl_and_aux_bin: "map2 (\) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = bin_to_bl_aux n (v AND w) (map2 (\) bs cs)" by (induction n arbitrary: v w bs cs) simp_all lemma bl_not_aux_bin: "map Not (bin_to_bl_aux n w cs) = bin_to_bl_aux n (NOT w) (map Not cs)" by (induct n arbitrary: w cs) auto lemma bl_not_bin: "map Not (bin_to_bl n w) = bin_to_bl n (NOT w)" by (simp add: bin_to_bl_def bl_not_aux_bin) lemma bl_and_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v AND w)" by (simp add: bin_to_bl_def bl_and_aux_bin) lemma bl_or_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v OR w)" by (simp add: bin_to_bl_def bl_or_aux_bin) lemma bl_xor_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v XOR w)" using bl_xor_aux_bin by (simp add: bin_to_bl_def) end diff --git a/src/HOL/Word/Word.thy b/src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy +++ b/src/HOL/Word/Word.thy @@ -1,5542 +1,5484 @@ (* Title: HOL/Word/Word.thy Author: Jeremy Dawson and Gerwin Klein, NICTA *) section \A type of finite bit strings\ theory Word imports "HOL-Library.Type_Length" "HOL-Library.Boolean_Algebra" "HOL-Library.Bit_Operations" Bits_Int Bit_Comprehension Misc_Typedef Misc_Arithmetic begin -subsection \Prelude\ - -lemma (in semiring_bit_shifts) bit_push_bit_iff: \ \TODO move\ - \bit (push_bit m a) n \ m \ n \ 2 ^ n \ 0 \ bit a (n - m)\ - by (auto simp add: bit_iff_odd push_bit_eq_mult even_mult_exp_div_exp_iff) - -lemma (in semiring_bit_shifts) push_bit_numeral [simp]: \ \TODO: move\ - \push_bit (numeral l) (numeral k) = push_bit (pred_numeral l) (numeral (Num.Bit0 k))\ - by (simp add: numeral_eq_Suc mult_2_right) (simp add: numeral_Bit0) - -lemma minus_mod_int_eq: \ \TODO move\ - \- k mod l = l - 1 - (k - 1) mod l\ if \l \ 0\ for k l :: int -proof (cases \l = 0\) - case True - then show ?thesis - by simp -next - case False - with that have \l > 0\ - by simp - then show ?thesis - proof (cases \l dvd k\) - case True - then obtain j where \k = l * j\ .. - moreover have \(l * j mod l - 1) mod l = l - 1\ - using \l > 0\ by (simp add: zmod_minus1) - then have \(l * j - 1) mod l = l - 1\ - by (simp only: mod_simps) - ultimately show ?thesis - by simp - next - case False - moreover have \0 < k mod l\ \k mod l < 1 + l\ - using \0 < l\ le_imp_0_less pos_mod_conj False apply auto - using le_less apply fastforce - using pos_mod_bound [of l k] apply linarith - done - with \l > 0\ have \(k mod l - 1) mod l = k mod l - 1\ - by (simp add: zmod_trival_iff) - ultimately show ?thesis - apply (simp only: zmod_zminus1_eq_if) - apply (simp add: mod_eq_0_iff_dvd algebra_simps mod_simps) - done - qed -qed - -lemma nth_rotate: \ \TODO move\ - \rotate m xs ! n = xs ! ((m + n) mod length xs)\ if \n < length xs\ - using that apply (auto simp add: rotate_drop_take nth_append not_less less_diff_conv ac_simps dest!: le_Suc_ex) - apply (metis add.commute mod_add_right_eq mod_less) - apply (metis (no_types, lifting) Nat.diff_diff_right add.commute add_diff_cancel_right' diff_le_self dual_order.strict_trans2 length_greater_0_conv less_nat_zero_code list.size(3) mod_add_right_eq mod_add_self2 mod_le_divisor mod_less) - done - -lemma nth_rotate1: \ \TODO move\ - \rotate1 xs ! n = xs ! (Suc n mod length xs)\ if \n < length xs\ - using that nth_rotate [of n xs 1] by simp - - subsection \Type definition\ quotient_type (overloaded) 'a word = int / \\k l. take_bit LENGTH('a) k = take_bit LENGTH('a::len) l\ morphisms rep_word word_of_int by (auto intro!: equivpI reflpI sympI transpI) lift_definition uint :: \'a::len word \ int\ is \take_bit LENGTH('a)\ . lemma uint_nonnegative: "0 \ uint w" by transfer simp lemma uint_bounded: "uint w < 2 ^ LENGTH('a)" for w :: "'a::len word" by transfer (simp add: take_bit_eq_mod) lemma uint_idem: "uint w mod 2 ^ LENGTH('a) = uint w" for w :: "'a::len word" using uint_nonnegative uint_bounded by (rule mod_pos_pos_trivial) lemma word_uint_eqI: "uint a = uint b \ a = b" by transfer simp lemma word_uint_eq_iff: "a = b \ uint a = uint b" using word_uint_eqI by auto lemma uint_word_of_int: "uint (word_of_int k :: 'a::len word) = k mod 2 ^ LENGTH('a)" by transfer (simp add: take_bit_eq_mod) lemma word_of_int_uint: "word_of_int (uint w) = w" by transfer simp lemma split_word_all: "(\x::'a::len word. PROP P x) \ (\x. PROP P (word_of_int x))" proof fix x :: "'a word" assume "\x. PROP P (word_of_int x)" then have "PROP P (word_of_int (uint x))" . then show "PROP P x" by (simp add: word_of_int_uint) qed subsection \Type conversions and casting\ definition sint :: "'a::len word \ int" \ \treats the most-significant-bit as a sign bit\ where sint_uint: "sint w = sbintrunc (LENGTH('a) - 1) (uint w)" definition unat :: "'a::len word \ nat" where "unat w = nat (uint w)" definition uints :: "nat \ int set" \ \the sets of integers representing the words\ where "uints n = range (bintrunc n)" definition sints :: "nat \ int set" where "sints n = range (sbintrunc (n - 1))" lemma uints_num: "uints n = {i. 0 \ i \ i < 2 ^ n}" by (simp add: uints_def range_bintrunc) lemma sints_num: "sints n = {i. - (2 ^ (n - 1)) \ i \ i < 2 ^ (n - 1)}" by (simp add: sints_def range_sbintrunc) definition unats :: "nat \ nat set" where "unats n = {i. i < 2 ^ n}" definition norm_sint :: "nat \ int \ int" where "norm_sint n w = (w + 2 ^ (n - 1)) mod 2 ^ n - 2 ^ (n - 1)" definition scast :: "'a::len word \ 'b::len word" \ \cast a word to a different length\ where "scast w = word_of_int (sint w)" definition ucast :: "'a::len word \ 'b::len word" where "ucast w = word_of_int (uint w)" instantiation word :: (len) size begin definition word_size: "size (w :: 'a word) = LENGTH('a)" instance .. end lemma word_size_gt_0 [iff]: "0 < size w" for w :: "'a::len word" by (simp add: word_size) lemmas lens_gt_0 = word_size_gt_0 len_gt_0 lemma lens_not_0 [iff]: \size w \ 0\ for w :: \'a::len word\ by auto definition source_size :: "('a::len word \ 'b) \ nat" \ \whether a cast (or other) function is to a longer or shorter length\ where [code del]: "source_size c = (let arb = undefined; x = c arb in size arb)" definition target_size :: "('a \ 'b::len word) \ nat" where [code del]: "target_size c = size (c undefined)" definition is_up :: "('a::len word \ 'b::len word) \ bool" where "is_up c \ source_size c \ target_size c" definition is_down :: "('a::len word \ 'b::len word) \ bool" where "is_down c \ target_size c \ source_size c" definition of_bl :: "bool list \ 'a::len word" where "of_bl bl = word_of_int (bl_to_bin bl)" definition to_bl :: "'a::len word \ bool list" where "to_bl w = bin_to_bl (LENGTH('a)) (uint w)" definition word_reverse :: "'a::len word \ 'a word" where "word_reverse w = of_bl (rev (to_bl w))" definition word_int_case :: "(int \ 'b) \ 'a::len word \ 'b" where "word_int_case f w = f (uint w)" translations "case x of XCONST of_int y \ b" \ "CONST word_int_case (\y. b) x" "case x of (XCONST of_int :: 'a) y \ b" \ "CONST word_int_case (\y. b) x" subsection \Basic code generation setup\ definition Word :: "int \ 'a::len word" where [code_post]: "Word = word_of_int" lemma [code abstype]: "Word (uint w) = w" by (simp add: Word_def word_of_int_uint) declare uint_word_of_int [code abstract] instantiation word :: (len) equal begin definition equal_word :: "'a word \ 'a word \ bool" where "equal_word k l \ HOL.equal (uint k) (uint l)" instance by standard (simp add: equal equal_word_def word_uint_eq_iff) end notation fcomp (infixl "\>" 60) notation scomp (infixl "\\" 60) instantiation word :: ("{len, typerep}") random begin definition "random_word i = Random.range i \\ (\k. Pair ( let j = word_of_int (int_of_integer (integer_of_natural k)) :: 'a word in (j, \_::unit. Code_Evaluation.term_of j)))" instance .. end no_notation fcomp (infixl "\>" 60) no_notation scomp (infixl "\\" 60) subsection \Type-definition locale instantiations\ lemmas uint_0 = uint_nonnegative (* FIXME duplicate *) lemmas uint_lt = uint_bounded (* FIXME duplicate *) lemmas uint_mod_same = uint_idem (* FIXME duplicate *) lemma td_ext_uint: "td_ext (uint :: 'a word \ int) word_of_int (uints (LENGTH('a::len))) (\w::int. w mod 2 ^ LENGTH('a))" apply (unfold td_ext_def') apply transfer apply (simp add: uints_num take_bit_eq_mod) done interpretation word_uint: td_ext "uint::'a::len word \ int" word_of_int "uints (LENGTH('a::len))" "\w. w mod 2 ^ LENGTH('a::len)" by (fact td_ext_uint) lemmas td_uint = word_uint.td_thm lemmas int_word_uint = word_uint.eq_norm lemma td_ext_ubin: "td_ext (uint :: 'a word \ int) word_of_int (uints (LENGTH('a::len))) (bintrunc (LENGTH('a)))" by (unfold no_bintr_alt1) (fact td_ext_uint) interpretation word_ubin: td_ext "uint::'a::len word \ int" word_of_int "uints (LENGTH('a::len))" "bintrunc (LENGTH('a::len))" by (fact td_ext_ubin) subsection \Arithmetic operations\ lift_definition word_succ :: "'a::len word \ 'a word" is "\x. x + 1" by (auto simp add: bintrunc_mod2p intro: mod_add_cong) lift_definition word_pred :: "'a::len word \ 'a word" is "\x. x - 1" by (auto simp add: bintrunc_mod2p intro: mod_diff_cong) instantiation word :: (len) "{neg_numeral, modulo, comm_monoid_mult, comm_ring}" begin lift_definition zero_word :: "'a word" is "0" . lift_definition one_word :: "'a word" is "1" . lift_definition plus_word :: "'a word \ 'a word \ 'a word" is "(+)" by (auto simp add: bintrunc_mod2p intro: mod_add_cong) lift_definition minus_word :: "'a word \ 'a word \ 'a word" is "(-)" by (auto simp add: bintrunc_mod2p intro: mod_diff_cong) lift_definition uminus_word :: "'a word \ 'a word" is uminus by (auto simp add: bintrunc_mod2p intro: mod_minus_cong) lift_definition times_word :: "'a word \ 'a word \ 'a word" is "(*)" by (auto simp add: bintrunc_mod2p intro: mod_mult_cong) lift_definition divide_word :: "'a word \ 'a word \ 'a word" is "\a b. take_bit LENGTH('a) a div take_bit LENGTH('a) b" by simp lift_definition modulo_word :: "'a word \ 'a word \ 'a word" is "\a b. take_bit LENGTH('a) a mod take_bit LENGTH('a) b" by simp instance by standard (transfer, simp add: algebra_simps)+ end lemma word_div_def [code]: "a div b = word_of_int (uint a div uint b)" by transfer rule lemma word_mod_def [code]: "a mod b = word_of_int (uint a mod uint b)" by transfer rule quickcheck_generator word constructors: "zero_class.zero :: ('a::len) word", "numeral :: num \ ('a::len) word", "uminus :: ('a::len) word \ ('a::len) word" context includes lifting_syntax notes power_transfer [transfer_rule] begin lemma power_transfer_word [transfer_rule]: \(pcr_word ===> (=) ===> pcr_word) (^) (^)\ by transfer_prover end text \Legacy theorems:\ lemma word_arith_wis [code]: shows word_add_def: "a + b = word_of_int (uint a + uint b)" and word_sub_wi: "a - b = word_of_int (uint a - uint b)" and word_mult_def: "a * b = word_of_int (uint a * uint b)" and word_minus_def: "- a = word_of_int (- uint a)" and word_succ_alt: "word_succ a = word_of_int (uint a + 1)" and word_pred_alt: "word_pred a = word_of_int (uint a - 1)" and word_0_wi: "0 = word_of_int 0" and word_1_wi: "1 = word_of_int 1" apply (simp_all flip: plus_word.abs_eq minus_word.abs_eq times_word.abs_eq uminus_word.abs_eq zero_word.abs_eq one_word.abs_eq) apply transfer apply simp apply transfer apply simp done lemma wi_homs: shows wi_hom_add: "word_of_int a + word_of_int b = word_of_int (a + b)" and wi_hom_sub: "word_of_int a - word_of_int b = word_of_int (a - b)" and wi_hom_mult: "word_of_int a * word_of_int b = word_of_int (a * b)" and wi_hom_neg: "- word_of_int a = word_of_int (- a)" and wi_hom_succ: "word_succ (word_of_int a) = word_of_int (a + 1)" and wi_hom_pred: "word_pred (word_of_int a) = word_of_int (a - 1)" by (transfer, simp)+ lemmas wi_hom_syms = wi_homs [symmetric] lemmas word_of_int_homs = wi_homs word_0_wi word_1_wi lemmas word_of_int_hom_syms = word_of_int_homs [symmetric] instance word :: (len) comm_monoid_add .. instance word :: (len) semiring_numeral .. instance word :: (len) comm_ring_1 proof have *: "0 < LENGTH('a)" by (rule len_gt_0) show "(0::'a word) \ 1" by transfer (use * in \auto simp add: gr0_conv_Suc\) qed lemma word_of_nat: "of_nat n = word_of_int (int n)" by (induct n) (auto simp add : word_of_int_hom_syms) lemma word_of_int: "of_int = word_of_int" apply (rule ext) apply (case_tac x rule: int_diff_cases) apply (simp add: word_of_nat wi_hom_sub) done context includes lifting_syntax notes transfer_rule_of_bool [transfer_rule] transfer_rule_numeral [transfer_rule] transfer_rule_of_nat [transfer_rule] transfer_rule_of_int [transfer_rule] begin lemma [transfer_rule]: "((=) ===> (pcr_word :: int \ 'a::len word \ bool)) of_bool of_bool" by transfer_prover lemma [transfer_rule]: "((=) ===> (pcr_word :: int \ 'a::len word \ bool)) numeral numeral" by transfer_prover lemma [transfer_rule]: "((=) ===> pcr_word) int of_nat" by transfer_prover lemma [transfer_rule]: "((=) ===> pcr_word) (\k. k) of_int" proof - have "((=) ===> pcr_word) of_int of_int" by transfer_prover then show ?thesis by (simp add: id_def) qed end lemma word_of_int_eq: "word_of_int = of_int" by (rule ext) (transfer, rule) definition udvd :: "'a::len word \ 'a::len word \ bool" (infixl "udvd" 50) where "a udvd b = (\n\0. uint b = n * uint a)" context includes lifting_syntax begin lemma [transfer_rule]: \(pcr_word ===> (\)) even ((dvd) 2 :: 'a::len word \ bool)\ proof - have even_word_unfold: "even k \ (\l. take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l))" (is "?P \ ?Q") for k :: int proof assume ?P then show ?Q by auto next assume ?Q then obtain l where "take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l)" .. then have "even (take_bit LENGTH('a) k)" by simp then show ?P by simp qed show ?thesis by (simp only: even_word_unfold [abs_def] dvd_def [where ?'a = "'a word", abs_def]) transfer_prover qed end instance word :: (len) semiring_modulo proof show "a div b * b + a mod b = a" for a b :: "'a word" proof transfer fix k l :: int define r :: int where "r = 2 ^ LENGTH('a)" then have r: "take_bit LENGTH('a) k = k mod r" for k by (simp add: take_bit_eq_mod) have "k mod r = ((k mod r) div (l mod r) * (l mod r) + (k mod r) mod (l mod r)) mod r" by (simp add: div_mult_mod_eq) also have "... = (((k mod r) div (l mod r) * (l mod r)) mod r + (k mod r) mod (l mod r)) mod r" by (simp add: mod_add_left_eq) also have "... = (((k mod r) div (l mod r) * l) mod r + (k mod r) mod (l mod r)) mod r" by (simp add: mod_mult_right_eq) finally have "k mod r = ((k mod r) div (l mod r) * l + (k mod r) mod (l mod r)) mod r" by (simp add: mod_simps) with r show "take_bit LENGTH('a) (take_bit LENGTH('a) k div take_bit LENGTH('a) l * l + take_bit LENGTH('a) k mod take_bit LENGTH('a) l) = take_bit LENGTH('a) k" by simp qed qed instance word :: (len) semiring_parity proof show "\ 2 dvd (1::'a word)" by transfer simp show even_iff_mod_2_eq_0: "2 dvd a \ a mod 2 = 0" for a :: "'a word" by transfer (simp_all add: mod_2_eq_odd take_bit_Suc) show "\ 2 dvd a \ a mod 2 = 1" for a :: "'a word" by transfer (simp_all add: mod_2_eq_odd take_bit_Suc) qed lemma exp_eq_zero_iff: \2 ^ n = (0 :: 'a::len word) \ n \ LENGTH('a)\ by transfer simp lemma double_eq_zero_iff: \2 * a = 0 \ a = 0 \ a = 2 ^ (LENGTH('a) - Suc 0)\ for a :: \'a::len word\ proof - define n where \n = LENGTH('a) - Suc 0\ then have *: \LENGTH('a) = Suc n\ by simp have \a = 0\ if \2 * a = 0\ and \a \ 2 ^ (LENGTH('a) - Suc 0)\ using that by transfer (auto simp add: take_bit_eq_0_iff take_bit_eq_mod *) moreover have \2 ^ LENGTH('a) = (0 :: 'a word)\ by transfer simp then have \2 * 2 ^ (LENGTH('a) - Suc 0) = (0 :: 'a word)\ by (simp add: *) ultimately show ?thesis by auto qed subsection \Ordering\ instantiation word :: (len) linorder begin lift_definition less_eq_word :: "'a word \ 'a word \ bool" is "\a b. take_bit LENGTH('a) a \ take_bit LENGTH('a) b" by simp lift_definition less_word :: "'a word \ 'a word \ bool" is "\a b. take_bit LENGTH('a) a < take_bit LENGTH('a) b" by simp instance by (standard; transfer) auto end interpretation word_order: ordering_top \(\)\ \(<)\ \- 1 :: 'a::len word\ by (standard; transfer) (simp add: take_bit_eq_mod zmod_minus1) interpretation word_coorder: ordering_top \(\)\ \(>)\ \0 :: 'a::len word\ by (standard; transfer) simp lemma word_le_def [code]: "a \ b \ uint a \ uint b" by transfer rule lemma word_less_def [code]: "a < b \ uint a < uint b" by transfer rule lemma word_greater_zero_iff: \a > 0 \ a \ 0\ for a :: \'a::len word\ by transfer (simp add: less_le) lemma of_nat_word_eq_iff: \of_nat m = (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m = take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_less_eq_iff: \of_nat m \ (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m \ take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_less_iff: \of_nat m < (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m < take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_eq_0_iff: \of_nat n = (0 :: 'a::len word) \ 2 ^ LENGTH('a) dvd n\ using of_nat_word_eq_iff [where ?'a = 'a, of n 0] by (simp add: take_bit_eq_0_iff) lemma of_int_word_eq_iff: \of_int k = (of_int l :: 'a::len word) \ take_bit LENGTH('a) k = take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_less_eq_iff: \of_int k \ (of_int l :: 'a::len word) \ take_bit LENGTH('a) k \ take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_less_iff: \of_int k < (of_int l :: 'a::len word) \ take_bit LENGTH('a) k < take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_eq_0_iff: \of_int k = (0 :: 'a::len word) \ 2 ^ LENGTH('a) dvd k\ using of_int_word_eq_iff [where ?'a = 'a, of k 0] by (simp add: take_bit_eq_0_iff) definition word_sle :: "'a::len word \ 'a word \ bool" ("(_/ <=s _)" [50, 51] 50) where "a <=s b \ sint a \ sint b" definition word_sless :: "'a::len word \ 'a word \ bool" ("(_/ x <=s y \ x \ y" subsection \Bit-wise operations\ lemma word_bit_induct [case_names zero even odd]: \P a\ if word_zero: \P 0\ and word_even: \\a. P a \ 0 < a \ a < 2 ^ (LENGTH('a) - 1) \ P (2 * a)\ and word_odd: \\a. P a \ a < 2 ^ (LENGTH('a) - 1) \ P (1 + 2 * a)\ for P and a :: \'a::len word\ proof - define m :: nat where \m = LENGTH('a) - 1\ then have l: \LENGTH('a) = Suc m\ by simp define n :: nat where \n = unat a\ then have \n < 2 ^ LENGTH('a)\ by (unfold unat_def) (transfer, simp add: take_bit_eq_mod) then have \n < 2 * 2 ^ m\ by (simp add: l) then have \P (of_nat n)\ proof (induction n rule: nat_bit_induct) case zero show ?case by simp (rule word_zero) next case (even n) then have \n < 2 ^ m\ by simp with even.IH have \P (of_nat n)\ by simp moreover from \n < 2 ^ m\ even.hyps have \0 < (of_nat n :: 'a word)\ by (auto simp add: word_greater_zero_iff of_nat_word_eq_0_iff l) moreover from \n < 2 ^ m\ have \(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - 1)\ using of_nat_word_less_iff [where ?'a = 'a, of n \2 ^ m\] by (cases \m = 0\) (simp_all add: not_less take_bit_eq_self ac_simps l) ultimately have \P (2 * of_nat n)\ by (rule word_even) then show ?case by simp next case (odd n) then have \Suc n \ 2 ^ m\ by simp with odd.IH have \P (of_nat n)\ by simp moreover from \Suc n \ 2 ^ m\ have \(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - 1)\ using of_nat_word_less_iff [where ?'a = 'a, of n \2 ^ m\] by (cases \m = 0\) (simp_all add: not_less take_bit_eq_self ac_simps l) ultimately have \P (1 + 2 * of_nat n)\ by (rule word_odd) then show ?case by simp qed moreover have \of_nat (nat (uint a)) = a\ by transfer simp ultimately show ?thesis by (simp add: n_def unat_def) qed lemma bit_word_half_eq: \(of_bool b + a * 2) div 2 = a\ if \a < 2 ^ (LENGTH('a) - Suc 0)\ for a :: \'a::len word\ proof (cases \2 \ LENGTH('a::len)\) case False have \of_bool (odd k) < (1 :: int) \ even k\ for k :: int by auto with False that show ?thesis by transfer (simp add: eq_iff) next case True obtain n where length: \LENGTH('a) = Suc n\ by (cases \LENGTH('a)\) simp_all show ?thesis proof (cases b) case False moreover have \a * 2 div 2 = a\ using that proof transfer fix k :: int from length have \k * 2 mod 2 ^ LENGTH('a) = (k mod 2 ^ n) * 2\ by simp moreover assume \take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\ with \LENGTH('a) = Suc n\ have \k mod 2 ^ LENGTH('a) = k mod 2 ^ n\ by (simp add: take_bit_eq_mod divmod_digit_0) ultimately have \take_bit LENGTH('a) (k * 2) = take_bit LENGTH('a) k * 2\ by (simp add: take_bit_eq_mod) with True show \take_bit LENGTH('a) (take_bit LENGTH('a) (k * 2) div take_bit LENGTH('a) 2) = take_bit LENGTH('a) k\ by simp qed ultimately show ?thesis by simp next case True moreover have \(1 + a * 2) div 2 = a\ using that proof transfer fix k :: int from length have \(1 + k * 2) mod 2 ^ LENGTH('a) = 1 + (k mod 2 ^ n) * 2\ using pos_zmod_mult_2 [of \2 ^ n\ k] by (simp add: ac_simps) moreover assume \take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\ with \LENGTH('a) = Suc n\ have \k mod 2 ^ LENGTH('a) = k mod 2 ^ n\ by (simp add: take_bit_eq_mod divmod_digit_0) ultimately have \take_bit LENGTH('a) (1 + k * 2) = 1 + take_bit LENGTH('a) k * 2\ by (simp add: take_bit_eq_mod) with True show \take_bit LENGTH('a) (take_bit LENGTH('a) (1 + k * 2) div take_bit LENGTH('a) 2) = take_bit LENGTH('a) k\ by (auto simp add: take_bit_Suc) qed ultimately show ?thesis by simp qed qed lemma even_mult_exp_div_word_iff: \even (a * 2 ^ m div 2 ^ n) \ \ ( m \ n \ n < LENGTH('a) \ odd (a div 2 ^ (n - m)))\ for a :: \'a::len word\ by transfer (auto simp flip: drop_bit_eq_div simp add: even_drop_bit_iff_not_bit bit_take_bit_iff, simp_all flip: push_bit_eq_mult add: bit_push_bit_iff_int) instantiation word :: (len) semiring_bits begin lift_definition bit_word :: \'a word \ nat \ bool\ is \\k n. n < LENGTH('a) \ bit k n\ proof fix k l :: int and n :: nat assume *: \take_bit LENGTH('a) k = take_bit LENGTH('a) l\ show \n < LENGTH('a) \ bit k n \ n < LENGTH('a) \ bit l n\ proof (cases \n < LENGTH('a)\) case True from * have \bit (take_bit LENGTH('a) k) n \ bit (take_bit LENGTH('a) l) n\ by simp then show ?thesis by (simp add: bit_take_bit_iff) next case False then show ?thesis by simp qed qed instance proof show \P a\ if stable: \\a. a div 2 = a \ P a\ and rec: \\a b. P a \ (of_bool b + 2 * a) div 2 = a \ P (of_bool b + 2 * a)\ for P and a :: \'a word\ proof (induction a rule: word_bit_induct) case zero have \0 div 2 = (0::'a word)\ by transfer simp with stable [of 0] show ?case by simp next case (even a) with rec [of a False] show ?case using bit_word_half_eq [of a False] by (simp add: ac_simps) next case (odd a) with rec [of a True] show ?case using bit_word_half_eq [of a True] by (simp add: ac_simps) qed show \bit a n \ odd (a div 2 ^ n)\ for a :: \'a word\ and n by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit bit_iff_odd_drop_bit) show \0 div a = 0\ for a :: \'a word\ by transfer simp show \a div 1 = a\ for a :: \'a word\ by transfer simp show \a mod b div b = 0\ for a b :: \'a word\ apply transfer apply (simp add: take_bit_eq_mod) apply (subst (3) mod_pos_pos_trivial [of _ \2 ^ LENGTH('a)\]) apply simp_all apply (metis le_less mod_by_0 pos_mod_conj zero_less_numeral zero_less_power) using pos_mod_bound [of \2 ^ LENGTH('a)\] apply simp proof - fix aa :: int and ba :: int have f1: "\i n. (i::int) mod 2 ^ n = 0 \ 0 < i mod 2 ^ n" by (metis le_less take_bit_eq_mod take_bit_nonnegative) have "(0::int) < 2 ^ len_of (TYPE('a)::'a itself) \ ba mod 2 ^ len_of (TYPE('a)::'a itself) \ 0 \ aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)" by (metis (no_types) mod_by_0 unique_euclidean_semiring_numeral_class.pos_mod_bound zero_less_numeral zero_less_power) then show "aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)" using f1 by (meson le_less less_le_trans unique_euclidean_semiring_numeral_class.pos_mod_bound) qed show \(1 + a) div 2 = a div 2\ if \even a\ for a :: \'a word\ using that by transfer (auto dest: le_Suc_ex simp add: mod_2_eq_odd take_bit_Suc elim!: evenE) show \(2 :: 'a word) ^ m div 2 ^ n = of_bool ((2 :: 'a word) ^ m \ 0 \ n \ m) * 2 ^ (m - n)\ for m n :: nat by transfer (simp, simp add: exp_div_exp_eq) show "a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)" for a :: "'a word" and m n :: nat apply transfer apply (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: drop_bit_eq_div) apply (simp add: drop_bit_take_bit) done show "a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n" for a :: "'a word" and m n :: nat by transfer (auto simp flip: take_bit_eq_mod simp add: ac_simps) show \a * 2 ^ m mod 2 ^ n = a mod 2 ^ (n - m) * 2 ^ m\ if \m \ n\ for a :: "'a word" and m n :: nat using that apply transfer apply (auto simp flip: take_bit_eq_mod) apply (auto simp flip: push_bit_eq_mult simp add: push_bit_take_bit split: split_min_lin) done show \a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\ for a :: "'a word" and m n :: nat by transfer (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: take_bit_eq_mod drop_bit_eq_div split: split_min_lin) show \even ((2 ^ m - 1) div (2::'a word) ^ n) \ 2 ^ n = (0::'a word) \ m \ n\ for m n :: nat by transfer (auto simp add: take_bit_of_mask even_mask_div_iff) show \even (a * 2 ^ m div 2 ^ n) \ n < m \ (2::'a word) ^ n = 0 \ m \ n \ even (a div 2 ^ (n - m))\ for a :: \'a word\ and m n :: nat proof transfer show \even (take_bit LENGTH('a) (k * 2 ^ m) div take_bit LENGTH('a) (2 ^ n)) \ n < m \ take_bit LENGTH('a) ((2::int) ^ n) = take_bit LENGTH('a) 0 \ (m \ n \ even (take_bit LENGTH('a) k div take_bit LENGTH('a) (2 ^ (n - m))))\ for m n :: nat and k l :: int by (auto simp flip: take_bit_eq_mod drop_bit_eq_div push_bit_eq_mult simp add: div_push_bit_of_1_eq_drop_bit drop_bit_take_bit drop_bit_push_bit_int [of n m]) qed qed end instantiation word :: (len) semiring_bit_shifts begin lift_definition push_bit_word :: \nat \ 'a word \ 'a word\ is push_bit proof - show \take_bit LENGTH('a) (push_bit n k) = take_bit LENGTH('a) (push_bit n l)\ if \take_bit LENGTH('a) k = take_bit LENGTH('a) l\ for k l :: int and n :: nat proof - from that have \take_bit (LENGTH('a) - n) (take_bit LENGTH('a) k) = take_bit (LENGTH('a) - n) (take_bit LENGTH('a) l)\ by simp moreover have \min (LENGTH('a) - n) LENGTH('a) = LENGTH('a) - n\ by simp ultimately show ?thesis by (simp add: take_bit_push_bit) qed qed lift_definition drop_bit_word :: \nat \ 'a word \ 'a word\ is \\n. drop_bit n \ take_bit LENGTH('a)\ by (simp add: take_bit_eq_mod) lift_definition take_bit_word :: \nat \ 'a word \ 'a word\ is \\n. take_bit (min LENGTH('a) n)\ by (simp add: ac_simps) (simp only: flip: take_bit_take_bit) instance proof show \push_bit n a = a * 2 ^ n\ for n :: nat and a :: \'a word\ by transfer (simp add: push_bit_eq_mult) show \drop_bit n a = a div 2 ^ n\ for n :: nat and a :: \'a word\ by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit) show \take_bit n a = a mod 2 ^ n\ for n :: nat and a :: \'a word\ by transfer (auto simp flip: take_bit_eq_mod) qed end lemma bit_word_eqI: \a = b\ if \\n. n \ LENGTH('a) \ bit a n \ bit b n\ for a b :: \'a::len word\ using that by transfer (auto simp add: nat_less_le bit_eq_iff bit_take_bit_iff) lemma bit_imp_le_length: \n < LENGTH('a)\ if \bit w n\ for w :: \'a::len word\ using that by transfer simp lemma not_bit_length [simp]: \\ bit w LENGTH('a)\ for w :: \'a::len word\ by transfer simp lemma bit_word_of_int_iff: \bit (word_of_int k :: 'a::len word) n \ n < LENGTH('a) \ bit k n\ by transfer rule lemma bit_uint_iff: \bit (uint w) n \ n < LENGTH('a) \ bit w n\ for w :: \'a::len word\ by transfer (simp add: bit_take_bit_iff) lemma bit_sint_iff: \bit (sint w) n \ n \ LENGTH('a) \ bit w (LENGTH('a) - 1) \ bit w n\ for w :: \'a::len word\ apply (cases \LENGTH('a)\) apply simp apply (simp add: sint_uint nth_sbintr not_less bit_uint_iff not_le Suc_le_eq) apply (auto simp add: le_less dest: bit_imp_le_length) done lemma bit_word_ucast_iff: \bit (ucast w :: 'b::len word) n \ n < LENGTH('a) \ n < LENGTH('b) \ bit w n\ for w :: \'a::len word\ by (simp add: ucast_def bit_word_of_int_iff bit_uint_iff ac_simps) lemma bit_word_scast_iff: \bit (scast w :: 'b::len word) n \ n < LENGTH('b) \ (bit w n \ LENGTH('a) \ n \ bit w (LENGTH('a) - Suc 0))\ for w :: \'a::len word\ by (simp add: scast_def bit_word_of_int_iff bit_sint_iff ac_simps) definition shiftl1 :: "'a::len word \ 'a word" where "shiftl1 w = word_of_int (2 * uint w)" lemma shiftl1_eq_mult_2: \shiftl1 = (*) 2\ apply (simp add: fun_eq_iff shiftl1_def) apply transfer apply (simp only: mult_2 take_bit_add) apply simp done lemma bit_shiftl1_iff: \bit (shiftl1 w) n \ 0 < n \ n < LENGTH('a) \ bit w (n - 1)\ for w :: \'a::len word\ by (simp add: shiftl1_eq_mult_2 bit_double_iff exp_eq_zero_iff not_le) (simp add: ac_simps) definition shiftr1 :: "'a::len word \ 'a word" \ \shift right as unsigned or as signed, ie logical or arithmetic\ where "shiftr1 w = word_of_int (bin_rest (uint w))" lemma shiftr1_eq_div_2: \shiftr1 w = w div 2\ apply (simp add: fun_eq_iff shiftr1_def) apply transfer apply (auto simp add: not_le dest: less_2_cases) done lemma bit_shiftr1_iff: \bit (shiftr1 w) n \ bit w (Suc n)\ for w :: \'a::len word\ by (simp add: shiftr1_eq_div_2 bit_Suc) instantiation word :: (len) ring_bit_operations begin lift_definition not_word :: \'a word \ 'a word\ is not by (simp add: take_bit_not_iff) lift_definition and_word :: \'a word \ 'a word \ 'a word\ is \and\ by simp lift_definition or_word :: \'a word \ 'a word \ 'a word\ is or by simp lift_definition xor_word :: \'a word \ 'a word \ 'a word\ is xor by simp instance proof fix a b :: \'a word\ and n :: nat show \- a = NOT (a - 1)\ by transfer (simp add: minus_eq_not_minus_1) show \bit (NOT a) n \ (2 :: 'a word) ^ n \ 0 \ \ bit a n\ by transfer (simp add: bit_not_iff) show \bit (a AND b) n \ bit a n \ bit b n\ by transfer (auto simp add: bit_and_iff) show \bit (a OR b) n \ bit a n \ bit b n\ by transfer (auto simp add: bit_or_iff) show \bit (a XOR b) n \ bit a n \ bit b n\ by transfer (auto simp add: bit_xor_iff) qed end instantiation word :: (len) bit_operations begin definition word_test_bit_def: "test_bit a = bin_nth (uint a)" definition word_set_bit_def: "set_bit a n x = word_of_int (bin_sc n x (uint a))" definition word_lsb_def: "lsb a \ bin_last (uint a)" definition "msb a \ bin_sign (sbintrunc (LENGTH('a) - 1) (uint a)) = - 1" definition shiftl_def: "w << n = (shiftl1 ^^ n) w" definition shiftr_def: "w >> n = (shiftr1 ^^ n) w" instance .. end lemma test_bit_word_eq: \test_bit w = bit w\ for w :: \'a::len word\ apply (simp add: word_test_bit_def fun_eq_iff) apply transfer apply (simp add: bit_take_bit_iff) done lemma set_bit_unfold: \set_bit w n b = (if b then Bit_Operations.set_bit n w else unset_bit n w)\ for w :: \'a::len word\ - apply (auto simp add: word_set_bit_def bin_clr_conv_NAND bin_set_conv_OR unset_bit_def set_bit_def shiftl_int_def; transfer) + apply (auto simp add: word_set_bit_def bin_clr_conv_NAND bin_set_conv_OR unset_bit_def set_bit_def shiftl_int_def push_bit_of_1; transfer) apply simp_all done lemma bit_set_bit_word_iff: \bit (set_bit w m b) n \ (if m = n then n < LENGTH('a) \ b else bit w n)\ for w :: \'a::len word\ by (auto simp add: set_bit_unfold bit_unset_bit_iff bit_set_bit_iff exp_eq_zero_iff not_le bit_imp_le_length) lemma lsb_word_eq: \lsb = (odd :: 'a word \ bool)\ for w :: \'a::len word\ apply (simp add: word_lsb_def fun_eq_iff) apply transfer apply simp done lemma msb_word_eq: \msb w \ bit w (LENGTH('a) - 1)\ for w :: \'a::len word\ apply (simp add: msb_word_def bin_sign_lem) apply transfer apply (simp add: bit_take_bit_iff) done lemma shiftl_word_eq: \w << n = push_bit n w\ for w :: \'a::len word\ by (induction n) (simp_all add: shiftl_def shiftl1_eq_mult_2 push_bit_double) lemma bit_shiftl_word_iff: \bit (w << m) n \ m \ n \ n < LENGTH('a) \ bit w (n - m)\ for w :: \'a::len word\ by (simp add: shiftl_word_eq bit_push_bit_iff exp_eq_zero_iff not_le) lemma [code]: \push_bit n w = w << n\ for w :: \'a::len word\ by (simp add: shiftl_word_eq) lemma shiftr_word_eq: \w >> n = drop_bit n w\ for w :: \'a::len word\ by (induction n) (simp_all add: shiftr_def shiftr1_eq_div_2 drop_bit_Suc drop_bit_half) lemma bit_shiftr_word_iff: \bit (w >> m) n \ bit w (m + n)\ for w :: \'a::len word\ by (simp add: shiftr_word_eq bit_drop_bit_eq) lemma [code]: \drop_bit n w = w >> n\ for w :: \'a::len word\ by (simp add: shiftr_word_eq) lemma [code]: \take_bit n a = a AND Bit_Operations.mask n\ for a :: \'a::len word\ by (fact take_bit_eq_mask) lemma [code_abbrev]: \push_bit n 1 = (2 :: 'a::len word) ^ n\ by (fact push_bit_of_1) lemma word_msb_def: "msb a \ bin_sign (sint a) = - 1" by (simp add: msb_word_def sint_uint) lemma [code]: shows word_not_def: "NOT (a::'a::len word) = word_of_int (NOT (uint a))" and word_and_def: "(a::'a word) AND b = word_of_int (uint a AND uint b)" and word_or_def: "(a::'a word) OR b = word_of_int (uint a OR uint b)" and word_xor_def: "(a::'a word) XOR b = word_of_int (uint a XOR uint b)" by (transfer, simp add: take_bit_not_take_bit)+ definition setBit :: "'a::len word \ nat \ 'a word" where "setBit w n = set_bit w n True" lemma setBit_eq_set_bit: \setBit w n = Bit_Operations.set_bit n w\ for w :: \'a::len word\ by (simp add: setBit_def set_bit_unfold) lemma bit_setBit_iff: \bit (setBit w m) n \ (m = n \ n < LENGTH('a) \ bit w n)\ for w :: \'a::len word\ by (simp add: setBit_eq_set_bit bit_set_bit_iff exp_eq_zero_iff not_le ac_simps) definition clearBit :: "'a::len word \ nat \ 'a word" where "clearBit w n = set_bit w n False" lemma clearBit_eq_unset_bit: \clearBit w n = unset_bit n w\ for w :: \'a::len word\ by (simp add: clearBit_def set_bit_unfold) lemma bit_clearBit_iff: \bit (clearBit w m) n \ m \ n \ bit w n\ for w :: \'a::len word\ by (simp add: clearBit_eq_unset_bit bit_unset_bit_iff ac_simps) definition even_word :: \'a::len word \ bool\ where [code_abbrev]: \even_word = even\ lemma even_word_iff [code]: \even_word a \ a AND 1 = 0\ by (simp add: and_one_eq even_iff_mod_2_eq_zero even_word_def) lemma bit_word_iff_drop_bit_and [code]: \bit a n \ drop_bit n a AND 1 = 1\ for a :: \'a::len word\ by (simp add: bit_iff_odd_drop_bit odd_iff_mod_2_eq_one and_one_eq) subsection \Shift operations\ definition sshiftr1 :: "'a::len word \ 'a word" where "sshiftr1 w = word_of_int (bin_rest (sint w))" definition bshiftr1 :: "bool \ 'a::len word \ 'a word" where "bshiftr1 b w = of_bl (b # butlast (to_bl w))" definition sshiftr :: "'a::len word \ nat \ 'a word" (infixl ">>>" 55) where "w >>> n = (sshiftr1 ^^ n) w" definition mask :: "nat \ 'a::len word" where "mask n = (1 << n) - 1" definition slice1 :: "nat \ 'a::len word \ 'b::len word" where "slice1 n w = of_bl (takefill False n (to_bl w))" definition revcast :: "'a::len word \ 'b::len word" where "revcast w = of_bl (takefill False (LENGTH('b)) (to_bl w))" lemma revcast_eq: \(revcast :: 'a::len word \ 'b::len word) = slice1 LENGTH('b)\ by (simp add: fun_eq_iff revcast_def slice1_def) definition slice :: "nat \ 'a::len word \ 'b::len word" where "slice n w = slice1 (size w - n) w" subsection \Rotation\ definition rotater1 :: "'a list \ 'a list" where "rotater1 ys = (case ys of [] \ [] | x # xs \ last ys # butlast ys)" definition rotater :: "nat \ 'a list \ 'a list" where "rotater n = rotater1 ^^ n" definition word_rotr :: "nat \ 'a::len word \ 'a::len word" where "word_rotr n w = of_bl (rotater n (to_bl w))" definition word_rotl :: "nat \ 'a::len word \ 'a::len word" where "word_rotl n w = of_bl (rotate n (to_bl w))" definition word_roti :: "int \ 'a::len word \ 'a::len word" where "word_roti i w = (if i \ 0 then word_rotr (nat i) w else word_rotl (nat (- i)) w)" subsection \Split and cat operations\ definition word_cat :: "'a::len word \ 'b::len word \ 'c::len word" where "word_cat a b = word_of_int (bin_cat (uint a) (LENGTH('b)) (uint b))" lemma word_cat_eq: \(word_cat v w :: 'c::len word) = push_bit LENGTH('b) (ucast v) + ucast w\ for v :: \'a::len word\ and w :: \'b::len word\ apply (simp add: word_cat_def bin_cat_eq_push_bit_add_take_bit ucast_def) apply transfer apply simp done lemma bit_word_cat_iff: \bit (word_cat v w :: 'c::len word) n \ n < LENGTH('c) \ (if n < LENGTH('b) then bit w n else bit v (n - LENGTH('b)))\ for v :: \'a::len word\ and w :: \'b::len word\ by (auto simp add: word_cat_def bit_word_of_int_iff bin_nth_cat bit_uint_iff not_less bit_imp_le_length) definition word_split :: "'a::len word \ 'b::len word \ 'c::len word" where "word_split a = (case bin_split (LENGTH('c)) (uint a) of (u, v) \ (word_of_int u, word_of_int v))" definition word_rcat :: "'a::len word list \ 'b::len word" where "word_rcat ws = word_of_int (bin_rcat (LENGTH('a)) (map uint ws))" definition word_rsplit :: "'a::len word \ 'b::len word list" where "word_rsplit w = map word_of_int (bin_rsplit (LENGTH('b)) (LENGTH('a), uint w))" abbreviation (input) max_word :: \'a::len word\ \ \Largest representable machine integer.\ where "max_word \ - 1" subsection \Theorems about typedefs\ lemma sint_sbintrunc': "sint (word_of_int bin :: 'a word) = sbintrunc (LENGTH('a::len) - 1) bin" by (auto simp: sint_uint word_ubin.eq_norm sbintrunc_bintrunc_lt) lemma uint_sint: "uint w = bintrunc (LENGTH('a)) (sint w)" for w :: "'a::len word" by (auto simp: sint_uint bintrunc_sbintrunc_le) lemma bintr_uint: "LENGTH('a) \ n \ bintrunc n (uint w) = uint w" for w :: "'a::len word" apply (subst word_ubin.norm_Rep [symmetric]) apply (simp only: bintrunc_bintrunc_min word_size) apply (simp add: min.absorb2) done lemma wi_bintr: "LENGTH('a::len) \ n \ word_of_int (bintrunc n w) = (word_of_int w :: 'a word)" by (auto simp: word_ubin.norm_eq_iff [symmetric] min.absorb1) lemma td_ext_sbin: "td_ext (sint :: 'a word \ int) word_of_int (sints (LENGTH('a::len))) (sbintrunc (LENGTH('a) - 1))" apply (unfold td_ext_def' sint_uint) apply (simp add : word_ubin.eq_norm) apply (cases "LENGTH('a)") apply (auto simp add : sints_def) apply (rule sym [THEN trans]) apply (rule word_ubin.Abs_norm) apply (simp only: bintrunc_sbintrunc) apply (drule sym) apply simp done lemma td_ext_sint: "td_ext (sint :: 'a word \ int) word_of_int (sints (LENGTH('a::len))) (\w. (w + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - 2 ^ (LENGTH('a) - 1))" using td_ext_sbin [where ?'a = 'a] by (simp add: no_sbintr_alt2) text \ We do \sint\ before \sbin\, before \sint\ is the user version and interpretations do not produce thm duplicates. I.e. we get the name \word_sint.Rep_eqD\, but not \word_sbin.Req_eqD\, because the latter is the same thm as the former. \ interpretation word_sint: td_ext "sint ::'a::len word \ int" word_of_int "sints (LENGTH('a::len))" "\w. (w + 2^(LENGTH('a::len) - 1)) mod 2^LENGTH('a::len) - 2 ^ (LENGTH('a::len) - 1)" by (rule td_ext_sint) interpretation word_sbin: td_ext "sint ::'a::len word \ int" word_of_int "sints (LENGTH('a::len))" "sbintrunc (LENGTH('a::len) - 1)" by (rule td_ext_sbin) lemmas int_word_sint = td_ext_sint [THEN td_ext.eq_norm] lemmas td_sint = word_sint.td lemma to_bl_def': "(to_bl :: 'a::len word \ bool list) = bin_to_bl (LENGTH('a)) \ uint" by (auto simp: to_bl_def) lemmas word_reverse_no_def [simp] = word_reverse_def [of "numeral w"] for w lemma uints_mod: "uints n = range (\w. w mod 2 ^ n)" by (fact uints_def [unfolded no_bintr_alt1]) lemma word_numeral_alt: "numeral b = word_of_int (numeral b)" by (induct b, simp_all only: numeral.simps word_of_int_homs) declare word_numeral_alt [symmetric, code_abbrev] lemma word_neg_numeral_alt: "- numeral b = word_of_int (- numeral b)" by (simp only: word_numeral_alt wi_hom_neg) declare word_neg_numeral_alt [symmetric, code_abbrev] lemma uint_bintrunc [simp]: "uint (numeral bin :: 'a word) = bintrunc (LENGTH('a::len)) (numeral bin)" unfolding word_numeral_alt by (rule word_ubin.eq_norm) lemma uint_bintrunc_neg [simp]: "uint (- numeral bin :: 'a word) = bintrunc (LENGTH('a::len)) (- numeral bin)" by (simp only: word_neg_numeral_alt word_ubin.eq_norm) lemma sint_sbintrunc [simp]: "sint (numeral bin :: 'a word) = sbintrunc (LENGTH('a::len) - 1) (numeral bin)" by (simp only: word_numeral_alt word_sbin.eq_norm) lemma sint_sbintrunc_neg [simp]: "sint (- numeral bin :: 'a word) = sbintrunc (LENGTH('a::len) - 1) (- numeral bin)" by (simp only: word_neg_numeral_alt word_sbin.eq_norm) lemma unat_bintrunc [simp]: "unat (numeral bin :: 'a::len word) = nat (bintrunc (LENGTH('a)) (numeral bin))" by (simp only: unat_def uint_bintrunc) lemma unat_bintrunc_neg [simp]: "unat (- numeral bin :: 'a::len word) = nat (bintrunc (LENGTH('a)) (- numeral bin))" by (simp only: unat_def uint_bintrunc_neg) lemma size_0_eq: "size w = 0 \ v = w" for v w :: "'a::len word" apply (unfold word_size) apply (rule word_uint.Rep_eqD) apply (rule box_equals) defer apply (rule word_ubin.norm_Rep)+ apply simp done lemma uint_ge_0 [iff]: "0 \ uint x" for x :: "'a::len word" using word_uint.Rep [of x] by (simp add: uints_num) lemma uint_lt2p [iff]: "uint x < 2 ^ LENGTH('a)" for x :: "'a::len word" using word_uint.Rep [of x] by (simp add: uints_num) lemma word_exp_length_eq_0 [simp]: \(2 :: 'a::len word) ^ LENGTH('a) = 0\ by transfer (simp add: bintrunc_mod2p) lemma sint_ge: "- (2 ^ (LENGTH('a) - 1)) \ sint x" for x :: "'a::len word" using word_sint.Rep [of x] by (simp add: sints_num) lemma sint_lt: "sint x < 2 ^ (LENGTH('a) - 1)" for x :: "'a::len word" using word_sint.Rep [of x] by (simp add: sints_num) lemma sign_uint_Pls [simp]: "bin_sign (uint x) = 0" by (simp add: sign_Pls_ge_0) lemma uint_m2p_neg: "uint x - 2 ^ LENGTH('a) < 0" for x :: "'a::len word" by (simp only: diff_less_0_iff_less uint_lt2p) lemma uint_m2p_not_non_neg: "\ 0 \ uint x - 2 ^ LENGTH('a)" for x :: "'a::len word" by (simp only: not_le uint_m2p_neg) lemma lt2p_lem: "LENGTH('a) \ n \ uint w < 2 ^ n" for w :: "'a::len word" by (metis bintr_uint bintrunc_mod2p int_mod_lem zless2p) lemma uint_le_0_iff [simp]: "uint x \ 0 \ uint x = 0" by (fact uint_ge_0 [THEN leD, THEN antisym_conv1]) lemma uint_nat: "uint w = int (unat w)" by (auto simp: unat_def) lemma uint_numeral: "uint (numeral b :: 'a::len word) = numeral b mod 2 ^ LENGTH('a)" by (simp only: word_numeral_alt int_word_uint) lemma uint_neg_numeral: "uint (- numeral b :: 'a::len word) = - numeral b mod 2 ^ LENGTH('a)" by (simp only: word_neg_numeral_alt int_word_uint) lemma unat_numeral: "unat (numeral b :: 'a::len word) = numeral b mod 2 ^ LENGTH('a)" apply (unfold unat_def) apply (clarsimp simp only: uint_numeral) apply (rule nat_mod_distrib [THEN trans]) apply (rule zero_le_numeral) apply (simp_all add: nat_power_eq) done lemma sint_numeral: "sint (numeral b :: 'a::len word) = (numeral b + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - 2 ^ (LENGTH('a) - 1)" unfolding word_numeral_alt by (rule int_word_sint) lemma word_of_int_0 [simp, code_post]: "word_of_int 0 = 0" unfolding word_0_wi .. lemma word_of_int_1 [simp, code_post]: "word_of_int 1 = 1" unfolding word_1_wi .. lemma word_of_int_neg_1 [simp]: "word_of_int (- 1) = - 1" by (simp add: wi_hom_syms) lemma word_of_int_numeral [simp] : "(word_of_int (numeral bin) :: 'a::len word) = numeral bin" by (simp only: word_numeral_alt) lemma word_of_int_neg_numeral [simp]: "(word_of_int (- numeral bin) :: 'a::len word) = - numeral bin" by (simp only: word_numeral_alt wi_hom_syms) lemma word_int_case_wi: "word_int_case f (word_of_int i :: 'b word) = f (i mod 2 ^ LENGTH('b::len))" by (simp add: word_int_case_def word_uint.eq_norm) lemma word_int_split: "P (word_int_case f x) = (\i. x = (word_of_int i :: 'b::len word) \ 0 \ i \ i < 2 ^ LENGTH('b) \ P (f i))" by (auto simp: word_int_case_def word_uint.eq_norm) lemma word_int_split_asm: "P (word_int_case f x) = (\n. x = (word_of_int n :: 'b::len word) \ 0 \ n \ n < 2 ^ LENGTH('b::len) \ \ P (f n))" by (auto simp: word_int_case_def word_uint.eq_norm) lemmas uint_range' = word_uint.Rep [unfolded uints_num mem_Collect_eq] lemmas sint_range' = word_sint.Rep [unfolded One_nat_def sints_num mem_Collect_eq] lemma uint_range_size: "0 \ uint w \ uint w < 2 ^ size w" unfolding word_size by (rule uint_range') lemma sint_range_size: "- (2 ^ (size w - Suc 0)) \ sint w \ sint w < 2 ^ (size w - Suc 0)" unfolding word_size by (rule sint_range') lemma sint_above_size: "2 ^ (size w - 1) \ x \ sint w < x" for w :: "'a::len word" unfolding word_size by (rule less_le_trans [OF sint_lt]) lemma sint_below_size: "x \ - (2 ^ (size w - 1)) \ x \ sint w" for w :: "'a::len word" unfolding word_size by (rule order_trans [OF _ sint_ge]) subsection \Testing bits\ lemma test_bit_eq_iff: "test_bit u = test_bit v \ u = v" for u v :: "'a::len word" unfolding word_test_bit_def by (simp add: bin_nth_eq_iff) lemma test_bit_size [rule_format] : "w !! n \ n < size w" for w :: "'a::len word" apply (unfold word_test_bit_def) apply (subst word_ubin.norm_Rep [symmetric]) apply (simp only: nth_bintr word_size) apply fast done lemma word_eq_iff: "x = y \ (\n?P \ ?Q\) for x y :: "'a::len word" proof assume ?P then show ?Q by simp next assume ?Q then have *: \bit (uint x) n \ bit (uint y) n\ if \n < LENGTH('a)\ for n using that by (simp add: word_test_bit_def) show ?P proof (rule word_uint_eqI, rule bit_eqI, rule iffI) fix n assume \bit (uint x) n\ then have \n < LENGTH('a)\ by (simp add: bit_take_bit_iff uint.rep_eq) with * \bit (uint x) n\ show \bit (uint y) n\ by simp next fix n assume \bit (uint y) n\ then have \n < LENGTH('a)\ by (simp add: bit_take_bit_iff uint.rep_eq) with * \bit (uint y) n\ show \bit (uint x) n\ by simp qed qed lemma word_eqI: "(\n. n < size u \ u !! n = v !! n) \ u = v" for u :: "'a::len word" by (simp add: word_size word_eq_iff) lemma word_eqD: "u = v \ u !! x = v !! x" for u v :: "'a::len word" by simp lemma test_bit_bin': "w !! n \ n < size w \ bin_nth (uint w) n" by (simp add: word_test_bit_def word_size nth_bintr [symmetric]) lemmas test_bit_bin = test_bit_bin' [unfolded word_size] lemma bin_nth_uint_imp: "bin_nth (uint w) n \ n < LENGTH('a)" for w :: "'a::len word" apply (rule nth_bintr [THEN iffD1, THEN conjunct1]) apply (subst word_ubin.norm_Rep) apply assumption done lemma bin_nth_sint: "LENGTH('a) \ n \ bin_nth (sint w) n = bin_nth (sint w) (LENGTH('a) - 1)" for w :: "'a::len word" apply (subst word_sbin.norm_Rep [symmetric]) apply (auto simp add: nth_sbintr) done \ \type definitions theorem for in terms of equivalent bool list\ lemma td_bl: "type_definition (to_bl :: 'a::len word \ bool list) of_bl {bl. length bl = LENGTH('a)}" apply (unfold type_definition_def of_bl_def to_bl_def) apply (simp add: word_ubin.eq_norm) apply safe apply (drule sym) apply simp done interpretation word_bl: type_definition "to_bl :: 'a::len word \ bool list" of_bl "{bl. length bl = LENGTH('a::len)}" by (fact td_bl) lemmas word_bl_Rep' = word_bl.Rep [unfolded mem_Collect_eq, iff] lemma word_size_bl: "size w = size (to_bl w)" by (auto simp: word_size) lemma to_bl_use_of_bl: "to_bl w = bl \ w = of_bl bl \ length bl = length (to_bl w)" by (fastforce elim!: word_bl.Abs_inverse [unfolded mem_Collect_eq]) lemma to_bl_word_rev: "to_bl (word_reverse w) = rev (to_bl w)" by (simp add: word_reverse_def word_bl.Abs_inverse) lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w" by (simp add: word_reverse_def word_bl.Abs_inverse) lemma word_rev_gal: "word_reverse w = u \ word_reverse u = w" by (metis word_rev_rev) lemma word_rev_gal': "u = word_reverse w \ w = word_reverse u" by simp lemma length_bl_gt_0 [iff]: "0 < length (to_bl x)" for x :: "'a::len word" unfolding word_bl_Rep' by (rule len_gt_0) lemma bl_not_Nil [iff]: "to_bl x \ []" for x :: "'a::len word" by (fact length_bl_gt_0 [unfolded length_greater_0_conv]) lemma length_bl_neq_0 [iff]: "length (to_bl x) \ 0" for x :: "'a::len word" by (fact length_bl_gt_0 [THEN gr_implies_not0]) lemma hd_bl_sign_sint: "hd (to_bl w) = (bin_sign (sint w) = -1)" apply (unfold to_bl_def sint_uint) apply (rule trans [OF _ bl_sbin_sign]) apply simp done lemma of_bl_drop': "lend = length bl - LENGTH('a::len) \ of_bl (drop lend bl) = (of_bl bl :: 'a word)" by (auto simp: of_bl_def trunc_bl2bin [symmetric]) lemma test_bit_of_bl: "(of_bl bl::'a::len word) !! n = (rev bl ! n \ n < LENGTH('a) \ n < length bl)" by (auto simp add: of_bl_def word_test_bit_def word_size word_ubin.eq_norm nth_bintr bin_nth_of_bl) lemma bit_of_bl_iff: \bit (of_bl bs :: 'a word) n \ rev bs ! n \ n < LENGTH('a::len) \ n < length bs\ using test_bit_of_bl [of bs n] by (simp add: test_bit_word_eq) lemma no_of_bl: "(numeral bin ::'a::len word) = of_bl (bin_to_bl (LENGTH('a)) (numeral bin))" by (simp add: of_bl_def) lemma uint_bl: "to_bl w = bin_to_bl (size w) (uint w)" by (auto simp: word_size to_bl_def) lemma to_bl_bin: "bl_to_bin (to_bl w) = uint w" by (simp add: uint_bl word_size) lemma to_bl_of_bin: "to_bl (word_of_int bin::'a::len word) = bin_to_bl (LENGTH('a)) bin" by (auto simp: uint_bl word_ubin.eq_norm word_size) lemma to_bl_numeral [simp]: "to_bl (numeral bin::'a::len word) = bin_to_bl (LENGTH('a)) (numeral bin)" unfolding word_numeral_alt by (rule to_bl_of_bin) lemma to_bl_neg_numeral [simp]: "to_bl (- numeral bin::'a::len word) = bin_to_bl (LENGTH('a)) (- numeral bin)" unfolding word_neg_numeral_alt by (rule to_bl_of_bin) lemma to_bl_to_bin [simp] : "bl_to_bin (to_bl w) = uint w" by (simp add: uint_bl word_size) lemma uint_bl_bin: "bl_to_bin (bin_to_bl (LENGTH('a)) (uint x)) = uint x" for x :: "'a::len word" by (rule trans [OF bin_bl_bin word_ubin.norm_Rep]) \ \naturals\ lemma uints_unats: "uints n = int ` unats n" apply (unfold unats_def uints_num) apply safe apply (rule_tac image_eqI) apply (erule_tac nat_0_le [symmetric]) by auto lemma unats_uints: "unats n = nat ` uints n" by (auto simp: uints_unats image_iff) lemmas bintr_num = word_ubin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b lemmas sbintr_num = word_sbin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b lemma num_of_bintr': "bintrunc (LENGTH('a::len)) (numeral a) = (numeral b) \ numeral a = (numeral b :: 'a word)" unfolding bintr_num by (erule subst, simp) lemma num_of_sbintr': "sbintrunc (LENGTH('a::len) - 1) (numeral a) = (numeral b) \ numeral a = (numeral b :: 'a word)" unfolding sbintr_num by (erule subst, simp) lemma num_abs_bintr: "(numeral x :: 'a word) = word_of_int (bintrunc (LENGTH('a::len)) (numeral x))" by (simp only: word_ubin.Abs_norm word_numeral_alt) lemma num_abs_sbintr: "(numeral x :: 'a word) = word_of_int (sbintrunc (LENGTH('a::len) - 1) (numeral x))" by (simp only: word_sbin.Abs_norm word_numeral_alt) text \ \cast\ -- note, no arg for new length, as it's determined by type of result, thus in \cast w = w\, the type means cast to length of \w\! \ lemma bit_ucast_iff: \Parity.bit (ucast a :: 'a::len word) n \ n < LENGTH('a::len) \ Parity.bit a n\ by (simp add: ucast_def, transfer) (auto simp add: bit_take_bit_iff) lemma ucast_id: "ucast w = w" by (auto simp: ucast_def) lemma scast_id: "scast w = w" by (auto simp: scast_def) lemma ucast_bl: "ucast w = of_bl (to_bl w)" by (auto simp: ucast_def of_bl_def uint_bl word_size) lemma nth_ucast: "(ucast w::'a::len word) !! n = (w !! n \ n < LENGTH('a))" by (simp add: ucast_def test_bit_bin word_ubin.eq_norm nth_bintr word_size) (fast elim!: bin_nth_uint_imp) context includes lifting_syntax begin lemma transfer_rule_mask_word [transfer_rule]: \((=) ===> pcr_word) Bit_Operations.mask Bit_Operations.mask\ by (simp only: mask_eq_exp_minus_1 [abs_def]) transfer_prover end lemma ucast_mask_eq: \ucast (Bit_Operations.mask n :: 'b word) = Bit_Operations.mask (min LENGTH('b::len) n)\ by (simp add: bit_eq_iff) (auto simp add: bit_mask_iff bit_ucast_iff exp_eq_zero_iff) \ \literal u(s)cast\ lemma ucast_bintr [simp]: "ucast (numeral w :: 'a::len word) = word_of_int (bintrunc (LENGTH('a)) (numeral w))" by (simp add: ucast_def) (* TODO: neg_numeral *) lemma scast_sbintr [simp]: "scast (numeral w ::'a::len word) = word_of_int (sbintrunc (LENGTH('a) - Suc 0) (numeral w))" by (simp add: scast_def) lemma source_size: "source_size (c::'a::len word \ _) = LENGTH('a)" unfolding source_size_def word_size Let_def .. lemma target_size: "target_size (c::_ \ 'b::len word) = LENGTH('b)" unfolding target_size_def word_size Let_def .. lemma is_down: "is_down c \ LENGTH('b) \ LENGTH('a)" for c :: "'a::len word \ 'b::len word" by (simp only: is_down_def source_size target_size) lemma is_up: "is_up c \ LENGTH('a) \ LENGTH('b)" for c :: "'a::len word \ 'b::len word" by (simp only: is_up_def source_size target_size) lemmas is_up_down = trans [OF is_up is_down [symmetric]] lemma down_cast_same [OF refl]: "uc = ucast \ is_down uc \ uc = scast" apply (unfold is_down) apply safe apply (rule ext) apply (unfold ucast_def scast_def uint_sint) apply (rule word_ubin.norm_eq_iff [THEN iffD1]) apply simp done lemma word_rev_tf: "to_bl (of_bl bl::'a::len word) = rev (takefill False (LENGTH('a)) (rev bl))" by (auto simp: of_bl_def uint_bl bl_bin_bl_rtf word_ubin.eq_norm word_size) lemma word_rep_drop: "to_bl (of_bl bl::'a::len word) = replicate (LENGTH('a) - length bl) False @ drop (length bl - LENGTH('a)) bl" by (simp add: word_rev_tf takefill_alt rev_take) lemma to_bl_ucast: "to_bl (ucast (w::'b::len word) ::'a::len word) = replicate (LENGTH('a) - LENGTH('b)) False @ drop (LENGTH('b) - LENGTH('a)) (to_bl w)" apply (unfold ucast_bl) apply (rule trans) apply (rule word_rep_drop) apply simp done lemma ucast_up_app [OF refl]: "uc = ucast \ source_size uc + n = target_size uc \ to_bl (uc w) = replicate n False @ (to_bl w)" by (auto simp add : source_size target_size to_bl_ucast) lemma ucast_down_drop [OF refl]: "uc = ucast \ source_size uc = target_size uc + n \ to_bl (uc w) = drop n (to_bl w)" by (auto simp add : source_size target_size to_bl_ucast) lemma scast_down_drop [OF refl]: "sc = scast \ source_size sc = target_size sc + n \ to_bl (sc w) = drop n (to_bl w)" apply (subgoal_tac "sc = ucast") apply safe apply simp apply (erule ucast_down_drop) apply (rule down_cast_same [symmetric]) apply (simp add : source_size target_size is_down) done lemma sint_up_scast [OF refl]: "sc = scast \ is_up sc \ sint (sc w) = sint w" apply (unfold is_up) apply safe apply (simp add: scast_def word_sbin.eq_norm) apply (rule box_equals) prefer 3 apply (rule word_sbin.norm_Rep) apply (rule sbintrunc_sbintrunc_l) defer apply (subst word_sbin.norm_Rep) apply (rule refl) apply simp done lemma uint_up_ucast [OF refl]: "uc = ucast \ is_up uc \ uint (uc w) = uint w" apply (unfold is_up) apply safe apply (rule bin_eqI) apply (fold word_test_bit_def) apply (auto simp add: nth_ucast) apply (auto simp add: test_bit_bin) done lemma ucast_up_ucast [OF refl]: "uc = ucast \ is_up uc \ ucast (uc w) = ucast w" apply (simp (no_asm) add: ucast_def) apply (clarsimp simp add: uint_up_ucast) done lemma scast_up_scast [OF refl]: "sc = scast \ is_up sc \ scast (sc w) = scast w" apply (simp (no_asm) add: scast_def) apply (clarsimp simp add: sint_up_scast) done lemma ucast_of_bl_up [OF refl]: "w = of_bl bl \ size bl \ size w \ ucast w = of_bl bl" by (auto simp add : nth_ucast word_size test_bit_of_bl intro!: word_eqI) lemmas ucast_up_ucast_id = trans [OF ucast_up_ucast ucast_id] lemmas scast_up_scast_id = trans [OF scast_up_scast scast_id] lemmas isduu = is_up_down [where c = "ucast", THEN iffD2] lemmas isdus = is_up_down [where c = "scast", THEN iffD2] lemmas ucast_down_ucast_id = isduu [THEN ucast_up_ucast_id] lemmas scast_down_scast_id = isdus [THEN ucast_up_ucast_id] lemma up_ucast_surj: "is_up (ucast :: 'b::len word \ 'a::len word) \ surj (ucast :: 'a word \ 'b word)" by (rule surjI) (erule ucast_up_ucast_id) lemma up_scast_surj: "is_up (scast :: 'b::len word \ 'a::len word) \ surj (scast :: 'a word \ 'b word)" by (rule surjI) (erule scast_up_scast_id) lemma down_scast_inj: "is_down (scast :: 'b::len word \ 'a::len word) \ inj_on (ucast :: 'a word \ 'b word) A" by (rule inj_on_inverseI, erule scast_down_scast_id) lemma down_ucast_inj: "is_down (ucast :: 'b::len word \ 'a::len word) \ inj_on (ucast :: 'a word \ 'b word) A" by (rule inj_on_inverseI) (erule ucast_down_ucast_id) lemma of_bl_append_same: "of_bl (X @ to_bl w) = w" by (rule word_bl.Rep_eqD) (simp add: word_rep_drop) lemma ucast_down_wi [OF refl]: "uc = ucast \ is_down uc \ uc (word_of_int x) = word_of_int x" apply (unfold is_down) apply (clarsimp simp add: ucast_def word_ubin.eq_norm) apply (rule word_ubin.norm_eq_iff [THEN iffD1]) apply (erule bintrunc_bintrunc_ge) done lemma ucast_down_no [OF refl]: "uc = ucast \ is_down uc \ uc (numeral bin) = numeral bin" unfolding word_numeral_alt by clarify (rule ucast_down_wi) lemma ucast_down_bl [OF refl]: "uc = ucast \ is_down uc \ uc (of_bl bl) = of_bl bl" unfolding of_bl_def by clarify (erule ucast_down_wi) lemmas slice_def' = slice_def [unfolded word_size] lemmas test_bit_def' = word_test_bit_def [THEN fun_cong] lemmas word_log_defs = word_and_def word_or_def word_xor_def word_not_def subsection \Word Arithmetic\ lemma word_less_alt: "a < b \ uint a < uint b" by (fact word_less_def) lemma signed_linorder: "class.linorder word_sle word_sless" by standard (auto simp: word_sle_def word_sless_def) interpretation signed: linorder "word_sle" "word_sless" by (rule signed_linorder) lemma udvdI: "0 \ n \ uint b = n * uint a \ a udvd b" by (auto simp: udvd_def) lemmas word_div_no [simp] = word_div_def [of "numeral a" "numeral b"] for a b lemmas word_mod_no [simp] = word_mod_def [of "numeral a" "numeral b"] for a b lemmas word_less_no [simp] = word_less_def [of "numeral a" "numeral b"] for a b lemmas word_le_no [simp] = word_le_def [of "numeral a" "numeral b"] for a b lemmas word_sless_no [simp] = word_sless_def [of "numeral a" "numeral b"] for a b lemmas word_sle_no [simp] = word_sle_def [of "numeral a" "numeral b"] for a b lemma word_m1_wi: "- 1 = word_of_int (- 1)" by (simp add: word_neg_numeral_alt [of Num.One]) lemma word_0_bl [simp]: "of_bl [] = 0" by (simp add: of_bl_def) lemma word_1_bl: "of_bl [True] = 1" by (simp add: of_bl_def bl_to_bin_def) lemma uint_eq_0 [simp]: "uint 0 = 0" unfolding word_0_wi word_ubin.eq_norm by simp lemma of_bl_0 [simp]: "of_bl (replicate n False) = 0" by (simp add: of_bl_def bl_to_bin_rep_False) lemma to_bl_0 [simp]: "to_bl (0::'a::len word) = replicate (LENGTH('a)) False" by (simp add: uint_bl word_size bin_to_bl_zero) lemma uint_0_iff: "uint x = 0 \ x = 0" by (simp add: word_uint_eq_iff) lemma unat_0_iff: "unat x = 0 \ x = 0" by (auto simp: unat_def nat_eq_iff uint_0_iff) lemma unat_0 [simp]: "unat 0 = 0" by (auto simp: unat_def) lemma size_0_same': "size w = 0 \ w = v" for v w :: "'a::len word" apply (unfold word_size) apply (rule box_equals) defer apply (rule word_uint.Rep_inverse)+ apply (rule word_ubin.norm_eq_iff [THEN iffD1]) apply simp done lemmas size_0_same = size_0_same' [unfolded word_size] lemmas unat_eq_0 = unat_0_iff lemmas unat_eq_zero = unat_0_iff lemma unat_gt_0: "0 < unat x \ x \ 0" by (auto simp: unat_0_iff [symmetric]) lemma ucast_0 [simp]: "ucast 0 = 0" by (simp add: ucast_def) lemma sint_0 [simp]: "sint 0 = 0" by (simp add: sint_uint) lemma scast_0 [simp]: "scast 0 = 0" by (simp add: scast_def) lemma sint_n1 [simp] : "sint (- 1) = - 1" by (simp only: word_m1_wi word_sbin.eq_norm) simp lemma scast_n1 [simp]: "scast (- 1) = - 1" by (simp add: scast_def) lemma uint_1 [simp]: "uint (1::'a::len word) = 1" by (simp only: word_1_wi word_ubin.eq_norm) simp lemma unat_1 [simp]: "unat (1::'a::len word) = 1" by (simp add: unat_def) lemma ucast_1 [simp]: "ucast (1::'a::len word) = 1" by (simp add: ucast_def) \ \now, to get the weaker results analogous to \word_div\/\mod_def\\ subsection \Transferring goals from words to ints\ lemma word_ths: shows word_succ_p1: "word_succ a = a + 1" and word_pred_m1: "word_pred a = a - 1" and word_pred_succ: "word_pred (word_succ a) = a" and word_succ_pred: "word_succ (word_pred a) = a" and word_mult_succ: "word_succ a * b = b + a * b" by (transfer, simp add: algebra_simps)+ lemma uint_cong: "x = y \ uint x = uint y" by simp lemma uint_word_ariths: fixes a b :: "'a::len word" shows "uint (a + b) = (uint a + uint b) mod 2 ^ LENGTH('a::len)" and "uint (a - b) = (uint a - uint b) mod 2 ^ LENGTH('a)" and "uint (a * b) = uint a * uint b mod 2 ^ LENGTH('a)" and "uint (- a) = - uint a mod 2 ^ LENGTH('a)" and "uint (word_succ a) = (uint a + 1) mod 2 ^ LENGTH('a)" and "uint (word_pred a) = (uint a - 1) mod 2 ^ LENGTH('a)" and "uint (0 :: 'a word) = 0 mod 2 ^ LENGTH('a)" and "uint (1 :: 'a word) = 1 mod 2 ^ LENGTH('a)" by (simp_all add: word_arith_wis [THEN trans [OF uint_cong int_word_uint]]) lemma uint_word_arith_bintrs: fixes a b :: "'a::len word" shows "uint (a + b) = bintrunc (LENGTH('a)) (uint a + uint b)" and "uint (a - b) = bintrunc (LENGTH('a)) (uint a - uint b)" and "uint (a * b) = bintrunc (LENGTH('a)) (uint a * uint b)" and "uint (- a) = bintrunc (LENGTH('a)) (- uint a)" and "uint (word_succ a) = bintrunc (LENGTH('a)) (uint a + 1)" and "uint (word_pred a) = bintrunc (LENGTH('a)) (uint a - 1)" and "uint (0 :: 'a word) = bintrunc (LENGTH('a)) 0" and "uint (1 :: 'a word) = bintrunc (LENGTH('a)) 1" by (simp_all add: uint_word_ariths bintrunc_mod2p) lemma sint_word_ariths: fixes a b :: "'a::len word" shows "sint (a + b) = sbintrunc (LENGTH('a) - 1) (sint a + sint b)" and "sint (a - b) = sbintrunc (LENGTH('a) - 1) (sint a - sint b)" and "sint (a * b) = sbintrunc (LENGTH('a) - 1) (sint a * sint b)" and "sint (- a) = sbintrunc (LENGTH('a) - 1) (- sint a)" and "sint (word_succ a) = sbintrunc (LENGTH('a) - 1) (sint a + 1)" and "sint (word_pred a) = sbintrunc (LENGTH('a) - 1) (sint a - 1)" and "sint (0 :: 'a word) = sbintrunc (LENGTH('a) - 1) 0" and "sint (1 :: 'a word) = sbintrunc (LENGTH('a) - 1) 1" apply (simp_all only: word_sbin.inverse_norm [symmetric]) apply (simp_all add: wi_hom_syms) apply transfer apply simp apply transfer apply simp done lemmas uint_div_alt = word_div_def [THEN trans [OF uint_cong int_word_uint]] lemmas uint_mod_alt = word_mod_def [THEN trans [OF uint_cong int_word_uint]] lemma word_pred_0_n1: "word_pred 0 = word_of_int (- 1)" unfolding word_pred_m1 by simp lemma succ_pred_no [simp]: "word_succ (numeral w) = numeral w + 1" "word_pred (numeral w) = numeral w - 1" "word_succ (- numeral w) = - numeral w + 1" "word_pred (- numeral w) = - numeral w - 1" by (simp_all add: word_succ_p1 word_pred_m1) lemma word_sp_01 [simp]: "word_succ (- 1) = 0 \ word_succ 0 = 1 \ word_pred 0 = - 1 \ word_pred 1 = 0" by (simp_all add: word_succ_p1 word_pred_m1) \ \alternative approach to lifting arithmetic equalities\ lemma word_of_int_Ex: "\y. x = word_of_int y" by (rule_tac x="uint x" in exI) simp subsection \Order on fixed-length words\ lemma word_zero_le [simp]: "0 \ y" for y :: "'a::len word" unfolding word_le_def by auto lemma word_m1_ge [simp] : "word_pred 0 \ y" (* FIXME: delete *) by (simp only: word_le_def word_pred_0_n1 word_uint.eq_norm m1mod2k) auto lemma word_n1_ge [simp]: "y \ -1" for y :: "'a::len word" by (fact word_order.extremum) lemmas word_not_simps [simp] = word_zero_le [THEN leD] word_m1_ge [THEN leD] word_n1_ge [THEN leD] lemma word_gt_0: "0 < y \ 0 \ y" for y :: "'a::len word" by (simp add: less_le) lemmas word_gt_0_no [simp] = word_gt_0 [of "numeral y"] for y lemma word_sless_alt: "a sint a < sint b" by (auto simp add: word_sle_def word_sless_def less_le) lemma word_le_nat_alt: "a \ b \ unat a \ unat b" unfolding unat_def word_le_def by (rule nat_le_eq_zle [symmetric]) simp lemma word_less_nat_alt: "a < b \ unat a < unat b" unfolding unat_def word_less_alt by (rule nat_less_eq_zless [symmetric]) simp lemmas unat_mono = word_less_nat_alt [THEN iffD1] instance word :: (len) wellorder proof fix P :: "'a word \ bool" and a assume *: "(\b. (\a. a < b \ P a) \ P b)" have "wf (measure unat)" .. moreover have "{(a, b :: ('a::len) word). a < b} \ measure unat" by (auto simp add: word_less_nat_alt) ultimately have "wf {(a, b :: ('a::len) word). a < b}" by (rule wf_subset) then show "P a" using * by induction blast qed lemma wi_less: "(word_of_int n < (word_of_int m :: 'a::len word)) = (n mod 2 ^ LENGTH('a) < m mod 2 ^ LENGTH('a))" unfolding word_less_alt by (simp add: word_uint.eq_norm) lemma wi_le: "(word_of_int n \ (word_of_int m :: 'a::len word)) = (n mod 2 ^ LENGTH('a) \ m mod 2 ^ LENGTH('a))" unfolding word_le_def by (simp add: word_uint.eq_norm) lemma udvd_nat_alt: "a udvd b \ (\n\0. unat b = n * unat a)" apply (unfold udvd_def) apply safe apply (simp add: unat_def nat_mult_distrib) apply (simp add: uint_nat) apply (rule exI) apply safe prefer 2 apply (erule notE) apply (rule refl) apply force done lemma udvd_iff_dvd: "x udvd y \ unat x dvd unat y" unfolding dvd_def udvd_nat_alt by force lemma unat_minus_one: assumes "w \ 0" shows "unat (w - 1) = unat w - 1" proof - have "0 \ uint w" by (fact uint_nonnegative) moreover from assms have "0 \ uint w" by (simp add: uint_0_iff) ultimately have "1 \ uint w" by arith from uint_lt2p [of w] have "uint w - 1 < 2 ^ LENGTH('a)" by arith with \1 \ uint w\ have "(uint w - 1) mod 2 ^ LENGTH('a) = uint w - 1" by (auto intro: mod_pos_pos_trivial) with \1 \ uint w\ have "nat ((uint w - 1) mod 2 ^ LENGTH('a)) = nat (uint w) - 1" by auto then show ?thesis by (simp only: unat_def int_word_uint word_arith_wis mod_diff_right_eq) qed lemma measure_unat: "p \ 0 \ unat (p - 1) < unat p" by (simp add: unat_minus_one) (simp add: unat_0_iff [symmetric]) lemmas uint_add_ge0 [simp] = add_nonneg_nonneg [OF uint_ge_0 uint_ge_0] lemmas uint_mult_ge0 [simp] = mult_nonneg_nonneg [OF uint_ge_0 uint_ge_0] lemma uint_sub_lt2p [simp]: "uint x - uint y < 2 ^ LENGTH('a)" for x :: "'a::len word" and y :: "'b::len word" using uint_ge_0 [of y] uint_lt2p [of x] by arith subsection \Conditions for the addition (etc) of two words to overflow\ lemma uint_add_lem: "(uint x + uint y < 2 ^ LENGTH('a)) = (uint (x + y) = uint x + uint y)" for x y :: "'a::len word" by (unfold uint_word_ariths) (auto intro!: trans [OF _ int_mod_lem]) lemma uint_mult_lem: "(uint x * uint y < 2 ^ LENGTH('a)) = (uint (x * y) = uint x * uint y)" for x y :: "'a::len word" by (unfold uint_word_ariths) (auto intro!: trans [OF _ int_mod_lem]) lemma uint_sub_lem: "uint x \ uint y \ uint (x - y) = uint x - uint y" by (auto simp: uint_word_ariths intro!: trans [OF _ int_mod_lem]) lemma uint_add_le: "uint (x + y) \ uint x + uint y" unfolding uint_word_ariths by (metis uint_add_ge0 zmod_le_nonneg_dividend) lemma uint_sub_ge: "uint (x - y) \ uint x - uint y" unfolding uint_word_ariths by (metis int_mod_ge uint_sub_lt2p zless2p) lemma mod_add_if_z: "x < z \ y < z \ 0 \ y \ 0 \ x \ 0 \ z \ (x + y) mod z = (if x + y < z then x + y else x + y - z)" for x y z :: int by (auto intro: int_mod_eq) lemma uint_plus_if': "uint (a + b) = (if uint a + uint b < 2 ^ LENGTH('a) then uint a + uint b else uint a + uint b - 2 ^ LENGTH('a))" for a b :: "'a::len word" using mod_add_if_z [of "uint a" _ "uint b"] by (simp add: uint_word_ariths) lemma mod_sub_if_z: "x < z \ y < z \ 0 \ y \ 0 \ x \ 0 \ z \ (x - y) mod z = (if y \ x then x - y else x - y + z)" for x y z :: int by (auto intro: int_mod_eq) lemma uint_sub_if': "uint (a - b) = (if uint b \ uint a then uint a - uint b else uint a - uint b + 2 ^ LENGTH('a))" for a b :: "'a::len word" using mod_sub_if_z [of "uint a" _ "uint b"] by (simp add: uint_word_ariths) subsection \Definition of \uint_arith\\ lemma word_of_int_inverse: "word_of_int r = a \ 0 \ r \ r < 2 ^ LENGTH('a) \ uint a = r" for a :: "'a::len word" apply (erule word_uint.Abs_inverse' [rotated]) apply (simp add: uints_num) done lemma uint_split: "P (uint x) = (\i. word_of_int i = x \ 0 \ i \ i < 2^LENGTH('a) \ P i)" for x :: "'a::len word" apply (fold word_int_case_def) apply (auto dest!: word_of_int_inverse simp: int_word_uint split: word_int_split) done lemma uint_split_asm: "P (uint x) = (\i. word_of_int i = x \ 0 \ i \ i < 2^LENGTH('a) \ \ P i)" for x :: "'a::len word" by (auto dest!: word_of_int_inverse simp: int_word_uint split: uint_split) lemmas uint_splits = uint_split uint_split_asm lemmas uint_arith_simps = word_le_def word_less_alt word_uint.Rep_inject [symmetric] uint_sub_if' uint_plus_if' \ \use this to stop, eg. \2 ^ LENGTH(32)\ being simplified\ lemma power_False_cong: "False \ a ^ b = c ^ d" by auto \ \\uint_arith_tac\: reduce to arithmetic on int, try to solve by arith\ ML \ fun uint_arith_simpset ctxt = ctxt addsimps @{thms uint_arith_simps} delsimps @{thms word_uint.Rep_inject} |> fold Splitter.add_split @{thms if_split_asm} |> fold Simplifier.add_cong @{thms power_False_cong} fun uint_arith_tacs ctxt = let fun arith_tac' n t = Arith_Data.arith_tac ctxt n t handle Cooper.COOPER _ => Seq.empty; in [ clarify_tac ctxt 1, full_simp_tac (uint_arith_simpset ctxt) 1, ALLGOALS (full_simp_tac (put_simpset HOL_ss ctxt |> fold Splitter.add_split @{thms uint_splits} |> fold Simplifier.add_cong @{thms power_False_cong})), rewrite_goals_tac ctxt @{thms word_size}, ALLGOALS (fn n => REPEAT (resolve_tac ctxt [allI, impI] n) THEN REPEAT (eresolve_tac ctxt [conjE] n) THEN REPEAT (dresolve_tac ctxt @{thms word_of_int_inverse} n THEN assume_tac ctxt n THEN assume_tac ctxt n)), TRYALL arith_tac' ] end fun uint_arith_tac ctxt = SELECT_GOAL (EVERY (uint_arith_tacs ctxt)) \ method_setup uint_arith = \Scan.succeed (SIMPLE_METHOD' o uint_arith_tac)\ "solving word arithmetic via integers and arith" subsection \More on overflows and monotonicity\ lemma no_plus_overflow_uint_size: "x \ x + y \ uint x + uint y < 2 ^ size x" for x y :: "'a::len word" unfolding word_size by uint_arith lemmas no_olen_add = no_plus_overflow_uint_size [unfolded word_size] lemma no_ulen_sub: "x \ x - y \ uint y \ uint x" for x y :: "'a::len word" by uint_arith lemma no_olen_add': "x \ y + x \ uint y + uint x < 2 ^ LENGTH('a)" for x y :: "'a::len word" by (simp add: ac_simps no_olen_add) lemmas olen_add_eqv = trans [OF no_olen_add no_olen_add' [symmetric]] lemmas uint_plus_simple_iff = trans [OF no_olen_add uint_add_lem] lemmas uint_plus_simple = uint_plus_simple_iff [THEN iffD1] lemmas uint_minus_simple_iff = trans [OF no_ulen_sub uint_sub_lem] lemmas uint_minus_simple_alt = uint_sub_lem [folded word_le_def] lemmas word_sub_le_iff = no_ulen_sub [folded word_le_def] lemmas word_sub_le = word_sub_le_iff [THEN iffD2] lemma word_less_sub1: "x \ 0 \ 1 < x \ 0 < x - 1" for x :: "'a::len word" by uint_arith lemma word_le_sub1: "x \ 0 \ 1 \ x \ 0 \ x - 1" for x :: "'a::len word" by uint_arith lemma sub_wrap_lt: "x < x - z \ x < z" for x z :: "'a::len word" by uint_arith lemma sub_wrap: "x \ x - z \ z = 0 \ x < z" for x z :: "'a::len word" by uint_arith lemma plus_minus_not_NULL_ab: "x \ ab - c \ c \ ab \ c \ 0 \ x + c \ 0" for x ab c :: "'a::len word" by uint_arith lemma plus_minus_no_overflow_ab: "x \ ab - c \ c \ ab \ x \ x + c" for x ab c :: "'a::len word" by uint_arith lemma le_minus': "a + c \ b \ a \ a + c \ c \ b - a" for a b c :: "'a::len word" by uint_arith lemma le_plus': "a \ b \ c \ b - a \ a + c \ b" for a b c :: "'a::len word" by uint_arith lemmas le_plus = le_plus' [rotated] lemmas le_minus = leD [THEN thin_rl, THEN le_minus'] (* FIXME *) lemma word_plus_mono_right: "y \ z \ x \ x + z \ x + y \ x + z" for x y z :: "'a::len word" by uint_arith lemma word_less_minus_cancel: "y - x < z - x \ x \ z \ y < z" for x y z :: "'a::len word" by uint_arith lemma word_less_minus_mono_left: "y < z \ x \ y \ y - x < z - x" for x y z :: "'a::len word" by uint_arith lemma word_less_minus_mono: "a < c \ d < b \ a - b < a \ c - d < c \ a - b < c - d" for a b c d :: "'a::len word" by uint_arith lemma word_le_minus_cancel: "y - x \ z - x \ x \ z \ y \ z" for x y z :: "'a::len word" by uint_arith lemma word_le_minus_mono_left: "y \ z \ x \ y \ y - x \ z - x" for x y z :: "'a::len word" by uint_arith lemma word_le_minus_mono: "a \ c \ d \ b \ a - b \ a \ c - d \ c \ a - b \ c - d" for a b c d :: "'a::len word" by uint_arith lemma plus_le_left_cancel_wrap: "x + y' < x \ x + y < x \ x + y' < x + y \ y' < y" for x y y' :: "'a::len word" by uint_arith lemma plus_le_left_cancel_nowrap: "x \ x + y' \ x \ x + y \ x + y' < x + y \ y' < y" for x y y' :: "'a::len word" by uint_arith lemma word_plus_mono_right2: "a \ a + b \ c \ b \ a \ a + c" for a b c :: "'a::len word" by uint_arith lemma word_less_add_right: "x < y - z \ z \ y \ x + z < y" for x y z :: "'a::len word" by uint_arith lemma word_less_sub_right: "x < y + z \ y \ x \ x - y < z" for x y z :: "'a::len word" by uint_arith lemma word_le_plus_either: "x \ y \ x \ z \ y \ y + z \ x \ y + z" for x y z :: "'a::len word" by uint_arith lemma word_less_nowrapI: "x < z - k \ k \ z \ 0 < k \ x < x + k" for x z k :: "'a::len word" by uint_arith lemma inc_le: "i < m \ i + 1 \ m" for i m :: "'a::len word" by uint_arith lemma inc_i: "1 \ i \ i < m \ 1 \ i + 1 \ i + 1 \ m" for i m :: "'a::len word" by uint_arith lemma udvd_incr_lem: "up < uq \ up = ua + n * uint K \ uq = ua + n' * uint K \ up + uint K \ uq" apply clarsimp apply (drule less_le_mult) apply safe done lemma udvd_incr': "p < q \ uint p = ua + n * uint K \ uint q = ua + n' * uint K \ p + K \ q" apply (unfold word_less_alt word_le_def) apply (drule (2) udvd_incr_lem) apply (erule uint_add_le [THEN order_trans]) done lemma udvd_decr': "p < q \ uint p = ua + n * uint K \ uint q = ua + n' * uint K \ p \ q - K" apply (unfold word_less_alt word_le_def) apply (drule (2) udvd_incr_lem) apply (drule le_diff_eq [THEN iffD2]) apply (erule order_trans) apply (rule uint_sub_ge) done lemmas udvd_incr_lem0 = udvd_incr_lem [where ua=0, unfolded add_0_left] lemmas udvd_incr0 = udvd_incr' [where ua=0, unfolded add_0_left] lemmas udvd_decr0 = udvd_decr' [where ua=0, unfolded add_0_left] lemma udvd_minus_le': "xy < k \ z udvd xy \ z udvd k \ xy \ k - z" apply (unfold udvd_def) apply clarify apply (erule (2) udvd_decr0) done lemma udvd_incr2_K: "p < a + s \ a \ a + s \ K udvd s \ K udvd p - a \ a \ p \ 0 < K \ p \ p + K \ p + K \ a + s" supply [[simproc del: linordered_ring_less_cancel_factor]] apply (unfold udvd_def) apply clarify apply (simp add: uint_arith_simps split: if_split_asm) prefer 2 apply (insert uint_range' [of s])[1] apply arith apply (drule add.commute [THEN xtr1]) apply (simp add: diff_less_eq [symmetric]) apply (drule less_le_mult) apply arith apply simp done \ \links with \rbl\ operations\ lemma word_succ_rbl: "to_bl w = bl \ to_bl (word_succ w) = rev (rbl_succ (rev bl))" apply (unfold word_succ_alt) apply clarify apply (simp add: to_bl_of_bin) apply (simp add: to_bl_def rbl_succ) done lemma word_pred_rbl: "to_bl w = bl \ to_bl (word_pred w) = rev (rbl_pred (rev bl))" apply (unfold word_pred_alt) apply clarify apply (simp add: to_bl_of_bin) apply (simp add: to_bl_def rbl_pred) done lemma word_add_rbl: "to_bl v = vbl \ to_bl w = wbl \ to_bl (v + w) = rev (rbl_add (rev vbl) (rev wbl))" apply (unfold word_add_def) apply clarify apply (simp add: to_bl_of_bin) apply (simp add: to_bl_def rbl_add) done lemma word_mult_rbl: "to_bl v = vbl \ to_bl w = wbl \ to_bl (v * w) = rev (rbl_mult (rev vbl) (rev wbl))" apply (unfold word_mult_def) apply clarify apply (simp add: to_bl_of_bin) apply (simp add: to_bl_def rbl_mult) done lemma rtb_rbl_ariths: "rev (to_bl w) = ys \ rev (to_bl (word_succ w)) = rbl_succ ys" "rev (to_bl w) = ys \ rev (to_bl (word_pred w)) = rbl_pred ys" "rev (to_bl v) = ys \ rev (to_bl w) = xs \ rev (to_bl (v * w)) = rbl_mult ys xs" "rev (to_bl v) = ys \ rev (to_bl w) = xs \ rev (to_bl (v + w)) = rbl_add ys xs" by (auto simp: rev_swap [symmetric] word_succ_rbl word_pred_rbl word_mult_rbl word_add_rbl) subsection \Arithmetic type class instantiations\ lemmas word_le_0_iff [simp] = word_zero_le [THEN leD, THEN antisym_conv1] lemma word_of_int_nat: "0 \ x \ word_of_int x = of_nat (nat x)" by (simp add: word_of_int) text \ note that \iszero_def\ is only for class \comm_semiring_1_cancel\, which requires word length \\ 1\, ie \'a::len word\ \ lemma iszero_word_no [simp]: "iszero (numeral bin :: 'a::len word) = iszero (bintrunc (LENGTH('a)) (numeral bin))" using word_ubin.norm_eq_iff [where 'a='a, of "numeral bin" 0] by (simp add: iszero_def [symmetric]) text \Use \iszero\ to simplify equalities between word numerals.\ lemmas word_eq_numeral_iff_iszero [simp] = eq_numeral_iff_iszero [where 'a="'a::len word"] subsection \Word and nat\ lemma td_ext_unat [OF refl]: "n = LENGTH('a::len) \ td_ext (unat :: 'a word \ nat) of_nat (unats n) (\i. i mod 2 ^ n)" apply (unfold td_ext_def' unat_def word_of_nat unats_uints) apply (auto intro!: imageI simp add : word_of_int_hom_syms) apply (erule word_uint.Abs_inverse [THEN arg_cong]) apply (simp add: int_word_uint nat_mod_distrib nat_power_eq) done lemmas unat_of_nat = td_ext_unat [THEN td_ext.eq_norm] interpretation word_unat: td_ext "unat::'a::len word \ nat" of_nat "unats (LENGTH('a::len))" "\i. i mod 2 ^ LENGTH('a::len)" by (rule td_ext_unat) lemmas td_unat = word_unat.td_thm lemmas unat_lt2p [iff] = word_unat.Rep [unfolded unats_def mem_Collect_eq] lemma unat_le: "y \ unat z \ y \ unats (LENGTH('a))" for z :: "'a::len word" apply (unfold unats_def) apply clarsimp apply (rule xtrans, rule unat_lt2p, assumption) done lemma word_nchotomy: "\w :: 'a::len word. \n. w = of_nat n \ n < 2 ^ LENGTH('a)" apply (rule allI) apply (rule word_unat.Abs_cases) apply (unfold unats_def) apply auto done lemma of_nat_eq: "of_nat n = w \ (\q. n = unat w + q * 2 ^ LENGTH('a))" for w :: "'a::len word" using mod_div_mult_eq [of n "2 ^ LENGTH('a)", symmetric] by (auto simp add: word_unat.inverse_norm) lemma of_nat_eq_size: "of_nat n = w \ (\q. n = unat w + q * 2 ^ size w)" unfolding word_size by (rule of_nat_eq) lemma of_nat_0: "of_nat m = (0::'a::len word) \ (\q. m = q * 2 ^ LENGTH('a))" by (simp add: of_nat_eq) lemma of_nat_2p [simp]: "of_nat (2 ^ LENGTH('a)) = (0::'a::len word)" by (fact mult_1 [symmetric, THEN iffD2 [OF of_nat_0 exI]]) lemma of_nat_gt_0: "of_nat k \ 0 \ 0 < k" by (cases k) auto lemma of_nat_neq_0: "0 < k \ k < 2 ^ LENGTH('a::len) \ of_nat k \ (0 :: 'a word)" by (auto simp add : of_nat_0) lemma Abs_fnat_hom_add: "of_nat a + of_nat b = of_nat (a + b)" by simp lemma Abs_fnat_hom_mult: "of_nat a * of_nat b = (of_nat (a * b) :: 'a::len word)" by (simp add: word_of_nat wi_hom_mult) lemma Abs_fnat_hom_Suc: "word_succ (of_nat a) = of_nat (Suc a)" by (simp add: word_of_nat wi_hom_succ ac_simps) lemma Abs_fnat_hom_0: "(0::'a::len word) = of_nat 0" by simp lemma Abs_fnat_hom_1: "(1::'a::len word) = of_nat (Suc 0)" by simp lemmas Abs_fnat_homs = Abs_fnat_hom_add Abs_fnat_hom_mult Abs_fnat_hom_Suc Abs_fnat_hom_0 Abs_fnat_hom_1 lemma word_arith_nat_add: "a + b = of_nat (unat a + unat b)" by simp lemma word_arith_nat_mult: "a * b = of_nat (unat a * unat b)" by simp lemma word_arith_nat_Suc: "word_succ a = of_nat (Suc (unat a))" by (subst Abs_fnat_hom_Suc [symmetric]) simp lemma word_arith_nat_div: "a div b = of_nat (unat a div unat b)" by (simp add: word_div_def word_of_nat zdiv_int uint_nat) lemma word_arith_nat_mod: "a mod b = of_nat (unat a mod unat b)" by (simp add: word_mod_def word_of_nat zmod_int uint_nat) lemmas word_arith_nat_defs = word_arith_nat_add word_arith_nat_mult word_arith_nat_Suc Abs_fnat_hom_0 Abs_fnat_hom_1 word_arith_nat_div word_arith_nat_mod lemma unat_cong: "x = y \ unat x = unat y" by simp lemmas unat_word_ariths = word_arith_nat_defs [THEN trans [OF unat_cong unat_of_nat]] lemmas word_sub_less_iff = word_sub_le_iff [unfolded linorder_not_less [symmetric] Not_eq_iff] lemma unat_add_lem: "unat x + unat y < 2 ^ LENGTH('a) \ unat (x + y) = unat x + unat y" for x y :: "'a::len word" by (auto simp: unat_word_ariths intro!: trans [OF _ nat_mod_lem]) lemma unat_mult_lem: "unat x * unat y < 2 ^ LENGTH('a) \ unat (x * y) = unat x * unat y" for x y :: "'a::len word" by (auto simp: unat_word_ariths intro!: trans [OF _ nat_mod_lem]) lemmas unat_plus_if' = trans [OF unat_word_ariths(1) mod_nat_add, simplified] lemma le_no_overflow: "x \ b \ a \ a + b \ x \ a + b" for a b x :: "'a::len word" apply (erule order_trans) apply (erule olen_add_eqv [THEN iffD1]) done lemmas un_ui_le = trans [OF word_le_nat_alt [symmetric] word_le_def] lemma unat_sub_if_size: "unat (x - y) = (if unat y \ unat x then unat x - unat y else unat x + 2 ^ size x - unat y)" apply (unfold word_size) apply (simp add: un_ui_le) apply (auto simp add: unat_def uint_sub_if') apply (rule nat_diff_distrib) prefer 3 apply (simp add: algebra_simps) apply (rule nat_diff_distrib [THEN trans]) prefer 3 apply (subst nat_add_distrib) prefer 3 apply (simp add: nat_power_eq) apply auto apply uint_arith done lemmas unat_sub_if' = unat_sub_if_size [unfolded word_size] lemma unat_div: "unat (x div y) = unat x div unat y" for x y :: " 'a::len word" apply (simp add : unat_word_ariths) apply (rule unat_lt2p [THEN xtr7, THEN nat_mod_eq']) apply (rule div_le_dividend) done lemma unat_mod: "unat (x mod y) = unat x mod unat y" for x y :: "'a::len word" apply (clarsimp simp add : unat_word_ariths) apply (cases "unat y") prefer 2 apply (rule unat_lt2p [THEN xtr7, THEN nat_mod_eq']) apply (rule mod_le_divisor) apply auto done lemma uint_div: "uint (x div y) = uint x div uint y" for x y :: "'a::len word" by (simp add: uint_nat unat_div zdiv_int) lemma uint_mod: "uint (x mod y) = uint x mod uint y" for x y :: "'a::len word" by (simp add: uint_nat unat_mod zmod_int) text \Definition of \unat_arith\ tactic\ lemma unat_split: "P (unat x) \ (\n. of_nat n = x \ n < 2^LENGTH('a) \ P n)" for x :: "'a::len word" by (auto simp: unat_of_nat) lemma unat_split_asm: "P (unat x) \ (\n. of_nat n = x \ n < 2^LENGTH('a) \ \ P n)" for x :: "'a::len word" by (auto simp: unat_of_nat) lemmas of_nat_inverse = word_unat.Abs_inverse' [rotated, unfolded unats_def, simplified] lemmas unat_splits = unat_split unat_split_asm lemmas unat_arith_simps = word_le_nat_alt word_less_nat_alt word_unat.Rep_inject [symmetric] unat_sub_if' unat_plus_if' unat_div unat_mod \ \\unat_arith_tac\: tactic to reduce word arithmetic to \nat\, try to solve via \arith\\ ML \ fun unat_arith_simpset ctxt = ctxt addsimps @{thms unat_arith_simps} delsimps @{thms word_unat.Rep_inject} |> fold Splitter.add_split @{thms if_split_asm} |> fold Simplifier.add_cong @{thms power_False_cong} fun unat_arith_tacs ctxt = let fun arith_tac' n t = Arith_Data.arith_tac ctxt n t handle Cooper.COOPER _ => Seq.empty; in [ clarify_tac ctxt 1, full_simp_tac (unat_arith_simpset ctxt) 1, ALLGOALS (full_simp_tac (put_simpset HOL_ss ctxt |> fold Splitter.add_split @{thms unat_splits} |> fold Simplifier.add_cong @{thms power_False_cong})), rewrite_goals_tac ctxt @{thms word_size}, ALLGOALS (fn n => REPEAT (resolve_tac ctxt [allI, impI] n) THEN REPEAT (eresolve_tac ctxt [conjE] n) THEN REPEAT (dresolve_tac ctxt @{thms of_nat_inverse} n THEN assume_tac ctxt n)), TRYALL arith_tac' ] end fun unat_arith_tac ctxt = SELECT_GOAL (EVERY (unat_arith_tacs ctxt)) \ method_setup unat_arith = \Scan.succeed (SIMPLE_METHOD' o unat_arith_tac)\ "solving word arithmetic via natural numbers and arith" lemma no_plus_overflow_unat_size: "x \ x + y \ unat x + unat y < 2 ^ size x" for x y :: "'a::len word" unfolding word_size by unat_arith lemmas no_olen_add_nat = no_plus_overflow_unat_size [unfolded word_size] lemmas unat_plus_simple = trans [OF no_olen_add_nat unat_add_lem] lemma word_div_mult: "0 < y \ unat x * unat y < 2 ^ LENGTH('a) \ x * y div y = x" for x y :: "'a::len word" apply unat_arith apply clarsimp apply (subst unat_mult_lem [THEN iffD1]) apply auto done lemma div_lt': "i \ k div x \ unat i * unat x < 2 ^ LENGTH('a)" for i k x :: "'a::len word" apply unat_arith apply clarsimp apply (drule mult_le_mono1) apply (erule order_le_less_trans) apply (rule xtr7 [OF unat_lt2p div_mult_le]) done lemmas div_lt'' = order_less_imp_le [THEN div_lt'] lemma div_lt_mult: "i < k div x \ 0 < x \ i * x < k" for i k x :: "'a::len word" apply (frule div_lt'' [THEN unat_mult_lem [THEN iffD1]]) apply (simp add: unat_arith_simps) apply (drule (1) mult_less_mono1) apply (erule order_less_le_trans) apply (rule div_mult_le) done lemma div_le_mult: "i \ k div x \ 0 < x \ i * x \ k" for i k x :: "'a::len word" apply (frule div_lt' [THEN unat_mult_lem [THEN iffD1]]) apply (simp add: unat_arith_simps) apply (drule mult_le_mono1) apply (erule order_trans) apply (rule div_mult_le) done lemma div_lt_uint': "i \ k div x \ uint i * uint x < 2 ^ LENGTH('a)" for i k x :: "'a::len word" apply (unfold uint_nat) apply (drule div_lt') apply (metis of_nat_less_iff of_nat_mult of_nat_numeral of_nat_power) done lemmas div_lt_uint'' = order_less_imp_le [THEN div_lt_uint'] lemma word_le_exists': "x \ y \ \z. y = x + z \ uint x + uint z < 2 ^ LENGTH('a)" for x y z :: "'a::len word" apply (rule exI) apply (rule conjI) apply (rule zadd_diff_inverse) apply uint_arith done lemmas plus_minus_not_NULL = order_less_imp_le [THEN plus_minus_not_NULL_ab] lemmas plus_minus_no_overflow = order_less_imp_le [THEN plus_minus_no_overflow_ab] lemmas mcs = word_less_minus_cancel word_less_minus_mono_left word_le_minus_cancel word_le_minus_mono_left lemmas word_l_diffs = mcs [where y = "w + x", unfolded add_diff_cancel] for w x lemmas word_diff_ls = mcs [where z = "w + x", unfolded add_diff_cancel] for w x lemmas word_plus_mcs = word_diff_ls [where y = "v + x", unfolded add_diff_cancel] for v x lemmas le_unat_uoi = unat_le [THEN word_unat.Abs_inverse] lemmas thd = times_div_less_eq_dividend lemmas uno_simps [THEN le_unat_uoi] = mod_le_divisor div_le_dividend dtle lemma word_mod_div_equality: "(n div b) * b + (n mod b) = n" for n b :: "'a::len word" apply (unfold word_less_nat_alt word_arith_nat_defs) apply (cut_tac y="unat b" in gt_or_eq_0) apply (erule disjE) apply (simp only: div_mult_mod_eq uno_simps Word.word_unat.Rep_inverse) apply simp done lemma word_div_mult_le: "a div b * b \ a" for a b :: "'a::len word" apply (unfold word_le_nat_alt word_arith_nat_defs) apply (cut_tac y="unat b" in gt_or_eq_0) apply (erule disjE) apply (simp only: div_mult_le uno_simps Word.word_unat.Rep_inverse) apply simp done lemma word_mod_less_divisor: "0 < n \ m mod n < n" for m n :: "'a::len word" apply (simp only: word_less_nat_alt word_arith_nat_defs) apply (auto simp: uno_simps) done lemma word_of_int_power_hom: "word_of_int a ^ n = (word_of_int (a ^ n) :: 'a::len word)" by (induct n) (simp_all add: wi_hom_mult [symmetric]) lemma word_arith_power_alt: "a ^ n = (word_of_int (uint a ^ n) :: 'a::len word)" by (simp add : word_of_int_power_hom [symmetric]) lemma of_bl_length_less: "length x = k \ k < LENGTH('a) \ (of_bl x :: 'a::len word) < 2 ^ k" apply (unfold of_bl_def word_less_alt word_numeral_alt) apply safe apply (simp (no_asm) add: word_of_int_power_hom word_uint.eq_norm del: word_of_int_numeral) apply simp apply (subst mod_pos_pos_trivial) apply (rule bl_to_bin_ge0) apply (rule order_less_trans) apply (rule bl_to_bin_lt2p) apply simp apply (rule bl_to_bin_lt2p) done lemma unatSuc: "1 + n \ 0 \ unat (1 + n) = Suc (unat n)" for n :: "'a::len word" by unat_arith subsection \Cardinality, finiteness of set of words\ lemma inj_on_word_of_int: \inj_on (word_of_int :: int \ 'a word) {0..<2 ^ LENGTH('a::len)}\ by (rule inj_onI) (simp add: word.abs_eq_iff take_bit_eq_mod) lemma inj_uint: \inj uint\ by (rule injI) simp lemma range_uint: \range (uint :: 'a word \ int) = {0..<2 ^ LENGTH('a::len)}\ by transfer (auto simp add: bintr_lt2p range_bintrunc) lemma UNIV_eq: \(UNIV :: 'a word set) = word_of_int ` {0..<2 ^ LENGTH('a::len)}\ proof - have \uint ` (UNIV :: 'a word set) = uint ` (word_of_int :: int \ 'a word) ` {0..<2 ^ LENGTH('a::len)}\ by (simp add: range_uint image_image uint.abs_eq take_bit_eq_mod) then show ?thesis using inj_image_eq_iff [of \uint :: 'a word \ int\ \UNIV :: 'a word set\ \word_of_int ` {0..<2 ^ LENGTH('a)} :: 'a word set\, OF inj_uint] by simp qed lemma card_word: "CARD('a word) = 2 ^ LENGTH('a::len)" by (simp add: UNIV_eq card_image inj_on_word_of_int) lemma card_word_size: "CARD('a word) = 2 ^ size x" for x :: "'a::len word" unfolding word_size by (rule card_word) instance word :: (len) finite by standard (simp add: UNIV_eq) subsection \Bitwise Operations on Words\ lemma word_eq_rbl_eq: "x = y \ rev (to_bl x) = rev (to_bl y)" by simp lemmas bin_log_bintrs = bin_trunc_not bin_trunc_xor bin_trunc_and bin_trunc_or \ \following definitions require both arithmetic and bit-wise word operations\ \ \to get \word_no_log_defs\ from \word_log_defs\, using \bin_log_bintrs\\ lemmas wils1 = bin_log_bintrs [THEN word_ubin.norm_eq_iff [THEN iffD1], folded word_ubin.eq_norm, THEN eq_reflection] \ \the binary operations only\ (* BH: why is this needed? *) lemmas word_log_binary_defs = word_and_def word_or_def word_xor_def lemma word_wi_log_defs: "NOT (word_of_int a) = word_of_int (NOT a)" "word_of_int a AND word_of_int b = word_of_int (a AND b)" "word_of_int a OR word_of_int b = word_of_int (a OR b)" "word_of_int a XOR word_of_int b = word_of_int (a XOR b)" by (transfer, rule refl)+ lemma word_no_log_defs [simp]: "NOT (numeral a) = word_of_int (NOT (numeral a))" "NOT (- numeral a) = word_of_int (NOT (- numeral a))" "numeral a AND numeral b = word_of_int (numeral a AND numeral b)" "numeral a AND - numeral b = word_of_int (numeral a AND - numeral b)" "- numeral a AND numeral b = word_of_int (- numeral a AND numeral b)" "- numeral a AND - numeral b = word_of_int (- numeral a AND - numeral b)" "numeral a OR numeral b = word_of_int (numeral a OR numeral b)" "numeral a OR - numeral b = word_of_int (numeral a OR - numeral b)" "- numeral a OR numeral b = word_of_int (- numeral a OR numeral b)" "- numeral a OR - numeral b = word_of_int (- numeral a OR - numeral b)" "numeral a XOR numeral b = word_of_int (numeral a XOR numeral b)" "numeral a XOR - numeral b = word_of_int (numeral a XOR - numeral b)" "- numeral a XOR numeral b = word_of_int (- numeral a XOR numeral b)" "- numeral a XOR - numeral b = word_of_int (- numeral a XOR - numeral b)" by (transfer, rule refl)+ text \Special cases for when one of the arguments equals 1.\ lemma word_bitwise_1_simps [simp]: "NOT (1::'a::len word) = -2" "1 AND numeral b = word_of_int (1 AND numeral b)" "1 AND - numeral b = word_of_int (1 AND - numeral b)" "numeral a AND 1 = word_of_int (numeral a AND 1)" "- numeral a AND 1 = word_of_int (- numeral a AND 1)" "1 OR numeral b = word_of_int (1 OR numeral b)" "1 OR - numeral b = word_of_int (1 OR - numeral b)" "numeral a OR 1 = word_of_int (numeral a OR 1)" "- numeral a OR 1 = word_of_int (- numeral a OR 1)" "1 XOR numeral b = word_of_int (1 XOR numeral b)" "1 XOR - numeral b = word_of_int (1 XOR - numeral b)" "numeral a XOR 1 = word_of_int (numeral a XOR 1)" "- numeral a XOR 1 = word_of_int (- numeral a XOR 1)" by (transfer, simp)+ text \Special cases for when one of the arguments equals -1.\ lemma word_bitwise_m1_simps [simp]: "NOT (-1::'a::len word) = 0" "(-1::'a::len word) AND x = x" "x AND (-1::'a::len word) = x" "(-1::'a::len word) OR x = -1" "x OR (-1::'a::len word) = -1" " (-1::'a::len word) XOR x = NOT x" "x XOR (-1::'a::len word) = NOT x" by (transfer, simp)+ lemma uint_and: \uint (x AND y) = uint x AND uint y\ by transfer simp lemma uint_or: \uint (x OR y) = uint x OR uint y\ by transfer simp lemma uint_xor: \uint (x XOR y) = uint x XOR uint y\ by transfer simp lemma test_bit_wi [simp]: "(word_of_int x :: 'a::len word) !! n \ n < LENGTH('a) \ bin_nth x n" by (simp add: word_test_bit_def word_ubin.eq_norm nth_bintr) lemma word_test_bit_transfer [transfer_rule]: "(rel_fun pcr_word (rel_fun (=) (=))) (\x n. n < LENGTH('a) \ bin_nth x n) (test_bit :: 'a::len word \ _)" unfolding rel_fun_def word.pcr_cr_eq cr_word_def by simp lemma word_ops_nth_size: "n < size x \ (x OR y) !! n = (x !! n | y !! n) \ (x AND y) !! n = (x !! n \ y !! n) \ (x XOR y) !! n = (x !! n \ y !! n) \ (NOT x) !! n = (\ x !! n)" for x :: "'a::len word" unfolding word_size by transfer (simp add: bin_nth_ops) lemma word_ao_nth: "(x OR y) !! n = (x !! n | y !! n) \ (x AND y) !! n = (x !! n \ y !! n)" for x :: "'a::len word" by transfer (auto simp add: bin_nth_ops) lemma test_bit_numeral [simp]: "(numeral w :: 'a::len word) !! n \ n < LENGTH('a) \ bin_nth (numeral w) n" by transfer (rule refl) lemma test_bit_neg_numeral [simp]: "(- numeral w :: 'a::len word) !! n \ n < LENGTH('a) \ bin_nth (- numeral w) n" by transfer (rule refl) lemma test_bit_1 [simp]: "(1 :: 'a::len word) !! n \ n = 0" by transfer auto lemma nth_0 [simp]: "\ (0 :: 'a::len word) !! n" by transfer simp lemma nth_minus1 [simp]: "(-1 :: 'a::len word) !! n \ n < LENGTH('a)" by transfer simp \ \get from commutativity, associativity etc of \int_and\ etc to same for \word_and etc\\ lemmas bwsimps = wi_hom_add word_wi_log_defs lemma word_bw_assocs: "(x AND y) AND z = x AND y AND z" "(x OR y) OR z = x OR y OR z" "(x XOR y) XOR z = x XOR y XOR z" for x :: "'a::len word" by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size]) lemma word_bw_comms: "x AND y = y AND x" "x OR y = y OR x" "x XOR y = y XOR x" for x :: "'a::len word" by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size]) lemma word_bw_lcs: "y AND x AND z = x AND y AND z" "y OR x OR z = x OR y OR z" "y XOR x XOR z = x XOR y XOR z" for x :: "'a::len word" by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size]) lemma word_log_esimps: "x AND 0 = 0" "x AND -1 = x" "x OR 0 = x" "x OR -1 = -1" "x XOR 0 = x" "x XOR -1 = NOT x" "0 AND x = 0" "-1 AND x = x" "0 OR x = x" "-1 OR x = -1" "0 XOR x = x" "-1 XOR x = NOT x" for x :: "'a::len word" by simp_all lemma word_not_dist: "NOT (x OR y) = NOT x AND NOT y" "NOT (x AND y) = NOT x OR NOT y" for x :: "'a::len word" by simp_all lemma word_bw_same: "x AND x = x" "x OR x = x" "x XOR x = 0" for x :: "'a::len word" by simp_all lemma word_ao_absorbs [simp]: "x AND (y OR x) = x" "x OR y AND x = x" "x AND (x OR y) = x" "y AND x OR x = x" "(y OR x) AND x = x" "x OR x AND y = x" "(x OR y) AND x = x" "x AND y OR x = x" for x :: "'a::len word" by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size]) lemma word_not_not [simp]: "NOT (NOT x) = x" for x :: "'a::len word" by simp lemma word_ao_dist: "(x OR y) AND z = x AND z OR y AND z" for x :: "'a::len word" by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size]) lemma word_oa_dist: "x AND y OR z = (x OR z) AND (y OR z)" for x :: "'a::len word" by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size]) lemma word_add_not [simp]: "x + NOT x = -1" for x :: "'a::len word" by transfer (simp add: bin_add_not) lemma word_plus_and_or [simp]: "(x AND y) + (x OR y) = x + y" for x :: "'a::len word" by transfer (simp add: plus_and_or) lemma leoa: "w = x OR y \ y = w AND y" for x :: "'a::len word" by auto lemma leao: "w' = x' AND y' \ x' = x' OR w'" for x' :: "'a::len word" by auto lemma word_ao_equiv: "w = w OR w' \ w' = w AND w'" for w w' :: "'a::len word" by (auto intro: leoa leao) lemma le_word_or2: "x \ x OR y" for x y :: "'a::len word" by (auto simp: word_le_def uint_or intro: le_int_or) lemmas le_word_or1 = xtr3 [OF word_bw_comms (2) le_word_or2] lemmas word_and_le1 = xtr3 [OF word_ao_absorbs (4) [symmetric] le_word_or2] lemmas word_and_le2 = xtr3 [OF word_ao_absorbs (8) [symmetric] le_word_or2] lemma bl_word_not: "to_bl (NOT w) = map Not (to_bl w)" unfolding to_bl_def word_log_defs bl_not_bin by (simp add: word_ubin.eq_norm) lemma bl_word_xor: "to_bl (v XOR w) = map2 (\) (to_bl v) (to_bl w)" unfolding to_bl_def word_log_defs bl_xor_bin by (simp add: word_ubin.eq_norm) lemma bl_word_or: "to_bl (v OR w) = map2 (\) (to_bl v) (to_bl w)" unfolding to_bl_def word_log_defs bl_or_bin by (simp add: word_ubin.eq_norm) lemma bl_word_and: "to_bl (v AND w) = map2 (\) (to_bl v) (to_bl w)" unfolding to_bl_def word_log_defs bl_and_bin by (simp add: word_ubin.eq_norm) lemma word_lsb_alt: "lsb w = test_bit w 0" for w :: "'a::len word" by (auto simp: word_test_bit_def word_lsb_def) lemma word_lsb_1_0 [simp]: "lsb (1::'a::len word) \ \ lsb (0::'b::len word)" unfolding word_lsb_def uint_eq_0 uint_1 by simp lemma word_lsb_last: "lsb w = last (to_bl w)" for w :: "'a::len word" apply (unfold word_lsb_def uint_bl bin_to_bl_def) apply (rule_tac bin="uint w" in bin_exhaust) apply (cases "size w") apply auto apply (auto simp add: bin_to_bl_aux_alt) done lemma word_lsb_int: "lsb w \ uint w mod 2 = 1" by (auto simp: word_lsb_def bin_last_def) lemma word_msb_sint: "msb w \ sint w < 0" by (simp only: word_msb_def sign_Min_lt_0) lemma msb_word_of_int: "msb (word_of_int x::'a::len word) = bin_nth x (LENGTH('a) - 1)" by (simp add: word_msb_def word_sbin.eq_norm bin_sign_lem) lemma word_msb_numeral [simp]: "msb (numeral w::'a::len word) = bin_nth (numeral w) (LENGTH('a) - 1)" unfolding word_numeral_alt by (rule msb_word_of_int) lemma word_msb_neg_numeral [simp]: "msb (- numeral w::'a::len word) = bin_nth (- numeral w) (LENGTH('a) - 1)" unfolding word_neg_numeral_alt by (rule msb_word_of_int) lemma word_msb_0 [simp]: "\ msb (0::'a::len word)" by (simp add: word_msb_def) lemma word_msb_1 [simp]: "msb (1::'a::len word) \ LENGTH('a) = 1" unfolding word_1_wi msb_word_of_int eq_iff [where 'a=nat] by (simp add: Suc_le_eq) lemma word_msb_nth: "msb w = bin_nth (uint w) (LENGTH('a) - 1)" for w :: "'a::len word" by (simp add: word_msb_def sint_uint bin_sign_lem) lemma word_msb_alt: "msb w = hd (to_bl w)" for w :: "'a::len word" apply (unfold word_msb_nth uint_bl) apply (subst hd_conv_nth) apply (rule length_greater_0_conv [THEN iffD1]) apply simp apply (simp add : nth_bin_to_bl word_size) done lemma word_set_nth [simp]: "set_bit w n (test_bit w n) = w" for w :: "'a::len word" by (auto simp: word_test_bit_def word_set_bit_def) lemma bin_nth_uint': "bin_nth (uint w) n \ rev (bin_to_bl (size w) (uint w)) ! n \ n < size w" apply (unfold word_size) apply (safe elim!: bin_nth_uint_imp) apply (frule bin_nth_uint_imp) apply (fast dest!: bin_nth_bl)+ done lemmas bin_nth_uint = bin_nth_uint' [unfolded word_size] lemma test_bit_bl: "w !! n \ rev (to_bl w) ! n \ n < size w" unfolding to_bl_def word_test_bit_def word_size by (rule bin_nth_uint) lemma to_bl_nth: "n < size w \ to_bl w ! n = w !! (size w - Suc n)" apply (unfold test_bit_bl) apply clarsimp apply (rule trans) apply (rule nth_rev_alt) apply (auto simp add: word_size) done lemma map_bit_interval_eq: \map (bit w) [0.. for w :: \'a::len word\ proof (rule nth_equalityI) show \length (map (bit w) [0.. by simp fix m assume \m < length (map (bit w) [0.. then have \m < n\ by simp then have \bit w m \ takefill False n (rev (to_bl w)) ! m\ by (auto simp add: nth_takefill not_less rev_nth to_bl_nth word_size test_bit_word_eq dest: bit_imp_le_length) with \m < n \show \map (bit w) [0.. takefill False n (rev (to_bl w)) ! m\ by simp qed lemma to_bl_unfold: \to_bl w = rev (map (bit w) [0.. for w :: \'a::len word\ by (simp add: map_bit_interval_eq takefill_bintrunc to_bl_def flip: bin_to_bl_def) lemma nth_rev_to_bl: \rev (to_bl w) ! n \ bit w n\ if \n < LENGTH('a)\ for w :: \'a::len word\ using that by (simp add: to_bl_unfold) lemma nth_to_bl: \to_bl w ! n \ bit w (LENGTH('a) - Suc n)\ if \n < LENGTH('a)\ for w :: \'a::len word\ using that by (simp add: to_bl_unfold rev_nth) lemma test_bit_set: "(set_bit w n x) !! n \ n < size w \ x" for w :: "'a::len word" by (auto simp: word_size word_test_bit_def word_set_bit_def word_ubin.eq_norm nth_bintr) lemma test_bit_set_gen: "test_bit (set_bit w n x) m = (if m = n then n < size w \ x else test_bit w m)" for w :: "'a::len word" apply (unfold word_size word_test_bit_def word_set_bit_def) apply (clarsimp simp add: word_ubin.eq_norm nth_bintr bin_nth_sc_gen) apply (auto elim!: test_bit_size [unfolded word_size] simp add: word_test_bit_def [symmetric]) done lemma of_bl_rep_False: "of_bl (replicate n False @ bs) = of_bl bs" by (auto simp: of_bl_def bl_to_bin_rep_F) lemma bit_word_reverse_iff: \bit (word_reverse w) n \ n < LENGTH('a) \ bit w (LENGTH('a) - Suc n)\ for w :: \'a::len word\ by (cases \n < LENGTH('a)\) (simp_all add: word_reverse_def bit_of_bl_iff nth_to_bl) lemma bit_slice1_iff: \bit (slice1 m w :: 'b::len word) n \ m - LENGTH('a) \ n \ n < min LENGTH('b) m \ bit w (n + (LENGTH('a) - m) - (m - LENGTH('a)))\ for w :: \'a::len word\ by (cases \n + (LENGTH('a) - m) - (m - LENGTH('a)) < LENGTH('a)\) (auto simp add: slice1_def bit_of_bl_iff takefill_alt rev_take nth_append not_less nth_rev_to_bl ac_simps) lemma bit_revcast_iff: \bit (revcast w :: 'b::len word) n \ LENGTH('b) - LENGTH('a) \ n \ n < LENGTH('b) \ bit w (n + (LENGTH('a) - LENGTH('b)) - (LENGTH('b) - LENGTH('a)))\ for w :: \'a::len word\ by (simp add: revcast_eq bit_slice1_iff) lemma bit_slice_iff: \bit (slice m w :: 'b::len word) n \ n < min LENGTH('b) (LENGTH('a) - m) \ bit w (n + LENGTH('a) - (LENGTH('a) - m))\ for w :: \'a::len word\ by (simp add: slice_def word_size bit_slice1_iff) lemma msb_nth: "msb w = w !! (LENGTH('a) - 1)" for w :: "'a::len word" by (simp add: word_msb_nth word_test_bit_def) lemmas msb0 = len_gt_0 [THEN diff_Suc_less, THEN word_ops_nth_size [unfolded word_size]] lemmas msb1 = msb0 [where i = 0] lemmas word_ops_msb = msb1 [unfolded msb_nth [symmetric, unfolded One_nat_def]] lemmas lsb0 = len_gt_0 [THEN word_ops_nth_size [unfolded word_size]] lemmas word_ops_lsb = lsb0 [unfolded word_lsb_alt] lemma word_set_set_same [simp]: "set_bit (set_bit w n x) n y = set_bit w n y" for w :: "'a::len word" by (rule word_eqI) (simp add : test_bit_set_gen word_size) lemma word_set_set_diff: fixes w :: "'a::len word" assumes "m \ n" shows "set_bit (set_bit w m x) n y = set_bit (set_bit w n y) m x" by (rule word_eqI) (auto simp: test_bit_set_gen word_size assms) lemma nth_sint: fixes w :: "'a::len word" defines "l \ LENGTH('a)" shows "bin_nth (sint w) n = (if n < l - 1 then w !! n else w !! (l - 1))" unfolding sint_uint l_def by (auto simp: nth_sbintr word_test_bit_def [symmetric]) lemma word_lsb_numeral [simp]: "lsb (numeral bin :: 'a::len word) \ bin_last (numeral bin)" unfolding word_lsb_alt test_bit_numeral by simp lemma word_lsb_neg_numeral [simp]: "lsb (- numeral bin :: 'a::len word) \ bin_last (- numeral bin)" by (simp add: word_lsb_alt) lemma set_bit_word_of_int: "set_bit (word_of_int x) n b = word_of_int (bin_sc n b x)" unfolding word_set_bit_def by (rule word_eqI)(simp add: word_size bin_nth_sc_gen word_ubin.eq_norm nth_bintr) lemma word_set_numeral [simp]: "set_bit (numeral bin::'a::len word) n b = word_of_int (bin_sc n b (numeral bin))" unfolding word_numeral_alt by (rule set_bit_word_of_int) lemma word_set_neg_numeral [simp]: "set_bit (- numeral bin::'a::len word) n b = word_of_int (bin_sc n b (- numeral bin))" unfolding word_neg_numeral_alt by (rule set_bit_word_of_int) lemma word_set_bit_0 [simp]: "set_bit 0 n b = word_of_int (bin_sc n b 0)" unfolding word_0_wi by (rule set_bit_word_of_int) lemma word_set_bit_1 [simp]: "set_bit 1 n b = word_of_int (bin_sc n b 1)" unfolding word_1_wi by (rule set_bit_word_of_int) lemma setBit_no [simp]: "setBit (numeral bin) n = word_of_int (bin_sc n True (numeral bin))" by (simp add: setBit_def) lemma clearBit_no [simp]: "clearBit (numeral bin) n = word_of_int (bin_sc n False (numeral bin))" by (simp add: clearBit_def) lemma to_bl_n1 [simp]: "to_bl (-1::'a::len word) = replicate (LENGTH('a)) True" apply (rule word_bl.Abs_inverse') apply simp apply (rule word_eqI) apply (clarsimp simp add: word_size) apply (auto simp add: word_bl.Abs_inverse test_bit_bl word_size) done lemma word_msb_n1 [simp]: "msb (-1::'a::len word)" unfolding word_msb_alt to_bl_n1 by simp lemma word_set_nth_iff: "set_bit w n b = w \ w !! n = b \ n \ size w" for w :: "'a::len word" apply (rule iffI) apply (rule disjCI) apply (drule word_eqD) apply (erule sym [THEN trans]) apply (simp add: test_bit_set) apply (erule disjE) apply clarsimp apply (rule word_eqI) apply (clarsimp simp add : test_bit_set_gen) apply (drule test_bit_size) apply force done lemma test_bit_2p: "(word_of_int (2 ^ n)::'a::len word) !! m \ m = n \ m < LENGTH('a)" by (auto simp: word_test_bit_def word_ubin.eq_norm nth_bintr nth_2p_bin) lemma nth_w2p: "((2::'a::len word) ^ n) !! m \ m = n \ m < LENGTH('a::len)" by (simp add: test_bit_2p [symmetric] word_of_int [symmetric]) lemma uint_2p: "(0::'a::len word) < 2 ^ n \ uint (2 ^ n::'a::len word) = 2 ^ n" apply (unfold word_arith_power_alt) apply (case_tac "LENGTH('a)") apply clarsimp apply (case_tac "nat") apply clarsimp apply (case_tac "n") apply clarsimp apply clarsimp apply (drule word_gt_0 [THEN iffD1]) apply (safe intro!: word_eqI) apply (auto simp add: nth_2p_bin) apply (erule notE) apply (simp (no_asm_use) add: uint_word_of_int word_size) apply (subst mod_pos_pos_trivial) apply simp apply (rule power_strict_increasing) apply simp_all done lemma word_of_int_2p: "(word_of_int (2 ^ n) :: 'a::len word) = 2 ^ n" by (induct n) (simp_all add: wi_hom_syms) lemma bang_is_le: "x !! m \ 2 ^ m \ x" for x :: "'a::len word" apply (rule xtr3) apply (rule_tac [2] y = "x" in le_word_or2) apply (rule word_eqI) apply (auto simp add: word_ao_nth nth_w2p word_size) done lemma word_clr_le: "w \ set_bit w n False" for w :: "'a::len word" apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm) apply (rule order_trans) apply (rule bintr_bin_clr_le) apply simp done lemma word_set_ge: "w \ set_bit w n True" for w :: "'a::len word" apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm) apply (rule order_trans [OF _ bintr_bin_set_ge]) apply simp done lemma set_bit_beyond: "size x \ n \ set_bit x n b = x" for x :: "'a :: len word" by (auto intro: word_eqI simp add: test_bit_set_gen word_size) lemma rbl_word_or: "rev (to_bl (x OR y)) = map2 (\) (rev (to_bl x)) (rev (to_bl y))" by (simp add: zip_rev bl_word_or rev_map) lemma rbl_word_and: "rev (to_bl (x AND y)) = map2 (\) (rev (to_bl x)) (rev (to_bl y))" by (simp add: zip_rev bl_word_and rev_map) lemma rbl_word_xor: "rev (to_bl (x XOR y)) = map2 (\) (rev (to_bl x)) (rev (to_bl y))" by (simp add: zip_rev bl_word_xor rev_map) lemma rbl_word_not: "rev (to_bl (NOT x)) = map Not (rev (to_bl x))" by (simp add: bl_word_not rev_map) subsection \Bit comprehension\ instantiation word :: (len) bit_comprehension begin definition word_set_bits_def: "(BITS n. f n) = of_bl (bl_of_nth LENGTH('a) f)" instance .. end lemma bit_set_bits_word_iff: \bit (set_bits P :: 'a::len word) n \ n < LENGTH('a) \ P n\ by (auto simp add: word_set_bits_def bit_of_bl_iff) lemmas of_nth_def = word_set_bits_def (* FIXME duplicate *) lemma td_ext_nth [OF refl refl refl, unfolded word_size]: "n = size w \ ofn = set_bits \ [w, ofn g] = l \ td_ext test_bit ofn {f. \i. f i \ i < n} (\h i. h i \ i < n)" for w :: "'a::len word" apply (unfold word_size td_ext_def') apply safe apply (rule_tac [3] ext) apply (rule_tac [4] ext) apply (unfold word_size of_nth_def test_bit_bl) apply safe defer apply (clarsimp simp: word_bl.Abs_inverse)+ apply (rule word_bl.Rep_inverse') apply (rule sym [THEN trans]) apply (rule bl_of_nth_nth) apply simp apply (rule bl_of_nth_inj) apply (clarsimp simp add : test_bit_bl word_size) done interpretation test_bit: td_ext "(!!) :: 'a::len word \ nat \ bool" set_bits "{f. \i. f i \ i < LENGTH('a::len)}" "(\h i. h i \ i < LENGTH('a::len))" by (rule td_ext_nth) lemmas td_nth = test_bit.td_thm lemma set_bits_K_False [simp]: "set_bits (\_. False) = (0 :: 'a :: len word)" by (rule word_eqI) (simp add: test_bit.eq_norm) subsection \Shifting, Rotating, and Splitting Words\ lemma shiftl1_wi [simp]: "shiftl1 (word_of_int w) = word_of_int (2 * w)" unfolding shiftl1_def apply (simp add: word_ubin.norm_eq_iff [symmetric] word_ubin.eq_norm) apply (simp add: mod_mult_right_eq take_bit_eq_mod) done lemma shiftl1_numeral [simp]: "shiftl1 (numeral w) = numeral (Num.Bit0 w)" unfolding word_numeral_alt shiftl1_wi by simp lemma shiftl1_neg_numeral [simp]: "shiftl1 (- numeral w) = - numeral (Num.Bit0 w)" unfolding word_neg_numeral_alt shiftl1_wi by simp lemma shiftl1_0 [simp] : "shiftl1 0 = 0" by (simp add: shiftl1_def) lemma shiftl1_def_u: "shiftl1 w = word_of_int (2 * uint w)" by (simp only: shiftl1_def) (* FIXME: duplicate *) lemma shiftl1_def_s: "shiftl1 w = word_of_int (2 * sint w)" by (simp add: shiftl1_def wi_hom_syms) lemma shiftr1_0 [simp]: "shiftr1 0 = 0" by (simp add: shiftr1_def) lemma sshiftr1_0 [simp]: "sshiftr1 0 = 0" by (simp add: sshiftr1_def) lemma sshiftr1_n1 [simp]: "sshiftr1 (- 1) = - 1" by (simp add: sshiftr1_def) lemma shiftl_0 [simp]: "(0::'a::len word) << n = 0" by (induct n) (auto simp: shiftl_def) lemma shiftr_0 [simp]: "(0::'a::len word) >> n = 0" by (induct n) (auto simp: shiftr_def) lemma sshiftr_0 [simp]: "0 >>> n = 0" by (induct n) (auto simp: sshiftr_def) lemma sshiftr_n1 [simp]: "-1 >>> n = -1" by (induct n) (auto simp: sshiftr_def) lemma nth_shiftl1: "shiftl1 w !! n \ n < size w \ n > 0 \ w !! (n - 1)" apply (unfold shiftl1_def word_test_bit_def) apply (simp add: nth_bintr word_ubin.eq_norm word_size) apply (cases n) apply (simp_all add: bit_Suc) done lemma nth_shiftl': "(w << m) !! n \ n < size w \ n >= m \ w !! (n - m)" for w :: "'a::len word" apply (unfold shiftl_def) apply (induct m arbitrary: n) apply (force elim!: test_bit_size) apply (clarsimp simp add : nth_shiftl1 word_size) apply arith done lemmas nth_shiftl = nth_shiftl' [unfolded word_size] lemma nth_shiftr1: "shiftr1 w !! n = w !! Suc n" apply (auto simp add: shiftr1_def word_test_bit_def word_ubin.eq_norm bit_take_bit_iff bit_Suc) apply (metis (no_types, hide_lams) add_Suc_right add_diff_cancel_left' bit_Suc diff_is_0_eq' le_Suc_ex less_imp_le linorder_not_le test_bit_bin word_test_bit_def) done lemma nth_shiftr: "(w >> m) !! n = w !! (n + m)" for w :: "'a::len word" apply (unfold shiftr_def) apply (induct "m" arbitrary: n) apply (auto simp add: nth_shiftr1) done text \ see paper page 10, (1), (2), \shiftr1_def\ is of the form of (1), where \f\ (ie \bin_rest\) takes normal arguments to normal results, thus we get (2) from (1) \ lemma uint_shiftr1: "uint (shiftr1 w) = bin_rest (uint w)" apply (unfold shiftr1_def word_ubin.eq_norm bin_rest_trunc_i) apply (subst bintr_uint [symmetric, OF order_refl]) apply (simp only : bintrunc_bintrunc_l) apply simp done lemma bit_sshiftr1_iff: \bit (sshiftr1 w) n \ bit w (if n = LENGTH('a) - 1 then LENGTH('a) - 1 else Suc n)\ for w :: \'a::len word\ apply (cases \LENGTH('a)\) apply simp apply (simp add: sshiftr1_def bit_word_of_int_iff bit_sint_iff flip: bit_Suc) apply transfer apply auto done lemma bit_sshiftr_word_iff: \bit (w >>> m) n \ bit w (if LENGTH('a) - m \ n \ n < LENGTH('a) then LENGTH('a) - 1 else (m + n))\ for w :: \'a::len word\ apply (cases \LENGTH('a)\) apply simp apply (simp only:) apply (induction m arbitrary: n) apply (auto simp add: sshiftr_def bit_sshiftr1_iff not_le less_diff_conv) done lemma nth_sshiftr1: "sshiftr1 w !! n = (if n = size w - 1 then w !! n else w !! Suc n)" apply (unfold sshiftr1_def word_test_bit_def) apply (simp add: nth_bintr word_ubin.eq_norm bit_Suc [symmetric] word_size) apply (simp add: nth_bintr uint_sint) apply (auto simp add: bin_nth_sint) done lemma nth_sshiftr [rule_format] : "\n. sshiftr w m !! n = (n < size w \ (if n + m \ size w then w !! (size w - 1) else w !! (n + m)))" apply (unfold sshiftr_def) apply (induct_tac m) apply (simp add: test_bit_bl) apply (clarsimp simp add: nth_sshiftr1 word_size) apply safe apply arith apply arith apply (erule thin_rl) apply (case_tac n) apply safe apply simp apply simp apply (erule thin_rl) apply (case_tac n) apply safe apply simp apply simp apply arith+ done lemma shiftr1_div_2: "uint (shiftr1 w) = uint w div 2" apply (unfold shiftr1_def) apply (rule word_uint.Abs_inverse) apply (simp add: uints_num pos_imp_zdiv_nonneg_iff) apply (rule xtr7) prefer 2 apply (rule zdiv_le_dividend) apply auto done lemma sshiftr1_div_2: "sint (sshiftr1 w) = sint w div 2" apply (unfold sshiftr1_def) apply (simp add: word_sbin.eq_norm) apply (rule trans) defer apply (subst word_sbin.norm_Rep [symmetric]) apply (rule refl) apply (subst word_sbin.norm_Rep [symmetric]) apply (unfold One_nat_def) apply (rule sbintrunc_rest) done lemma shiftr_div_2n: "uint (shiftr w n) = uint w div 2 ^ n" apply (unfold shiftr_def) apply (induct n) apply simp apply (simp add: shiftr1_div_2 mult.commute zdiv_zmult2_eq [symmetric]) done lemma sshiftr_div_2n: "sint (sshiftr w n) = sint w div 2 ^ n" apply (unfold sshiftr_def) apply (induct n) apply simp apply (simp add: sshiftr1_div_2 mult.commute zdiv_zmult2_eq [symmetric]) done lemma bit_bshiftr1_iff: \bit (bshiftr1 b w) n \ b \ n = LENGTH('a) - 1 \ bit w (Suc n)\ for w :: \'a::len word\ apply (cases \LENGTH('a)\) apply simp apply (simp add: bshiftr1_def bit_of_bl_iff nth_append not_less rev_nth nth_butlast nth_to_bl) apply (use bit_imp_le_length in fastforce) done subsubsection \shift functions in terms of lists of bools\ lemmas bshiftr1_numeral [simp] = bshiftr1_def [where w="numeral w", unfolded to_bl_numeral] for w lemma bshiftr1_bl: "to_bl (bshiftr1 b w) = b # butlast (to_bl w)" unfolding bshiftr1_def by (rule word_bl.Abs_inverse) simp lemma shiftl1_of_bl: "shiftl1 (of_bl bl) = of_bl (bl @ [False])" by (simp add: of_bl_def bl_to_bin_append) lemma shiftl1_bl: "shiftl1 w = of_bl (to_bl w @ [False])" for w :: "'a::len word" proof - have "shiftl1 w = shiftl1 (of_bl (to_bl w))" by simp also have "\ = of_bl (to_bl w @ [False])" by (rule shiftl1_of_bl) finally show ?thesis . qed lemma bl_shiftl1: "to_bl (shiftl1 w) = tl (to_bl w) @ [False]" for w :: "'a::len word" by (simp add: shiftl1_bl word_rep_drop drop_Suc drop_Cons') (fast intro!: Suc_leI) \ \Generalized version of \bl_shiftl1\. Maybe this one should replace it?\ lemma bl_shiftl1': "to_bl (shiftl1 w) = tl (to_bl w @ [False])" by (simp add: shiftl1_bl word_rep_drop drop_Suc del: drop_append) lemma shiftr1_bl: "shiftr1 w = of_bl (butlast (to_bl w))" apply (unfold shiftr1_def uint_bl of_bl_def) apply (simp add: butlast_rest_bin word_size) apply (simp add: bin_rest_trunc [symmetric, unfolded One_nat_def]) done lemma bl_shiftr1: "to_bl (shiftr1 w) = False # butlast (to_bl w)" for w :: "'a::len word" by (simp add: shiftr1_bl word_rep_drop len_gt_0 [THEN Suc_leI]) \ \Generalized version of \bl_shiftr1\. Maybe this one should replace it?\ lemma bl_shiftr1': "to_bl (shiftr1 w) = butlast (False # to_bl w)" apply (rule word_bl.Abs_inverse') apply (simp del: butlast.simps) apply (simp add: shiftr1_bl of_bl_def) done lemma shiftl1_rev: "shiftl1 w = word_reverse (shiftr1 (word_reverse w))" apply (unfold word_reverse_def) apply (rule word_bl.Rep_inverse' [symmetric]) apply (simp add: bl_shiftl1' bl_shiftr1' word_bl.Abs_inverse) done lemma shiftl_rev: "shiftl w n = word_reverse (shiftr (word_reverse w) n)" by (induct n) (auto simp add: shiftl_def shiftr_def shiftl1_rev) lemma rev_shiftl: "word_reverse w << n = word_reverse (w >> n)" by (simp add: shiftl_rev) lemma shiftr_rev: "w >> n = word_reverse (word_reverse w << n)" by (simp add: rev_shiftl) lemma rev_shiftr: "word_reverse w >> n = word_reverse (w << n)" by (simp add: shiftr_rev) lemma bl_sshiftr1: "to_bl (sshiftr1 w) = hd (to_bl w) # butlast (to_bl w)" for w :: "'a::len word" apply (unfold sshiftr1_def uint_bl word_size) apply (simp add: butlast_rest_bin word_ubin.eq_norm) apply (simp add: sint_uint) apply (rule nth_equalityI) apply clarsimp apply clarsimp apply (case_tac i) apply (simp_all add: hd_conv_nth length_0_conv [symmetric] nth_bin_to_bl bit_Suc [symmetric] nth_sbintr) apply force apply (rule impI) apply (rule_tac f = "bin_nth (uint w)" in arg_cong) apply simp done lemma drop_shiftr: "drop n (to_bl (w >> n)) = take (size w - n) (to_bl w)" for w :: "'a::len word" apply (unfold shiftr_def) apply (induct n) prefer 2 apply (simp add: drop_Suc bl_shiftr1 butlast_drop [symmetric]) apply (rule butlast_take [THEN trans]) apply (auto simp: word_size) done lemma drop_sshiftr: "drop n (to_bl (w >>> n)) = take (size w - n) (to_bl w)" for w :: "'a::len word" apply (unfold sshiftr_def) apply (induct n) prefer 2 apply (simp add: drop_Suc bl_sshiftr1 butlast_drop [symmetric]) apply (rule butlast_take [THEN trans]) apply (auto simp: word_size) done lemma take_shiftr: "n \ size w \ take n (to_bl (w >> n)) = replicate n False" apply (unfold shiftr_def) apply (induct n) prefer 2 apply (simp add: bl_shiftr1' length_0_conv [symmetric] word_size) apply (rule take_butlast [THEN trans]) apply (auto simp: word_size) done lemma take_sshiftr' [rule_format] : "n \ size w \ hd (to_bl (w >>> n)) = hd (to_bl w) \ take n (to_bl (w >>> n)) = replicate n (hd (to_bl w))" for w :: "'a::len word" apply (unfold sshiftr_def) apply (induct n) prefer 2 apply (simp add: bl_sshiftr1) apply (rule impI) apply (rule take_butlast [THEN trans]) apply (auto simp: word_size) done lemmas hd_sshiftr = take_sshiftr' [THEN conjunct1] lemmas take_sshiftr = take_sshiftr' [THEN conjunct2] lemma atd_lem: "take n xs = t \ drop n xs = d \ xs = t @ d" by (auto intro: append_take_drop_id [symmetric]) lemmas bl_shiftr = atd_lem [OF take_shiftr drop_shiftr] lemmas bl_sshiftr = atd_lem [OF take_sshiftr drop_sshiftr] lemma shiftl_of_bl: "of_bl bl << n = of_bl (bl @ replicate n False)" by (induct n) (auto simp: shiftl_def shiftl1_of_bl replicate_app_Cons_same) lemma shiftl_bl: "w << n = of_bl (to_bl w @ replicate n False)" for w :: "'a::len word" proof - have "w << n = of_bl (to_bl w) << n" by simp also have "\ = of_bl (to_bl w @ replicate n False)" by (rule shiftl_of_bl) finally show ?thesis . qed lemmas shiftl_numeral [simp] = shiftl_def [where w="numeral w"] for w lemma bl_shiftl: "to_bl (w << n) = drop n (to_bl w) @ replicate (min (size w) n) False" by (simp add: shiftl_bl word_rep_drop word_size) lemma shiftl_zero_size: "size x \ n \ x << n = 0" for x :: "'a::len word" apply (unfold word_size) apply (rule word_eqI) apply (clarsimp simp add: shiftl_bl word_size test_bit_of_bl nth_append) done \ \note -- the following results use \'a::len word < number_ring\\ lemma shiftl1_2t: "shiftl1 w = 2 * w" for w :: "'a::len word" by (simp add: shiftl1_def wi_hom_mult [symmetric]) lemma shiftl1_p: "shiftl1 w = w + w" for w :: "'a::len word" by (simp add: shiftl1_2t) lemma shiftl_t2n: "shiftl w n = 2 ^ n * w" for w :: "'a::len word" by (induct n) (auto simp: shiftl_def shiftl1_2t) lemma shiftr1_bintr [simp]: "(shiftr1 (numeral w) :: 'a::len word) = word_of_int (bin_rest (bintrunc (LENGTH('a)) (numeral w)))" unfolding shiftr1_def word_numeral_alt by (simp add: word_ubin.eq_norm) lemma sshiftr1_sbintr [simp]: "(sshiftr1 (numeral w) :: 'a::len word) = word_of_int (bin_rest (sbintrunc (LENGTH('a) - 1) (numeral w)))" unfolding sshiftr1_def word_numeral_alt by (simp add: word_sbin.eq_norm) lemma shiftr_no [simp]: (* FIXME: neg_numeral *) "(numeral w::'a::len word) >> n = word_of_int ((bin_rest ^^ n) (bintrunc (LENGTH('a)) (numeral w)))" by (rule word_eqI) (auto simp: nth_shiftr nth_rest_power_bin nth_bintr word_size) lemma sshiftr_no [simp]: (* FIXME: neg_numeral *) "(numeral w::'a::len word) >>> n = word_of_int ((bin_rest ^^ n) (sbintrunc (LENGTH('a) - 1) (numeral w)))" apply (rule word_eqI) apply (auto simp: nth_sshiftr nth_rest_power_bin nth_sbintr word_size) apply (subgoal_tac "na + n = LENGTH('a) - Suc 0", simp, simp)+ done lemma shiftr1_bl_of: "length bl \ LENGTH('a) \ shiftr1 (of_bl bl::'a::len word) = of_bl (butlast bl)" by (clarsimp simp: shiftr1_def of_bl_def butlast_rest_bl2bin word_ubin.eq_norm trunc_bl2bin) lemma shiftr_bl_of: "length bl \ LENGTH('a) \ (of_bl bl::'a::len word) >> n = of_bl (take (length bl - n) bl)" apply (unfold shiftr_def) apply (induct n) apply clarsimp apply clarsimp apply (subst shiftr1_bl_of) apply simp apply (simp add: butlast_take) done lemma shiftr_bl: "x >> n \ of_bl (take (LENGTH('a) - n) (to_bl x))" for x :: "'a::len word" using shiftr_bl_of [where 'a='a, of "to_bl x"] by simp lemma msb_shift: "msb w \ w >> (LENGTH('a) - 1) \ 0" for w :: "'a::len word" apply (unfold shiftr_bl word_msb_alt) apply (simp add: word_size Suc_le_eq take_Suc) apply (cases "hd (to_bl w)") apply (auto simp: word_1_bl of_bl_rep_False [where n=1 and bs="[]", simplified]) done lemma zip_replicate: "n \ length ys \ zip (replicate n x) ys = map (\y. (x, y)) ys" apply (induct ys arbitrary: n) apply simp_all apply (case_tac n) apply simp_all done lemma align_lem_or [rule_format] : "\x m. length x = n + m \ length y = n + m \ drop m x = replicate n False \ take m y = replicate m False \ map2 (|) x y = take m x @ drop m y" apply (induct y) apply force apply clarsimp apply (case_tac x) apply force apply (case_tac m) apply auto apply (drule_tac t="length xs" for xs in sym) apply (auto simp: zip_replicate o_def) done lemma align_lem_and [rule_format] : "\x m. length x = n + m \ length y = n + m \ drop m x = replicate n False \ take m y = replicate m False \ map2 (\) x y = replicate (n + m) False" apply (induct y) apply force apply clarsimp apply (case_tac x) apply force apply (case_tac m) apply auto apply (drule_tac t="length xs" for xs in sym) apply (auto simp: zip_replicate o_def map_replicate_const) done lemma aligned_bl_add_size [OF refl]: "size x - n = m \ n \ size x \ drop m (to_bl x) = replicate n False \ take m (to_bl y) = replicate m False \ to_bl (x + y) = take m (to_bl x) @ drop m (to_bl y)" for x :: \'a::len word\ apply (subgoal_tac "x AND y = 0") prefer 2 apply (rule word_bl.Rep_eqD) apply (simp add: bl_word_and) apply (rule align_lem_and [THEN trans]) apply (simp_all add: word_size)[5] apply simp apply (subst word_plus_and_or [symmetric]) apply (simp add : bl_word_or) apply (rule align_lem_or) apply (simp_all add: word_size) done subsubsection \Mask\ lemma minus_1_eq_mask: \- 1 = (Bit_Operations.mask LENGTH('a) :: 'a::len word)\ by (rule bit_eqI) (simp add: bit_exp_iff bit_mask_iff exp_eq_zero_iff) lemma mask_eq_mask: \mask = Bit_Operations.mask\ by (simp add: fun_eq_iff mask_eq_exp_minus_1 mask_def shiftl_word_eq push_bit_eq_mult) lemma mask_eq: \mask n = 2 ^ n - 1\ by (simp add: mask_eq_mask mask_eq_exp_minus_1) lemma mask_Suc_rec: \mask (Suc n) = 2 * mask n + 1\ by (simp add: mask_eq) context begin qualified lemma bit_mask_iff: \bit (mask m :: 'a::len word) n \ n < min LENGTH('a) m\ by (simp add: mask_eq_mask bit_mask_iff exp_eq_zero_iff not_le) end lemma nth_mask [simp]: \(mask n :: 'a::len word) !! i \ i < n \ i < size (mask n :: 'a word)\ by (auto simp add: test_bit_word_eq word_size Word.bit_mask_iff) lemma mask_bl: "mask n = of_bl (replicate n True)" by (auto simp add : test_bit_of_bl word_size intro: word_eqI) lemma mask_bin: "mask n = word_of_int (bintrunc n (- 1))" by (auto simp add: nth_bintr word_size intro: word_eqI) lemma and_mask_bintr: "w AND mask n = word_of_int (bintrunc n (uint w))" apply (rule word_eqI) apply (simp add: nth_bintr word_size word_ops_nth_size) apply (auto simp add: test_bit_bin) done lemma and_mask_wi: "word_of_int i AND mask n = word_of_int (bintrunc n i)" by (auto simp add: nth_bintr word_size word_ops_nth_size word_eq_iff) lemma and_mask_wi': "word_of_int i AND mask n = (word_of_int (bintrunc (min LENGTH('a) n) i) :: 'a::len word)" by (auto simp add: nth_bintr word_size word_ops_nth_size word_eq_iff) lemma and_mask_no: "numeral i AND mask n = word_of_int (bintrunc n (numeral i))" unfolding word_numeral_alt by (rule and_mask_wi) lemma bl_and_mask': "to_bl (w AND mask n :: 'a::len word) = replicate (LENGTH('a) - n) False @ drop (LENGTH('a) - n) (to_bl w)" apply (rule nth_equalityI) apply simp apply (clarsimp simp add: to_bl_nth word_size) apply (simp add: word_size word_ops_nth_size) apply (auto simp add: word_size test_bit_bl nth_append nth_rev) done lemma and_mask_mod_2p: "w AND mask n = word_of_int (uint w mod 2 ^ n)" by (simp only: and_mask_bintr bintrunc_mod2p) lemma and_mask_lt_2p: "uint (w AND mask n) < 2 ^ n" apply (simp add: and_mask_bintr word_ubin.eq_norm) apply (simp add: bintrunc_mod2p) apply (rule xtr8) prefer 2 apply (rule pos_mod_bound) apply auto done lemma eq_mod_iff: "0 < n \ b = b mod n \ 0 \ b \ b < n" for b n :: int by (simp add: int_mod_lem eq_sym_conv) lemma mask_eq_iff: "w AND mask n = w \ uint w < 2 ^ n" apply (simp add: and_mask_bintr) apply (simp add: word_ubin.inverse_norm) apply (simp add: eq_mod_iff bintrunc_mod2p min_def) apply (fast intro!: lt2p_lem) done lemma and_mask_dvd: "2 ^ n dvd uint w \ w AND mask n = 0" apply (simp add: dvd_eq_mod_eq_0 and_mask_mod_2p) apply (simp add: word_uint.norm_eq_iff [symmetric] word_of_int_homs del: word_of_int_0) apply (subst word_uint.norm_Rep [symmetric]) apply (simp only: bintrunc_bintrunc_min bintrunc_mod2p [symmetric] min_def) apply auto done lemma and_mask_dvd_nat: "2 ^ n dvd unat w \ w AND mask n = 0" apply (unfold unat_def) apply (rule trans [OF _ and_mask_dvd]) apply (unfold dvd_def) apply auto apply (drule uint_ge_0 [THEN nat_int.Abs_inverse' [simplified], symmetric]) apply simp apply (simp add: nat_mult_distrib nat_power_eq) done lemma word_2p_lem: "n < size w \ w < 2 ^ n = (uint w < 2 ^ n)" for w :: "'a::len word" apply (unfold word_size word_less_alt word_numeral_alt) apply (auto simp add: word_of_int_power_hom word_uint.eq_norm simp del: word_of_int_numeral) done lemma less_mask_eq: "x < 2 ^ n \ x AND mask n = x" for x :: "'a::len word" apply (unfold word_less_alt word_numeral_alt) apply (clarsimp simp add: and_mask_mod_2p word_of_int_power_hom word_uint.eq_norm simp del: word_of_int_numeral) apply (drule xtr8 [rotated]) apply (rule int_mod_le) apply simp_all done lemmas mask_eq_iff_w2p = trans [OF mask_eq_iff word_2p_lem [symmetric]] lemmas and_mask_less' = iffD2 [OF word_2p_lem and_mask_lt_2p, simplified word_size] lemma and_mask_less_size: "n < size x \ x AND mask n < 2^n" unfolding word_size by (erule and_mask_less') lemma word_mod_2p_is_mask [OF refl]: "c = 2 ^ n \ c > 0 \ x mod c = x AND mask n" for c x :: "'a::len word" by (auto simp: word_mod_def uint_2p and_mask_mod_2p) lemma mask_eqs: "(a AND mask n) + b AND mask n = a + b AND mask n" "a + (b AND mask n) AND mask n = a + b AND mask n" "(a AND mask n) - b AND mask n = a - b AND mask n" "a - (b AND mask n) AND mask n = a - b AND mask n" "a * (b AND mask n) AND mask n = a * b AND mask n" "(b AND mask n) * a AND mask n = b * a AND mask n" "(a AND mask n) + (b AND mask n) AND mask n = a + b AND mask n" "(a AND mask n) - (b AND mask n) AND mask n = a - b AND mask n" "(a AND mask n) * (b AND mask n) AND mask n = a * b AND mask n" "- (a AND mask n) AND mask n = - a AND mask n" "word_succ (a AND mask n) AND mask n = word_succ a AND mask n" "word_pred (a AND mask n) AND mask n = word_pred a AND mask n" using word_of_int_Ex [where x=a] word_of_int_Ex [where x=b] by (auto simp: and_mask_wi' word_of_int_homs word.abs_eq_iff bintrunc_mod2p mod_simps) lemma mask_power_eq: "(x AND mask n) ^ k AND mask n = x ^ k AND mask n" using word_of_int_Ex [where x=x] by (auto simp: and_mask_wi' word_of_int_power_hom word.abs_eq_iff bintrunc_mod2p mod_simps) lemma mask_full [simp]: "mask LENGTH('a) = (- 1 :: 'a::len word)" by (simp add: mask_def word_size shiftl_zero_size) subsubsection \Revcast\ lemmas revcast_def' = revcast_def [simplified] lemmas revcast_def'' = revcast_def' [simplified word_size] lemmas revcast_no_def [simp] = revcast_def' [where w="numeral w", unfolded word_size] for w lemma to_bl_revcast: "to_bl (revcast w :: 'a::len word) = takefill False (LENGTH('a)) (to_bl w)" apply (unfold revcast_def' word_size) apply (rule word_bl.Abs_inverse) apply simp done lemma revcast_rev_ucast [OF refl refl refl]: "cs = [rc, uc] \ rc = revcast (word_reverse w) \ uc = ucast w \ rc = word_reverse uc" apply (unfold ucast_def revcast_def' Let_def word_reverse_def) apply (auto simp: to_bl_of_bin takefill_bintrunc) apply (simp add: word_bl.Abs_inverse word_size) done lemma revcast_ucast: "revcast w = word_reverse (ucast (word_reverse w))" using revcast_rev_ucast [of "word_reverse w"] by simp lemma ucast_revcast: "ucast w = word_reverse (revcast (word_reverse w))" by (fact revcast_rev_ucast [THEN word_rev_gal']) lemma ucast_rev_revcast: "ucast (word_reverse w) = word_reverse (revcast w)" by (fact revcast_ucast [THEN word_rev_gal']) text "linking revcast and cast via shift" lemmas wsst_TYs = source_size target_size word_size lemma revcast_down_uu [OF refl]: "rc = revcast \ source_size rc = target_size rc + n \ rc w = ucast (w >> n)" for w :: "'a::len word" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') apply (rule trans, rule ucast_down_drop) prefer 2 apply (rule trans, rule drop_shiftr) apply (auto simp: takefill_alt wsst_TYs) done lemma revcast_down_us [OF refl]: "rc = revcast \ source_size rc = target_size rc + n \ rc w = ucast (w >>> n)" for w :: "'a::len word" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') apply (rule trans, rule ucast_down_drop) prefer 2 apply (rule trans, rule drop_sshiftr) apply (auto simp: takefill_alt wsst_TYs) done lemma revcast_down_su [OF refl]: "rc = revcast \ source_size rc = target_size rc + n \ rc w = scast (w >> n)" for w :: "'a::len word" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') apply (rule trans, rule scast_down_drop) prefer 2 apply (rule trans, rule drop_shiftr) apply (auto simp: takefill_alt wsst_TYs) done lemma revcast_down_ss [OF refl]: "rc = revcast \ source_size rc = target_size rc + n \ rc w = scast (w >>> n)" for w :: "'a::len word" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') apply (rule trans, rule scast_down_drop) prefer 2 apply (rule trans, rule drop_sshiftr) apply (auto simp: takefill_alt wsst_TYs) done (* FIXME: should this also be [OF refl] ? *) lemma cast_down_rev: "uc = ucast \ source_size uc = target_size uc + n \ uc w = revcast (w << n)" for w :: "'a::len word" apply (unfold shiftl_rev) apply clarify apply (simp add: revcast_rev_ucast) apply (rule word_rev_gal') apply (rule trans [OF _ revcast_rev_ucast]) apply (rule revcast_down_uu [symmetric]) apply (auto simp add: wsst_TYs) done lemma revcast_up [OF refl]: "rc = revcast \ source_size rc + n = target_size rc \ rc w = (ucast w :: 'a::len word) << n" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') apply (simp add: takefill_alt) apply (rule bl_shiftl [THEN trans]) apply (subst ucast_up_app) apply (auto simp add: wsst_TYs) done lemmas rc1 = revcast_up [THEN revcast_rev_ucast [symmetric, THEN trans, THEN word_rev_gal, symmetric]] lemmas rc2 = revcast_down_uu [THEN revcast_rev_ucast [symmetric, THEN trans, THEN word_rev_gal, symmetric]] lemmas ucast_up = rc1 [simplified rev_shiftr [symmetric] revcast_ucast [symmetric]] lemmas ucast_down = rc2 [simplified rev_shiftr revcast_ucast [symmetric]] subsubsection \Slices\ lemma slice1_no_bin [simp]: "slice1 n (numeral w :: 'b word) = of_bl (takefill False n (bin_to_bl (LENGTH('b::len)) (numeral w)))" by (simp add: slice1_def) (* TODO: neg_numeral *) lemma slice_no_bin [simp]: "slice n (numeral w :: 'b word) = of_bl (takefill False (LENGTH('b::len) - n) (bin_to_bl (LENGTH('b::len)) (numeral w)))" by (simp add: slice_def word_size) (* TODO: neg_numeral *) lemma slice1_0 [simp] : "slice1 n 0 = 0" unfolding slice1_def by simp lemma slice_0 [simp] : "slice n 0 = 0" unfolding slice_def by auto lemma slice_take': "slice n w = of_bl (take (size w - n) (to_bl w))" unfolding slice_def' slice1_def by (simp add : takefill_alt word_size) lemmas slice_take = slice_take' [unfolded word_size] \ \shiftr to a word of the same size is just slice, slice is just shiftr then ucast\ lemmas shiftr_slice = trans [OF shiftr_bl [THEN meta_eq_to_obj_eq] slice_take [symmetric]] lemma slice_shiftr: "slice n w = ucast (w >> n)" apply (unfold slice_take shiftr_bl) apply (rule ucast_of_bl_up [symmetric]) apply (simp add: word_size) done lemma nth_slice: "(slice n w :: 'a::len word) !! m = (w !! (m + n) \ m < LENGTH('a))" by (simp add: slice_shiftr nth_ucast nth_shiftr) lemma slice1_down_alt': "sl = slice1 n w \ fs = size sl \ fs + k = n \ to_bl sl = takefill False fs (drop k (to_bl w))" by (auto simp: slice1_def word_size of_bl_def uint_bl word_ubin.eq_norm bl_bin_bl_rep_drop drop_takefill) lemma slice1_up_alt': "sl = slice1 n w \ fs = size sl \ fs = n + k \ to_bl sl = takefill False fs (replicate k False @ (to_bl w))" apply (unfold slice1_def word_size of_bl_def uint_bl) apply (clarsimp simp: word_ubin.eq_norm bl_bin_bl_rep_drop takefill_append [symmetric]) apply (rule_tac f = "\k. takefill False (LENGTH('a)) (replicate k False @ bin_to_bl (LENGTH('b)) (uint w))" in arg_cong) apply arith done lemmas sd1 = slice1_down_alt' [OF refl refl, unfolded word_size] lemmas su1 = slice1_up_alt' [OF refl refl, unfolded word_size] lemmas slice1_down_alt = le_add_diff_inverse [THEN sd1] lemmas slice1_up_alts = le_add_diff_inverse [symmetric, THEN su1] le_add_diff_inverse2 [symmetric, THEN su1] lemma ucast_slice1: "ucast w = slice1 (size w) w" by (simp add: slice1_def ucast_bl takefill_same' word_size) lemma ucast_slice: "ucast w = slice 0 w" by (simp add: slice_def ucast_slice1) lemma slice_id: "slice 0 t = t" by (simp only: ucast_slice [symmetric] ucast_id) lemma revcast_slice1 [OF refl]: "rc = revcast w \ slice1 (size rc) w = rc" by (simp add: slice1_def revcast_def' word_size) lemma slice1_tf_tf': "to_bl (slice1 n w :: 'a::len word) = rev (takefill False (LENGTH('a)) (rev (takefill False n (to_bl w))))" unfolding slice1_def by (rule word_rev_tf) lemmas slice1_tf_tf = slice1_tf_tf' [THEN word_bl.Rep_inverse', symmetric] lemma rev_slice1: "n + k = LENGTH('a) + LENGTH('b) \ slice1 n (word_reverse w :: 'b::len word) = word_reverse (slice1 k w :: 'a::len word)" apply (unfold word_reverse_def slice1_tf_tf) apply (rule word_bl.Rep_inverse') apply (rule rev_swap [THEN iffD1]) apply (rule trans [symmetric]) apply (rule tf_rev) apply (simp add: word_bl.Abs_inverse) apply (simp add: word_bl.Abs_inverse) done lemma rev_slice: "n + k + LENGTH('a::len) = LENGTH('b::len) \ slice n (word_reverse (w::'b word)) = word_reverse (slice k w :: 'a word)" apply (unfold slice_def word_size) apply (rule rev_slice1) apply arith done lemmas sym_notr = not_iff [THEN iffD2, THEN not_sym, THEN not_iff [THEN iffD1]] \ \problem posed by TPHOLs referee: criterion for overflow of addition of signed integers\ lemma sofl_test: "(sint x + sint y = sint (x + y)) = ((((x + y) XOR x) AND ((x + y) XOR y)) >> (size x - 1) = 0)" for x y :: "'a::len word" apply (unfold word_size) apply (cases "LENGTH('a)", simp) apply (subst msb_shift [THEN sym_notr]) apply (simp add: word_ops_msb) apply (simp add: word_msb_sint) apply safe apply simp_all apply (unfold sint_word_ariths) apply (unfold word_sbin.set_iff_norm [symmetric] sints_num) apply safe apply (insert sint_range' [where x=x]) apply (insert sint_range' [where x=y]) defer apply (simp (no_asm), arith) apply (simp (no_asm), arith) defer defer apply (simp (no_asm), arith) apply (simp (no_asm), arith) apply (rule notI [THEN notnotD], drule leI not_le_imp_less, drule sbintrunc_inc sbintrunc_dec, simp)+ done lemma shiftr_zero_size: "size x \ n \ x >> n = 0" for x :: "'a :: len word" by (rule word_eqI) (auto simp add: nth_shiftr dest: test_bit_size) subsection \Split and cat\ lemmas word_split_bin' = word_split_def lemmas word_cat_bin' = word_cat_def lemma word_rsplit_no: "(word_rsplit (numeral bin :: 'b::len word) :: 'a word list) = map word_of_int (bin_rsplit (LENGTH('a::len)) (LENGTH('b), bintrunc (LENGTH('b)) (numeral bin)))" by (simp add: word_rsplit_def word_ubin.eq_norm) lemmas word_rsplit_no_cl [simp] = word_rsplit_no [unfolded bin_rsplitl_def bin_rsplit_l [symmetric]] lemma test_bit_cat: "wc = word_cat a b \ wc !! n = (n < size wc \ (if n < size b then b !! n else a !! (n - size b)))" apply (auto simp: word_cat_bin' test_bit_bin word_ubin.eq_norm nth_bintr bin_nth_cat word_size) apply (erule bin_nth_uint_imp) done lemma word_cat_bl: "word_cat a b = of_bl (to_bl a @ to_bl b)" by (simp add: of_bl_def to_bl_def word_cat_bin' bl_to_bin_app_cat) lemma of_bl_append: "(of_bl (xs @ ys) :: 'a::len word) = of_bl xs * 2^(length ys) + of_bl ys" apply (simp add: of_bl_def bl_to_bin_app_cat bin_cat_num) apply (simp add: word_of_int_power_hom [symmetric] word_of_int_hom_syms) done lemma of_bl_False [simp]: "of_bl (False#xs) = of_bl xs" by (rule word_eqI) (auto simp: test_bit_of_bl nth_append) lemma of_bl_True [simp]: "(of_bl (True # xs) :: 'a::len word) = 2^length xs + of_bl xs" by (subst of_bl_append [where xs="[True]", simplified]) (simp add: word_1_bl) lemma of_bl_Cons: "of_bl (x#xs) = of_bool x * 2^length xs + of_bl xs" by (cases x) simp_all lemma split_uint_lem: "bin_split n (uint w) = (a, b) \ a = bintrunc (LENGTH('a) - n) a \ b = bintrunc (LENGTH('a)) b" for w :: "'a::len word" apply (frule word_ubin.norm_Rep [THEN ssubst]) apply (drule bin_split_trunc1) apply (drule sym [THEN trans]) apply assumption apply safe done lemma word_split_bl': "std = size c - size b \ (word_split c = (a, b)) \ (a = of_bl (take std (to_bl c)) \ b = of_bl (drop std (to_bl c)))" apply (unfold word_split_bin') apply safe defer apply (clarsimp split: prod.splits) apply (metis of_bl_drop' ucast_bl ucast_def word_size word_size_bl) apply hypsubst_thin apply (drule word_ubin.norm_Rep [THEN ssubst]) apply (simp add: of_bl_def bl2bin_drop word_size word_ubin.norm_eq_iff [symmetric] min_def del: word_ubin.norm_Rep) apply (clarsimp split: prod.splits) apply (cases "LENGTH('a) \ LENGTH('b)") apply (simp_all add: not_le) defer apply (simp add: drop_bit_eq_div lt2p_lem) apply (simp add : of_bl_def to_bl_def) apply (subst bin_to_bl_drop_bit [symmetric]) apply (subst diff_add) apply (simp_all add: take_bit_drop_bit) done lemma word_split_bl: "std = size c - size b \ (a = of_bl (take std (to_bl c)) \ b = of_bl (drop std (to_bl c))) \ word_split c = (a, b)" apply (rule iffI) defer apply (erule (1) word_split_bl') apply (case_tac "word_split c") apply (auto simp add: word_size) apply (frule word_split_bl' [rotated]) apply (auto simp add: word_size) done lemma word_split_bl_eq: "(word_split c :: ('c::len word \ 'd::len word)) = (of_bl (take (LENGTH('a::len) - LENGTH('d::len)) (to_bl c)), of_bl (drop (LENGTH('a) - LENGTH('d)) (to_bl c)))" for c :: "'a::len word" apply (rule word_split_bl [THEN iffD1]) apply (unfold word_size) apply (rule refl conjI)+ done \ \keep quantifiers for use in simplification\ lemma test_bit_split': "word_split c = (a, b) \ (\n m. b !! n = (n < size b \ c !! n) \ a !! m = (m < size a \ c !! (m + size b)))" apply (unfold word_split_bin' test_bit_bin) apply (clarify) apply (clarsimp simp: word_ubin.eq_norm nth_bintr word_size split: prod.splits) apply (auto simp add: bit_take_bit_iff bit_drop_bit_eq ac_simps bin_nth_uint_imp) done lemma test_bit_split: "word_split c = (a, b) \ (\n::nat. b !! n \ n < size b \ c !! n) \ (\m::nat. a !! m \ m < size a \ c !! (m + size b))" by (simp add: test_bit_split') lemma test_bit_split_eq: "word_split c = (a, b) \ ((\n::nat. b !! n = (n < size b \ c !! n)) \ (\m::nat. a !! m = (m < size a \ c !! (m + size b))))" apply (rule_tac iffI) apply (rule_tac conjI) apply (erule test_bit_split [THEN conjunct1]) apply (erule test_bit_split [THEN conjunct2]) apply (case_tac "word_split c") apply (frule test_bit_split) apply (erule trans) apply (fastforce intro!: word_eqI simp add: word_size) done \ \this odd result is analogous to \ucast_id\, result to the length given by the result type\ lemma word_cat_id: "word_cat a b = b" by (simp add: word_cat_bin' word_ubin.inverse_norm) \ \limited hom result\ lemma word_cat_hom: "LENGTH('a::len) \ LENGTH('b::len) + LENGTH('c::len) \ (word_cat (word_of_int w :: 'b word) (b :: 'c word) :: 'a word) = word_of_int (bin_cat w (size b) (uint b))" by (auto simp: word_cat_def word_size word_ubin.norm_eq_iff [symmetric] word_ubin.eq_norm bintr_cat min.absorb1) lemma word_cat_split_alt: "size w \ size u + size v \ word_split w = (u, v) \ word_cat u v = w" apply (rule word_eqI) apply (drule test_bit_split) apply (clarsimp simp add : test_bit_cat word_size) apply safe apply arith done lemmas word_cat_split_size = sym [THEN [2] word_cat_split_alt [symmetric]] subsubsection \Split and slice\ lemma split_slices: "word_split w = (u, v) \ u = slice (size v) w \ v = slice 0 w" apply (drule test_bit_split) apply (rule conjI) apply (rule word_eqI, clarsimp simp: nth_slice word_size)+ done lemma slice_cat1 [OF refl]: "wc = word_cat a b \ size wc >= size a + size b \ slice (size b) wc = a" apply safe apply (rule word_eqI) apply (simp add: nth_slice test_bit_cat word_size) done lemmas slice_cat2 = trans [OF slice_id word_cat_id] lemma cat_slices: "a = slice n c \ b = slice 0 c \ n = size b \ size a + size b >= size c \ word_cat a b = c" apply safe apply (rule word_eqI) apply (simp add: nth_slice test_bit_cat word_size) apply safe apply arith done lemma word_split_cat_alt: "w = word_cat u v \ size u + size v \ size w \ word_split w = (u, v)" apply (case_tac "word_split w") apply (rule trans, assumption) apply (drule test_bit_split) apply safe apply (rule word_eqI, clarsimp simp: test_bit_cat word_size)+ done lemmas word_cat_bl_no_bin [simp] = word_cat_bl [where a="numeral a" and b="numeral b", unfolded to_bl_numeral] for a b (* FIXME: negative numerals, 0 and 1 *) lemmas word_split_bl_no_bin [simp] = word_split_bl_eq [where c="numeral c", unfolded to_bl_numeral] for c text \ This odd result arises from the fact that the statement of the result implies that the decoded words are of the same type, and therefore of the same length, as the original word.\ lemma word_rsplit_same: "word_rsplit w = [w]" by (simp add: word_rsplit_def bin_rsplit_all) lemma word_rsplit_empty_iff_size: "word_rsplit w = [] \ size w = 0" by (simp add: word_rsplit_def bin_rsplit_def word_size bin_rsplit_aux_simp_alt Let_def split: prod.split) lemma test_bit_rsplit: "sw = word_rsplit w \ m < size (hd sw) \ k < length sw \ (rev sw ! k) !! m = w !! (k * size (hd sw) + m)" for sw :: "'a::len word list" apply (unfold word_rsplit_def word_test_bit_def) apply (rule trans) apply (rule_tac f = "\x. bin_nth x m" in arg_cong) apply (rule nth_map [symmetric]) apply simp apply (rule bin_nth_rsplit) apply simp_all apply (simp add : word_size rev_map) apply (rule trans) defer apply (rule map_ident [THEN fun_cong]) apply (rule refl [THEN map_cong]) apply (simp add : word_ubin.eq_norm) apply (erule bin_rsplit_size_sign [OF len_gt_0 refl]) done lemma word_rcat_bl: "word_rcat wl = of_bl (concat (map to_bl wl))" by (auto simp: word_rcat_def to_bl_def' of_bl_def bin_rcat_bl) lemma size_rcat_lem': "size (concat (map to_bl wl)) = length wl * size (hd wl)" by (induct wl) (auto simp: word_size) lemmas size_rcat_lem = size_rcat_lem' [unfolded word_size] lemmas td_gal_lt_len = len_gt_0 [THEN td_gal_lt] lemma nth_rcat_lem: "n < length (wl::'a word list) * LENGTH('a::len) \ rev (concat (map to_bl wl)) ! n = rev (to_bl (rev wl ! (n div LENGTH('a)))) ! (n mod LENGTH('a))" apply (induct wl) apply clarsimp apply (clarsimp simp add : nth_append size_rcat_lem) apply (simp (no_asm_use) only: mult_Suc [symmetric] td_gal_lt_len less_Suc_eq_le minus_div_mult_eq_mod [symmetric]) apply clarsimp done lemma test_bit_rcat: "sw = size (hd wl) \ rc = word_rcat wl \ rc !! n = (n < size rc \ n div sw < size wl \ (rev wl) ! (n div sw) !! (n mod sw))" for wl :: "'a::len word list" apply (unfold word_rcat_bl word_size) apply (clarsimp simp add: test_bit_of_bl size_rcat_lem word_size td_gal_lt_len) apply safe apply (auto simp: test_bit_bl word_size td_gal_lt_len [THEN iffD2, THEN nth_rcat_lem]) done lemma foldl_eq_foldr: "foldl (+) x xs = foldr (+) (x # xs) 0" for x :: "'a::comm_monoid_add" by (induct xs arbitrary: x) (auto simp: add.assoc) lemmas test_bit_cong = arg_cong [where f = "test_bit", THEN fun_cong] lemmas test_bit_rsplit_alt = trans [OF nth_rev_alt [THEN test_bit_cong] test_bit_rsplit [OF refl asm_rl diff_Suc_less]] \ \lazy way of expressing that u and v, and su and sv, have same types\ lemma word_rsplit_len_indep [OF refl refl refl refl]: "[u,v] = p \ [su,sv] = q \ word_rsplit u = su \ word_rsplit v = sv \ length su = length sv" by (auto simp: word_rsplit_def bin_rsplit_len_indep) lemma length_word_rsplit_size: "n = LENGTH('a::len) \ length (word_rsplit w :: 'a word list) \ m \ size w \ m * n" by (auto simp: word_rsplit_def word_size bin_rsplit_len_le) lemmas length_word_rsplit_lt_size = length_word_rsplit_size [unfolded Not_eq_iff linorder_not_less [symmetric]] lemma length_word_rsplit_exp_size: "n = LENGTH('a::len) \ length (word_rsplit w :: 'a word list) = (size w + n - 1) div n" by (auto simp: word_rsplit_def word_size bin_rsplit_len) lemma length_word_rsplit_even_size: "n = LENGTH('a::len) \ size w = m * n \ length (word_rsplit w :: 'a word list) = m" by (auto simp: length_word_rsplit_exp_size given_quot_alt) lemmas length_word_rsplit_exp_size' = refl [THEN length_word_rsplit_exp_size] \ \alternative proof of \word_rcat_rsplit\\ lemmas tdle = times_div_less_eq_dividend lemmas dtle = xtr4 [OF tdle mult.commute] lemma word_rcat_rsplit: "word_rcat (word_rsplit w) = w" apply (rule word_eqI) apply (clarsimp simp: test_bit_rcat word_size) apply (subst refl [THEN test_bit_rsplit]) apply (simp_all add: word_size refl [THEN length_word_rsplit_size [simplified not_less [symmetric], simplified]]) apply safe apply (erule xtr7, rule dtle)+ done lemma size_word_rsplit_rcat_size: "word_rcat ws = frcw \ size frcw = length ws * LENGTH('a) \ length (word_rsplit frcw::'a word list) = length ws" for ws :: "'a::len word list" and frcw :: "'b::len word" apply (clarsimp simp: word_size length_word_rsplit_exp_size') apply (fast intro: given_quot_alt) done lemma msrevs: "0 < n \ (k * n + m) div n = m div n + k" "(k * n + m) mod n = m mod n" for n :: nat by (auto simp: add.commute) lemma word_rsplit_rcat_size [OF refl]: "word_rcat ws = frcw \ size frcw = length ws * LENGTH('a) \ word_rsplit frcw = ws" for ws :: "'a::len word list" apply (frule size_word_rsplit_rcat_size, assumption) apply (clarsimp simp add : word_size) apply (rule nth_equalityI, assumption) apply clarsimp apply (rule word_eqI [rule_format]) apply (rule trans) apply (rule test_bit_rsplit_alt) apply (clarsimp simp: word_size)+ apply (rule trans) apply (rule test_bit_rcat [OF refl refl]) apply (simp add: word_size) apply (subst nth_rev) apply arith apply (simp add: le0 [THEN [2] xtr7, THEN diff_Suc_less]) apply safe apply (simp add: diff_mult_distrib) apply (rule mpl_lem) apply (cases "size ws") apply simp_all done subsection \Rotation\ lemmas rotater_0' [simp] = rotater_def [where n = "0", simplified] lemma bit_word_rotl_iff: \bit (word_rotl m w) n \ n < LENGTH('a) \ bit w ((n + (LENGTH('a) - m mod LENGTH('a))) mod LENGTH('a))\ for w :: \'a::len word\ proof (cases \n < LENGTH('a)\) case False then show ?thesis by (auto dest: bit_imp_le_length) next case True define k where \k = int n - int m\ then have k: \int n = k + int m\ by simp define l where \l = int LENGTH('a)\ then have l: \int LENGTH('a) = l\ \l > 0\ by simp_all have *: \int (m - n) = int m - int n\ if \n \ m\ for n m using that by (simp add: int_minus) from \l > 0\ have \l = 1 + (k mod l + ((- 1 - k) mod l))\ using minus_mod_int_eq [of l \k + 1\] by (simp add: algebra_simps) then have \int (LENGTH('a) - Suc ((m + LENGTH('a) - Suc n) mod LENGTH('a))) = int ((n + LENGTH('a) - m mod LENGTH('a)) mod LENGTH('a))\ by (simp add: * k l zmod_int Suc_leI trans_le_add2 algebra_simps mod_simps \n < LENGTH('a)\) then have \LENGTH('a) - Suc ((m + LENGTH('a) - Suc n) mod LENGTH('a)) = (n + LENGTH('a) - m mod LENGTH('a)) mod LENGTH('a)\ by simp with True show ?thesis by (simp add: word_rotl_def bit_of_bl_iff rev_nth nth_rotate nth_to_bl) qed lemmas word_rot_defs = word_roti_def word_rotr_def word_rotl_def lemma rotate_eq_mod: "m mod length xs = n mod length xs \ rotate m xs = rotate n xs" apply (rule box_equals) defer apply (rule rotate_conv_mod [symmetric])+ apply simp done lemmas rotate_eqs = trans [OF rotate0 [THEN fun_cong] id_apply] rotate_rotate [symmetric] rotate_id rotate_conv_mod rotate_eq_mod subsubsection \Rotation of list to right\ lemma rotate1_rl': "rotater1 (l @ [a]) = a # l" by (cases l) (auto simp: rotater1_def) lemma rotate1_rl [simp] : "rotater1 (rotate1 l) = l" apply (unfold rotater1_def) apply (cases "l") apply (case_tac [2] "list") apply auto done lemma rotate1_lr [simp] : "rotate1 (rotater1 l) = l" by (cases l) (auto simp: rotater1_def) lemma rotater1_rev': "rotater1 (rev xs) = rev (rotate1 xs)" by (cases "xs") (simp add: rotater1_def, simp add: rotate1_rl') lemma rotater_rev': "rotater n (rev xs) = rev (rotate n xs)" by (induct n) (auto simp: rotater_def intro: rotater1_rev') lemma rotater_rev: "rotater n ys = rev (rotate n (rev ys))" using rotater_rev' [where xs = "rev ys"] by simp lemma rotater_drop_take: "rotater n xs = drop (length xs - n mod length xs) xs @ take (length xs - n mod length xs) xs" by (auto simp: rotater_rev rotate_drop_take rev_take rev_drop) lemma rotater_Suc [simp]: "rotater (Suc n) xs = rotater1 (rotater n xs)" unfolding rotater_def by auto lemma nth_rotater: \rotater m xs ! n = xs ! ((n + (length xs - m mod length xs)) mod length xs)\ if \n < length xs\ using that by (simp add: rotater_drop_take nth_append not_less less_diff_conv ac_simps le_mod_geq) lemma nth_rotater1: \rotater1 xs ! n = xs ! ((n + (length xs - 1)) mod length xs)\ if \n < length xs\ using that nth_rotater [of n xs 1] by simp lemma rotate_inv_plus [rule_format]: "\k. k = m + n \ rotater k (rotate n xs) = rotater m xs \ rotate k (rotater n xs) = rotate m xs \ rotater n (rotate k xs) = rotate m xs \ rotate n (rotater k xs) = rotater m xs" by (induct n) (auto simp: rotater_def rotate_def intro: funpow_swap1 [THEN trans]) lemmas rotate_inv_rel = le_add_diff_inverse2 [symmetric, THEN rotate_inv_plus] lemmas rotate_inv_eq = order_refl [THEN rotate_inv_rel, simplified] lemmas rotate_lr [simp] = rotate_inv_eq [THEN conjunct1] lemmas rotate_rl [simp] = rotate_inv_eq [THEN conjunct2, THEN conjunct1] lemma rotate_gal: "rotater n xs = ys \ rotate n ys = xs" by auto lemma rotate_gal': "ys = rotater n xs \ xs = rotate n ys" by auto lemma length_rotater [simp]: "length (rotater n xs) = length xs" by (simp add : rotater_rev) lemma bit_word_rotr_iff: \bit (word_rotr m w) n \ n < LENGTH('a) \ bit w ((n + m) mod LENGTH('a))\ for w :: \'a::len word\ proof (cases \n < LENGTH('a)\) case False then show ?thesis by (auto dest: bit_imp_le_length) next case True define k where \k = int n + int m\ then have k: \int n = k - int m\ by simp define l where \l = int LENGTH('a)\ then have l: \int LENGTH('a) = l\ \l > 0\ by simp_all have *: \int (m - n) = int m - int n\ if \n \ m\ for n m using that by (simp add: int_minus) have \int ((LENGTH('a) - Suc ((LENGTH('a) + LENGTH('a) - Suc (n + m mod LENGTH('a))) mod LENGTH('a)))) = int ((n + m) mod LENGTH('a))\ using True apply (simp add: l * zmod_int Suc_leI add_strict_mono) apply (subst mod_diff_left_eq [symmetric]) apply simp using l minus_mod_int_eq [of l \int n + int m mod l + 1\] apply simp apply (simp add: mod_simps) done then have \(LENGTH('a) - Suc ((LENGTH('a) + LENGTH('a) - Suc (n + m mod LENGTH('a))) mod LENGTH('a))) = ((n + m) mod LENGTH('a))\ by simp with True show ?thesis by (simp add: word_rotr_def bit_of_bl_iff rev_nth nth_rotater nth_to_bl) qed lemma bit_word_roti_iff: \bit (word_roti k w) n \ n < LENGTH('a) \ bit w (nat ((int n + k) mod int LENGTH('a)))\ for w :: \'a::len word\ proof (cases \k \ 0\) case True moreover define m where \m = nat k\ ultimately have \k = int m\ by simp then show ?thesis by (simp add: word_roti_def bit_word_rotr_iff nat_mod_distrib nat_add_distrib) next have *: \int (m - n) = int m - int n\ if \n \ m\ for n m using that by (simp add: int_minus) case False moreover define m where \m = nat (- k)\ ultimately have \k = - int m\ \k < 0\ by simp_all moreover have \(int n - int m) mod int LENGTH('a) = int ((n + LENGTH('a) - m mod LENGTH('a)) mod LENGTH('a))\ apply (simp add: zmod_int * trans_le_add2 mod_simps) apply (metis mod_add_self2 mod_diff_cong) done ultimately show ?thesis by (simp add: word_roti_def bit_word_rotl_iff nat_mod_distrib) qed lemma restrict_to_left: "x = y \ x = z \ y = z" by simp lemmas rrs0 = rotate_eqs [THEN restrict_to_left, simplified rotate_gal [symmetric] rotate_gal' [symmetric]] lemmas rrs1 = rrs0 [THEN refl [THEN rev_iffD1]] lemmas rotater_eqs = rrs1 [simplified length_rotater] lemmas rotater_0 = rotater_eqs (1) lemmas rotater_add = rotater_eqs (2) subsubsection \map, map2, commuting with rotate(r)\ lemma butlast_map: "xs \ [] \ butlast (map f xs) = map f (butlast xs)" by (induct xs) auto lemma rotater1_map: "rotater1 (map f xs) = map f (rotater1 xs)" by (cases xs) (auto simp: rotater1_def last_map butlast_map) lemma rotater_map: "rotater n (map f xs) = map f (rotater n xs)" by (induct n) (auto simp: rotater_def rotater1_map) lemma but_last_zip [rule_format] : "\ys. length xs = length ys \ xs \ [] \ last (zip xs ys) = (last xs, last ys) \ butlast (zip xs ys) = zip (butlast xs) (butlast ys)" apply (induct xs) apply auto apply ((case_tac ys, auto simp: neq_Nil_conv)[1])+ done lemma but_last_map2 [rule_format] : "\ys. length xs = length ys \ xs \ [] \ last (map2 f xs ys) = f (last xs) (last ys) \ butlast (map2 f xs ys) = map2 f (butlast xs) (butlast ys)" apply (induct xs) apply auto apply ((case_tac ys, auto simp: neq_Nil_conv)[1])+ done lemma rotater1_zip: "length xs = length ys \ rotater1 (zip xs ys) = zip (rotater1 xs) (rotater1 ys)" apply (unfold rotater1_def) apply (cases xs) apply auto apply ((case_tac ys, auto simp: neq_Nil_conv but_last_zip)[1])+ done lemma rotater1_map2: "length xs = length ys \ rotater1 (map2 f xs ys) = map2 f (rotater1 xs) (rotater1 ys)" by (simp add: rotater1_map rotater1_zip) lemmas lrth = box_equals [OF asm_rl length_rotater [symmetric] length_rotater [symmetric], THEN rotater1_map2] lemma rotater_map2: "length xs = length ys \ rotater n (map2 f xs ys) = map2 f (rotater n xs) (rotater n ys)" by (induct n) (auto intro!: lrth) lemma rotate1_map2: "length xs = length ys \ rotate1 (map2 f xs ys) = map2 f (rotate1 xs) (rotate1 ys)" by (cases xs; cases ys) auto lemmas lth = box_equals [OF asm_rl length_rotate [symmetric] length_rotate [symmetric], THEN rotate1_map2] lemma rotate_map2: "length xs = length ys \ rotate n (map2 f xs ys) = map2 f (rotate n xs) (rotate n ys)" by (induct n) (auto intro!: lth) \ \corresponding equalities for word rotation\ lemma to_bl_rotl: "to_bl (word_rotl n w) = rotate n (to_bl w)" by (simp add: word_bl.Abs_inverse' word_rotl_def) lemmas blrs0 = rotate_eqs [THEN to_bl_rotl [THEN trans]] lemmas word_rotl_eqs = blrs0 [simplified word_bl_Rep' word_bl.Rep_inject to_bl_rotl [symmetric]] lemma to_bl_rotr: "to_bl (word_rotr n w) = rotater n (to_bl w)" by (simp add: word_bl.Abs_inverse' word_rotr_def) lemmas brrs0 = rotater_eqs [THEN to_bl_rotr [THEN trans]] lemmas word_rotr_eqs = brrs0 [simplified word_bl_Rep' word_bl.Rep_inject to_bl_rotr [symmetric]] declare word_rotr_eqs (1) [simp] declare word_rotl_eqs (1) [simp] lemma word_rot_rl [simp]: "word_rotl k (word_rotr k v) = v" and word_rot_lr [simp]: "word_rotr k (word_rotl k v) = v" by (auto simp add: to_bl_rotr to_bl_rotl word_bl.Rep_inject [symmetric]) lemma word_rot_gal: "word_rotr n v = w \ word_rotl n w = v" and word_rot_gal': "w = word_rotr n v \ v = word_rotl n w" by (auto simp: to_bl_rotr to_bl_rotl word_bl.Rep_inject [symmetric] dest: sym) lemma word_rotr_rev: "word_rotr n w = word_reverse (word_rotl n (word_reverse w))" by (simp only: word_bl.Rep_inject [symmetric] to_bl_word_rev to_bl_rotr to_bl_rotl rotater_rev) lemma word_roti_0 [simp]: "word_roti 0 w = w" by (auto simp: word_rot_defs) lemmas abl_cong = arg_cong [where f = "of_bl"] lemma word_roti_add: "word_roti (m + n) w = word_roti m (word_roti n w)" proof - have rotater_eq_lem: "\m n xs. m = n \ rotater m xs = rotater n xs" by auto have rotate_eq_lem: "\m n xs. m = n \ rotate m xs = rotate n xs" by auto note rpts [symmetric] = rotate_inv_plus [THEN conjunct1] rotate_inv_plus [THEN conjunct2, THEN conjunct1] rotate_inv_plus [THEN conjunct2, THEN conjunct2, THEN conjunct1] rotate_inv_plus [THEN conjunct2, THEN conjunct2, THEN conjunct2] note rrp = trans [symmetric, OF rotate_rotate rotate_eq_lem] note rrrp = trans [symmetric, OF rotater_add [symmetric] rotater_eq_lem] show ?thesis apply (unfold word_rot_defs) apply (simp only: split: if_split) apply (safe intro!: abl_cong) apply (simp_all only: to_bl_rotl [THEN word_bl.Rep_inverse'] to_bl_rotl to_bl_rotr [THEN word_bl.Rep_inverse'] to_bl_rotr) apply (rule rrp rrrp rpts, simp add: nat_add_distrib [symmetric] nat_diff_distrib [symmetric])+ done qed lemma word_roti_conv_mod': "word_roti n w = word_roti (n mod int (size w)) w" proof (cases "size w = 0") case True then show ?thesis by simp next case False then have [simp]: "l mod int (size w) \ 0" for l by simp then have *: "word_roti (n mod int (size w)) w = word_rotr (nat (n mod int (size w))) w" by (simp add: word_roti_def) show ?thesis proof (cases "n \ 0") case True then show ?thesis apply (auto simp add: not_le *) apply (auto simp add: word_rot_defs) apply (safe intro!: abl_cong) apply (rule rotater_eqs) apply (simp add: word_size nat_mod_distrib) done next case False moreover define k where "k = - n" ultimately have n: "n = - k" by simp_all from False show ?thesis apply (auto simp add: not_le *) apply (auto simp add: word_rot_defs) apply (simp add: n) apply (safe intro!: abl_cong) apply (simp add: rotater_add [symmetric] rotate_gal [symmetric]) apply (rule rotater_eqs) apply (simp add: word_size [symmetric, of w]) apply (rule of_nat_eq_0_iff [THEN iffD1]) apply (auto simp add: nat_add_distrib [symmetric] mod_eq_0_iff_dvd) using dvd_nat_abs_iff [of "size w" "- k mod int (size w) + k"] apply (simp add: algebra_simps) apply (simp add: word_size) apply (metis dvd_eq_mod_eq_0 eq_neg_iff_add_eq_0 k_def mod_0 mod_add_right_eq n) done qed qed lemmas word_roti_conv_mod = word_roti_conv_mod' [unfolded word_size] subsubsection \"Word rotation commutes with bit-wise operations\ \ \using locale to not pollute lemma namespace\ locale word_rotate begin lemmas word_rot_defs' = to_bl_rotl to_bl_rotr lemmas blwl_syms [symmetric] = bl_word_not bl_word_and bl_word_or bl_word_xor lemmas lbl_lbl = trans [OF word_bl_Rep' word_bl_Rep' [symmetric]] lemmas ths_map2 [OF lbl_lbl] = rotate_map2 rotater_map2 lemmas ths_map [where xs = "to_bl v"] = rotate_map rotater_map for v lemmas th1s [simplified word_rot_defs' [symmetric]] = ths_map2 ths_map lemma word_rot_logs: "word_rotl n (NOT v) = NOT (word_rotl n v)" "word_rotr n (NOT v) = NOT (word_rotr n v)" "word_rotl n (x AND y) = word_rotl n x AND word_rotl n y" "word_rotr n (x AND y) = word_rotr n x AND word_rotr n y" "word_rotl n (x OR y) = word_rotl n x OR word_rotl n y" "word_rotr n (x OR y) = word_rotr n x OR word_rotr n y" "word_rotl n (x XOR y) = word_rotl n x XOR word_rotl n y" "word_rotr n (x XOR y) = word_rotr n x XOR word_rotr n y" by (rule word_bl.Rep_eqD, rule word_rot_defs' [THEN trans], simp only: blwl_syms [symmetric], rule th1s [THEN trans], rule refl)+ end lemmas word_rot_logs = word_rotate.word_rot_logs lemmas bl_word_rotl_dt = trans [OF to_bl_rotl rotate_drop_take, simplified word_bl_Rep'] lemmas bl_word_rotr_dt = trans [OF to_bl_rotr rotater_drop_take, simplified word_bl_Rep'] lemma bl_word_roti_dt': "n = nat ((- i) mod int (size (w :: 'a::len word))) \ to_bl (word_roti i w) = drop n (to_bl w) @ take n (to_bl w)" apply (unfold word_roti_def) apply (simp add: bl_word_rotl_dt bl_word_rotr_dt word_size) apply safe apply (simp add: zmod_zminus1_eq_if) apply safe apply (simp add: nat_mult_distrib) apply (simp add: nat_diff_distrib [OF pos_mod_sign pos_mod_conj [THEN conjunct2, THEN order_less_imp_le]] nat_mod_distrib) apply (simp add: nat_mod_distrib) done lemmas bl_word_roti_dt = bl_word_roti_dt' [unfolded word_size] lemmas word_rotl_dt = bl_word_rotl_dt [THEN word_bl.Rep_inverse' [symmetric]] lemmas word_rotr_dt = bl_word_rotr_dt [THEN word_bl.Rep_inverse' [symmetric]] lemmas word_roti_dt = bl_word_roti_dt [THEN word_bl.Rep_inverse' [symmetric]] lemma word_rotx_0 [simp] : "word_rotr i 0 = 0 \ word_rotl i 0 = 0" by (simp add: word_rotr_dt word_rotl_dt replicate_add [symmetric]) lemma word_roti_0' [simp] : "word_roti n 0 = 0" by (auto simp: word_roti_def) lemmas word_rotr_dt_no_bin' [simp] = word_rotr_dt [where w="numeral w", unfolded to_bl_numeral] for w (* FIXME: negative numerals, 0 and 1 *) lemmas word_rotl_dt_no_bin' [simp] = word_rotl_dt [where w="numeral w", unfolded to_bl_numeral] for w (* FIXME: negative numerals, 0 and 1 *) declare word_roti_def [simp] subsection \Maximum machine word\ lemma word_int_cases: fixes x :: "'a::len word" obtains n where "x = word_of_int n" and "0 \ n" and "n < 2^LENGTH('a)" by (cases x rule: word_uint.Abs_cases) (simp add: uints_num) lemma word_nat_cases [cases type: word]: fixes x :: "'a::len word" obtains n where "x = of_nat n" and "n < 2^LENGTH('a)" by (cases x rule: word_unat.Abs_cases) (simp add: unats_def) lemma max_word_max [intro!]: "n \ max_word" by (fact word_order.extremum) lemma word_of_int_2p_len: "word_of_int (2 ^ LENGTH('a)) = (0::'a::len word)" by (subst word_uint.Abs_norm [symmetric]) simp lemma word_pow_0: "(2::'a::len word) ^ LENGTH('a) = 0" by (fact word_exp_length_eq_0) lemma max_word_wrap: "x + 1 = 0 \ x = max_word" by (simp add: eq_neg_iff_add_eq_0) lemma max_word_bl: "to_bl (max_word::'a::len word) = replicate LENGTH('a) True" by (fact to_bl_n1) lemma max_test_bit: "(max_word::'a::len word) !! n \ n < LENGTH('a)" by (fact nth_minus1) lemma word_and_max: "x AND max_word = x" by (fact word_log_esimps) lemma word_or_max: "x OR max_word = max_word" by (fact word_log_esimps) lemma word_ao_dist2: "x AND (y OR z) = x AND y OR x AND z" for x y z :: "'a::len word" by (rule word_eqI) (auto simp add: word_ops_nth_size word_size) lemma word_oa_dist2: "x OR y AND z = (x OR y) AND (x OR z)" for x y z :: "'a::len word" by (rule word_eqI) (auto simp add: word_ops_nth_size word_size) lemma word_and_not [simp]: "x AND NOT x = 0" for x :: "'a::len word" by (rule word_eqI) (auto simp add: word_ops_nth_size word_size) lemma word_or_not [simp]: "x OR NOT x = max_word" by (rule word_eqI) (auto simp add: word_ops_nth_size word_size) lemma word_xor_and_or: "x XOR y = x AND NOT y OR NOT x AND y" for x y :: "'a::len word" by (rule word_eqI) (auto simp add: word_ops_nth_size word_size) lemma shiftr_x_0 [iff]: "x >> 0 = x" for x :: "'a::len word" by (simp add: shiftr_bl) lemma shiftl_x_0 [simp]: "x << 0 = x" for x :: "'a::len word" by (simp add: shiftl_t2n) lemma shiftl_1 [simp]: "(1::'a::len word) << n = 2^n" by (simp add: shiftl_t2n) lemma uint_lt_0 [simp]: "uint x < 0 = False" by (simp add: linorder_not_less) lemma shiftr1_1 [simp]: "shiftr1 (1::'a::len word) = 0" unfolding shiftr1_def by simp lemma shiftr_1[simp]: "(1::'a::len word) >> n = (if n = 0 then 1 else 0)" by (induct n) (auto simp: shiftr_def) lemma word_less_1 [simp]: "x < 1 \ x = 0" for x :: "'a::len word" by (simp add: word_less_nat_alt unat_0_iff) lemma to_bl_mask: "to_bl (mask n :: 'a::len word) = replicate (LENGTH('a) - n) False @ replicate (min (LENGTH('a)) n) True" by (simp add: mask_bl word_rep_drop min_def) lemma map_replicate_True: "n = length xs \ map (\(x,y). x \ y) (zip xs (replicate n True)) = xs" by (induct xs arbitrary: n) auto lemma map_replicate_False: "n = length xs \ map (\(x,y). x \ y) (zip xs (replicate n False)) = replicate n False" by (induct xs arbitrary: n) auto lemma bl_and_mask: fixes w :: "'a::len word" and n :: nat defines "n' \ LENGTH('a) - n" shows "to_bl (w AND mask n) = replicate n' False @ drop n' (to_bl w)" proof - note [simp] = map_replicate_True map_replicate_False have "to_bl (w AND mask n) = map2 (\) (to_bl w) (to_bl (mask n::'a::len word))" by (simp add: bl_word_and) also have "to_bl w = take n' (to_bl w) @ drop n' (to_bl w)" by simp also have "map2 (\) \ (to_bl (mask n::'a::len word)) = replicate n' False @ drop n' (to_bl w)" unfolding to_bl_mask n'_def by (subst zip_append) auto finally show ?thesis . qed lemma drop_rev_takefill: "length xs \ n \ drop (n - length xs) (rev (takefill False n (rev xs))) = xs" by (simp add: takefill_alt rev_take) lemma map_nth_0 [simp]: "map ((!!) (0::'a::len word)) xs = replicate (length xs) False" by (induct xs) auto lemma uint_plus_if_size: "uint (x + y) = (if uint x + uint y < 2^size x then uint x + uint y else uint x + uint y - 2^size x)" by (simp add: word_arith_wis int_word_uint mod_add_if_z word_size) lemma unat_plus_if_size: "unat (x + y) = (if unat x + unat y < 2^size x then unat x + unat y else unat x + unat y - 2^size x)" for x y :: "'a::len word" apply (subst word_arith_nat_defs) apply (subst unat_of_nat) apply (simp add: mod_nat_add word_size) done lemma word_neq_0_conv: "w \ 0 \ 0 < w" for w :: "'a::len word" by (simp add: word_gt_0) lemma max_lt: "unat (max a b div c) = unat (max a b) div unat c" for c :: "'a::len word" by (fact unat_div) lemma uint_sub_if_size: "uint (x - y) = (if uint y \ uint x then uint x - uint y else uint x - uint y + 2^size x)" by (simp add: word_arith_wis int_word_uint mod_sub_if_z word_size) lemma unat_sub: "b \ a \ unat (a - b) = unat a - unat b" by (simp add: unat_def uint_sub_if_size word_le_def nat_diff_distrib) lemmas word_less_sub1_numberof [simp] = word_less_sub1 [of "numeral w"] for w lemmas word_le_sub1_numberof [simp] = word_le_sub1 [of "numeral w"] for w lemma word_of_int_minus: "word_of_int (2^LENGTH('a) - i) = (word_of_int (-i)::'a::len word)" proof - have *: "2^LENGTH('a) - i = -i + 2^LENGTH('a)" by simp show ?thesis apply (subst *) apply (subst word_uint.Abs_norm [symmetric], subst mod_add_self2) apply simp done qed lemmas word_of_int_inj = word_uint.Abs_inject [unfolded uints_num, simplified] lemma word_le_less_eq: "x \ y \ x = y \ x < y" for x y :: "'z::len word" by (auto simp add: order_class.le_less) lemma mod_plus_cong: fixes b b' :: int assumes 1: "b = b'" and 2: "x mod b' = x' mod b'" and 3: "y mod b' = y' mod b'" and 4: "x' + y' = z'" shows "(x + y) mod b = z' mod b'" proof - from 1 2[symmetric] 3[symmetric] have "(x + y) mod b = (x' mod b' + y' mod b') mod b'" by (simp add: mod_add_eq) also have "\ = (x' + y') mod b'" by (simp add: mod_add_eq) finally show ?thesis by (simp add: 4) qed lemma mod_minus_cong: fixes b b' :: int assumes "b = b'" and "x mod b' = x' mod b'" and "y mod b' = y' mod b'" and "x' - y' = z'" shows "(x - y) mod b = z' mod b'" using assms [symmetric] by (auto intro: mod_diff_cong) lemma word_induct_less: "P 0 \ (\n. n < m \ P n \ P (1 + n)) \ P m" for P :: "'a::len word \ bool" apply (cases m) apply atomize apply (erule rev_mp)+ apply (rule_tac x=m in spec) apply (induct_tac n) apply simp apply clarsimp apply (erule impE) apply clarsimp apply (erule_tac x=n in allE) apply (erule impE) apply (simp add: unat_arith_simps) apply (clarsimp simp: unat_of_nat) apply simp apply (erule_tac x="of_nat na" in allE) apply (erule impE) apply (simp add: unat_arith_simps) apply (clarsimp simp: unat_of_nat) apply simp done lemma word_induct: "P 0 \ (\n. P n \ P (1 + n)) \ P m" for P :: "'a::len word \ bool" by (erule word_induct_less) simp lemma word_induct2 [induct type]: "P 0 \ (\n. 1 + n \ 0 \ P n \ P (1 + n)) \ P n" for P :: "'b::len word \ bool" apply (rule word_induct) apply simp apply (case_tac "1 + n = 0") apply auto done subsection \Recursion combinator for words\ definition word_rec :: "'a \ ('b::len word \ 'a \ 'a) \ 'b word \ 'a" where "word_rec forZero forSuc n = rec_nat forZero (forSuc \ of_nat) (unat n)" lemma word_rec_0: "word_rec z s 0 = z" by (simp add: word_rec_def) lemma word_rec_Suc: "1 + n \ 0 \ word_rec z s (1 + n) = s n (word_rec z s n)" for n :: "'a::len word" apply (simp add: word_rec_def unat_word_ariths) apply (subst nat_mod_eq') apply (metis Suc_eq_plus1_left Suc_lessI of_nat_2p unat_1 unat_lt2p word_arith_nat_add) apply simp done lemma word_rec_Pred: "n \ 0 \ word_rec z s n = s (n - 1) (word_rec z s (n - 1))" apply (rule subst[where t="n" and s="1 + (n - 1)"]) apply simp apply (subst word_rec_Suc) apply simp apply simp done lemma word_rec_in: "f (word_rec z (\_. f) n) = word_rec (f z) (\_. f) n" by (induct n) (simp_all add: word_rec_0 word_rec_Suc) lemma word_rec_in2: "f n (word_rec z f n) = word_rec (f 0 z) (f \ (+) 1) n" by (induct n) (simp_all add: word_rec_0 word_rec_Suc) lemma word_rec_twice: "m \ n \ word_rec z f n = word_rec (word_rec z f (n - m)) (f \ (+) (n - m)) m" apply (erule rev_mp) apply (rule_tac x=z in spec) apply (rule_tac x=f in spec) apply (induct n) apply (simp add: word_rec_0) apply clarsimp apply (rule_tac t="1 + n - m" and s="1 + (n - m)" in subst) apply simp apply (case_tac "1 + (n - m) = 0") apply (simp add: word_rec_0) apply (rule_tac f = "word_rec a b" for a b in arg_cong) apply (rule_tac t="m" and s="m + (1 + (n - m))" in subst) apply simp apply (simp (no_asm_use)) apply (simp add: word_rec_Suc word_rec_in2) apply (erule impE) apply uint_arith apply (drule_tac x="x \ (+) 1" in spec) apply (drule_tac x="x 0 xa" in spec) apply simp apply (rule_tac t="\a. x (1 + (n - m + a))" and s="\a. x (1 + (n - m) + a)" in subst) apply (clarsimp simp add: fun_eq_iff) apply (rule_tac t="(1 + (n - m + xb))" and s="1 + (n - m) + xb" in subst) apply simp apply (rule refl) apply (rule refl) done lemma word_rec_id: "word_rec z (\_. id) n = z" by (induct n) (auto simp add: word_rec_0 word_rec_Suc) lemma word_rec_id_eq: "\m < n. f m = id \ word_rec z f n = z" apply (erule rev_mp) apply (induct n) apply (auto simp add: word_rec_0 word_rec_Suc) apply (drule spec, erule mp) apply uint_arith apply (drule_tac x=n in spec, erule impE) apply uint_arith apply simp done lemma word_rec_max: "\m\n. m \ - 1 \ f m = id \ word_rec z f (- 1) = word_rec z f n" apply (subst word_rec_twice[where n="-1" and m="-1 - n"]) apply simp apply simp apply (rule word_rec_id_eq) apply clarsimp apply (drule spec, rule mp, erule mp) apply (rule word_plus_mono_right2[OF _ order_less_imp_le]) prefer 2 apply assumption apply simp apply (erule contrapos_pn) apply simp apply (drule arg_cong[where f="\x. x - n"]) apply simp done subsection \More\ lemma test_bit_1' [simp]: "(1 :: 'a :: len word) !! n \ 0 < LENGTH('a) \ n = 0" by simp lemma mask_0 [simp]: "mask 0 = 0" by (simp add: Word.mask_def) lemma shiftl0: "x << 0 = (x :: 'a :: len word)" by (fact shiftl_x_0) lemma mask_1: "mask 1 = 1" by (simp add: mask_def) lemma mask_Suc_0: "mask (Suc 0) = 1" by (simp add: mask_def) lemma mask_numeral: "mask (numeral n) = 2 * mask (pred_numeral n) + 1" by (simp add: mask_def neg_numeral_class.sub_def numeral_eq_Suc numeral_pow) lemma bin_last_bintrunc: "bin_last (bintrunc l n) = (l > 0 \ bin_last n)" by (cases l) simp_all lemma word_and_1: "n AND 1 = (if n !! 0 then 1 else 0)" for n :: "_ word" by transfer (rule bin_rl_eqI, simp_all add: bin_rest_trunc bin_last_bintrunc) lemma bintrunc_shiftl: "bintrunc n (m << i) = bintrunc (n - i) m << i" proof (induction i arbitrary: n) case 0 show ?case by simp next case (Suc i) then show ?case by (cases n) (simp_all add: take_bit_Suc) qed lemma shiftl_transfer [transfer_rule]: includes lifting_syntax shows "(pcr_word ===> (=) ===> pcr_word) (<<) (<<)" by (auto intro!: rel_funI word_eqI simp add: word.pcr_cr_eq cr_word_def word_size nth_shiftl) lemma uint_shiftl: "uint (n << i) = bintrunc (size n) (uint n << i)" apply (simp add: word_size shiftl_eq_push_bit shiftl_word_eq) apply transfer apply (simp add: push_bit_take_bit) done subsection \Misc\ declare bin_to_bl_def [simp] ML_file \Tools/word_lib.ML\ ML_file \Tools/smt_word.ML\ hide_const (open) Word end diff --git a/src/HOL/ex/Word.thy b/src/HOL/ex/Word.thy --- a/src/HOL/ex/Word.thy +++ b/src/HOL/ex/Word.thy @@ -1,747 +1,762 @@ (* Author: Florian Haftmann, TUM *) section \Proof of concept for algebraically founded bit word types\ theory Word imports Main "HOL-Library.Type_Length" "HOL-Library.Bit_Operations" begin subsection \Preliminaries\ definition signed_take_bit :: "nat \ int \ int" where signed_take_bit_eq_take_bit: "signed_take_bit n k = take_bit (Suc n) (k + 2 ^ n) - 2 ^ n" lemma signed_take_bit_eq_take_bit': "signed_take_bit (n - Suc 0) k = take_bit n (k + 2 ^ (n - 1)) - 2 ^ (n - 1)" if "n > 0" using that by (simp add: signed_take_bit_eq_take_bit) lemma signed_take_bit_0 [simp]: "signed_take_bit 0 k = - (k mod 2)" proof (cases "even k") case True then have "odd (k + 1)" by simp then have "(k + 1) mod 2 = 1" by (simp add: even_iff_mod_2_eq_zero) with True show ?thesis by (simp add: signed_take_bit_eq_take_bit take_bit_Suc) next case False then show ?thesis by (simp add: signed_take_bit_eq_take_bit odd_iff_mod_2_eq_one take_bit_Suc) qed lemma signed_take_bit_Suc: - "signed_take_bit (Suc n) k = signed_take_bit n (k div 2) * 2 + k mod 2" + "signed_take_bit (Suc n) k = k mod 2 + 2 * signed_take_bit n (k div 2)" by (simp add: odd_iff_mod_2_eq_one signed_take_bit_eq_take_bit algebra_simps take_bit_Suc) lemma signed_take_bit_of_0 [simp]: "signed_take_bit n 0 = 0" by (simp add: signed_take_bit_eq_take_bit take_bit_eq_mod) lemma signed_take_bit_of_minus_1 [simp]: "signed_take_bit n (- 1) = - 1" by (induct n) (simp_all add: signed_take_bit_Suc) lemma signed_take_bit_eq_iff_take_bit_eq: "signed_take_bit (n - Suc 0) k = signed_take_bit (n - Suc 0) l \ take_bit n k = take_bit n l" (is "?P \ ?Q") if "n > 0" proof - from that obtain m where m: "n = Suc m" by (cases n) auto show ?thesis proof assume ?Q have "take_bit (Suc m) (k + 2 ^ m) = take_bit (Suc m) (take_bit (Suc m) k + take_bit (Suc m) (2 ^ m))" by (simp only: take_bit_add) also have "\ = take_bit (Suc m) (take_bit (Suc m) l + take_bit (Suc m) (2 ^ m))" by (simp only: \?Q\ m [symmetric]) also have "\ = take_bit (Suc m) (l + 2 ^ m)" by (simp only: take_bit_add) finally show ?P by (simp only: signed_take_bit_eq_take_bit m) simp next assume ?P with that have "(k + 2 ^ (n - Suc 0)) mod 2 ^ n = (l + 2 ^ (n - Suc 0)) mod 2 ^ n" by (simp add: signed_take_bit_eq_take_bit' take_bit_eq_mod) then have "(i + (k + 2 ^ (n - Suc 0))) mod 2 ^ n = (i + (l + 2 ^ (n - Suc 0))) mod 2 ^ n" for i by (metis mod_add_eq) then have "k mod 2 ^ n = l mod 2 ^ n" by (metis add_diff_cancel_right' uminus_add_conv_diff) then show ?Q by (simp add: take_bit_eq_mod) qed qed +lemma signed_take_bit_code [code]: + \signed_take_bit n k = + (let l = take_bit (Suc n) k + in if bit l n then l - push_bit n 2 else l)\ +proof (induction n arbitrary: k) + case 0 + then show ?case + by (simp add: mod_2_eq_odd and_one_eq) +next + case (Suc n) + from Suc [of \k div 2\] + show ?case + by (auto simp add: Let_def push_bit_eq_mult algebra_simps take_bit_Suc [of \Suc n\] bit_Suc signed_take_bit_Suc elim!: evenE oddE) +qed + subsection \Bit strings as quotient type\ subsubsection \Basic properties\ quotient_type (overloaded) 'a word = int / "\k l. take_bit LENGTH('a) k = take_bit LENGTH('a::len) l" by (auto intro!: equivpI reflpI sympI transpI) instantiation word :: (len) "{semiring_numeral, comm_semiring_0, comm_ring}" begin lift_definition zero_word :: "'a word" is 0 . lift_definition one_word :: "'a word" is 1 . lift_definition plus_word :: "'a word \ 'a word \ 'a word" is plus by (subst take_bit_add [symmetric]) (simp add: take_bit_add) lift_definition uminus_word :: "'a word \ 'a word" is uminus by (subst take_bit_minus [symmetric]) (simp add: take_bit_minus) lift_definition minus_word :: "'a word \ 'a word \ 'a word" is minus by (subst take_bit_diff [symmetric]) (simp add: take_bit_diff) lift_definition times_word :: "'a word \ 'a word \ 'a word" is times by (auto simp add: take_bit_eq_mod intro: mod_mult_cong) instance by standard (transfer; simp add: algebra_simps)+ end instance word :: (len) comm_ring_1 by standard (transfer; simp)+ quickcheck_generator word constructors: "zero_class.zero :: ('a::len) word", "numeral :: num \ ('a::len) word", "uminus :: ('a::len) word \ ('a::len) word" context includes lifting_syntax notes power_transfer [transfer_rule] begin lemma power_transfer_word [transfer_rule]: \(pcr_word ===> (=) ===> pcr_word) (^) (^)\ by transfer_prover end subsubsection \Conversions\ context includes lifting_syntax notes transfer_rule_of_bool [transfer_rule] transfer_rule_numeral [transfer_rule] transfer_rule_of_nat [transfer_rule] transfer_rule_of_int [transfer_rule] begin lemma [transfer_rule]: "((=) ===> (pcr_word :: int \ 'a::len word \ bool)) of_bool of_bool" by transfer_prover lemma [transfer_rule]: "((=) ===> (pcr_word :: int \ 'a::len word \ bool)) numeral numeral" by transfer_prover lemma [transfer_rule]: "((=) ===> pcr_word) int of_nat" by transfer_prover lemma [transfer_rule]: "((=) ===> pcr_word) (\k. k) of_int" proof - have "((=) ===> pcr_word) of_int of_int" by transfer_prover then show ?thesis by (simp add: id_def) qed end lemma abs_word_eq: "abs_word = of_int" by (rule ext) (transfer, rule) context semiring_1 begin lift_definition unsigned :: "'b::len word \ 'a" is "of_nat \ nat \ take_bit LENGTH('b)" by simp lemma unsigned_0 [simp]: "unsigned 0 = 0" by transfer simp end context semiring_char_0 begin lemma word_eq_iff_unsigned: "a = b \ unsigned a = unsigned b" by safe (transfer; simp add: eq_nat_nat_iff) end instantiation word :: (len) equal begin definition equal_word :: "'a word \ 'a word \ bool" where "equal_word a b \ (unsigned a :: int) = unsigned b" instance proof fix a b :: "'a word" show "HOL.equal a b \ a = b" using word_eq_iff_unsigned [of a b] by (auto simp add: equal_word_def) qed end context ring_1 begin lift_definition signed :: "'b::len word \ 'a" is "of_int \ signed_take_bit (LENGTH('b) - 1)" by (simp add: signed_take_bit_eq_iff_take_bit_eq [symmetric]) lemma signed_0 [simp]: "signed 0 = 0" by transfer simp end lemma unsigned_of_nat [simp]: "unsigned (of_nat n :: 'a word) = take_bit LENGTH('a::len) n" by transfer (simp add: nat_eq_iff take_bit_eq_mod zmod_int) lemma of_nat_unsigned [simp]: "of_nat (unsigned a) = a" by transfer simp lemma of_int_unsigned [simp]: "of_int (unsigned a) = a" by transfer simp lemma unsigned_nat_less: \unsigned a < (2 ^ LENGTH('a) :: nat)\ for a :: \'a::len word\ by transfer (simp add: take_bit_eq_mod) lemma unsigned_int_less: \unsigned a < (2 ^ LENGTH('a) :: int)\ for a :: \'a::len word\ by transfer (simp add: take_bit_eq_mod) context ring_char_0 begin lemma word_eq_iff_signed: "a = b \ signed a = signed b" by safe (transfer; auto simp add: signed_take_bit_eq_iff_take_bit_eq) end lemma signed_of_int [simp]: "signed (of_int k :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) k" by transfer simp lemma of_int_signed [simp]: "of_int (signed a) = a" by transfer (simp add: signed_take_bit_eq_take_bit take_bit_eq_mod mod_simps) subsubsection \Properties\ lemma exp_eq_zero_iff: \(2 :: 'a::len word) ^ n = 0 \ LENGTH('a) \ n\ by transfer simp subsubsection \Division\ instantiation word :: (len) modulo begin lift_definition divide_word :: "'a word \ 'a word \ 'a word" is "\a b. take_bit LENGTH('a) a div take_bit LENGTH('a) b" by simp lift_definition modulo_word :: "'a word \ 'a word \ 'a word" is "\a b. take_bit LENGTH('a) a mod take_bit LENGTH('a) b" by simp instance .. end lemma zero_word_div_eq [simp]: \0 div a = 0\ for a :: \'a::len word\ by transfer simp lemma div_zero_word_eq [simp]: \a div 0 = 0\ for a :: \'a::len word\ by transfer simp context includes lifting_syntax begin lemma [transfer_rule]: "(pcr_word ===> (\)) even ((dvd) 2 :: 'a::len word \ bool)" proof - have even_word_unfold: "even k \ (\l. take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l))" (is "?P \ ?Q") for k :: int proof assume ?P then show ?Q by auto next assume ?Q then obtain l where "take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l)" .. then have "even (take_bit LENGTH('a) k)" by simp then show ?P by simp qed show ?thesis by (simp only: even_word_unfold [abs_def] dvd_def [where ?'a = "'a word", abs_def]) transfer_prover qed end instance word :: (len) semiring_modulo proof show "a div b * b + a mod b = a" for a b :: "'a word" proof transfer fix k l :: int define r :: int where "r = 2 ^ LENGTH('a)" then have r: "take_bit LENGTH('a) k = k mod r" for k by (simp add: take_bit_eq_mod) have "k mod r = ((k mod r) div (l mod r) * (l mod r) + (k mod r) mod (l mod r)) mod r" by (simp add: div_mult_mod_eq) also have "... = (((k mod r) div (l mod r) * (l mod r)) mod r + (k mod r) mod (l mod r)) mod r" by (simp add: mod_add_left_eq) also have "... = (((k mod r) div (l mod r) * l) mod r + (k mod r) mod (l mod r)) mod r" by (simp add: mod_mult_right_eq) finally have "k mod r = ((k mod r) div (l mod r) * l + (k mod r) mod (l mod r)) mod r" by (simp add: mod_simps) with r show "take_bit LENGTH('a) (take_bit LENGTH('a) k div take_bit LENGTH('a) l * l + take_bit LENGTH('a) k mod take_bit LENGTH('a) l) = take_bit LENGTH('a) k" by simp qed qed instance word :: (len) semiring_parity proof show "\ 2 dvd (1::'a word)" by transfer simp show even_iff_mod_2_eq_0: "2 dvd a \ a mod 2 = 0" for a :: "'a word" by transfer (simp_all add: mod_2_eq_odd take_bit_Suc) show "\ 2 dvd a \ a mod 2 = 1" for a :: "'a word" by transfer (simp_all add: mod_2_eq_odd take_bit_Suc) qed subsubsection \Orderings\ instantiation word :: (len) linorder begin lift_definition less_eq_word :: "'a word \ 'a word \ bool" is "\a b. take_bit LENGTH('a) a \ take_bit LENGTH('a) b" by simp lift_definition less_word :: "'a word \ 'a word \ bool" is "\a b. take_bit LENGTH('a) a < take_bit LENGTH('a) b" by simp instance by standard (transfer; auto)+ end context linordered_semidom begin lemma word_less_eq_iff_unsigned: "a \ b \ unsigned a \ unsigned b" by (transfer fixing: less_eq) (simp add: nat_le_eq_zle) lemma word_less_iff_unsigned: "a < b \ unsigned a < unsigned b" by (transfer fixing: less) (auto dest: preorder_class.le_less_trans [OF take_bit_nonnegative]) end lemma word_greater_zero_iff: \a > 0 \ a \ 0\ for a :: \'a::len word\ by transfer (simp add: less_le) lemma of_nat_word_eq_iff: \of_nat m = (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m = take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_less_eq_iff: \of_nat m \ (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m \ take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_less_iff: \of_nat m < (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m < take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_eq_0_iff: \of_nat n = (0 :: 'a::len word) \ 2 ^ LENGTH('a) dvd n\ using of_nat_word_eq_iff [where ?'a = 'a, of n 0] by (simp add: take_bit_eq_0_iff) lemma of_int_word_eq_iff: \of_int k = (of_int l :: 'a::len word) \ take_bit LENGTH('a) k = take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_less_eq_iff: \of_int k \ (of_int l :: 'a::len word) \ take_bit LENGTH('a) k \ take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_less_iff: \of_int k < (of_int l :: 'a::len word) \ take_bit LENGTH('a) k < take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_eq_0_iff: \of_int k = (0 :: 'a::len word) \ 2 ^ LENGTH('a) dvd k\ using of_int_word_eq_iff [where ?'a = 'a, of k 0] by (simp add: take_bit_eq_0_iff) subsection \Bit structure on \<^typ>\'a word\\ lemma word_bit_induct [case_names zero even odd]: \P a\ if word_zero: \P 0\ and word_even: \\a. P a \ 0 < a \ a < 2 ^ (LENGTH('a) - 1) \ P (2 * a)\ and word_odd: \\a. P a \ a < 2 ^ (LENGTH('a) - 1) \ P (1 + 2 * a)\ for P and a :: \'a::len word\ proof - define m :: nat where \m = LENGTH('a) - 1\ then have l: \LENGTH('a) = Suc m\ by simp define n :: nat where \n = unsigned a\ then have \n < 2 ^ LENGTH('a)\ by (simp add: unsigned_nat_less) then have \n < 2 * 2 ^ m\ by (simp add: l) then have \P (of_nat n)\ proof (induction n rule: nat_bit_induct) case zero show ?case by simp (rule word_zero) next case (even n) then have \n < 2 ^ m\ by simp with even.IH have \P (of_nat n)\ by simp moreover from \n < 2 ^ m\ even.hyps have \0 < (of_nat n :: 'a word)\ by (auto simp add: word_greater_zero_iff of_nat_word_eq_0_iff l) moreover from \n < 2 ^ m\ have \(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - 1)\ using of_nat_word_less_iff [where ?'a = 'a, of n \2 ^ m\] by (cases \m = 0\) (simp_all add: not_less take_bit_eq_self ac_simps l) ultimately have \P (2 * of_nat n)\ by (rule word_even) then show ?case by simp next case (odd n) then have \Suc n \ 2 ^ m\ by simp with odd.IH have \P (of_nat n)\ by simp moreover from \Suc n \ 2 ^ m\ have \(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - 1)\ using of_nat_word_less_iff [where ?'a = 'a, of n \2 ^ m\] by (cases \m = 0\) (simp_all add: not_less take_bit_eq_self ac_simps l) ultimately have \P (1 + 2 * of_nat n)\ by (rule word_odd) then show ?case by simp qed then show ?thesis by (simp add: n_def) qed lemma bit_word_half_eq: \(of_bool b + a * 2) div 2 = a\ if \a < 2 ^ (LENGTH('a) - Suc 0)\ for a :: \'a::len word\ proof (cases \2 \ LENGTH('a::len)\) case False have \of_bool (odd k) < (1 :: int) \ even k\ for k :: int by auto with False that show ?thesis by transfer (simp add: eq_iff) next case True obtain n where length: \LENGTH('a) = Suc n\ by (cases \LENGTH('a)\) simp_all show ?thesis proof (cases b) case False moreover have \a * 2 div 2 = a\ using that proof transfer fix k :: int from length have \k * 2 mod 2 ^ LENGTH('a) = (k mod 2 ^ n) * 2\ by simp moreover assume \take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\ with \LENGTH('a) = Suc n\ have \k mod 2 ^ LENGTH('a) = k mod 2 ^ n\ by (simp add: take_bit_eq_mod divmod_digit_0) ultimately have \take_bit LENGTH('a) (k * 2) = take_bit LENGTH('a) k * 2\ by (simp add: take_bit_eq_mod) with True show \take_bit LENGTH('a) (take_bit LENGTH('a) (k * 2) div take_bit LENGTH('a) 2) = take_bit LENGTH('a) k\ by simp qed ultimately show ?thesis by simp next case True moreover have \(1 + a * 2) div 2 = a\ using that proof transfer fix k :: int from length have \(1 + k * 2) mod 2 ^ LENGTH('a) = 1 + (k mod 2 ^ n) * 2\ using pos_zmod_mult_2 [of \2 ^ n\ k] by (simp add: ac_simps) moreover assume \take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\ with \LENGTH('a) = Suc n\ have \k mod 2 ^ LENGTH('a) = k mod 2 ^ n\ by (simp add: take_bit_eq_mod divmod_digit_0) ultimately have \take_bit LENGTH('a) (1 + k * 2) = 1 + take_bit LENGTH('a) k * 2\ by (simp add: take_bit_eq_mod) with True show \take_bit LENGTH('a) (take_bit LENGTH('a) (1 + k * 2) div take_bit LENGTH('a) 2) = take_bit LENGTH('a) k\ by (auto simp add: take_bit_Suc) qed ultimately show ?thesis by simp qed qed lemma even_mult_exp_div_word_iff: \even (a * 2 ^ m div 2 ^ n) \ \ ( m \ n \ n < LENGTH('a) \ odd (a div 2 ^ (n - m)))\ for a :: \'a::len word\ by transfer (auto simp flip: drop_bit_eq_div simp add: even_drop_bit_iff_not_bit bit_take_bit_iff, simp_all flip: push_bit_eq_mult add: bit_push_bit_iff_int) instantiation word :: (len) semiring_bits begin lift_definition bit_word :: \'a word \ nat \ bool\ is \\k n. n < LENGTH('a) \ bit k n\ proof fix k l :: int and n :: nat assume *: \take_bit LENGTH('a) k = take_bit LENGTH('a) l\ show \n < LENGTH('a) \ bit k n \ n < LENGTH('a) \ bit l n\ proof (cases \n < LENGTH('a)\) case True from * have \bit (take_bit LENGTH('a) k) n \ bit (take_bit LENGTH('a) l) n\ by simp then show ?thesis by (simp add: bit_take_bit_iff) next case False then show ?thesis by simp qed qed instance proof show \P a\ if stable: \\a. a div 2 = a \ P a\ and rec: \\a b. P a \ (of_bool b + 2 * a) div 2 = a \ P (of_bool b + 2 * a)\ for P and a :: \'a word\ proof (induction a rule: word_bit_induct) case zero from stable [of 0] show ?case by simp next case (even a) with rec [of a False] show ?case using bit_word_half_eq [of a False] by (simp add: ac_simps) next case (odd a) with rec [of a True] show ?case using bit_word_half_eq [of a True] by (simp add: ac_simps) qed show \bit a n \ odd (a div 2 ^ n)\ for a :: \'a word\ and n by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit bit_iff_odd_drop_bit) show \0 div a = 0\ for a :: \'a word\ by transfer simp show \a div 1 = a\ for a :: \'a word\ by transfer simp show \a mod b div b = 0\ for a b :: \'a word\ apply transfer apply (simp add: take_bit_eq_mod) apply (subst (3) mod_pos_pos_trivial [of _ \2 ^ LENGTH('a)\]) apply simp_all apply (metis le_less mod_by_0 pos_mod_conj zero_less_numeral zero_less_power) using pos_mod_bound [of \2 ^ LENGTH('a)\] apply simp proof - fix aa :: int and ba :: int have f1: "\i n. (i::int) mod 2 ^ n = 0 \ 0 < i mod 2 ^ n" by (metis le_less take_bit_eq_mod take_bit_nonnegative) have "(0::int) < 2 ^ len_of (TYPE('a)::'a itself) \ ba mod 2 ^ len_of (TYPE('a)::'a itself) \ 0 \ aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)" by (metis (no_types) mod_by_0 unique_euclidean_semiring_numeral_class.pos_mod_bound zero_less_numeral zero_less_power) then show "aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)" using f1 by (meson le_less less_le_trans unique_euclidean_semiring_numeral_class.pos_mod_bound) qed show \(1 + a) div 2 = a div 2\ if \even a\ for a :: \'a word\ using that by transfer (auto dest: le_Suc_ex simp add: mod_2_eq_odd take_bit_Suc elim!: evenE) show \(2 :: 'a word) ^ m div 2 ^ n = of_bool ((2 :: 'a word) ^ m \ 0 \ n \ m) * 2 ^ (m - n)\ for m n :: nat by transfer (simp, simp add: exp_div_exp_eq) show "a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)" for a :: "'a word" and m n :: nat apply transfer apply (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: drop_bit_eq_div) apply (simp add: drop_bit_take_bit) done show "a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n" for a :: "'a word" and m n :: nat by transfer (auto simp flip: take_bit_eq_mod simp add: ac_simps) show \a * 2 ^ m mod 2 ^ n = a mod 2 ^ (n - m) * 2 ^ m\ if \m \ n\ for a :: "'a word" and m n :: nat using that apply transfer apply (auto simp flip: take_bit_eq_mod) apply (auto simp flip: push_bit_eq_mult simp add: push_bit_take_bit split: split_min_lin) done show \a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\ for a :: "'a word" and m n :: nat by transfer (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: take_bit_eq_mod drop_bit_eq_div split: split_min_lin) show \even ((2 ^ m - 1) div (2::'a word) ^ n) \ 2 ^ n = (0::'a word) \ m \ n\ for m n :: nat by transfer (auto simp add: take_bit_of_mask even_mask_div_iff) show \even (a * 2 ^ m div 2 ^ n) \ n < m \ (2::'a word) ^ n = 0 \ m \ n \ even (a div 2 ^ (n - m))\ for a :: \'a word\ and m n :: nat proof transfer show \even (take_bit LENGTH('a) (k * 2 ^ m) div take_bit LENGTH('a) (2 ^ n)) \ n < m \ take_bit LENGTH('a) ((2::int) ^ n) = take_bit LENGTH('a) 0 \ (m \ n \ even (take_bit LENGTH('a) k div take_bit LENGTH('a) (2 ^ (n - m))))\ for m n :: nat and k l :: int by (auto simp flip: take_bit_eq_mod drop_bit_eq_div push_bit_eq_mult simp add: div_push_bit_of_1_eq_drop_bit drop_bit_take_bit drop_bit_push_bit_int [of n m]) qed qed end instantiation word :: (len) semiring_bit_shifts begin lift_definition push_bit_word :: \nat \ 'a word \ 'a word\ is push_bit proof - show \take_bit LENGTH('a) (push_bit n k) = take_bit LENGTH('a) (push_bit n l)\ if \take_bit LENGTH('a) k = take_bit LENGTH('a) l\ for k l :: int and n :: nat proof - from that have \take_bit (LENGTH('a) - n) (take_bit LENGTH('a) k) = take_bit (LENGTH('a) - n) (take_bit LENGTH('a) l)\ by simp moreover have \min (LENGTH('a) - n) LENGTH('a) = LENGTH('a) - n\ by simp ultimately show ?thesis by (simp add: take_bit_push_bit) qed qed lift_definition drop_bit_word :: \nat \ 'a word \ 'a word\ is \\n. drop_bit n \ take_bit LENGTH('a)\ by (simp add: take_bit_eq_mod) lift_definition take_bit_word :: \nat \ 'a word \ 'a word\ is \\n. take_bit (min LENGTH('a) n)\ by (simp add: ac_simps) (simp only: flip: take_bit_take_bit) instance proof show \push_bit n a = a * 2 ^ n\ for n :: nat and a :: "'a word" by transfer (simp add: push_bit_eq_mult) show \drop_bit n a = a div 2 ^ n\ for n :: nat and a :: "'a word" by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit) show \take_bit n a = a mod 2 ^ n\ for n :: nat and a :: \'a word\ by transfer (auto simp flip: take_bit_eq_mod) qed end instantiation word :: (len) ring_bit_operations begin lift_definition not_word :: "'a word \ 'a word" is not by (simp add: take_bit_not_iff) lift_definition and_word :: "'a word \ 'a word \ 'a word" is \and\ by simp lift_definition or_word :: "'a word \ 'a word \ 'a word" is or by simp lift_definition xor_word :: "'a word \ 'a word \ 'a word" is xor by simp instance proof fix a b :: \'a word\ and n :: nat show \- a = NOT (a - 1)\ by transfer (simp add: minus_eq_not_minus_1) show \bit (NOT a) n \ (2 :: 'a word) ^ n \ 0 \ \ bit a n\ by transfer (simp add: bit_not_iff) show \bit (a AND b) n \ bit a n \ bit b n\ by transfer (auto simp add: bit_and_iff) show \bit (a OR b) n \ bit a n \ bit b n\ by transfer (auto simp add: bit_or_iff) show \bit (a XOR b) n \ bit a n \ bit b n\ by transfer (auto simp add: bit_xor_iff) qed end definition even_word :: \'a::len word \ bool\ where [code_abbrev]: \even_word = even\ lemma even_word_iff [code]: \even_word a \ a AND 1 = 0\ by (simp add: even_word_def and_one_eq even_iff_mod_2_eq_zero) lemma bit_word_iff_drop_bit_and [code]: \bit a n \ drop_bit n a AND 1 = 1\ for a :: \'a::len word\ by (simp add: bit_iff_odd_drop_bit odd_iff_mod_2_eq_one and_one_eq) lifting_update word.lifting lifting_forget word.lifting end