diff --git a/src/HOL/Tools/Ctr_Sugar/ctr_sugar.ML b/src/HOL/Tools/Ctr_Sugar/ctr_sugar.ML --- a/src/HOL/Tools/Ctr_Sugar/ctr_sugar.ML +++ b/src/HOL/Tools/Ctr_Sugar/ctr_sugar.ML @@ -1,1271 +1,1270 @@ (* Title: HOL/Tools/Ctr_Sugar/ctr_sugar.ML Author: Jasmin Blanchette, TU Muenchen Author: Martin Desharnais, TU Muenchen Copyright 2012, 2013 Wrapping existing freely generated type's constructors. *) signature CTR_SUGAR = sig datatype ctr_sugar_kind = Datatype | Codatatype | Record | Unknown type ctr_sugar = {kind: ctr_sugar_kind, T: typ, ctrs: term list, casex: term, discs: term list, selss: term list list, exhaust: thm, nchotomy: thm, injects: thm list, distincts: thm list, case_thms: thm list, case_cong: thm, case_cong_weak: thm, case_distribs: thm list, split: thm, split_asm: thm, disc_defs: thm list, disc_thmss: thm list list, discIs: thm list, disc_eq_cases: thm list, sel_defs: thm list, sel_thmss: thm list list, distinct_discsss: thm list list list, exhaust_discs: thm list, exhaust_sels: thm list, collapses: thm list, expands: thm list, split_sels: thm list, split_sel_asms: thm list, case_eq_ifs: thm list}; val morph_ctr_sugar: morphism -> ctr_sugar -> ctr_sugar val transfer_ctr_sugar: theory -> ctr_sugar -> ctr_sugar val ctr_sugar_of: Proof.context -> string -> ctr_sugar option val ctr_sugar_of_global: theory -> string -> ctr_sugar option val ctr_sugars_of: Proof.context -> ctr_sugar list val ctr_sugars_of_global: theory -> ctr_sugar list val ctr_sugar_of_case: Proof.context -> string -> ctr_sugar option val ctr_sugar_of_case_global: theory -> string -> ctr_sugar option val ctr_sugar_interpretation: string -> (ctr_sugar -> local_theory -> local_theory) -> theory -> theory val interpret_ctr_sugar: (string -> bool) -> ctr_sugar -> local_theory -> local_theory val register_ctr_sugar_raw: ctr_sugar -> local_theory -> local_theory val register_ctr_sugar: (string -> bool) -> ctr_sugar -> local_theory -> local_theory val default_register_ctr_sugar_global: (string -> bool) -> ctr_sugar -> theory -> theory val mk_half_pairss: 'a list * 'a list -> ('a * 'a) list list val join_halves: int -> 'a list list -> 'a list list -> 'a list * 'a list list list val mk_ctr: typ list -> term -> term val mk_case: typ list -> typ -> term -> term val mk_disc_or_sel: typ list -> term -> term val name_of_ctr: term -> string val name_of_disc: term -> string val dest_ctr: Proof.context -> string -> term -> term * term list val dest_case: Proof.context -> string -> typ list -> term -> (ctr_sugar * term list * term list) option type ('c, 'a) ctr_spec = (binding * 'c) * 'a list val disc_of_ctr_spec: ('c, 'a) ctr_spec -> binding val ctr_of_ctr_spec: ('c, 'a) ctr_spec -> 'c val args_of_ctr_spec: ('c, 'a) ctr_spec -> 'a list val code_plugin: string type ctr_options = (string -> bool) * bool type ctr_options_cmd = (Proof.context -> string -> bool) * bool val fake_local_theory_for_sel_defaults: (binding * typ) list -> Proof.context -> Proof.context val free_constructors: ctr_sugar_kind -> ({prems: thm list, context: Proof.context} -> tactic) list list -> ((ctr_options * binding) * (term, binding) ctr_spec list) * term list -> local_theory -> ctr_sugar * local_theory val free_constructors_cmd: ctr_sugar_kind -> ((((Proof.context -> Plugin_Name.filter) * bool) * binding) * ((binding * string) * binding list) list) * string list -> Proof.context -> Proof.state val default_ctr_options: ctr_options val default_ctr_options_cmd: ctr_options_cmd val parse_bound_term: (binding * string) parser val parse_ctr_options: ctr_options_cmd parser val parse_ctr_spec: 'c parser -> 'a parser -> ('c, 'a) ctr_spec parser val parse_sel_default_eqs: string list parser end; structure Ctr_Sugar : CTR_SUGAR = struct open Ctr_Sugar_Util open Ctr_Sugar_Tactics open Ctr_Sugar_Code datatype ctr_sugar_kind = Datatype | Codatatype | Record | Unknown; type ctr_sugar = {kind: ctr_sugar_kind, T: typ, ctrs: term list, casex: term, discs: term list, selss: term list list, exhaust: thm, nchotomy: thm, injects: thm list, distincts: thm list, case_thms: thm list, case_cong: thm, case_cong_weak: thm, case_distribs: thm list, split: thm, split_asm: thm, disc_defs: thm list, disc_thmss: thm list list, discIs: thm list, disc_eq_cases: thm list, sel_defs: thm list, sel_thmss: thm list list, distinct_discsss: thm list list list, exhaust_discs: thm list, exhaust_sels: thm list, collapses: thm list, expands: thm list, split_sels: thm list, split_sel_asms: thm list, case_eq_ifs: thm list}; fun morph_ctr_sugar phi ({kind, T, ctrs, casex, discs, selss, exhaust, nchotomy, injects, distincts, case_thms, case_cong, case_cong_weak, case_distribs, split, split_asm, disc_defs, disc_thmss, discIs, disc_eq_cases, sel_defs, sel_thmss, distinct_discsss, exhaust_discs, exhaust_sels, collapses, expands, split_sels, split_sel_asms, case_eq_ifs} : ctr_sugar) = {kind = kind, T = Morphism.typ phi T, ctrs = map (Morphism.term phi) ctrs, casex = Morphism.term phi casex, discs = map (Morphism.term phi) discs, selss = map (map (Morphism.term phi)) selss, exhaust = Morphism.thm phi exhaust, nchotomy = Morphism.thm phi nchotomy, injects = map (Morphism.thm phi) injects, distincts = map (Morphism.thm phi) distincts, case_thms = map (Morphism.thm phi) case_thms, case_cong = Morphism.thm phi case_cong, case_cong_weak = Morphism.thm phi case_cong_weak, case_distribs = map (Morphism.thm phi) case_distribs, split = Morphism.thm phi split, split_asm = Morphism.thm phi split_asm, disc_defs = map (Morphism.thm phi) disc_defs, disc_thmss = map (map (Morphism.thm phi)) disc_thmss, discIs = map (Morphism.thm phi) discIs, disc_eq_cases = map (Morphism.thm phi) disc_eq_cases, sel_defs = map (Morphism.thm phi) sel_defs, sel_thmss = map (map (Morphism.thm phi)) sel_thmss, distinct_discsss = map (map (map (Morphism.thm phi))) distinct_discsss, exhaust_discs = map (Morphism.thm phi) exhaust_discs, exhaust_sels = map (Morphism.thm phi) exhaust_sels, collapses = map (Morphism.thm phi) collapses, expands = map (Morphism.thm phi) expands, split_sels = map (Morphism.thm phi) split_sels, split_sel_asms = map (Morphism.thm phi) split_sel_asms, case_eq_ifs = map (Morphism.thm phi) case_eq_ifs}; val transfer_ctr_sugar = morph_ctr_sugar o Morphism.transfer_morphism; structure Data = Generic_Data ( type T = (Position.T * ctr_sugar) Symtab.table; val empty = Symtab.empty; val extend = I; fun merge data : T = Symtab.merge (K true) data; ); fun ctr_sugar_of_generic context = Option.map (transfer_ctr_sugar (Context.theory_of context) o #2) o Symtab.lookup (Data.get context); fun ctr_sugars_of_generic context = Symtab.fold (cons o transfer_ctr_sugar (Context.theory_of context) o #2 o #2) (Data.get context) []; fun ctr_sugar_of_case_generic context s = find_first (fn {casex = Const (s', _), ...} => s' = s | _ => false) (ctr_sugars_of_generic context); val ctr_sugar_of = ctr_sugar_of_generic o Context.Proof; val ctr_sugar_of_global = ctr_sugar_of_generic o Context.Theory; val ctr_sugars_of = ctr_sugars_of_generic o Context.Proof; val ctr_sugars_of_global = ctr_sugars_of_generic o Context.Theory; val ctr_sugar_of_case = ctr_sugar_of_case_generic o Context.Proof; val ctr_sugar_of_case_global = ctr_sugar_of_case_generic o Context.Theory; structure Ctr_Sugar_Plugin = Plugin(type T = ctr_sugar); fun ctr_sugar_interpretation name f = Ctr_Sugar_Plugin.interpretation name (fn ctr_sugar => fn lthy => f (transfer_ctr_sugar (Proof_Context.theory_of lthy) ctr_sugar) lthy); val interpret_ctr_sugar = Ctr_Sugar_Plugin.data; fun register_ctr_sugar_raw (ctr_sugar as {T = Type (name, _), ...}) = Local_Theory.declaration {syntax = false, pervasive = true} (fn phi => fn context => let val pos = Position.thread_data () in Data.map (Symtab.update (name, (pos, morph_ctr_sugar phi ctr_sugar))) context end); fun register_ctr_sugar plugins ctr_sugar = register_ctr_sugar_raw ctr_sugar #> interpret_ctr_sugar plugins ctr_sugar; fun default_register_ctr_sugar_global plugins (ctr_sugar as {T = Type (name, _), ...}) thy = let val tab = Data.get (Context.Theory thy); val pos = Position.thread_data (); in if Symtab.defined tab name then thy else thy |> Context.theory_map (Data.put (Symtab.update_new (name, (pos, ctr_sugar)) tab)) |> Named_Target.theory_map (Ctr_Sugar_Plugin.data plugins ctr_sugar) end; val is_prefix = "is_"; val un_prefix = "un_"; val not_prefix = "not_"; fun mk_unN 1 1 suf = un_prefix ^ suf | mk_unN _ l suf = un_prefix ^ suf ^ string_of_int l; val caseN = "case"; val case_congN = "case_cong"; val case_eq_ifN = "case_eq_if"; val collapseN = "collapse"; val discN = "disc"; val disc_eq_caseN = "disc_eq_case"; val discIN = "discI"; val distinctN = "distinct"; val distinct_discN = "distinct_disc"; val exhaustN = "exhaust"; val exhaust_discN = "exhaust_disc"; val expandN = "expand"; val injectN = "inject"; val nchotomyN = "nchotomy"; val selN = "sel"; val exhaust_selN = "exhaust_sel"; val splitN = "split"; val split_asmN = "split_asm"; val split_selN = "split_sel"; val split_sel_asmN = "split_sel_asm"; val splitsN = "splits"; val split_selsN = "split_sels"; val case_cong_weak_thmsN = "case_cong_weak"; val case_distribN = "case_distrib"; val cong_attrs = @{attributes [cong]}; val dest_attrs = @{attributes [dest]}; val safe_elim_attrs = @{attributes [elim!]}; val iff_attrs = @{attributes [iff]}; val inductsimp_attrs = @{attributes [induct_simp]}; val nitpicksimp_attrs = @{attributes [nitpick_simp]}; val simp_attrs = @{attributes [simp]}; fun unflat_lookup eq xs ys = map (fn xs' => permute_like_unique eq xs xs' ys); fun mk_half_pairss' _ ([], []) = [] | mk_half_pairss' indent (x :: xs, _ :: ys) = indent @ fold_rev (cons o single o pair x) ys (mk_half_pairss' ([] :: indent) (xs, ys)); fun mk_half_pairss p = mk_half_pairss' [[]] p; fun join_halves n half_xss other_half_xss = (splice (flat half_xss) (flat other_half_xss), map2 (map2 append) (Library.chop_groups n half_xss) (transpose (Library.chop_groups n other_half_xss))); fun mk_undefined T = Const (\<^const_name>\undefined\, T); fun mk_ctr Ts t = let val Type (_, Ts0) = body_type (fastype_of t) in subst_nonatomic_types (Ts0 ~~ Ts) t end; fun mk_case Ts T t = let val (Type (_, Ts0), body) = strip_type (fastype_of t) |>> List.last in subst_nonatomic_types ((body, T) :: (Ts0 ~~ Ts)) t end; fun mk_disc_or_sel Ts t = subst_nonatomic_types (snd (Term.dest_Type (domain_type (fastype_of t))) ~~ Ts) t; val name_of_ctr = name_of_const "constructor" body_type; fun name_of_disc t = (case head_of t of Abs (_, _, \<^const>\Not\ $ (t' $ Bound 0)) => Long_Name.map_base_name (prefix not_prefix) (name_of_disc t') | Abs (_, _, Const (\<^const_name>\HOL.eq\, _) $ Bound 0 $ t') => Long_Name.map_base_name (prefix is_prefix) (name_of_disc t') | Abs (_, _, \<^const>\Not\ $ (Const (\<^const_name>\HOL.eq\, _) $ Bound 0 $ t')) => Long_Name.map_base_name (prefix (not_prefix ^ is_prefix)) (name_of_disc t') | t' => name_of_const "discriminator" (perhaps (try domain_type)) t'); val base_name_of_ctr = Long_Name.base_name o name_of_ctr; fun dest_ctr ctxt s t = let val (f, args) = Term.strip_comb t in (case ctr_sugar_of ctxt s of SOME {ctrs, ...} => (case find_first (can (fo_match ctxt f)) ctrs of SOME f' => (f', args) | NONE => raise Fail "dest_ctr") | NONE => raise Fail "dest_ctr") end; fun dest_case ctxt s Ts t = (case Term.strip_comb t of (Const (c, _), args as _ :: _) => (case ctr_sugar_of ctxt s of SOME (ctr_sugar as {casex = Const (case_name, _), discs = discs0, selss = selss0, ...}) => if case_name = c then let val n = length discs0 in if n < length args then let val (branches, obj :: leftovers) = chop n args; val discs = map (mk_disc_or_sel Ts) discs0; val selss = map (map (mk_disc_or_sel Ts)) selss0; val conds = map (rapp obj) discs; val branch_argss = map (fn sels => map (rapp obj) sels @ leftovers) selss; val branches' = map2 (curry Term.betapplys) branches branch_argss; in SOME (ctr_sugar, conds, branches') end else NONE end else NONE | _ => NONE) | _ => NONE); fun const_or_free_name (Const (s, _)) = Long_Name.base_name s | const_or_free_name (Free (s, _)) = s | const_or_free_name t = raise TERM ("const_or_free_name", [t]) fun extract_sel_default ctxt t = let fun malformed () = error ("Malformed selector default value equation: " ^ Syntax.string_of_term ctxt t); val ((sel, (ctr, vars)), rhs) = fst (Term.replace_dummy_patterns (Syntax.check_term ctxt t) 0) |> HOLogic.dest_eq |>> (Term.dest_comb #>> const_or_free_name ##> (Term.strip_comb #>> (Term.dest_Const #> fst))) handle TERM _ => malformed (); in if forall (is_Free orf is_Var) vars andalso not (has_duplicates (op aconv) vars) then ((ctr, sel), fold_rev Term.lambda vars rhs) else malformed () end; (* Ideally, we would enrich the context with constants rather than free variables. *) fun fake_local_theory_for_sel_defaults sel_bTs = Proof_Context.allow_dummies #> Proof_Context.add_fixes (map (fn (b, T) => (b, SOME T, NoSyn)) sel_bTs) #> snd; type ('c, 'a) ctr_spec = (binding * 'c) * 'a list; fun disc_of_ctr_spec ((disc, _), _) = disc; fun ctr_of_ctr_spec ((_, ctr), _) = ctr; fun args_of_ctr_spec (_, args) = args; val code_plugin = Plugin_Name.declare_setup \<^binding>\code\; fun prepare_free_constructors kind prep_plugins prep_term ((((raw_plugins, discs_sels), raw_case_binding), ctr_specs), sel_default_eqs) no_defs_lthy = let val plugins = prep_plugins no_defs_lthy raw_plugins; (* TODO: sanity checks on arguments *) val raw_ctrs = map ctr_of_ctr_spec ctr_specs; val raw_disc_bindings = map disc_of_ctr_spec ctr_specs; val raw_sel_bindingss = map args_of_ctr_spec ctr_specs; val n = length raw_ctrs; val ks = 1 upto n; val _ = n > 0 orelse error "No constructors specified"; val ctrs0 = map (prep_term no_defs_lthy) raw_ctrs; val (fcT_name, As0) = (case body_type (fastype_of (hd ctrs0)) of Type T' => T' | _ => error "Expected type constructor in body type of constructor"); val _ = forall ((fn Type (T_name, _) => T_name = fcT_name | _ => false) o body_type o fastype_of) (tl ctrs0) orelse error "Constructors not constructing same type"; val fc_b_name = Long_Name.base_name fcT_name; val fc_b = Binding.name fc_b_name; fun qualify mandatory = Binding.qualify mandatory fc_b_name; val (unsorted_As, [B, C]) = no_defs_lthy |> variant_tfrees (map (fst o dest_TFree_or_TVar) As0) ||> fst o mk_TFrees 2; val As = map2 (resort_tfree_or_tvar o snd o dest_TFree_or_TVar) As0 unsorted_As; val fcT = Type (fcT_name, As); val ctrs = map (mk_ctr As) ctrs0; val ctr_Tss = map (binder_types o fastype_of) ctrs; val ms = map length ctr_Tss; fun can_definitely_rely_on_disc k = not (Binding.is_empty (nth raw_disc_bindings (k - 1))) orelse nth ms (k - 1) = 0; fun can_rely_on_disc k = can_definitely_rely_on_disc k orelse (k = 1 andalso not (can_definitely_rely_on_disc 2)); fun should_omit_disc_binding k = n = 1 orelse (n = 2 andalso can_rely_on_disc (3 - k)); val equal_binding = \<^binding>\=\; fun is_disc_binding_valid b = not (Binding.is_empty b orelse Binding.eq_name (b, equal_binding)); val standard_disc_binding = Binding.name o prefix is_prefix o base_name_of_ctr; val disc_bindings = raw_disc_bindings |> @{map 4} (fn k => fn m => fn ctr => fn disc => qualify false (if Binding.is_empty disc then if m = 0 then equal_binding else if should_omit_disc_binding k then disc else standard_disc_binding ctr else if Binding.eq_name (disc, standard_binding) then standard_disc_binding ctr else disc)) ks ms ctrs0; fun standard_sel_binding m l = Binding.name o mk_unN m l o base_name_of_ctr; val sel_bindingss = @{map 3} (fn ctr => fn m => map2 (fn l => fn sel => qualify false (if Binding.is_empty sel orelse Binding.eq_name (sel, standard_binding) then standard_sel_binding m l ctr else sel)) (1 upto m) o pad_list Binding.empty m) ctrs0 ms raw_sel_bindingss; val add_bindings = Variable.add_fixes (distinct (op =) (filter Symbol_Pos.is_identifier (map Binding.name_of (disc_bindings @ flat sel_bindingss)))) #> snd; val case_Ts = map (fn Ts => Ts ---> B) ctr_Tss; val (((((((((u, exh_y), xss), yss), fs), gs), w), (p, p'))), _) = no_defs_lthy |> add_bindings |> yield_singleton (mk_Frees fc_b_name) fcT ||>> yield_singleton (mk_Frees "y") fcT (* for compatibility with "datatype_realizer.ML" *) ||>> mk_Freess "x" ctr_Tss ||>> mk_Freess "y" ctr_Tss ||>> mk_Frees "f" case_Ts ||>> mk_Frees "g" case_Ts ||>> yield_singleton (mk_Frees "z") B ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "P") HOLogic.boolT; val q = Free (fst p', mk_pred1T B); val xctrs = map2 (curry Term.list_comb) ctrs xss; val yctrs = map2 (curry Term.list_comb) ctrs yss; val xfs = map2 (curry Term.list_comb) fs xss; val xgs = map2 (curry Term.list_comb) gs xss; (* TODO: Eta-expension is for compatibility with the old datatype package (but it also provides nicer names). Consider removing. *) val eta_fs = map2 (fold_rev Term.lambda) xss xfs; val eta_gs = map2 (fold_rev Term.lambda) xss xgs; val case_binding = qualify false (if Binding.is_empty raw_case_binding orelse Binding.eq_name (raw_case_binding, standard_binding) then Binding.prefix_name (caseN ^ "_") fc_b else raw_case_binding); fun mk_case_disj xctr xf xs = list_exists_free xs (HOLogic.mk_conj (HOLogic.mk_eq (u, xctr), HOLogic.mk_eq (w, xf))); val case_rhs = fold_rev (fold_rev Term.lambda) [fs, [u]] (Const (\<^const_name>\The\, (B --> HOLogic.boolT) --> B) $ Term.lambda w (Library.foldr1 HOLogic.mk_disj (@{map 3} mk_case_disj xctrs xfs xss))); val ((raw_case, (_, raw_case_def)), (lthy, lthy_old)) = no_defs_lthy |> Local_Theory.open_target |> snd |> Local_Theory.define ((case_binding, NoSyn), ((Binding.concealed (Thm.def_binding case_binding), []), case_rhs)) ||> `Local_Theory.close_target; val phi = Proof_Context.export_morphism lthy_old lthy; val case_def = Morphism.thm phi raw_case_def; val case0 = Morphism.term phi raw_case; val casex = mk_case As B case0; val casexC = mk_case As C case0; val casexBool = mk_case As HOLogic.boolT case0; fun mk_uu_eq () = HOLogic.mk_eq (u, u); val exist_xs_u_eq_ctrs = map2 (fn xctr => fn xs => list_exists_free xs (HOLogic.mk_eq (u, xctr))) xctrs xss; val unique_disc_no_def = TrueI; (*arbitrary marker*) val alternate_disc_no_def = FalseE; (*arbitrary marker*) fun alternate_disc_lhs get_udisc k = HOLogic.mk_not (let val b = nth disc_bindings (k - 1) in if is_disc_binding_valid b then get_udisc b (k - 1) else nth exist_xs_u_eq_ctrs (k - 1) end); val no_discs_sels = not discs_sels andalso forall (forall Binding.is_empty) (raw_disc_bindings :: raw_sel_bindingss) andalso null sel_default_eqs; val (all_sels_distinct, discs, selss, disc_defs, sel_defs, sel_defss, lthy) = if no_discs_sels then (true, [], [], [], [], [], lthy) else let val all_sel_bindings = flat sel_bindingss; val num_all_sel_bindings = length all_sel_bindings; val uniq_sel_bindings = distinct Binding.eq_name all_sel_bindings; val all_sels_distinct = (length uniq_sel_bindings = num_all_sel_bindings); val sel_binding_index = if all_sels_distinct then 1 upto num_all_sel_bindings else map (fn b => find_index (curry Binding.eq_name b) uniq_sel_bindings) all_sel_bindings; val all_proto_sels = flat (@{map 3} (fn k => fn xs => map (pair k o pair xs)) ks xss xss); val sel_infos = AList.group (op =) (sel_binding_index ~~ all_proto_sels) |> sort (int_ord o apply2 fst) |> map snd |> curry (op ~~) uniq_sel_bindings; val sel_bindings = map fst sel_infos; val sel_defaults = if null sel_default_eqs then [] else let val sel_Ts = map (curry (op -->) fcT o fastype_of o snd o snd o hd o snd) sel_infos; val fake_lthy = fake_local_theory_for_sel_defaults (sel_bindings ~~ sel_Ts) no_defs_lthy; in map (extract_sel_default fake_lthy o prep_term fake_lthy) sel_default_eqs end; fun disc_free b = Free (Binding.name_of b, mk_pred1T fcT); fun disc_spec b exist_xs_u_eq_ctr = mk_Trueprop_eq (disc_free b $ u, exist_xs_u_eq_ctr); fun alternate_disc k = Term.lambda u (alternate_disc_lhs (K o rapp u o disc_free) (3 - k)); fun mk_sel_case_args b proto_sels T = @{map 3} (fn Const (c, _) => fn Ts => fn k => (case AList.lookup (op =) proto_sels k of NONE => (case filter (curry (op =) (c, Binding.name_of b) o fst) sel_defaults of [] => fold_rev (Term.lambda o curry Free Name.uu) Ts (mk_undefined T) | [(_, t)] => t | _ => error "Multiple default values for selector/constructor pair") | SOME (xs, x) => fold_rev Term.lambda xs x)) ctrs ctr_Tss ks; fun sel_spec b proto_sels = let val _ = (case duplicates (op =) (map fst proto_sels) of k :: _ => error ("Duplicate selector name " ^ quote (Binding.name_of b) ^ " for constructor " ^ quote (Syntax.string_of_term lthy (nth ctrs (k - 1)))) | [] => ()) val T = (case distinct (op =) (map (fastype_of o snd o snd) proto_sels) of [T] => T | T :: T' :: _ => error ("Inconsistent range type for selector " ^ quote (Binding.name_of b) ^ ": " ^ quote (Syntax.string_of_typ lthy T) ^ " vs. " ^ quote (Syntax.string_of_typ lthy T'))); in mk_Trueprop_eq (Free (Binding.name_of b, fcT --> T) $ u, Term.list_comb (mk_case As T case0, mk_sel_case_args b proto_sels T) $ u) end; fun unflat_selss xs = unflat_lookup Binding.eq_name sel_bindings xs sel_bindingss; val (((raw_discs, raw_disc_defs), (raw_sels, raw_sel_defs)), (lthy', lthy)) = lthy |> Local_Theory.open_target |> snd |> apfst split_list o @{fold_map 3} (fn k => fn exist_xs_u_eq_ctr => fn b => if Binding.is_empty b then if n = 1 then pair (Term.lambda u (mk_uu_eq ()), unique_disc_no_def) else pair (alternate_disc k, alternate_disc_no_def) else if Binding.eq_name (b, equal_binding) then pair (Term.lambda u exist_xs_u_eq_ctr, refl) else Specification.definition (SOME (b, NONE, NoSyn)) [] [] ((Thm.def_binding b, []), disc_spec b exist_xs_u_eq_ctr) #>> apsnd snd) ks exist_xs_u_eq_ctrs disc_bindings ||>> apfst split_list o fold_map (fn (b, proto_sels) => Specification.definition (SOME (b, NONE, NoSyn)) [] [] ((Thm.def_binding b, []), sel_spec b proto_sels) #>> apsnd snd) sel_infos ||> `Local_Theory.close_target; val phi = Proof_Context.export_morphism lthy lthy'; val disc_defs = map (Morphism.thm phi) raw_disc_defs; val sel_defs = map (Morphism.thm phi) raw_sel_defs; val sel_defss = unflat_selss sel_defs; val discs0 = map (Morphism.term phi) raw_discs; val selss0 = unflat_selss (map (Morphism.term phi) raw_sels); val discs = map (mk_disc_or_sel As) discs0; val selss = map (map (mk_disc_or_sel As)) selss0; in (all_sels_distinct, discs, selss, disc_defs, sel_defs, sel_defss, lthy') end; fun mk_imp_p Qs = Logic.list_implies (Qs, HOLogic.mk_Trueprop p); val exhaust_goal = let fun mk_prem xctr xs = fold_rev Logic.all xs (mk_imp_p [mk_Trueprop_eq (exh_y, xctr)]) in fold_rev Logic.all [p, exh_y] (mk_imp_p (map2 mk_prem xctrs xss)) end; val inject_goalss = let fun mk_goal _ _ [] [] = [] | mk_goal xctr yctr xs ys = [fold_rev Logic.all (xs @ ys) (mk_Trueprop_eq (HOLogic.mk_eq (xctr, yctr), Library.foldr1 HOLogic.mk_conj (map2 (curry HOLogic.mk_eq) xs ys)))]; in @{map 4} mk_goal xctrs yctrs xss yss end; val half_distinct_goalss = let fun mk_goal ((xs, xc), (xs', xc')) = fold_rev Logic.all (xs @ xs') (HOLogic.mk_Trueprop (HOLogic.mk_not (HOLogic.mk_eq (xc, xc')))); in map (map mk_goal) (mk_half_pairss (`I (xss ~~ xctrs))) end; val goalss = [exhaust_goal] :: inject_goalss @ half_distinct_goalss; fun after_qed ([exhaust_thm] :: thmss) lthy = let val ((((((((u, u'), (xss, xss')), fs), gs), h), v), p), _) = lthy |> add_bindings |> yield_singleton (apfst (op ~~) oo mk_Frees' fc_b_name) fcT ||>> mk_Freess' "x" ctr_Tss ||>> mk_Frees "f" case_Ts ||>> mk_Frees "g" case_Ts ||>> yield_singleton (mk_Frees "h") (B --> C) ||>> yield_singleton (mk_Frees (fc_b_name ^ "'")) fcT ||>> yield_singleton (mk_Frees "P") HOLogic.boolT; val xfs = map2 (curry Term.list_comb) fs xss; val xgs = map2 (curry Term.list_comb) gs xss; val fcase = Term.list_comb (casex, fs); val ufcase = fcase $ u; val vfcase = fcase $ v; val eta_fcase = Term.list_comb (casex, eta_fs); val eta_gcase = Term.list_comb (casex, eta_gs); val eta_ufcase = eta_fcase $ u; val eta_vgcase = eta_gcase $ v; fun mk_uu_eq () = HOLogic.mk_eq (u, u); val uv_eq = mk_Trueprop_eq (u, v); val ((inject_thms, inject_thmss), half_distinct_thmss) = chop n thmss |>> `flat; val rho_As = map (fn (T, U) => (dest_TVar T, Thm.ctyp_of lthy U)) (map Logic.varifyT_global As ~~ As); fun inst_thm t thm = Thm.instantiate' [] [SOME (Thm.cterm_of lthy t)] (Thm.instantiate (rho_As, []) (Drule.zero_var_indexes thm)); val uexhaust_thm = inst_thm u exhaust_thm; val exhaust_cases = map base_name_of_ctr ctrs; val other_half_distinct_thmss = map (map (fn thm => thm RS not_sym)) half_distinct_thmss; val (distinct_thms, (distinct_thmsss', distinct_thmsss)) = join_halves n half_distinct_thmss other_half_distinct_thmss ||> `transpose; val nchotomy_thm = let val goal = HOLogic.mk_Trueprop (HOLogic.mk_all (fst u', snd u', Library.foldr1 HOLogic.mk_disj exist_xs_u_eq_ctrs)); in Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} => mk_nchotomy_tac ctxt n exhaust_thm) |> Thm.close_derivation \<^here> end; val case_thms = let val goals = @{map 3} (fn xctr => fn xf => fn xs => fold_rev Logic.all (fs @ xs) (mk_Trueprop_eq (fcase $ xctr, xf))) xctrs xfs xss; in @{map 4} (fn k => fn goal => fn injects => fn distinctss => Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} => mk_case_tac ctxt n k case_def injects distinctss) |> Thm.close_derivation \<^here>) ks goals inject_thmss distinct_thmsss end; val (case_cong_thm, case_cong_weak_thm) = let fun mk_prem xctr xs xf xg = fold_rev Logic.all xs (Logic.mk_implies (mk_Trueprop_eq (v, xctr), mk_Trueprop_eq (xf, xg))); val goal = Logic.list_implies (uv_eq :: @{map 4} mk_prem xctrs xss xfs xgs, mk_Trueprop_eq (eta_ufcase, eta_vgcase)); val weak_goal = Logic.mk_implies (uv_eq, mk_Trueprop_eq (ufcase, vfcase)); val vars = Variable.add_free_names lthy goal []; val weak_vars = Variable.add_free_names lthy weak_goal []; in (Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} => mk_case_cong_tac ctxt uexhaust_thm case_thms), Goal.prove_sorry lthy weak_vars [] weak_goal (fn {context = ctxt, prems = _} => etac ctxt arg_cong 1)) |> apply2 (Thm.close_derivation \<^here>) end; val split_lhs = q $ ufcase; fun mk_split_conjunct xctr xs f_xs = list_all_free xs (HOLogic.mk_imp (HOLogic.mk_eq (u, xctr), q $ f_xs)); fun mk_split_disjunct xctr xs f_xs = list_exists_free xs (HOLogic.mk_conj (HOLogic.mk_eq (u, xctr), HOLogic.mk_not (q $ f_xs))); fun mk_split_goal xctrs xss xfs = mk_Trueprop_eq (split_lhs, Library.foldr1 HOLogic.mk_conj (@{map 3} mk_split_conjunct xctrs xss xfs)); fun mk_split_asm_goal xctrs xss xfs = mk_Trueprop_eq (split_lhs, HOLogic.mk_not (Library.foldr1 HOLogic.mk_disj (@{map 3} mk_split_disjunct xctrs xss xfs))); fun prove_split selss goal = Variable.add_free_names lthy goal [] |> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} => mk_split_tac ctxt uexhaust_thm case_thms selss inject_thmss distinct_thmsss)) |> Thm.close_derivation \<^here>; fun prove_split_asm asm_goal split_thm = Variable.add_free_names lthy asm_goal [] |> (fn vars => Goal.prove_sorry lthy vars [] asm_goal (fn {context = ctxt, ...} => mk_split_asm_tac ctxt split_thm)) |> Thm.close_derivation \<^here>; val (split_thm, split_asm_thm) = let val goal = mk_split_goal xctrs xss xfs; val asm_goal = mk_split_asm_goal xctrs xss xfs; val thm = prove_split (replicate n []) goal; val asm_thm = prove_split_asm asm_goal thm; in (thm, asm_thm) end; val (sel_defs, all_sel_thms, sel_thmss, nontriv_disc_defs, disc_thmss, nontriv_disc_thmss, discI_thms, nontriv_discI_thms, distinct_disc_thms, distinct_disc_thmsss, exhaust_disc_thms, exhaust_sel_thms, all_collapse_thms, safe_collapse_thms, expand_thms, split_sel_thms, split_sel_asm_thms, case_eq_if_thms, disc_eq_case_thms) = if no_discs_sels then ([], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []) else let val udiscs = map (rapp u) discs; val uselss = map (map (rapp u)) selss; val usel_ctrs = map2 (curry Term.list_comb) ctrs uselss; val usel_fs = map2 (curry Term.list_comb) fs uselss; val vdiscs = map (rapp v) discs; val vselss = map (map (rapp v)) selss; fun make_sel_thm xs' case_thm sel_def = zero_var_indexes (Variable.gen_all lthy (Drule.rename_bvars' (map (SOME o fst) xs') (Drule.forall_intr_vars (case_thm RS (sel_def RS trans))))); val sel_thmss = @{map 3} (map oo make_sel_thm) xss' case_thms sel_defss; fun has_undefined_rhs thm = (case snd (HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of thm))) of Const (\<^const_name>\undefined\, _) => true | _ => false); val all_sel_thms = (if all_sels_distinct andalso null sel_default_eqs then flat sel_thmss else map_product (fn s => fn (xs', c) => make_sel_thm xs' c s) sel_defs (xss' ~~ case_thms)) |> filter_out has_undefined_rhs; fun mk_unique_disc_def () = let val m = the_single ms; val goal = mk_Trueprop_eq (mk_uu_eq (), the_single exist_xs_u_eq_ctrs); val vars = Variable.add_free_names lthy goal []; in Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} => mk_unique_disc_def_tac ctxt m uexhaust_thm) |> Thm.close_derivation \<^here> end; fun mk_alternate_disc_def k = let val goal = mk_Trueprop_eq (alternate_disc_lhs (K (nth udiscs)) (3 - k), nth exist_xs_u_eq_ctrs (k - 1)); val vars = Variable.add_free_names lthy goal []; in Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, ...} => mk_alternate_disc_def_tac ctxt k (nth disc_defs (2 - k)) (nth distinct_thms (2 - k)) uexhaust_thm) |> Thm.close_derivation \<^here> end; val has_alternate_disc_def = exists (fn def => Thm.eq_thm_prop (def, alternate_disc_no_def)) disc_defs; val nontriv_disc_defs = disc_defs |> filter_out (member Thm.eq_thm_prop [unique_disc_no_def, alternate_disc_no_def, refl]); val disc_defs' = map2 (fn k => fn def => if Thm.eq_thm_prop (def, unique_disc_no_def) then mk_unique_disc_def () else if Thm.eq_thm_prop (def, alternate_disc_no_def) then mk_alternate_disc_def k else def) ks disc_defs; val discD_thms = map (fn def => def RS iffD1) disc_defs'; val discI_thms = map2 (fn m => fn def => funpow m (fn thm => exI RS thm) (def RS iffD2)) ms disc_defs'; val not_discI_thms = map2 (fn m => fn def => funpow m (fn thm => allI RS thm) (unfold_thms lthy @{thms not_ex} (def RS @{thm ssubst[of _ _ Not]}))) ms disc_defs'; val (disc_thmss', disc_thmss) = let fun mk_thm discI _ [] = refl RS discI | mk_thm _ not_discI [distinct] = distinct RS not_discI; fun mk_thms discI not_discI distinctss = map (mk_thm discI not_discI) distinctss; in @{map 3} mk_thms discI_thms not_discI_thms distinct_thmsss' |> `transpose end; val nontriv_disc_thmss = map2 (fn b => if is_disc_binding_valid b then I else K []) disc_bindings disc_thmss; fun is_discI_triv b = (n = 1 andalso Binding.is_empty b) orelse Binding.eq_name (b, equal_binding); val nontriv_discI_thms = flat (map2 (fn b => if is_discI_triv b then K [] else single) disc_bindings discI_thms); val (distinct_disc_thms, (distinct_disc_thmsss', distinct_disc_thmsss)) = let fun mk_goal [] = [] | mk_goal [((_, udisc), (_, udisc'))] = [Logic.all u (Logic.mk_implies (HOLogic.mk_Trueprop udisc, HOLogic.mk_Trueprop (HOLogic.mk_not udisc')))]; fun prove tac goal = Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} => tac ctxt) |> Thm.close_derivation \<^here>; val half_pairss = mk_half_pairss (`I (ms ~~ discD_thms ~~ udiscs)); val half_goalss = map mk_goal half_pairss; val half_thmss = @{map 3} (fn [] => K (K []) | [goal] => fn [(((m, discD), _), _)] => fn disc_thm => [prove (fn ctxt => mk_half_distinct_disc_tac ctxt m discD disc_thm) goal]) half_goalss half_pairss (flat disc_thmss'); val other_half_goalss = map (mk_goal o map swap) half_pairss; val other_half_thmss = map2 (map2 (fn thm => prove (fn ctxt => mk_other_half_distinct_disc_tac ctxt thm))) half_thmss other_half_goalss; in join_halves n half_thmss other_half_thmss ||> `transpose |>> has_alternate_disc_def ? K [] end; val exhaust_disc_thm = let fun mk_prem udisc = mk_imp_p [HOLogic.mk_Trueprop udisc]; val goal = fold_rev Logic.all [p, u] (mk_imp_p (map mk_prem udiscs)); in Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} => mk_exhaust_disc_tac ctxt n exhaust_thm discI_thms) |> Thm.close_derivation \<^here> end; val (safe_collapse_thms, all_collapse_thms) = let fun mk_goal m udisc usel_ctr = let val prem = HOLogic.mk_Trueprop udisc; val concl = mk_Trueprop_eq ((usel_ctr, u) |> m = 0 ? swap); in (prem aconv concl, Logic.all u (Logic.mk_implies (prem, concl))) end; val (trivs, goals) = @{map 3} mk_goal ms udiscs usel_ctrs |> split_list; val thms = @{map 5} (fn m => fn discD => fn sel_thms => fn triv => fn goal => Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} => mk_collapse_tac ctxt m discD sel_thms ORELSE HEADGOAL (assume_tac ctxt)) |> Thm.close_derivation \<^here> |> not triv ? perhaps (try (fn thm => refl RS thm))) ms discD_thms sel_thmss trivs goals; in (map_filter (fn (true, _) => NONE | (false, thm) => SOME thm) (trivs ~~ thms), thms) end; val swapped_all_collapse_thms = map2 (fn m => fn thm => if m = 0 then thm else thm RS sym) ms all_collapse_thms; val exhaust_sel_thm = let fun mk_prem usel_ctr = mk_imp_p [mk_Trueprop_eq (u, usel_ctr)]; val goal = fold_rev Logic.all [p, u] (mk_imp_p (map mk_prem usel_ctrs)); in Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} => mk_exhaust_sel_tac ctxt n exhaust_disc_thm swapped_all_collapse_thms) |> Thm.close_derivation \<^here> end; val expand_thm = let fun mk_prems k udisc usels vdisc vsels = (if k = n then [] else [mk_Trueprop_eq (udisc, vdisc)]) @ (if null usels then [] else [Logic.list_implies (if n = 1 then [] else map HOLogic.mk_Trueprop [udisc, vdisc], HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj (map2 (curry HOLogic.mk_eq) usels vsels)))]); val goal = Library.foldr Logic.list_implies (@{map 5} mk_prems ks udiscs uselss vdiscs vselss, uv_eq); val uncollapse_thms = map2 (fn thm => fn [] => thm | _ => thm RS sym) all_collapse_thms uselss; val vars = Variable.add_free_names lthy goal []; in Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} => mk_expand_tac ctxt n ms (inst_thm u exhaust_disc_thm) (inst_thm v exhaust_disc_thm) uncollapse_thms distinct_disc_thmsss distinct_disc_thmsss') |> Thm.close_derivation \<^here> end; val (split_sel_thm, split_sel_asm_thm) = let val zss = map (K []) xss; val goal = mk_split_goal usel_ctrs zss usel_fs; val asm_goal = mk_split_asm_goal usel_ctrs zss usel_fs; val thm = prove_split sel_thmss goal; val asm_thm = prove_split_asm asm_goal thm; in (thm, asm_thm) end; val case_eq_if_thm = let val goal = mk_Trueprop_eq (ufcase, mk_IfN B udiscs usel_fs); val vars = Variable.add_free_names lthy goal []; in Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, ...} => mk_case_eq_if_tac ctxt n uexhaust_thm case_thms disc_thmss' sel_thmss) |> Thm.close_derivation \<^here> end; val disc_eq_case_thms = let fun const_of_bool b = if b then \<^const>\True\ else \<^const>\False\; fun mk_case_args n = map_index (fn (k, argTs) => fold_rev Term.absdummy argTs (const_of_bool (n = k))) ctr_Tss; val goals = map_index (fn (n, udisc) => mk_Trueprop_eq (udisc, list_comb (casexBool, mk_case_args n) $ u)) udiscs; val goal = Logic.mk_conjunction_balanced goals; val vars = Variable.add_free_names lthy goal []; in Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, ...} => mk_disc_eq_case_tac ctxt (Thm.cterm_of ctxt u) exhaust_thm (flat nontriv_disc_thmss) distinct_thms case_thms) |> Thm.close_derivation \<^here> |> Conjunction.elim_balanced (length goals) end; in (sel_defs, all_sel_thms, sel_thmss, nontriv_disc_defs, disc_thmss, nontriv_disc_thmss, discI_thms, nontriv_discI_thms, distinct_disc_thms, distinct_disc_thmsss, [exhaust_disc_thm], [exhaust_sel_thm], all_collapse_thms, safe_collapse_thms, [expand_thm], [split_sel_thm], [split_sel_asm_thm], [case_eq_if_thm], disc_eq_case_thms) end; val case_distrib_thm = let val args = @{map 2} (fn f => fn argTs => let val (args, _) = mk_Frees "x" argTs lthy in fold_rev Term.lambda args (h $ list_comb (f, args)) end) fs ctr_Tss; val goal = mk_Trueprop_eq (h $ ufcase, list_comb (casexC, args) $ u); val vars = Variable.add_free_names lthy goal []; in Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, ...} => mk_case_distrib_tac ctxt (Thm.cterm_of ctxt u) exhaust_thm case_thms) |> Thm.close_derivation \<^here> end; val exhaust_case_names_attr = Attrib.internal (K (Rule_Cases.case_names exhaust_cases)); val cases_type_attr = Attrib.internal (K (Induct.cases_type fcT_name)); val nontriv_disc_eq_thmss = map (map (fn th => th RS @{thm eq_False[THEN iffD2]} handle THM _ => th RS @{thm eq_True[THEN iffD2]})) nontriv_disc_thmss; val anonymous_notes = [(map (fn th => th RS notE) distinct_thms, safe_elim_attrs), (flat nontriv_disc_eq_thmss, nitpicksimp_attrs)] |> map (fn (thms, attrs) => ((Binding.empty, attrs), [(thms, [])])); val notes = [(caseN, case_thms, nitpicksimp_attrs @ simp_attrs), (case_congN, [case_cong_thm], []), (case_cong_weak_thmsN, [case_cong_weak_thm], cong_attrs), (case_distribN, [case_distrib_thm], []), (case_eq_ifN, case_eq_if_thms, []), (collapseN, safe_collapse_thms, if ms = [0] then [] else simp_attrs), (discN, flat nontriv_disc_thmss, simp_attrs), (disc_eq_caseN, disc_eq_case_thms, []), (discIN, nontriv_discI_thms, []), (distinctN, distinct_thms, simp_attrs @ inductsimp_attrs), (distinct_discN, distinct_disc_thms, dest_attrs), (exhaustN, [exhaust_thm], [exhaust_case_names_attr, cases_type_attr]), (exhaust_discN, exhaust_disc_thms, [exhaust_case_names_attr]), (exhaust_selN, exhaust_sel_thms, [exhaust_case_names_attr]), (expandN, expand_thms, []), (injectN, inject_thms, iff_attrs @ inductsimp_attrs), (nchotomyN, [nchotomy_thm], []), (selN, all_sel_thms, nitpicksimp_attrs @ simp_attrs), (splitN, [split_thm], []), (split_asmN, [split_asm_thm], []), (split_selN, split_sel_thms, []), (split_sel_asmN, split_sel_asm_thms, []), (split_selsN, split_sel_thms @ split_sel_asm_thms, []), (splitsN, [split_thm, split_asm_thm], [])] |> filter_out (null o #2) |> map (fn (thmN, thms, attrs) => ((qualify true (Binding.name thmN), attrs), [(thms, [])])); val (noted, lthy') = lthy |> Spec_Rules.add Binding.empty Spec_Rules.equational [casex] case_thms |> fold (uncurry (Spec_Rules.add Binding.empty Spec_Rules.equational)) (AList.group (eq_list (op aconv)) (map (`(single o lhs_head_of)) all_sel_thms)) |> fold (uncurry (Spec_Rules.add Binding.empty Spec_Rules.equational)) (filter_out (null o snd) (map single discs ~~ nontriv_disc_eq_thmss)) |> Local_Theory.declaration {syntax = false, pervasive = true} (fn phi => Case_Translation.register (Morphism.term phi casex) (map (Morphism.term phi) ctrs)) |> plugins code_plugin ? (Code.declare_default_eqns (map (rpair true) (flat nontriv_disc_eq_thmss @ case_thms @ all_sel_thms)) #> Local_Theory.declaration {syntax = false, pervasive = false} (fn phi => Context.mapping (add_ctr_code fcT_name (map (Morphism.typ phi) As) (map (dest_Const o Morphism.term phi) ctrs) (Morphism.fact phi inject_thms) (Morphism.fact phi distinct_thms) (Morphism.fact phi case_thms)) I)) |> Local_Theory.notes (anonymous_notes @ notes) (* for "datatype_realizer.ML": *) |>> name_noted_thms fcT_name exhaustN; val ctr_sugar = {kind = kind, T = fcT, ctrs = ctrs, casex = casex, discs = discs, selss = selss, exhaust = exhaust_thm, nchotomy = nchotomy_thm, injects = inject_thms, distincts = distinct_thms, case_thms = case_thms, case_cong = case_cong_thm, case_cong_weak = case_cong_weak_thm, case_distribs = [case_distrib_thm], split = split_thm, split_asm = split_asm_thm, disc_defs = nontriv_disc_defs, disc_thmss = disc_thmss, discIs = discI_thms, disc_eq_cases = disc_eq_case_thms, sel_defs = sel_defs, sel_thmss = sel_thmss, distinct_discsss = distinct_disc_thmsss, exhaust_discs = exhaust_disc_thms, exhaust_sels = exhaust_sel_thms, collapses = all_collapse_thms, expands = expand_thms, split_sels = split_sel_thms, split_sel_asms = split_sel_asm_thms, case_eq_ifs = case_eq_if_thms} |> morph_ctr_sugar (substitute_noted_thm noted); in (ctr_sugar, lthy' |> register_ctr_sugar plugins ctr_sugar) end; in (goalss, after_qed, lthy) end; fun free_constructors kind tacss = (fn (goalss, after_qed, lthy) => map2 (map2 (Thm.close_derivation \<^here> oo Goal.prove_sorry lthy [] [])) goalss tacss |> (fn thms => after_qed thms lthy)) oo prepare_free_constructors kind (K I) (K I); fun free_constructors_cmd kind = (fn (goalss, after_qed, lthy) => Proof.theorem NONE (snd oo after_qed) (map (map (rpair [])) goalss) lthy) oo prepare_free_constructors kind Plugin_Name.make_filter Syntax.read_term; val parse_bound_term = Parse.binding --| \<^keyword>\:\ -- Parse.term; type ctr_options = Plugin_Name.filter * bool; type ctr_options_cmd = (Proof.context -> Plugin_Name.filter) * bool; val default_ctr_options : ctr_options = (Plugin_Name.default_filter, false); val default_ctr_options_cmd : ctr_options_cmd = (K Plugin_Name.default_filter, false); val parse_ctr_options = Scan.optional (\<^keyword>\(\ |-- Parse.list1 (Plugin_Name.parse_filter >> (apfst o K) || Parse.reserved "discs_sels" >> (apsnd o K o K true)) --| \<^keyword>\)\ >> (fn fs => fold I fs default_ctr_options_cmd)) default_ctr_options_cmd; fun parse_ctr_spec parse_ctr parse_arg = parse_opt_binding_colon -- parse_ctr -- Scan.repeat parse_arg; val parse_ctr_specs = Parse.enum1 "|" (parse_ctr_spec Parse.term Parse.binding); val parse_sel_default_eqs = Scan.optional (\<^keyword>\where\ |-- Parse.enum1 "|" Parse.prop) []; val _ = Outer_Syntax.local_theory_to_proof \<^command_keyword>\free_constructors\ "register an existing freely generated type's constructors" (parse_ctr_options -- Parse.binding --| \<^keyword>\for\ -- parse_ctr_specs -- parse_sel_default_eqs >> free_constructors_cmd Unknown); (** external views **) (* document antiquotations *) local fun antiquote_setup binding co = Thy_Output.antiquotation_pretty_source_embedded binding ((Scan.ahead (Scan.lift Parse.not_eof) >> Token.pos_of) -- Args.type_name {proper = true, strict = true}) (fn ctxt => fn (pos, type_name) => let fun err () = error ("Bad " ^ Binding.name_of binding ^ ": " ^ quote type_name ^ Position.here pos); in (case ctr_sugar_of ctxt type_name of NONE => err () | SOME {kind, T = T0, ctrs = ctrs0, ...} => let val _ = if co = (kind = Codatatype) then () else err (); val T = Logic.unvarifyT_global T0; val ctrs = map Logic.unvarify_global ctrs0; val pretty_typ_bracket = Syntax.pretty_typ (Config.put pretty_priority 1001 ctxt); fun pretty_ctr ctr = Pretty.block (Pretty.breaks (Syntax.pretty_term ctxt ctr :: map pretty_typ_bracket (binder_types (fastype_of ctr)))); in Pretty.block (Pretty.keyword1 (Binding.name_of binding) :: Pretty.brk 1 :: Syntax.pretty_typ ctxt T :: Pretty.str " =" :: Pretty.brk 1 :: flat (separate [Pretty.brk 1, Pretty.str "| "] (map (single o pretty_ctr) ctrs))) end) end); in val _ = Theory.setup (antiquote_setup \<^binding>\datatype\ false #> antiquote_setup \<^binding>\codatatype\ true); end; (* theory export *) -val _ = Export_Theory.setup_presentation (fn {adjust_pos, ...} => fn thy => +val _ = Export_Theory.setup_presentation (fn context => fn thy => let val parents = map (Data.get o Context.Theory) (Theory.parents_of thy); val datatypes = (Data.get (Context.Theory thy), []) |-> Symtab.fold (fn (name, (pos, {kind, T, ctrs, ...})) => if exists (fn tab => Symtab.defined tab name) parents then I else let - val pos_properties = - Position.offset_properties_of (adjust_pos pos) @ Position.id_properties_of pos; + val pos_properties = Thy_Info.adjust_pos_properties context pos; val typ = Logic.unvarifyT_global T; val constrs = map Logic.unvarify_global ctrs; val typargs = rev (fold Term.add_tfrees (Logic.mk_type typ :: constrs) []); val constructors = map (fn t => (t, Term.type_of t)) constrs; in cons (pos_properties, (name, (kind = Codatatype, (typargs, (typ, constructors))))) end); in if null datatypes then () else Export_Theory.export_body thy "datatypes" let open XML.Encode Term_XML.Encode in list (pair properties (pair string (pair bool (pair (list (pair string sort)) (pair typ (list (pair (term (Sign.consts_of thy)) typ))))))) datatypes end end); end; diff --git a/src/Pure/Thy/export_theory.ML b/src/Pure/Thy/export_theory.ML --- a/src/Pure/Thy/export_theory.ML +++ b/src/Pure/Thy/export_theory.ML @@ -1,430 +1,429 @@ (* Title: Pure/Thy/export_theory.ML Author: Makarius Export foundational theory content and locale/class structure. *) signature EXPORT_THEORY = sig val setup_presentation: (Thy_Info.presentation_context -> theory -> unit) -> unit val export_body: theory -> string -> XML.body -> unit end; structure Export_Theory: EXPORT_THEORY = struct (* approximative syntax *) val get_syntax = Syntax.get_approx o Proof_Context.syn_of; fun get_syntax_type ctxt = get_syntax ctxt o Lexicon.mark_type; fun get_syntax_const ctxt = get_syntax ctxt o Lexicon.mark_const; fun get_syntax_fixed ctxt = get_syntax ctxt o Lexicon.mark_fixed; fun get_syntax_param ctxt loc x = let val thy = Proof_Context.theory_of ctxt in if Class.is_class thy loc then (case AList.lookup (op =) (Class.these_params thy [loc]) x of NONE => NONE | SOME (_, (c, _)) => get_syntax_const ctxt c) else get_syntax_fixed ctxt x end; val encode_syntax = XML.Encode.variant [fn NONE => ([], []), fn SOME (Syntax.Prefix delim) => ([delim], []), fn SOME (Syntax.Infix {assoc, delim, pri}) => let val ass = (case assoc of Printer.No_Assoc => 0 | Printer.Left_Assoc => 1 | Printer.Right_Assoc => 2); open XML.Encode Term_XML.Encode; in ([], triple int string int (ass, delim, pri)) end]; (* free variables: not declared in the context *) val is_free = not oo Name.is_declared; fun add_frees used = fold_aterms (fn Free (x, T) => is_free used x ? insert (op =) (x, T) | _ => I); fun add_tfrees used = (fold_types o fold_atyps) (fn TFree (a, S) => is_free used a ? insert (op =) (a, S) | _ => I); (* locales *) fun locale_content thy loc = let val ctxt = Locale.init loc thy; val args = Locale.params_of thy loc |> map (fn ((x, T), _) => ((x, T), get_syntax_param ctxt loc x)); val axioms = let val (asm, defs) = Locale.specification_of thy loc; val cprops = map (Thm.cterm_of ctxt) (the_list asm @ defs); val (intro1, intro2) = Locale.intros_of thy loc; val intros_tac = Method.try_intros_tac ctxt (the_list intro1 @ the_list intro2) []; val res = Goal.init (Conjunction.mk_conjunction_balanced cprops) |> (ALLGOALS Goal.conjunction_tac THEN intros_tac) |> try Seq.hd; in (case res of SOME goal => Thm.prems_of goal | NONE => raise Fail ("Cannot unfold locale " ^ quote loc)) end; val typargs = rev (fold Term.add_tfrees (map (Free o #1) args @ axioms) []); in {typargs = typargs, args = args, axioms = axioms} end; fun get_locales thy = Locale.get_locales thy |> map_filter (fn loc => if Experiment.is_experiment thy loc then NONE else SOME (loc, ())); fun get_dependencies prev_thys thy = Locale.dest_dependencies prev_thys thy |> map_filter (fn dep => if Experiment.is_experiment thy (#source dep) orelse Experiment.is_experiment thy (#target dep) then NONE else let val (type_params, params) = Locale.parameters_of thy (#source dep); val typargs = fold (Term.add_tfreesT o #2 o #1) params type_params; val substT = typargs |> map_filter (fn v => let val T = TFree v; val T' = Morphism.typ (#morphism dep) T; in if T = T' then NONE else SOME (v, T') end); val subst = params |> map_filter (fn (v, _) => let val t = Free v; val t' = Morphism.term (#morphism dep) t; in if t aconv t' then NONE else SOME (v, t') end); in SOME (dep, (substT, subst)) end); (* general setup *) fun setup_presentation f = Theory.setup (Thy_Info.add_presentation (fn context => fn thy => if Options.bool (#options context) "export_theory" then f context thy else ())); fun export_body thy name body = if XML.is_empty_body body then () else Export.export thy (Path.binding0 (Path.make ["theory", name])) body; (* presentation *) -val _ = setup_presentation (fn {adjust_pos, ...} => fn thy => +val _ = setup_presentation (fn context => fn thy => let val parents = Theory.parents_of thy; val rep_tsig = Type.rep_tsig (Sign.tsig_of thy); val thy_ctxt = Proof_Context.init_global thy; + val pos_properties = Thy_Info.adjust_pos_properties context; + (* spec rules *) - fun position_properties pos = - Position.offset_properties_of (adjust_pos pos) @ Position.id_properties_of pos; - fun spec_rule_content {pos, name, rough_classification, terms, rules} = let val spec = terms @ map Thm.plain_prop_of rules |> Term_Subst.zero_var_indexes_list |> map Logic.unvarify_global; in - {props = position_properties pos, + {props = pos_properties pos, name = name, rough_classification = rough_classification, typargs = rev (fold Term.add_tfrees spec []), args = rev (fold Term.add_frees spec []), terms = map (fn t => (t, Term.type_of t)) (take (length terms) spec), rules = drop (length terms) spec} end; (* entities *) fun make_entity_markup name xname pos serial = - let val props = position_properties pos @ Markup.serial_properties serial; + let val props = pos_properties pos @ Markup.serial_properties serial; in (Markup.entityN, (Markup.nameN, name) :: (Markup.xnameN, xname) :: props) end; fun entity_markup space name = let val xname = Name_Space.extern_shortest thy_ctxt space name; val {serial, pos, ...} = Name_Space.the_entry space name; in make_entity_markup name xname pos serial end; fun export_entities export_name export get_space decls = let val parent_spaces = map get_space parents; val space = get_space thy; in (decls, []) |-> fold (fn (name, decl) => if exists (fn space => Name_Space.declared space name) parent_spaces then I else (case export name decl of NONE => I | SOME body => cons (#serial (Name_Space.the_entry space name), XML.Elem (entity_markup space name, body)))) |> sort (int_ord o apply2 #1) |> map #2 |> export_body thy export_name end; (* types *) val encode_type = let open XML.Encode Term_XML.Encode in triple encode_syntax (list string) (option typ) end; fun export_type c (Type.LogicalType n) = SOME (encode_type (get_syntax_type thy_ctxt c, Name.invent Name.context Name.aT n, NONE)) | export_type c (Type.Abbreviation (args, U, false)) = SOME (encode_type (get_syntax_type thy_ctxt c, args, SOME U)) | export_type _ _ = NONE; val _ = export_entities "types" export_type Sign.type_space (Name_Space.dest_table (#types rep_tsig)); (* consts *) val consts = Sign.consts_of thy; val encode_term = Term_XML.Encode.term consts; val encode_const = let open XML.Encode Term_XML.Encode in pair encode_syntax (pair (list string) (pair typ (pair (option encode_term) bool))) end; fun export_const c (T, abbrev) = let val syntax = get_syntax_const thy_ctxt c; val U = Logic.unvarifyT_global T; val U0 = Type.strip_sorts U; val abbrev' = abbrev |> Option.map (Proofterm.standard_vars_term Name.context #> map_types Type.strip_sorts); val args = map (#1 o dest_TFree) (Consts.typargs consts (c, U0)); val propositional = Object_Logic.is_propositional thy_ctxt (Term.body_type U0); in encode_const (syntax, (args, (U0, (abbrev', propositional)))) end; val _ = export_entities "consts" (SOME oo export_const) Sign.const_space (#constants (Consts.dest consts)); (* axioms *) fun standard_prop used extra_shyps raw_prop raw_proof = let val (prop, proof) = Proofterm.standard_vars used (raw_prop, raw_proof); val args = rev (add_frees used prop []); val typargs = rev (add_tfrees used prop []); val used_typargs = fold (Name.declare o #1) typargs used; val sorts = Name.invent used_typargs Name.aT (length extra_shyps) ~~ extra_shyps; in ((sorts @ typargs, args, prop), proof) end; fun standard_prop_of thm = standard_prop Name.context (Thm.extra_shyps thm) (Thm.full_prop_of thm); val encode_prop = let open XML.Encode Term_XML.Encode in triple (list (pair string sort)) (list (pair string typ)) encode_term end; fun encode_axiom used prop = encode_prop (#1 (standard_prop used [] prop NONE)); val _ = export_entities "axioms" (K (SOME o encode_axiom Name.context)) Theory.axiom_space (Theory.all_axioms_of thy); (* theorems and proof terms *) val clean_thm = Thm.check_hyps (Context.Theory thy) #> Thm.strip_shyps; val prep_thm = clean_thm #> Thm.unconstrainT; val lookup_thm_id = Global_Theory.lookup_thm_id thy; fun expand_name thm_id (header: Proofterm.thm_header) = if #serial header = #serial thm_id then "" else (case lookup_thm_id (Proofterm.thm_header_id header) of NONE => "" | SOME thm_name => Thm_Name.print thm_name); fun entity_markup_thm (serial, (name, i)) = let val space = Facts.space_of (Global_Theory.facts_of thy); val xname = Name_Space.extern_shortest thy_ctxt space name; val {pos, ...} = Name_Space.the_entry space name; in make_entity_markup (Thm_Name.print (name, i)) (Thm_Name.print (xname, i)) pos serial end; fun encode_thm thm_id raw_thm = let val deps = map (Thm_Name.print o #2) (Thm_Deps.thm_deps thy [raw_thm]); val thm = prep_thm raw_thm; val proof0 = if Proofterm.export_standard_enabled () then Proof_Syntax.standard_proof_of {full = true, expand_name = SOME o expand_name thm_id} thm else if Proofterm.export_enabled () then Thm.reconstruct_proof_of thm else MinProof; val (prop, SOME proof) = standard_prop_of thm (SOME proof0); val _ = Thm.expose_proofs thy [thm]; in (prop, deps, proof) |> let open XML.Encode Term_XML.Encode; val encode_proof = Proofterm.encode_standard_proof consts; in triple encode_prop (list string) encode_proof end end; fun export_thm (thm_id, thm_name) = let val markup = entity_markup_thm (#serial thm_id, thm_name); val thm = Global_Theory.get_thm_name thy (thm_name, Position.none); in XML.Elem (markup, encode_thm thm_id thm) end; val _ = export_body thy "thms" (map export_thm (Global_Theory.dest_thm_names thy)); (* type classes *) val encode_class = let open XML.Encode Term_XML.Encode in pair (list (pair string typ)) (list (encode_axiom Name.context)) end; fun export_class name = (case try (Axclass.get_info thy) name of NONE => ([], []) | SOME {params, axioms, ...} => (params, map (Thm.plain_prop_of o clean_thm) axioms)) |> encode_class |> SOME; val _ = export_entities "classes" (fn name => fn () => export_class name) Sign.class_space (map (rpair ()) (Graph.keys (Sorts.classes_of (#2 (#classes rep_tsig))))); (* sort algebra *) local val prop = encode_axiom Name.context o Logic.varify_global; val encode_classrel = let open XML.Encode in list (pair prop (pair string string)) end; val encode_arities = let open XML.Encode Term_XML.Encode in list (pair prop (triple string (list sort) string)) end; in val export_classrel = maps (fn (c, cs) => map (pair c) cs) #> map (`Logic.mk_classrel) #> encode_classrel; val export_arities = map (`Logic.mk_arity) #> encode_arities; val {classrel, arities} = Sorts.dest_algebra (map (#2 o #classes o Type.rep_tsig o Sign.tsig_of) parents) (#2 (#classes rep_tsig)); end; val _ = if null classrel then () else export_body thy "classrel" (export_classrel classrel); val _ = if null arities then () else export_body thy "arities" (export_arities arities); (* locales *) fun encode_locale used = let open XML.Encode Term_XML.Encode in triple (list (pair string sort)) (list (pair (pair string typ) encode_syntax)) (list (encode_axiom used)) end; fun export_locale loc = let val {typargs, args, axioms} = locale_content thy loc; val used = fold Name.declare (map #1 typargs @ map (#1 o #1) args) Name.context; in encode_locale used (typargs, args, axioms) end handle ERROR msg => cat_error msg ("The error(s) above occurred in locale " ^ quote (Locale.markup_name thy_ctxt loc)); val _ = export_entities "locales" (fn loc => fn () => SOME (export_locale loc)) Locale.locale_space (get_locales thy); (* locale dependencies *) fun encode_locale_dependency (dep: Locale.locale_dependency, subst) = (#source dep, (#target dep, (#prefix dep, subst))) |> let open XML.Encode Term_XML.Encode; val encode_subst = pair (list (pair (pair string sort) typ)) (list (pair (pair string typ) (term consts))); in pair string (pair string (pair (list (pair string bool)) encode_subst)) end; val _ = get_dependencies parents thy |> map_index (fn (i, dep) => let val xname = string_of_int (i + 1); val name = Long_Name.implode [Context.theory_name thy, xname]; val markup = make_entity_markup name xname (#pos (#1 dep)) (#serial (#1 dep)); val body = encode_locale_dependency dep; in XML.Elem (markup, body) end) |> export_body thy "locale_dependencies"; (* constdefs *) val constdefs = Defs.dest_constdefs (map Theory.defs_of (Theory.parents_of thy)) (Theory.defs_of thy) |> sort_by #1; val encode_constdefs = let open XML.Encode in list (pair string string) end; val _ = if null constdefs then () else export_body thy "constdefs" (encode_constdefs constdefs); (* spec rules *) val encode_specs = let open XML.Encode Term_XML.Encode in list (fn {props, name, rough_classification, typargs, args, terms, rules} => pair properties (pair string (pair Spec_Rules.encode_rough_classification (pair (list (pair string sort)) (pair (list (pair string typ)) (pair (list (pair encode_term typ)) (list encode_term)))))) (props, (name, (rough_classification, (typargs, (args, (terms, rules))))))) end; val _ = (case Spec_Rules.dest_theory thy of [] => () | spec_rules => export_body thy "spec_rules" (encode_specs (map spec_rule_content spec_rules))); (* parents *) val _ = Export.export thy \<^path_binding>\theory/parents\ (XML.Encode.string (cat_lines (map Context.theory_long_name parents))); in () end); end; diff --git a/src/Pure/Thy/thy_info.ML b/src/Pure/Thy/thy_info.ML --- a/src/Pure/Thy/thy_info.ML +++ b/src/Pure/Thy/thy_info.ML @@ -1,483 +1,487 @@ (* Title: Pure/Thy/thy_info.ML Author: Markus Wenzel, TU Muenchen Global theory info database, with auto-loading according to theory and file dependencies. *) signature THY_INFO = sig type presentation_context = {options: Options.T, file_pos: Position.T, adjust_pos: Position.T -> Position.T, segments: Thy_Output.segment list} + val adjust_pos_properties: presentation_context -> Position.T -> Properties.T val apply_presentation: presentation_context -> theory -> unit val add_presentation: (presentation_context -> theory -> unit) -> theory -> theory val get_names: unit -> string list val lookup_theory: string -> theory option val get_theory: string -> theory val master_directory: string -> Path.T val remove_thy: string -> unit type context = {options: Options.T, symbols: HTML.symbols, bibtex_entries: string list, last_timing: Toplevel.transition -> Time.time} val use_theories: context -> string -> Path.T -> (string * Position.T) list -> unit val use_thy: string -> unit val script_thy: Position.T -> string -> theory -> theory val register_thy: theory -> unit val finish: unit -> unit end; structure Thy_Info: THY_INFO = struct (** presentation of consolidated theory **) type presentation_context = {options: Options.T, file_pos: Position.T, adjust_pos: Position.T -> Position.T, segments: Thy_Output.segment list}; +fun adjust_pos_properties (context: presentation_context) pos = + Position.offset_properties_of (#adjust_pos context pos) @ Position.id_properties_of pos; + structure Presentation = Theory_Data ( type T = ((presentation_context -> theory -> unit) * stamp) list; val empty = []; val extend = I; fun merge data : T = Library.merge (eq_snd op =) data; ); fun apply_presentation (context: presentation_context) thy = ignore (Presentation.get thy |> Par_List.map (fn (f, _) => f context thy)); fun add_presentation f = Presentation.map (cons (f, stamp ())); val _ = Theory.setup (add_presentation (fn {options, file_pos, segments, ...} => fn thy => if exists (Toplevel.is_skipped_proof o #state) segments then () else let val body = Thy_Output.present_thy options thy segments; val option = Present.document_option options; in if #disabled option then () else let val latex = Latex.isabelle_body (Context.theory_name thy) body; val output = [Latex.output_text latex, Latex.output_positions file_pos latex]; val _ = if Options.bool options "export_document" then Export.export thy (Path.explode_binding0 "document.tex") (XML.blob output) else (); val _ = if #enabled option then Present.theory_output thy output else (); in () end end)); (** thy database **) (* messages *) val show_path = space_implode " via " o map quote; fun cycle_msg names = "Cyclic dependency of " ^ show_path names; (* derived graph operations *) fun add_deps name parents G = String_Graph.add_deps_acyclic (name, parents) G handle String_Graph.CYCLES namess => error (cat_lines (map cycle_msg namess)); fun new_entry name parents entry = String_Graph.new_node (name, entry) #> add_deps name parents; (* global thys *) type deps = {master: (Path.T * SHA1.digest), (*master dependencies for thy file*) imports: (string * Position.T) list}; (*source specification of imports (partially qualified)*) fun make_deps master imports : deps = {master = master, imports = imports}; fun master_dir_deps (d: deps option) = the_default Path.current (Option.map (Path.dir o #1 o #master) d); local val global_thys = Synchronized.var "Thy_Info.thys" (String_Graph.empty: (deps option * theory option) String_Graph.T); in fun get_thys () = Synchronized.value global_thys; fun change_thys f = Synchronized.change global_thys f; end; fun get_names () = String_Graph.topological_order (get_thys ()); (* access thy *) fun lookup thys name = try (String_Graph.get_node thys) name; fun lookup_thy name = lookup (get_thys ()) name; fun get thys name = (case lookup thys name of SOME thy => thy | NONE => error ("Theory loader: nothing known about theory " ^ quote name)); fun get_thy name = get (get_thys ()) name; (* access deps *) val lookup_deps = Option.map #1 o lookup_thy; val master_directory = master_dir_deps o #1 o get_thy; (* access theory *) fun lookup_theory name = (case lookup_thy name of SOME (_, SOME theory) => SOME theory | _ => NONE); fun get_theory name = (case lookup_theory name of SOME theory => theory | _ => error ("Theory loader: undefined entry for theory " ^ quote name)); val get_imports = Resources.imports_of o get_theory; (** thy operations **) (* remove *) fun remove name thys = (case lookup thys name of NONE => thys | SOME (NONE, _) => error ("Cannot update finished theory " ^ quote name) | SOME _ => let val succs = String_Graph.all_succs thys [name]; val _ = writeln ("Theory loader: removing " ^ commas_quote succs); in fold String_Graph.del_node succs thys end); val remove_thy = change_thys o remove; (* update *) fun update deps theory thys = let val name = Context.theory_long_name theory; val parents = map Context.theory_long_name (Theory.parents_of theory); val thys' = remove name thys; val _ = map (get thys') parents; in new_entry name parents (SOME deps, SOME theory) thys' end; fun update_thy deps theory = change_thys (update deps theory); (* context *) type context = {options: Options.T, symbols: HTML.symbols, bibtex_entries: string list, last_timing: Toplevel.transition -> Time.time}; fun default_context (): context = {options = Options.default (), symbols = HTML.no_symbols, bibtex_entries = [], last_timing = K Time.zeroTime}; (* scheduling loader tasks *) datatype result = Result of {theory: theory, exec_id: Document_ID.exec, present: unit -> unit, commit: unit -> unit, weight: int}; fun theory_result theory = Result {theory = theory, exec_id = Document_ID.none, present = I, commit = I, weight = 0}; fun result_theory (Result {theory, ...}) = theory; fun result_present (Result {present, ...}) = present; fun result_commit (Result {commit, ...}) = commit; fun result_ord (Result {weight = i, ...}, Result {weight = j, ...}) = int_ord (j, i); fun join_theory (Result {theory, exec_id, ...}) = let val _ = Execution.join [exec_id]; val res = Exn.capture Thm.consolidate_theory theory; val exns = maps Task_Queue.group_status (Execution.peek exec_id); in res :: map Exn.Exn exns end; datatype task = Task of string list * (theory list -> result) | Finished of theory; fun task_finished (Task _) = false | task_finished (Finished _) = true; fun task_parents deps (parents: string list) = map (the o AList.lookup (op =) deps) parents; val schedule_seq = String_Graph.schedule (fn deps => fn (_, task) => (case task of Task (parents, body) => let val result = body (task_parents deps parents); val _ = Par_Exn.release_all (join_theory result); val _ = result_present result (); val _ = result_commit result (); in result_theory result end | Finished thy => thy)) #> ignore; val schedule_futures = Thread_Attributes.uninterruptible (fn _ => fn tasks => let val futures = tasks |> String_Graph.schedule (fn deps => fn (name, task) => (case task of Task (parents, body) => (singleton o Future.forks) {name = "theory:" ^ name, group = NONE, deps = map (Future.task_of o #2) deps, pri = 0, interrupts = true} (fn () => (case filter (not o can Future.join o #2) deps of [] => body (map (result_theory o Future.join) (task_parents deps parents)) | bad => error ("Failed to load theory " ^ quote name ^ " (unresolved " ^ commas_quote (map #1 bad) ^ ")"))) | Finished theory => Future.value (theory_result theory))); val results1 = futures |> maps (fn future => (case Future.join_result future of Exn.Res result => join_theory result | Exn.Exn exn => [Exn.Exn exn])); val results2 = futures |> map_filter (Exn.get_res o Future.join_result) |> sort result_ord |> Par_List.map (fn result => Exn.capture (result_present result) ()); (* FIXME more precise commit order (!?) *) val results3 = futures |> map (fn future => Exn.capture (fn () => result_commit (Future.join future) ()) ()); (* FIXME avoid global Execution.reset (!??) *) val results4 = map Exn.Exn (maps Task_Queue.group_status (Execution.reset ())); val _ = Par_Exn.release_all (results1 @ results2 @ results3 @ results4); in () end); (* eval theory *) fun excursion keywords master_dir last_timing init elements = let fun prepare_span st span = Command_Span.content span |> Command.read keywords (Command.read_thy st) master_dir init ([], ~1) |> (fn tr => Toplevel.timing (last_timing tr) tr); fun element_result span_elem (st, _) = let val elem = Thy_Element.map_element (prepare_span st) span_elem; val (results, st') = Toplevel.element_result keywords elem st; val pos' = Toplevel.pos_of (Thy_Element.last_element elem); in (results, (st', pos')) end; val (results, (end_state, end_pos)) = fold_map element_result elements (Toplevel.init_toplevel (), Position.none); val thy = Toplevel.end_theory end_pos end_state; in (results, thy) end; fun eval_thy (context: context) update_time master_dir header text_pos text parents = let val {options, symbols, bibtex_entries, last_timing} = context; val (name, _) = #name header; val keywords = fold (curry Keyword.merge_keywords o Thy_Header.get_keywords) parents (Keyword.add_keywords (#keywords header) Keyword.empty_keywords); val spans = Outer_Syntax.parse_spans (Token.explode keywords text_pos text); val elements = Thy_Element.parse_elements keywords spans; fun init () = Resources.begin_theory master_dir header parents |> Present.begin_theory bibtex_entries update_time (fn () => implode (map (HTML.present_span symbols keywords) spans)); val (results, thy) = cond_timeit true ("theory " ^ quote name) (fn () => excursion keywords master_dir last_timing init elements); fun present () = let val segments = (spans ~~ maps Toplevel.join_results results) |> map (fn (span, (tr, st')) => {span = span, command = tr, state = st'}); val context: presentation_context = {options = options, file_pos = text_pos, adjust_pos = I, segments = segments}; in apply_presentation context thy end; in (thy, present, size text) end; (* require_thy -- checking database entries wrt. the file-system *) local fun required_by _ [] = "" | required_by s initiators = s ^ "(required by " ^ show_path (rev initiators) ^ ")"; fun load_thy context initiators update_time deps text (name, pos) keywords parents = let val _ = remove_thy name; val _ = writeln ("Loading theory " ^ quote name ^ required_by " " initiators); val _ = Output.try_protocol_message (Markup.loading_theory name) []; val {master = (thy_path, _), imports} = deps; val dir = Path.dir thy_path; val header = Thy_Header.make (name, pos) imports keywords; val _ = Position.reports (map #2 imports ~~ map Theory.get_markup parents); val exec_id = Document_ID.make (); val _ = Execution.running Document_ID.none exec_id [] orelse raise Fail ("Failed to register execution: " ^ Document_ID.print exec_id); val timing_start = Timing.start (); val text_pos = Position.put_id (Document_ID.print exec_id) (Path.position thy_path); val (theory, present, weight) = eval_thy context update_time dir header text_pos text (if name = Context.PureN then [Context.the_global_context ()] else parents); val timing_result = Timing.result timing_start; val timing_props = [Markup.theory_timing, (Markup.nameN, name)]; val _ = Output.try_protocol_message (timing_props @ Markup.timing_properties timing_result) [] fun commit () = update_thy deps theory; in Result {theory = theory, exec_id = exec_id, present = present, commit = commit, weight = weight} end; fun check_thy_deps dir name = (case lookup_deps name of SOME NONE => (true, NONE, Position.none, get_imports name, []) | NONE => let val {master, text, theory_pos, imports, keywords} = Resources.check_thy dir name in (false, SOME (make_deps master imports, text), theory_pos, imports, keywords) end | SOME (SOME {master, ...}) => let val {master = master', text = text', theory_pos = theory_pos', imports = imports', keywords = keywords'} = Resources.check_thy dir name; val deps' = SOME (make_deps master' imports', text'); val current = #2 master = #2 master' andalso (case lookup_theory name of NONE => false | SOME theory => Resources.loaded_files_current theory); in (current, deps', theory_pos', imports', keywords') end); in fun require_thys context initiators qualifier dir strs tasks = fold_map (require_thy context initiators qualifier dir) strs tasks |>> forall I and require_thy context initiators qualifier dir (s, require_pos) tasks = let val {master_dir, theory_name, ...} = Resources.import_name qualifier dir s; in (case try (String_Graph.get_node tasks) theory_name of SOME task => (task_finished task, tasks) | NONE => let val _ = member (op =) initiators theory_name andalso error (cycle_msg initiators); val (current, deps, theory_pos, imports, keywords) = check_thy_deps master_dir theory_name handle ERROR msg => cat_error msg ("The error(s) above occurred for theory " ^ quote theory_name ^ Position.here require_pos ^ required_by "\n" initiators); val qualifier' = Resources.theory_qualifier theory_name; val dir' = Path.append dir (master_dir_deps (Option.map #1 deps)); val parents = map (#theory_name o Resources.import_name qualifier' dir' o #1) imports; val (parents_current, tasks') = require_thys context (theory_name :: initiators) qualifier' dir' imports tasks; val all_current = current andalso parents_current; val task = if all_current then Finished (get_theory theory_name) else (case deps of NONE => raise Fail "Malformed deps" | SOME (dep, text) => let val update_time = serial (); val load = load_thy context initiators update_time dep text (theory_name, theory_pos) keywords; in Task (parents, load) end); val tasks'' = new_entry theory_name parents task tasks'; in (all_current, tasks'') end) end; end; (* use theories *) fun use_theories context qualifier master_dir imports = let val (_, tasks) = require_thys context [] qualifier master_dir imports String_Graph.empty in if Multithreading.max_threads () > 1 then schedule_futures tasks else schedule_seq tasks end; fun use_thy name = use_theories (default_context ()) Resources.default_qualifier Path.current [(name, Position.none)]; (* toplevel scripting -- without maintaining database *) fun script_thy pos txt thy = let val trs = Outer_Syntax.parse_text thy (K thy) pos txt; val end_pos = if null trs then pos else Toplevel.pos_of (List.last trs); val end_state = fold (Toplevel.command_exception true) trs (Toplevel.init_toplevel ()); in Toplevel.end_theory end_pos end_state end; (* register theory *) fun register_thy theory = let val name = Context.theory_long_name theory; val {master, ...} = Resources.check_thy (Resources.master_directory theory) name; val imports = Resources.imports_of theory; in change_thys (fn thys => let val thys' = remove name thys; val _ = writeln ("Registering theory " ^ quote name); in update (make_deps master imports) theory thys' end) end; (* finish all theories *) fun finish () = change_thys (String_Graph.map (fn _ => fn (_, entry) => (NONE, entry))); end; fun use_thy name = Runtime.toplevel_program (fn () => Thy_Info.use_thy name);