diff --git a/src/HOL/Enum.thy b/src/HOL/Enum.thy --- a/src/HOL/Enum.thy +++ b/src/HOL/Enum.thy @@ -1,1161 +1,1160 @@ (* Author: Florian Haftmann, TU Muenchen *) section \Finite types as explicit enumerations\ theory Enum imports Map Groups_List begin subsection \Class \enum\\ class enum = fixes enum :: "'a list" fixes enum_all :: "('a \ bool) \ bool" fixes enum_ex :: "('a \ bool) \ bool" assumes UNIV_enum: "UNIV = set enum" and enum_distinct: "distinct enum" assumes enum_all_UNIV: "enum_all P \ Ball UNIV P" assumes enum_ex_UNIV: "enum_ex P \ Bex UNIV P" \ \tailored towards simple instantiation\ begin subclass finite proof qed (simp add: UNIV_enum) lemma enum_UNIV: "set enum = UNIV" by (simp only: UNIV_enum) lemma in_enum: "x \ set enum" by (simp add: enum_UNIV) lemma enum_eq_I: assumes "\x. x \ set xs" shows "set enum = set xs" proof - from assms UNIV_eq_I have "UNIV = set xs" by auto with enum_UNIV show ?thesis by simp qed lemma card_UNIV_length_enum: "card (UNIV :: 'a set) = length enum" by (simp add: UNIV_enum distinct_card enum_distinct) lemma enum_all [simp]: "enum_all = HOL.All" by (simp add: fun_eq_iff enum_all_UNIV) lemma enum_ex [simp]: "enum_ex = HOL.Ex" by (simp add: fun_eq_iff enum_ex_UNIV) end subsection \Implementations using \<^class>\enum\\ subsubsection \Unbounded operations and quantifiers\ lemma Collect_code [code]: "Collect P = set (filter P enum)" by (simp add: enum_UNIV) lemma vimage_code [code]: "f -` B = set (filter (\x. f x \ B) enum_class.enum)" unfolding vimage_def Collect_code .. definition card_UNIV :: "'a itself \ nat" where [code del]: "card_UNIV TYPE('a) = card (UNIV :: 'a set)" lemma [code]: "card_UNIV TYPE('a :: enum) = card (set (Enum.enum :: 'a list))" by (simp only: card_UNIV_def enum_UNIV) lemma all_code [code]: "(\x. P x) \ enum_all P" by simp lemma exists_code [code]: "(\x. P x) \ enum_ex P" by simp lemma exists1_code [code]: "(\!x. P x) \ list_ex1 P enum" by (auto simp add: list_ex1_iff enum_UNIV) subsubsection \An executable choice operator\ definition [code del]: "enum_the = The" lemma [code]: "The P = (case filter P enum of [x] \ x | _ \ enum_the P)" proof - { fix a assume filter_enum: "filter P enum = [a]" have "The P = a" proof (rule the_equality) fix x assume "P x" show "x = a" proof (rule ccontr) assume "x \ a" from filter_enum obtain us vs where enum_eq: "enum = us @ [a] @ vs" and "\ x \ set us. \ P x" and "\ x \ set vs. \ P x" and "P a" by (auto simp add: filter_eq_Cons_iff) (simp only: filter_empty_conv[symmetric]) with \P x\ in_enum[of x, unfolded enum_eq] \x \ a\ show "False" by auto qed next from filter_enum show "P a" by (auto simp add: filter_eq_Cons_iff) qed } from this show ?thesis unfolding enum_the_def by (auto split: list.split) qed declare [[code abort: enum_the]] code_printing constant enum_the \ (Eval) "(fn '_ => raise Match)" subsubsection \Equality and order on functions\ instantiation "fun" :: (enum, equal) equal begin definition "HOL.equal f g \ (\x \ set enum. f x = g x)" instance proof qed (simp_all add: equal_fun_def fun_eq_iff enum_UNIV) end lemma [code]: "HOL.equal f g \ enum_all (%x. f x = g x)" by (auto simp add: equal fun_eq_iff) lemma [code nbe]: "HOL.equal (f :: _ \ _) f \ True" by (fact equal_refl) lemma order_fun [code]: fixes f g :: "'a::enum \ 'b::order" shows "f \ g \ enum_all (\x. f x \ g x)" and "f < g \ f \ g \ enum_ex (\x. f x \ g x)" by (simp_all add: fun_eq_iff le_fun_def order_less_le) subsubsection \Operations on relations\ lemma [code]: "Id = image (\x. (x, x)) (set Enum.enum)" by (auto intro: imageI in_enum) lemma tranclp_unfold [code]: "tranclp r a b \ (a, b) \ trancl {(x, y). r x y}" by (simp add: trancl_def) lemma rtranclp_rtrancl_eq [code]: "rtranclp r x y \ (x, y) \ rtrancl {(x, y). r x y}" by (simp add: rtrancl_def) lemma max_ext_eq [code]: "max_ext R = {(X, Y). finite X \ finite Y \ Y \ {} \ (\x. x \ X \ (\xa \ Y. (x, xa) \ R))}" by (auto simp add: max_ext.simps) lemma max_extp_eq [code]: "max_extp r x y \ (x, y) \ max_ext {(x, y). r x y}" by (simp add: max_ext_def) lemma mlex_eq [code]: "f <*mlex*> R = {(x, y). f x < f y \ (f x \ f y \ (x, y) \ R)}" by (auto simp add: mlex_prod_def) subsubsection \Bounded accessible part\ primrec bacc :: "('a \ 'a) set \ nat \ 'a set" where "bacc r 0 = {x. \ y. (y, x) \ r}" | "bacc r (Suc n) = (bacc r n \ {x. \y. (y, x) \ r \ y \ bacc r n})" lemma bacc_subseteq_acc: "bacc r n \ Wellfounded.acc r" by (induct n) (auto intro: acc.intros) lemma bacc_mono: "n \ m \ bacc r n \ bacc r m" by (induct rule: dec_induct) auto lemma bacc_upper_bound: "bacc (r :: ('a \ 'a) set) (card (UNIV :: 'a::finite set)) = (\n. bacc r n)" proof - have "mono (bacc r)" unfolding mono_def by (simp add: bacc_mono) moreover have "\n. bacc r n = bacc r (Suc n) \ bacc r (Suc n) = bacc r (Suc (Suc n))" by auto moreover have "finite (range (bacc r))" by auto ultimately show ?thesis by (intro finite_mono_strict_prefix_implies_finite_fixpoint) (auto intro: finite_mono_remains_stable_implies_strict_prefix) qed lemma acc_subseteq_bacc: assumes "finite r" shows "Wellfounded.acc r \ (\n. bacc r n)" proof fix x assume "x \ Wellfounded.acc r" then have "\n. x \ bacc r n" proof (induct x arbitrary: rule: acc.induct) case (accI x) then have "\y. \ n. (y, x) \ r \ y \ bacc r n" by simp from choice[OF this] obtain n where n: "\y. (y, x) \ r \ y \ bacc r (n y)" .. obtain n where "\y. (y, x) \ r \ y \ bacc r n" proof fix y assume y: "(y, x) \ r" with n have "y \ bacc r (n y)" by auto moreover have "n y <= Max ((\(y, x). n y) ` r)" using y \finite r\ by (auto intro!: Max_ge) note bacc_mono[OF this, of r] ultimately show "y \ bacc r (Max ((\(y, x). n y) ` r))" by auto qed then show ?case by (auto simp add: Let_def intro!: exI[of _ "Suc n"]) qed then show "x \ (\n. bacc r n)" by auto qed lemma acc_bacc_eq: fixes A :: "('a :: finite \ 'a) set" assumes "finite A" shows "Wellfounded.acc A = bacc A (card (UNIV :: 'a set))" using assms by (metis acc_subseteq_bacc bacc_subseteq_acc bacc_upper_bound order_eq_iff) lemma [code]: fixes xs :: "('a::finite \ 'a) list" shows "Wellfounded.acc (set xs) = bacc (set xs) (card_UNIV TYPE('a))" by (simp add: card_UNIV_def acc_bacc_eq) subsection \Default instances for \<^class>\enum\\ lemma map_of_zip_enum_is_Some: assumes "length ys = length (enum :: 'a::enum list)" shows "\y. map_of (zip (enum :: 'a::enum list) ys) x = Some y" proof - from assms have "x \ set (enum :: 'a::enum list) \ (\y. map_of (zip (enum :: 'a::enum list) ys) x = Some y)" by (auto intro!: map_of_zip_is_Some) then show ?thesis using enum_UNIV by auto qed lemma map_of_zip_enum_inject: fixes xs ys :: "'b::enum list" assumes length: "length xs = length (enum :: 'a::enum list)" "length ys = length (enum :: 'a::enum list)" and map_of: "the \ map_of (zip (enum :: 'a::enum list) xs) = the \ map_of (zip (enum :: 'a::enum list) ys)" shows "xs = ys" proof - have "map_of (zip (enum :: 'a list) xs) = map_of (zip (enum :: 'a list) ys)" proof fix x :: 'a from length map_of_zip_enum_is_Some obtain y1 y2 where "map_of (zip (enum :: 'a list) xs) x = Some y1" and "map_of (zip (enum :: 'a list) ys) x = Some y2" by blast moreover from map_of have "the (map_of (zip (enum :: 'a::enum list) xs) x) = the (map_of (zip (enum :: 'a::enum list) ys) x)" by (auto dest: fun_cong) ultimately show "map_of (zip (enum :: 'a::enum list) xs) x = map_of (zip (enum :: 'a::enum list) ys) x" by simp qed with length enum_distinct show "xs = ys" by (rule map_of_zip_inject) qed definition all_n_lists :: "(('a :: enum) list \ bool) \ nat \ bool" where "all_n_lists P n \ (\xs \ set (List.n_lists n enum). P xs)" lemma [code]: "all_n_lists P n \ (if n = 0 then P [] else enum_all (%x. all_n_lists (%xs. P (x # xs)) (n - 1)))" unfolding all_n_lists_def enum_all by (cases n) (auto simp add: enum_UNIV) definition ex_n_lists :: "(('a :: enum) list \ bool) \ nat \ bool" where "ex_n_lists P n \ (\xs \ set (List.n_lists n enum). P xs)" lemma [code]: "ex_n_lists P n \ (if n = 0 then P [] else enum_ex (%x. ex_n_lists (%xs. P (x # xs)) (n - 1)))" unfolding ex_n_lists_def enum_ex by (cases n) (auto simp add: enum_UNIV) instantiation "fun" :: (enum, enum) enum begin definition "enum = map (\ys. the \ map_of (zip (enum::'a list) ys)) (List.n_lists (length (enum::'a::enum list)) enum)" definition "enum_all P = all_n_lists (\bs. P (the \ map_of (zip enum bs))) (length (enum :: 'a list))" definition "enum_ex P = ex_n_lists (\bs. P (the \ map_of (zip enum bs))) (length (enum :: 'a list))" instance proof show "UNIV = set (enum :: ('a \ 'b) list)" proof (rule UNIV_eq_I) fix f :: "'a \ 'b" have "f = the \ map_of (zip (enum :: 'a::enum list) (map f enum))" by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum) then show "f \ set enum" by (auto simp add: enum_fun_def set_n_lists intro: in_enum) qed next from map_of_zip_enum_inject show "distinct (enum :: ('a \ 'b) list)" by (auto intro!: inj_onI simp add: enum_fun_def distinct_map distinct_n_lists enum_distinct set_n_lists) next fix P show "enum_all (P :: ('a \ 'b) \ bool) = Ball UNIV P" proof assume "enum_all P" show "Ball UNIV P" proof fix f :: "'a \ 'b" have f: "f = the \ map_of (zip (enum :: 'a::enum list) (map f enum))" by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum) from \enum_all P\ have "P (the \ map_of (zip enum (map f enum)))" unfolding enum_all_fun_def all_n_lists_def apply (simp add: set_n_lists) apply (erule_tac x="map f enum" in allE) apply (auto intro!: in_enum) done from this f show "P f" by auto qed next assume "Ball UNIV P" from this show "enum_all P" unfolding enum_all_fun_def all_n_lists_def by auto qed next fix P show "enum_ex (P :: ('a \ 'b) \ bool) = Bex UNIV P" proof assume "enum_ex P" from this show "Bex UNIV P" unfolding enum_ex_fun_def ex_n_lists_def by auto next assume "Bex UNIV P" from this obtain f where "P f" .. have f: "f = the \ map_of (zip (enum :: 'a::enum list) (map f enum))" by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum) from \P f\ this have "P (the \ map_of (zip (enum :: 'a::enum list) (map f enum)))" by auto from this show "enum_ex P" unfolding enum_ex_fun_def ex_n_lists_def apply (auto simp add: set_n_lists) apply (rule_tac x="map f enum" in exI) apply (auto intro!: in_enum) done qed qed end lemma enum_fun_code [code]: "enum = (let enum_a = (enum :: 'a::{enum, equal} list) in map (\ys. the \ map_of (zip enum_a ys)) (List.n_lists (length enum_a) enum))" by (simp add: enum_fun_def Let_def) lemma enum_all_fun_code [code]: "enum_all P = (let enum_a = (enum :: 'a::{enum, equal} list) in all_n_lists (\bs. P (the \ map_of (zip enum_a bs))) (length enum_a))" by (simp only: enum_all_fun_def Let_def) lemma enum_ex_fun_code [code]: "enum_ex P = (let enum_a = (enum :: 'a::{enum, equal} list) in ex_n_lists (\bs. P (the \ map_of (zip enum_a bs))) (length enum_a))" by (simp only: enum_ex_fun_def Let_def) instantiation set :: (enum) enum begin definition "enum = map set (subseqs enum)" definition "enum_all P \ (\A\set enum. P (A::'a set))" definition "enum_ex P \ (\A\set enum. P (A::'a set))" instance proof qed (simp_all add: enum_set_def enum_all_set_def enum_ex_set_def subseqs_powset distinct_set_subseqs enum_distinct enum_UNIV) end instantiation unit :: enum begin definition "enum = [()]" definition "enum_all P = P ()" definition "enum_ex P = P ()" instance proof qed (auto simp add: enum_unit_def enum_all_unit_def enum_ex_unit_def) end instantiation bool :: enum begin definition "enum = [False, True]" definition "enum_all P \ P False \ P True" definition "enum_ex P \ P False \ P True" instance proof qed (simp_all only: enum_bool_def enum_all_bool_def enum_ex_bool_def UNIV_bool, simp_all) end instantiation prod :: (enum, enum) enum begin definition "enum = List.product enum enum" definition "enum_all P = enum_all (%x. enum_all (%y. P (x, y)))" definition "enum_ex P = enum_ex (%x. enum_ex (%y. P (x, y)))" instance by standard (simp_all add: enum_prod_def distinct_product enum_UNIV enum_distinct enum_all_prod_def enum_ex_prod_def) end instantiation sum :: (enum, enum) enum begin definition "enum = map Inl enum @ map Inr enum" definition "enum_all P \ enum_all (\x. P (Inl x)) \ enum_all (\x. P (Inr x))" definition "enum_ex P \ enum_ex (\x. P (Inl x)) \ enum_ex (\x. P (Inr x))" instance proof qed (simp_all only: enum_sum_def enum_all_sum_def enum_ex_sum_def UNIV_sum, auto simp add: enum_UNIV distinct_map enum_distinct) end instantiation option :: (enum) enum begin definition "enum = None # map Some enum" definition "enum_all P \ P None \ enum_all (\x. P (Some x))" definition "enum_ex P \ P None \ enum_ex (\x. P (Some x))" instance proof qed (simp_all only: enum_option_def enum_all_option_def enum_ex_option_def UNIV_option_conv, auto simp add: distinct_map enum_UNIV enum_distinct) end subsection \Small finite types\ text \We define small finite types for use in Quickcheck\ datatype (plugins only: code "quickcheck" extraction) finite_1 = a\<^sub>1 notation (output) a\<^sub>1 ("a\<^sub>1") lemma UNIV_finite_1: "UNIV = {a\<^sub>1}" by (auto intro: finite_1.exhaust) instantiation finite_1 :: enum begin definition "enum = [a\<^sub>1]" definition "enum_all P = P a\<^sub>1" definition "enum_ex P = P a\<^sub>1" instance proof qed (simp_all only: enum_finite_1_def enum_all_finite_1_def enum_ex_finite_1_def UNIV_finite_1, simp_all) end instantiation finite_1 :: linorder begin definition less_finite_1 :: "finite_1 \ finite_1 \ bool" where "x < (y :: finite_1) \ False" definition less_eq_finite_1 :: "finite_1 \ finite_1 \ bool" where "x \ (y :: finite_1) \ True" instance apply (intro_classes) apply (auto simp add: less_finite_1_def less_eq_finite_1_def) -apply (metis finite_1.exhaust) +apply (metis (full_types) finite_1.exhaust) done end instance finite_1 :: "{dense_linorder, wellorder}" by intro_classes (simp_all add: less_finite_1_def) instantiation finite_1 :: complete_lattice begin definition [simp]: "Inf = (\_. a\<^sub>1)" definition [simp]: "Sup = (\_. a\<^sub>1)" definition [simp]: "bot = a\<^sub>1" definition [simp]: "top = a\<^sub>1" definition [simp]: "inf = (\_ _. a\<^sub>1)" definition [simp]: "sup = (\_ _. a\<^sub>1)" instance by intro_classes(simp_all add: less_eq_finite_1_def) end instance finite_1 :: complete_distrib_lattice by standard simp_all instance finite_1 :: complete_linorder .. lemma finite_1_eq: "x = a\<^sub>1" by(cases x) simp simproc_setup finite_1_eq ("x::finite_1") = \ fn _ => fn _ => fn ct => (case Thm.term_of ct of Const (\<^const_name>\a\<^sub>1\, _) => NONE | _ => SOME (mk_meta_eq @{thm finite_1_eq})) \ instantiation finite_1 :: complete_boolean_algebra begin definition [simp]: "(-) = (\_ _. a\<^sub>1)" definition [simp]: "uminus = (\_. a\<^sub>1)" instance by intro_classes simp_all end instantiation finite_1 :: "{linordered_ring_strict, linordered_comm_semiring_strict, ordered_comm_ring, ordered_cancel_comm_monoid_diff, comm_monoid_mult, ordered_ring_abs, one, modulo, sgn, inverse}" begin definition [simp]: "Groups.zero = a\<^sub>1" definition [simp]: "Groups.one = a\<^sub>1" definition [simp]: "(+) = (\_ _. a\<^sub>1)" definition [simp]: "(*) = (\_ _. a\<^sub>1)" definition [simp]: "(mod) = (\_ _. a\<^sub>1)" definition [simp]: "abs = (\_. a\<^sub>1)" definition [simp]: "sgn = (\_. a\<^sub>1)" definition [simp]: "inverse = (\_. a\<^sub>1)" definition [simp]: "divide = (\_ _. a\<^sub>1)" instance by intro_classes(simp_all add: less_finite_1_def) end declare [[simproc del: finite_1_eq]] hide_const (open) a\<^sub>1 datatype (plugins only: code "quickcheck" extraction) finite_2 = a\<^sub>1 | a\<^sub>2 notation (output) a\<^sub>1 ("a\<^sub>1") notation (output) a\<^sub>2 ("a\<^sub>2") lemma UNIV_finite_2: "UNIV = {a\<^sub>1, a\<^sub>2}" by (auto intro: finite_2.exhaust) instantiation finite_2 :: enum begin definition "enum = [a\<^sub>1, a\<^sub>2]" definition "enum_all P \ P a\<^sub>1 \ P a\<^sub>2" definition "enum_ex P \ P a\<^sub>1 \ P a\<^sub>2" instance proof qed (simp_all only: enum_finite_2_def enum_all_finite_2_def enum_ex_finite_2_def UNIV_finite_2, simp_all) end instantiation finite_2 :: linorder begin definition less_finite_2 :: "finite_2 \ finite_2 \ bool" where "x < y \ x = a\<^sub>1 \ y = a\<^sub>2" definition less_eq_finite_2 :: "finite_2 \ finite_2 \ bool" where "x \ y \ x = y \ x < (y :: finite_2)" instance apply (intro_classes) apply (auto simp add: less_finite_2_def less_eq_finite_2_def) apply (metis finite_2.nchotomy)+ done end instance finite_2 :: wellorder by(rule wf_wellorderI)(simp add: less_finite_2_def, intro_classes) instantiation finite_2 :: complete_lattice begin definition "\A = (if a\<^sub>1 \ A then a\<^sub>1 else a\<^sub>2)" definition "\A = (if a\<^sub>2 \ A then a\<^sub>2 else a\<^sub>1)" definition [simp]: "bot = a\<^sub>1" definition [simp]: "top = a\<^sub>2" definition "x \ y = (if x = a\<^sub>1 \ y = a\<^sub>1 then a\<^sub>1 else a\<^sub>2)" definition "x \ y = (if x = a\<^sub>2 \ y = a\<^sub>2 then a\<^sub>2 else a\<^sub>1)" lemma neq_finite_2_a\<^sub>1_iff [simp]: "x \ a\<^sub>1 \ x = a\<^sub>2" by(cases x) simp_all lemma neq_finite_2_a\<^sub>1_iff' [simp]: "a\<^sub>1 \ x \ x = a\<^sub>2" by(cases x) simp_all lemma neq_finite_2_a\<^sub>2_iff [simp]: "x \ a\<^sub>2 \ x = a\<^sub>1" by(cases x) simp_all lemma neq_finite_2_a\<^sub>2_iff' [simp]: "a\<^sub>2 \ x \ x = a\<^sub>1" by(cases x) simp_all instance proof fix x :: finite_2 and A assume "x \ A" then show "\A \ x" "x \ \A" by(cases x; auto simp add: less_eq_finite_2_def less_finite_2_def Inf_finite_2_def Sup_finite_2_def)+ qed(auto simp add: less_eq_finite_2_def less_finite_2_def inf_finite_2_def sup_finite_2_def Inf_finite_2_def Sup_finite_2_def) end instance finite_2 :: complete_linorder .. instance finite_2 :: complete_distrib_lattice .. instantiation finite_2 :: "{field, idom_abs_sgn, idom_modulo}" begin definition [simp]: "0 = a\<^sub>1" definition [simp]: "1 = a\<^sub>2" definition "x + y = (case (x, y) of (a\<^sub>1, a\<^sub>1) \ a\<^sub>1 | (a\<^sub>2, a\<^sub>2) \ a\<^sub>1 | _ \ a\<^sub>2)" definition "uminus = (\x :: finite_2. x)" definition "(-) = ((+) :: finite_2 \ _)" definition "x * y = (case (x, y) of (a\<^sub>2, a\<^sub>2) \ a\<^sub>2 | _ \ a\<^sub>1)" definition "inverse = (\x :: finite_2. x)" definition "divide = ((*) :: finite_2 \ _)" definition "x mod y = (case (x, y) of (a\<^sub>2, a\<^sub>1) \ a\<^sub>2 | _ \ a\<^sub>1)" definition "abs = (\x :: finite_2. x)" definition "sgn = (\x :: finite_2. x)" instance by standard (subproofs \simp_all add: plus_finite_2_def uminus_finite_2_def minus_finite_2_def times_finite_2_def inverse_finite_2_def divide_finite_2_def modulo_finite_2_def abs_finite_2_def sgn_finite_2_def split: finite_2.splits\) end lemma two_finite_2 [simp]: "2 = a\<^sub>1" by (simp add: numeral.simps plus_finite_2_def) lemma dvd_finite_2_unfold: "x dvd y \ x = a\<^sub>2 \ y = a\<^sub>1" by (auto simp add: dvd_def times_finite_2_def split: finite_2.splits) instantiation finite_2 :: "{normalization_semidom, unique_euclidean_semiring}" begin definition [simp]: "normalize = (id :: finite_2 \ _)" definition [simp]: "unit_factor = (id :: finite_2 \ _)" definition [simp]: "euclidean_size x = (case x of a\<^sub>1 \ 0 | a\<^sub>2 \ 1)" definition [simp]: "division_segment (x :: finite_2) = 1" instance by standard (subproofs \auto simp add: divide_finite_2_def times_finite_2_def dvd_finite_2_unfold split: finite_2.splits\) end hide_const (open) a\<^sub>1 a\<^sub>2 datatype (plugins only: code "quickcheck" extraction) finite_3 = a\<^sub>1 | a\<^sub>2 | a\<^sub>3 notation (output) a\<^sub>1 ("a\<^sub>1") notation (output) a\<^sub>2 ("a\<^sub>2") notation (output) a\<^sub>3 ("a\<^sub>3") lemma UNIV_finite_3: "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3}" by (auto intro: finite_3.exhaust) instantiation finite_3 :: enum begin definition "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3]" definition "enum_all P \ P a\<^sub>1 \ P a\<^sub>2 \ P a\<^sub>3" definition "enum_ex P \ P a\<^sub>1 \ P a\<^sub>2 \ P a\<^sub>3" instance proof qed (simp_all only: enum_finite_3_def enum_all_finite_3_def enum_ex_finite_3_def UNIV_finite_3, simp_all) end lemma finite_3_not_eq_unfold: "x \ a\<^sub>1 \ x \ {a\<^sub>2, a\<^sub>3}" "x \ a\<^sub>2 \ x \ {a\<^sub>1, a\<^sub>3}" "x \ a\<^sub>3 \ x \ {a\<^sub>1, a\<^sub>2}" by (cases x; simp)+ instantiation finite_3 :: linorder begin definition less_finite_3 :: "finite_3 \ finite_3 \ bool" where "x < y = (case x of a\<^sub>1 \ y \ a\<^sub>1 | a\<^sub>2 \ y = a\<^sub>3 | a\<^sub>3 \ False)" definition less_eq_finite_3 :: "finite_3 \ finite_3 \ bool" where "x \ y \ x = y \ x < (y :: finite_3)" instance proof (intro_classes) qed (auto simp add: less_finite_3_def less_eq_finite_3_def split: finite_3.split_asm) end instance finite_3 :: wellorder proof(rule wf_wellorderI) have "inv_image less_than (case_finite_3 0 1 2) = {(x, y). x < y}" by(auto simp add: less_finite_3_def split: finite_3.splits) from this[symmetric] show "wf \" by simp qed intro_classes class finite_lattice = finite + lattice + Inf + Sup + bot + top + assumes Inf_finite_empty: "Inf {} = Sup UNIV" assumes Inf_finite_insert: "Inf (insert a A) = a \ Inf A" assumes Sup_finite_empty: "Sup {} = Inf UNIV" assumes Sup_finite_insert: "Sup (insert a A) = a \ Sup A" assumes bot_finite_def: "bot = Inf UNIV" assumes top_finite_def: "top = Sup UNIV" begin subclass complete_lattice proof fix x A show "x \ A \ \A \ x" by (metis Set.set_insert abel_semigroup.commute local.Inf_finite_insert local.inf.abel_semigroup_axioms local.inf.left_idem local.inf.orderI) show "x \ A \ x \ \A" by (metis Set.set_insert insert_absorb2 local.Sup_finite_insert local.sup.absorb_iff2) next fix A z have "\ UNIV = z \ \UNIV" by (subst Sup_finite_insert [symmetric], simp add: insert_UNIV) from this have [simp]: "z \ \UNIV" using local.le_iff_sup by auto have "(\ x. x \ A \ z \ x) \ z \ \A" - apply (rule finite_induct [of A "\ A . (\ x. x \ A \ z \ x) \ z \ \A"]) - by (simp_all add: Inf_finite_empty Inf_finite_insert) + by (rule finite_induct [of A "\ A . (\ x. x \ A \ z \ x) \ z \ \A"]) + (simp_all add: Inf_finite_empty Inf_finite_insert) from this show "(\x. x \ A \ z \ x) \ z \ \A" by simp have "\ UNIV = z \ \UNIV" by (subst Inf_finite_insert [symmetric], simp add: insert_UNIV) from this have [simp]: "\UNIV \ z" by (simp add: local.inf.absorb_iff2) have "(\ x. x \ A \ x \ z) \ \A \ z" by (rule finite_induct [of A "\ A . (\ x. x \ A \ x \ z) \ \A \ z" ], simp_all add: Sup_finite_empty Sup_finite_insert) from this show " (\x. x \ A \ x \ z) \ \A \ z" by blast next show "\{} = \" by (simp add: Inf_finite_empty top_finite_def) show " \{} = \" by (simp add: Sup_finite_empty bot_finite_def) qed end class finite_distrib_lattice = finite_lattice + distrib_lattice begin lemma finite_inf_Sup: "a \ (Sup A) = Sup {a \ b | b . b \ A}" proof (rule finite_induct [of A "\ A . a \ (Sup A) = Sup {a \ b | b . b \ A}"], simp_all) fix x::"'a" fix F assume "x \ F" assume [simp]: "a \ \F = \{a \ b |b. b \ F}" have [simp]: " insert (a \ x) {a \ b |b. b \ F} = {a \ b |b. b = x \ b \ F}" by blast have "a \ (x \ \F) = a \ x \ a \ \F" by (simp add: inf_sup_distrib1) also have "... = a \ x \ \{a \ b |b. b \ F}" by simp also have "... = \{a \ b |b. b = x \ b \ F}" by (unfold Sup_insert[THEN sym], simp) finally show "a \ (x \ \F) = \{a \ b |b. b = x \ b \ F}" by simp qed lemma finite_Inf_Sup: "\(Sup ` A) \ \(Inf ` {f ` A |f. \Y\A. f Y \ Y})" proof (rule finite_induct [of A "\A. \(Sup ` A) \ \(Inf ` {f ` A |f. \Y\A. f Y \ Y})"], simp_all add: finite_UnionD) fix x::"'a set" fix F assume "x \ F" have [simp]: "{\x \ b |b . b \ Inf ` {f ` F |f. \Y\F. f Y \ Y} } = {\x \ (Inf (f ` F)) |f . (\Y\F. f Y \ Y)}" by auto define fa where "fa = (\ (b::'a) f Y . (if Y = x then b else f Y))" have "\f b. \Y\F. f Y \ Y \ b \ x \ insert b (f ` (F \ {Y. Y \ x})) = insert (fa b f x) (fa b f ` F) \ fa b f x \ x \ (\Y\F. fa b f Y \ Y)" by (auto simp add: fa_def) from this have B: "\f b. \Y\F. f Y \ Y \ b \ x \ fa b f ` ({x} \ F) \ {insert (f x) (f ` F) |f. f x \ x \ (\Y\F. f Y \ Y)}" by blast have [simp]: "\f b. \Y\F. f Y \ Y \ b \ x \ b \ (\x\F. f x) \ \(Inf ` {insert (f x) (f ` F) |f. f x \ x \ (\Y\F. f Y \ Y)})" using B apply (rule SUP_upper2) using \x \ F\ apply (simp_all add: fa_def Inf_union_distrib) apply (simp add: image_mono Inf_superset_mono inf.coboundedI2) done assume "\(Sup ` F) \ \(Inf ` {f ` F |f. \Y\F. f Y \ Y})" from this have "\x \ \(Sup ` F) \ \x \ \(Inf ` {f ` F |f. \Y\F. f Y \ Y})" - apply simp - using inf.coboundedI2 by blast + using inf.coboundedI2 by auto also have "... = Sup {\x \ (Inf (f ` F)) |f . (\Y\F. f Y \ Y)}" by (simp add: finite_inf_Sup) also have "... = Sup {Sup {Inf (f ` F) \ b | b . b \ x} |f . (\Y\F. f Y \ Y)}" - apply (subst inf_commute) - by (simp add: finite_inf_Sup) + by (subst inf_commute) (simp add: finite_inf_Sup) also have "... \ \(Inf ` {insert (f x) (f ` F) |f. f x \ x \ (\Y\F. f Y \ Y)})" apply (rule Sup_least, clarsimp)+ - by (subst inf_commute, simp) + apply (subst inf_commute, simp) + done finally show "\x \ \(Sup ` F) \ \(Inf ` {insert (f x) (f ` F) |f. f x \ x \ (\Y\F. f Y \ Y)})" by simp qed subclass complete_distrib_lattice by (standard, rule finite_Inf_Sup) end instantiation finite_3 :: finite_lattice begin definition "\A = (if a\<^sub>1 \ A then a\<^sub>1 else if a\<^sub>2 \ A then a\<^sub>2 else a\<^sub>3)" definition "\A = (if a\<^sub>3 \ A then a\<^sub>3 else if a\<^sub>2 \ A then a\<^sub>2 else a\<^sub>1)" definition [simp]: "bot = a\<^sub>1" definition [simp]: "top = a\<^sub>3" definition [simp]: "inf = (min :: finite_3 \ _)" definition [simp]: "sup = (max :: finite_3 \ _)" instance proof qed (auto simp add: Inf_finite_3_def Sup_finite_3_def max_def min_def less_eq_finite_3_def less_finite_3_def split: finite_3.split) end instance finite_3 :: complete_lattice .. instance finite_3 :: finite_distrib_lattice proof qed (auto simp add: min_def max_def) instance finite_3 :: complete_distrib_lattice .. instance finite_3 :: complete_linorder .. instantiation finite_3 :: "{field, idom_abs_sgn, idom_modulo}" begin definition [simp]: "0 = a\<^sub>1" definition [simp]: "1 = a\<^sub>2" definition "x + y = (case (x, y) of (a\<^sub>1, a\<^sub>1) \ a\<^sub>1 | (a\<^sub>2, a\<^sub>3) \ a\<^sub>1 | (a\<^sub>3, a\<^sub>2) \ a\<^sub>1 | (a\<^sub>1, a\<^sub>2) \ a\<^sub>2 | (a\<^sub>2, a\<^sub>1) \ a\<^sub>2 | (a\<^sub>3, a\<^sub>3) \ a\<^sub>2 | _ \ a\<^sub>3)" definition "- x = (case x of a\<^sub>1 \ a\<^sub>1 | a\<^sub>2 \ a\<^sub>3 | a\<^sub>3 \ a\<^sub>2)" definition "x - y = x + (- y :: finite_3)" definition "x * y = (case (x, y) of (a\<^sub>2, a\<^sub>2) \ a\<^sub>2 | (a\<^sub>3, a\<^sub>3) \ a\<^sub>2 | (a\<^sub>2, a\<^sub>3) \ a\<^sub>3 | (a\<^sub>3, a\<^sub>2) \ a\<^sub>3 | _ \ a\<^sub>1)" definition "inverse = (\x :: finite_3. x)" definition "x div y = x * inverse (y :: finite_3)" definition "x mod y = (case y of a\<^sub>1 \ x | _ \ a\<^sub>1)" definition "abs = (\x. case x of a\<^sub>3 \ a\<^sub>2 | _ \ x)" definition "sgn = (\x :: finite_3. x)" instance by standard (subproofs \simp_all add: plus_finite_3_def uminus_finite_3_def minus_finite_3_def times_finite_3_def inverse_finite_3_def divide_finite_3_def modulo_finite_3_def abs_finite_3_def sgn_finite_3_def less_finite_3_def split: finite_3.splits\) end lemma two_finite_3 [simp]: "2 = a\<^sub>3" by (simp add: numeral.simps plus_finite_3_def) lemma dvd_finite_3_unfold: "x dvd y \ x = a\<^sub>2 \ x = a\<^sub>3 \ y = a\<^sub>1" by (cases x) (auto simp add: dvd_def times_finite_3_def split: finite_3.splits) instantiation finite_3 :: "{normalization_semidom, unique_euclidean_semiring}" begin definition [simp]: "normalize x = (case x of a\<^sub>3 \ a\<^sub>2 | _ \ x)" definition [simp]: "unit_factor = (id :: finite_3 \ _)" definition [simp]: "euclidean_size x = (case x of a\<^sub>1 \ 0 | _ \ 1)" definition [simp]: "division_segment (x :: finite_3) = 1" instance proof fix x :: finite_3 assume "x \ 0" then show "is_unit (unit_factor x)" by (cases x) (simp_all add: dvd_finite_3_unfold) qed (subproofs \auto simp add: divide_finite_3_def times_finite_3_def dvd_finite_3_unfold inverse_finite_3_def plus_finite_3_def split: finite_3.splits\) end hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3 datatype (plugins only: code "quickcheck" extraction) finite_4 = a\<^sub>1 | a\<^sub>2 | a\<^sub>3 | a\<^sub>4 notation (output) a\<^sub>1 ("a\<^sub>1") notation (output) a\<^sub>2 ("a\<^sub>2") notation (output) a\<^sub>3 ("a\<^sub>3") notation (output) a\<^sub>4 ("a\<^sub>4") lemma UNIV_finite_4: "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4}" by (auto intro: finite_4.exhaust) instantiation finite_4 :: enum begin definition "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4]" definition "enum_all P \ P a\<^sub>1 \ P a\<^sub>2 \ P a\<^sub>3 \ P a\<^sub>4" definition "enum_ex P \ P a\<^sub>1 \ P a\<^sub>2 \ P a\<^sub>3 \ P a\<^sub>4" instance proof qed (simp_all only: enum_finite_4_def enum_all_finite_4_def enum_ex_finite_4_def UNIV_finite_4, simp_all) end instantiation finite_4 :: finite_distrib_lattice begin text \\<^term>\a\<^sub>1\ $<$ \<^term>\a\<^sub>2\,\<^term>\a\<^sub>3\ $<$ \<^term>\a\<^sub>4\, but \<^term>\a\<^sub>2\ and \<^term>\a\<^sub>3\ are incomparable.\ definition "x < y \ (case (x, y) of (a\<^sub>1, a\<^sub>1) \ False | (a\<^sub>1, _) \ True | (a\<^sub>2, a\<^sub>4) \ True | (a\<^sub>3, a\<^sub>4) \ True | _ \ False)" definition "x \ y \ (case (x, y) of (a\<^sub>1, _) \ True | (a\<^sub>2, a\<^sub>2) \ True | (a\<^sub>2, a\<^sub>4) \ True | (a\<^sub>3, a\<^sub>3) \ True | (a\<^sub>3, a\<^sub>4) \ True | (a\<^sub>4, a\<^sub>4) \ True | _ \ False)" definition "\A = (if a\<^sub>1 \ A \ a\<^sub>2 \ A \ a\<^sub>3 \ A then a\<^sub>1 else if a\<^sub>2 \ A then a\<^sub>2 else if a\<^sub>3 \ A then a\<^sub>3 else a\<^sub>4)" definition "\A = (if a\<^sub>4 \ A \ a\<^sub>2 \ A \ a\<^sub>3 \ A then a\<^sub>4 else if a\<^sub>2 \ A then a\<^sub>2 else if a\<^sub>3 \ A then a\<^sub>3 else a\<^sub>1)" definition [simp]: "bot = a\<^sub>1" definition [simp]: "top = a\<^sub>4" definition "x \ y = (case (x, y) of (a\<^sub>1, _) \ a\<^sub>1 | (_, a\<^sub>1) \ a\<^sub>1 | (a\<^sub>2, a\<^sub>3) \ a\<^sub>1 | (a\<^sub>3, a\<^sub>2) \ a\<^sub>1 | (a\<^sub>2, _) \ a\<^sub>2 | (_, a\<^sub>2) \ a\<^sub>2 | (a\<^sub>3, _) \ a\<^sub>3 | (_, a\<^sub>3) \ a\<^sub>3 | _ \ a\<^sub>4)" definition "x \ y = (case (x, y) of (a\<^sub>4, _) \ a\<^sub>4 | (_, a\<^sub>4) \ a\<^sub>4 | (a\<^sub>2, a\<^sub>3) \ a\<^sub>4 | (a\<^sub>3, a\<^sub>2) \ a\<^sub>4 | (a\<^sub>2, _) \ a\<^sub>2 | (_, a\<^sub>2) \ a\<^sub>2 | (a\<^sub>3, _) \ a\<^sub>3 | (_, a\<^sub>3) \ a\<^sub>3 | _ \ a\<^sub>1)" instance by standard (subproofs \auto simp add: less_finite_4_def less_eq_finite_4_def Inf_finite_4_def Sup_finite_4_def inf_finite_4_def sup_finite_4_def split: finite_4.splits\) end instance finite_4 :: complete_lattice .. instance finite_4 :: complete_distrib_lattice .. instantiation finite_4 :: complete_boolean_algebra begin definition "- x = (case x of a\<^sub>1 \ a\<^sub>4 | a\<^sub>2 \ a\<^sub>3 | a\<^sub>3 \ a\<^sub>2 | a\<^sub>4 \ a\<^sub>1)" definition "x - y = x \ - (y :: finite_4)" instance by standard (subproofs \simp_all add: inf_finite_4_def sup_finite_4_def uminus_finite_4_def minus_finite_4_def split: finite_4.splits\) end hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3 a\<^sub>4 datatype (plugins only: code "quickcheck" extraction) finite_5 = a\<^sub>1 | a\<^sub>2 | a\<^sub>3 | a\<^sub>4 | a\<^sub>5 notation (output) a\<^sub>1 ("a\<^sub>1") notation (output) a\<^sub>2 ("a\<^sub>2") notation (output) a\<^sub>3 ("a\<^sub>3") notation (output) a\<^sub>4 ("a\<^sub>4") notation (output) a\<^sub>5 ("a\<^sub>5") lemma UNIV_finite_5: "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4, a\<^sub>5}" by (auto intro: finite_5.exhaust) instantiation finite_5 :: enum begin definition "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4, a\<^sub>5]" definition "enum_all P \ P a\<^sub>1 \ P a\<^sub>2 \ P a\<^sub>3 \ P a\<^sub>4 \ P a\<^sub>5" definition "enum_ex P \ P a\<^sub>1 \ P a\<^sub>2 \ P a\<^sub>3 \ P a\<^sub>4 \ P a\<^sub>5" instance proof qed (simp_all only: enum_finite_5_def enum_all_finite_5_def enum_ex_finite_5_def UNIV_finite_5, simp_all) end instantiation finite_5 :: finite_lattice begin text \The non-distributive pentagon lattice $N_5$\ definition "x < y \ (case (x, y) of (a\<^sub>1, a\<^sub>1) \ False | (a\<^sub>1, _) \ True | (a\<^sub>2, a\<^sub>3) \ True | (a\<^sub>2, a\<^sub>5) \ True | (a\<^sub>3, a\<^sub>5) \ True | (a\<^sub>4, a\<^sub>5) \ True | _ \ False)" definition "x \ y \ (case (x, y) of (a\<^sub>1, _) \ True | (a\<^sub>2, a\<^sub>2) \ True | (a\<^sub>2, a\<^sub>3) \ True | (a\<^sub>2, a\<^sub>5) \ True | (a\<^sub>3, a\<^sub>3) \ True | (a\<^sub>3, a\<^sub>5) \ True | (a\<^sub>4, a\<^sub>4) \ True | (a\<^sub>4, a\<^sub>5) \ True | (a\<^sub>5, a\<^sub>5) \ True | _ \ False)" definition "\A = (if a\<^sub>1 \ A \ a\<^sub>4 \ A \ (a\<^sub>2 \ A \ a\<^sub>3 \ A) then a\<^sub>1 else if a\<^sub>2 \ A then a\<^sub>2 else if a\<^sub>3 \ A then a\<^sub>3 else if a\<^sub>4 \ A then a\<^sub>4 else a\<^sub>5)" definition "\A = (if a\<^sub>5 \ A \ a\<^sub>4 \ A \ (a\<^sub>2 \ A \ a\<^sub>3 \ A) then a\<^sub>5 else if a\<^sub>3 \ A then a\<^sub>3 else if a\<^sub>2 \ A then a\<^sub>2 else if a\<^sub>4 \ A then a\<^sub>4 else a\<^sub>1)" definition [simp]: "bot = a\<^sub>1" definition [simp]: "top = a\<^sub>5" definition "x \ y = (case (x, y) of (a\<^sub>1, _) \ a\<^sub>1 | (_, a\<^sub>1) \ a\<^sub>1 | (a\<^sub>2, a\<^sub>4) \ a\<^sub>1 | (a\<^sub>4, a\<^sub>2) \ a\<^sub>1 | (a\<^sub>3, a\<^sub>4) \ a\<^sub>1 | (a\<^sub>4, a\<^sub>3) \ a\<^sub>1 | (a\<^sub>2, _) \ a\<^sub>2 | (_, a\<^sub>2) \ a\<^sub>2 | (a\<^sub>3, _) \ a\<^sub>3 | (_, a\<^sub>3) \ a\<^sub>3 | (a\<^sub>4, _) \ a\<^sub>4 | (_, a\<^sub>4) \ a\<^sub>4 | _ \ a\<^sub>5)" definition "x \ y = (case (x, y) of (a\<^sub>5, _) \ a\<^sub>5 | (_, a\<^sub>5) \ a\<^sub>5 | (a\<^sub>2, a\<^sub>4) \ a\<^sub>5 | (a\<^sub>4, a\<^sub>2) \ a\<^sub>5 | (a\<^sub>3, a\<^sub>4) \ a\<^sub>5 | (a\<^sub>4, a\<^sub>3) \ a\<^sub>5 | (a\<^sub>3, _) \ a\<^sub>3 | (_, a\<^sub>3) \ a\<^sub>3 | (a\<^sub>2, _) \ a\<^sub>2 | (_, a\<^sub>2) \ a\<^sub>2 | (a\<^sub>4, _) \ a\<^sub>4 | (_, a\<^sub>4) \ a\<^sub>4 | _ \ a\<^sub>1)" instance by standard (subproofs \auto simp add: less_eq_finite_5_def less_finite_5_def inf_finite_5_def sup_finite_5_def Inf_finite_5_def Sup_finite_5_def split: finite_5.splits if_split_asm\) end instance finite_5 :: complete_lattice .. hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3 a\<^sub>4 a\<^sub>5 subsection \Closing up\ hide_type (open) finite_1 finite_2 finite_3 finite_4 finite_5 hide_const (open) enum enum_all enum_ex all_n_lists ex_n_lists ntrancl end