diff --git a/src/HOL/Analysis/Path_Connected.thy b/src/HOL/Analysis/Path_Connected.thy --- a/src/HOL/Analysis/Path_Connected.thy +++ b/src/HOL/Analysis/Path_Connected.thy @@ -1,4131 +1,4175 @@ (* Title: HOL/Analysis/Path_Connected.thy Authors: LC Paulson and Robert Himmelmann (TU Muenchen), based on material from HOL Light *) section \Path-Connectedness\ theory Path_Connected - imports Starlike T1_Spaces +imports + Starlike + T1_Spaces begin subsection \Paths and Arcs\ definition\<^marker>\tag important\ path :: "(real \ 'a::topological_space) \ bool" where "path g \ continuous_on {0..1} g" definition\<^marker>\tag important\ pathstart :: "(real \ 'a::topological_space) \ 'a" where "pathstart g = g 0" definition\<^marker>\tag important\ pathfinish :: "(real \ 'a::topological_space) \ 'a" where "pathfinish g = g 1" definition\<^marker>\tag important\ path_image :: "(real \ 'a::topological_space) \ 'a set" where "path_image g = g ` {0 .. 1}" definition\<^marker>\tag important\ reversepath :: "(real \ 'a::topological_space) \ real \ 'a" where "reversepath g = (\x. g(1 - x))" definition\<^marker>\tag important\ joinpaths :: "(real \ 'a::topological_space) \ (real \ 'a) \ real \ 'a" (infixr "+++" 75) where "g1 +++ g2 = (\x. if x \ 1/2 then g1 (2 * x) else g2 (2 * x - 1))" definition\<^marker>\tag important\ simple_path :: "(real \ 'a::topological_space) \ bool" where "simple_path g \ path g \ (\x\{0..1}. \y\{0..1}. g x = g y \ x = y \ x = 0 \ y = 1 \ x = 1 \ y = 0)" definition\<^marker>\tag important\ arc :: "(real \ 'a :: topological_space) \ bool" where "arc g \ path g \ inj_on g {0..1}" subsection\<^marker>\tag unimportant\\Invariance theorems\ lemma path_eq: "path p \ (\t. t \ {0..1} \ p t = q t) \ path q" using continuous_on_eq path_def by blast lemma path_continuous_image: "path g \ continuous_on (path_image g) f \ path(f \ g)" unfolding path_def path_image_def using continuous_on_compose by blast lemma path_translation_eq: fixes g :: "real \ 'a :: real_normed_vector" shows "path((\x. a + x) \ g) = path g" proof - have g: "g = (\x. -a + x) \ ((\x. a + x) \ g)" by (rule ext) simp show ?thesis unfolding path_def apply safe apply (subst g) apply (rule continuous_on_compose) apply (auto intro: continuous_intros) done qed lemma path_linear_image_eq: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "linear f" "inj f" shows "path(f \ g) = path g" proof - from linear_injective_left_inverse [OF assms] obtain h where h: "linear h" "h \ f = id" by blast then have g: "g = h \ (f \ g)" by (metis comp_assoc id_comp) show ?thesis unfolding path_def using h assms by (metis g continuous_on_compose linear_continuous_on linear_conv_bounded_linear) qed lemma pathstart_translation: "pathstart((\x. a + x) \ g) = a + pathstart g" by (simp add: pathstart_def) lemma pathstart_linear_image_eq: "linear f \ pathstart(f \ g) = f(pathstart g)" by (simp add: pathstart_def) lemma pathfinish_translation: "pathfinish((\x. a + x) \ g) = a + pathfinish g" by (simp add: pathfinish_def) lemma pathfinish_linear_image: "linear f \ pathfinish(f \ g) = f(pathfinish g)" by (simp add: pathfinish_def) lemma path_image_translation: "path_image((\x. a + x) \ g) = (\x. a + x) ` (path_image g)" by (simp add: image_comp path_image_def) lemma path_image_linear_image: "linear f \ path_image(f \ g) = f ` (path_image g)" by (simp add: image_comp path_image_def) lemma reversepath_translation: "reversepath((\x. a + x) \ g) = (\x. a + x) \ reversepath g" by (rule ext) (simp add: reversepath_def) lemma reversepath_linear_image: "linear f \ reversepath(f \ g) = f \ reversepath g" by (rule ext) (simp add: reversepath_def) lemma joinpaths_translation: "((\x. a + x) \ g1) +++ ((\x. a + x) \ g2) = (\x. a + x) \ (g1 +++ g2)" by (rule ext) (simp add: joinpaths_def) lemma joinpaths_linear_image: "linear f \ (f \ g1) +++ (f \ g2) = f \ (g1 +++ g2)" by (rule ext) (simp add: joinpaths_def) lemma simple_path_translation_eq: fixes g :: "real \ 'a::euclidean_space" shows "simple_path((\x. a + x) \ g) = simple_path g" by (simp add: simple_path_def path_translation_eq) lemma simple_path_linear_image_eq: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "linear f" "inj f" shows "simple_path(f \ g) = simple_path g" using assms inj_on_eq_iff [of f] by (auto simp: path_linear_image_eq simple_path_def path_translation_eq) lemma arc_translation_eq: fixes g :: "real \ 'a::euclidean_space" shows "arc((\x. a + x) \ g) = arc g" by (auto simp: arc_def inj_on_def path_translation_eq) lemma arc_linear_image_eq: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "linear f" "inj f" shows "arc(f \ g) = arc g" using assms inj_on_eq_iff [of f] by (auto simp: arc_def inj_on_def path_linear_image_eq) subsection\<^marker>\tag unimportant\\Basic lemmas about paths\ lemma pathin_iff_path_real [simp]: "pathin euclideanreal g \ path g" by (simp add: pathin_def path_def) lemma continuous_on_path: "path f \ t \ {0..1} \ continuous_on t f" using continuous_on_subset path_def by blast lemma arc_imp_simple_path: "arc g \ simple_path g" by (simp add: arc_def inj_on_def simple_path_def) lemma arc_imp_path: "arc g \ path g" using arc_def by blast lemma arc_imp_inj_on: "arc g \ inj_on g {0..1}" by (auto simp: arc_def) lemma simple_path_imp_path: "simple_path g \ path g" using simple_path_def by blast lemma simple_path_cases: "simple_path g \ arc g \ pathfinish g = pathstart g" unfolding simple_path_def arc_def inj_on_def pathfinish_def pathstart_def by force lemma simple_path_imp_arc: "simple_path g \ pathfinish g \ pathstart g \ arc g" using simple_path_cases by auto lemma arc_distinct_ends: "arc g \ pathfinish g \ pathstart g" unfolding arc_def inj_on_def pathfinish_def pathstart_def by fastforce lemma arc_simple_path: "arc g \ simple_path g \ pathfinish g \ pathstart g" using arc_distinct_ends arc_imp_simple_path simple_path_cases by blast lemma simple_path_eq_arc: "pathfinish g \ pathstart g \ (simple_path g = arc g)" by (simp add: arc_simple_path) lemma path_image_const [simp]: "path_image (\t. a) = {a}" by (force simp: path_image_def) lemma path_image_nonempty [simp]: "path_image g \ {}" unfolding path_image_def image_is_empty box_eq_empty by auto lemma pathstart_in_path_image[intro]: "pathstart g \ path_image g" unfolding pathstart_def path_image_def by auto lemma pathfinish_in_path_image[intro]: "pathfinish g \ path_image g" unfolding pathfinish_def path_image_def by auto lemma connected_path_image[intro]: "path g \ connected (path_image g)" unfolding path_def path_image_def using connected_continuous_image connected_Icc by blast lemma compact_path_image[intro]: "path g \ compact (path_image g)" unfolding path_def path_image_def using compact_continuous_image connected_Icc by blast lemma reversepath_reversepath[simp]: "reversepath (reversepath g) = g" unfolding reversepath_def by auto lemma pathstart_reversepath[simp]: "pathstart (reversepath g) = pathfinish g" unfolding pathstart_def reversepath_def pathfinish_def by auto lemma pathfinish_reversepath[simp]: "pathfinish (reversepath g) = pathstart g" unfolding pathstart_def reversepath_def pathfinish_def by auto lemma pathstart_join[simp]: "pathstart (g1 +++ g2) = pathstart g1" unfolding pathstart_def joinpaths_def pathfinish_def by auto lemma pathfinish_join[simp]: "pathfinish (g1 +++ g2) = pathfinish g2" unfolding pathstart_def joinpaths_def pathfinish_def by auto lemma path_image_reversepath[simp]: "path_image (reversepath g) = path_image g" proof - have *: "\g. path_image (reversepath g) \ path_image g" unfolding path_image_def subset_eq reversepath_def Ball_def image_iff by force show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed lemma path_reversepath [simp]: "path (reversepath g) \ path g" proof - have *: "\g. path g \ path (reversepath g)" unfolding path_def reversepath_def apply (rule continuous_on_compose[unfolded o_def, of _ "\x. 1 - x"]) apply (auto intro: continuous_intros continuous_on_subset[of "{0..1}"]) done show ?thesis using *[of "reversepath g"] *[of g] unfolding reversepath_reversepath by (rule iffI) qed lemma arc_reversepath: assumes "arc g" shows "arc(reversepath g)" proof - have injg: "inj_on g {0..1}" using assms by (simp add: arc_def) have **: "\x y::real. 1-x = 1-y \ x = y" by simp show ?thesis using assms by (clarsimp simp: arc_def intro!: inj_onI) (simp add: inj_onD reversepath_def **) qed lemma simple_path_reversepath: "simple_path g \ simple_path (reversepath g)" apply (simp add: simple_path_def) apply (force simp: reversepath_def) done lemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \ path g1 \ path g2" unfolding path_def pathfinish_def pathstart_def proof safe assume cont: "continuous_on {0..1} (g1 +++ g2)" have g1: "continuous_on {0..1} g1 \ continuous_on {0..1} ((g1 +++ g2) \ (\x. x / 2))" by (intro continuous_on_cong refl) (auto simp: joinpaths_def) have g2: "continuous_on {0..1} g2 \ continuous_on {0..1} ((g1 +++ g2) \ (\x. x / 2 + 1/2))" using assms by (intro continuous_on_cong refl) (auto simp: joinpaths_def pathfinish_def pathstart_def) show "continuous_on {0..1} g1" and "continuous_on {0..1} g2" unfolding g1 g2 by (auto intro!: continuous_intros continuous_on_subset[OF cont] simp del: o_apply) next assume g1g2: "continuous_on {0..1} g1" "continuous_on {0..1} g2" have 01: "{0 .. 1} = {0..1/2} \ {1/2 .. 1::real}" by auto { fix x :: real assume "0 \ x" and "x \ 1" then have "x \ (\x. x * 2) ` {0..1 / 2}" by (intro image_eqI[where x="x/2"]) auto } note 1 = this { fix x :: real assume "0 \ x" and "x \ 1" then have "x \ (\x. x * 2 - 1) ` {1 / 2..1}" by (intro image_eqI[where x="x/2 + 1/2"]) auto } note 2 = this show "continuous_on {0..1} (g1 +++ g2)" using assms unfolding joinpaths_def 01 apply (intro continuous_on_cases closed_atLeastAtMost g1g2[THEN continuous_on_compose2] continuous_intros) apply (auto simp: field_simps pathfinish_def pathstart_def intro!: 1 2) done qed subsection\<^marker>\tag unimportant\ \Path Images\ lemma bounded_path_image: "path g \ bounded(path_image g)" by (simp add: compact_imp_bounded compact_path_image) lemma closed_path_image: fixes g :: "real \ 'a::t2_space" shows "path g \ closed(path_image g)" by (metis compact_path_image compact_imp_closed) lemma connected_simple_path_image: "simple_path g \ connected(path_image g)" by (metis connected_path_image simple_path_imp_path) lemma compact_simple_path_image: "simple_path g \ compact(path_image g)" by (metis compact_path_image simple_path_imp_path) lemma bounded_simple_path_image: "simple_path g \ bounded(path_image g)" by (metis bounded_path_image simple_path_imp_path) lemma closed_simple_path_image: fixes g :: "real \ 'a::t2_space" shows "simple_path g \ closed(path_image g)" by (metis closed_path_image simple_path_imp_path) lemma connected_arc_image: "arc g \ connected(path_image g)" by (metis connected_path_image arc_imp_path) lemma compact_arc_image: "arc g \ compact(path_image g)" by (metis compact_path_image arc_imp_path) lemma bounded_arc_image: "arc g \ bounded(path_image g)" by (metis bounded_path_image arc_imp_path) lemma closed_arc_image: fixes g :: "real \ 'a::t2_space" shows "arc g \ closed(path_image g)" by (metis closed_path_image arc_imp_path) lemma path_image_join_subset: "path_image (g1 +++ g2) \ path_image g1 \ path_image g2" unfolding path_image_def joinpaths_def by auto lemma subset_path_image_join: assumes "path_image g1 \ s" and "path_image g2 \ s" shows "path_image (g1 +++ g2) \ s" using path_image_join_subset[of g1 g2] and assms by auto lemma path_image_join: "pathfinish g1 = pathstart g2 \ path_image(g1 +++ g2) = path_image g1 \ path_image g2" apply (rule subset_antisym [OF path_image_join_subset]) apply (auto simp: pathfinish_def pathstart_def path_image_def joinpaths_def image_def) apply (drule sym) apply (rule_tac x="xa/2" in bexI, auto) apply (rule ccontr) apply (drule_tac x="(xa+1)/2" in bspec) apply (auto simp: field_simps) apply (drule_tac x="1/2" in bspec, auto) done lemma not_in_path_image_join: assumes "x \ path_image g1" and "x \ path_image g2" shows "x \ path_image (g1 +++ g2)" using assms and path_image_join_subset[of g1 g2] by auto lemma pathstart_compose: "pathstart(f \ p) = f(pathstart p)" by (simp add: pathstart_def) lemma pathfinish_compose: "pathfinish(f \ p) = f(pathfinish p)" by (simp add: pathfinish_def) lemma path_image_compose: "path_image (f \ p) = f ` (path_image p)" by (simp add: image_comp path_image_def) lemma path_compose_join: "f \ (p +++ q) = (f \ p) +++ (f \ q)" by (rule ext) (simp add: joinpaths_def) lemma path_compose_reversepath: "f \ reversepath p = reversepath(f \ p)" by (rule ext) (simp add: reversepath_def) lemma joinpaths_eq: "(\t. t \ {0..1} \ p t = p' t) \ (\t. t \ {0..1} \ q t = q' t) \ t \ {0..1} \ (p +++ q) t = (p' +++ q') t" by (auto simp: joinpaths_def) lemma simple_path_inj_on: "simple_path g \ inj_on g {0<..<1}" by (auto simp: simple_path_def path_image_def inj_on_def less_eq_real_def Ball_def) subsection\<^marker>\tag unimportant\\Simple paths with the endpoints removed\ lemma simple_path_endless: "simple_path c \ path_image c - {pathstart c,pathfinish c} = c ` {0<..<1}" apply (auto simp: simple_path_def path_image_def pathstart_def pathfinish_def Ball_def Bex_def image_def) apply (metis eq_iff le_less_linear) apply (metis leD linear) using less_eq_real_def zero_le_one apply blast using less_eq_real_def zero_le_one apply blast done lemma connected_simple_path_endless: "simple_path c \ connected(path_image c - {pathstart c,pathfinish c})" apply (simp add: simple_path_endless) apply (rule connected_continuous_image) apply (meson continuous_on_subset greaterThanLessThan_subseteq_atLeastAtMost_iff le_numeral_extra(3) le_numeral_extra(4) path_def simple_path_imp_path) by auto lemma nonempty_simple_path_endless: "simple_path c \ path_image c - {pathstart c,pathfinish c} \ {}" by (simp add: simple_path_endless) subsection\<^marker>\tag unimportant\\The operations on paths\ lemma path_image_subset_reversepath: "path_image(reversepath g) \ path_image g" by (auto simp: path_image_def reversepath_def) lemma path_imp_reversepath: "path g \ path(reversepath g)" apply (auto simp: path_def reversepath_def) using continuous_on_compose [of "{0..1}" "\x. 1 - x" g] apply (auto simp: continuous_on_op_minus) done lemma half_bounded_equal: "1 \ x * 2 \ x * 2 \ 1 \ x = (1/2::real)" by simp lemma continuous_on_joinpaths: assumes "continuous_on {0..1} g1" "continuous_on {0..1} g2" "pathfinish g1 = pathstart g2" shows "continuous_on {0..1} (g1 +++ g2)" proof - have *: "{0..1::real} = {0..1/2} \ {1/2..1}" by auto have gg: "g2 0 = g1 1" by (metis assms(3) pathfinish_def pathstart_def) have 1: "continuous_on {0..1/2} (g1 +++ g2)" apply (rule continuous_on_eq [of _ "g1 \ (\x. 2*x)"]) apply (rule continuous_intros | simp add: joinpaths_def assms)+ done have "continuous_on {1/2..1} (g2 \ (\x. 2*x-1))" apply (rule continuous_on_subset [of "{1/2..1}"]) apply (rule continuous_intros | simp add: image_affinity_atLeastAtMost_diff assms)+ done then have 2: "continuous_on {1/2..1} (g1 +++ g2)" apply (rule continuous_on_eq [of "{1/2..1}" "g2 \ (\x. 2*x-1)"]) apply (rule assms continuous_intros | simp add: joinpaths_def mult.commute half_bounded_equal gg)+ done show ?thesis apply (subst *) apply (rule continuous_on_closed_Un) using 1 2 apply auto done qed lemma path_join_imp: "\path g1; path g2; pathfinish g1 = pathstart g2\ \ path(g1 +++ g2)" by (simp) lemma simple_path_join_loop: assumes "arc g1" "arc g2" "pathfinish g1 = pathstart g2" "pathfinish g2 = pathstart g1" "path_image g1 \ path_image g2 \ {pathstart g1, pathstart g2}" shows "simple_path(g1 +++ g2)" proof - have injg1: "inj_on g1 {0..1}" using assms by (simp add: arc_def) have injg2: "inj_on g2 {0..1}" using assms by (simp add: arc_def) have g12: "g1 1 = g2 0" and g21: "g2 1 = g1 0" and sb: "g1 ` {0..1} \ g2 ` {0..1} \ {g1 0, g2 0}" using assms by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def) { fix x and y::real assume xyI: "x = 1 \ y \ 0" and xy: "x \ 1" "0 \ y" " y * 2 \ 1" "\ x * 2 \ 1" "g2 (2 * x - 1) = g1 (2 * y)" have g1im: "g1 (2 * y) \ g1 ` {0..1} \ g2 ` {0..1}" using xy apply simp apply (rule_tac x="2 * x - 1" in image_eqI, auto) done have False using subsetD [OF sb g1im] xy apply auto apply (drule inj_onD [OF injg1]) using g21 [symmetric] xyI apply (auto dest: inj_onD [OF injg2]) done } note * = this { fix x and y::real assume xy: "y \ 1" "0 \ x" "\ y * 2 \ 1" "x * 2 \ 1" "g1 (2 * x) = g2 (2 * y - 1)" have g1im: "g1 (2 * x) \ g1 ` {0..1} \ g2 ` {0..1}" using xy apply simp apply (rule_tac x="2 * x" in image_eqI, auto) done have "x = 0 \ y = 1" using subsetD [OF sb g1im] xy apply auto apply (force dest: inj_onD [OF injg1]) using g21 [symmetric] apply (auto dest: inj_onD [OF injg2]) done } note ** = this show ?thesis using assms apply (simp add: arc_def simple_path_def path_join, clarify) apply (simp add: joinpaths_def split: if_split_asm) apply (force dest: inj_onD [OF injg1]) apply (metis *) apply (metis **) apply (force dest: inj_onD [OF injg2]) done qed lemma arc_join: assumes "arc g1" "arc g2" "pathfinish g1 = pathstart g2" "path_image g1 \ path_image g2 \ {pathstart g2}" shows "arc(g1 +++ g2)" proof - have injg1: "inj_on g1 {0..1}" using assms by (simp add: arc_def) have injg2: "inj_on g2 {0..1}" using assms by (simp add: arc_def) have g11: "g1 1 = g2 0" and sb: "g1 ` {0..1} \ g2 ` {0..1} \ {g2 0}" using assms by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def) { fix x and y::real assume xy: "x \ 1" "0 \ y" " y * 2 \ 1" "\ x * 2 \ 1" "g2 (2 * x - 1) = g1 (2 * y)" have g1im: "g1 (2 * y) \ g1 ` {0..1} \ g2 ` {0..1}" using xy apply simp apply (rule_tac x="2 * x - 1" in image_eqI, auto) done have False using subsetD [OF sb g1im] xy by (auto dest: inj_onD [OF injg2]) } note * = this show ?thesis apply (simp add: arc_def inj_on_def) apply (clarsimp simp add: arc_imp_path assms) apply (simp add: joinpaths_def split: if_split_asm) apply (force dest: inj_onD [OF injg1]) apply (metis *) apply (metis *) apply (force dest: inj_onD [OF injg2]) done qed lemma reversepath_joinpaths: "pathfinish g1 = pathstart g2 \ reversepath(g1 +++ g2) = reversepath g2 +++ reversepath g1" unfolding reversepath_def pathfinish_def pathstart_def joinpaths_def by (rule ext) (auto simp: mult.commute) subsection\<^marker>\tag unimportant\\Some reversed and "if and only if" versions of joining theorems\ lemma path_join_path_ends: fixes g1 :: "real \ 'a::metric_space" assumes "path(g1 +++ g2)" "path g2" shows "pathfinish g1 = pathstart g2" proof (rule ccontr) define e where "e = dist (g1 1) (g2 0)" assume Neg: "pathfinish g1 \ pathstart g2" then have "0 < dist (pathfinish g1) (pathstart g2)" by auto then have "e > 0" by (metis e_def pathfinish_def pathstart_def) then obtain d1 where "d1 > 0" and d1: "\x'. \x'\{0..1}; norm x' < d1\ \ dist (g2 x') (g2 0) < e/2" using assms(2) unfolding path_def continuous_on_iff apply (drule_tac x=0 in bspec, simp) by (metis half_gt_zero_iff norm_conv_dist) obtain d2 where "d2 > 0" and d2: "\x'. \x'\{0..1}; dist x' (1/2) < d2\ \ dist ((g1 +++ g2) x') (g1 1) < e/2" using assms(1) \e > 0\ unfolding path_def continuous_on_iff apply (drule_tac x="1/2" in bspec, simp) apply (drule_tac x="e/2" in spec) apply (force simp: joinpaths_def) done have int01_1: "min (1/2) (min d1 d2) / 2 \ {0..1}" using \d1 > 0\ \d2 > 0\ by (simp add: min_def) have dist1: "norm (min (1 / 2) (min d1 d2) / 2) < d1" using \d1 > 0\ \d2 > 0\ by (simp add: min_def dist_norm) have int01_2: "1/2 + min (1/2) (min d1 d2) / 4 \ {0..1}" using \d1 > 0\ \d2 > 0\ by (simp add: min_def) have dist2: "dist (1 / 2 + min (1 / 2) (min d1 d2) / 4) (1 / 2) < d2" using \d1 > 0\ \d2 > 0\ by (simp add: min_def dist_norm) have [simp]: "\ min (1 / 2) (min d1 d2) \ 0" using \d1 > 0\ \d2 > 0\ by (simp add: min_def) have "dist (g2 (min (1 / 2) (min d1 d2) / 2)) (g1 1) < e/2" "dist (g2 (min (1 / 2) (min d1 d2) / 2)) (g2 0) < e/2" using d1 [OF int01_1 dist1] d2 [OF int01_2 dist2] by (simp_all add: joinpaths_def) then have "dist (g1 1) (g2 0) < e/2 + e/2" using dist_triangle_half_r e_def by blast then show False by (simp add: e_def [symmetric]) qed lemma path_join_eq [simp]: fixes g1 :: "real \ 'a::metric_space" assumes "path g1" "path g2" shows "path(g1 +++ g2) \ pathfinish g1 = pathstart g2" using assms by (metis path_join_path_ends path_join_imp) lemma simple_path_joinE: assumes "simple_path(g1 +++ g2)" and "pathfinish g1 = pathstart g2" obtains "arc g1" "arc g2" "path_image g1 \ path_image g2 \ {pathstart g1, pathstart g2}" proof - have *: "\x y. \0 \ x; x \ 1; 0 \ y; y \ 1; (g1 +++ g2) x = (g1 +++ g2) y\ \ x = y \ x = 0 \ y = 1 \ x = 1 \ y = 0" using assms by (simp add: simple_path_def) have "path g1" using assms path_join simple_path_imp_path by blast moreover have "inj_on g1 {0..1}" proof (clarsimp simp: inj_on_def) fix x y assume "g1 x = g1 y" "0 \ x" "x \ 1" "0 \ y" "y \ 1" then show "x = y" using * [of "x/2" "y/2"] by (simp add: joinpaths_def split_ifs) qed ultimately have "arc g1" using assms by (simp add: arc_def) have [simp]: "g2 0 = g1 1" using assms by (metis pathfinish_def pathstart_def) have "path g2" using assms path_join simple_path_imp_path by blast moreover have "inj_on g2 {0..1}" proof (clarsimp simp: inj_on_def) fix x y assume "g2 x = g2 y" "0 \ x" "x \ 1" "0 \ y" "y \ 1" then show "x = y" using * [of "(x + 1) / 2" "(y + 1) / 2"] by (force simp: joinpaths_def split_ifs field_split_simps) qed ultimately have "arc g2" using assms by (simp add: arc_def) have "g2 y = g1 0 \ g2 y = g1 1" if "g1 x = g2 y" "0 \ x" "x \ 1" "0 \ y" "y \ 1" for x y using * [of "x / 2" "(y + 1) / 2"] that by (auto simp: joinpaths_def split_ifs field_split_simps) then have "path_image g1 \ path_image g2 \ {pathstart g1, pathstart g2}" by (fastforce simp: pathstart_def pathfinish_def path_image_def) with \arc g1\ \arc g2\ show ?thesis using that by blast qed lemma simple_path_join_loop_eq: assumes "pathfinish g2 = pathstart g1" "pathfinish g1 = pathstart g2" shows "simple_path(g1 +++ g2) \ arc g1 \ arc g2 \ path_image g1 \ path_image g2 \ {pathstart g1, pathstart g2}" by (metis assms simple_path_joinE simple_path_join_loop) lemma arc_join_eq: assumes "pathfinish g1 = pathstart g2" shows "arc(g1 +++ g2) \ arc g1 \ arc g2 \ path_image g1 \ path_image g2 \ {pathstart g2}" (is "?lhs = ?rhs") proof assume ?lhs then have "simple_path(g1 +++ g2)" by (rule arc_imp_simple_path) then have *: "\x y. \0 \ x; x \ 1; 0 \ y; y \ 1; (g1 +++ g2) x = (g1 +++ g2) y\ \ x = y \ x = 0 \ y = 1 \ x = 1 \ y = 0" using assms by (simp add: simple_path_def) have False if "g1 0 = g2 u" "0 \ u" "u \ 1" for u using * [of 0 "(u + 1) / 2"] that assms arc_distinct_ends [OF \?lhs\] by (auto simp: joinpaths_def pathstart_def pathfinish_def split_ifs field_split_simps) then have n1: "pathstart g1 \ path_image g2" unfolding pathstart_def path_image_def using atLeastAtMost_iff by blast show ?rhs using \?lhs\ apply (rule simple_path_joinE [OF arc_imp_simple_path assms]) using n1 by force next assume ?rhs then show ?lhs using assms by (fastforce simp: pathfinish_def pathstart_def intro!: arc_join) qed lemma arc_join_eq_alt: "pathfinish g1 = pathstart g2 \ (arc(g1 +++ g2) \ arc g1 \ arc g2 \ path_image g1 \ path_image g2 = {pathstart g2})" using pathfinish_in_path_image by (fastforce simp: arc_join_eq) subsection\<^marker>\tag unimportant\\The joining of paths is associative\ lemma path_assoc: "\pathfinish p = pathstart q; pathfinish q = pathstart r\ \ path(p +++ (q +++ r)) \ path((p +++ q) +++ r)" by simp lemma simple_path_assoc: assumes "pathfinish p = pathstart q" "pathfinish q = pathstart r" shows "simple_path (p +++ (q +++ r)) \ simple_path ((p +++ q) +++ r)" proof (cases "pathstart p = pathfinish r") case True show ?thesis proof assume "simple_path (p +++ q +++ r)" with assms True show "simple_path ((p +++ q) +++ r)" by (fastforce simp add: simple_path_join_loop_eq arc_join_eq path_image_join dest: arc_distinct_ends [of r]) next assume 0: "simple_path ((p +++ q) +++ r)" with assms True have q: "pathfinish r \ path_image q" using arc_distinct_ends by (fastforce simp add: simple_path_join_loop_eq arc_join_eq path_image_join) have "pathstart r \ path_image p" using assms by (metis 0 IntI arc_distinct_ends arc_join_eq_alt empty_iff insert_iff pathfinish_in_path_image pathfinish_join simple_path_joinE) with assms 0 q True show "simple_path (p +++ q +++ r)" by (auto simp: simple_path_join_loop_eq arc_join_eq path_image_join dest!: subsetD [OF _ IntI]) qed next case False { fix x :: 'a assume a: "path_image p \ path_image q \ {pathstart q}" "(path_image p \ path_image q) \ path_image r \ {pathstart r}" "x \ path_image p" "x \ path_image r" have "pathstart r \ path_image q" by (metis assms(2) pathfinish_in_path_image) with a have "x = pathstart q" by blast } with False assms show ?thesis by (auto simp: simple_path_eq_arc simple_path_join_loop_eq arc_join_eq path_image_join) qed lemma arc_assoc: "\pathfinish p = pathstart q; pathfinish q = pathstart r\ \ arc(p +++ (q +++ r)) \ arc((p +++ q) +++ r)" by (simp add: arc_simple_path simple_path_assoc) subsubsection\<^marker>\tag unimportant\\Symmetry and loops\ lemma path_sym: "\pathfinish p = pathstart q; pathfinish q = pathstart p\ \ path(p +++ q) \ path(q +++ p)" by auto lemma simple_path_sym: "\pathfinish p = pathstart q; pathfinish q = pathstart p\ \ simple_path(p +++ q) \ simple_path(q +++ p)" by (metis (full_types) inf_commute insert_commute simple_path_joinE simple_path_join_loop) lemma path_image_sym: "\pathfinish p = pathstart q; pathfinish q = pathstart p\ \ path_image(p +++ q) = path_image(q +++ p)" by (simp add: path_image_join sup_commute) subsection\Subpath\ definition\<^marker>\tag important\ subpath :: "real \ real \ (real \ 'a) \ real \ 'a::real_normed_vector" where "subpath a b g \ \x. g((b - a) * x + a)" lemma path_image_subpath_gen: fixes g :: "_ \ 'a::real_normed_vector" shows "path_image(subpath u v g) = g ` (closed_segment u v)" by (auto simp add: closed_segment_real_eq path_image_def subpath_def) lemma path_image_subpath: fixes g :: "real \ 'a::real_normed_vector" shows "path_image(subpath u v g) = (if u \ v then g ` {u..v} else g ` {v..u})" by (simp add: path_image_subpath_gen closed_segment_eq_real_ivl) lemma path_image_subpath_commute: fixes g :: "real \ 'a::real_normed_vector" shows "path_image(subpath u v g) = path_image(subpath v u g)" by (simp add: path_image_subpath_gen closed_segment_eq_real_ivl) lemma path_subpath [simp]: fixes g :: "real \ 'a::real_normed_vector" assumes "path g" "u \ {0..1}" "v \ {0..1}" shows "path(subpath u v g)" proof - have "continuous_on {0..1} (g \ (\x. ((v-u) * x+ u)))" apply (rule continuous_intros | simp)+ apply (simp add: image_affinity_atLeastAtMost [where c=u]) using assms apply (auto simp: path_def continuous_on_subset) done then show ?thesis by (simp add: path_def subpath_def) qed lemma pathstart_subpath [simp]: "pathstart(subpath u v g) = g(u)" by (simp add: pathstart_def subpath_def) lemma pathfinish_subpath [simp]: "pathfinish(subpath u v g) = g(v)" by (simp add: pathfinish_def subpath_def) lemma subpath_trivial [simp]: "subpath 0 1 g = g" by (simp add: subpath_def) lemma subpath_reversepath: "subpath 1 0 g = reversepath g" by (simp add: reversepath_def subpath_def) lemma reversepath_subpath: "reversepath(subpath u v g) = subpath v u g" by (simp add: reversepath_def subpath_def algebra_simps) lemma subpath_translation: "subpath u v ((\x. a + x) \ g) = (\x. a + x) \ subpath u v g" by (rule ext) (simp add: subpath_def) lemma subpath_image: "subpath u v (f \ g) = f \ subpath u v g" by (rule ext) (simp add: subpath_def) lemma affine_ineq: fixes x :: "'a::linordered_idom" assumes "x \ 1" "v \ u" shows "v + x * u \ u + x * v" proof - have "(1-x)*(u-v) \ 0" using assms by auto then show ?thesis by (simp add: algebra_simps) qed lemma sum_le_prod1: fixes a::real shows "\a \ 1; b \ 1\ \ a + b \ 1 + a * b" by (metis add.commute affine_ineq mult.right_neutral) lemma simple_path_subpath_eq: "simple_path(subpath u v g) \ path(subpath u v g) \ u\v \ (\x y. x \ closed_segment u v \ y \ closed_segment u v \ g x = g y \ x = y \ x = u \ y = v \ x = v \ y = u)" (is "?lhs = ?rhs") proof (rule iffI) assume ?lhs then have p: "path (\x. g ((v - u) * x + u))" and sim: "(\x y. \x\{0..1}; y\{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)\ \ x = y \ x = 0 \ y = 1 \ x = 1 \ y = 0)" by (auto simp: simple_path_def subpath_def) { fix x y assume "x \ closed_segment u v" "y \ closed_segment u v" "g x = g y" then have "x = y \ x = u \ y = v \ x = v \ y = u" using sim [of "(x-u)/(v-u)" "(y-u)/(v-u)"] p by (auto split: if_split_asm simp add: closed_segment_real_eq image_affinity_atLeastAtMost) (simp_all add: field_split_simps) } moreover have "path(subpath u v g) \ u\v" using sim [of "1/3" "2/3"] p by (auto simp: subpath_def) ultimately show ?rhs by metis next assume ?rhs then have d1: "\x y. \g x = g y; u \ x; x \ v; u \ y; y \ v\ \ x = y \ x = u \ y = v \ x = v \ y = u" and d2: "\x y. \g x = g y; v \ x; x \ u; v \ y; y \ u\ \ x = y \ x = u \ y = v \ x = v \ y = u" and ne: "u < v \ v < u" and psp: "path (subpath u v g)" by (auto simp: closed_segment_real_eq image_affinity_atLeastAtMost) have [simp]: "\x. u + x * v = v + x * u \ u=v \ x=1" by algebra show ?lhs using psp ne unfolding simple_path_def subpath_def by (fastforce simp add: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2) qed lemma arc_subpath_eq: "arc(subpath u v g) \ path(subpath u v g) \ u\v \ inj_on g (closed_segment u v)" (is "?lhs = ?rhs") proof (rule iffI) assume ?lhs then have p: "path (\x. g ((v - u) * x + u))" and sim: "(\x y. \x\{0..1}; y\{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)\ \ x = y)" by (auto simp: arc_def inj_on_def subpath_def) { fix x y assume "x \ closed_segment u v" "y \ closed_segment u v" "g x = g y" then have "x = y" using sim [of "(x-u)/(v-u)" "(y-u)/(v-u)"] p by (cases "v = u") (simp_all split: if_split_asm add: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost, simp add: field_simps) } moreover have "path(subpath u v g) \ u\v" using sim [of "1/3" "2/3"] p by (auto simp: subpath_def) ultimately show ?rhs unfolding inj_on_def by metis next assume ?rhs then have d1: "\x y. \g x = g y; u \ x; x \ v; u \ y; y \ v\ \ x = y" and d2: "\x y. \g x = g y; v \ x; x \ u; v \ y; y \ u\ \ x = y" and ne: "u < v \ v < u" and psp: "path (subpath u v g)" by (auto simp: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost) show ?lhs using psp ne unfolding arc_def subpath_def inj_on_def by (auto simp: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2) qed lemma simple_path_subpath: assumes "simple_path g" "u \ {0..1}" "v \ {0..1}" "u \ v" shows "simple_path(subpath u v g)" using assms apply (simp add: simple_path_subpath_eq simple_path_imp_path) apply (simp add: simple_path_def closed_segment_real_eq image_affinity_atLeastAtMost, fastforce) done lemma arc_simple_path_subpath: "\simple_path g; u \ {0..1}; v \ {0..1}; g u \ g v\ \ arc(subpath u v g)" by (force intro: simple_path_subpath simple_path_imp_arc) lemma arc_subpath_arc: "\arc g; u \ {0..1}; v \ {0..1}; u \ v\ \ arc(subpath u v g)" by (meson arc_def arc_imp_simple_path arc_simple_path_subpath inj_onD) lemma arc_simple_path_subpath_interior: "\simple_path g; u \ {0..1}; v \ {0..1}; u \ v; \u-v\ < 1\ \ arc(subpath u v g)" apply (rule arc_simple_path_subpath) apply (force simp: simple_path_def)+ done lemma path_image_subpath_subset: "\u \ {0..1}; v \ {0..1}\ \ path_image(subpath u v g) \ path_image g" apply (simp add: closed_segment_real_eq image_affinity_atLeastAtMost path_image_subpath) apply (auto simp: path_image_def) done lemma join_subpaths_middle: "subpath (0) ((1 / 2)) p +++ subpath ((1 / 2)) 1 p = p" by (rule ext) (simp add: joinpaths_def subpath_def field_split_simps) subsection\<^marker>\tag unimportant\\There is a subpath to the frontier\ lemma subpath_to_frontier_explicit: fixes S :: "'a::metric_space set" assumes g: "path g" and "pathfinish g \ S" obtains u where "0 \ u" "u \ 1" "\x. 0 \ x \ x < u \ g x \ interior S" "(g u \ interior S)" "(u = 0 \ g u \ closure S)" proof - have gcon: "continuous_on {0..1} g" using g by (simp add: path_def) then have com: "compact ({0..1} \ {u. g u \ closure (- S)})" apply (simp add: Int_commute [of "{0..1}"] compact_eq_bounded_closed closed_vimage_Int [unfolded vimage_def]) using compact_eq_bounded_closed apply fastforce done have "1 \ {u. g u \ closure (- S)}" using assms by (simp add: pathfinish_def closure_def) then have dis: "{0..1} \ {u. g u \ closure (- S)} \ {}" using atLeastAtMost_iff zero_le_one by blast then obtain u where "0 \ u" "u \ 1" and gu: "g u \ closure (- S)" and umin: "\t. \0 \ t; t \ 1; g t \ closure (- S)\ \ u \ t" using compact_attains_inf [OF com dis] by fastforce then have umin': "\t. \0 \ t; t \ 1; t < u\ \ g t \ S" using closure_def by fastforce { assume "u \ 0" then have "u > 0" using \0 \ u\ by auto { fix e::real assume "e > 0" obtain d where "d>0" and d: "\x'. \x' \ {0..1}; dist x' u \ d\ \ dist (g x') (g u) < e" using continuous_onE [OF gcon _ \e > 0\] \0 \ _\ \_ \ 1\ atLeastAtMost_iff by auto have *: "dist (max 0 (u - d / 2)) u \ d" using \0 \ u\ \u \ 1\ \d > 0\ by (simp add: dist_real_def) have "\y\S. dist y (g u) < e" using \0 < u\ \u \ 1\ \d > 0\ by (force intro: d [OF _ *] umin') } then have "g u \ closure S" by (simp add: frontier_def closure_approachable) } then show ?thesis apply (rule_tac u=u in that) apply (auto simp: \0 \ u\ \u \ 1\ gu interior_closure umin) using \_ \ 1\ interior_closure umin apply fastforce done qed lemma subpath_to_frontier_strong: assumes g: "path g" and "pathfinish g \ S" obtains u where "0 \ u" "u \ 1" "g u \ interior S" "u = 0 \ (\x. 0 \ x \ x < 1 \ subpath 0 u g x \ interior S) \ g u \ closure S" proof - obtain u where "0 \ u" "u \ 1" and gxin: "\x. 0 \ x \ x < u \ g x \ interior S" and gunot: "(g u \ interior S)" and u0: "(u = 0 \ g u \ closure S)" using subpath_to_frontier_explicit [OF assms] by blast show ?thesis apply (rule that [OF \0 \ u\ \u \ 1\]) apply (simp add: gunot) using \0 \ u\ u0 by (force simp: subpath_def gxin) qed lemma subpath_to_frontier: assumes g: "path g" and g0: "pathstart g \ closure S" and g1: "pathfinish g \ S" obtains u where "0 \ u" "u \ 1" "g u \ frontier S" "(path_image(subpath 0 u g) - {g u}) \ interior S" proof - obtain u where "0 \ u" "u \ 1" and notin: "g u \ interior S" and disj: "u = 0 \ (\x. 0 \ x \ x < 1 \ subpath 0 u g x \ interior S) \ g u \ closure S" using subpath_to_frontier_strong [OF g g1] by blast show ?thesis apply (rule that [OF \0 \ u\ \u \ 1\]) apply (metis DiffI disj frontier_def g0 notin pathstart_def) using \0 \ u\ g0 disj apply (simp add: path_image_subpath_gen) apply (auto simp: closed_segment_eq_real_ivl pathstart_def pathfinish_def subpath_def) apply (rename_tac y) apply (drule_tac x="y/u" in spec) apply (auto split: if_split_asm) done qed lemma exists_path_subpath_to_frontier: fixes S :: "'a::real_normed_vector set" assumes "path g" "pathstart g \ closure S" "pathfinish g \ S" obtains h where "path h" "pathstart h = pathstart g" "path_image h \ path_image g" "path_image h - {pathfinish h} \ interior S" "pathfinish h \ frontier S" proof - obtain u where u: "0 \ u" "u \ 1" "g u \ frontier S" "(path_image(subpath 0 u g) - {g u}) \ interior S" using subpath_to_frontier [OF assms] by blast show ?thesis apply (rule that [of "subpath 0 u g"]) using assms u apply (simp_all add: path_image_subpath) apply (simp add: pathstart_def) apply (force simp: closed_segment_eq_real_ivl path_image_def) done qed lemma exists_path_subpath_to_frontier_closed: fixes S :: "'a::real_normed_vector set" assumes S: "closed S" and g: "path g" and g0: "pathstart g \ S" and g1: "pathfinish g \ S" obtains h where "path h" "pathstart h = pathstart g" "path_image h \ path_image g \ S" "pathfinish h \ frontier S" proof - obtain h where h: "path h" "pathstart h = pathstart g" "path_image h \ path_image g" "path_image h - {pathfinish h} \ interior S" "pathfinish h \ frontier S" using exists_path_subpath_to_frontier [OF g _ g1] closure_closed [OF S] g0 by auto show ?thesis apply (rule that [OF \path h\]) using assms h apply auto apply (metis Diff_single_insert frontier_subset_eq insert_iff interior_subset subset_iff) done qed subsection \Shift Path to Start at Some Given Point\ definition\<^marker>\tag important\ shiftpath :: "real \ (real \ 'a::topological_space) \ real \ 'a" where "shiftpath a f = (\x. if (a + x) \ 1 then f (a + x) else f (a + x - 1))" lemma shiftpath_alt_def: "shiftpath a f = (\x. if x \ 1-a then f (a + x) else f (a + x - 1))" by (auto simp: shiftpath_def) lemma pathstart_shiftpath: "a \ 1 \ pathstart (shiftpath a g) = g a" unfolding pathstart_def shiftpath_def by auto lemma pathfinish_shiftpath: assumes "0 \ a" and "pathfinish g = pathstart g" shows "pathfinish (shiftpath a g) = g a" using assms unfolding pathstart_def pathfinish_def shiftpath_def by auto lemma endpoints_shiftpath: assumes "pathfinish g = pathstart g" and "a \ {0 .. 1}" shows "pathfinish (shiftpath a g) = g a" and "pathstart (shiftpath a g) = g a" using assms by (auto intro!: pathfinish_shiftpath pathstart_shiftpath) lemma closed_shiftpath: assumes "pathfinish g = pathstart g" and "a \ {0..1}" shows "pathfinish (shiftpath a g) = pathstart (shiftpath a g)" using endpoints_shiftpath[OF assms] by auto lemma path_shiftpath: assumes "path g" and "pathfinish g = pathstart g" and "a \ {0..1}" shows "path (shiftpath a g)" proof - have *: "{0 .. 1} = {0 .. 1-a} \ {1-a .. 1}" using assms(3) by auto have **: "\x. x + a = 1 \ g (x + a - 1) = g (x + a)" using assms(2)[unfolded pathfinish_def pathstart_def] by auto show ?thesis unfolding path_def shiftpath_def * proof (rule continuous_on_closed_Un) have contg: "continuous_on {0..1} g" using \path g\ path_def by blast show "continuous_on {0..1-a} (\x. if a + x \ 1 then g (a + x) else g (a + x - 1))" proof (rule continuous_on_eq) show "continuous_on {0..1-a} (g \ (+) a)" by (intro continuous_intros continuous_on_subset [OF contg]) (use \a \ {0..1}\ in auto) qed auto show "continuous_on {1-a..1} (\x. if a + x \ 1 then g (a + x) else g (a + x - 1))" proof (rule continuous_on_eq) show "continuous_on {1-a..1} (g \ (+) (a - 1))" by (intro continuous_intros continuous_on_subset [OF contg]) (use \a \ {0..1}\ in auto) qed (auto simp: "**" add.commute add_diff_eq) qed auto qed lemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" and "a \ {0..1}" and "x \ {0..1}" shows "shiftpath (1 - a) (shiftpath a g) x = g x" using assms unfolding pathfinish_def pathstart_def shiftpath_def by auto lemma path_image_shiftpath: assumes a: "a \ {0..1}" and "pathfinish g = pathstart g" shows "path_image (shiftpath a g) = path_image g" proof - { fix x assume g: "g 1 = g 0" "x \ {0..1::real}" and gne: "\y. y\{0..1} \ {x. \ a + x \ 1} \ g x \ g (a + y - 1)" then have "\y\{0..1} \ {x. a + x \ 1}. g x = g (a + y)" proof (cases "a \ x") case False then show ?thesis apply (rule_tac x="1 + x - a" in bexI) using g gne[of "1 + x - a"] a apply (force simp: field_simps)+ done next case True then show ?thesis using g a by (rule_tac x="x - a" in bexI) (auto simp: field_simps) qed } then show ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def by (auto simp: image_iff) qed lemma simple_path_shiftpath: assumes "simple_path g" "pathfinish g = pathstart g" and a: "0 \ a" "a \ 1" shows "simple_path (shiftpath a g)" unfolding simple_path_def proof (intro conjI impI ballI) show "path (shiftpath a g)" by (simp add: assms path_shiftpath simple_path_imp_path) have *: "\x y. \g x = g y; x \ {0..1}; y \ {0..1}\ \ x = y \ x = 0 \ y = 1 \ x = 1 \ y = 0" using assms by (simp add: simple_path_def) show "x = y \ x = 0 \ y = 1 \ x = 1 \ y = 0" if "x \ {0..1}" "y \ {0..1}" "shiftpath a g x = shiftpath a g y" for x y using that a unfolding shiftpath_def by (force split: if_split_asm dest!: *) qed subsection \Straight-Line Paths\ definition\<^marker>\tag important\ linepath :: "'a::real_normed_vector \ 'a \ real \ 'a" where "linepath a b = (\x. (1 - x) *\<^sub>R a + x *\<^sub>R b)" lemma pathstart_linepath[simp]: "pathstart (linepath a b) = a" unfolding pathstart_def linepath_def by auto lemma pathfinish_linepath[simp]: "pathfinish (linepath a b) = b" unfolding pathfinish_def linepath_def by auto lemma linepath_inner: "linepath a b x \ v = linepath (a \ v) (b \ v) x" by (simp add: linepath_def algebra_simps) lemma Re_linepath': "Re (linepath a b x) = linepath (Re a) (Re b) x" by (simp add: linepath_def) lemma Im_linepath': "Im (linepath a b x) = linepath (Im a) (Im b) x" by (simp add: linepath_def) lemma linepath_0': "linepath a b 0 = a" by (simp add: linepath_def) lemma linepath_1': "linepath a b 1 = b" by (simp add: linepath_def) lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)" unfolding linepath_def by (intro continuous_intros) lemma continuous_on_linepath [intro,continuous_intros]: "continuous_on s (linepath a b)" using continuous_linepath_at by (auto intro!: continuous_at_imp_continuous_on) lemma path_linepath[iff]: "path (linepath a b)" unfolding path_def by (rule continuous_on_linepath) lemma path_image_linepath[simp]: "path_image (linepath a b) = closed_segment a b" unfolding path_image_def segment linepath_def by auto lemma reversepath_linepath[simp]: "reversepath (linepath a b) = linepath b a" unfolding reversepath_def linepath_def by auto lemma linepath_0 [simp]: "linepath 0 b x = x *\<^sub>R b" by (simp add: linepath_def) lemma linepath_cnj: "cnj (linepath a b x) = linepath (cnj a) (cnj b) x" by (simp add: linepath_def) lemma arc_linepath: assumes "a \ b" shows [simp]: "arc (linepath a b)" proof - { fix x y :: "real" assume "x *\<^sub>R b + y *\<^sub>R a = x *\<^sub>R a + y *\<^sub>R b" then have "(x - y) *\<^sub>R a = (x - y) *\<^sub>R b" by (simp add: algebra_simps) with assms have "x = y" by simp } then show ?thesis unfolding arc_def inj_on_def by (fastforce simp: algebra_simps linepath_def) qed lemma simple_path_linepath[intro]: "a \ b \ simple_path (linepath a b)" by (simp add: arc_imp_simple_path) lemma linepath_trivial [simp]: "linepath a a x = a" by (simp add: linepath_def real_vector.scale_left_diff_distrib) lemma linepath_refl: "linepath a a = (\x. a)" by auto lemma subpath_refl: "subpath a a g = linepath (g a) (g a)" by (simp add: subpath_def linepath_def algebra_simps) lemma linepath_of_real: "(linepath (of_real a) (of_real b) x) = of_real ((1 - x)*a + x*b)" by (simp add: scaleR_conv_of_real linepath_def) lemma of_real_linepath: "of_real (linepath a b x) = linepath (of_real a) (of_real b) x" by (metis linepath_of_real mult.right_neutral of_real_def real_scaleR_def) lemma inj_on_linepath: assumes "a \ b" shows "inj_on (linepath a b) {0..1}" proof (clarsimp simp: inj_on_def linepath_def) fix x y assume "(1 - x) *\<^sub>R a + x *\<^sub>R b = (1 - y) *\<^sub>R a + y *\<^sub>R b" "0 \ x" "x \ 1" "0 \ y" "y \ 1" then have "x *\<^sub>R (a - b) = y *\<^sub>R (a - b)" by (auto simp: algebra_simps) then show "x=y" using assms by auto qed lemma linepath_le_1: fixes a::"'a::linordered_idom" shows "\a \ 1; b \ 1; 0 \ u; u \ 1\ \ (1 - u) * a + u * b \ 1" using mult_left_le [of a "1-u"] mult_left_le [of b u] by auto lemma linepath_in_path: shows "x \ {0..1} \ linepath a b x \ closed_segment a b" by (auto simp: segment linepath_def) lemma linepath_image_01: "linepath a b ` {0..1} = closed_segment a b" by (auto simp: segment linepath_def) lemma linepath_in_convex_hull: fixes x::real assumes a: "a \ convex hull s" and b: "b \ convex hull s" and x: "0\x" "x\1" shows "linepath a b x \ convex hull s" apply (rule closed_segment_subset_convex_hull [OF a b, THEN subsetD]) using x apply (auto simp: linepath_image_01 [symmetric]) done lemma Re_linepath: "Re(linepath (of_real a) (of_real b) x) = (1 - x)*a + x*b" by (simp add: linepath_def) lemma Im_linepath: "Im(linepath (of_real a) (of_real b) x) = 0" by (simp add: linepath_def) lemma bounded_linear_linepath: assumes "bounded_linear f" shows "f (linepath a b x) = linepath (f a) (f b) x" proof - interpret f: bounded_linear f by fact show ?thesis by (simp add: linepath_def f.add f.scale) qed lemma bounded_linear_linepath': assumes "bounded_linear f" shows "f \ linepath a b = linepath (f a) (f b)" using bounded_linear_linepath[OF assms] by (simp add: fun_eq_iff) lemma linepath_cnj': "cnj \ linepath a b = linepath (cnj a) (cnj b)" by (simp add: linepath_def fun_eq_iff) lemma differentiable_linepath [intro]: "linepath a b differentiable at x within A" by (auto simp: linepath_def) lemma has_vector_derivative_linepath_within: "(linepath a b has_vector_derivative (b - a)) (at x within s)" apply (simp add: linepath_def has_vector_derivative_def algebra_simps) apply (rule derivative_eq_intros | simp)+ done subsection\<^marker>\tag unimportant\\Segments via convex hulls\ lemma segments_subset_convex_hull: "closed_segment a b \ (convex hull {a,b,c})" "closed_segment a c \ (convex hull {a,b,c})" "closed_segment b c \ (convex hull {a,b,c})" "closed_segment b a \ (convex hull {a,b,c})" "closed_segment c a \ (convex hull {a,b,c})" "closed_segment c b \ (convex hull {a,b,c})" by (auto simp: segment_convex_hull linepath_of_real elim!: rev_subsetD [OF _ hull_mono]) lemma midpoints_in_convex_hull: assumes "x \ convex hull s" "y \ convex hull s" shows "midpoint x y \ convex hull s" proof - have "(1 - inverse(2)) *\<^sub>R x + inverse(2) *\<^sub>R y \ convex hull s" by (rule convexD_alt) (use assms in auto) then show ?thesis by (simp add: midpoint_def algebra_simps) qed lemma not_in_interior_convex_hull_3: fixes a :: "complex" shows "a \ interior(convex hull {a,b,c})" "b \ interior(convex hull {a,b,c})" "c \ interior(convex hull {a,b,c})" by (auto simp: card_insert_le_m1 not_in_interior_convex_hull) lemma midpoint_in_closed_segment [simp]: "midpoint a b \ closed_segment a b" using midpoints_in_convex_hull segment_convex_hull by blast lemma midpoint_in_open_segment [simp]: "midpoint a b \ open_segment a b \ a \ b" by (simp add: open_segment_def) lemma continuous_IVT_local_extremum: fixes f :: "'a::euclidean_space \ real" assumes contf: "continuous_on (closed_segment a b) f" and "a \ b" "f a = f b" obtains z where "z \ open_segment a b" "(\w \ closed_segment a b. (f w) \ (f z)) \ (\w \ closed_segment a b. (f z) \ (f w))" proof - obtain c where "c \ closed_segment a b" and c: "\y. y \ closed_segment a b \ f y \ f c" using continuous_attains_sup [of "closed_segment a b" f] contf by auto obtain d where "d \ closed_segment a b" and d: "\y. y \ closed_segment a b \ f d \ f y" using continuous_attains_inf [of "closed_segment a b" f] contf by auto show ?thesis proof (cases "c \ open_segment a b \ d \ open_segment a b") case True then show ?thesis using c d that by blast next case False then have "(c = a \ c = b) \ (d = a \ d = b)" by (simp add: \c \ closed_segment a b\ \d \ closed_segment a b\ open_segment_def) with \a \ b\ \f a = f b\ c d show ?thesis by (rule_tac z = "midpoint a b" in that) (fastforce+) qed qed text\An injective map into R is also an open map w.r.T. the universe, and conversely. \ proposition injective_eq_1d_open_map_UNIV: fixes f :: "real \ real" assumes contf: "continuous_on S f" and S: "is_interval S" shows "inj_on f S \ (\T. open T \ T \ S \ open(f ` T))" (is "?lhs = ?rhs") proof safe fix T assume injf: ?lhs and "open T" and "T \ S" have "\U. open U \ f x \ U \ U \ f ` T" if "x \ T" for x proof - obtain \ where "\ > 0" and \: "cball x \ \ T" using \open T\ \x \ T\ open_contains_cball_eq by blast show ?thesis proof (intro exI conjI) have "closed_segment (x-\) (x+\) = {x-\..x+\}" using \0 < \\ by (auto simp: closed_segment_eq_real_ivl) also have "\ \ S" using \ \T \ S\ by (auto simp: dist_norm subset_eq) finally have "f ` (open_segment (x-\) (x+\)) = open_segment (f (x-\)) (f (x+\))" using continuous_injective_image_open_segment_1 by (metis continuous_on_subset [OF contf] inj_on_subset [OF injf]) then show "open (f ` {x-\<..})" using \0 < \\ by (simp add: open_segment_eq_real_ivl) show "f x \ f ` {x - \<..}" by (auto simp: \\ > 0\) show "f ` {x - \<..} \ f ` T" using \ by (auto simp: dist_norm subset_iff) qed qed with open_subopen show "open (f ` T)" by blast next assume R: ?rhs have False if xy: "x \ S" "y \ S" and "f x = f y" "x \ y" for x y proof - have "open (f ` open_segment x y)" using R by (metis S convex_contains_open_segment is_interval_convex open_greaterThanLessThan open_segment_eq_real_ivl xy) moreover have "continuous_on (closed_segment x y) f" by (meson S closed_segment_subset contf continuous_on_subset is_interval_convex that) then obtain \ where "\ \ open_segment x y" and \: "(\w \ closed_segment x y. (f w) \ (f \)) \ (\w \ closed_segment x y. (f \) \ (f w))" using continuous_IVT_local_extremum [of x y f] \f x = f y\ \x \ y\ by blast ultimately obtain e where "e>0" and e: "\u. dist u (f \) < e \ u \ f ` open_segment x y" using open_dist by (metis image_eqI) have fin: "f \ + (e/2) \ f ` open_segment x y" "f \ - (e/2) \ f ` open_segment x y" using e [of "f \ + (e/2)"] e [of "f \ - (e/2)"] \e > 0\ by (auto simp: dist_norm) show ?thesis using \ \0 < e\ fin open_closed_segment by fastforce qed then show ?lhs by (force simp: inj_on_def) qed subsection\<^marker>\tag unimportant\ \Bounding a point away from a path\ lemma not_on_path_ball: fixes g :: "real \ 'a::heine_borel" assumes "path g" and z: "z \ path_image g" shows "\e > 0. ball z e \ path_image g = {}" proof - have "closed (path_image g)" by (simp add: \path g\ closed_path_image) then obtain a where "a \ path_image g" "\y \ path_image g. dist z a \ dist z y" by (auto intro: distance_attains_inf[OF _ path_image_nonempty, of g z]) then show ?thesis by (rule_tac x="dist z a" in exI) (use dist_commute z in auto) qed lemma not_on_path_cball: fixes g :: "real \ 'a::heine_borel" assumes "path g" and "z \ path_image g" shows "\e>0. cball z e \ (path_image g) = {}" proof - obtain e where "ball z e \ path_image g = {}" "e > 0" using not_on_path_ball[OF assms] by auto moreover have "cball z (e/2) \ ball z e" using \e > 0\ by auto ultimately show ?thesis by (rule_tac x="e/2" in exI) auto qed subsection \Path component\ text \Original formalization by Tom Hales\ definition\<^marker>\tag important\ "path_component s x y \ (\g. path g \ path_image g \ s \ pathstart g = x \ pathfinish g = y)" abbreviation\<^marker>\tag important\ "path_component_set s x \ Collect (path_component s x)" lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def lemma path_component_mem: assumes "path_component s x y" shows "x \ s" and "y \ s" using assms unfolding path_defs by auto lemma path_component_refl: assumes "x \ s" shows "path_component s x x" unfolding path_defs apply (rule_tac x="\u. x" in exI) using assms apply (auto intro!: continuous_intros) done lemma path_component_refl_eq: "path_component s x x \ x \ s" by (auto intro!: path_component_mem path_component_refl) lemma path_component_sym: "path_component s x y \ path_component s y x" unfolding path_component_def apply (erule exE) apply (rule_tac x="reversepath g" in exI, auto) done lemma path_component_trans: assumes "path_component s x y" and "path_component s y z" shows "path_component s x z" using assms unfolding path_component_def apply (elim exE) apply (rule_tac x="g +++ ga" in exI) apply (auto simp: path_image_join) done lemma path_component_of_subset: "s \ t \ path_component s x y \ path_component t x y" unfolding path_component_def by auto lemma path_component_linepath: fixes s :: "'a::real_normed_vector set" shows "closed_segment a b \ s \ path_component s a b" unfolding path_component_def by (rule_tac x="linepath a b" in exI, auto) subsubsection\<^marker>\tag unimportant\ \Path components as sets\ lemma path_component_set: "path_component_set s x = {y. (\g. path g \ path_image g \ s \ pathstart g = x \ pathfinish g = y)}" by (auto simp: path_component_def) lemma path_component_subset: "path_component_set s x \ s" by (auto simp: path_component_mem(2)) lemma path_component_eq_empty: "path_component_set s x = {} \ x \ s" using path_component_mem path_component_refl_eq by fastforce lemma path_component_mono: "s \ t \ (path_component_set s x) \ (path_component_set t x)" by (simp add: Collect_mono path_component_of_subset) lemma path_component_eq: "y \ path_component_set s x \ path_component_set s y = path_component_set s x" by (metis (no_types, lifting) Collect_cong mem_Collect_eq path_component_sym path_component_trans) subsection \Path connectedness of a space\ definition\<^marker>\tag important\ "path_connected s \ (\x\s. \y\s. \g. path g \ path_image g \ s \ pathstart g = x \ pathfinish g = y)" lemma path_connectedin_iff_path_connected_real [simp]: "path_connectedin euclideanreal S \ path_connected S" by (simp add: path_connectedin path_connected_def path_defs) lemma path_connected_component: "path_connected s \ (\x\s. \y\s. path_component s x y)" unfolding path_connected_def path_component_def by auto lemma path_connected_component_set: "path_connected s \ (\x\s. path_component_set s x = s)" unfolding path_connected_component path_component_subset using path_component_mem by blast lemma path_component_maximal: "\x \ t; path_connected t; t \ s\ \ t \ (path_component_set s x)" by (metis path_component_mono path_connected_component_set) lemma convex_imp_path_connected: fixes s :: "'a::real_normed_vector set" assumes "convex s" shows "path_connected s" unfolding path_connected_def using assms convex_contains_segment by fastforce lemma path_connected_UNIV [iff]: "path_connected (UNIV :: 'a::real_normed_vector set)" by (simp add: convex_imp_path_connected) lemma path_component_UNIV: "path_component_set UNIV x = (UNIV :: 'a::real_normed_vector set)" using path_connected_component_set by auto lemma path_connected_imp_connected: assumes "path_connected S" shows "connected S" proof (rule connectedI) fix e1 e2 assume as: "open e1" "open e2" "S \ e1 \ e2" "e1 \ e2 \ S = {}" "e1 \ S \ {}" "e2 \ S \ {}" then obtain x1 x2 where obt:"x1 \ e1 \ S" "x2 \ e2 \ S" by auto then obtain g where g: "path g" "path_image g \ S" "pathstart g = x1" "pathfinish g = x2" using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto have *: "connected {0..1::real}" by (auto intro!: convex_connected) have "{0..1} \ {x \ {0..1}. g x \ e1} \ {x \ {0..1}. g x \ e2}" using as(3) g(2)[unfolded path_defs] by blast moreover have "{x \ {0..1}. g x \ e1} \ {x \ {0..1}. g x \ e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto moreover have "{x \ {0..1}. g x \ e1} \ {} \ {x \ {0..1}. g x \ e2} \ {}" using g(3,4)[unfolded path_defs] using obt by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl) ultimately show False using *[unfolded connected_local not_ex, rule_format, of "{0..1} \ g -` e1" "{0..1} \ g -` e2"] using continuous_openin_preimage_gen[OF g(1)[unfolded path_def] as(1)] using continuous_openin_preimage_gen[OF g(1)[unfolded path_def] as(2)] by auto qed lemma open_path_component: fixes S :: "'a::real_normed_vector set" assumes "open S" shows "open (path_component_set S x)" unfolding open_contains_ball proof fix y assume as: "y \ path_component_set S x" then have "y \ S" by (simp add: path_component_mem(2)) then obtain e where e: "e > 0" "ball y e \ S" using assms[unfolded open_contains_ball] by auto have "\u. dist y u < e \ path_component S x u" by (metis (full_types) as centre_in_ball convex_ball convex_imp_path_connected e mem_Collect_eq mem_ball path_component_eq path_component_of_subset path_connected_component) then show "\e > 0. ball y e \ path_component_set S x" using \e>0\ by auto qed lemma open_non_path_component: fixes S :: "'a::real_normed_vector set" assumes "open S" shows "open (S - path_component_set S x)" unfolding open_contains_ball proof fix y assume y: "y \ S - path_component_set S x" then obtain e where e: "e > 0" "ball y e \ S" using assms openE by auto show "\e>0. ball y e \ S - path_component_set S x" proof (intro exI conjI subsetI DiffI notI) show "\x. x \ ball y e \ x \ S" using e by blast show False if "z \ ball y e" "z \ path_component_set S x" for z proof - have "y \ path_component_set S z" by (meson assms convex_ball convex_imp_path_connected e open_contains_ball_eq open_path_component path_component_maximal that(1)) then have "y \ path_component_set S x" using path_component_eq that(2) by blast then show False using y by blast qed qed (use e in auto) qed lemma connected_open_path_connected: fixes S :: "'a::real_normed_vector set" assumes "open S" and "connected S" shows "path_connected S" unfolding path_connected_component_set proof (rule, rule, rule path_component_subset, rule) fix x y assume "x \ S" and "y \ S" show "y \ path_component_set S x" proof (rule ccontr) assume "\ ?thesis" moreover have "path_component_set S x \ S \ {}" using \x \ S\ path_component_eq_empty path_component_subset[of S x] by auto ultimately show False using \y \ S\ open_non_path_component[OF assms(1)] open_path_component[OF assms(1)] using assms(2)[unfolded connected_def not_ex, rule_format, of "path_component_set S x" "S - path_component_set S x"] by auto qed qed lemma path_connected_continuous_image: assumes "continuous_on S f" and "path_connected S" shows "path_connected (f ` S)" unfolding path_connected_def proof (rule, rule) fix x' y' assume "x' \ f ` S" "y' \ f ` S" then obtain x y where x: "x \ S" and y: "y \ S" and x': "x' = f x" and y': "y' = f y" by auto from x y obtain g where "path g \ path_image g \ S \ pathstart g = x \ pathfinish g = y" using assms(2)[unfolded path_connected_def] by fast then show "\g. path g \ path_image g \ f ` S \ pathstart g = x' \ pathfinish g = y'" unfolding x' y' apply (rule_tac x="f \ g" in exI) unfolding path_defs apply (intro conjI continuous_on_compose continuous_on_subset[OF assms(1)]) apply auto done qed lemma path_connected_translationI: fixes a :: "'a :: topological_group_add" assumes "path_connected S" shows "path_connected ((\x. a + x) ` S)" by (intro path_connected_continuous_image assms continuous_intros) lemma path_connected_translation: fixes a :: "'a :: topological_group_add" shows "path_connected ((\x. a + x) ` S) = path_connected S" proof - have "\x y. (+) (x::'a) ` (+) (0 - x) ` y = y" by (simp add: image_image) then show ?thesis by (metis (no_types) path_connected_translationI) qed lemma path_connected_segment [simp]: fixes a :: "'a::real_normed_vector" shows "path_connected (closed_segment a b)" by (simp add: convex_imp_path_connected) lemma path_connected_open_segment [simp]: fixes a :: "'a::real_normed_vector" shows "path_connected (open_segment a b)" by (simp add: convex_imp_path_connected) lemma homeomorphic_path_connectedness: "S homeomorphic T \ path_connected S \ path_connected T" unfolding homeomorphic_def homeomorphism_def by (metis path_connected_continuous_image) lemma path_connected_empty [simp]: "path_connected {}" unfolding path_connected_def by auto lemma path_connected_singleton [simp]: "path_connected {a}" unfolding path_connected_def pathstart_def pathfinish_def path_image_def apply clarify apply (rule_tac x="\x. a" in exI) apply (simp add: image_constant_conv) apply (simp add: path_def) done lemma path_connected_Un: assumes "path_connected S" and "path_connected T" and "S \ T \ {}" shows "path_connected (S \ T)" unfolding path_connected_component proof (intro ballI) fix x y assume x: "x \ S \ T" and y: "y \ S \ T" from assms obtain z where z: "z \ S" "z \ T" by auto show "path_component (S \ T) x y" using x y proof safe assume "x \ S" "y \ S" then show "path_component (S \ T) x y" by (meson Un_upper1 \path_connected S\ path_component_of_subset path_connected_component) next assume "x \ S" "y \ T" then show "path_component (S \ T) x y" by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans path_connected_component) next assume "x \ T" "y \ S" then show "path_component (S \ T) x y" by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans path_connected_component) next assume "x \ T" "y \ T" then show "path_component (S \ T) x y" by (metis Un_upper1 assms(2) path_component_of_subset path_connected_component sup_commute) qed qed lemma path_connected_UNION: assumes "\i. i \ A \ path_connected (S i)" and "\i. i \ A \ z \ S i" shows "path_connected (\i\A. S i)" unfolding path_connected_component proof clarify fix x i y j assume *: "i \ A" "x \ S i" "j \ A" "y \ S j" then have "path_component (S i) x z" and "path_component (S j) z y" using assms by (simp_all add: path_connected_component) then have "path_component (\i\A. S i) x z" and "path_component (\i\A. S i) z y" using *(1,3) by (auto elim!: path_component_of_subset [rotated]) then show "path_component (\i\A. S i) x y" by (rule path_component_trans) qed lemma path_component_path_image_pathstart: assumes p: "path p" and x: "x \ path_image p" shows "path_component (path_image p) (pathstart p) x" proof - obtain y where x: "x = p y" and y: "0 \ y" "y \ 1" using x by (auto simp: path_image_def) show ?thesis unfolding path_component_def proof (intro exI conjI) have "continuous_on {0..1} (p \ ((*) y))" apply (rule continuous_intros)+ using p [unfolded path_def] y apply (auto simp: mult_le_one intro: continuous_on_subset [of _ p]) done then show "path (\u. p (y * u))" by (simp add: path_def) show "path_image (\u. p (y * u)) \ path_image p" using y mult_le_one by (fastforce simp: path_image_def image_iff) qed (auto simp: pathstart_def pathfinish_def x) qed lemma path_connected_path_image: "path p \ path_connected(path_image p)" unfolding path_connected_component by (meson path_component_path_image_pathstart path_component_sym path_component_trans) lemma path_connected_path_component [simp]: "path_connected (path_component_set s x)" proof - { fix y z assume pa: "path_component s x y" "path_component s x z" then have pae: "path_component_set s x = path_component_set s y" using path_component_eq by auto have yz: "path_component s y z" using pa path_component_sym path_component_trans by blast then have "\g. path g \ path_image g \ path_component_set s x \ pathstart g = y \ pathfinish g = z" apply (simp add: path_component_def, clarify) apply (rule_tac x=g in exI) by (simp add: pae path_component_maximal path_connected_path_image pathstart_in_path_image) } then show ?thesis by (simp add: path_connected_def) qed lemma path_component: "path_component S x y \ (\t. path_connected t \ t \ S \ x \ t \ y \ t)" apply (intro iffI) apply (metis path_connected_path_image path_defs(5) pathfinish_in_path_image pathstart_in_path_image) using path_component_of_subset path_connected_component by blast lemma path_component_path_component [simp]: "path_component_set (path_component_set S x) x = path_component_set S x" proof (cases "x \ S") case True show ?thesis apply (rule subset_antisym) apply (simp add: path_component_subset) by (simp add: True path_component_maximal path_component_refl) next case False then show ?thesis by (metis False empty_iff path_component_eq_empty) qed lemma path_component_subset_connected_component: "(path_component_set S x) \ (connected_component_set S x)" proof (cases "x \ S") case True show ?thesis apply (rule connected_component_maximal) apply (auto simp: True path_component_subset path_component_refl path_connected_imp_connected) done next case False then show ?thesis using path_component_eq_empty by auto qed subsection\<^marker>\tag unimportant\\Lemmas about path-connectedness\ lemma path_connected_linear_image: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "path_connected S" "bounded_linear f" shows "path_connected(f ` S)" by (auto simp: linear_continuous_on assms path_connected_continuous_image) lemma is_interval_path_connected: "is_interval S \ path_connected S" by (simp add: convex_imp_path_connected is_interval_convex) lemma path_connected_Ioi[simp]: "path_connected {a<..}" for a :: real by (simp add: convex_imp_path_connected) lemma path_connected_Ici[simp]: "path_connected {a..}" for a :: real by (simp add: convex_imp_path_connected) lemma path_connected_Iio[simp]: "path_connected {.. (\x \ topspace X. \y \ topspace X. \S. path_connectedin X S \ x \ S \ y \ S)" unfolding path_connected_space_def Ball_def apply (intro all_cong1 imp_cong refl, safe) using path_connectedin_path_image apply fastforce by (meson path_connectedin) lemma connectedin_path_image: "pathin X g \ connectedin X (g ` ({0..1}))" by (simp add: path_connectedin_imp_connectedin path_connectedin_path_image) lemma compactin_path_image: "pathin X g \ compactin X (g ` ({0..1}))" unfolding pathin_def by (rule image_compactin [of "top_of_set {0..1}"]) auto lemma linear_homeomorphism_image: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "linear f" "inj f" obtains g where "homeomorphism (f ` S) S g f" using linear_injective_left_inverse [OF assms] apply clarify apply (rule_tac g=g in that) using assms apply (auto simp: homeomorphism_def eq_id_iff [symmetric] image_comp comp_def linear_conv_bounded_linear linear_continuous_on) done lemma linear_homeomorphic_image: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "linear f" "inj f" shows "S homeomorphic f ` S" by (meson homeomorphic_def homeomorphic_sym linear_homeomorphism_image [OF assms]) lemma path_connected_Times: assumes "path_connected s" "path_connected t" shows "path_connected (s \ t)" proof (simp add: path_connected_def Sigma_def, clarify) fix x1 y1 x2 y2 assume "x1 \ s" "y1 \ t" "x2 \ s" "y2 \ t" obtain g where "path g" and g: "path_image g \ s" and gs: "pathstart g = x1" and gf: "pathfinish g = x2" using \x1 \ s\ \x2 \ s\ assms by (force simp: path_connected_def) obtain h where "path h" and h: "path_image h \ t" and hs: "pathstart h = y1" and hf: "pathfinish h = y2" using \y1 \ t\ \y2 \ t\ assms by (force simp: path_connected_def) have "path (\z. (x1, h z))" using \path h\ apply (simp add: path_def) apply (rule continuous_on_compose2 [where f = h]) apply (rule continuous_intros | force)+ done moreover have "path (\z. (g z, y2))" using \path g\ apply (simp add: path_def) apply (rule continuous_on_compose2 [where f = g]) apply (rule continuous_intros | force)+ done ultimately have 1: "path ((\z. (x1, h z)) +++ (\z. (g z, y2)))" by (metis hf gs path_join_imp pathstart_def pathfinish_def) have "path_image ((\z. (x1, h z)) +++ (\z. (g z, y2))) \ path_image (\z. (x1, h z)) \ path_image (\z. (g z, y2))" by (rule Path_Connected.path_image_join_subset) also have "\ \ (\x\s. \x1\t. {(x, x1)})" using g h \x1 \ s\ \y2 \ t\ by (force simp: path_image_def) finally have 2: "path_image ((\z. (x1, h z)) +++ (\z. (g z, y2))) \ (\x\s. \x1\t. {(x, x1)})" . show "\g. path g \ path_image g \ (\x\s. \x1\t. {(x, x1)}) \ pathstart g = (x1, y1) \ pathfinish g = (x2, y2)" apply (intro exI conjI) apply (rule 1) apply (rule 2) apply (metis hs pathstart_def pathstart_join) by (metis gf pathfinish_def pathfinish_join) qed lemma is_interval_path_connected_1: fixes s :: "real set" shows "is_interval s \ path_connected s" using is_interval_connected_1 is_interval_path_connected path_connected_imp_connected by blast subsection\<^marker>\tag unimportant\\Path components\ lemma Union_path_component [simp]: "Union {path_component_set S x |x. x \ S} = S" apply (rule subset_antisym) using path_component_subset apply force using path_component_refl by auto lemma path_component_disjoint: "disjnt (path_component_set S a) (path_component_set S b) \ (a \ path_component_set S b)" apply (auto simp: disjnt_def) using path_component_eq apply fastforce using path_component_sym path_component_trans by blast lemma path_component_eq_eq: "path_component S x = path_component S y \ (x \ S) \ (y \ S) \ x \ S \ y \ S \ path_component S x y" apply (rule iffI, metis (no_types) path_component_mem(1) path_component_refl) apply (erule disjE, metis Collect_empty_eq_bot path_component_eq_empty) apply (rule ext) apply (metis path_component_trans path_component_sym) done lemma path_component_unique: assumes "x \ c" "c \ S" "path_connected c" "\c'. \x \ c'; c' \ S; path_connected c'\ \ c' \ c" shows "path_component_set S x = c" apply (rule subset_antisym) using assms apply (metis mem_Collect_eq subsetCE path_component_eq_eq path_component_subset path_connected_path_component) by (simp add: assms path_component_maximal) lemma path_component_intermediate_subset: "path_component_set u a \ t \ t \ u \ path_component_set t a = path_component_set u a" by (metis (no_types) path_component_mono path_component_path_component subset_antisym) lemma complement_path_component_Union: fixes x :: "'a :: topological_space" shows "S - path_component_set S x = \({path_component_set S y| y. y \ S} - {path_component_set S x})" proof - have *: "(\x. x \ S - {a} \ disjnt a x) \ \S - a = \(S - {a})" for a::"'a set" and S by (auto simp: disjnt_def) have "\y. y \ {path_component_set S x |x. x \ S} - {path_component_set S x} \ disjnt (path_component_set S x) y" using path_component_disjoint path_component_eq by fastforce then have "\{path_component_set S x |x. x \ S} - path_component_set S x = \({path_component_set S y |y. y \ S} - {path_component_set S x})" by (meson *) then show ?thesis by simp qed subsection\Path components\ definition path_component_of where "path_component_of X x y \ \g. pathin X g \ g 0 = x \ g 1 = y" abbreviation path_component_of_set where "path_component_of_set X x \ Collect (path_component_of X x)" definition path_components_of :: "'a topology \ 'a set set" where "path_components_of X \ path_component_of_set X ` topspace X" lemma pathin_canon_iff: "pathin (top_of_set T) g \ path g \ g ` {0..1} \ T" by (simp add: path_def pathin_def) lemma path_component_of_canon_iff [simp]: "path_component_of (top_of_set T) a b \ path_component T a b" by (simp add: path_component_of_def pathin_canon_iff path_defs) lemma path_component_in_topspace: "path_component_of X x y \ x \ topspace X \ y \ topspace X" by (auto simp: path_component_of_def pathin_def continuous_map_def) lemma path_component_of_refl: "path_component_of X x x \ x \ topspace X" apply (auto simp: path_component_in_topspace) apply (force simp: path_component_of_def pathin_const) done lemma path_component_of_sym: assumes "path_component_of X x y" shows "path_component_of X y x" using assms apply (clarsimp simp: path_component_of_def pathin_def) apply (rule_tac x="g \ (\t. 1 - t)" in exI) apply (auto intro!: continuous_map_compose) apply (force simp: continuous_map_in_subtopology continuous_on_op_minus) done lemma path_component_of_sym_iff: "path_component_of X x y \ path_component_of X y x" by (metis path_component_of_sym) +lemma continuous_map_cases_le: + assumes contp: "continuous_map X euclideanreal p" + and contq: "continuous_map X euclideanreal q" + and contf: "continuous_map (subtopology X {x. x \ topspace X \ p x \ q x}) Y f" + and contg: "continuous_map (subtopology X {x. x \ topspace X \ q x \ p x}) Y g" + and fg: "\x. \x \ topspace X; p x = q x\ \ f x = g x" + shows "continuous_map X Y (\x. if p x \ q x then f x else g x)" +proof - + have "continuous_map X Y (\x. if q x - p x \ {0..} then f x else g x)" + proof (rule continuous_map_cases_function) + show "continuous_map X euclideanreal (\x. q x - p x)" + by (intro contp contq continuous_intros) + show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of {0..}}) Y f" + by (simp add: contf) + show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of (topspace euclideanreal - {0..})}) Y g" + by (simp add: contg flip: Compl_eq_Diff_UNIV) + qed (auto simp: fg) + then show ?thesis + by simp +qed + +lemma continuous_map_cases_lt: + assumes contp: "continuous_map X euclideanreal p" + and contq: "continuous_map X euclideanreal q" + and contf: "continuous_map (subtopology X {x. x \ topspace X \ p x \ q x}) Y f" + and contg: "continuous_map (subtopology X {x. x \ topspace X \ q x \ p x}) Y g" + and fg: "\x. \x \ topspace X; p x = q x\ \ f x = g x" + shows "continuous_map X Y (\x. if p x < q x then f x else g x)" +proof - + have "continuous_map X Y (\x. if q x - p x \ {0<..} then f x else g x)" + proof (rule continuous_map_cases_function) + show "continuous_map X euclideanreal (\x. q x - p x)" + by (intro contp contq continuous_intros) + show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of {0<..}}) Y f" + by (simp add: contf) + show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of (topspace euclideanreal - {0<..})}) Y g" + by (simp add: contg flip: Compl_eq_Diff_UNIV) + qed (auto simp: fg) + then show ?thesis + by simp +qed + lemma path_component_of_trans: assumes "path_component_of X x y" and "path_component_of X y z" shows "path_component_of X x z" unfolding path_component_of_def pathin_def proof - let ?T01 = "top_of_set {0..1::real}" obtain g1 g2 where g1: "continuous_map ?T01 X g1" "x = g1 0" "y = g1 1" and g2: "continuous_map ?T01 X g2" "g2 0 = g1 1" "z = g2 1" using assms unfolding path_component_of_def pathin_def by blast let ?g = "\x. if x \ 1/2 then (g1 \ (\t. 2 * t)) x else (g2 \ (\t. 2 * t -1)) x" show "\g. continuous_map ?T01 X g \ g 0 = x \ g 1 = z" proof (intro exI conjI) show "continuous_map (subtopology euclideanreal {0..1}) X ?g" proof (intro continuous_map_cases_le continuous_map_compose, force, force) show "continuous_map (subtopology ?T01 {x \ topspace ?T01. x \ 1/2}) ?T01 ((*) 2)" by (auto simp: continuous_map_in_subtopology continuous_map_from_subtopology) have "continuous_map (subtopology (top_of_set {0..1}) {x. 0 \ x \ x \ 1 \ 1 \ x * 2}) euclideanreal (\t. 2 * t - 1)" by (intro continuous_intros) (force intro: continuous_map_from_subtopology) then show "continuous_map (subtopology ?T01 {x \ topspace ?T01. 1/2 \ x}) ?T01 (\t. 2 * t - 1)" by (force simp: continuous_map_in_subtopology) show "(g1 \ (*) 2) x = (g2 \ (\t. 2 * t - 1)) x" if "x \ topspace ?T01" "x = 1/2" for x using that by (simp add: g2(2) mult.commute continuous_map_from_subtopology) qed (auto simp: g1 g2) qed (auto simp: g1 g2) qed lemma path_component_of_mono: "\path_component_of (subtopology X S) x y; S \ T\ \ path_component_of (subtopology X T) x y" unfolding path_component_of_def by (metis subsetD pathin_subtopology) lemma path_component_of: "path_component_of X x y \ (\T. path_connectedin X T \ x \ T \ y \ T)" apply (auto simp: path_component_of_def) using path_connectedin_path_image apply fastforce apply (metis path_connectedin) done lemma path_component_of_set: "path_component_of X x y \ (\g. pathin X g \ g 0 = x \ g 1 = y)" by (auto simp: path_component_of_def) lemma path_component_of_subset_topspace: "Collect(path_component_of X x) \ topspace X" using path_component_in_topspace by fastforce lemma path_component_of_eq_empty: "Collect(path_component_of X x) = {} \ (x \ topspace X)" using path_component_in_topspace path_component_of_refl by fastforce lemma path_connected_space_iff_path_component: "path_connected_space X \ (\x \ topspace X. \y \ topspace X. path_component_of X x y)" by (simp add: path_component_of path_connected_space_subconnected) lemma path_connected_space_imp_path_component_of: "\path_connected_space X; a \ topspace X; b \ topspace X\ \ path_component_of X a b" by (simp add: path_connected_space_iff_path_component) lemma path_connected_space_path_component_set: "path_connected_space X \ (\x \ topspace X. Collect(path_component_of X x) = topspace X)" using path_component_of_subset_topspace path_connected_space_iff_path_component by fastforce lemma path_component_of_maximal: "\path_connectedin X s; x \ s\ \ s \ Collect(path_component_of X x)" using path_component_of by fastforce lemma path_component_of_equiv: "path_component_of X x y \ x \ topspace X \ y \ topspace X \ path_component_of X x = path_component_of X y" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs apply (simp add: fun_eq_iff path_component_in_topspace) apply (meson path_component_of_sym path_component_of_trans) done qed (simp add: path_component_of_refl) lemma path_component_of_disjoint: "disjnt (Collect (path_component_of X x)) (Collect (path_component_of X y)) \ ~(path_component_of X x y)" by (force simp: disjnt_def path_component_of_eq_empty path_component_of_equiv) lemma path_component_of_eq: "path_component_of X x = path_component_of X y \ (x \ topspace X) \ (y \ topspace X) \ x \ topspace X \ y \ topspace X \ path_component_of X x y" by (metis Collect_empty_eq_bot path_component_of_eq_empty path_component_of_equiv) lemma path_connectedin_path_component_of: "path_connectedin X (Collect (path_component_of X x))" proof - have "\y. path_component_of X x y \ path_component_of (subtopology X (Collect (path_component_of X x))) x y" by (meson path_component_of path_component_of_maximal path_connectedin_subtopology) then show ?thesis apply (simp add: path_connectedin_def path_component_of_subset_topspace path_connected_space_iff_path_component) by (metis Int_absorb1 mem_Collect_eq path_component_of_equiv path_component_of_subset_topspace topspace_subtopology) qed lemma path_connectedin_euclidean [simp]: "path_connectedin euclidean S \ path_connected S" by (auto simp: path_connectedin_def path_connected_space_iff_path_component path_connected_component) lemma path_connected_space_euclidean_subtopology [simp]: "path_connected_space(subtopology euclidean S) \ path_connected S" using path_connectedin_topspace by force lemma Union_path_components_of: "\(path_components_of X) = topspace X" by (auto simp: path_components_of_def path_component_of_equiv) lemma path_components_of_maximal: "\C \ path_components_of X; path_connectedin X S; ~disjnt C S\ \ S \ C" apply (auto simp: path_components_of_def path_component_of_equiv) using path_component_of_maximal path_connectedin_def apply fastforce by (meson disjnt_subset2 path_component_of_disjoint path_component_of_equiv path_component_of_maximal) lemma pairwise_disjoint_path_components_of: "pairwise disjnt (path_components_of X)" by (auto simp: path_components_of_def pairwise_def path_component_of_disjoint path_component_of_equiv) lemma complement_path_components_of_Union: "C \ path_components_of X \ topspace X - C = \(path_components_of X - {C})" by (metis Diff_cancel Diff_subset Union_path_components_of cSup_singleton diff_Union_pairwise_disjoint insert_subset pairwise_disjoint_path_components_of) lemma nonempty_path_components_of: "C \ path_components_of X \ (C \ {})" apply (clarsimp simp: path_components_of_def path_component_of_eq_empty) by (meson path_component_of_refl) lemma path_components_of_subset: "C \ path_components_of X \ C \ topspace X" by (auto simp: path_components_of_def path_component_of_equiv) lemma path_connectedin_path_components_of: "C \ path_components_of X \ path_connectedin X C" by (auto simp: path_components_of_def path_connectedin_path_component_of) lemma path_component_in_path_components_of: "Collect (path_component_of X a) \ path_components_of X \ a \ topspace X" apply (rule iffI) using nonempty_path_components_of path_component_of_eq_empty apply fastforce by (simp add: path_components_of_def) lemma path_connectedin_Union: assumes \: "\S. S \ \ \ path_connectedin X S" "\\ \ {}" shows "path_connectedin X (\\)" proof - obtain a where "\S. S \ \ \ a \ S" using assms by blast then have "\x. x \ topspace (subtopology X (\\)) \ path_component_of (subtopology X (\\)) a x" apply (simp) by (meson Union_upper \ path_component_of path_connectedin_subtopology) then show ?thesis using \ unfolding path_connectedin_def by (metis Sup_le_iff path_component_of_equiv path_connected_space_iff_path_component) qed lemma path_connectedin_Un: "\path_connectedin X S; path_connectedin X T; S \ T \ {}\ \ path_connectedin X (S \ T)" by (blast intro: path_connectedin_Union [of "{S,T}", simplified]) lemma path_connected_space_iff_components_eq: "path_connected_space X \ (\C \ path_components_of X. \C' \ path_components_of X. C = C')" unfolding path_components_of_def proof (intro iffI ballI) assume "\C \ path_component_of_set X ` topspace X. \C' \ path_component_of_set X ` topspace X. C = C'" then show "path_connected_space X" using path_component_of_refl path_connected_space_iff_path_component by fastforce qed (auto simp: path_connected_space_path_component_set) lemma path_components_of_eq_empty: "path_components_of X = {} \ topspace X = {}" using Union_path_components_of nonempty_path_components_of by fastforce lemma path_components_of_empty_space: "topspace X = {} \ path_components_of X = {}" by (simp add: path_components_of_eq_empty) lemma path_components_of_subset_singleton: "path_components_of X \ {S} \ path_connected_space X \ (topspace X = {} \ topspace X = S)" proof (cases "topspace X = {}") case True then show ?thesis by (auto simp: path_components_of_empty_space path_connected_space_topspace_empty) next case False have "(path_components_of X = {S}) \ (path_connected_space X \ topspace X = S)" proof (intro iffI conjI) assume L: "path_components_of X = {S}" then show "path_connected_space X" by (simp add: path_connected_space_iff_components_eq) show "topspace X = S" by (metis L ccpo_Sup_singleton [of S] Union_path_components_of) next assume R: "path_connected_space X \ topspace X = S" then show "path_components_of X = {S}" using ccpo_Sup_singleton [of S] by (metis False all_not_in_conv insert_iff mk_disjoint_insert path_component_in_path_components_of path_connected_space_iff_components_eq path_connected_space_path_component_set) qed with False show ?thesis by (simp add: path_components_of_eq_empty subset_singleton_iff) qed lemma path_connected_space_iff_components_subset_singleton: "path_connected_space X \ (\a. path_components_of X \ {a})" by (simp add: path_components_of_subset_singleton) lemma path_components_of_eq_singleton: "path_components_of X = {S} \ path_connected_space X \ topspace X \ {} \ S = topspace X" by (metis cSup_singleton insert_not_empty path_components_of_subset_singleton subset_singleton_iff) lemma path_components_of_path_connected_space: "path_connected_space X \ path_components_of X = (if topspace X = {} then {} else {topspace X})" by (simp add: path_components_of_eq_empty path_components_of_eq_singleton) lemma path_component_subset_connected_component_of: "path_component_of_set X x \ connected_component_of_set X x" proof (cases "x \ topspace X") case True then show ?thesis by (simp add: connected_component_of_maximal path_component_of_refl path_connectedin_imp_connectedin path_connectedin_path_component_of) next case False then show ?thesis using path_component_of_eq_empty by fastforce qed lemma exists_path_component_of_superset: assumes S: "path_connectedin X S" and ne: "topspace X \ {}" obtains C where "C \ path_components_of X" "S \ C" proof (cases "S = {}") case True then show ?thesis using ne path_components_of_eq_empty that by fastforce next case False then obtain a where "a \ S" by blast show ?thesis proof show "Collect (path_component_of X a) \ path_components_of X" by (meson \a \ S\ S subsetD path_component_in_path_components_of path_connectedin_subset_topspace) show "S \ Collect (path_component_of X a)" by (simp add: S \a \ S\ path_component_of_maximal) qed qed lemma path_component_of_eq_overlap: "path_component_of X x = path_component_of X y \ (x \ topspace X) \ (y \ topspace X) \ Collect (path_component_of X x) \ Collect (path_component_of X y) \ {}" by (metis disjnt_def empty_iff inf_bot_right mem_Collect_eq path_component_of_disjoint path_component_of_eq path_component_of_eq_empty) lemma path_component_of_nonoverlap: "Collect (path_component_of X x) \ Collect (path_component_of X y) = {} \ (x \ topspace X) \ (y \ topspace X) \ path_component_of X x \ path_component_of X y" by (metis inf.idem path_component_of_eq_empty path_component_of_eq_overlap) lemma path_component_of_overlap: "Collect (path_component_of X x) \ Collect (path_component_of X y) \ {} \ x \ topspace X \ y \ topspace X \ path_component_of X x = path_component_of X y" by (meson path_component_of_nonoverlap) lemma path_components_of_disjoint: "\C \ path_components_of X; C' \ path_components_of X\ \ disjnt C C' \ C \ C'" by (auto simp: path_components_of_def path_component_of_disjoint path_component_of_equiv) lemma path_components_of_overlap: "\C \ path_components_of X; C' \ path_components_of X\ \ C \ C' \ {} \ C = C'" by (auto simp: path_components_of_def path_component_of_equiv) lemma path_component_of_unique: "\x \ C; path_connectedin X C; \C'. \x \ C'; path_connectedin X C'\ \ C' \ C\ \ Collect (path_component_of X x) = C" by (meson subsetD eq_iff path_component_of_maximal path_connectedin_path_component_of) lemma path_component_of_discrete_topology [simp]: "Collect (path_component_of (discrete_topology U) x) = (if x \ U then {x} else {})" proof - have "\C'. \x \ C'; path_connectedin (discrete_topology U) C'\ \ C' \ {x}" by (metis path_connectedin_discrete_topology subsetD singletonD) then have "x \ U \ Collect (path_component_of (discrete_topology U) x) = {x}" by (simp add: path_component_of_unique) then show ?thesis using path_component_in_topspace by fastforce qed lemma path_component_of_discrete_topology_iff [simp]: "path_component_of (discrete_topology U) x y \ x \ U \ y=x" by (metis empty_iff insertI1 mem_Collect_eq path_component_of_discrete_topology singletonD) lemma path_components_of_discrete_topology [simp]: "path_components_of (discrete_topology U) = (\x. {x}) ` U" by (auto simp: path_components_of_def image_def fun_eq_iff) lemma homeomorphic_map_path_component_of: assumes f: "homeomorphic_map X Y f" and x: "x \ topspace X" shows "Collect (path_component_of Y (f x)) = f ` Collect(path_component_of X x)" proof - obtain g where g: "homeomorphic_maps X Y f g" using f homeomorphic_map_maps by blast show ?thesis proof have "Collect (path_component_of Y (f x)) \ topspace Y" by (simp add: path_component_of_subset_topspace) moreover have "g ` Collect(path_component_of Y (f x)) \ Collect (path_component_of X (g (f x)))" using g x unfolding homeomorphic_maps_def by (metis f homeomorphic_imp_surjective_map imageI mem_Collect_eq path_component_of_maximal path_component_of_refl path_connectedin_continuous_map_image path_connectedin_path_component_of) ultimately show "Collect (path_component_of Y (f x)) \ f ` Collect (path_component_of X x)" using g x unfolding homeomorphic_maps_def continuous_map_def image_iff subset_iff by metis show "f ` Collect (path_component_of X x) \ Collect (path_component_of Y (f x))" proof (rule path_component_of_maximal) show "path_connectedin Y (f ` Collect (path_component_of X x))" by (meson f homeomorphic_map_path_connectedness_eq path_connectedin_path_component_of) qed (simp add: path_component_of_refl x) qed qed lemma homeomorphic_map_path_components_of: assumes "homeomorphic_map X Y f" shows "path_components_of Y = (image f) ` (path_components_of X)" unfolding path_components_of_def homeomorphic_imp_surjective_map [OF assms, symmetric] apply safe using assms homeomorphic_map_path_component_of apply fastforce by (metis assms homeomorphic_map_path_component_of imageI) subsection \Sphere is path-connected\ lemma path_connected_punctured_universe: assumes "2 \ DIM('a::euclidean_space)" shows "path_connected (- {a::'a})" proof - let ?A = "{x::'a. \i\Basis. x \ i < a \ i}" let ?B = "{x::'a. \i\Basis. a \ i < x \ i}" have A: "path_connected ?A" unfolding Collect_bex_eq proof (rule path_connected_UNION) fix i :: 'a assume "i \ Basis" then show "(\i\Basis. (a \ i - 1)*\<^sub>R i) \ {x::'a. x \ i < a \ i}" by simp show "path_connected {x. x \ i < a \ i}" using convex_imp_path_connected [OF convex_halfspace_lt, of i "a \ i"] by (simp add: inner_commute) qed have B: "path_connected ?B" unfolding Collect_bex_eq proof (rule path_connected_UNION) fix i :: 'a assume "i \ Basis" then show "(\i\Basis. (a \ i + 1) *\<^sub>R i) \ {x::'a. a \ i < x \ i}" by simp show "path_connected {x. a \ i < x \ i}" using convex_imp_path_connected [OF convex_halfspace_gt, of "a \ i" i] by (simp add: inner_commute) qed obtain S :: "'a set" where "S \ Basis" and "card S = Suc (Suc 0)" using ex_card[OF assms] by auto then obtain b0 b1 :: 'a where "b0 \ Basis" and "b1 \ Basis" and "b0 \ b1" unfolding card_Suc_eq by auto then have "a + b0 - b1 \ ?A \ ?B" by (auto simp: inner_simps inner_Basis) then have "?A \ ?B \ {}" by fast with A B have "path_connected (?A \ ?B)" by (rule path_connected_Un) also have "?A \ ?B = {x. \i\Basis. x \ i \ a \ i}" unfolding neq_iff bex_disj_distrib Collect_disj_eq .. also have "\ = {x. x \ a}" unfolding euclidean_eq_iff [where 'a='a] by (simp add: Bex_def) also have "\ = - {a}" by auto finally show ?thesis . qed corollary connected_punctured_universe: "2 \ DIM('N::euclidean_space) \ connected(- {a::'N})" by (simp add: path_connected_punctured_universe path_connected_imp_connected) proposition path_connected_sphere: fixes a :: "'a :: euclidean_space" assumes "2 \ DIM('a)" shows "path_connected(sphere a r)" proof (cases r "0::real" rule: linorder_cases) case less then show ?thesis by (simp) next case equal then show ?thesis by (simp) next case greater then have eq: "(sphere (0::'a) r) = (\x. (r / norm x) *\<^sub>R x) ` (- {0::'a})" by (force simp: image_iff split: if_split_asm) have "continuous_on (- {0::'a}) (\x. (r / norm x) *\<^sub>R x)" by (intro continuous_intros) auto then have "path_connected ((\x. (r / norm x) *\<^sub>R x) ` (- {0::'a}))" by (intro path_connected_continuous_image path_connected_punctured_universe assms) with eq have "path_connected (sphere (0::'a) r)" by auto then have "path_connected((+) a ` (sphere (0::'a) r))" by (simp add: path_connected_translation) then show ?thesis by (metis add.right_neutral sphere_translation) qed lemma connected_sphere: fixes a :: "'a :: euclidean_space" assumes "2 \ DIM('a)" shows "connected(sphere a r)" using path_connected_sphere [OF assms] by (simp add: path_connected_imp_connected) corollary path_connected_complement_bounded_convex: fixes s :: "'a :: euclidean_space set" assumes "bounded s" "convex s" and 2: "2 \ DIM('a)" shows "path_connected (- s)" proof (cases "s = {}") case True then show ?thesis using convex_imp_path_connected by auto next case False then obtain a where "a \ s" by auto { fix x y assume "x \ s" "y \ s" then have "x \ a" "y \ a" using \a \ s\ by auto then have bxy: "bounded(insert x (insert y s))" by (simp add: \bounded s\) then obtain B::real where B: "0 < B" and Bx: "norm (a - x) < B" and By: "norm (a - y) < B" and "s \ ball a B" using bounded_subset_ballD [OF bxy, of a] by (auto simp: dist_norm) define C where "C = B / norm(x - a)" { fix u assume u: "(1 - u) *\<^sub>R x + u *\<^sub>R (a + C *\<^sub>R (x - a)) \ s" and "0 \ u" "u \ 1" have CC: "1 \ 1 + (C - 1) * u" using \x \ a\ \0 \ u\ Bx by (auto simp add: C_def norm_minus_commute) have *: "\v. (1 - u) *\<^sub>R x + u *\<^sub>R (a + v *\<^sub>R (x - a)) = a + (1 + (v - 1) * u) *\<^sub>R (x - a)" by (simp add: algebra_simps) have "a + ((1 / (1 + C * u - u)) *\<^sub>R x + ((u / (1 + C * u - u)) *\<^sub>R a + (C * u / (1 + C * u - u)) *\<^sub>R x)) = (1 + (u / (1 + C * u - u))) *\<^sub>R a + ((1 / (1 + C * u - u)) + (C * u / (1 + C * u - u))) *\<^sub>R x" by (simp add: algebra_simps) also have "\ = (1 + (u / (1 + C * u - u))) *\<^sub>R a + (1 + (u / (1 + C * u - u))) *\<^sub>R x" using CC by (simp add: field_simps) also have "\ = x + (1 + (u / (1 + C * u - u))) *\<^sub>R a + (u / (1 + C * u - u)) *\<^sub>R x" by (simp add: algebra_simps) also have "\ = x + ((1 / (1 + C * u - u)) *\<^sub>R a + ((u / (1 + C * u - u)) *\<^sub>R x + (C * u / (1 + C * u - u)) *\<^sub>R a))" using CC by (simp add: field_simps) (simp add: add_divide_distrib scaleR_add_left) finally have xeq: "(1 - 1 / (1 + (C - 1) * u)) *\<^sub>R a + (1 / (1 + (C - 1) * u)) *\<^sub>R (a + (1 + (C - 1) * u) *\<^sub>R (x - a)) = x" by (simp add: algebra_simps) have False using \convex s\ apply (simp add: convex_alt) apply (drule_tac x=a in bspec) apply (rule \a \ s\) apply (drule_tac x="a + (1 + (C - 1) * u) *\<^sub>R (x - a)" in bspec) using u apply (simp add: *) apply (drule_tac x="1 / (1 + (C - 1) * u)" in spec) using \x \ a\ \x \ s\ \0 \ u\ CC apply (auto simp: xeq) done } then have pcx: "path_component (- s) x (a + C *\<^sub>R (x - a))" by (force simp: closed_segment_def intro!: path_component_linepath) define D where "D = B / norm(y - a)" \ \massive duplication with the proof above\ { fix u assume u: "(1 - u) *\<^sub>R y + u *\<^sub>R (a + D *\<^sub>R (y - a)) \ s" and "0 \ u" "u \ 1" have DD: "1 \ 1 + (D - 1) * u" using \y \ a\ \0 \ u\ By by (auto simp add: D_def norm_minus_commute) have *: "\v. (1 - u) *\<^sub>R y + u *\<^sub>R (a + v *\<^sub>R (y - a)) = a + (1 + (v - 1) * u) *\<^sub>R (y - a)" by (simp add: algebra_simps) have "a + ((1 / (1 + D * u - u)) *\<^sub>R y + ((u / (1 + D * u - u)) *\<^sub>R a + (D * u / (1 + D * u - u)) *\<^sub>R y)) = (1 + (u / (1 + D * u - u))) *\<^sub>R a + ((1 / (1 + D * u - u)) + (D * u / (1 + D * u - u))) *\<^sub>R y" by (simp add: algebra_simps) also have "\ = (1 + (u / (1 + D * u - u))) *\<^sub>R a + (1 + (u / (1 + D * u - u))) *\<^sub>R y" using DD by (simp add: field_simps) also have "\ = y + (1 + (u / (1 + D * u - u))) *\<^sub>R a + (u / (1 + D * u - u)) *\<^sub>R y" by (simp add: algebra_simps) also have "\ = y + ((1 / (1 + D * u - u)) *\<^sub>R a + ((u / (1 + D * u - u)) *\<^sub>R y + (D * u / (1 + D * u - u)) *\<^sub>R a))" using DD by (simp add: field_simps) (simp add: add_divide_distrib scaleR_add_left) finally have xeq: "(1 - 1 / (1 + (D - 1) * u)) *\<^sub>R a + (1 / (1 + (D - 1) * u)) *\<^sub>R (a + (1 + (D - 1) * u) *\<^sub>R (y - a)) = y" by (simp add: algebra_simps) have False using \convex s\ apply (simp add: convex_alt) apply (drule_tac x=a in bspec) apply (rule \a \ s\) apply (drule_tac x="a + (1 + (D - 1) * u) *\<^sub>R (y - a)" in bspec) using u apply (simp add: *) apply (drule_tac x="1 / (1 + (D - 1) * u)" in spec) using \y \ a\ \y \ s\ \0 \ u\ DD apply (auto simp: xeq) done } then have pdy: "path_component (- s) y (a + D *\<^sub>R (y - a))" by (force simp: closed_segment_def intro!: path_component_linepath) have pyx: "path_component (- s) (a + D *\<^sub>R (y - a)) (a + C *\<^sub>R (x - a))" apply (rule path_component_of_subset [of "sphere a B"]) using \s \ ball a B\ apply (force simp: ball_def dist_norm norm_minus_commute) apply (rule path_connected_sphere [OF 2, of a B, simplified path_connected_component, rule_format]) using \x \ a\ using \y \ a\ B apply (auto simp: dist_norm C_def D_def) done have "path_component (- s) x y" by (metis path_component_trans path_component_sym pcx pdy pyx) } then show ?thesis by (auto simp: path_connected_component) qed lemma connected_complement_bounded_convex: fixes s :: "'a :: euclidean_space set" assumes "bounded s" "convex s" "2 \ DIM('a)" shows "connected (- s)" using path_connected_complement_bounded_convex [OF assms] path_connected_imp_connected by blast lemma connected_diff_ball: fixes s :: "'a :: euclidean_space set" assumes "connected s" "cball a r \ s" "2 \ DIM('a)" shows "connected (s - ball a r)" apply (rule connected_diff_open_from_closed [OF ball_subset_cball]) using assms connected_sphere apply (auto simp: cball_diff_eq_sphere dist_norm) done proposition connected_open_delete: assumes "open S" "connected S" and 2: "2 \ DIM('N::euclidean_space)" shows "connected(S - {a::'N})" proof (cases "a \ S") case True with \open S\ obtain \ where "\ > 0" and \: "cball a \ \ S" using open_contains_cball_eq by blast have "dist a (a + \ *\<^sub>R (SOME i. i \ Basis)) = \" by (simp add: dist_norm SOME_Basis \0 < \\ less_imp_le) with \ have "\{S - ball a r |r. 0 < r \ r < \} \ {} \ False" apply (drule_tac c="a + scaleR (\) ((SOME i. i \ Basis))" in subsetD) by auto then have nonemp: "(\{S - ball a r |r. 0 < r \ r < \}) = {} \ False" by auto have con: "\r. r < \ \ connected (S - ball a r)" using \ by (force intro: connected_diff_ball [OF \connected S\ _ 2]) have "x \ \{S - ball a r |r. 0 < r \ r < \}" if "x \ S - {a}" for x apply (rule UnionI [of "S - ball a (min \ (dist a x) / 2)"]) using that \0 < \\ apply simp_all apply (rule_tac x="min \ (dist a x) / 2" in exI) apply auto done then have "S - {a} = \{S - ball a r | r. 0 < r \ r < \}" by auto then show ?thesis by (auto intro: connected_Union con dest!: nonemp) next case False then show ?thesis by (simp add: \connected S\) qed corollary path_connected_open_delete: assumes "open S" "connected S" and 2: "2 \ DIM('N::euclidean_space)" shows "path_connected(S - {a::'N})" by (simp add: assms connected_open_delete connected_open_path_connected open_delete) corollary path_connected_punctured_ball: "2 \ DIM('N::euclidean_space) \ path_connected(ball a r - {a::'N})" by (simp add: path_connected_open_delete) corollary connected_punctured_ball: "2 \ DIM('N::euclidean_space) \ connected(ball a r - {a::'N})" by (simp add: connected_open_delete) corollary connected_open_delete_finite: fixes S T::"'a::euclidean_space set" assumes S: "open S" "connected S" and 2: "2 \ DIM('a)" and "finite T" shows "connected(S - T)" using \finite T\ S proof (induct T) case empty show ?case using \connected S\ by simp next case (insert x F) then have "connected (S-F)" by auto moreover have "open (S - F)" using finite_imp_closed[OF \finite F\] \open S\ by auto ultimately have "connected (S - F - {x})" using connected_open_delete[OF _ _ 2] by auto thus ?case by (metis Diff_insert) qed lemma sphere_1D_doubleton_zero: assumes 1: "DIM('a) = 1" and "r > 0" obtains x y::"'a::euclidean_space" where "sphere 0 r = {x,y} \ dist x y = 2*r" proof - obtain b::'a where b: "Basis = {b}" using 1 card_1_singletonE by blast show ?thesis proof (intro that conjI) have "x = norm x *\<^sub>R b \ x = - norm x *\<^sub>R b" if "r = norm x" for x proof - have xb: "(x \ b) *\<^sub>R b = x" using euclidean_representation [of x, unfolded b] by force then have "norm ((x \ b) *\<^sub>R b) = norm x" by simp with b have "\x \ b\ = norm x" using norm_Basis by (simp add: b) with xb show ?thesis apply (simp add: abs_if split: if_split_asm) apply (metis add.inverse_inverse real_vector.scale_minus_left xb) done qed with \r > 0\ b show "sphere 0 r = {r *\<^sub>R b, - r *\<^sub>R b}" by (force simp: sphere_def dist_norm) have "dist (r *\<^sub>R b) (- r *\<^sub>R b) = norm (r *\<^sub>R b + r *\<^sub>R b)" by (simp add: dist_norm) also have "\ = norm ((2*r) *\<^sub>R b)" by (metis mult_2 scaleR_add_left) also have "\ = 2*r" using \r > 0\ b norm_Basis by fastforce finally show "dist (r *\<^sub>R b) (- r *\<^sub>R b) = 2*r" . qed qed lemma sphere_1D_doubleton: fixes a :: "'a :: euclidean_space" assumes "DIM('a) = 1" and "r > 0" obtains x y where "sphere a r = {x,y} \ dist x y = 2*r" proof - have "sphere a r = (+) a ` sphere 0 r" by (metis add.right_neutral sphere_translation) then show ?thesis using sphere_1D_doubleton_zero [OF assms] by (metis (mono_tags, lifting) dist_add_cancel image_empty image_insert that) qed lemma psubset_sphere_Compl_connected: fixes S :: "'a::euclidean_space set" assumes S: "S \ sphere a r" and "0 < r" and 2: "2 \ DIM('a)" shows "connected(- S)" proof - have "S \ sphere a r" using S by blast obtain b where "dist a b = r" and "b \ S" using S mem_sphere by blast have CS: "- S = {x. dist a x \ r \ (x \ S)} \ {x. r \ dist a x \ (x \ S)}" by auto have "{x. dist a x \ r \ x \ S} \ {x. r \ dist a x \ x \ S} \ {}" using \b \ S\ \dist a b = r\ by blast moreover have "connected {x. dist a x \ r \ x \ S}" apply (rule connected_intermediate_closure [of "ball a r"]) using assms by auto moreover have "connected {x. r \ dist a x \ x \ S}" apply (rule connected_intermediate_closure [of "- cball a r"]) using assms apply (auto intro: connected_complement_bounded_convex) apply (metis ComplI interior_cball interior_closure mem_ball not_less) done ultimately show ?thesis by (simp add: CS connected_Un) qed subsection\Every annulus is a connected set\ lemma path_connected_2DIM_I: fixes a :: "'N::euclidean_space" assumes 2: "2 \ DIM('N)" and pc: "path_connected {r. 0 \ r \ P r}" shows "path_connected {x. P(norm(x - a))}" proof - have "{x. P(norm(x - a))} = (+) a ` {x. P(norm x)}" by force moreover have "path_connected {x::'N. P(norm x)}" proof - let ?D = "{x. 0 \ x \ P x} \ sphere (0::'N) 1" have "x \ (\z. fst z *\<^sub>R snd z) ` ?D" if "P (norm x)" for x::'N proof (cases "x=0") case True with that show ?thesis apply (simp add: image_iff) apply (rule_tac x=0 in exI, simp) using vector_choose_size zero_le_one by blast next case False with that show ?thesis by (rule_tac x="(norm x, x /\<^sub>R norm x)" in image_eqI) auto qed then have *: "{x::'N. P(norm x)} = (\z. fst z *\<^sub>R snd z) ` ?D" by auto have "continuous_on ?D (\z:: real\'N. fst z *\<^sub>R snd z)" by (intro continuous_intros) moreover have "path_connected ?D" by (metis path_connected_Times [OF pc] path_connected_sphere 2) ultimately show ?thesis apply (subst *) apply (rule path_connected_continuous_image, auto) done qed ultimately show ?thesis using path_connected_translation by metis qed proposition path_connected_annulus: fixes a :: "'N::euclidean_space" assumes "2 \ DIM('N)" shows "path_connected {x. r1 < norm(x - a) \ norm(x - a) < r2}" "path_connected {x. r1 < norm(x - a) \ norm(x - a) \ r2}" "path_connected {x. r1 \ norm(x - a) \ norm(x - a) < r2}" "path_connected {x. r1 \ norm(x - a) \ norm(x - a) \ r2}" by (auto simp: is_interval_def intro!: is_interval_convex convex_imp_path_connected path_connected_2DIM_I [OF assms]) proposition connected_annulus: fixes a :: "'N::euclidean_space" assumes "2 \ DIM('N::euclidean_space)" shows "connected {x. r1 < norm(x - a) \ norm(x - a) < r2}" "connected {x. r1 < norm(x - a) \ norm(x - a) \ r2}" "connected {x. r1 \ norm(x - a) \ norm(x - a) < r2}" "connected {x. r1 \ norm(x - a) \ norm(x - a) \ r2}" by (auto simp: path_connected_annulus [OF assms] path_connected_imp_connected) subsection\<^marker>\tag unimportant\\Relations between components and path components\ lemma open_connected_component: fixes s :: "'a::real_normed_vector set" shows "open s \ open (connected_component_set s x)" apply (simp add: open_contains_ball, clarify) apply (rename_tac y) apply (drule_tac x=y in bspec) apply (simp add: connected_component_in, clarify) apply (rule_tac x=e in exI) by (metis mem_Collect_eq connected_component_eq connected_component_maximal centre_in_ball connected_ball) corollary open_components: fixes s :: "'a::real_normed_vector set" shows "\open u; s \ components u\ \ open s" by (simp add: components_iff) (metis open_connected_component) lemma in_closure_connected_component: fixes s :: "'a::real_normed_vector set" assumes x: "x \ s" and s: "open s" shows "x \ closure (connected_component_set s y) \ x \ connected_component_set s y" proof - { assume "x \ closure (connected_component_set s y)" moreover have "x \ connected_component_set s x" using x by simp ultimately have "x \ connected_component_set s y" using s by (meson Compl_disjoint closure_iff_nhds_not_empty connected_component_disjoint disjoint_eq_subset_Compl open_connected_component) } then show ?thesis by (auto simp: closure_def) qed lemma connected_disjoint_Union_open_pick: assumes "pairwise disjnt B" "\S. S \ A \ connected S \ S \ {}" "\S. S \ B \ open S" "\A \ \B" "S \ A" obtains T where "T \ B" "S \ T" "S \ \(B - {T}) = {}" proof - have "S \ \B" "connected S" "S \ {}" using assms \S \ A\ by blast+ then obtain T where "T \ B" "S \ T \ {}" by (metis Sup_inf_eq_bot_iff inf.absorb_iff2 inf_commute) have 1: "open T" by (simp add: \T \ B\ assms) have 2: "open (\(B-{T}))" using assms by blast have 3: "S \ T \ \(B - {T})" using \S \ \B\ by blast have "T \ \(B - {T}) = {}" using \T \ B\ \pairwise disjnt B\ by (auto simp: pairwise_def disjnt_def) then have 4: "T \ \(B - {T}) \ S = {}" by auto from connectedD [OF \connected S\ 1 2 3 4] have "S \ \(B-{T}) = {}" by (auto simp: Int_commute \S \ T \ {}\) with \T \ B\ have "S \ T" using "3" by auto show ?thesis using \S \ \(B - {T}) = {}\ \S \ T\ \T \ B\ that by auto qed lemma connected_disjoint_Union_open_subset: assumes A: "pairwise disjnt A" and B: "pairwise disjnt B" and SA: "\S. S \ A \ open S \ connected S \ S \ {}" and SB: "\S. S \ B \ open S \ connected S \ S \ {}" and eq [simp]: "\A = \B" shows "A \ B" proof fix S assume "S \ A" obtain T where "T \ B" "S \ T" "S \ \(B - {T}) = {}" apply (rule connected_disjoint_Union_open_pick [OF B, of A]) using SA SB \S \ A\ by auto moreover obtain S' where "S' \ A" "T \ S'" "T \ \(A - {S'}) = {}" apply (rule connected_disjoint_Union_open_pick [OF A, of B]) using SA SB \T \ B\ by auto ultimately have "S' = S" by (metis A Int_subset_iff SA \S \ A\ disjnt_def inf.orderE pairwise_def) with \T \ S'\ have "T \ S" by simp with \S \ T\ have "S = T" by blast with \T \ B\ show "S \ B" by simp qed lemma connected_disjoint_Union_open_unique: assumes A: "pairwise disjnt A" and B: "pairwise disjnt B" and SA: "\S. S \ A \ open S \ connected S \ S \ {}" and SB: "\S. S \ B \ open S \ connected S \ S \ {}" and eq [simp]: "\A = \B" shows "A = B" by (rule subset_antisym; metis connected_disjoint_Union_open_subset assms) proposition components_open_unique: fixes S :: "'a::real_normed_vector set" assumes "pairwise disjnt A" "\A = S" "\X. X \ A \ open X \ connected X \ X \ {}" shows "components S = A" proof - have "open S" using assms by blast show ?thesis apply (rule connected_disjoint_Union_open_unique) apply (simp add: components_eq disjnt_def pairwise_def) using \open S\ apply (simp_all add: assms open_components in_components_connected in_components_nonempty) done qed subsection\<^marker>\tag unimportant\\Existence of unbounded components\ lemma cobounded_unbounded_component: fixes s :: "'a :: euclidean_space set" assumes "bounded (-s)" shows "\x. x \ s \ \ bounded (connected_component_set s x)" proof - obtain i::'a where i: "i \ Basis" using nonempty_Basis by blast obtain B where B: "B>0" "-s \ ball 0 B" using bounded_subset_ballD [OF assms, of 0] by auto then have *: "\x. B \ norm x \ x \ s" by (force simp: ball_def dist_norm) have unbounded_inner: "\ bounded {x. inner i x \ B}" apply (auto simp: bounded_def dist_norm) apply (rule_tac x="x + (max B e + 1 + \i \ x\) *\<^sub>R i" in exI) apply simp using i apply (auto simp: algebra_simps) done have **: "{x. B \ i \ x} \ connected_component_set s (B *\<^sub>R i)" apply (rule connected_component_maximal) apply (auto simp: i intro: convex_connected convex_halfspace_ge [of B]) apply (rule *) apply (rule order_trans [OF _ Basis_le_norm [OF i]]) by (simp add: inner_commute) have "B *\<^sub>R i \ s" by (rule *) (simp add: norm_Basis [OF i]) then show ?thesis apply (rule_tac x="B *\<^sub>R i" in exI, clarify) apply (frule bounded_subset [of _ "{x. B \ i \ x}", OF _ **]) using unbounded_inner apply blast done qed lemma cobounded_unique_unbounded_component: fixes s :: "'a :: euclidean_space set" assumes bs: "bounded (-s)" and "2 \ DIM('a)" and bo: "\ bounded(connected_component_set s x)" "\ bounded(connected_component_set s y)" shows "connected_component_set s x = connected_component_set s y" proof - obtain i::'a where i: "i \ Basis" using nonempty_Basis by blast obtain B where B: "B>0" "-s \ ball 0 B" using bounded_subset_ballD [OF bs, of 0] by auto then have *: "\x. B \ norm x \ x \ s" by (force simp: ball_def dist_norm) have ccb: "connected (- ball 0 B :: 'a set)" using assms by (auto intro: connected_complement_bounded_convex) obtain x' where x': "connected_component s x x'" "norm x' > B" using bo [unfolded bounded_def dist_norm, simplified, rule_format] by (metis diff_zero norm_minus_commute not_less) obtain y' where y': "connected_component s y y'" "norm y' > B" using bo [unfolded bounded_def dist_norm, simplified, rule_format] by (metis diff_zero norm_minus_commute not_less) have x'y': "connected_component s x' y'" apply (simp add: connected_component_def) apply (rule_tac x="- ball 0 B" in exI) using x' y' apply (auto simp: ccb dist_norm *) done show ?thesis apply (rule connected_component_eq) using x' y' x'y' by (metis (no_types, lifting) connected_component_eq_empty connected_component_eq_eq connected_component_idemp connected_component_in) qed lemma cobounded_unbounded_components: fixes s :: "'a :: euclidean_space set" shows "bounded (-s) \ \c. c \ components s \ \bounded c" by (metis cobounded_unbounded_component components_def imageI) lemma cobounded_unique_unbounded_components: fixes s :: "'a :: euclidean_space set" shows "\bounded (- s); c \ components s; \ bounded c; c' \ components s; \ bounded c'; 2 \ DIM('a)\ \ c' = c" unfolding components_iff by (metis cobounded_unique_unbounded_component) lemma cobounded_has_bounded_component: fixes S :: "'a :: euclidean_space set" assumes "bounded (- S)" "\ connected S" "2 \ DIM('a)" obtains C where "C \ components S" "bounded C" by (meson cobounded_unique_unbounded_components connected_eq_connected_components_eq assms) subsection\The \inside\ and \outside\ of a Set\ text\<^marker>\tag important\\The inside comprises the points in a bounded connected component of the set's complement. The outside comprises the points in unbounded connected component of the complement.\ definition\<^marker>\tag important\ inside where "inside S \ {x. (x \ S) \ bounded(connected_component_set ( - S) x)}" definition\<^marker>\tag important\ outside where "outside S \ -S \ {x. \ bounded(connected_component_set (- S) x)}" lemma outside: "outside S = {x. \ bounded(connected_component_set (- S) x)}" by (auto simp: outside_def) (metis Compl_iff bounded_empty connected_component_eq_empty) lemma inside_no_overlap [simp]: "inside S \ S = {}" by (auto simp: inside_def) lemma outside_no_overlap [simp]: "outside S \ S = {}" by (auto simp: outside_def) lemma inside_Int_outside [simp]: "inside S \ outside S = {}" by (auto simp: inside_def outside_def) lemma inside_Un_outside [simp]: "inside S \ outside S = (- S)" by (auto simp: inside_def outside_def) lemma inside_eq_outside: "inside S = outside S \ S = UNIV" by (auto simp: inside_def outside_def) lemma inside_outside: "inside S = (- (S \ outside S))" by (force simp: inside_def outside) lemma outside_inside: "outside S = (- (S \ inside S))" by (auto simp: inside_outside) (metis IntI equals0D outside_no_overlap) lemma union_with_inside: "S \ inside S = - outside S" by (auto simp: inside_outside) (simp add: outside_inside) lemma union_with_outside: "S \ outside S = - inside S" by (simp add: inside_outside) lemma outside_mono: "S \ T \ outside T \ outside S" by (auto simp: outside bounded_subset connected_component_mono) lemma inside_mono: "S \ T \ inside S - T \ inside T" by (auto simp: inside_def bounded_subset connected_component_mono) lemma segment_bound_lemma: fixes u::real assumes "x \ B" "y \ B" "0 \ u" "u \ 1" shows "(1 - u) * x + u * y \ B" proof - obtain dx dy where "dx \ 0" "dy \ 0" "x = B + dx" "y = B + dy" using assms by auto (metis add.commute diff_add_cancel) with \0 \ u\ \u \ 1\ show ?thesis by (simp add: add_increasing2 mult_left_le field_simps) qed lemma cobounded_outside: fixes S :: "'a :: real_normed_vector set" assumes "bounded S" shows "bounded (- outside S)" proof - obtain B where B: "B>0" "S \ ball 0 B" using bounded_subset_ballD [OF assms, of 0] by auto { fix x::'a and C::real assume Bno: "B \ norm x" and C: "0 < C" have "\y. connected_component (- S) x y \ norm y > C" proof (cases "x = 0") case True with B Bno show ?thesis by force next case False have "closed_segment x (((B + C) / norm x) *\<^sub>R x) \ - ball 0 B" proof fix w assume "w \ closed_segment x (((B + C) / norm x) *\<^sub>R x)" then obtain u where w: "w = (1 - u + u * (B + C) / norm x) *\<^sub>R x" "0 \ u" "u \ 1" by (auto simp add: closed_segment_def real_vector_class.scaleR_add_left [symmetric]) with False B C have "B \ (1 - u) * norm x + u * (B + C)" using segment_bound_lemma [of B "norm x" "B + C" u] Bno by simp with False B C show "w \ - ball 0 B" using distrib_right [of _ _ "norm x"] by (simp add: ball_def w not_less) qed also have "... \ -S" by (simp add: B) finally have "\T. connected T \ T \ - S \ x \ T \ ((B + C) / norm x) *\<^sub>R x \ T" by (rule_tac x="closed_segment x (((B+C)/norm x) *\<^sub>R x)" in exI) simp with False B show ?thesis by (rule_tac x="((B+C)/norm x) *\<^sub>R x" in exI) (simp add: connected_component_def) qed } then show ?thesis apply (simp add: outside_def assms) apply (rule bounded_subset [OF bounded_ball [of 0 B]]) apply (force simp: dist_norm not_less bounded_pos) done qed lemma unbounded_outside: fixes S :: "'a::{real_normed_vector, perfect_space} set" shows "bounded S \ \ bounded(outside S)" using cobounded_imp_unbounded cobounded_outside by blast lemma bounded_inside: fixes S :: "'a::{real_normed_vector, perfect_space} set" shows "bounded S \ bounded(inside S)" by (simp add: bounded_Int cobounded_outside inside_outside) lemma connected_outside: fixes S :: "'a::euclidean_space set" assumes "bounded S" "2 \ DIM('a)" shows "connected(outside S)" apply (clarsimp simp add: connected_iff_connected_component outside) apply (rule_tac s="connected_component_set (- S) x" in connected_component_of_subset) apply (metis (no_types) assms cobounded_unbounded_component cobounded_unique_unbounded_component connected_component_eq_eq connected_component_idemp double_complement mem_Collect_eq) apply clarify apply (metis connected_component_eq_eq connected_component_in) done lemma outside_connected_component_lt: "outside S = {x. \B. \y. B < norm(y) \ connected_component (- S) x y}" apply (auto simp: outside bounded_def dist_norm) apply (metis diff_0 norm_minus_cancel not_less) by (metis less_diff_eq norm_minus_commute norm_triangle_ineq2 order.trans pinf(6)) lemma outside_connected_component_le: "outside S = {x. \B. \y. B \ norm(y) \ connected_component (- S) x y}" apply (simp add: outside_connected_component_lt) apply (simp add: Set.set_eq_iff) by (meson gt_ex leD le_less_linear less_imp_le order.trans) lemma not_outside_connected_component_lt: fixes S :: "'a::euclidean_space set" assumes S: "bounded S" and "2 \ DIM('a)" shows "- (outside S) = {x. \B. \y. B < norm(y) \ \ connected_component (- S) x y}" proof - obtain B::real where B: "0 < B" and Bno: "\x. x \ S \ norm x \ B" using S [simplified bounded_pos] by auto { fix y::'a and z::'a assume yz: "B < norm z" "B < norm y" have "connected_component (- cball 0 B) y z" apply (rule connected_componentI [OF _ subset_refl]) apply (rule connected_complement_bounded_convex) using assms yz by (auto simp: dist_norm) then have "connected_component (- S) y z" apply (rule connected_component_of_subset) apply (metis Bno Compl_anti_mono mem_cball_0 subset_iff) done } note cyz = this show ?thesis apply (auto simp: outside) apply (metis Compl_iff bounded_iff cobounded_imp_unbounded mem_Collect_eq not_le) apply (simp add: bounded_pos) by (metis B connected_component_trans cyz not_le) qed lemma not_outside_connected_component_le: fixes S :: "'a::euclidean_space set" assumes S: "bounded S" "2 \ DIM('a)" shows "- (outside S) = {x. \B. \y. B \ norm(y) \ \ connected_component (- S) x y}" apply (auto intro: less_imp_le simp: not_outside_connected_component_lt [OF assms]) by (meson gt_ex less_le_trans) lemma inside_connected_component_lt: fixes S :: "'a::euclidean_space set" assumes S: "bounded S" "2 \ DIM('a)" shows "inside S = {x. (x \ S) \ (\B. \y. B < norm(y) \ \ connected_component (- S) x y)}" by (auto simp: inside_outside not_outside_connected_component_lt [OF assms]) lemma inside_connected_component_le: fixes S :: "'a::euclidean_space set" assumes S: "bounded S" "2 \ DIM('a)" shows "inside S = {x. (x \ S) \ (\B. \y. B \ norm(y) \ \ connected_component (- S) x y)}" by (auto simp: inside_outside not_outside_connected_component_le [OF assms]) lemma inside_subset: assumes "connected U" and "\ bounded U" and "T \ U = - S" shows "inside S \ T" apply (auto simp: inside_def) by (metis bounded_subset [of "connected_component_set (- S) _"] connected_component_maximal Compl_iff Un_iff assms subsetI) lemma frontier_not_empty: fixes S :: "'a :: real_normed_vector set" shows "\S \ {}; S \ UNIV\ \ frontier S \ {}" using connected_Int_frontier [of UNIV S] by auto lemma frontier_eq_empty: fixes S :: "'a :: real_normed_vector set" shows "frontier S = {} \ S = {} \ S = UNIV" using frontier_UNIV frontier_empty frontier_not_empty by blast lemma frontier_of_connected_component_subset: fixes S :: "'a::real_normed_vector set" shows "frontier(connected_component_set S x) \ frontier S" proof - { fix y assume y1: "y \ closure (connected_component_set S x)" and y2: "y \ interior (connected_component_set S x)" have "y \ closure S" using y1 closure_mono connected_component_subset by blast moreover have "z \ interior (connected_component_set S x)" if "0 < e" "ball y e \ interior S" "dist y z < e" for e z proof - have "ball y e \ connected_component_set S y" apply (rule connected_component_maximal) using that interior_subset mem_ball apply auto done then show ?thesis using y1 apply (simp add: closure_approachable open_contains_ball_eq [OF open_interior]) by (metis connected_component_eq dist_commute mem_Collect_eq mem_ball mem_interior subsetD \0 < e\ y2) qed then have "y \ interior S" using y2 by (force simp: open_contains_ball_eq [OF open_interior]) ultimately have "y \ frontier S" by (auto simp: frontier_def) } then show ?thesis by (auto simp: frontier_def) qed lemma frontier_Union_subset_closure: fixes F :: "'a::real_normed_vector set set" shows "frontier(\F) \ closure(\t \ F. frontier t)" proof - have "\y\F. \y\frontier y. dist y x < e" if "T \ F" "y \ T" "dist y x < e" "x \ interior (\F)" "0 < e" for x y e T proof (cases "x \ T") case True with that show ?thesis by (metis Diff_iff Sup_upper closure_subset contra_subsetD dist_self frontier_def interior_mono) next case False have 1: "closed_segment x y \ T \ {}" using \y \ T\ by blast have 2: "closed_segment x y - T \ {}" using False by blast obtain c where "c \ closed_segment x y" "c \ frontier T" using False connected_Int_frontier [OF connected_segment 1 2] by auto then show ?thesis proof - have "norm (y - x) < e" by (metis dist_norm \dist y x < e\) moreover have "norm (c - x) \ norm (y - x)" by (simp add: \c \ closed_segment x y\ segment_bound(1)) ultimately have "norm (c - x) < e" by linarith then show ?thesis by (metis (no_types) \c \ frontier T\ dist_norm that(1)) qed qed then show ?thesis by (fastforce simp add: frontier_def closure_approachable) qed lemma frontier_Union_subset: fixes F :: "'a::real_normed_vector set set" shows "finite F \ frontier(\F) \ (\t \ F. frontier t)" by (rule order_trans [OF frontier_Union_subset_closure]) (auto simp: closure_subset_eq) lemma frontier_of_components_subset: fixes S :: "'a::real_normed_vector set" shows "C \ components S \ frontier C \ frontier S" by (metis Path_Connected.frontier_of_connected_component_subset components_iff) lemma frontier_of_components_closed_complement: fixes S :: "'a::real_normed_vector set" shows "\closed S; C \ components (- S)\ \ frontier C \ S" using frontier_complement frontier_of_components_subset frontier_subset_eq by blast lemma frontier_minimal_separating_closed: fixes S :: "'a::real_normed_vector set" assumes "closed S" and nconn: "\ connected(- S)" and C: "C \ components (- S)" and conn: "\T. \closed T; T \ S\ \ connected(- T)" shows "frontier C = S" proof (rule ccontr) assume "frontier C \ S" then have "frontier C \ S" using frontier_of_components_closed_complement [OF \closed S\ C] by blast then have "connected(- (frontier C))" by (simp add: conn) have "\ connected(- (frontier C))" unfolding connected_def not_not proof (intro exI conjI) show "open C" using C \closed S\ open_components by blast show "open (- closure C)" by blast show "C \ - closure C \ - frontier C = {}" using closure_subset by blast show "C \ - frontier C \ {}" using C \open C\ components_eq frontier_disjoint_eq by fastforce show "- frontier C \ C \ - closure C" by (simp add: \open C\ closed_Compl frontier_closures) then show "- closure C \ - frontier C \ {}" by (metis (no_types, lifting) C Compl_subset_Compl_iff \frontier C \ S\ compl_sup frontier_closures in_components_subset psubsetE sup.absorb_iff2 sup.boundedE sup_bot.right_neutral sup_inf_absorb) qed then show False using \connected (- frontier C)\ by blast qed lemma connected_component_UNIV [simp]: fixes x :: "'a::real_normed_vector" shows "connected_component_set UNIV x = UNIV" using connected_iff_eq_connected_component_set [of "UNIV::'a set"] connected_UNIV by auto lemma connected_component_eq_UNIV: fixes x :: "'a::real_normed_vector" shows "connected_component_set s x = UNIV \ s = UNIV" using connected_component_in connected_component_UNIV by blast lemma components_UNIV [simp]: "components UNIV = {UNIV :: 'a::real_normed_vector set}" by (auto simp: components_eq_sing_iff) lemma interior_inside_frontier: fixes s :: "'a::real_normed_vector set" assumes "bounded s" shows "interior s \ inside (frontier s)" proof - { fix x y assume x: "x \ interior s" and y: "y \ s" and cc: "connected_component (- frontier s) x y" have "connected_component_set (- frontier s) x \ frontier s \ {}" apply (rule connected_Int_frontier, simp) apply (metis IntI cc connected_component_in connected_component_refl empty_iff interiorE mem_Collect_eq rev_subsetD x) using y cc by blast then have "bounded (connected_component_set (- frontier s) x)" using connected_component_in by auto } then show ?thesis apply (auto simp: inside_def frontier_def) apply (rule classical) apply (rule bounded_subset [OF assms], blast) done qed lemma inside_empty [simp]: "inside {} = ({} :: 'a :: {real_normed_vector, perfect_space} set)" by (simp add: inside_def) lemma outside_empty [simp]: "outside {} = (UNIV :: 'a :: {real_normed_vector, perfect_space} set)" using inside_empty inside_Un_outside by blast lemma inside_same_component: "\connected_component (- s) x y; x \ inside s\ \ y \ inside s" using connected_component_eq connected_component_in by (fastforce simp add: inside_def) lemma outside_same_component: "\connected_component (- s) x y; x \ outside s\ \ y \ outside s" using connected_component_eq connected_component_in by (fastforce simp add: outside_def) lemma convex_in_outside: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes s: "convex s" and z: "z \ s" shows "z \ outside s" proof (cases "s={}") case True then show ?thesis by simp next case False then obtain a where "a \ s" by blast with z have zna: "z \ a" by auto { assume "bounded (connected_component_set (- s) z)" with bounded_pos_less obtain B where "B>0" and B: "\x. connected_component (- s) z x \ norm x < B" by (metis mem_Collect_eq) define C where "C = (B + 1 + norm z) / norm (z-a)" have "C > 0" using \0 < B\ zna by (simp add: C_def field_split_simps add_strict_increasing) have "\norm (z + C *\<^sub>R (z-a)) - norm (C *\<^sub>R (z-a))\ \ norm z" by (metis add_diff_cancel norm_triangle_ineq3) moreover have "norm (C *\<^sub>R (z-a)) > norm z + B" using zna \B>0\ by (simp add: C_def le_max_iff_disj) ultimately have C: "norm (z + C *\<^sub>R (z-a)) > B" by linarith { fix u::real assume u: "0\u" "u\1" and ins: "(1 - u) *\<^sub>R z + u *\<^sub>R (z + C *\<^sub>R (z - a)) \ s" then have Cpos: "1 + u * C > 0" by (meson \0 < C\ add_pos_nonneg less_eq_real_def zero_le_mult_iff zero_less_one) then have *: "(1 / (1 + u * C)) *\<^sub>R z + (u * C / (1 + u * C)) *\<^sub>R z = z" by (simp add: scaleR_add_left [symmetric] field_split_simps) then have False using convexD_alt [OF s \a \ s\ ins, of "1/(u*C + 1)"] \C>0\ \z \ s\ Cpos u by (simp add: * field_split_simps) } note contra = this have "connected_component (- s) z (z + C *\<^sub>R (z-a))" apply (rule connected_componentI [OF connected_segment [of z "z + C *\<^sub>R (z-a)"]]) apply (simp add: closed_segment_def) using contra apply auto done then have False using zna B [of "z + C *\<^sub>R (z-a)"] C by (auto simp: field_split_simps max_mult_distrib_right) } then show ?thesis by (auto simp: outside_def z) qed lemma outside_convex: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes "convex s" shows "outside s = - s" by (metis ComplD assms convex_in_outside equalityI inside_Un_outside subsetI sup.cobounded2) lemma outside_singleton [simp]: fixes x :: "'a :: {real_normed_vector, perfect_space}" shows "outside {x} = -{x}" by (auto simp: outside_convex) lemma inside_convex: fixes s :: "'a :: {real_normed_vector, perfect_space} set" shows "convex s \ inside s = {}" by (simp add: inside_outside outside_convex) lemma inside_singleton [simp]: fixes x :: "'a :: {real_normed_vector, perfect_space}" shows "inside {x} = {}" by (auto simp: inside_convex) lemma outside_subset_convex: fixes s :: "'a :: {real_normed_vector, perfect_space} set" shows "\convex t; s \ t\ \ - t \ outside s" using outside_convex outside_mono by blast lemma outside_Un_outside_Un: fixes S :: "'a::real_normed_vector set" assumes "S \ outside(T \ U) = {}" shows "outside(T \ U) \ outside(T \ S)" proof fix x assume x: "x \ outside (T \ U)" have "Y \ - S" if "connected Y" "Y \ - T" "Y \ - U" "x \ Y" "u \ Y" for u Y proof - have "Y \ connected_component_set (- (T \ U)) x" by (simp add: connected_component_maximal that) also have "\ \ outside(T \ U)" by (metis (mono_tags, lifting) Collect_mono mem_Collect_eq outside outside_same_component x) finally have "Y \ outside(T \ U)" . with assms show ?thesis by auto qed with x show "x \ outside (T \ S)" by (simp add: outside_connected_component_lt connected_component_def) meson qed lemma outside_frontier_misses_closure: fixes s :: "'a::real_normed_vector set" assumes "bounded s" shows "outside(frontier s) \ - closure s" unfolding outside_inside Lattices.boolean_algebra_class.compl_le_compl_iff proof - { assume "interior s \ inside (frontier s)" hence "interior s \ inside (frontier s) = inside (frontier s)" by (simp add: subset_Un_eq) then have "closure s \ frontier s \ inside (frontier s)" using frontier_def by auto } then show "closure s \ frontier s \ inside (frontier s)" using interior_inside_frontier [OF assms] by blast qed lemma outside_frontier_eq_complement_closure: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes "bounded s" "convex s" shows "outside(frontier s) = - closure s" by (metis Diff_subset assms convex_closure frontier_def outside_frontier_misses_closure outside_subset_convex subset_antisym) lemma inside_frontier_eq_interior: fixes s :: "'a :: {real_normed_vector, perfect_space} set" shows "\bounded s; convex s\ \ inside(frontier s) = interior s" apply (simp add: inside_outside outside_frontier_eq_complement_closure) using closure_subset interior_subset apply (auto simp: frontier_def) done lemma open_inside: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "open (inside s)" proof - { fix x assume x: "x \ inside s" have "open (connected_component_set (- s) x)" using assms open_connected_component by blast then obtain e where e: "e>0" and e: "\y. dist y x < e \ connected_component (- s) x y" using dist_not_less_zero apply (simp add: open_dist) by (metis (no_types, lifting) Compl_iff connected_component_refl_eq inside_def mem_Collect_eq x) then have "\e>0. ball x e \ inside s" by (metis e dist_commute inside_same_component mem_ball subsetI x) } then show ?thesis by (simp add: open_contains_ball) qed lemma open_outside: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "open (outside s)" proof - { fix x assume x: "x \ outside s" have "open (connected_component_set (- s) x)" using assms open_connected_component by blast then obtain e where e: "e>0" and e: "\y. dist y x < e \ connected_component (- s) x y" using dist_not_less_zero apply (simp add: open_dist) by (metis Int_iff outside_def connected_component_refl_eq x) then have "\e>0. ball x e \ outside s" by (metis e dist_commute outside_same_component mem_ball subsetI x) } then show ?thesis by (simp add: open_contains_ball) qed lemma closure_inside_subset: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "closure(inside s) \ s \ inside s" by (metis assms closure_minimal open_closed open_outside sup.cobounded2 union_with_inside) lemma frontier_inside_subset: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "frontier(inside s) \ s" proof - have "closure (inside s) \ - inside s = closure (inside s) - interior (inside s)" by (metis (no_types) Diff_Compl assms closure_closed interior_closure open_closed open_inside) moreover have "- inside s \ - outside s = s" by (metis (no_types) compl_sup double_compl inside_Un_outside) moreover have "closure (inside s) \ - outside s" by (metis (no_types) assms closure_inside_subset union_with_inside) ultimately have "closure (inside s) - interior (inside s) \ s" by blast then show ?thesis by (simp add: frontier_def open_inside interior_open) qed lemma closure_outside_subset: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "closure(outside s) \ s \ outside s" apply (rule closure_minimal, simp) by (metis assms closed_open inside_outside open_inside) lemma frontier_outside_subset: fixes s :: "'a::real_normed_vector set" assumes "closed s" shows "frontier(outside s) \ s" apply (simp add: frontier_def open_outside interior_open) by (metis Diff_subset_conv assms closure_outside_subset interior_eq open_outside sup.commute) lemma inside_complement_unbounded_connected_empty: "\connected (- s); \ bounded (- s)\ \ inside s = {}" apply (simp add: inside_def) by (meson Compl_iff bounded_subset connected_component_maximal order_refl) lemma inside_bounded_complement_connected_empty: fixes s :: "'a::{real_normed_vector, perfect_space} set" shows "\connected (- s); bounded s\ \ inside s = {}" by (metis inside_complement_unbounded_connected_empty cobounded_imp_unbounded) lemma inside_inside: assumes "s \ inside t" shows "inside s - t \ inside t" unfolding inside_def proof clarify fix x assume x: "x \ t" "x \ s" and bo: "bounded (connected_component_set (- s) x)" show "bounded (connected_component_set (- t) x)" proof (cases "s \ connected_component_set (- t) x = {}") case True show ?thesis apply (rule bounded_subset [OF bo]) apply (rule connected_component_maximal) using x True apply auto done next case False then show ?thesis using assms [unfolded inside_def] x apply (simp add: disjoint_iff_not_equal, clarify) apply (drule subsetD, assumption, auto) by (metis (no_types, hide_lams) ComplI connected_component_eq_eq) qed qed lemma inside_inside_subset: "inside(inside s) \ s" using inside_inside union_with_outside by fastforce lemma inside_outside_intersect_connected: "\connected t; inside s \ t \ {}; outside s \ t \ {}\ \ s \ t \ {}" apply (simp add: inside_def outside_def ex_in_conv [symmetric] disjoint_eq_subset_Compl, clarify) by (metis (no_types, hide_lams) Compl_anti_mono connected_component_eq connected_component_maximal contra_subsetD double_compl) lemma outside_bounded_nonempty: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes "bounded s" shows "outside s \ {}" by (metis (no_types, lifting) Collect_empty_eq Collect_mem_eq Compl_eq_Diff_UNIV Diff_cancel Diff_disjoint UNIV_I assms ball_eq_empty bounded_diff cobounded_outside convex_ball double_complement order_refl outside_convex outside_def) lemma outside_compact_in_open: fixes s :: "'a :: {real_normed_vector,perfect_space} set" assumes s: "compact s" and t: "open t" and "s \ t" "t \ {}" shows "outside s \ t \ {}" proof - have "outside s \ {}" by (simp add: compact_imp_bounded outside_bounded_nonempty s) with assms obtain a b where a: "a \ outside s" and b: "b \ t" by auto show ?thesis proof (cases "a \ t") case True with a show ?thesis by blast next case False have front: "frontier t \ - s" using \s \ t\ frontier_disjoint_eq t by auto { fix \ assume "path \" and pimg_sbs: "path_image \ - {pathfinish \} \ interior (- t)" and pf: "pathfinish \ \ frontier t" and ps: "pathstart \ = a" define c where "c = pathfinish \" have "c \ -s" unfolding c_def using front pf by blast moreover have "open (-s)" using s compact_imp_closed by blast ultimately obtain \::real where "\ > 0" and \: "cball c \ \ -s" using open_contains_cball[of "-s"] s by blast then obtain d where "d \ t" and d: "dist d c < \" using closure_approachable [of c t] pf unfolding c_def by (metis Diff_iff frontier_def) then have "d \ -s" using \ using dist_commute by (metis contra_subsetD mem_cball not_le not_less_iff_gr_or_eq) have pimg_sbs_cos: "path_image \ \ -s" using pimg_sbs apply (auto simp: path_image_def) apply (drule subsetD) using \c \ - s\ \s \ t\ interior_subset apply (auto simp: c_def) done have "closed_segment c d \ cball c \" apply (simp add: segment_convex_hull) apply (rule hull_minimal) using \\ > 0\ d apply (auto simp: dist_commute) done with \ have "closed_segment c d \ -s" by blast moreover have con_gcd: "connected (path_image \ \ closed_segment c d)" by (rule connected_Un) (auto simp: c_def \path \\ connected_path_image) ultimately have "connected_component (- s) a d" unfolding connected_component_def using pimg_sbs_cos ps by blast then have "outside s \ t \ {}" using outside_same_component [OF _ a] by (metis IntI \d \ t\ empty_iff) } note * = this have pal: "pathstart (linepath a b) \ closure (- t)" by (auto simp: False closure_def) show ?thesis by (rule exists_path_subpath_to_frontier [OF path_linepath pal _ *]) (auto simp: b) qed qed lemma inside_inside_compact_connected: fixes s :: "'a :: euclidean_space set" assumes s: "closed s" and t: "compact t" and "connected t" "s \ inside t" shows "inside s \ inside t" proof (cases "inside t = {}") case True with assms show ?thesis by auto next case False consider "DIM('a) = 1" | "DIM('a) \ 2" using antisym not_less_eq_eq by fastforce then show ?thesis proof cases case 1 then show ?thesis using connected_convex_1_gen assms False inside_convex by blast next case 2 have coms: "compact s" using assms apply (simp add: s compact_eq_bounded_closed) by (meson bounded_inside bounded_subset compact_imp_bounded) then have bst: "bounded (s \ t)" by (simp add: compact_imp_bounded t) then obtain r where "0 < r" and r: "s \ t \ ball 0 r" using bounded_subset_ballD by blast have outst: "outside s \ outside t \ {}" proof - have "- ball 0 r \ outside s" apply (rule outside_subset_convex) using r by auto moreover have "- ball 0 r \ outside t" apply (rule outside_subset_convex) using r by auto ultimately show ?thesis by (metis Compl_subset_Compl_iff Int_subset_iff bounded_ball inf.orderE outside_bounded_nonempty outside_no_overlap) qed have "s \ t = {}" using assms by (metis disjoint_iff_not_equal inside_no_overlap subsetCE) moreover have "outside s \ inside t \ {}" by (meson False assms(4) compact_eq_bounded_closed coms open_inside outside_compact_in_open t) ultimately have "inside s \ t = {}" using inside_outside_intersect_connected [OF \connected t\, of s] by (metis "2" compact_eq_bounded_closed coms connected_outside inf.commute inside_outside_intersect_connected outst) then show ?thesis using inside_inside [OF \s \ inside t\] by blast qed qed lemma connected_with_inside: fixes s :: "'a :: real_normed_vector set" assumes s: "closed s" and cons: "connected s" shows "connected(s \ inside s)" proof (cases "s \ inside s = UNIV") case True with assms show ?thesis by auto next case False then obtain b where b: "b \ s" "b \ inside s" by blast have *: "\y t. y \ s \ connected t \ a \ t \ y \ t \ t \ (s \ inside s)" if "a \ (s \ inside s)" for a using that proof assume "a \ s" then show ?thesis apply (rule_tac x=a in exI) apply (rule_tac x="{a}" in exI, simp) done next assume a: "a \ inside s" show ?thesis apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "inside s"]) using a apply (simp add: closure_def) apply (simp add: b) apply (rule_tac x="pathfinish h" in exI) apply (rule_tac x="path_image h" in exI) apply (simp add: pathfinish_in_path_image connected_path_image, auto) using frontier_inside_subset s apply fastforce by (metis (no_types, lifting) frontier_inside_subset insertE insert_Diff interior_eq open_inside pathfinish_in_path_image s subsetCE) qed show ?thesis apply (simp add: connected_iff_connected_component) apply (simp add: connected_component_def) apply (clarify dest!: *) apply (rename_tac u u' t t') apply (rule_tac x="(s \ t \ t')" in exI) apply (auto simp: intro!: connected_Un cons) done qed text\The proof is virtually the same as that above.\ lemma connected_with_outside: fixes s :: "'a :: real_normed_vector set" assumes s: "closed s" and cons: "connected s" shows "connected(s \ outside s)" proof (cases "s \ outside s = UNIV") case True with assms show ?thesis by auto next case False then obtain b where b: "b \ s" "b \ outside s" by blast have *: "\y t. y \ s \ connected t \ a \ t \ y \ t \ t \ (s \ outside s)" if "a \ (s \ outside s)" for a using that proof assume "a \ s" then show ?thesis apply (rule_tac x=a in exI) apply (rule_tac x="{a}" in exI, simp) done next assume a: "a \ outside s" show ?thesis apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "outside s"]) using a apply (simp add: closure_def) apply (simp add: b) apply (rule_tac x="pathfinish h" in exI) apply (rule_tac x="path_image h" in exI) apply (simp add: pathfinish_in_path_image connected_path_image, auto) using frontier_outside_subset s apply fastforce by (metis (no_types, lifting) frontier_outside_subset insertE insert_Diff interior_eq open_outside pathfinish_in_path_image s subsetCE) qed show ?thesis apply (simp add: connected_iff_connected_component) apply (simp add: connected_component_def) apply (clarify dest!: *) apply (rename_tac u u' t t') apply (rule_tac x="(s \ t \ t')" in exI) apply (auto simp: intro!: connected_Un cons) done qed lemma inside_inside_eq_empty [simp]: fixes s :: "'a :: {real_normed_vector, perfect_space} set" assumes s: "closed s" and cons: "connected s" shows "inside (inside s) = {}" by (metis (no_types) unbounded_outside connected_with_outside [OF assms] bounded_Un inside_complement_unbounded_connected_empty unbounded_outside union_with_outside) lemma inside_in_components: "inside s \ components (- s) \ connected(inside s) \ inside s \ {}" apply (simp add: in_components_maximal) apply (auto intro: inside_same_component connected_componentI) apply (metis IntI empty_iff inside_no_overlap) done text\The proof is virtually the same as that above.\ lemma outside_in_components: "outside s \ components (- s) \ connected(outside s) \ outside s \ {}" apply (simp add: in_components_maximal) apply (auto intro: outside_same_component connected_componentI) apply (metis IntI empty_iff outside_no_overlap) done lemma bounded_unique_outside: fixes s :: "'a :: euclidean_space set" shows "\bounded s; DIM('a) \ 2\ \ (c \ components (- s) \ \ bounded c \ c = outside s)" apply (rule iffI) apply (metis cobounded_unique_unbounded_components connected_outside double_compl outside_bounded_nonempty outside_in_components unbounded_outside) by (simp add: connected_outside outside_bounded_nonempty outside_in_components unbounded_outside) subsection\Condition for an open map's image to contain a ball\ proposition ball_subset_open_map_image: fixes f :: "'a::heine_borel \ 'b :: {real_normed_vector,heine_borel}" assumes contf: "continuous_on (closure S) f" and oint: "open (f ` interior S)" and le_no: "\z. z \ frontier S \ r \ norm(f z - f a)" and "bounded S" "a \ S" "0 < r" shows "ball (f a) r \ f ` S" proof (cases "f ` S = UNIV") case True then show ?thesis by simp next case False obtain w where w: "w \ frontier (f ` S)" and dw_le: "\y. y \ frontier (f ` S) \ norm (f a - w) \ norm (f a - y)" apply (rule distance_attains_inf [of "frontier(f ` S)" "f a"]) using \a \ S\ by (auto simp: frontier_eq_empty dist_norm False) then obtain \ where \: "\n. \ n \ f ` S" and tendsw: "\ \ w" by (metis Diff_iff frontier_def closure_sequential) then have "\n. \x \ S. \ n = f x" by force then obtain z where zs: "\n. z n \ S" and fz: "\n. \ n = f (z n)" by metis then obtain y K where y: "y \ closure S" and "strict_mono (K :: nat \ nat)" and Klim: "(z \ K) \ y" using \bounded S\ apply (simp add: compact_closure [symmetric] compact_def) apply (drule_tac x=z in spec) using closure_subset apply force done then have ftendsw: "((\n. f (z n)) \ K) \ w" by (metis LIMSEQ_subseq_LIMSEQ fun.map_cong0 fz tendsw) have zKs: "\n. (z \ K) n \ S" by (simp add: zs) have fz: "f \ z = \" "(\n. f (z n)) = \" using fz by auto then have "(\ \ K) \ f y" by (metis (no_types) Klim zKs y contf comp_assoc continuous_on_closure_sequentially) with fz have wy: "w = f y" using fz LIMSEQ_unique ftendsw by auto have rle: "r \ norm (f y - f a)" apply (rule le_no) using w wy oint by (force simp: imageI image_mono interiorI interior_subset frontier_def y) have **: "(b \ (- S) \ {} \ b - (- S) \ {} \ b \ f \ {}) \ (b \ S \ {}) \ b \ f = {} \ b \ S" for b f and S :: "'b set" by blast show ?thesis apply (rule **) (*such a horrible mess*) apply (rule connected_Int_frontier [where t = "f`S", OF connected_ball]) using \a \ S\ \0 < r\ apply (auto simp: disjoint_iff_not_equal dist_norm) by (metis dw_le norm_minus_commute not_less order_trans rle wy) qed subsubsection\Special characterizations of classes of functions into and out of R.\ lemma Hausdorff_space_euclidean [simp]: "Hausdorff_space (euclidean :: 'a::metric_space topology)" proof - have "\U V. open U \ open V \ x \ U \ y \ V \ disjnt U V" if "x \ y" for x y :: 'a proof (intro exI conjI) let ?r = "dist x y / 2" have [simp]: "?r > 0" by (simp add: that) show "open (ball x ?r)" "open (ball y ?r)" "x \ (ball x ?r)" "y \ (ball y ?r)" by (auto simp add: that) show "disjnt (ball x ?r) (ball y ?r)" unfolding disjnt_def by (simp add: disjoint_ballI) qed then show ?thesis by (simp add: Hausdorff_space_def) qed proposition embedding_map_into_euclideanreal: assumes "path_connected_space X" shows "embedding_map X euclideanreal f \ continuous_map X euclideanreal f \ inj_on f (topspace X)" proof safe show "continuous_map X euclideanreal f" if "embedding_map X euclideanreal f" using continuous_map_in_subtopology homeomorphic_imp_continuous_map that unfolding embedding_map_def by blast show "inj_on f (topspace X)" if "embedding_map X euclideanreal f" using that homeomorphic_imp_injective_map unfolding embedding_map_def by blast show "embedding_map X euclideanreal f" if cont: "continuous_map X euclideanreal f" and inj: "inj_on f (topspace X)" proof - obtain g where gf: "\x. x \ topspace X \ g (f x) = x" using inv_into_f_f [OF inj] by auto show ?thesis unfolding embedding_map_def homeomorphic_map_maps homeomorphic_maps_def proof (intro exI conjI) show "continuous_map X (top_of_set (f ` topspace X)) f" by (simp add: cont continuous_map_in_subtopology) let ?S = "f ` topspace X" have eq: "{x \ ?S. g x \ U} = f ` U" if "openin X U" for U using openin_subset [OF that] by (auto simp: gf) have 1: "g ` ?S \ topspace X" using eq by blast have "openin (top_of_set ?S) {x \ ?S. g x \ T}" if "openin X T" for T proof - have "T \ topspace X" by (simp add: openin_subset that) have RR: "\x \ ?S \ g -` T. \d>0. \x' \ ?S \ ball x d. g x' \ T" proof (clarsimp simp add: gf) have pcS: "path_connectedin euclidean ?S" using assms cont path_connectedin_continuous_map_image path_connectedin_topspace by blast show "\d>0. \x'\f ` topspace X \ ball (f x) d. g x' \ T" if "x \ T" for x proof - have x: "x \ topspace X" using \T \ topspace X\ \x \ T\ by blast obtain u v d where "0 < d" "u \ topspace X" "v \ topspace X" and sub_fuv: "?S \ {f x - d .. f x + d} \ {f u..f v}" proof (cases "\u \ topspace X. f u < f x") case True then obtain u where u: "u \ topspace X" "f u < f x" .. show ?thesis proof (cases "\v \ topspace X. f x < f v") case True then obtain v where v: "v \ topspace X" "f x < f v" .. show ?thesis proof let ?d = "min (f x - f u) (f v - f x)" show "0 < ?d" by (simp add: \f u < f x\ \f x < f v\) show "f ` topspace X \ {f x - ?d..f x + ?d} \ {f u..f v}" by fastforce qed (auto simp: u v) next case False show ?thesis proof let ?d = "f x - f u" show "0 < ?d" by (simp add: u) show "f ` topspace X \ {f x - ?d..f x + ?d} \ {f u..f x}" using x u False by auto qed (auto simp: x u) qed next case False note no_u = False show ?thesis proof (cases "\v \ topspace X. f x < f v") case True then obtain v where v: "v \ topspace X" "f x < f v" .. show ?thesis proof let ?d = "f v - f x" show "0 < ?d" by (simp add: v) show "f ` topspace X \ {f x - ?d..f x + ?d} \ {f x..f v}" using False by auto qed (auto simp: x v) next case False show ?thesis proof show "f ` topspace X \ {f x - 1..f x + 1} \ {f x..f x}" using False no_u by fastforce qed (auto simp: x) qed qed then obtain h where "pathin X h" "h 0 = u" "h 1 = v" using assms unfolding path_connected_space_def by blast obtain C where "compactin X C" "connectedin X C" "u \ C" "v \ C" proof show "compactin X (h ` {0..1})" using that by (simp add: \pathin X h\ compactin_path_image) show "connectedin X (h ` {0..1})" using \pathin X h\ connectedin_path_image by blast qed (use \h 0 = u\ \h 1 = v\ in auto) have "continuous_map (subtopology euclideanreal (?S \ {f x - d .. f x + d})) (subtopology X C) g" proof (rule continuous_inverse_map) show "compact_space (subtopology X C)" using \compactin X C\ compactin_subspace by blast show "continuous_map (subtopology X C) euclideanreal f" by (simp add: cont continuous_map_from_subtopology) have "{f u .. f v} \ f ` topspace (subtopology X C)" proof (rule connected_contains_Icc) show "connected (f ` topspace (subtopology X C))" using connectedin_continuous_map_image [OF cont] by (simp add: \compactin X C\ \connectedin X C\ compactin_subset_topspace inf_absorb2) show "f u \ f ` topspace (subtopology X C)" by (simp add: \u \ C\ \u \ topspace X\) show "f v \ f ` topspace (subtopology X C)" by (simp add: \v \ C\ \v \ topspace X\) qed then show "f ` topspace X \ {f x - d..f x + d} \ f ` topspace (subtopology X C)" using sub_fuv by blast qed (auto simp: gf) then have contg: "continuous_map (subtopology euclideanreal (?S \ {f x - d .. f x + d})) X g" using continuous_map_in_subtopology by blast have "\e>0. \x \ ?S \ {f x - d .. f x + d} \ ball (f x) e. g x \ T" using openin_continuous_map_preimage [OF contg \openin X T\] x \x \ T\ \0 < d\ unfolding openin_euclidean_subtopology_iff by (force simp: gf dist_commute) then obtain e where "e > 0 \ (\x\f ` topspace X \ {f x - d..f x + d} \ ball (f x) e. g x \ T)" by metis with \0 < d\ have "min d e > 0" "\u. u \ topspace X \ \f x - f u\ < min d e \ u \ T" using dist_real_def gf by force+ then show ?thesis by (metis (full_types) Int_iff dist_real_def image_iff mem_ball gf) qed qed then obtain d where d: "\r. r \ ?S \ g -` T \ d r > 0 \ (\x \ ?S \ ball r (d r). g x \ T)" by metis show ?thesis unfolding openin_subtopology proof (intro exI conjI) show "{x \ ?S. g x \ T} = (\r \ ?S \ g -` T. ball r (d r)) \ f ` topspace X" using d by (auto simp: gf) qed auto qed then show "continuous_map (top_of_set ?S) X g" by (simp add: continuous_map_def gf) qed (auto simp: gf) qed qed subsubsection \An injective function into R is a homeomorphism and so an open map.\ lemma injective_into_1d_eq_homeomorphism: fixes f :: "'a::topological_space \ real" assumes f: "continuous_on S f" and S: "path_connected S" shows "inj_on f S \ (\g. homeomorphism S (f ` S) f g)" proof show "\g. homeomorphism S (f ` S) f g" if "inj_on f S" proof - have "embedding_map (top_of_set S) euclideanreal f" using that embedding_map_into_euclideanreal [of "top_of_set S" f] assms by auto then show ?thesis by (simp add: embedding_map_def) (metis all_closedin_homeomorphic_image f homeomorphism_injective_closed_map that) qed qed (metis homeomorphism_def inj_onI) lemma injective_into_1d_imp_open_map: fixes f :: "'a::topological_space \ real" assumes "continuous_on S f" "path_connected S" "inj_on f S" "openin (subtopology euclidean S) T" shows "openin (subtopology euclidean (f ` S)) (f ` T)" using assms homeomorphism_imp_open_map injective_into_1d_eq_homeomorphism by blast lemma homeomorphism_into_1d: fixes f :: "'a::topological_space \ real" assumes "path_connected S" "continuous_on S f" "f ` S = T" "inj_on f S" shows "\g. homeomorphism S T f g" using assms injective_into_1d_eq_homeomorphism by blast subsection\<^marker>\tag unimportant\ \Rectangular paths\ definition\<^marker>\tag unimportant\ rectpath where "rectpath a1 a3 = (let a2 = Complex (Re a3) (Im a1); a4 = Complex (Re a1) (Im a3) in linepath a1 a2 +++ linepath a2 a3 +++ linepath a3 a4 +++ linepath a4 a1)" lemma path_rectpath [simp, intro]: "path (rectpath a b)" by (simp add: Let_def rectpath_def) lemma pathstart_rectpath [simp]: "pathstart (rectpath a1 a3) = a1" by (simp add: rectpath_def Let_def) lemma pathfinish_rectpath [simp]: "pathfinish (rectpath a1 a3) = a1" by (simp add: rectpath_def Let_def) lemma simple_path_rectpath [simp, intro]: assumes "Re a1 \ Re a3" "Im a1 \ Im a3" shows "simple_path (rectpath a1 a3)" unfolding rectpath_def Let_def using assms by (intro simple_path_join_loop arc_join arc_linepath) (auto simp: complex_eq_iff path_image_join closed_segment_same_Re closed_segment_same_Im) lemma path_image_rectpath: assumes "Re a1 \ Re a3" "Im a1 \ Im a3" shows "path_image (rectpath a1 a3) = {z. Re z \ {Re a1, Re a3} \ Im z \ {Im a1..Im a3}} \ {z. Im z \ {Im a1, Im a3} \ Re z \ {Re a1..Re a3}}" (is "?lhs = ?rhs") proof - define a2 a4 where "a2 = Complex (Re a3) (Im a1)" and "a4 = Complex (Re a1) (Im a3)" have "?lhs = closed_segment a1 a2 \ closed_segment a2 a3 \ closed_segment a4 a3 \ closed_segment a1 a4" by (simp_all add: rectpath_def Let_def path_image_join closed_segment_commute a2_def a4_def Un_assoc) also have "\ = ?rhs" using assms by (auto simp: rectpath_def Let_def path_image_join a2_def a4_def closed_segment_same_Re closed_segment_same_Im closed_segment_eq_real_ivl) finally show ?thesis . qed lemma path_image_rectpath_subset_cbox: assumes "Re a \ Re b" "Im a \ Im b" shows "path_image (rectpath a b) \ cbox a b" using assms by (auto simp: path_image_rectpath in_cbox_complex_iff) lemma path_image_rectpath_inter_box: assumes "Re a \ Re b" "Im a \ Im b" shows "path_image (rectpath a b) \ box a b = {}" using assms by (auto simp: path_image_rectpath in_box_complex_iff) lemma path_image_rectpath_cbox_minus_box: assumes "Re a \ Re b" "Im a \ Im b" shows "path_image (rectpath a b) = cbox a b - box a b" using assms by (auto simp: path_image_rectpath in_cbox_complex_iff in_box_complex_iff) end diff --git a/src/HOL/Analysis/Starlike.thy b/src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy +++ b/src/HOL/Analysis/Starlike.thy @@ -1,6631 +1,6588 @@ (* Title: HOL/Analysis/Starlike.thy Author: L C Paulson, University of Cambridge Author: Robert Himmelmann, TU Muenchen Author: Bogdan Grechuk, University of Edinburgh Author: Armin Heller, TU Muenchen Author: Johannes Hoelzl, TU Muenchen *) chapter \Unsorted\ theory Starlike imports Convex_Euclidean_Space - Abstract_Limits Line_Segment begin lemma affine_hull_closed_segment [simp]: "affine hull (closed_segment a b) = affine hull {a,b}" by (simp add: segment_convex_hull) lemma affine_hull_open_segment [simp]: fixes a :: "'a::euclidean_space" shows "affine hull (open_segment a b) = (if a = b then {} else affine hull {a,b})" by (metis affine_hull_convex_hull affine_hull_empty closure_open_segment closure_same_affine_hull segment_convex_hull) lemma rel_interior_closure_convex_segment: fixes S :: "_::euclidean_space set" assumes "convex S" "a \ rel_interior S" "b \ closure S" shows "open_segment a b \ rel_interior S" proof fix x have [simp]: "(1 - u) *\<^sub>R a + u *\<^sub>R b = b - (1 - u) *\<^sub>R (b - a)" for u by (simp add: algebra_simps) assume "x \ open_segment a b" then show "x \ rel_interior S" unfolding closed_segment_def open_segment_def using assms by (auto intro: rel_interior_closure_convex_shrink) qed lemma convex_hull_insert_segments: "convex hull (insert a S) = (if S = {} then {a} else \x \ convex hull S. closed_segment a x)" by (force simp add: convex_hull_insert_alt in_segment) lemma Int_convex_hull_insert_rel_exterior: fixes z :: "'a::euclidean_space" assumes "convex C" "T \ C" and z: "z \ rel_interior C" and dis: "disjnt S (rel_interior C)" shows "S \ (convex hull (insert z T)) = S \ (convex hull T)" (is "?lhs = ?rhs") proof have "T = {} \ z \ S" using dis z by (auto simp add: disjnt_def) then show "?lhs \ ?rhs" proof (clarsimp simp add: convex_hull_insert_segments) fix x y assume "x \ S" and y: "y \ convex hull T" and "x \ closed_segment z y" have "y \ closure C" by (metis y \convex C\ \T \ C\ closure_subset contra_subsetD convex_hull_eq hull_mono) moreover have "x \ rel_interior C" by (meson \x \ S\ dis disjnt_iff) moreover have "x \ open_segment z y \ {z, y}" using \x \ closed_segment z y\ closed_segment_eq_open by blast ultimately show "x \ convex hull T" using rel_interior_closure_convex_segment [OF \convex C\ z] using y z by blast qed show "?rhs \ ?lhs" by (meson hull_mono inf_mono subset_insertI subset_refl) qed subsection\<^marker>\tag unimportant\ \Shrinking towards the interior of a convex set\ lemma mem_interior_convex_shrink: fixes S :: "'a::euclidean_space set" assumes "convex S" and "c \ interior S" and "x \ S" and "0 < e" and "e \ 1" shows "x - e *\<^sub>R (x - c) \ interior S" proof - obtain d where "d > 0" and d: "ball c d \ S" using assms(2) unfolding mem_interior by auto show ?thesis unfolding mem_interior proof (intro exI subsetI conjI) fix y assume "y \ ball (x - e *\<^sub>R (x - c)) (e*d)" then have as: "dist (x - e *\<^sub>R (x - c)) y < e * d" by simp have *: "y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using \e > 0\ by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib) have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = \1/e\ * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)" unfolding dist_norm unfolding norm_scaleR[symmetric] apply (rule arg_cong[where f=norm]) using \e > 0\ by (auto simp add: euclidean_eq_iff[where 'a='a] field_simps inner_simps) also have "\ = \1/e\ * norm (x - e *\<^sub>R (x - c) - y)" by (auto intro!:arg_cong[where f=norm] simp add: algebra_simps) also have "\ < d" using as[unfolded dist_norm] and \e > 0\ by (auto simp add:pos_divide_less_eq[OF \e > 0\] mult.commute) finally show "y \ S" apply (subst *) apply (rule assms(1)[unfolded convex_alt,rule_format]) apply (rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) apply auto done qed (insert \e>0\ \d>0\, auto) qed lemma mem_interior_closure_convex_shrink: fixes S :: "'a::euclidean_space set" assumes "convex S" and "c \ interior S" and "x \ closure S" and "0 < e" and "e \ 1" shows "x - e *\<^sub>R (x - c) \ interior S" proof - obtain d where "d > 0" and d: "ball c d \ S" using assms(2) unfolding mem_interior by auto have "\y\S. norm (y - x) * (1 - e) < e * d" proof (cases "x \ S") case True then show ?thesis using \e > 0\ \d > 0\ apply (rule_tac bexI[where x=x]) apply (auto) done next case False then have x: "x islimpt S" using assms(3)[unfolded closure_def] by auto show ?thesis proof (cases "e = 1") case True obtain y where "y \ S" "y \ x" "dist y x < 1" using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto then show ?thesis apply (rule_tac x=y in bexI) unfolding True using \d > 0\ apply auto done next case False then have "0 < e * d / (1 - e)" and *: "1 - e > 0" using \e \ 1\ \e > 0\ \d > 0\ by auto then obtain y where "y \ S" "y \ x" "dist y x < e * d / (1 - e)" using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto then show ?thesis apply (rule_tac x=y in bexI) unfolding dist_norm using pos_less_divide_eq[OF *] apply auto done qed qed then obtain y where "y \ S" and y: "norm (y - x) * (1 - e) < e * d" by auto define z where "z = c + ((1 - e) / e) *\<^sub>R (x - y)" have *: "x - e *\<^sub>R (x - c) = y - e *\<^sub>R (y - z)" unfolding z_def using \e > 0\ by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib) have "z \ interior S" apply (rule interior_mono[OF d,unfolded subset_eq,rule_format]) unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5) by simp (simp add: field_simps norm_minus_commute) then show ?thesis unfolding * using mem_interior_convex_shrink \y \ S\ assms by blast qed lemma in_interior_closure_convex_segment: fixes S :: "'a::euclidean_space set" assumes "convex S" and a: "a \ interior S" and b: "b \ closure S" shows "open_segment a b \ interior S" proof (clarsimp simp: in_segment) fix u::real assume u: "0 < u" "u < 1" have "(1 - u) *\<^sub>R a + u *\<^sub>R b = b - (1 - u) *\<^sub>R (b - a)" by (simp add: algebra_simps) also have "... \ interior S" using mem_interior_closure_convex_shrink [OF assms] u by simp finally show "(1 - u) *\<^sub>R a + u *\<^sub>R b \ interior S" . qed lemma convex_closure_interior: fixes S :: "'a::euclidean_space set" assumes "convex S" and int: "interior S \ {}" shows "closure(interior S) = closure S" proof - obtain a where a: "a \ interior S" using int by auto have "closure S \ closure(interior S)" proof fix x assume x: "x \ closure S" show "x \ closure (interior S)" proof (cases "x=a") case True then show ?thesis using \a \ interior S\ closure_subset by blast next case False show ?thesis proof (clarsimp simp add: closure_def islimpt_approachable) fix e::real assume xnotS: "x \ interior S" and "0 < e" show "\x'\interior S. x' \ x \ dist x' x < e" proof (intro bexI conjI) show "x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a) \ x" using False \0 < e\ by (auto simp: algebra_simps min_def) show "dist (x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a)) x < e" using \0 < e\ by (auto simp: dist_norm min_def) show "x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a) \ interior S" apply (clarsimp simp add: min_def a) apply (rule mem_interior_closure_convex_shrink [OF \convex S\ a x]) using \0 < e\ False apply (auto simp: field_split_simps) done qed qed qed qed then show ?thesis by (simp add: closure_mono interior_subset subset_antisym) qed lemma closure_convex_Int_superset: fixes S :: "'a::euclidean_space set" assumes "convex S" "interior S \ {}" "interior S \ closure T" shows "closure(S \ T) = closure S" proof - have "closure S \ closure(interior S)" by (simp add: convex_closure_interior assms) also have "... \ closure (S \ T)" using interior_subset [of S] assms by (metis (no_types, lifting) Int_assoc Int_lower2 closure_mono closure_open_Int_superset inf.orderE open_interior) finally show ?thesis by (simp add: closure_mono dual_order.antisym) qed subsection\<^marker>\tag unimportant\ \Some obvious but surprisingly hard simplex lemmas\ lemma simplex: assumes "finite S" and "0 \ S" shows "convex hull (insert 0 S) = {y. \u. (\x\S. 0 \ u x) \ sum u S \ 1 \ sum (\x. u x *\<^sub>R x) S = y}" proof (simp add: convex_hull_finite set_eq_iff assms, safe) fix x and u :: "'a \ real" assume "0 \ u 0" "\x\S. 0 \ u x" "u 0 + sum u S = 1" then show "\v. (\x\S. 0 \ v x) \ sum v S \ 1 \ (\x\S. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)" by force next fix x and u :: "'a \ real" assume "\x\S. 0 \ u x" "sum u S \ 1" then show "\v. 0 \ v 0 \ (\x\S. 0 \ v x) \ v 0 + sum v S = 1 \ (\x\S. v x *\<^sub>R x) = (\x\S. u x *\<^sub>R x)" by (rule_tac x="\x. if x = 0 then 1 - sum u S else u x" in exI) (auto simp: sum_delta_notmem assms if_smult) qed lemma substd_simplex: assumes d: "d \ Basis" shows "convex hull (insert 0 d) = {x. (\i\Basis. 0 \ x\i) \ (\i\d. x\i) \ 1 \ (\i\Basis. i \ d \ x\i = 0)}" (is "convex hull (insert 0 ?p) = ?s") proof - let ?D = d have "0 \ ?p" using assms by (auto simp: image_def) from d have "finite d" by (blast intro: finite_subset finite_Basis) show ?thesis unfolding simplex[OF \finite d\ \0 \ ?p\] proof (intro set_eqI; safe) fix u :: "'a \ real" assume as: "\x\?D. 0 \ u x" "sum u ?D \ 1" let ?x = "(\x\?D. u x *\<^sub>R x)" have ind: "\i\Basis. i \ d \ u i = ?x \ i" and notind: "(\i\Basis. i \ d \ ?x \ i = 0)" using substdbasis_expansion_unique[OF assms] by blast+ then have **: "sum u ?D = sum ((\) ?x) ?D" using assms by (auto intro!: sum.cong) show "0 \ ?x \ i" if "i \ Basis" for i using as(1) ind notind that by fastforce show "sum ((\) ?x) ?D \ 1" using "**" as(2) by linarith show "?x \ i = 0" if "i \ Basis" "i \ d" for i using notind that by blast next fix x assume "\i\Basis. 0 \ x \ i" "sum ((\) x) ?D \ 1" "(\i\Basis. i \ d \ x \ i = 0)" with d show "\u. (\x\?D. 0 \ u x) \ sum u ?D \ 1 \ (\x\?D. u x *\<^sub>R x) = x" unfolding substdbasis_expansion_unique[OF assms] by (rule_tac x="inner x" in exI) auto qed qed lemma std_simplex: "convex hull (insert 0 Basis) = {x::'a::euclidean_space. (\i\Basis. 0 \ x\i) \ sum (\i. x\i) Basis \ 1}" using substd_simplex[of Basis] by auto lemma interior_std_simplex: "interior (convex hull (insert 0 Basis)) = {x::'a::euclidean_space. (\i\Basis. 0 < x\i) \ sum (\i. x\i) Basis < 1}" unfolding set_eq_iff mem_interior std_simplex proof (intro allI iffI CollectI; clarify) fix x :: 'a fix e assume "e > 0" and as: "ball x e \ {x. (\i\Basis. 0 \ x \ i) \ sum ((\) x) Basis \ 1}" show "(\i\Basis. 0 < x \ i) \ sum ((\) x) Basis < 1" proof safe fix i :: 'a assume i: "i \ Basis" then show "0 < x \ i" using as[THEN subsetD[where c="x - (e / 2) *\<^sub>R i"]] and \e > 0\ by (force simp add: inner_simps) next have **: "dist x (x + (e / 2) *\<^sub>R (SOME i. i\Basis)) < e" using \e > 0\ unfolding dist_norm by (auto intro!: mult_strict_left_mono simp: SOME_Basis) have "\i. i \ Basis \ (x + (e / 2) *\<^sub>R (SOME i. i\Basis)) \ i = x\i + (if i = (SOME i. i\Basis) then e/2 else 0)" by (auto simp: SOME_Basis inner_Basis inner_simps) then have *: "sum ((\) (x + (e / 2) *\<^sub>R (SOME i. i\Basis))) Basis = sum (\i. x\i + (if (SOME i. i\Basis) = i then e/2 else 0)) Basis" by (auto simp: intro!: sum.cong) have "sum ((\) x) Basis < sum ((\) (x + (e / 2) *\<^sub>R (SOME i. i\Basis))) Basis" using \e > 0\ DIM_positive by (auto simp: SOME_Basis sum.distrib *) also have "\ \ 1" using ** as by force finally show "sum ((\) x) Basis < 1" by auto qed next fix x :: 'a assume as: "\i\Basis. 0 < x \ i" "sum ((\) x) Basis < 1" obtain a :: 'b where "a \ UNIV" using UNIV_witness .. let ?d = "(1 - sum ((\) x) Basis) / real (DIM('a))" show "\e>0. ball x e \ {x. (\i\Basis. 0 \ x \ i) \ sum ((\) x) Basis \ 1}" proof (rule_tac x="min (Min (((\) x) ` Basis)) D" for D in exI, intro conjI subsetI CollectI) fix y assume y: "y \ ball x (min (Min ((\) x ` Basis)) ?d)" have "sum ((\) y) Basis \ sum (\i. x\i + ?d) Basis" proof (rule sum_mono) fix i :: 'a assume i: "i \ Basis" have "\y\i - x\i\ \ norm (y - x)" by (metis Basis_le_norm i inner_commute inner_diff_right) also have "... < ?d" using y by (simp add: dist_norm norm_minus_commute) finally have "\y\i - x\i\ < ?d" . then show "y \ i \ x \ i + ?d" by auto qed also have "\ \ 1" unfolding sum.distrib sum_constant by (auto simp add: Suc_le_eq) finally show "sum ((\) y) Basis \ 1" . show "(\i\Basis. 0 \ y \ i)" proof safe fix i :: 'a assume i: "i \ Basis" have "norm (x - y) < Min (((\) x) ` Basis)" using y by (auto simp: dist_norm less_eq_real_def) also have "... \ x\i" using i by auto finally have "norm (x - y) < x\i" . then show "0 \ y\i" using Basis_le_norm[OF i, of "x - y"] and as(1)[rule_format, OF i] by (auto simp: inner_simps) qed next have "Min (((\) x) ` Basis) > 0" using as by simp moreover have "?d > 0" using as by (auto simp: Suc_le_eq) ultimately show "0 < min (Min ((\) x ` Basis)) ((1 - sum ((\) x) Basis) / real DIM('a))" by linarith qed qed lemma interior_std_simplex_nonempty: obtains a :: "'a::euclidean_space" where "a \ interior(convex hull (insert 0 Basis))" proof - let ?D = "Basis :: 'a set" let ?a = "sum (\b::'a. inverse (2 * real DIM('a)) *\<^sub>R b) Basis" { fix i :: 'a assume i: "i \ Basis" have "?a \ i = inverse (2 * real DIM('a))" by (rule trans[of _ "sum (\j. if i = j then inverse (2 * real DIM('a)) else 0) ?D"]) (simp_all add: sum.If_cases i) } note ** = this show ?thesis apply (rule that[of ?a]) unfolding interior_std_simplex mem_Collect_eq proof safe fix i :: 'a assume i: "i \ Basis" show "0 < ?a \ i" unfolding **[OF i] by (auto simp add: Suc_le_eq) next have "sum ((\) ?a) ?D = sum (\i. inverse (2 * real DIM('a))) ?D" apply (rule sum.cong) apply rule apply auto done also have "\ < 1" unfolding sum_constant divide_inverse[symmetric] by (auto simp add: field_simps) finally show "sum ((\) ?a) ?D < 1" by auto qed qed lemma rel_interior_substd_simplex: assumes D: "D \ Basis" shows "rel_interior (convex hull (insert 0 D)) = {x::'a::euclidean_space. (\i\D. 0 < x\i) \ (\i\D. x\i) < 1 \ (\i\Basis. i \ D \ x\i = 0)}" (is "rel_interior (convex hull (insert 0 ?p)) = ?s") proof - have "finite D" using D finite_Basis finite_subset by blast show ?thesis proof (cases "D = {}") case True then show ?thesis using rel_interior_sing using euclidean_eq_iff[of _ 0] by auto next case False have h0: "affine hull (convex hull (insert 0 ?p)) = {x::'a::euclidean_space. (\i\Basis. i \ D \ x\i = 0)}" using affine_hull_convex_hull affine_hull_substd_basis assms by auto have aux: "\x::'a. \i\Basis. (\i\D. 0 \ x\i) \ (\i\Basis. i \ D \ x\i = 0) \ 0 \ x\i" by auto { fix x :: "'a::euclidean_space" assume x: "x \ rel_interior (convex hull (insert 0 ?p))" then obtain e where "e > 0" and "ball x e \ {xa. (\i\Basis. i \ D \ xa\i = 0)} \ convex hull (insert 0 ?p)" using mem_rel_interior_ball[of x "convex hull (insert 0 ?p)"] h0 by auto then have as [rule_format]: "\y. dist x y < e \ (\i\Basis. i \ D \ y\i = 0) \ (\i\D. 0 \ y \ i) \ sum ((\) y) D \ 1" unfolding ball_def unfolding substd_simplex[OF assms] using assms by auto have x0: "(\i\Basis. i \ D \ x\i = 0)" using x rel_interior_subset substd_simplex[OF assms] by auto have "(\i\D. 0 < x \ i) \ sum ((\) x) D < 1 \ (\i\Basis. i \ D \ x\i = 0)" proof (intro conjI ballI) fix i :: 'a assume "i \ D" then have "\j\D. 0 \ (x - (e / 2) *\<^sub>R i) \ j" apply - apply (rule as[THEN conjunct1]) using D \e > 0\ x0 apply (auto simp: dist_norm inner_simps inner_Basis) done then show "0 < x \ i" using \e > 0\ \i \ D\ D by (force simp: inner_simps inner_Basis) next obtain a where a: "a \ D" using \D \ {}\ by auto then have **: "dist x (x + (e / 2) *\<^sub>R a) < e" using \e > 0\ norm_Basis[of a] D unfolding dist_norm by auto have "\i. i \ Basis \ (x + (e / 2) *\<^sub>R a) \ i = x\i + (if i = a then e/2 else 0)" using a D by (auto simp: inner_simps inner_Basis) then have *: "sum ((\) (x + (e / 2) *\<^sub>R a)) D = sum (\i. x\i + (if a = i then e/2 else 0)) D" using D by (intro sum.cong) auto have "a \ Basis" using \a \ D\ D by auto then have h1: "(\i\Basis. i \ D \ (x + (e / 2) *\<^sub>R a) \ i = 0)" using x0 D \a\D\ by (auto simp add: inner_add_left inner_Basis) have "sum ((\) x) D < sum ((\) (x + (e / 2) *\<^sub>R a)) D" using \e > 0\ \a \ D\ \finite D\ by (auto simp add: * sum.distrib) also have "\ \ 1" using ** h1 as[rule_format, of "x + (e / 2) *\<^sub>R a"] by auto finally show "sum ((\) x) D < 1" "\i. i\Basis \ i \ D \ x\i = 0" using x0 by auto qed } moreover { fix x :: "'a::euclidean_space" assume as: "x \ ?s" have "\i. 0 < x\i \ 0 = x\i \ 0 \ x\i" by auto moreover have "\i. i \ D \ i \ D" by auto ultimately have "\i. (\i\D. 0 < x\i) \ (\i. i \ D \ x\i = 0) \ 0 \ x\i" by metis then have h2: "x \ convex hull (insert 0 ?p)" using as assms unfolding substd_simplex[OF assms] by fastforce obtain a where a: "a \ D" using \D \ {}\ by auto let ?d = "(1 - sum ((\) x) D) / real (card D)" have "0 < card D" using \D \ {}\ \finite D\ by (simp add: card_gt_0_iff) have "Min (((\) x) ` D) > 0" using as \D \ {}\ \finite D\ by (simp) moreover have "?d > 0" using as using \0 < card D\ by auto ultimately have h3: "min (Min (((\) x) ` D)) ?d > 0" by auto have "x \ rel_interior (convex hull (insert 0 ?p))" unfolding rel_interior_ball mem_Collect_eq h0 apply (rule,rule h2) unfolding substd_simplex[OF assms] apply (rule_tac x="min (Min (((\) x) ` D)) ?d" in exI) apply (rule, rule h3) apply safe unfolding mem_ball proof - fix y :: 'a assume y: "dist x y < min (Min ((\) x ` D)) ?d" assume y2: "\i\Basis. i \ D \ y\i = 0" have "sum ((\) y) D \ sum (\i. x\i + ?d) D" proof (rule sum_mono) fix i assume "i \ D" with D have i: "i \ Basis" by auto have "\y\i - x\i\ \ norm (y - x)" by (metis i inner_commute inner_diff_right norm_bound_Basis_le order_refl) also have "... < ?d" by (metis dist_norm min_less_iff_conj norm_minus_commute y) finally have "\y\i - x\i\ < ?d" . then show "y \ i \ x \ i + ?d" by auto qed also have "\ \ 1" unfolding sum.distrib sum_constant using \0 < card D\ by auto finally show "sum ((\) y) D \ 1" . fix i :: 'a assume i: "i \ Basis" then show "0 \ y\i" proof (cases "i\D") case True have "norm (x - y) < x\i" using y[unfolded min_less_iff_conj dist_norm, THEN conjunct1] using Min_gr_iff[of "(\) x ` D" "norm (x - y)"] \0 < card D\ \i \ D\ by (simp add: card_gt_0_iff) then show "0 \ y\i" using Basis_le_norm[OF i, of "x - y"] and as(1)[rule_format] by (auto simp: inner_simps) qed (insert y2, auto) qed } ultimately have "\x. x \ rel_interior (convex hull insert 0 D) \ x \ {x. (\i\D. 0 < x \ i) \ sum ((\) x) D < 1 \ (\i\Basis. i \ D \ x \ i = 0)}" by blast then show ?thesis by (rule set_eqI) qed qed lemma rel_interior_substd_simplex_nonempty: assumes "D \ {}" and "D \ Basis" obtains a :: "'a::euclidean_space" where "a \ rel_interior (convex hull (insert 0 D))" proof - let ?D = D let ?a = "sum (\b::'a::euclidean_space. inverse (2 * real (card D)) *\<^sub>R b) ?D" have "finite D" apply (rule finite_subset) using assms(2) apply auto done then have d1: "0 < real (card D)" using \D \ {}\ by auto { fix i assume "i \ D" have "?a \ i = inverse (2 * real (card D))" apply (rule trans[of _ "sum (\j. if i = j then inverse (2 * real (card D)) else 0) ?D"]) unfolding inner_sum_left apply (rule sum.cong) using \i \ D\ \finite D\ sum.delta'[of D i "(\k. inverse (2 * real (card D)))"] d1 assms(2) by (auto simp: inner_Basis rev_subsetD[OF _ assms(2)]) } note ** = this show ?thesis apply (rule that[of ?a]) unfolding rel_interior_substd_simplex[OF assms(2)] mem_Collect_eq proof safe fix i assume "i \ D" have "0 < inverse (2 * real (card D))" using d1 by auto also have "\ = ?a \ i" using **[of i] \i \ D\ by auto finally show "0 < ?a \ i" by auto next have "sum ((\) ?a) ?D = sum (\i. inverse (2 * real (card D))) ?D" by (rule sum.cong) (rule refl, rule **) also have "\ < 1" unfolding sum_constant divide_real_def[symmetric] by (auto simp add: field_simps) finally show "sum ((\) ?a) ?D < 1" by auto next fix i assume "i \ Basis" and "i \ D" have "?a \ span D" proof (rule span_sum[of D "(\b. b /\<^sub>R (2 * real (card D)))" D]) { fix x :: "'a::euclidean_space" assume "x \ D" then have "x \ span D" using span_base[of _ "D"] by auto then have "x /\<^sub>R (2 * real (card D)) \ span D" using span_mul[of x "D" "(inverse (real (card D)) / 2)"] by auto } then show "\x. x\D \ x /\<^sub>R (2 * real (card D)) \ span D" by auto qed then show "?a \ i = 0 " using \i \ D\ unfolding span_substd_basis[OF assms(2)] using \i \ Basis\ by auto qed qed subsection\<^marker>\tag unimportant\ \Relative interior of convex set\ lemma rel_interior_convex_nonempty_aux: fixes S :: "'n::euclidean_space set" assumes "convex S" and "0 \ S" shows "rel_interior S \ {}" proof (cases "S = {0}") case True then show ?thesis using rel_interior_sing by auto next case False obtain B where B: "independent B \ B \ S \ S \ span B \ card B = dim S" using basis_exists[of S] by metis then have "B \ {}" using B assms \S \ {0}\ span_empty by auto have "insert 0 B \ span B" using subspace_span[of B] subspace_0[of "span B"] span_superset by auto then have "span (insert 0 B) \ span B" using span_span[of B] span_mono[of "insert 0 B" "span B"] by blast then have "convex hull insert 0 B \ span B" using convex_hull_subset_span[of "insert 0 B"] by auto then have "span (convex hull insert 0 B) \ span B" using span_span[of B] span_mono[of "convex hull insert 0 B" "span B"] by blast then have *: "span (convex hull insert 0 B) = span B" using span_mono[of B "convex hull insert 0 B"] hull_subset[of "insert 0 B"] by auto then have "span (convex hull insert 0 B) = span S" using B span_mono[of B S] span_mono[of S "span B"] span_span[of B] by auto moreover have "0 \ affine hull (convex hull insert 0 B)" using hull_subset[of "convex hull insert 0 B"] hull_subset[of "insert 0 B"] by auto ultimately have **: "affine hull (convex hull insert 0 B) = affine hull S" using affine_hull_span_0[of "convex hull insert 0 B"] affine_hull_span_0[of "S"] assms hull_subset[of S] by auto obtain d and f :: "'n \ 'n" where fd: "card d = card B" "linear f" "f ` B = d" "f ` span B = {x. \i\Basis. i \ d \ x \ i = (0::real)} \ inj_on f (span B)" and d: "d \ Basis" using basis_to_substdbasis_subspace_isomorphism[of B,OF _ ] B by auto then have "bounded_linear f" using linear_conv_bounded_linear by auto have "d \ {}" using fd B \B \ {}\ by auto have "insert 0 d = f ` (insert 0 B)" using fd linear_0 by auto then have "(convex hull (insert 0 d)) = f ` (convex hull (insert 0 B))" using convex_hull_linear_image[of f "(insert 0 d)"] convex_hull_linear_image[of f "(insert 0 B)"] \linear f\ by auto moreover have "rel_interior (f ` (convex hull insert 0 B)) = f ` rel_interior (convex hull insert 0 B)" apply (rule rel_interior_injective_on_span_linear_image[of f "(convex hull insert 0 B)"]) using \bounded_linear f\ fd * apply auto done ultimately have "rel_interior (convex hull insert 0 B) \ {}" using rel_interior_substd_simplex_nonempty[OF \d \ {}\ d] apply auto apply blast done moreover have "convex hull (insert 0 B) \ S" using B assms hull_mono[of "insert 0 B" "S" "convex"] convex_hull_eq by auto ultimately show ?thesis using subset_rel_interior[of "convex hull insert 0 B" S] ** by auto qed lemma rel_interior_eq_empty: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_interior S = {} \ S = {}" proof - { assume "S \ {}" then obtain a where "a \ S" by auto then have "0 \ (+) (-a) ` S" using assms exI[of "(\x. x \ S \ - a + x = 0)" a] by auto then have "rel_interior ((+) (-a) ` S) \ {}" using rel_interior_convex_nonempty_aux[of "(+) (-a) ` S"] convex_translation[of S "-a"] assms by auto then have "rel_interior S \ {}" using rel_interior_translation [of "- a"] by simp } then show ?thesis by auto qed lemma interior_simplex_nonempty: fixes S :: "'N :: euclidean_space set" assumes "independent S" "finite S" "card S = DIM('N)" obtains a where "a \ interior (convex hull (insert 0 S))" proof - have "affine hull (insert 0 S) = UNIV" by (simp add: hull_inc affine_hull_span_0 dim_eq_full[symmetric] assms(1) assms(3) dim_eq_card_independent) moreover have "rel_interior (convex hull insert 0 S) \ {}" using rel_interior_eq_empty [of "convex hull (insert 0 S)"] by auto ultimately have "interior (convex hull insert 0 S) \ {}" by (simp add: rel_interior_interior) with that show ?thesis by auto qed lemma convex_rel_interior: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "convex (rel_interior S)" proof - { fix x y and u :: real assume assm: "x \ rel_interior S" "y \ rel_interior S" "0 \ u" "u \ 1" then have "x \ S" using rel_interior_subset by auto have "x - u *\<^sub>R (x-y) \ rel_interior S" proof (cases "0 = u") case False then have "0 < u" using assm by auto then show ?thesis using assm rel_interior_convex_shrink[of S y x u] assms \x \ S\ by auto next case True then show ?thesis using assm by auto qed then have "(1 - u) *\<^sub>R x + u *\<^sub>R y \ rel_interior S" by (simp add: algebra_simps) } then show ?thesis unfolding convex_alt by auto qed lemma convex_closure_rel_interior: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "closure (rel_interior S) = closure S" proof - have h1: "closure (rel_interior S) \ closure S" using closure_mono[of "rel_interior S" S] rel_interior_subset[of S] by auto show ?thesis proof (cases "S = {}") case False then obtain a where a: "a \ rel_interior S" using rel_interior_eq_empty assms by auto { fix x assume x: "x \ closure S" { assume "x = a" then have "x \ closure (rel_interior S)" using a unfolding closure_def by auto } moreover { assume "x \ a" { fix e :: real assume "e > 0" define e1 where "e1 = min 1 (e/norm (x - a))" then have e1: "e1 > 0" "e1 \ 1" "e1 * norm (x - a) \ e" using \x \ a\ \e > 0\ le_divide_eq[of e1 e "norm (x - a)"] by simp_all then have *: "x - e1 *\<^sub>R (x - a) \ rel_interior S" using rel_interior_closure_convex_shrink[of S a x e1] assms x a e1_def by auto have "\y. y \ rel_interior S \ y \ x \ dist y x \ e" apply (rule_tac x="x - e1 *\<^sub>R (x - a)" in exI) using * e1 dist_norm[of "x - e1 *\<^sub>R (x - a)" x] \x \ a\ apply simp done } then have "x islimpt rel_interior S" unfolding islimpt_approachable_le by auto then have "x \ closure(rel_interior S)" unfolding closure_def by auto } ultimately have "x \ closure(rel_interior S)" by auto } then show ?thesis using h1 by auto next case True then have "rel_interior S = {}" by auto then have "closure (rel_interior S) = {}" using closure_empty by auto with True show ?thesis by auto qed qed lemma rel_interior_same_affine_hull: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "affine hull (rel_interior S) = affine hull S" by (metis assms closure_same_affine_hull convex_closure_rel_interior) lemma rel_interior_aff_dim: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "aff_dim (rel_interior S) = aff_dim S" by (metis aff_dim_affine_hull2 assms rel_interior_same_affine_hull) lemma rel_interior_rel_interior: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_interior (rel_interior S) = rel_interior S" proof - have "openin (top_of_set (affine hull (rel_interior S))) (rel_interior S)" using openin_rel_interior[of S] rel_interior_same_affine_hull[of S] assms by auto then show ?thesis using rel_interior_def by auto qed lemma rel_interior_rel_open: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_open (rel_interior S)" unfolding rel_open_def using rel_interior_rel_interior assms by auto lemma convex_rel_interior_closure_aux: fixes x y z :: "'n::euclidean_space" assumes "0 < a" "0 < b" "(a + b) *\<^sub>R z = a *\<^sub>R x + b *\<^sub>R y" obtains e where "0 < e" "e \ 1" "z = y - e *\<^sub>R (y - x)" proof - define e where "e = a / (a + b)" have "z = (1 / (a + b)) *\<^sub>R ((a + b) *\<^sub>R z)" using assms by (simp add: eq_vector_fraction_iff) also have "\ = (1 / (a + b)) *\<^sub>R (a *\<^sub>R x + b *\<^sub>R y)" using assms scaleR_cancel_left[of "1/(a+b)" "(a + b) *\<^sub>R z" "a *\<^sub>R x + b *\<^sub>R y"] by auto also have "\ = y - e *\<^sub>R (y-x)" using e_def apply (simp add: algebra_simps) using scaleR_left_distrib[of "a/(a+b)" "b/(a+b)" y] assms add_divide_distrib[of a b "a+b"] apply auto done finally have "z = y - e *\<^sub>R (y-x)" by auto moreover have "e > 0" using e_def assms by auto moreover have "e \ 1" using e_def assms by auto ultimately show ?thesis using that[of e] by auto qed lemma convex_rel_interior_closure: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "rel_interior (closure S) = rel_interior S" proof (cases "S = {}") case True then show ?thesis using assms rel_interior_eq_empty by auto next case False have "rel_interior (closure S) \ rel_interior S" using subset_rel_interior[of S "closure S"] closure_same_affine_hull closure_subset by auto moreover { fix z assume z: "z \ rel_interior (closure S)" obtain x where x: "x \ rel_interior S" using \S \ {}\ assms rel_interior_eq_empty by auto have "z \ rel_interior S" proof (cases "x = z") case True then show ?thesis using x by auto next case False obtain e where e: "e > 0" "cball z e \ affine hull closure S \ closure S" using z rel_interior_cball[of "closure S"] by auto hence *: "0 < e/norm(z-x)" using e False by auto define y where "y = z + (e/norm(z-x)) *\<^sub>R (z-x)" have yball: "y \ cball z e" using y_def dist_norm[of z y] e by auto have "x \ affine hull closure S" using x rel_interior_subset_closure hull_inc[of x "closure S"] by blast moreover have "z \ affine hull closure S" using z rel_interior_subset hull_subset[of "closure S"] by blast ultimately have "y \ affine hull closure S" using y_def affine_affine_hull[of "closure S"] mem_affine_3_minus [of "affine hull closure S" z z x "e/norm(z-x)"] by auto then have "y \ closure S" using e yball by auto have "(1 + (e/norm(z-x))) *\<^sub>R z = (e/norm(z-x)) *\<^sub>R x + y" using y_def by (simp add: algebra_simps) then obtain e1 where "0 < e1" "e1 \ 1" "z = y - e1 *\<^sub>R (y - x)" using * convex_rel_interior_closure_aux[of "e / norm (z - x)" 1 z x y] by (auto simp add: algebra_simps) then show ?thesis using rel_interior_closure_convex_shrink assms x \y \ closure S\ by auto qed } ultimately show ?thesis by auto qed lemma convex_interior_closure: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "interior (closure S) = interior S" using closure_aff_dim[of S] interior_rel_interior_gen[of S] interior_rel_interior_gen[of "closure S"] convex_rel_interior_closure[of S] assms by auto lemma closure_eq_rel_interior_eq: fixes S1 S2 :: "'n::euclidean_space set" assumes "convex S1" and "convex S2" shows "closure S1 = closure S2 \ rel_interior S1 = rel_interior S2" by (metis convex_rel_interior_closure convex_closure_rel_interior assms) lemma closure_eq_between: fixes S1 S2 :: "'n::euclidean_space set" assumes "convex S1" and "convex S2" shows "closure S1 = closure S2 \ rel_interior S1 \ S2 \ S2 \ closure S1" (is "?A \ ?B") proof assume ?A then show ?B by (metis assms closure_subset convex_rel_interior_closure rel_interior_subset) next assume ?B then have "closure S1 \ closure S2" by (metis assms(1) convex_closure_rel_interior closure_mono) moreover from \?B\ have "closure S1 \ closure S2" by (metis closed_closure closure_minimal) ultimately show ?A .. qed lemma open_inter_closure_rel_interior: fixes S A :: "'n::euclidean_space set" assumes "convex S" and "open A" shows "A \ closure S = {} \ A \ rel_interior S = {}" by (metis assms convex_closure_rel_interior open_Int_closure_eq_empty) lemma rel_interior_open_segment: fixes a :: "'a :: euclidean_space" shows "rel_interior(open_segment a b) = open_segment a b" proof (cases "a = b") case True then show ?thesis by auto next case False then show ?thesis apply (simp add: rel_interior_eq openin_open) apply (rule_tac x="ball (inverse 2 *\<^sub>R (a + b)) (norm(b - a) / 2)" in exI) apply (simp add: open_segment_as_ball) done qed lemma rel_interior_closed_segment: fixes a :: "'a :: euclidean_space" shows "rel_interior(closed_segment a b) = (if a = b then {a} else open_segment a b)" proof (cases "a = b") case True then show ?thesis by auto next case False then show ?thesis by simp (metis closure_open_segment convex_open_segment convex_rel_interior_closure rel_interior_open_segment) qed lemmas rel_interior_segment = rel_interior_closed_segment rel_interior_open_segment subsection\The relative frontier of a set\ definition\<^marker>\tag important\ "rel_frontier S = closure S - rel_interior S" lemma rel_frontier_empty [simp]: "rel_frontier {} = {}" by (simp add: rel_frontier_def) lemma rel_frontier_eq_empty: fixes S :: "'n::euclidean_space set" shows "rel_frontier S = {} \ affine S" unfolding rel_frontier_def using rel_interior_subset_closure by (auto simp add: rel_interior_eq_closure [symmetric]) lemma rel_frontier_sing [simp]: fixes a :: "'n::euclidean_space" shows "rel_frontier {a} = {}" by (simp add: rel_frontier_def) lemma rel_frontier_affine_hull: fixes S :: "'a::euclidean_space set" shows "rel_frontier S \ affine hull S" using closure_affine_hull rel_frontier_def by fastforce lemma rel_frontier_cball [simp]: fixes a :: "'n::euclidean_space" shows "rel_frontier(cball a r) = (if r = 0 then {} else sphere a r)" proof (cases rule: linorder_cases [of r 0]) case less then show ?thesis by (force simp: sphere_def) next case equal then show ?thesis by simp next case greater then show ?thesis apply simp by (metis centre_in_ball empty_iff frontier_cball frontier_def interior_cball interior_rel_interior_gen rel_frontier_def) qed lemma rel_frontier_translation: fixes a :: "'a::euclidean_space" shows "rel_frontier((\x. a + x) ` S) = (\x. a + x) ` (rel_frontier S)" by (simp add: rel_frontier_def translation_diff rel_interior_translation closure_translation) lemma rel_frontier_nonempty_interior: fixes S :: "'n::euclidean_space set" shows "interior S \ {} \ rel_frontier S = frontier S" by (metis frontier_def interior_rel_interior_gen rel_frontier_def) lemma rel_frontier_frontier: fixes S :: "'n::euclidean_space set" shows "affine hull S = UNIV \ rel_frontier S = frontier S" by (simp add: frontier_def rel_frontier_def rel_interior_interior) lemma closest_point_in_rel_frontier: "\closed S; S \ {}; x \ affine hull S - rel_interior S\ \ closest_point S x \ rel_frontier S" by (simp add: closest_point_in_rel_interior closest_point_in_set rel_frontier_def) lemma closed_rel_frontier [iff]: fixes S :: "'n::euclidean_space set" shows "closed (rel_frontier S)" proof - have *: "closedin (top_of_set (affine hull S)) (closure S - rel_interior S)" by (simp add: closed_subset closedin_diff closure_affine_hull openin_rel_interior) show ?thesis apply (rule closedin_closed_trans[of "affine hull S" "rel_frontier S"]) unfolding rel_frontier_def using * closed_affine_hull apply auto done qed lemma closed_rel_boundary: fixes S :: "'n::euclidean_space set" shows "closed S \ closed(S - rel_interior S)" by (metis closed_rel_frontier closure_closed rel_frontier_def) lemma compact_rel_boundary: fixes S :: "'n::euclidean_space set" shows "compact S \ compact(S - rel_interior S)" by (metis bounded_diff closed_rel_boundary closure_eq compact_closure compact_imp_closed) lemma bounded_rel_frontier: fixes S :: "'n::euclidean_space set" shows "bounded S \ bounded(rel_frontier S)" by (simp add: bounded_closure bounded_diff rel_frontier_def) lemma compact_rel_frontier_bounded: fixes S :: "'n::euclidean_space set" shows "bounded S \ compact(rel_frontier S)" using bounded_rel_frontier closed_rel_frontier compact_eq_bounded_closed by blast lemma compact_rel_frontier: fixes S :: "'n::euclidean_space set" shows "compact S \ compact(rel_frontier S)" by (meson compact_eq_bounded_closed compact_rel_frontier_bounded) lemma convex_same_rel_interior_closure: fixes S :: "'n::euclidean_space set" shows "\convex S; convex T\ \ rel_interior S = rel_interior T \ closure S = closure T" by (simp add: closure_eq_rel_interior_eq) lemma convex_same_rel_interior_closure_straddle: fixes S :: "'n::euclidean_space set" shows "\convex S; convex T\ \ rel_interior S = rel_interior T \ rel_interior S \ T \ T \ closure S" by (simp add: closure_eq_between convex_same_rel_interior_closure) lemma convex_rel_frontier_aff_dim: fixes S1 S2 :: "'n::euclidean_space set" assumes "convex S1" and "convex S2" and "S2 \ {}" and "S1 \ rel_frontier S2" shows "aff_dim S1 < aff_dim S2" proof - have "S1 \ closure S2" using assms unfolding rel_frontier_def by auto then have *: "affine hull S1 \ affine hull S2" using hull_mono[of "S1" "closure S2"] closure_same_affine_hull[of S2] by blast then have "aff_dim S1 \ aff_dim S2" using * aff_dim_affine_hull[of S1] aff_dim_affine_hull[of S2] aff_dim_subset[of "affine hull S1" "affine hull S2"] by auto moreover { assume eq: "aff_dim S1 = aff_dim S2" then have "S1 \ {}" using aff_dim_empty[of S1] aff_dim_empty[of S2] \S2 \ {}\ by auto have **: "affine hull S1 = affine hull S2" apply (rule affine_dim_equal) using * affine_affine_hull apply auto using \S1 \ {}\ hull_subset[of S1] apply auto using eq aff_dim_affine_hull[of S1] aff_dim_affine_hull[of S2] apply auto done obtain a where a: "a \ rel_interior S1" using \S1 \ {}\ rel_interior_eq_empty assms by auto obtain T where T: "open T" "a \ T \ S1" "T \ affine hull S1 \ S1" using mem_rel_interior[of a S1] a by auto then have "a \ T \ closure S2" using a assms unfolding rel_frontier_def by auto then obtain b where b: "b \ T \ rel_interior S2" using open_inter_closure_rel_interior[of S2 T] assms T by auto then have "b \ affine hull S1" using rel_interior_subset hull_subset[of S2] ** by auto then have "b \ S1" using T b by auto then have False using b assms unfolding rel_frontier_def by auto } ultimately show ?thesis using less_le by auto qed lemma convex_rel_interior_if: fixes S :: "'n::euclidean_space set" assumes "convex S" and "z \ rel_interior S" shows "\x\affine hull S. \m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" proof - obtain e1 where e1: "e1 > 0 \ cball z e1 \ affine hull S \ S" using mem_rel_interior_cball[of z S] assms by auto { fix x assume x: "x \ affine hull S" { assume "x \ z" define m where "m = 1 + e1/norm(x-z)" hence "m > 1" using e1 \x \ z\ by auto { fix e assume e: "e > 1 \ e \ m" have "z \ affine hull S" using assms rel_interior_subset hull_subset[of S] by auto then have *: "(1 - e)*\<^sub>R x + e *\<^sub>R z \ affine hull S" using mem_affine[of "affine hull S" x z "(1-e)" e] affine_affine_hull[of S] x by auto have "norm (z + e *\<^sub>R x - (x + e *\<^sub>R z)) = norm ((e - 1) *\<^sub>R (x - z))" by (simp add: algebra_simps) also have "\ = (e - 1) * norm (x-z)" using norm_scaleR e by auto also have "\ \ (m - 1) * norm (x - z)" using e mult_right_mono[of _ _ "norm(x-z)"] by auto also have "\ = (e1 / norm (x - z)) * norm (x - z)" using m_def by auto also have "\ = e1" using \x \ z\ e1 by simp finally have **: "norm (z + e *\<^sub>R x - (x + e *\<^sub>R z)) \ e1" by auto have "(1 - e)*\<^sub>R x+ e *\<^sub>R z \ cball z e1" using m_def ** unfolding cball_def dist_norm by (auto simp add: algebra_simps) then have "(1 - e) *\<^sub>R x+ e *\<^sub>R z \ S" using e * e1 by auto } then have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S )" using \m> 1 \ by auto } moreover { assume "x = z" define m where "m = 1 + e1" then have "m > 1" using e1 by auto { fix e assume e: "e > 1 \ e \ m" then have "(1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using e1 x \x = z\ by (auto simp add: algebra_simps) then have "(1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using e by auto } then have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" using \m > 1\ by auto } ultimately have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S )" by blast } then show ?thesis by auto qed lemma convex_rel_interior_if2: fixes S :: "'n::euclidean_space set" assumes "convex S" assumes "z \ rel_interior S" shows "\x\affine hull S. \e. e > 1 \ (1 - e)*\<^sub>R x + e *\<^sub>R z \ S" using convex_rel_interior_if[of S z] assms by auto lemma convex_rel_interior_only_if: fixes S :: "'n::euclidean_space set" assumes "convex S" and "S \ {}" assumes "\x\S. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" shows "z \ rel_interior S" proof - obtain x where x: "x \ rel_interior S" using rel_interior_eq_empty assms by auto then have "x \ S" using rel_interior_subset by auto then obtain e where e: "e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using assms by auto define y where [abs_def]: "y = (1 - e) *\<^sub>R x + e *\<^sub>R z" then have "y \ S" using e by auto define e1 where "e1 = 1/e" then have "0 < e1 \ e1 < 1" using e by auto then have "z =y - (1 - e1) *\<^sub>R (y - x)" using e1_def y_def by (auto simp add: algebra_simps) then show ?thesis using rel_interior_convex_shrink[of S x y "1-e1"] \0 < e1 \ e1 < 1\ \y \ S\ x assms by auto qed lemma convex_rel_interior_iff: fixes S :: "'n::euclidean_space set" assumes "convex S" and "S \ {}" shows "z \ rel_interior S \ (\x\S. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" using assms hull_subset[of S "affine"] convex_rel_interior_if[of S z] convex_rel_interior_only_if[of S z] by auto lemma convex_rel_interior_iff2: fixes S :: "'n::euclidean_space set" assumes "convex S" and "S \ {}" shows "z \ rel_interior S \ (\x\affine hull S. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" using assms hull_subset[of S] convex_rel_interior_if2[of S z] convex_rel_interior_only_if[of S z] by auto lemma convex_interior_iff: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "z \ interior S \ (\x. \e. e > 0 \ z + e *\<^sub>R x \ S)" proof (cases "aff_dim S = int DIM('n)") case False { assume "z \ interior S" then have False using False interior_rel_interior_gen[of S] by auto } moreover { assume r: "\x. \e. e > 0 \ z + e *\<^sub>R x \ S" { fix x obtain e1 where e1: "e1 > 0 \ z + e1 *\<^sub>R (x - z) \ S" using r by auto obtain e2 where e2: "e2 > 0 \ z + e2 *\<^sub>R (z - x) \ S" using r by auto define x1 where [abs_def]: "x1 = z + e1 *\<^sub>R (x - z)" then have x1: "x1 \ affine hull S" using e1 hull_subset[of S] by auto define x2 where [abs_def]: "x2 = z + e2 *\<^sub>R (z - x)" then have x2: "x2 \ affine hull S" using e2 hull_subset[of S] by auto have *: "e1/(e1+e2) + e2/(e1+e2) = 1" using add_divide_distrib[of e1 e2 "e1+e2"] e1 e2 by simp then have "z = (e2/(e1+e2)) *\<^sub>R x1 + (e1/(e1+e2)) *\<^sub>R x2" using x1_def x2_def apply (auto simp add: algebra_simps) using scaleR_left_distrib[of "e1/(e1+e2)" "e2/(e1+e2)" z] apply auto done then have z: "z \ affine hull S" using mem_affine[of "affine hull S" x1 x2 "e2/(e1+e2)" "e1/(e1+e2)"] x1 x2 affine_affine_hull[of S] * by auto have "x1 - x2 = (e1 + e2) *\<^sub>R (x - z)" using x1_def x2_def by (auto simp add: algebra_simps) then have "x = z+(1/(e1+e2)) *\<^sub>R (x1-x2)" using e1 e2 by simp then have "x \ affine hull S" using mem_affine_3_minus[of "affine hull S" z x1 x2 "1/(e1+e2)"] x1 x2 z affine_affine_hull[of S] by auto } then have "affine hull S = UNIV" by auto then have "aff_dim S = int DIM('n)" using aff_dim_affine_hull[of S] by (simp) then have False using False by auto } ultimately show ?thesis by auto next case True then have "S \ {}" using aff_dim_empty[of S] by auto have *: "affine hull S = UNIV" using True affine_hull_UNIV by auto { assume "z \ interior S" then have "z \ rel_interior S" using True interior_rel_interior_gen[of S] by auto then have **: "\x. \e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" using convex_rel_interior_iff2[of S z] assms \S \ {}\ * by auto fix x obtain e1 where e1: "e1 > 1" "(1 - e1) *\<^sub>R (z - x) + e1 *\<^sub>R z \ S" using **[rule_format, of "z-x"] by auto define e where [abs_def]: "e = e1 - 1" then have "(1 - e1) *\<^sub>R (z - x) + e1 *\<^sub>R z = z + e *\<^sub>R x" by (simp add: algebra_simps) then have "e > 0" "z + e *\<^sub>R x \ S" using e1 e_def by auto then have "\e. e > 0 \ z + e *\<^sub>R x \ S" by auto } moreover { assume r: "\x. \e. e > 0 \ z + e *\<^sub>R x \ S" { fix x obtain e1 where e1: "e1 > 0" "z + e1 *\<^sub>R (z - x) \ S" using r[rule_format, of "z-x"] by auto define e where "e = e1 + 1" then have "z + e1 *\<^sub>R (z - x) = (1 - e) *\<^sub>R x + e *\<^sub>R z" by (simp add: algebra_simps) then have "e > 1" "(1 - e)*\<^sub>R x + e *\<^sub>R z \ S" using e1 e_def by auto then have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S" by auto } then have "z \ rel_interior S" using convex_rel_interior_iff2[of S z] assms \S \ {}\ by auto then have "z \ interior S" using True interior_rel_interior_gen[of S] by auto } ultimately show ?thesis by auto qed subsubsection\<^marker>\tag unimportant\ \Relative interior and closure under common operations\ lemma rel_interior_inter_aux: "\{rel_interior S |S. S \ I} \ \I" proof - { fix y assume "y \ \{rel_interior S |S. S \ I}" then have y: "\S \ I. y \ rel_interior S" by auto { fix S assume "S \ I" then have "y \ S" using rel_interior_subset y by auto } then have "y \ \I" by auto } then show ?thesis by auto qed lemma convex_closure_rel_interior_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" proof - obtain x where x: "\S\I. x \ rel_interior S" using assms by auto { fix y assume "y \ \{closure S |S. S \ I}" then have y: "\S \ I. y \ closure S" by auto { assume "y = x" then have "y \ closure (\{rel_interior S |S. S \ I})" using x closure_subset[of "\{rel_interior S |S. S \ I}"] by auto } moreover { assume "y \ x" { fix e :: real assume e: "e > 0" define e1 where "e1 = min 1 (e/norm (y - x))" then have e1: "e1 > 0" "e1 \ 1" "e1 * norm (y - x) \ e" using \y \ x\ \e > 0\ le_divide_eq[of e1 e "norm (y - x)"] by simp_all define z where "z = y - e1 *\<^sub>R (y - x)" { fix S assume "S \ I" then have "z \ rel_interior S" using rel_interior_closure_convex_shrink[of S x y e1] assms x y e1 z_def by auto } then have *: "z \ \{rel_interior S |S. S \ I}" by auto have "\z. z \ \{rel_interior S |S. S \ I} \ z \ y \ dist z y \ e" apply (rule_tac x="z" in exI) using \y \ x\ z_def * e1 e dist_norm[of z y] apply simp done } then have "y islimpt \{rel_interior S |S. S \ I}" unfolding islimpt_approachable_le by blast then have "y \ closure (\{rel_interior S |S. S \ I})" unfolding closure_def by auto } ultimately have "y \ closure (\{rel_interior S |S. S \ I})" by auto } then show ?thesis by auto qed lemma convex_closure_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "closure (\I) = \{closure S |S. S \ I}" proof - have "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" using convex_closure_rel_interior_inter assms by auto moreover have "closure (\{rel_interior S |S. S \ I}) \ closure (\I)" using rel_interior_inter_aux closure_mono[of "\{rel_interior S |S. S \ I}" "\I"] by auto ultimately show ?thesis using closure_Int[of I] by auto qed lemma convex_inter_rel_interior_same_closure: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "closure (\{rel_interior S |S. S \ I}) = closure (\I)" proof - have "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" using convex_closure_rel_interior_inter assms by auto moreover have "closure (\{rel_interior S |S. S \ I}) \ closure (\I)" using rel_interior_inter_aux closure_mono[of "\{rel_interior S |S. S \ I}" "\I"] by auto ultimately show ?thesis using closure_Int[of I] by auto qed lemma convex_rel_interior_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" shows "rel_interior (\I) \ \{rel_interior S |S. S \ I}" proof - have "convex (\I)" using assms convex_Inter by auto moreover have "convex (\{rel_interior S |S. S \ I})" apply (rule convex_Inter) using assms convex_rel_interior apply auto done ultimately have "rel_interior (\{rel_interior S |S. S \ I}) = rel_interior (\I)" using convex_inter_rel_interior_same_closure assms closure_eq_rel_interior_eq[of "\{rel_interior S |S. S \ I}" "\I"] by blast then show ?thesis using rel_interior_subset[of "\{rel_interior S |S. S \ I}"] by auto qed lemma convex_rel_interior_finite_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set)" and "\{rel_interior S |S. S \ I} \ {}" and "finite I" shows "rel_interior (\I) = \{rel_interior S |S. S \ I}" proof - have "\I \ {}" using assms rel_interior_inter_aux[of I] by auto have "convex (\I)" using convex_Inter assms by auto show ?thesis proof (cases "I = {}") case True then show ?thesis using Inter_empty rel_interior_UNIV by auto next case False { fix z assume z: "z \ \{rel_interior S |S. S \ I}" { fix x assume x: "x \ \I" { fix S assume S: "S \ I" then have "z \ rel_interior S" "x \ S" using z x by auto then have "\m. m > 1 \ (\e. e > 1 \ e \ m \ (1 - e)*\<^sub>R x + e *\<^sub>R z \ S)" using convex_rel_interior_if[of S z] S assms hull_subset[of S] by auto } then obtain mS where mS: "\S\I. mS S > 1 \ (\e. e > 1 \ e \ mS S \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ S)" by metis define e where "e = Min (mS ` I)" then have "e \ mS ` I" using assms \I \ {}\ by simp then have "e > 1" using mS by auto moreover have "\S\I. e \ mS S" using e_def assms by auto ultimately have "\e > 1. (1 - e) *\<^sub>R x + e *\<^sub>R z \ \I" using mS by auto } then have "z \ rel_interior (\I)" using convex_rel_interior_iff[of "\I" z] \\I \ {}\ \convex (\I)\ by auto } then show ?thesis using convex_rel_interior_inter[of I] assms by auto qed qed lemma convex_closure_inter_two: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" assumes "rel_interior S \ rel_interior T \ {}" shows "closure (S \ T) = closure S \ closure T" using convex_closure_inter[of "{S,T}"] assms by auto lemma convex_rel_interior_inter_two: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" and "rel_interior S \ rel_interior T \ {}" shows "rel_interior (S \ T) = rel_interior S \ rel_interior T" using convex_rel_interior_finite_inter[of "{S,T}"] assms by auto lemma convex_affine_closure_Int: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "affine T" and "rel_interior S \ T \ {}" shows "closure (S \ T) = closure S \ T" proof - have "affine hull T = T" using assms by auto then have "rel_interior T = T" using rel_interior_affine_hull[of T] by metis moreover have "closure T = T" using assms affine_closed[of T] by auto ultimately show ?thesis using convex_closure_inter_two[of S T] assms affine_imp_convex by auto qed lemma connected_component_1_gen: fixes S :: "'a :: euclidean_space set" assumes "DIM('a) = 1" shows "connected_component S a b \ closed_segment a b \ S" unfolding connected_component_def by (metis (no_types, lifting) assms subsetD subsetI convex_contains_segment convex_segment(1) ends_in_segment connected_convex_1_gen) lemma connected_component_1: fixes S :: "real set" shows "connected_component S a b \ closed_segment a b \ S" by (simp add: connected_component_1_gen) lemma convex_affine_rel_interior_Int: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "affine T" and "rel_interior S \ T \ {}" shows "rel_interior (S \ T) = rel_interior S \ T" proof - have "affine hull T = T" using assms by auto then have "rel_interior T = T" using rel_interior_affine_hull[of T] by metis moreover have "closure T = T" using assms affine_closed[of T] by auto ultimately show ?thesis using convex_rel_interior_inter_two[of S T] assms affine_imp_convex by auto qed lemma convex_affine_rel_frontier_Int: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "affine T" and "interior S \ T \ {}" shows "rel_frontier(S \ T) = frontier S \ T" using assms apply (simp add: rel_frontier_def convex_affine_closure_Int frontier_def) by (metis Diff_Int_distrib2 Int_emptyI convex_affine_closure_Int convex_affine_rel_interior_Int empty_iff interior_rel_interior_gen) lemma rel_interior_convex_Int_affine: fixes S :: "'a::euclidean_space set" assumes "convex S" "affine T" "interior S \ T \ {}" shows "rel_interior(S \ T) = interior S \ T" proof - obtain a where aS: "a \ interior S" and aT:"a \ T" using assms by force have "rel_interior S = interior S" by (metis (no_types) aS affine_hull_nonempty_interior equals0D rel_interior_interior) then show ?thesis by (metis (no_types) affine_imp_convex assms convex_rel_interior_inter_two hull_same rel_interior_affine_hull) qed lemma closure_convex_Int_affine: fixes S :: "'a::euclidean_space set" assumes "convex S" "affine T" "rel_interior S \ T \ {}" shows "closure(S \ T) = closure S \ T" proof have "closure (S \ T) \ closure T" by (simp add: closure_mono) also have "... \ T" by (simp add: affine_closed assms) finally show "closure(S \ T) \ closure S \ T" by (simp add: closure_mono) next obtain a where "a \ rel_interior S" "a \ T" using assms by auto then have ssT: "subspace ((\x. (-a)+x) ` T)" and "a \ S" using affine_diffs_subspace rel_interior_subset assms by blast+ show "closure S \ T \ closure (S \ T)" proof fix x assume "x \ closure S \ T" show "x \ closure (S \ T)" proof (cases "x = a") case True then show ?thesis using \a \ S\ \a \ T\ closure_subset by fastforce next case False then have "x \ closure(open_segment a x)" by auto then show ?thesis using \x \ closure S \ T\ assms convex_affine_closure_Int by blast qed qed qed lemma subset_rel_interior_convex: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" and "S \ closure T" and "\ S \ rel_frontier T" shows "rel_interior S \ rel_interior T" proof - have *: "S \ closure T = S" using assms by auto have "\ rel_interior S \ rel_frontier T" using closure_mono[of "rel_interior S" "rel_frontier T"] closed_rel_frontier[of T] closure_closed[of S] convex_closure_rel_interior[of S] closure_subset[of S] assms by auto then have "rel_interior S \ rel_interior (closure T) \ {}" using assms rel_frontier_def[of T] rel_interior_subset convex_rel_interior_closure[of T] by auto then have "rel_interior S \ rel_interior T = rel_interior (S \ closure T)" using assms convex_closure convex_rel_interior_inter_two[of S "closure T"] convex_rel_interior_closure[of T] by auto also have "\ = rel_interior S" using * by auto finally show ?thesis by auto qed lemma rel_interior_convex_linear_image: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" shows "f ` (rel_interior S) = rel_interior (f ` S)" proof (cases "S = {}") case True then show ?thesis using assms by auto next case False interpret linear f by fact have *: "f ` (rel_interior S) \ f ` S" unfolding image_mono using rel_interior_subset by auto have "f ` S \ f ` (closure S)" unfolding image_mono using closure_subset by auto also have "\ = f ` (closure (rel_interior S))" using convex_closure_rel_interior assms by auto also have "\ \ closure (f ` (rel_interior S))" using closure_linear_image_subset assms by auto finally have "closure (f ` S) = closure (f ` rel_interior S)" using closure_mono[of "f ` S" "closure (f ` rel_interior S)"] closure_closure closure_mono[of "f ` rel_interior S" "f ` S"] * by auto then have "rel_interior (f ` S) = rel_interior (f ` rel_interior S)" using assms convex_rel_interior linear_conv_bounded_linear[of f] convex_linear_image[of _ S] convex_linear_image[of _ "rel_interior S"] closure_eq_rel_interior_eq[of "f ` S" "f ` rel_interior S"] by auto then have "rel_interior (f ` S) \ f ` rel_interior S" using rel_interior_subset by auto moreover { fix z assume "z \ f ` rel_interior S" then obtain z1 where z1: "z1 \ rel_interior S" "f z1 = z" by auto { fix x assume "x \ f ` S" then obtain x1 where x1: "x1 \ S" "f x1 = x" by auto then obtain e where e: "e > 1" "(1 - e) *\<^sub>R x1 + e *\<^sub>R z1 \ S" using convex_rel_interior_iff[of S z1] \convex S\ x1 z1 by auto moreover have "f ((1 - e) *\<^sub>R x1 + e *\<^sub>R z1) = (1 - e) *\<^sub>R x + e *\<^sub>R z" using x1 z1 by (simp add: linear_add linear_scale \linear f\) ultimately have "(1 - e) *\<^sub>R x + e *\<^sub>R z \ f ` S" using imageI[of "(1 - e) *\<^sub>R x1 + e *\<^sub>R z1" S f] by auto then have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ f ` S" using e by auto } then have "z \ rel_interior (f ` S)" using convex_rel_interior_iff[of "f ` S" z] \convex S\ \linear f\ \S \ {}\ convex_linear_image[of f S] linear_conv_bounded_linear[of f] by auto } ultimately show ?thesis by auto qed lemma rel_interior_convex_linear_preimage: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" and "f -` (rel_interior S) \ {}" shows "rel_interior (f -` S) = f -` (rel_interior S)" proof - interpret linear f by fact have "S \ {}" using assms by auto have nonemp: "f -` S \ {}" by (metis assms(3) rel_interior_subset subset_empty vimage_mono) then have "S \ (range f) \ {}" by auto have conv: "convex (f -` S)" using convex_linear_vimage assms by auto then have "convex (S \ range f)" by (simp add: assms(2) convex_Int convex_linear_image linear_axioms) { fix z assume "z \ f -` (rel_interior S)" then have z: "f z \ rel_interior S" by auto { fix x assume "x \ f -` S" then have "f x \ S" by auto then obtain e where e: "e > 1" "(1 - e) *\<^sub>R f x + e *\<^sub>R f z \ S" using convex_rel_interior_iff[of S "f z"] z assms \S \ {}\ by auto moreover have "(1 - e) *\<^sub>R f x + e *\<^sub>R f z = f ((1 - e) *\<^sub>R x + e *\<^sub>R z)" using \linear f\ by (simp add: linear_iff) ultimately have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R z \ f -` S" using e by auto } then have "z \ rel_interior (f -` S)" using convex_rel_interior_iff[of "f -` S" z] conv nonemp by auto } moreover { fix z assume z: "z \ rel_interior (f -` S)" { fix x assume "x \ S \ range f" then obtain y where y: "f y = x" "y \ f -` S" by auto then obtain e where e: "e > 1" "(1 - e) *\<^sub>R y + e *\<^sub>R z \ f -` S" using convex_rel_interior_iff[of "f -` S" z] z conv by auto moreover have "(1 - e) *\<^sub>R x + e *\<^sub>R f z = f ((1 - e) *\<^sub>R y + e *\<^sub>R z)" using \linear f\ y by (simp add: linear_iff) ultimately have "\e. e > 1 \ (1 - e) *\<^sub>R x + e *\<^sub>R f z \ S \ range f" using e by auto } then have "f z \ rel_interior (S \ range f)" using \convex (S \ (range f))\ \S \ range f \ {}\ convex_rel_interior_iff[of "S \ (range f)" "f z"] by auto moreover have "affine (range f)" by (simp add: linear_axioms linear_subspace_image subspace_imp_affine) ultimately have "f z \ rel_interior S" using convex_affine_rel_interior_Int[of S "range f"] assms by auto then have "z \ f -` (rel_interior S)" by auto } ultimately show ?thesis by auto qed lemma rel_interior_Times: fixes S :: "'n::euclidean_space set" and T :: "'m::euclidean_space set" assumes "convex S" and "convex T" shows "rel_interior (S \ T) = rel_interior S \ rel_interior T" proof - { assume "S = {}" then have ?thesis by auto } moreover { assume "T = {}" then have ?thesis by auto } moreover { assume "S \ {}" "T \ {}" then have ri: "rel_interior S \ {}" "rel_interior T \ {}" using rel_interior_eq_empty assms by auto then have "fst -` rel_interior S \ {}" using fst_vimage_eq_Times[of "rel_interior S"] by auto then have "rel_interior ((fst :: 'n * 'm \ 'n) -` S) = fst -` rel_interior S" using fst_linear \convex S\ rel_interior_convex_linear_preimage[of fst S] by auto then have s: "rel_interior (S \ (UNIV :: 'm set)) = rel_interior S \ UNIV" by (simp add: fst_vimage_eq_Times) from ri have "snd -` rel_interior T \ {}" using snd_vimage_eq_Times[of "rel_interior T"] by auto then have "rel_interior ((snd :: 'n * 'm \ 'm) -` T) = snd -` rel_interior T" using snd_linear \convex T\ rel_interior_convex_linear_preimage[of snd T] by auto then have t: "rel_interior ((UNIV :: 'n set) \ T) = UNIV \ rel_interior T" by (simp add: snd_vimage_eq_Times) from s t have *: "rel_interior (S \ (UNIV :: 'm set)) \ rel_interior ((UNIV :: 'n set) \ T) = rel_interior S \ rel_interior T" by auto have "S \ T = S \ (UNIV :: 'm set) \ (UNIV :: 'n set) \ T" by auto then have "rel_interior (S \ T) = rel_interior ((S \ (UNIV :: 'm set)) \ ((UNIV :: 'n set) \ T))" by auto also have "\ = rel_interior (S \ (UNIV :: 'm set)) \ rel_interior ((UNIV :: 'n set) \ T)" apply (subst convex_rel_interior_inter_two[of "S \ (UNIV :: 'm set)" "(UNIV :: 'n set) \ T"]) using * ri assms convex_Times apply auto done finally have ?thesis using * by auto } ultimately show ?thesis by blast qed lemma rel_interior_scaleR: fixes S :: "'n::euclidean_space set" assumes "c \ 0" shows "((*\<^sub>R) c) ` (rel_interior S) = rel_interior (((*\<^sub>R) c) ` S)" using rel_interior_injective_linear_image[of "((*\<^sub>R) c)" S] linear_conv_bounded_linear[of "(*\<^sub>R) c"] linear_scaleR injective_scaleR[of c] assms by auto lemma rel_interior_convex_scaleR: fixes S :: "'n::euclidean_space set" assumes "convex S" shows "((*\<^sub>R) c) ` (rel_interior S) = rel_interior (((*\<^sub>R) c) ` S)" by (metis assms linear_scaleR rel_interior_convex_linear_image) lemma convex_rel_open_scaleR: fixes S :: "'n::euclidean_space set" assumes "convex S" and "rel_open S" shows "convex (((*\<^sub>R) c) ` S) \ rel_open (((*\<^sub>R) c) ` S)" by (metis assms convex_scaling rel_interior_convex_scaleR rel_open_def) lemma convex_rel_open_finite_inter: assumes "\S\I. convex (S :: 'n::euclidean_space set) \ rel_open S" and "finite I" shows "convex (\I) \ rel_open (\I)" proof (cases "\{rel_interior S |S. S \ I} = {}") case True then have "\I = {}" using assms unfolding rel_open_def by auto then show ?thesis unfolding rel_open_def by auto next case False then have "rel_open (\I)" using assms unfolding rel_open_def using convex_rel_interior_finite_inter[of I] by auto then show ?thesis using convex_Inter assms by auto qed lemma convex_rel_open_linear_image: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" and "rel_open S" shows "convex (f ` S) \ rel_open (f ` S)" by (metis assms convex_linear_image rel_interior_convex_linear_image rel_open_def) lemma convex_rel_open_linear_preimage: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" and "convex S" and "rel_open S" shows "convex (f -` S) \ rel_open (f -` S)" proof (cases "f -` (rel_interior S) = {}") case True then have "f -` S = {}" using assms unfolding rel_open_def by auto then show ?thesis unfolding rel_open_def by auto next case False then have "rel_open (f -` S)" using assms unfolding rel_open_def using rel_interior_convex_linear_preimage[of f S] by auto then show ?thesis using convex_linear_vimage assms by auto qed lemma rel_interior_projection: fixes S :: "('m::euclidean_space \ 'n::euclidean_space) set" and f :: "'m::euclidean_space \ 'n::euclidean_space set" assumes "convex S" and "f = (\y. {z. (y, z) \ S})" shows "(y, z) \ rel_interior S \ (y \ rel_interior {y. (f y \ {})} \ z \ rel_interior (f y))" proof - { fix y assume "y \ {y. f y \ {}}" then obtain z where "(y, z) \ S" using assms by auto then have "\x. x \ S \ y = fst x" apply (rule_tac x="(y, z)" in exI) apply auto done then obtain x where "x \ S" "y = fst x" by blast then have "y \ fst ` S" unfolding image_def by auto } then have "fst ` S = {y. f y \ {}}" unfolding fst_def using assms by auto then have h1: "fst ` rel_interior S = rel_interior {y. f y \ {}}" using rel_interior_convex_linear_image[of fst S] assms fst_linear by auto { fix y assume "y \ rel_interior {y. f y \ {}}" then have "y \ fst ` rel_interior S" using h1 by auto then have *: "rel_interior S \ fst -` {y} \ {}" by auto moreover have aff: "affine (fst -` {y})" unfolding affine_alt by (simp add: algebra_simps) ultimately have **: "rel_interior (S \ fst -` {y}) = rel_interior S \ fst -` {y}" using convex_affine_rel_interior_Int[of S "fst -` {y}"] assms by auto have conv: "convex (S \ fst -` {y})" using convex_Int assms aff affine_imp_convex by auto { fix x assume "x \ f y" then have "(y, x) \ S \ (fst -` {y})" using assms by auto moreover have "x = snd (y, x)" by auto ultimately have "x \ snd ` (S \ fst -` {y})" by blast } then have "snd ` (S \ fst -` {y}) = f y" using assms by auto then have ***: "rel_interior (f y) = snd ` rel_interior (S \ fst -` {y})" using rel_interior_convex_linear_image[of snd "S \ fst -` {y}"] snd_linear conv by auto { fix z assume "z \ rel_interior (f y)" then have "z \ snd ` rel_interior (S \ fst -` {y})" using *** by auto moreover have "{y} = fst ` rel_interior (S \ fst -` {y})" using * ** rel_interior_subset by auto ultimately have "(y, z) \ rel_interior (S \ fst -` {y})" by force then have "(y,z) \ rel_interior S" using ** by auto } moreover { fix z assume "(y, z) \ rel_interior S" then have "(y, z) \ rel_interior (S \ fst -` {y})" using ** by auto then have "z \ snd ` rel_interior (S \ fst -` {y})" by (metis Range_iff snd_eq_Range) then have "z \ rel_interior (f y)" using *** by auto } ultimately have "\z. (y, z) \ rel_interior S \ z \ rel_interior (f y)" by auto } then have h2: "\y z. y \ rel_interior {t. f t \ {}} \ (y, z) \ rel_interior S \ z \ rel_interior (f y)" by auto { fix y z assume asm: "(y, z) \ rel_interior S" then have "y \ fst ` rel_interior S" by (metis Domain_iff fst_eq_Domain) then have "y \ rel_interior {t. f t \ {}}" using h1 by auto then have "y \ rel_interior {t. f t \ {}}" and "(z \ rel_interior (f y))" using h2 asm by auto } then show ?thesis using h2 by blast qed lemma rel_frontier_Times: fixes S :: "'n::euclidean_space set" and T :: "'m::euclidean_space set" assumes "convex S" and "convex T" shows "rel_frontier S \ rel_frontier T \ rel_frontier (S \ T)" by (force simp: rel_frontier_def rel_interior_Times assms closure_Times) subsubsection\<^marker>\tag unimportant\ \Relative interior of convex cone\ lemma cone_rel_interior: fixes S :: "'m::euclidean_space set" assumes "cone S" shows "cone ({0} \ rel_interior S)" proof (cases "S = {}") case True then show ?thesis by (simp add: cone_0) next case False then have *: "0 \ S \ (\c. c > 0 \ (*\<^sub>R) c ` S = S)" using cone_iff[of S] assms by auto then have *: "0 \ ({0} \ rel_interior S)" and "\c. c > 0 \ (*\<^sub>R) c ` ({0} \ rel_interior S) = ({0} \ rel_interior S)" by (auto simp add: rel_interior_scaleR) then show ?thesis using cone_iff[of "{0} \ rel_interior S"] by auto qed lemma rel_interior_convex_cone_aux: fixes S :: "'m::euclidean_space set" assumes "convex S" shows "(c, x) \ rel_interior (cone hull ({(1 :: real)} \ S)) \ c > 0 \ x \ (((*\<^sub>R) c) ` (rel_interior S))" proof (cases "S = {}") case True then show ?thesis by (simp add: cone_hull_empty) next case False then obtain s where "s \ S" by auto have conv: "convex ({(1 :: real)} \ S)" using convex_Times[of "{(1 :: real)}" S] assms convex_singleton[of "1 :: real"] by auto define f where "f y = {z. (y, z) \ cone hull ({1 :: real} \ S)}" for y then have *: "(c, x) \ rel_interior (cone hull ({(1 :: real)} \ S)) = (c \ rel_interior {y. f y \ {}} \ x \ rel_interior (f c))" apply (subst rel_interior_projection[of "cone hull ({(1 :: real)} \ S)" f c x]) using convex_cone_hull[of "{(1 :: real)} \ S"] conv apply auto done { fix y :: real assume "y \ 0" then have "y *\<^sub>R (1,s) \ cone hull ({1 :: real} \ S)" using cone_hull_expl[of "{(1 :: real)} \ S"] \s \ S\ by auto then have "f y \ {}" using f_def by auto } then have "{y. f y \ {}} = {0..}" using f_def cone_hull_expl[of "{1 :: real} \ S"] by auto then have **: "rel_interior {y. f y \ {}} = {0<..}" using rel_interior_real_semiline by auto { fix c :: real assume "c > 0" then have "f c = ((*\<^sub>R) c ` S)" using f_def cone_hull_expl[of "{1 :: real} \ S"] by auto then have "rel_interior (f c) = (*\<^sub>R) c ` rel_interior S" using rel_interior_convex_scaleR[of S c] assms by auto } then show ?thesis using * ** by auto qed lemma rel_interior_convex_cone: fixes S :: "'m::euclidean_space set" assumes "convex S" shows "rel_interior (cone hull ({1 :: real} \ S)) = {(c, c *\<^sub>R x) | c x. c > 0 \ x \ rel_interior S}" (is "?lhs = ?rhs") proof - { fix z assume "z \ ?lhs" have *: "z = (fst z, snd z)" by auto then have "z \ ?rhs" using rel_interior_convex_cone_aux[of S "fst z" "snd z"] assms \z \ ?lhs\ by fastforce } moreover { fix z assume "z \ ?rhs" then have "z \ ?lhs" using rel_interior_convex_cone_aux[of S "fst z" "snd z"] assms by auto } ultimately show ?thesis by blast qed lemma convex_hull_finite_union: assumes "finite I" assumes "\i\I. convex (S i) \ (S i) \ {}" shows "convex hull (\(S ` I)) = {sum (\i. c i *\<^sub>R s i) I | c s. (\i\I. c i \ 0) \ sum c I = 1 \ (\i\I. s i \ S i)}" (is "?lhs = ?rhs") proof - have "?lhs \ ?rhs" proof fix x assume "x \ ?rhs" then obtain c s where *: "sum (\i. c i *\<^sub>R s i) I = x" "sum c I = 1" "(\i\I. c i \ 0) \ (\i\I. s i \ S i)" by auto then have "\i\I. s i \ convex hull (\(S ` I))" using hull_subset[of "\(S ` I)" convex] by auto then show "x \ ?lhs" unfolding *(1)[symmetric] apply (subst convex_sum[of I "convex hull \(S ` I)" c s]) using * assms convex_convex_hull apply auto done qed { fix i assume "i \ I" with assms have "\p. p \ S i" by auto } then obtain p where p: "\i\I. p i \ S i" by metis { fix i assume "i \ I" { fix x assume "x \ S i" define c where "c j = (if j = i then 1::real else 0)" for j then have *: "sum c I = 1" using \finite I\ \i \ I\ sum.delta[of I i "\j::'a. 1::real"] by auto define s where "s j = (if j = i then x else p j)" for j then have "\j. c j *\<^sub>R s j = (if j = i then x else 0)" using c_def by (auto simp add: algebra_simps) then have "x = sum (\i. c i *\<^sub>R s i) I" using s_def c_def \finite I\ \i \ I\ sum.delta[of I i "\j::'a. x"] by auto then have "x \ ?rhs" apply auto apply (rule_tac x = c in exI) apply (rule_tac x = s in exI) using * c_def s_def p \x \ S i\ apply auto done } then have "?rhs \ S i" by auto } then have *: "?rhs \ \(S ` I)" by auto { fix u v :: real assume uv: "u \ 0 \ v \ 0 \ u + v = 1" fix x y assume xy: "x \ ?rhs \ y \ ?rhs" from xy obtain c s where xc: "x = sum (\i. c i *\<^sub>R s i) I \ (\i\I. c i \ 0) \ sum c I = 1 \ (\i\I. s i \ S i)" by auto from xy obtain d t where yc: "y = sum (\i. d i *\<^sub>R t i) I \ (\i\I. d i \ 0) \ sum d I = 1 \ (\i\I. t i \ S i)" by auto define e where "e i = u * c i + v * d i" for i have ge0: "\i\I. e i \ 0" using e_def xc yc uv by simp have "sum (\i. u * c i) I = u * sum c I" by (simp add: sum_distrib_left) moreover have "sum (\i. v * d i) I = v * sum d I" by (simp add: sum_distrib_left) ultimately have sum1: "sum e I = 1" using e_def xc yc uv by (simp add: sum.distrib) define q where "q i = (if e i = 0 then p i else (u * c i / e i) *\<^sub>R s i + (v * d i / e i) *\<^sub>R t i)" for i { fix i assume i: "i \ I" have "q i \ S i" proof (cases "e i = 0") case True then show ?thesis using i p q_def by auto next case False then show ?thesis using mem_convex_alt[of "S i" "s i" "t i" "u * (c i)" "v * (d i)"] mult_nonneg_nonneg[of u "c i"] mult_nonneg_nonneg[of v "d i"] assms q_def e_def i False xc yc uv by (auto simp del: mult_nonneg_nonneg) qed } then have qs: "\i\I. q i \ S i" by auto { fix i assume i: "i \ I" have "(u * c i) *\<^sub>R s i + (v * d i) *\<^sub>R t i = e i *\<^sub>R q i" proof (cases "e i = 0") case True have ge: "u * (c i) \ 0 \ v * d i \ 0" using xc yc uv i by simp moreover from ge have "u * c i \ 0 \ v * d i \ 0" using True e_def i by simp ultimately have "u * c i = 0 \ v * d i = 0" by auto with True show ?thesis by auto next case False then have "(u * (c i)/(e i))*\<^sub>R (s i)+(v * (d i)/(e i))*\<^sub>R (t i) = q i" using q_def by auto then have "e i *\<^sub>R ((u * (c i)/(e i))*\<^sub>R (s i)+(v * (d i)/(e i))*\<^sub>R (t i)) = (e i) *\<^sub>R (q i)" by auto with False show ?thesis by (simp add: algebra_simps) qed } then have *: "\i\I. (u * c i) *\<^sub>R s i + (v * d i) *\<^sub>R t i = e i *\<^sub>R q i" by auto have "u *\<^sub>R x + v *\<^sub>R y = sum (\i. (u * c i) *\<^sub>R s i + (v * d i) *\<^sub>R t i) I" using xc yc by (simp add: algebra_simps scaleR_right.sum sum.distrib) also have "\ = sum (\i. e i *\<^sub>R q i) I" using * by auto finally have "u *\<^sub>R x + v *\<^sub>R y = sum (\i. (e i) *\<^sub>R (q i)) I" by auto then have "u *\<^sub>R x + v *\<^sub>R y \ ?rhs" using ge0 sum1 qs by auto } then have "convex ?rhs" unfolding convex_def by auto then show ?thesis using \?lhs \ ?rhs\ * hull_minimal[of "\(S ` I)" ?rhs convex] by blast qed lemma convex_hull_union_two: fixes S T :: "'m::euclidean_space set" assumes "convex S" and "S \ {}" and "convex T" and "T \ {}" shows "convex hull (S \ T) = {u *\<^sub>R s + v *\<^sub>R t | u v s t. u \ 0 \ v \ 0 \ u + v = 1 \ s \ S \ t \ T}" (is "?lhs = ?rhs") proof define I :: "nat set" where "I = {1, 2}" define s where "s i = (if i = (1::nat) then S else T)" for i have "\(s ` I) = S \ T" using s_def I_def by auto then have "convex hull (\(s ` I)) = convex hull (S \ T)" by auto moreover have "convex hull \(s ` I) = {\ i\I. c i *\<^sub>R sa i | c sa. (\i\I. 0 \ c i) \ sum c I = 1 \ (\i\I. sa i \ s i)}" apply (subst convex_hull_finite_union[of I s]) using assms s_def I_def apply auto done moreover have "{\i\I. c i *\<^sub>R sa i | c sa. (\i\I. 0 \ c i) \ sum c I = 1 \ (\i\I. sa i \ s i)} \ ?rhs" using s_def I_def by auto ultimately show "?lhs \ ?rhs" by auto { fix x assume "x \ ?rhs" then obtain u v s t where *: "x = u *\<^sub>R s + v *\<^sub>R t \ u \ 0 \ v \ 0 \ u + v = 1 \ s \ S \ t \ T" by auto then have "x \ convex hull {s, t}" using convex_hull_2[of s t] by auto then have "x \ convex hull (S \ T)" using * hull_mono[of "{s, t}" "S \ T"] by auto } then show "?lhs \ ?rhs" by blast qed proposition ray_to_rel_frontier: fixes a :: "'a::real_inner" assumes "bounded S" and a: "a \ rel_interior S" and aff: "(a + l) \ affine hull S" and "l \ 0" obtains d where "0 < d" "(a + d *\<^sub>R l) \ rel_frontier S" "\e. \0 \ e; e < d\ \ (a + e *\<^sub>R l) \ rel_interior S" proof - have aaff: "a \ affine hull S" by (meson a hull_subset rel_interior_subset rev_subsetD) let ?D = "{d. 0 < d \ a + d *\<^sub>R l \ rel_interior S}" obtain B where "B > 0" and B: "S \ ball a B" using bounded_subset_ballD [OF \bounded S\] by blast have "a + (B / norm l) *\<^sub>R l \ ball a B" by (simp add: dist_norm \l \ 0\) with B have "a + (B / norm l) *\<^sub>R l \ rel_interior S" using rel_interior_subset subsetCE by blast with \B > 0\ \l \ 0\ have nonMT: "?D \ {}" using divide_pos_pos zero_less_norm_iff by fastforce have bdd: "bdd_below ?D" by (metis (no_types, lifting) bdd_belowI le_less mem_Collect_eq) have relin_Ex: "\x. x \ rel_interior S \ \e>0. \x'\affine hull S. dist x' x < e \ x' \ rel_interior S" using openin_rel_interior [of S] by (simp add: openin_euclidean_subtopology_iff) define d where "d = Inf ?D" obtain \ where "0 < \" and \: "\\. \0 \ \; \ < \\ \ (a + \ *\<^sub>R l) \ rel_interior S" proof - obtain e where "e>0" and e: "\x'. x' \ affine hull S \ dist x' a < e \ x' \ rel_interior S" using relin_Ex a by blast show thesis proof (rule_tac \ = "e / norm l" in that) show "0 < e / norm l" by (simp add: \0 < e\ \l \ 0\) next show "a + \ *\<^sub>R l \ rel_interior S" if "0 \ \" "\ < e / norm l" for \ proof (rule e) show "a + \ *\<^sub>R l \ affine hull S" by (metis (no_types) add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus aaff) show "dist (a + \ *\<^sub>R l) a < e" using that by (simp add: \l \ 0\ dist_norm pos_less_divide_eq) qed qed qed have inint: "\e. \0 \ e; e < d\ \ a + e *\<^sub>R l \ rel_interior S" unfolding d_def using cInf_lower [OF _ bdd] by (metis (no_types, lifting) a add.right_neutral le_less mem_Collect_eq not_less real_vector.scale_zero_left) have "\ \ d" unfolding d_def apply (rule cInf_greatest [OF nonMT]) using \ dual_order.strict_implies_order le_less_linear by blast with \0 < \\ have "0 < d" by simp have "a + d *\<^sub>R l \ rel_interior S" proof assume adl: "a + d *\<^sub>R l \ rel_interior S" obtain e where "e > 0" and e: "\x'. x' \ affine hull S \ dist x' (a + d *\<^sub>R l) < e \ x' \ rel_interior S" using relin_Ex adl by blast have "d + e / norm l \ Inf {d. 0 < d \ a + d *\<^sub>R l \ rel_interior S}" proof (rule cInf_greatest [OF nonMT], clarsimp) fix x::real assume "0 < x" and nonrel: "a + x *\<^sub>R l \ rel_interior S" show "d + e / norm l \ x" proof (cases "x < d") case True with inint nonrel \0 < x\ show ?thesis by auto next case False then have dle: "x < d + e / norm l \ dist (a + x *\<^sub>R l) (a + d *\<^sub>R l) < e" by (simp add: field_simps \l \ 0\) have ain: "a + x *\<^sub>R l \ affine hull S" by (metis add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus aaff) show ?thesis using e [OF ain] nonrel dle by force qed qed then show False using \0 < e\ \l \ 0\ by (simp add: d_def [symmetric] field_simps) qed moreover have "a + d *\<^sub>R l \ closure S" proof (clarsimp simp: closure_approachable) fix \::real assume "0 < \" have 1: "a + (d - min d (\ / 2 / norm l)) *\<^sub>R l \ S" apply (rule subsetD [OF rel_interior_subset inint]) using \l \ 0\ \0 < d\ \0 < \\ by auto have "norm l * min d (\ / (norm l * 2)) \ norm l * (\ / (norm l * 2))" by (metis min_def mult_left_mono norm_ge_zero order_refl) also have "... < \" using \l \ 0\ \0 < \\ by (simp add: field_simps) finally have 2: "norm l * min d (\ / (norm l * 2)) < \" . show "\y\S. dist y (a + d *\<^sub>R l) < \" apply (rule_tac x="a + (d - min d (\ / 2 / norm l)) *\<^sub>R l" in bexI) using 1 2 \0 < d\ \0 < \\ apply (auto simp: algebra_simps) done qed ultimately have infront: "a + d *\<^sub>R l \ rel_frontier S" by (simp add: rel_frontier_def) show ?thesis by (rule that [OF \0 < d\ infront inint]) qed corollary ray_to_frontier: fixes a :: "'a::euclidean_space" assumes "bounded S" and a: "a \ interior S" and "l \ 0" obtains d where "0 < d" "(a + d *\<^sub>R l) \ frontier S" "\e. \0 \ e; e < d\ \ (a + e *\<^sub>R l) \ interior S" proof - have "interior S = rel_interior S" using a rel_interior_nonempty_interior by auto then have "a \ rel_interior S" using a by simp then show ?thesis apply (rule ray_to_rel_frontier [OF \bounded S\ _ _ \l \ 0\]) using a affine_hull_nonempty_interior apply blast by (simp add: \interior S = rel_interior S\ frontier_def rel_frontier_def that) qed lemma segment_to_rel_frontier_aux: fixes x :: "'a::euclidean_space" assumes "convex S" "bounded S" and x: "x \ rel_interior S" and y: "y \ S" and xy: "x \ y" obtains z where "z \ rel_frontier S" "y \ closed_segment x z" "open_segment x z \ rel_interior S" proof - have "x + (y - x) \ affine hull S" using hull_inc [OF y] by auto then obtain d where "0 < d" and df: "(x + d *\<^sub>R (y-x)) \ rel_frontier S" and di: "\e. \0 \ e; e < d\ \ (x + e *\<^sub>R (y-x)) \ rel_interior S" by (rule ray_to_rel_frontier [OF \bounded S\ x]) (use xy in auto) show ?thesis proof show "x + d *\<^sub>R (y - x) \ rel_frontier S" by (simp add: df) next have "open_segment x y \ rel_interior S" using rel_interior_closure_convex_segment [OF \convex S\ x] closure_subset y by blast moreover have "x + d *\<^sub>R (y - x) \ open_segment x y" if "d < 1" using xy apply (auto simp: in_segment) apply (rule_tac x="d" in exI) using \0 < d\ that apply (auto simp: algebra_simps) done ultimately have "1 \ d" using df rel_frontier_def by fastforce moreover have "x = (1 / d) *\<^sub>R x + ((d - 1) / d) *\<^sub>R x" by (metis \0 < d\ add.commute add_divide_distrib diff_add_cancel divide_self_if less_irrefl scaleR_add_left scaleR_one) ultimately show "y \ closed_segment x (x + d *\<^sub>R (y - x))" apply (auto simp: in_segment) apply (rule_tac x="1/d" in exI) apply (auto simp: algebra_simps) done next show "open_segment x (x + d *\<^sub>R (y - x)) \ rel_interior S" apply (rule rel_interior_closure_convex_segment [OF \convex S\ x]) using df rel_frontier_def by auto qed qed lemma segment_to_rel_frontier: fixes x :: "'a::euclidean_space" assumes S: "convex S" "bounded S" and x: "x \ rel_interior S" and y: "y \ S" and xy: "\(x = y \ S = {x})" obtains z where "z \ rel_frontier S" "y \ closed_segment x z" "open_segment x z \ rel_interior S" proof (cases "x=y") case True with xy have "S \ {x}" by blast with True show ?thesis by (metis Set.set_insert all_not_in_conv ends_in_segment(1) insert_iff segment_to_rel_frontier_aux[OF S x] that y) next case False then show ?thesis using segment_to_rel_frontier_aux [OF S x y] that by blast qed proposition rel_frontier_not_sing: fixes a :: "'a::euclidean_space" assumes "bounded S" shows "rel_frontier S \ {a}" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain z where "z \ S" by blast then show ?thesis proof (cases "S = {z}") case True then show ?thesis by simp next case False then obtain w where "w \ S" "w \ z" using \z \ S\ by blast show ?thesis proof assume "rel_frontier S = {a}" then consider "w \ rel_frontier S" | "z \ rel_frontier S" using \w \ z\ by auto then show False proof cases case 1 then have w: "w \ rel_interior S" using \w \ S\ closure_subset rel_frontier_def by fastforce have "w + (w - z) \ affine hull S" by (metis \w \ S\ \z \ S\ affine_affine_hull hull_inc mem_affine_3_minus scaleR_one) then obtain e where "0 < e" "(w + e *\<^sub>R (w - z)) \ rel_frontier S" using \w \ z\ \z \ S\ by (metis assms ray_to_rel_frontier right_minus_eq w) moreover obtain d where "0 < d" "(w + d *\<^sub>R (z - w)) \ rel_frontier S" using ray_to_rel_frontier [OF \bounded S\ w, of "1 *\<^sub>R (z - w)"] \w \ z\ \z \ S\ by (metis add.commute add.right_neutral diff_add_cancel hull_inc scaleR_one) ultimately have "d *\<^sub>R (z - w) = e *\<^sub>R (w - z)" using \rel_frontier S = {a}\ by force moreover have "e \ -d " using \0 < e\ \0 < d\ by force ultimately show False by (metis (no_types, lifting) \w \ z\ eq_iff_diff_eq_0 minus_diff_eq real_vector.scale_cancel_right real_vector.scale_minus_right scaleR_left.minus) next case 2 then have z: "z \ rel_interior S" using \z \ S\ closure_subset rel_frontier_def by fastforce have "z + (z - w) \ affine hull S" by (metis \z \ S\ \w \ S\ affine_affine_hull hull_inc mem_affine_3_minus scaleR_one) then obtain e where "0 < e" "(z + e *\<^sub>R (z - w)) \ rel_frontier S" using \w \ z\ \w \ S\ by (metis assms ray_to_rel_frontier right_minus_eq z) moreover obtain d where "0 < d" "(z + d *\<^sub>R (w - z)) \ rel_frontier S" using ray_to_rel_frontier [OF \bounded S\ z, of "1 *\<^sub>R (w - z)"] \w \ z\ \w \ S\ by (metis add.commute add.right_neutral diff_add_cancel hull_inc scaleR_one) ultimately have "d *\<^sub>R (w - z) = e *\<^sub>R (z - w)" using \rel_frontier S = {a}\ by force moreover have "e \ -d " using \0 < e\ \0 < d\ by force ultimately show False by (metis (no_types, lifting) \w \ z\ eq_iff_diff_eq_0 minus_diff_eq real_vector.scale_cancel_right real_vector.scale_minus_right scaleR_left.minus) qed qed qed qed subsection\<^marker>\tag unimportant\ \Convexity on direct sums\ lemma closure_sum: fixes S T :: "'a::real_normed_vector set" shows "closure S + closure T \ closure (S + T)" unfolding set_plus_image closure_Times [symmetric] split_def by (intro closure_bounded_linear_image_subset bounded_linear_add bounded_linear_fst bounded_linear_snd) lemma rel_interior_sum: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "convex T" shows "rel_interior (S + T) = rel_interior S + rel_interior T" proof - have "rel_interior S + rel_interior T = (\(x,y). x + y) ` (rel_interior S \ rel_interior T)" by (simp add: set_plus_image) also have "\ = (\(x,y). x + y) ` rel_interior (S \ T)" using rel_interior_Times assms by auto also have "\ = rel_interior (S + T)" using fst_snd_linear convex_Times assms rel_interior_convex_linear_image[of "(\(x,y). x + y)" "S \ T"] by (auto simp add: set_plus_image) finally show ?thesis .. qed lemma rel_interior_sum_gen: fixes S :: "'a \ 'n::euclidean_space set" assumes "\i\I. convex (S i)" shows "rel_interior (sum S I) = sum (\i. rel_interior (S i)) I" apply (subst sum_set_cond_linear[of convex]) using rel_interior_sum rel_interior_sing[of "0"] assms apply (auto simp add: convex_set_plus) done lemma convex_rel_open_direct_sum: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "rel_open S" and "convex T" and "rel_open T" shows "convex (S \ T) \ rel_open (S \ T)" by (metis assms convex_Times rel_interior_Times rel_open_def) lemma convex_rel_open_sum: fixes S T :: "'n::euclidean_space set" assumes "convex S" and "rel_open S" and "convex T" and "rel_open T" shows "convex (S + T) \ rel_open (S + T)" by (metis assms convex_set_plus rel_interior_sum rel_open_def) lemma convex_hull_finite_union_cones: assumes "finite I" and "I \ {}" assumes "\i\I. convex (S i) \ cone (S i) \ S i \ {}" shows "convex hull (\(S ` I)) = sum S I" (is "?lhs = ?rhs") proof - { fix x assume "x \ ?lhs" then obtain c xs where x: "x = sum (\i. c i *\<^sub>R xs i) I \ (\i\I. c i \ 0) \ sum c I = 1 \ (\i\I. xs i \ S i)" using convex_hull_finite_union[of I S] assms by auto define s where "s i = c i *\<^sub>R xs i" for i { fix i assume "i \ I" then have "s i \ S i" using s_def x assms mem_cone[of "S i" "xs i" "c i"] by auto } then have "\i\I. s i \ S i" by auto moreover have "x = sum s I" using x s_def by auto ultimately have "x \ ?rhs" using set_sum_alt[of I S] assms by auto } moreover { fix x assume "x \ ?rhs" then obtain s where x: "x = sum s I \ (\i\I. s i \ S i)" using set_sum_alt[of I S] assms by auto define xs where "xs i = of_nat(card I) *\<^sub>R s i" for i then have "x = sum (\i. ((1 :: real) / of_nat(card I)) *\<^sub>R xs i) I" using x assms by auto moreover have "\i\I. xs i \ S i" using x xs_def assms by (simp add: cone_def) moreover have "\i\I. (1 :: real) / of_nat (card I) \ 0" by auto moreover have "sum (\i. (1 :: real) / of_nat (card I)) I = 1" using assms by auto ultimately have "x \ ?lhs" apply (subst convex_hull_finite_union[of I S]) using assms apply blast using assms apply blast apply rule apply (rule_tac x = "(\i. (1 :: real) / of_nat (card I))" in exI) apply auto done } ultimately show ?thesis by auto qed lemma convex_hull_union_cones_two: fixes S T :: "'m::euclidean_space set" assumes "convex S" and "cone S" and "S \ {}" assumes "convex T" and "cone T" and "T \ {}" shows "convex hull (S \ T) = S + T" proof - define I :: "nat set" where "I = {1, 2}" define A where "A i = (if i = (1::nat) then S else T)" for i have "\(A ` I) = S \ T" using A_def I_def by auto then have "convex hull (\(A ` I)) = convex hull (S \ T)" by auto moreover have "convex hull \(A ` I) = sum A I" apply (subst convex_hull_finite_union_cones[of I A]) using assms A_def I_def apply auto done moreover have "sum A I = S + T" using A_def I_def unfolding set_plus_def apply auto unfolding set_plus_def apply auto done ultimately show ?thesis by auto qed lemma rel_interior_convex_hull_union: fixes S :: "'a \ 'n::euclidean_space set" assumes "finite I" and "\i\I. convex (S i) \ S i \ {}" shows "rel_interior (convex hull (\(S ` I))) = {sum (\i. c i *\<^sub>R s i) I | c s. (\i\I. c i > 0) \ sum c I = 1 \ (\i\I. s i \ rel_interior(S i))}" (is "?lhs = ?rhs") proof (cases "I = {}") case True then show ?thesis using convex_hull_empty by auto next case False define C0 where "C0 = convex hull (\(S ` I))" have "\i\I. C0 \ S i" unfolding C0_def using hull_subset[of "\(S ` I)"] by auto define K0 where "K0 = cone hull ({1 :: real} \ C0)" define K where "K i = cone hull ({1 :: real} \ S i)" for i have "\i\I. K i \ {}" unfolding K_def using assms by (simp add: cone_hull_empty_iff[symmetric]) { fix i assume "i \ I" then have "convex (K i)" unfolding K_def apply (subst convex_cone_hull) apply (subst convex_Times) using assms apply auto done } then have convK: "\i\I. convex (K i)" by auto { fix i assume "i \ I" then have "K0 \ K i" unfolding K0_def K_def apply (subst hull_mono) using \\i\I. C0 \ S i\ apply auto done } then have "K0 \ \(K ` I)" by auto moreover have "convex K0" unfolding K0_def apply (subst convex_cone_hull) apply (subst convex_Times) unfolding C0_def using convex_convex_hull apply auto done ultimately have geq: "K0 \ convex hull (\(K ` I))" using hull_minimal[of _ "K0" "convex"] by blast have "\i\I. K i \ {1 :: real} \ S i" using K_def by (simp add: hull_subset) then have "\(K ` I) \ {1 :: real} \ \(S ` I)" by auto then have "convex hull \(K ` I) \ convex hull ({1 :: real} \ \(S ` I))" by (simp add: hull_mono) then have "convex hull \(K ` I) \ {1 :: real} \ C0" unfolding C0_def using convex_hull_Times[of "{(1 :: real)}" "\(S ` I)"] convex_hull_singleton by auto moreover have "cone (convex hull (\(K ` I)))" apply (subst cone_convex_hull) using cone_Union[of "K ` I"] apply auto unfolding K_def using cone_cone_hull apply auto done ultimately have "convex hull (\(K ` I)) \ K0" unfolding K0_def using hull_minimal[of _ "convex hull (\(K ` I))" "cone"] by blast then have "K0 = convex hull (\(K ` I))" using geq by auto also have "\ = sum K I" apply (subst convex_hull_finite_union_cones[of I K]) using assms apply blast using False apply blast unfolding K_def apply rule apply (subst convex_cone_hull) apply (subst convex_Times) using assms cone_cone_hull \\i\I. K i \ {}\ K_def apply auto done finally have "K0 = sum K I" by auto then have *: "rel_interior K0 = sum (\i. (rel_interior (K i))) I" using rel_interior_sum_gen[of I K] convK by auto { fix x assume "x \ ?lhs" then have "(1::real, x) \ rel_interior K0" using K0_def C0_def rel_interior_convex_cone_aux[of C0 "1::real" x] convex_convex_hull by auto then obtain k where k: "(1::real, x) = sum k I \ (\i\I. k i \ rel_interior (K i))" using \finite I\ * set_sum_alt[of I "\i. rel_interior (K i)"] by auto { fix i assume "i \ I" then have "convex (S i) \ k i \ rel_interior (cone hull {1} \ S i)" using k K_def assms by auto then have "\ci si. k i = (ci, ci *\<^sub>R si) \ 0 < ci \ si \ rel_interior (S i)" using rel_interior_convex_cone[of "S i"] by auto } then obtain c s where cs: "\i\I. k i = (c i, c i *\<^sub>R s i) \ 0 < c i \ s i \ rel_interior (S i)" by metis then have "x = (\i\I. c i *\<^sub>R s i) \ sum c I = 1" using k by (simp add: sum_prod) then have "x \ ?rhs" using k cs by auto } moreover { fix x assume "x \ ?rhs" then obtain c s where cs: "x = sum (\i. c i *\<^sub>R s i) I \ (\i\I. c i > 0) \ sum c I = 1 \ (\i\I. s i \ rel_interior (S i))" by auto define k where "k i = (c i, c i *\<^sub>R s i)" for i { fix i assume "i \ I" then have "k i \ rel_interior (K i)" using k_def K_def assms cs rel_interior_convex_cone[of "S i"] by auto } then have "(1::real, x) \ rel_interior K0" using K0_def * set_sum_alt[of I "(\i. rel_interior (K i))"] assms k_def cs apply auto apply (rule_tac x = k in exI) apply (simp add: sum_prod) done then have "x \ ?lhs" using K0_def C0_def rel_interior_convex_cone_aux[of C0 1 x] by auto } ultimately show ?thesis by blast qed lemma convex_le_Inf_differential: fixes f :: "real \ real" assumes "convex_on I f" and "x \ interior I" and "y \ I" shows "f y \ f x + Inf ((\t. (f x - f t) / (x - t)) ` ({x<..} \ I)) * (y - x)" (is "_ \ _ + Inf (?F x) * (y - x)") proof (cases rule: linorder_cases) assume "x < y" moreover have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where e: "0 < e" "ball x e \ interior I" . moreover define t where "t = min (x + e / 2) ((x + y) / 2)" ultimately have "x < t" "t < y" "t \ ball x e" by (auto simp: dist_real_def field_simps split: split_min) with \x \ interior I\ e interior_subset[of I] have "t \ I" "x \ I" by auto have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where "0 < e" "ball x e \ interior I" . moreover define K where "K = x - e / 2" with \0 < e\ have "K \ ball x e" "K < x" by (auto simp: dist_real_def) ultimately have "K \ I" "K < x" "x \ I" using interior_subset[of I] \x \ interior I\ by auto have "Inf (?F x) \ (f x - f y) / (x - y)" proof (intro bdd_belowI cInf_lower2) show "(f x - f t) / (x - t) \ ?F x" using \t \ I\ \x < t\ by auto show "(f x - f t) / (x - t) \ (f x - f y) / (x - y)" using \convex_on I f\ \x \ I\ \y \ I\ \x < t\ \t < y\ by (rule convex_on_diff) next fix y assume "y \ ?F x" with order_trans[OF convex_on_diff[OF \convex_on I f\ \K \ I\ _ \K < x\ _]] show "(f K - f x) / (K - x) \ y" by auto qed then show ?thesis using \x < y\ by (simp add: field_simps) next assume "y < x" moreover have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where e: "0 < e" "ball x e \ interior I" . moreover define t where "t = x + e / 2" ultimately have "x < t" "t \ ball x e" by (auto simp: dist_real_def field_simps) with \x \ interior I\ e interior_subset[of I] have "t \ I" "x \ I" by auto have "(f x - f y) / (x - y) \ Inf (?F x)" proof (rule cInf_greatest) have "(f x - f y) / (x - y) = (f y - f x) / (y - x)" using \y < x\ by (auto simp: field_simps) also fix z assume "z \ ?F x" with order_trans[OF convex_on_diff[OF \convex_on I f\ \y \ I\ _ \y < x\]] have "(f y - f x) / (y - x) \ z" by auto finally show "(f x - f y) / (x - y) \ z" . next have "open (interior I)" by auto from openE[OF this \x \ interior I\] obtain e where e: "0 < e" "ball x e \ interior I" . then have "x + e / 2 \ ball x e" by (auto simp: dist_real_def) with e interior_subset[of I] have "x + e / 2 \ {x<..} \ I" by auto then show "?F x \ {}" by blast qed then show ?thesis using \y < x\ by (simp add: field_simps) qed simp subsection\<^marker>\tag unimportant\\Explicit formulas for interior and relative interior of convex hull\ lemma at_within_cbox_finite: assumes "x \ box a b" "x \ S" "finite S" shows "(at x within cbox a b - S) = at x" proof - have "interior (cbox a b - S) = box a b - S" using \finite S\ by (simp add: interior_diff finite_imp_closed) then show ?thesis using at_within_interior assms by fastforce qed lemma affine_independent_convex_affine_hull: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" "t \ s" shows "convex hull t = affine hull t \ convex hull s" proof - have fin: "finite s" "finite t" using assms aff_independent_finite finite_subset by auto { fix u v x assume uv: "sum u t = 1" "\x\s. 0 \ v x" "sum v s = 1" "(\x\s. v x *\<^sub>R x) = (\v\t. u v *\<^sub>R v)" "x \ t" then have s: "s = (s - t) \ t" \ \split into separate cases\ using assms by auto have [simp]: "(\x\t. v x *\<^sub>R x) + (\x\s - t. v x *\<^sub>R x) = (\x\t. u x *\<^sub>R x)" "sum v t + sum v (s - t) = 1" using uv fin s by (auto simp: sum.union_disjoint [symmetric] Un_commute) have "(\x\s. if x \ t then v x - u x else v x) = 0" "(\x\s. (if x \ t then v x - u x else v x) *\<^sub>R x) = 0" using uv fin by (subst s, subst sum.union_disjoint, auto simp: algebra_simps sum_subtractf)+ } note [simp] = this have "convex hull t \ affine hull t" using convex_hull_subset_affine_hull by blast moreover have "convex hull t \ convex hull s" using assms hull_mono by blast moreover have "affine hull t \ convex hull s \ convex hull t" using assms apply (simp add: convex_hull_finite affine_hull_finite fin affine_dependent_explicit) apply (drule_tac x=s in spec) apply (auto simp: fin) apply (rule_tac x=u in exI) apply (rename_tac v) apply (drule_tac x="\x. if x \ t then v x - u x else v x" in spec) apply (force)+ done ultimately show ?thesis by blast qed lemma affine_independent_span_eq: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" "card s = Suc (DIM ('a))" shows "affine hull s = UNIV" proof (cases "s = {}") case True then show ?thesis using assms by simp next case False then obtain a t where t: "a \ t" "s = insert a t" by blast then have fin: "finite t" using assms by (metis finite_insert aff_independent_finite) show ?thesis using assms t fin apply (simp add: affine_dependent_iff_dependent affine_hull_insert_span_gen) apply (rule subset_antisym) apply force apply (rule Fun.vimage_subsetD) apply (metis add.commute diff_add_cancel surj_def) apply (rule card_ge_dim_independent) apply (auto simp: card_image inj_on_def dim_subset_UNIV) done qed lemma affine_independent_span_gt: fixes s :: "'a::euclidean_space set" assumes ind: "\ affine_dependent s" and dim: "DIM ('a) < card s" shows "affine hull s = UNIV" apply (rule affine_independent_span_eq [OF ind]) apply (rule antisym) using assms apply auto apply (metis add_2_eq_Suc' not_less_eq_eq affine_dependent_biggerset aff_independent_finite) done lemma empty_interior_affine_hull: fixes s :: "'a::euclidean_space set" assumes "finite s" and dim: "card s \ DIM ('a)" shows "interior(affine hull s) = {}" using assms apply (induct s rule: finite_induct) apply (simp_all add: affine_dependent_iff_dependent affine_hull_insert_span_gen interior_translation) apply (rule empty_interior_lowdim) by (auto simp: Suc_le_lessD card_image_le dual_order.trans intro!: dim_le_card'[THEN le_less_trans]) lemma empty_interior_convex_hull: fixes s :: "'a::euclidean_space set" assumes "finite s" and dim: "card s \ DIM ('a)" shows "interior(convex hull s) = {}" by (metis Diff_empty Diff_eq_empty_iff convex_hull_subset_affine_hull interior_mono empty_interior_affine_hull [OF assms]) lemma explicit_subset_rel_interior_convex_hull: fixes s :: "'a::euclidean_space set" shows "finite s \ {y. \u. (\x \ s. 0 < u x \ u x < 1) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y} \ rel_interior (convex hull s)" by (force simp add: rel_interior_convex_hull_union [where S="\x. {x}" and I=s, simplified]) lemma explicit_subset_rel_interior_convex_hull_minimal: fixes s :: "'a::euclidean_space set" shows "finite s \ {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y} \ rel_interior (convex hull s)" by (force simp add: rel_interior_convex_hull_union [where S="\x. {x}" and I=s, simplified]) lemma rel_interior_convex_hull_explicit: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "rel_interior(convex hull s) = {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" (is "?lhs = ?rhs") proof show "?rhs \ ?lhs" by (simp add: aff_independent_finite explicit_subset_rel_interior_convex_hull_minimal assms) next show "?lhs \ ?rhs" proof (cases "\a. s = {a}") case True then show "?lhs \ ?rhs" by force next case False have fs: "finite s" using assms by (simp add: aff_independent_finite) { fix a b and d::real assume ab: "a \ s" "b \ s" "a \ b" then have s: "s = (s - {a,b}) \ {a,b}" \ \split into separate cases\ by auto have "(\x\s. if x = a then - d else if x = b then d else 0) = 0" "(\x\s. (if x = a then - d else if x = b then d else 0) *\<^sub>R x) = d *\<^sub>R b - d *\<^sub>R a" using ab fs by (subst s, subst sum.union_disjoint, auto)+ } note [simp] = this { fix y assume y: "y \ convex hull s" "y \ ?rhs" { fix u T a assume ua: "\x\s. 0 \ u x" "sum u s = 1" "\ 0 < u a" "a \ s" and yT: "y = (\x\s. u x *\<^sub>R x)" "y \ T" "open T" and sb: "T \ affine hull s \ {w. \u. (\x\s. 0 \ u x) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = w}" have ua0: "u a = 0" using ua by auto obtain b where b: "b\s" "a \ b" using ua False by auto obtain e where e: "0 < e" "ball (\x\s. u x *\<^sub>R x) e \ T" using yT by (auto elim: openE) with b obtain d where d: "0 < d" "norm(d *\<^sub>R (a-b)) < e" by (auto intro: that [of "e / 2 / norm(a-b)"]) have "(\x\s. u x *\<^sub>R x) \ affine hull s" using yT y by (metis affine_hull_convex_hull hull_redundant_eq) then have "(\x\s. u x *\<^sub>R x) - d *\<^sub>R (a - b) \ affine hull s" using ua b by (auto simp: hull_inc intro: mem_affine_3_minus2) then have "y - d *\<^sub>R (a - b) \ T \ affine hull s" using d e yT by auto then obtain v where "\x\s. 0 \ v x" "sum v s = 1" "(\x\s. v x *\<^sub>R x) = (\x\s. u x *\<^sub>R x) - d *\<^sub>R (a - b)" using subsetD [OF sb] yT by auto then have False using assms apply (simp add: affine_dependent_explicit_finite fs) apply (drule_tac x="\x. (v x - u x) - (if x = a then -d else if x = b then d else 0)" in spec) using ua b d apply (auto simp: algebra_simps sum_subtractf sum.distrib) done } note * = this have "y \ rel_interior (convex hull s)" using y apply (simp add: mem_rel_interior) apply (auto simp: convex_hull_finite [OF fs]) apply (drule_tac x=u in spec) apply (auto intro: *) done } with rel_interior_subset show "?lhs \ ?rhs" by blast qed qed lemma interior_convex_hull_explicit_minimal: fixes s :: "'a::euclidean_space set" shows "\ affine_dependent s ==> interior(convex hull s) = (if card(s) \ DIM('a) then {} else {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = y})" apply (simp add: aff_independent_finite empty_interior_convex_hull, clarify) apply (rule trans [of _ "rel_interior(convex hull s)"]) apply (simp add: affine_independent_span_gt rel_interior_interior) by (simp add: rel_interior_convex_hull_explicit) lemma interior_convex_hull_explicit: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "interior(convex hull s) = (if card(s) \ DIM('a) then {} else {y. \u. (\x \ s. 0 < u x \ u x < 1) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = y})" proof - { fix u :: "'a \ real" and a assume "card Basis < card s" and u: "\x. x\s \ 0 < u x" "sum u s = 1" and a: "a \ s" then have cs: "Suc 0 < card s" by (metis DIM_positive less_trans_Suc) obtain b where b: "b \ s" "a \ b" proof (cases "s \ {a}") case True then show thesis using cs subset_singletonD by fastforce next case False then show thesis by (blast intro: that) qed have "u a + u b \ sum u {a,b}" using a b by simp also have "... \ sum u s" apply (rule Groups_Big.sum_mono2) using a b u apply (auto simp: less_imp_le aff_independent_finite assms) done finally have "u a < 1" using \b \ s\ u by fastforce } note [simp] = this show ?thesis using assms apply (auto simp: interior_convex_hull_explicit_minimal) apply (rule_tac x=u in exI) apply (auto simp: not_le) done qed lemma interior_closed_segment_ge2: fixes a :: "'a::euclidean_space" assumes "2 \ DIM('a)" shows "interior(closed_segment a b) = {}" using assms unfolding segment_convex_hull proof - have "card {a, b} \ DIM('a)" using assms by (simp add: card_insert_if linear not_less_eq_eq numeral_2_eq_2) then show "interior (convex hull {a, b}) = {}" by (metis empty_interior_convex_hull finite.insertI finite.emptyI) qed lemma interior_open_segment: fixes a :: "'a::euclidean_space" shows "interior(open_segment a b) = (if 2 \ DIM('a) then {} else open_segment a b)" proof (simp add: not_le, intro conjI impI) assume "2 \ DIM('a)" then show "interior (open_segment a b) = {}" apply (simp add: segment_convex_hull open_segment_def) apply (metis Diff_subset interior_mono segment_convex_hull subset_empty interior_closed_segment_ge2) done next assume le2: "DIM('a) < 2" show "interior (open_segment a b) = open_segment a b" proof (cases "a = b") case True then show ?thesis by auto next case False with le2 have "affine hull (open_segment a b) = UNIV" apply simp apply (rule affine_independent_span_gt) apply (simp_all add: affine_dependent_def insert_Diff_if) done then show "interior (open_segment a b) = open_segment a b" using rel_interior_interior rel_interior_open_segment by blast qed qed lemma interior_closed_segment: fixes a :: "'a::euclidean_space" shows "interior(closed_segment a b) = (if 2 \ DIM('a) then {} else open_segment a b)" proof (cases "a = b") case True then show ?thesis by simp next case False then have "closure (open_segment a b) = closed_segment a b" by simp then show ?thesis by (metis (no_types) convex_interior_closure convex_open_segment interior_open_segment) qed lemmas interior_segment = interior_closed_segment interior_open_segment lemma closed_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "closed_segment a b = closed_segment c d \ {a,b} = {c,d}" proof assume abcd: "closed_segment a b = closed_segment c d" show "{a,b} = {c,d}" proof (cases "a=b \ c=d") case True with abcd show ?thesis by force next case False then have neq: "a \ b \ c \ d" by force have *: "closed_segment c d - {a, b} = rel_interior (closed_segment c d)" using neq abcd by (metis (no_types) open_segment_def rel_interior_closed_segment) have "b \ {c, d}" proof - have "insert b (closed_segment c d) = closed_segment c d" using abcd by blast then show ?thesis by (metis DiffD2 Diff_insert2 False * insertI1 insert_Diff_if open_segment_def rel_interior_closed_segment) qed moreover have "a \ {c, d}" by (metis Diff_iff False * abcd ends_in_segment(1) insertI1 open_segment_def rel_interior_closed_segment) ultimately show "{a, b} = {c, d}" using neq by fastforce qed next assume "{a,b} = {c,d}" then show "closed_segment a b = closed_segment c d" by (simp add: segment_convex_hull) qed lemma closed_open_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "closed_segment a b \ open_segment c d" by (metis DiffE closed_segment_neq_empty closure_closed_segment closure_open_segment ends_in_segment(1) insertI1 open_segment_def) lemma open_closed_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "open_segment a b \ closed_segment c d" using closed_open_segment_eq by blast lemma open_segment_eq [simp]: fixes a :: "'a::euclidean_space" shows "open_segment a b = open_segment c d \ a = b \ c = d \ {a,b} = {c,d}" (is "?lhs = ?rhs") proof assume abcd: ?lhs show ?rhs proof (cases "a=b \ c=d") case True with abcd show ?thesis using finite_open_segment by fastforce next case False then have a2: "a \ b \ c \ d" by force with abcd show ?rhs unfolding open_segment_def by (metis (no_types) abcd closed_segment_eq closure_open_segment) qed next assume ?rhs then show ?lhs by (metis Diff_cancel convex_hull_singleton insert_absorb2 open_segment_def segment_convex_hull) qed subsection\<^marker>\tag unimportant\\Similar results for closure and (relative or absolute) frontier\ lemma closure_convex_hull [simp]: fixes s :: "'a::euclidean_space set" shows "compact s ==> closure(convex hull s) = convex hull s" by (simp add: compact_imp_closed compact_convex_hull) lemma rel_frontier_convex_hull_explicit: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "rel_frontier(convex hull s) = {y. \u. (\x \ s. 0 \ u x) \ (\x \ s. u x = 0) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" proof - have fs: "finite s" using assms by (simp add: aff_independent_finite) show ?thesis apply (simp add: rel_frontier_def finite_imp_compact rel_interior_convex_hull_explicit assms fs) apply (auto simp: convex_hull_finite fs) apply (drule_tac x=u in spec) apply (rule_tac x=u in exI) apply force apply (rename_tac v) apply (rule notE [OF assms]) apply (simp add: affine_dependent_explicit) apply (rule_tac x=s in exI) apply (auto simp: fs) apply (rule_tac x = "\x. u x - v x" in exI) apply (force simp: sum_subtractf scaleR_diff_left) done qed lemma frontier_convex_hull_explicit: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "frontier(convex hull s) = {y. \u. (\x \ s. 0 \ u x) \ (DIM ('a) < card s \ (\x \ s. u x = 0)) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" proof - have fs: "finite s" using assms by (simp add: aff_independent_finite) show ?thesis proof (cases "DIM ('a) < card s") case True with assms fs show ?thesis by (simp add: rel_frontier_def frontier_def rel_frontier_convex_hull_explicit [symmetric] interior_convex_hull_explicit_minimal rel_interior_convex_hull_explicit) next case False then have "card s \ DIM ('a)" by linarith then show ?thesis using assms fs apply (simp add: frontier_def interior_convex_hull_explicit finite_imp_compact) apply (simp add: convex_hull_finite) done qed qed lemma rel_frontier_convex_hull_cases: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "rel_frontier(convex hull s) = \{convex hull (s - {x}) |x. x \ s}" proof - have fs: "finite s" using assms by (simp add: aff_independent_finite) { fix u a have "\x\s. 0 \ u x \ a \ s \ u a = 0 \ sum u s = 1 \ \x v. x \ s \ (\x\s - {x}. 0 \ v x) \ sum v (s - {x}) = 1 \ (\x\s - {x}. v x *\<^sub>R x) = (\x\s. u x *\<^sub>R x)" apply (rule_tac x=a in exI) apply (rule_tac x=u in exI) apply (simp add: Groups_Big.sum_diff1 fs) done } moreover { fix a u have "a \ s \ \x\s - {a}. 0 \ u x \ sum u (s - {a}) = 1 \ \v. (\x\s. 0 \ v x) \ (\x\s. v x = 0) \ sum v s = 1 \ (\x\s. v x *\<^sub>R x) = (\x\s - {a}. u x *\<^sub>R x)" apply (rule_tac x="\x. if x = a then 0 else u x" in exI) apply (auto simp: sum.If_cases Diff_eq if_smult fs) done } ultimately show ?thesis using assms apply (simp add: rel_frontier_convex_hull_explicit) apply (simp add: convex_hull_finite fs Union_SetCompr_eq, auto) done qed lemma frontier_convex_hull_eq_rel_frontier: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "frontier(convex hull s) = (if card s \ DIM ('a) then convex hull s else rel_frontier(convex hull s))" using assms unfolding rel_frontier_def frontier_def by (simp add: affine_independent_span_gt rel_interior_interior finite_imp_compact empty_interior_convex_hull aff_independent_finite) lemma frontier_convex_hull_cases: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent s" shows "frontier(convex hull s) = (if card s \ DIM ('a) then convex hull s else \{convex hull (s - {x}) |x. x \ s})" by (simp add: assms frontier_convex_hull_eq_rel_frontier rel_frontier_convex_hull_cases) lemma in_frontier_convex_hull: fixes s :: "'a::euclidean_space set" assumes "finite s" "card s \ Suc (DIM ('a))" "x \ s" shows "x \ frontier(convex hull s)" proof (cases "affine_dependent s") case True with assms show ?thesis apply (auto simp: affine_dependent_def frontier_def finite_imp_compact hull_inc) by (metis card.insert_remove convex_hull_subset_affine_hull empty_interior_affine_hull finite_Diff hull_redundant insert_Diff insert_Diff_single insert_not_empty interior_mono not_less_eq_eq subset_empty) next case False { assume "card s = Suc (card Basis)" then have cs: "Suc 0 < card s" by (simp) with subset_singletonD have "\y \ s. y \ x" by (cases "s \ {x}") fastforce+ } note [dest!] = this show ?thesis using assms unfolding frontier_convex_hull_cases [OF False] Union_SetCompr_eq by (auto simp: le_Suc_eq hull_inc) qed lemma not_in_interior_convex_hull: fixes s :: "'a::euclidean_space set" assumes "finite s" "card s \ Suc (DIM ('a))" "x \ s" shows "x \ interior(convex hull s)" using in_frontier_convex_hull [OF assms] by (metis Diff_iff frontier_def) lemma interior_convex_hull_eq_empty: fixes s :: "'a::euclidean_space set" assumes "card s = Suc (DIM ('a))" shows "interior(convex hull s) = {} \ affine_dependent s" proof - { fix a b assume ab: "a \ interior (convex hull s)" "b \ s" "b \ affine hull (s - {b})" then have "interior(affine hull s) = {}" using assms by (metis DIM_positive One_nat_def Suc_mono card.remove card_infinite empty_interior_affine_hull eq_iff hull_redundant insert_Diff not_less zero_le_one) then have False using ab by (metis convex_hull_subset_affine_hull equals0D interior_mono subset_eq) } then show ?thesis using assms apply auto apply (metis UNIV_I affine_hull_convex_hull affine_hull_empty affine_independent_span_eq convex_convex_hull empty_iff rel_interior_interior rel_interior_same_affine_hull) apply (auto simp: affine_dependent_def) done qed subsection \Coplanarity, and collinearity in terms of affine hull\ definition\<^marker>\tag important\ coplanar where "coplanar s \ \u v w. s \ affine hull {u,v,w}" lemma collinear_affine_hull: "collinear s \ (\u v. s \ affine hull {u,v})" proof (cases "s={}") case True then show ?thesis by simp next case False then obtain x where x: "x \ s" by auto { fix u assume *: "\x y. \x\s; y\s\ \ \c. x - y = c *\<^sub>R u" have "\u v. s \ {a *\<^sub>R u + b *\<^sub>R v |a b. a + b = 1}" apply (rule_tac x=x in exI) apply (rule_tac x="x+u" in exI, clarify) apply (erule exE [OF * [OF x]]) apply (rename_tac c) apply (rule_tac x="1+c" in exI) apply (rule_tac x="-c" in exI) apply (simp add: algebra_simps) done } moreover { fix u v x y assume *: "s \ {a *\<^sub>R u + b *\<^sub>R v |a b. a + b = 1}" have "x\s \ y\s \ \c. x - y = c *\<^sub>R (v-u)" apply (drule subsetD [OF *])+ apply simp apply clarify apply (rename_tac r1 r2) apply (rule_tac x="r1-r2" in exI) apply (simp add: algebra_simps) apply (metis scaleR_left.add) done } ultimately show ?thesis unfolding collinear_def affine_hull_2 by blast qed lemma collinear_closed_segment [simp]: "collinear (closed_segment a b)" by (metis affine_hull_convex_hull collinear_affine_hull hull_subset segment_convex_hull) lemma collinear_open_segment [simp]: "collinear (open_segment a b)" unfolding open_segment_def by (metis convex_hull_subset_affine_hull segment_convex_hull dual_order.trans convex_hull_subset_affine_hull Diff_subset collinear_affine_hull) lemma collinear_between_cases: fixes c :: "'a::euclidean_space" shows "collinear {a,b,c} \ between (b,c) a \ between (c,a) b \ between (a,b) c" (is "?lhs = ?rhs") proof assume ?lhs then obtain u v where uv: "\x. x \ {a, b, c} \ \c. x = u + c *\<^sub>R v" by (auto simp: collinear_alt) show ?rhs using uv [of a] uv [of b] uv [of c] by (auto simp: between_1) next assume ?rhs then show ?lhs unfolding between_mem_convex_hull by (metis (no_types, hide_lams) collinear_closed_segment collinear_subset hull_redundant hull_subset insert_commute segment_convex_hull) qed lemma subset_continuous_image_segment_1: fixes f :: "'a::euclidean_space \ real" assumes "continuous_on (closed_segment a b) f" shows "closed_segment (f a) (f b) \ image f (closed_segment a b)" by (metis connected_segment convex_contains_segment ends_in_segment imageI is_interval_connected_1 is_interval_convex connected_continuous_image [OF assms]) lemma continuous_injective_image_segment_1: fixes f :: "'a::euclidean_space \ real" assumes contf: "continuous_on (closed_segment a b) f" and injf: "inj_on f (closed_segment a b)" shows "f ` (closed_segment a b) = closed_segment (f a) (f b)" proof show "closed_segment (f a) (f b) \ f ` closed_segment a b" by (metis subset_continuous_image_segment_1 contf) show "f ` closed_segment a b \ closed_segment (f a) (f b)" proof (cases "a = b") case True then show ?thesis by auto next case False then have fnot: "f a \ f b" using inj_onD injf by fastforce moreover have "f a \ open_segment (f c) (f b)" if c: "c \ closed_segment a b" for c proof (clarsimp simp add: open_segment_def) assume fa: "f a \ closed_segment (f c) (f b)" moreover have "closed_segment (f c) (f b) \ f ` closed_segment c b" by (meson closed_segment_subset contf continuous_on_subset convex_closed_segment ends_in_segment(2) subset_continuous_image_segment_1 that) ultimately have "f a \ f ` closed_segment c b" by blast then have a: "a \ closed_segment c b" by (meson ends_in_segment inj_on_image_mem_iff_alt injf subset_closed_segment that) have cb: "closed_segment c b \ closed_segment a b" by (simp add: closed_segment_subset that) show "f a = f c" proof (rule between_antisym) show "between (f c, f b) (f a)" by (simp add: between_mem_segment fa) show "between (f a, f b) (f c)" by (metis a cb between_antisym between_mem_segment between_triv1 subset_iff) qed qed moreover have "f b \ open_segment (f a) (f c)" if c: "c \ closed_segment a b" for c proof (clarsimp simp add: open_segment_def fnot eq_commute) assume fb: "f b \ closed_segment (f a) (f c)" moreover have "closed_segment (f a) (f c) \ f ` closed_segment a c" by (meson contf continuous_on_subset ends_in_segment(1) subset_closed_segment subset_continuous_image_segment_1 that) ultimately have "f b \ f ` closed_segment a c" by blast then have b: "b \ closed_segment a c" by (meson ends_in_segment inj_on_image_mem_iff_alt injf subset_closed_segment that) have ca: "closed_segment a c \ closed_segment a b" by (simp add: closed_segment_subset that) show "f b = f c" proof (rule between_antisym) show "between (f c, f a) (f b)" by (simp add: between_commute between_mem_segment fb) show "between (f b, f a) (f c)" by (metis b between_antisym between_commute between_mem_segment between_triv2 that) qed qed ultimately show ?thesis by (force simp: closed_segment_eq_real_ivl open_segment_eq_real_ivl split: if_split_asm) qed qed lemma continuous_injective_image_open_segment_1: fixes f :: "'a::euclidean_space \ real" assumes contf: "continuous_on (closed_segment a b) f" and injf: "inj_on f (closed_segment a b)" shows "f ` (open_segment a b) = open_segment (f a) (f b)" proof - have "f ` (open_segment a b) = f ` (closed_segment a b) - {f a, f b}" by (metis (no_types, hide_lams) empty_subsetI ends_in_segment image_insert image_is_empty inj_on_image_set_diff injf insert_subset open_segment_def segment_open_subset_closed) also have "... = open_segment (f a) (f b)" using continuous_injective_image_segment_1 [OF assms] by (simp add: open_segment_def inj_on_image_set_diff [OF injf]) finally show ?thesis . qed lemma collinear_imp_coplanar: "collinear s ==> coplanar s" by (metis collinear_affine_hull coplanar_def insert_absorb2) lemma collinear_small: assumes "finite s" "card s \ 2" shows "collinear s" proof - have "card s = 0 \ card s = 1 \ card s = 2" using assms by linarith then show ?thesis using assms using card_eq_SucD by auto (metis collinear_2 numeral_2_eq_2) qed lemma coplanar_small: assumes "finite s" "card s \ 3" shows "coplanar s" proof - have "card s \ 2 \ card s = Suc (Suc (Suc 0))" using assms by linarith then show ?thesis using assms apply safe apply (simp add: collinear_small collinear_imp_coplanar) apply (safe dest!: card_eq_SucD) apply (auto simp: coplanar_def) apply (metis hull_subset insert_subset) done qed lemma coplanar_empty: "coplanar {}" by (simp add: coplanar_small) lemma coplanar_sing: "coplanar {a}" by (simp add: coplanar_small) lemma coplanar_2: "coplanar {a,b}" by (auto simp: card_insert_if coplanar_small) lemma coplanar_3: "coplanar {a,b,c}" by (auto simp: card_insert_if coplanar_small) lemma collinear_affine_hull_collinear: "collinear(affine hull s) \ collinear s" unfolding collinear_affine_hull by (metis affine_affine_hull subset_hull hull_hull hull_mono) lemma coplanar_affine_hull_coplanar: "coplanar(affine hull s) \ coplanar s" unfolding coplanar_def by (metis affine_affine_hull subset_hull hull_hull hull_mono) lemma coplanar_linear_image: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes "coplanar s" "linear f" shows "coplanar(f ` s)" proof - { fix u v w assume "s \ affine hull {u, v, w}" then have "f ` s \ f ` (affine hull {u, v, w})" by (simp add: image_mono) then have "f ` s \ affine hull (f ` {u, v, w})" by (metis assms(2) linear_conv_bounded_linear affine_hull_linear_image) } then show ?thesis by auto (meson assms(1) coplanar_def) qed lemma coplanar_translation_imp: "coplanar s \ coplanar ((\x. a + x) ` s)" unfolding coplanar_def apply clarify apply (rule_tac x="u+a" in exI) apply (rule_tac x="v+a" in exI) apply (rule_tac x="w+a" in exI) using affine_hull_translation [of a "{u,v,w}" for u v w] apply (force simp: add.commute) done lemma coplanar_translation_eq: "coplanar((\x. a + x) ` s) \ coplanar s" by (metis (no_types) coplanar_translation_imp translation_galois) lemma coplanar_linear_image_eq: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "linear f" "inj f" shows "coplanar(f ` s) = coplanar s" proof assume "coplanar s" then show "coplanar (f ` s)" unfolding coplanar_def using affine_hull_linear_image [of f "{u,v,w}" for u v w] assms by (meson coplanar_def coplanar_linear_image) next obtain g where g: "linear g" "g \ f = id" using linear_injective_left_inverse [OF assms] by blast assume "coplanar (f ` s)" then obtain u v w where "f ` s \ affine hull {u, v, w}" by (auto simp: coplanar_def) then have "g ` f ` s \ g ` (affine hull {u, v, w})" by blast then have "s \ g ` (affine hull {u, v, w})" using g by (simp add: Fun.image_comp) then show "coplanar s" unfolding coplanar_def using affine_hull_linear_image [of g "{u,v,w}" for u v w] \linear g\ linear_conv_bounded_linear by fastforce qed (*The HOL Light proof is simply MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE COPLANAR_LINEAR_IMAGE));; *) lemma coplanar_subset: "\coplanar t; s \ t\ \ coplanar s" by (meson coplanar_def order_trans) lemma affine_hull_3_imp_collinear: "c \ affine hull {a,b} \ collinear {a,b,c}" by (metis collinear_2 collinear_affine_hull_collinear hull_redundant insert_commute) lemma collinear_3_imp_in_affine_hull: "\collinear {a,b,c}; a \ b\ \ c \ affine hull {a,b}" unfolding collinear_def apply clarify apply (frule_tac x=b in bspec, blast, drule_tac x=a in bspec, blast, erule exE) apply (drule_tac x=c in bspec, blast, drule_tac x=a in bspec, blast, erule exE) apply (rename_tac y x) apply (simp add: affine_hull_2) apply (rule_tac x="1 - x/y" in exI) apply (simp add: algebra_simps) done lemma collinear_3_affine_hull: assumes "a \ b" shows "collinear {a,b,c} \ c \ affine hull {a,b}" using affine_hull_3_imp_collinear assms collinear_3_imp_in_affine_hull by blast lemma collinear_3_eq_affine_dependent: "collinear{a,b,c} \ a = b \ a = c \ b = c \ affine_dependent {a,b,c}" apply (case_tac "a=b", simp) apply (case_tac "a=c") apply (simp add: insert_commute) apply (case_tac "b=c") apply (simp add: insert_commute) apply (auto simp: affine_dependent_def collinear_3_affine_hull insert_Diff_if) apply (metis collinear_3_affine_hull insert_commute)+ done lemma affine_dependent_imp_collinear_3: "affine_dependent {a,b,c} \ collinear{a,b,c}" by (simp add: collinear_3_eq_affine_dependent) lemma collinear_3: "NO_MATCH 0 x \ collinear {x,y,z} \ collinear {0, x-y, z-y}" by (auto simp add: collinear_def) lemma collinear_3_expand: "collinear{a,b,c} \ a = c \ (\u. b = u *\<^sub>R a + (1 - u) *\<^sub>R c)" proof - have "collinear{a,b,c} = collinear{a,c,b}" by (simp add: insert_commute) also have "... = collinear {0, a - c, b - c}" by (simp add: collinear_3) also have "... \ (a = c \ b = c \ (\ca. b - c = ca *\<^sub>R (a - c)))" by (simp add: collinear_lemma) also have "... \ a = c \ (\u. b = u *\<^sub>R a + (1 - u) *\<^sub>R c)" by (cases "a = c \ b = c") (auto simp: algebra_simps) finally show ?thesis . qed lemma collinear_aff_dim: "collinear S \ aff_dim S \ 1" proof assume "collinear S" then obtain u and v :: "'a" where "aff_dim S \ aff_dim {u,v}" by (metis \collinear S\ aff_dim_affine_hull aff_dim_subset collinear_affine_hull) then show "aff_dim S \ 1" using order_trans by fastforce next assume "aff_dim S \ 1" then have le1: "aff_dim (affine hull S) \ 1" by simp obtain B where "B \ S" and B: "\ affine_dependent B" "affine hull S = affine hull B" using affine_basis_exists [of S] by auto then have "finite B" "card B \ 2" using B le1 by (auto simp: affine_independent_iff_card) then have "collinear B" by (rule collinear_small) then show "collinear S" by (metis \affine hull S = affine hull B\ collinear_affine_hull_collinear) qed lemma collinear_midpoint: "collinear{a,midpoint a b,b}" apply (auto simp: collinear_3 collinear_lemma) apply (drule_tac x="-1" in spec) apply (simp add: algebra_simps) done lemma midpoint_collinear: fixes a b c :: "'a::real_normed_vector" assumes "a \ c" shows "b = midpoint a c \ collinear{a,b,c} \ dist a b = dist b c" proof - have *: "a - (u *\<^sub>R a + (1 - u) *\<^sub>R c) = (1 - u) *\<^sub>R (a - c)" "u *\<^sub>R a + (1 - u) *\<^sub>R c - c = u *\<^sub>R (a - c)" "\1 - u\ = \u\ \ u = 1/2" for u::real by (auto simp: algebra_simps) have "b = midpoint a c \ collinear{a,b,c} " using collinear_midpoint by blast moreover have "collinear{a,b,c} \ b = midpoint a c \ dist a b = dist b c" apply (auto simp: collinear_3_expand assms dist_midpoint) apply (simp add: dist_norm * assms midpoint_def del: divide_const_simps) apply (simp add: algebra_simps) done ultimately show ?thesis by blast qed lemma between_imp_collinear: fixes x :: "'a :: euclidean_space" assumes "between (a,b) x" shows "collinear {a,x,b}" proof (cases "x = a \ x = b \ a = b") case True with assms show ?thesis by (auto simp: dist_commute) next case False with assms show ?thesis apply (auto simp: collinear_3 collinear_lemma between_norm) apply (drule_tac x="-(norm(b - x) / norm(x - a))" in spec) apply (simp add: vector_add_divide_simps real_vector.scale_minus_right [symmetric]) done qed lemma midpoint_between: fixes a b :: "'a::euclidean_space" shows "b = midpoint a c \ between (a,c) b \ dist a b = dist b c" proof (cases "a = c") case True then show ?thesis by (auto simp: dist_commute) next case False show ?thesis apply (rule iffI) apply (simp add: between_midpoint(1) dist_midpoint) using False between_imp_collinear midpoint_collinear by blast qed lemma collinear_triples: assumes "a \ b" shows "collinear(insert a (insert b S)) \ (\x \ S. collinear{a,b,x})" (is "?lhs = ?rhs") proof safe fix x assume ?lhs and "x \ S" then show "collinear {a, b, x}" using collinear_subset by force next assume ?rhs then have "\x \ S. collinear{a,x,b}" by (simp add: insert_commute) then have *: "\u. x = u *\<^sub>R a + (1 - u) *\<^sub>R b" if "x \ (insert a (insert b S))" for x using that assms collinear_3_expand by fastforce+ show ?lhs unfolding collinear_def apply (rule_tac x="b-a" in exI) apply (clarify dest!: *) by (metis (no_types, hide_lams) add.commute diff_add_cancel diff_diff_eq2 real_vector.scale_right_diff_distrib scaleR_left.diff) qed lemma collinear_4_3: assumes "a \ b" shows "collinear {a,b,c,d} \ collinear{a,b,c} \ collinear{a,b,d}" using collinear_triples [OF assms, of "{c,d}"] by (force simp:) lemma collinear_3_trans: assumes "collinear{a,b,c}" "collinear{b,c,d}" "b \ c" shows "collinear{a,b,d}" proof - have "collinear{b,c,a,d}" by (metis (full_types) assms collinear_4_3 insert_commute) then show ?thesis by (simp add: collinear_subset) qed lemma affine_hull_eq_empty [simp]: "affine hull S = {} \ S = {}" using affine_hull_nonempty by blast lemma affine_hull_2_alt: fixes a b :: "'a::real_vector" shows "affine hull {a,b} = range (\u. a + u *\<^sub>R (b - a))" apply (simp add: affine_hull_2, safe) apply (rule_tac x=v in image_eqI) apply (simp add: algebra_simps) apply (metis scaleR_add_left scaleR_one, simp) apply (rule_tac x="1-u" in exI) apply (simp add: algebra_simps) done lemma interior_convex_hull_3_minimal: fixes a :: "'a::euclidean_space" shows "\\ collinear{a,b,c}; DIM('a) = 2\ \ interior(convex hull {a,b,c}) = {v. \x y z. 0 < x \ 0 < y \ 0 < z \ x + y + z = 1 \ x *\<^sub>R a + y *\<^sub>R b + z *\<^sub>R c = v}" apply (simp add: collinear_3_eq_affine_dependent interior_convex_hull_explicit_minimal, safe) apply (rule_tac x="u a" in exI, simp) apply (rule_tac x="u b" in exI, simp) apply (rule_tac x="u c" in exI, simp) apply (rename_tac uu x y z) apply (rule_tac x="\r. (if r=a then x else if r=b then y else if r=c then z else 0)" in exI) apply simp done subsection\<^marker>\tag unimportant\\Basic lemmas about hyperplanes and halfspaces\ lemma halfspace_Int_eq: "{x. a \ x \ b} \ {x. b \ a \ x} = {x. a \ x = b}" "{x. b \ a \ x} \ {x. a \ x \ b} = {x. a \ x = b}" by auto lemma hyperplane_eq_Ex: assumes "a \ 0" obtains x where "a \ x = b" by (rule_tac x = "(b / (a \ a)) *\<^sub>R a" in that) (simp add: assms) lemma hyperplane_eq_empty: "{x. a \ x = b} = {} \ a = 0 \ b \ 0" using hyperplane_eq_Ex apply auto[1] using inner_zero_right by blast lemma hyperplane_eq_UNIV: "{x. a \ x = b} = UNIV \ a = 0 \ b = 0" proof - have "UNIV \ {x. a \ x = b} \ a = 0 \ b = 0" apply (drule_tac c = "((b+1) / (a \ a)) *\<^sub>R a" in subsetD) apply simp_all by (metis add_cancel_right_right zero_neq_one) then show ?thesis by force qed lemma halfspace_eq_empty_lt: "{x. a \ x < b} = {} \ a = 0 \ b \ 0" proof - have "{x. a \ x < b} \ {} \ a = 0 \ b \ 0" apply (rule ccontr) apply (drule_tac c = "((b-1) / (a \ a)) *\<^sub>R a" in subsetD) apply force+ done then show ?thesis by force qed lemma halfspace_eq_empty_gt: "{x. a \ x > b} = {} \ a = 0 \ b \ 0" using halfspace_eq_empty_lt [of "-a" "-b"] by simp lemma halfspace_eq_empty_le: "{x. a \ x \ b} = {} \ a = 0 \ b < 0" proof - have "{x. a \ x \ b} \ {} \ a = 0 \ b < 0" apply (rule ccontr) apply (drule_tac c = "((b-1) / (a \ a)) *\<^sub>R a" in subsetD) apply force+ done then show ?thesis by force qed lemma halfspace_eq_empty_ge: "{x. a \ x \ b} = {} \ a = 0 \ b > 0" using halfspace_eq_empty_le [of "-a" "-b"] by simp subsection\<^marker>\tag unimportant\\Use set distance for an easy proof of separation properties\ proposition\<^marker>\tag unimportant\ separation_closures: fixes S :: "'a::euclidean_space set" assumes "S \ closure T = {}" "T \ closure S = {}" obtains U V where "U \ V = {}" "open U" "open V" "S \ U" "T \ V" proof (cases "S = {} \ T = {}") case True with that show ?thesis by auto next case False define f where "f \ \x. setdist {x} T - setdist {x} S" have contf: "continuous_on UNIV f" unfolding f_def by (intro continuous_intros continuous_on_setdist) show ?thesis proof (rule_tac U = "{x. f x > 0}" and V = "{x. f x < 0}" in that) show "{x. 0 < f x} \ {x. f x < 0} = {}" by auto show "open {x. 0 < f x}" by (simp add: open_Collect_less contf) show "open {x. f x < 0}" by (simp add: open_Collect_less contf) show "S \ {x. 0 < f x}" apply (clarsimp simp add: f_def setdist_sing_in_set) using assms by (metis False IntI empty_iff le_less setdist_eq_0_sing_2 setdist_pos_le setdist_sym) show "T \ {x. f x < 0}" apply (clarsimp simp add: f_def setdist_sing_in_set) using assms by (metis False IntI empty_iff le_less setdist_eq_0_sing_2 setdist_pos_le setdist_sym) qed qed lemma separation_normal: fixes S :: "'a::euclidean_space set" assumes "closed S" "closed T" "S \ T = {}" obtains U V where "open U" "open V" "S \ U" "T \ V" "U \ V = {}" using separation_closures [of S T] by (metis assms closure_closed disjnt_def inf_commute) lemma separation_normal_local: fixes S :: "'a::euclidean_space set" assumes US: "closedin (top_of_set U) S" and UT: "closedin (top_of_set U) T" and "S \ T = {}" obtains S' T' where "openin (top_of_set U) S'" "openin (top_of_set U) T'" "S \ S'" "T \ T'" "S' \ T' = {}" proof (cases "S = {} \ T = {}") case True with that show ?thesis using UT US by (blast dest: closedin_subset) next case False define f where "f \ \x. setdist {x} T - setdist {x} S" have contf: "continuous_on U f" unfolding f_def by (intro continuous_intros) show ?thesis proof (rule_tac S' = "(U \ f -` {0<..})" and T' = "(U \ f -` {..<0})" in that) show "(U \ f -` {0<..}) \ (U \ f -` {..<0}) = {}" by auto show "openin (top_of_set U) (U \ f -` {0<..})" by (rule continuous_openin_preimage [where T=UNIV]) (simp_all add: contf) next show "openin (top_of_set U) (U \ f -` {..<0})" by (rule continuous_openin_preimage [where T=UNIV]) (simp_all add: contf) next have "S \ U" "T \ U" using closedin_imp_subset assms by blast+ then show "S \ U \ f -` {0<..}" "T \ U \ f -` {..<0}" using assms False by (force simp add: f_def setdist_sing_in_set intro!: setdist_gt_0_closedin)+ qed qed lemma separation_normal_compact: fixes S :: "'a::euclidean_space set" assumes "compact S" "closed T" "S \ T = {}" obtains U V where "open U" "compact(closure U)" "open V" "S \ U" "T \ V" "U \ V = {}" proof - have "closed S" "bounded S" using assms by (auto simp: compact_eq_bounded_closed) then obtain r where "r>0" and r: "S \ ball 0 r" by (auto dest!: bounded_subset_ballD) have **: "closed (T \ - ball 0 r)" "S \ (T \ - ball 0 r) = {}" using assms r by blast+ then show ?thesis apply (rule separation_normal [OF \closed S\]) apply (rule_tac U=U and V=V in that) by auto (meson bounded_ball bounded_subset compl_le_swap2 disjoint_eq_subset_Compl) qed subsection\Connectedness of the intersection of a chain\ proposition connected_chain: fixes \ :: "'a :: euclidean_space set set" assumes cc: "\S. S \ \ \ compact S \ connected S" and linear: "\S T. S \ \ \ T \ \ \ S \ T \ T \ S" shows "connected(\\)" proof (cases "\ = {}") case True then show ?thesis by auto next case False then have cf: "compact(\\)" by (simp add: cc compact_Inter) have False if AB: "closed A" "closed B" "A \ B = {}" and ABeq: "A \ B = \\" and "A \ {}" "B \ {}" for A B proof - obtain U V where "open U" "open V" "A \ U" "B \ V" "U \ V = {}" using separation_normal [OF AB] by metis obtain K where "K \ \" "compact K" using cc False by blast then obtain N where "open N" and "K \ N" by blast let ?\ = "insert (U \ V) ((\S. N - S) ` \)" obtain \ where "\ \ ?\" "finite \" "K \ \\" proof (rule compactE [OF \compact K\]) show "K \ \(insert (U \ V) ((-) N ` \))" using \K \ N\ ABeq \A \ U\ \B \ V\ by auto show "\B. B \ insert (U \ V) ((-) N ` \) \ open B" by (auto simp: \open U\ \open V\ open_Un \open N\ cc compact_imp_closed open_Diff) qed then have "finite(\ - {U \ V})" by blast moreover have "\ - {U \ V} \ (\S. N - S) ` \" using \\ \ ?\\ by blast ultimately obtain \ where "\ \ \" "finite \" and Deq: "\ - {U \ V} = (\S. N-S) ` \" using finite_subset_image by metis obtain J where "J \ \" and J: "(\S\\. N - S) \ N - J" proof (cases "\ = {}") case True with \\ \ {}\ that show ?thesis by auto next case False have "\S T. \S \ \; T \ \\ \ S \ T \ T \ S" by (meson \\ \ \\ in_mono local.linear) with \finite \\ \\ \ {}\ have "\J \ \. (\S\\. N - S) \ N - J" proof induction case (insert X \) show ?case proof (cases "\ = {}") case True then show ?thesis by auto next case False then have "\S T. \S \ \; T \ \\ \ S \ T \ T \ S" by (simp add: insert.prems) with insert.IH False obtain J where "J \ \" and J: "(\Y\\. N - Y) \ N - J" by metis have "N - J \ N - X \ N - X \ N - J" by (meson Diff_mono \J \ \\ insert.prems(2) insert_iff order_refl) then show ?thesis proof assume "N - J \ N - X" with J show ?thesis by auto next assume "N - X \ N - J" with J have "N - X \ \ ((-) N ` \) \ N - J" by auto with \J \ \\ show ?thesis by blast qed qed qed simp with \\ \ \\ show ?thesis by (blast intro: that) qed have "K \ \(insert (U \ V) (\ - {U \ V}))" using \K \ \\\ by auto also have "... \ (U \ V) \ (N - J)" by (metis (no_types, hide_lams) Deq Un_subset_iff Un_upper2 J Union_insert order_trans sup_ge1) finally have "J \ K \ U \ V" by blast moreover have "connected(J \ K)" by (metis Int_absorb1 \J \ \\ \K \ \\ cc inf.orderE local.linear) moreover have "U \ (J \ K) \ {}" using ABeq \J \ \\ \K \ \\ \A \ {}\ \A \ U\ by blast moreover have "V \ (J \ K) \ {}" using ABeq \J \ \\ \K \ \\ \B \ {}\ \B \ V\ by blast ultimately show False using connectedD [of "J \ K" U V] \open U\ \open V\ \U \ V = {}\ by auto qed with cf show ?thesis by (auto simp: connected_closed_set compact_imp_closed) qed lemma connected_chain_gen: fixes \ :: "'a :: euclidean_space set set" assumes X: "X \ \" "compact X" and cc: "\T. T \ \ \ closed T \ connected T" and linear: "\S T. S \ \ \ T \ \ \ S \ T \ T \ S" shows "connected(\\)" proof - have "\\ = (\T\\. X \ T)" using X by blast moreover have "connected (\T\\. X \ T)" proof (rule connected_chain) show "\T. T \ (\) X ` \ \ compact T \ connected T" using cc X by auto (metis inf.absorb2 inf.orderE local.linear) show "\S T. S \ (\) X ` \ \ T \ (\) X ` \ \ S \ T \ T \ S" using local.linear by blast qed ultimately show ?thesis by metis qed lemma connected_nest: fixes S :: "'a::linorder \ 'b::euclidean_space set" assumes S: "\n. compact(S n)" "\n. connected(S n)" and nest: "\m n. m \ n \ S n \ S m" shows "connected(\ (range S))" apply (rule connected_chain) using S apply blast by (metis image_iff le_cases nest) lemma connected_nest_gen: fixes S :: "'a::linorder \ 'b::euclidean_space set" assumes S: "\n. closed(S n)" "\n. connected(S n)" "compact(S k)" and nest: "\m n. m \ n \ S n \ S m" shows "connected(\ (range S))" apply (rule connected_chain_gen [of "S k"]) using S apply auto by (meson le_cases nest subsetCE) subsection\Proper maps, including projections out of compact sets\ lemma finite_indexed_bound: assumes A: "finite A" "\x. x \ A \ \n::'a::linorder. P x n" shows "\m. \x \ A. \k\m. P x k" using A proof (induction A) case empty then show ?case by force next case (insert a A) then obtain m n where "\x \ A. \k\m. P x k" "P a n" by force then show ?case apply (rule_tac x="max m n" in exI, safe) using max.cobounded2 apply blast by (meson le_max_iff_disj) qed proposition proper_map: fixes f :: "'a::heine_borel \ 'b::heine_borel" assumes "closedin (top_of_set S) K" and com: "\U. \U \ T; compact U\ \ compact (S \ f -` U)" and "f ` S \ T" shows "closedin (top_of_set T) (f ` K)" proof - have "K \ S" using assms closedin_imp_subset by metis obtain C where "closed C" and Keq: "K = S \ C" using assms by (auto simp: closedin_closed) have *: "y \ f ` K" if "y \ T" and y: "y islimpt f ` K" for y proof - obtain h where "\n. (\x\K. h n = f x) \ h n \ y" "inj h" and hlim: "(h \ y) sequentially" using \y \ T\ y by (force simp: limpt_sequential_inj) then obtain X where X: "\n. X n \ K \ h n = f (X n) \ h n \ y" by metis then have fX: "\n. f (X n) = h n" by metis have "compact (C \ (S \ f -` insert y (range (\i. f(X(n + i))))))" for n apply (rule closed_Int_compact [OF \closed C\]) apply (rule com) using X \K \ S\ \f ` S \ T\ \y \ T\ apply blast apply (rule compact_sequence_with_limit) apply (simp add: fX add.commute [of n] LIMSEQ_ignore_initial_segment [OF hlim]) done then have comf: "compact {a \ K. f a \ insert y (range (\i. f(X(n + i))))}" for n by (simp add: Keq Int_def conj_commute) have ne: "\\ \ {}" if "finite \" and \: "\t. t \ \ \ (\n. t = {a \ K. f a \ insert y (range (\i. f (X (n + i))))})" for \ proof - obtain m where m: "\t. t \ \ \ \k\m. t = {a \ K. f a \ insert y (range (\i. f (X (k + i))))}" apply (rule exE) apply (rule finite_indexed_bound [OF \finite \\ \], assumption, force) done have "X m \ \\" using X le_Suc_ex by (fastforce dest: m) then show ?thesis by blast qed have "\{{a. a \ K \ f a \ insert y (range (\i. f(X(n + i))))} |n. n \ UNIV} \ {}" apply (rule compact_fip_Heine_Borel) using comf apply force using ne apply (simp add: subset_iff del: insert_iff) done then have "\x. x \ (\n. {a \ K. f a \ insert y (range (\i. f (X (n + i))))})" by blast then show ?thesis apply (simp add: image_iff fX) by (metis \inj h\ le_add1 not_less_eq_eq rangeI range_ex1_eq) qed with assms closedin_subset show ?thesis by (force simp: closedin_limpt) qed lemma compact_continuous_image_eq: fixes f :: "'a::heine_borel \ 'b::heine_borel" assumes f: "inj_on f S" shows "continuous_on S f \ (\T. compact T \ T \ S \ compact(f ` T))" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs by (metis continuous_on_subset compact_continuous_image) next assume RHS: ?rhs obtain g where gf: "\x. x \ S \ g (f x) = x" by (metis inv_into_f_f f) then have *: "(S \ f -` U) = g ` U" if "U \ f ` S" for U using that by fastforce have gfim: "g ` f ` S \ S" using gf by auto have **: "compact (f ` S \ g -` C)" if C: "C \ S" "compact C" for C proof - obtain h where "h C \ C \ h C \ S \ compact (f ` C)" by (force simp: C RHS) moreover have "f ` C = (f ` S \ g -` C)" using C gf by auto ultimately show ?thesis using C by auto qed show ?lhs using proper_map [OF _ _ gfim] ** by (simp add: continuous_on_closed * closedin_imp_subset) qed subsection\<^marker>\tag unimportant\\Trivial fact: convexity equals connectedness for collinear sets\ lemma convex_connected_collinear: fixes S :: "'a::euclidean_space set" assumes "collinear S" shows "convex S \ connected S" proof assume "convex S" then show "connected S" using convex_connected by blast next assume S: "connected S" show "convex S" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain a where "a \ S" by auto have "collinear (affine hull S)" by (simp add: assms collinear_affine_hull_collinear) then obtain z where "z \ 0" "\x. x \ affine hull S \ \c. x - a = c *\<^sub>R z" by (meson \a \ S\ collinear hull_inc) then obtain f where f: "\x. x \ affine hull S \ x - a = f x *\<^sub>R z" by metis then have inj_f: "inj_on f (affine hull S)" by (metis diff_add_cancel inj_onI) have diff: "x - y = (f x - f y) *\<^sub>R z" if x: "x \ affine hull S" and y: "y \ affine hull S" for x y proof - have "f x *\<^sub>R z = x - a" by (simp add: f hull_inc x) moreover have "f y *\<^sub>R z = y - a" by (simp add: f hull_inc y) ultimately show ?thesis by (simp add: scaleR_left.diff) qed have cont_f: "continuous_on (affine hull S) f" apply (clarsimp simp: dist_norm continuous_on_iff diff) by (metis \z \ 0\ mult.commute mult_less_cancel_left_pos norm_minus_commute real_norm_def zero_less_mult_iff zero_less_norm_iff) then have conn_fS: "connected (f ` S)" by (meson S connected_continuous_image continuous_on_subset hull_subset) show ?thesis proof (clarsimp simp: convex_contains_segment) fix x y z assume "x \ S" "y \ S" "z \ closed_segment x y" have False if "z \ S" proof - have "f ` (closed_segment x y) = closed_segment (f x) (f y)" apply (rule continuous_injective_image_segment_1) apply (meson \x \ S\ \y \ S\ convex_affine_hull convex_contains_segment hull_inc continuous_on_subset [OF cont_f]) by (meson \x \ S\ \y \ S\ convex_affine_hull convex_contains_segment hull_inc inj_on_subset [OF inj_f]) then have fz: "f z \ closed_segment (f x) (f y)" using \z \ closed_segment x y\ by blast have "z \ affine hull S" by (meson \x \ S\ \y \ S\ \z \ closed_segment x y\ convex_affine_hull convex_contains_segment hull_inc subset_eq) then have fz_notin: "f z \ f ` S" using hull_subset inj_f inj_onD that by fastforce moreover have "{.. f ` S \ {}" "{f z<..} \ f ` S \ {}" proof - have "{.. f ` {x,y} \ {}" "{f z<..} \ f ` {x,y} \ {}" using fz fz_notin \x \ S\ \y \ S\ apply (auto simp: closed_segment_eq_real_ivl split: if_split_asm) apply (metis image_eqI less_eq_real_def)+ done then show "{.. f ` S \ {}" "{f z<..} \ f ` S \ {}" using \x \ S\ \y \ S\ by blast+ qed ultimately show False using connectedD [OF conn_fS, of "{.. S" by meson qed qed qed lemma compact_convex_collinear_segment_alt: fixes S :: "'a::euclidean_space set" assumes "S \ {}" "compact S" "connected S" "collinear S" obtains a b where "S = closed_segment a b" proof - obtain \ where "\ \ S" using \S \ {}\ by auto have "collinear (affine hull S)" by (simp add: assms collinear_affine_hull_collinear) then obtain z where "z \ 0" "\x. x \ affine hull S \ \c. x - \ = c *\<^sub>R z" by (meson \\ \ S\ collinear hull_inc) then obtain f where f: "\x. x \ affine hull S \ x - \ = f x *\<^sub>R z" by metis let ?g = "\r. r *\<^sub>R z + \" have gf: "?g (f x) = x" if "x \ affine hull S" for x by (metis diff_add_cancel f that) then have inj_f: "inj_on f (affine hull S)" by (metis inj_onI) have diff: "x - y = (f x - f y) *\<^sub>R z" if x: "x \ affine hull S" and y: "y \ affine hull S" for x y proof - have "f x *\<^sub>R z = x - \" by (simp add: f hull_inc x) moreover have "f y *\<^sub>R z = y - \" by (simp add: f hull_inc y) ultimately show ?thesis by (simp add: scaleR_left.diff) qed have cont_f: "continuous_on (affine hull S) f" apply (clarsimp simp: dist_norm continuous_on_iff diff) by (metis \z \ 0\ mult.commute mult_less_cancel_left_pos norm_minus_commute real_norm_def zero_less_mult_iff zero_less_norm_iff) then have "connected (f ` S)" by (meson \connected S\ connected_continuous_image continuous_on_subset hull_subset) moreover have "compact (f ` S)" by (meson \compact S\ compact_continuous_image_eq cont_f hull_subset inj_f) ultimately obtain x y where "f ` S = {x..y}" by (meson connected_compact_interval_1) then have fS_eq: "f ` S = closed_segment x y" using \S \ {}\ closed_segment_eq_real_ivl by auto obtain a b where "a \ S" "f a = x" "b \ S" "f b = y" by (metis (full_types) ends_in_segment fS_eq imageE) have "f ` (closed_segment a b) = closed_segment (f a) (f b)" apply (rule continuous_injective_image_segment_1) apply (meson \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment hull_inc continuous_on_subset [OF cont_f]) by (meson \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment hull_inc inj_on_subset [OF inj_f]) then have "f ` (closed_segment a b) = f ` S" by (simp add: \f a = x\ \f b = y\ fS_eq) then have "?g ` f ` (closed_segment a b) = ?g ` f ` S" by simp moreover have "(\x. f x *\<^sub>R z + \) ` closed_segment a b = closed_segment a b" apply safe apply (metis (mono_tags, hide_lams) \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment gf hull_inc subsetCE) by (metis (mono_tags, lifting) \a \ S\ \b \ S\ convex_affine_hull convex_contains_segment gf hull_subset image_iff subsetCE) ultimately have "closed_segment a b = S" using gf by (simp add: image_comp o_def hull_inc cong: image_cong) then show ?thesis using that by blast qed lemma compact_convex_collinear_segment: fixes S :: "'a::euclidean_space set" assumes "S \ {}" "compact S" "convex S" "collinear S" obtains a b where "S = closed_segment a b" using assms convex_connected_collinear compact_convex_collinear_segment_alt by blast lemma proper_map_from_compact: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes contf: "continuous_on S f" and imf: "f ` S \ T" and "compact S" "closedin (top_of_set T) K" shows "compact (S \ f -` K)" by (rule closedin_compact [OF \compact S\] continuous_closedin_preimage_gen assms)+ lemma proper_map_fst: assumes "compact T" "K \ S" "compact K" shows "compact (S \ T \ fst -` K)" proof - have "(S \ T \ fst -` K) = K \ T" using assms by auto then show ?thesis by (simp add: assms compact_Times) qed lemma closed_map_fst: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" assumes "compact T" "closedin (top_of_set (S \ T)) c" shows "closedin (top_of_set S) (fst ` c)" proof - have *: "fst ` (S \ T) \ S" by auto show ?thesis using proper_map [OF _ _ *] by (simp add: proper_map_fst assms) qed lemma proper_map_snd: assumes "compact S" "K \ T" "compact K" shows "compact (S \ T \ snd -` K)" proof - have "(S \ T \ snd -` K) = S \ K" using assms by auto then show ?thesis by (simp add: assms compact_Times) qed lemma closed_map_snd: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" assumes "compact S" "closedin (top_of_set (S \ T)) c" shows "closedin (top_of_set T) (snd ` c)" proof - have *: "snd ` (S \ T) \ T" by auto show ?thesis using proper_map [OF _ _ *] by (simp add: proper_map_snd assms) qed lemma closedin_compact_projection: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" assumes "compact S" and clo: "closedin (top_of_set (S \ T)) U" shows "closedin (top_of_set T) {y. \x. x \ S \ (x, y) \ U}" proof - have "U \ S \ T" by (metis clo closedin_imp_subset) then have "{y. \x. x \ S \ (x, y) \ U} = snd ` U" by force moreover have "closedin (top_of_set T) (snd ` U)" by (rule closed_map_snd [OF assms]) ultimately show ?thesis by simp qed lemma closed_compact_projection: fixes S :: "'a::euclidean_space set" and T :: "('a * 'b::euclidean_space) set" assumes "compact S" and clo: "closed T" shows "closed {y. \x. x \ S \ (x, y) \ T}" proof - have *: "{y. \x. x \ S \ Pair x y \ T} = {y. \x. x \ S \ Pair x y \ ((S \ UNIV) \ T)}" by auto show ?thesis apply (subst *) apply (rule closedin_closed_trans [OF _ closed_UNIV]) apply (rule closedin_compact_projection [OF \compact S\]) by (simp add: clo closedin_closed_Int) qed subsubsection\<^marker>\tag unimportant\\Representing affine hull as a finite intersection of hyperplanes\ proposition\<^marker>\tag unimportant\ affine_hull_convex_Int_nonempty_interior: fixes S :: "'a::real_normed_vector set" assumes "convex S" "S \ interior T \ {}" shows "affine hull (S \ T) = affine hull S" proof show "affine hull (S \ T) \ affine hull S" by (simp add: hull_mono) next obtain a where "a \ S" "a \ T" and at: "a \ interior T" using assms interior_subset by blast then obtain e where "e > 0" and e: "cball a e \ T" using mem_interior_cball by blast have *: "x \ (+) a ` span ((\x. x - a) ` (S \ T))" if "x \ S" for x proof (cases "x = a") case True with that span_0 eq_add_iff image_def mem_Collect_eq show ?thesis by blast next case False define k where "k = min (1/2) (e / norm (x-a))" have k: "0 < k" "k < 1" using \e > 0\ False by (auto simp: k_def) then have xa: "(x-a) = inverse k *\<^sub>R k *\<^sub>R (x-a)" by simp have "e / norm (x - a) \ k" using k_def by linarith then have "a + k *\<^sub>R (x - a) \ cball a e" using \0 < k\ False by (simp add: dist_norm) (simp add: field_simps) then have T: "a + k *\<^sub>R (x - a) \ T" using e by blast have S: "a + k *\<^sub>R (x - a) \ S" using k \a \ S\ convexD [OF \convex S\ \a \ S\ \x \ S\, of "1-k" k] by (simp add: algebra_simps) have "inverse k *\<^sub>R k *\<^sub>R (x-a) \ span ((\x. x - a) ` (S \ T))" apply (rule span_mul) apply (rule span_base) apply (rule image_eqI [where x = "a + k *\<^sub>R (x - a)"]) apply (auto simp: S T) done with xa image_iff show ?thesis by fastforce qed show "affine hull S \ affine hull (S \ T)" apply (simp add: subset_hull) apply (simp add: \a \ S\ \a \ T\ hull_inc affine_hull_span_gen [of a]) apply (force simp: *) done qed corollary affine_hull_convex_Int_open: fixes S :: "'a::real_normed_vector set" assumes "convex S" "open T" "S \ T \ {}" shows "affine hull (S \ T) = affine hull S" using affine_hull_convex_Int_nonempty_interior assms interior_eq by blast corollary affine_hull_affine_Int_nonempty_interior: fixes S :: "'a::real_normed_vector set" assumes "affine S" "S \ interior T \ {}" shows "affine hull (S \ T) = affine hull S" by (simp add: affine_hull_convex_Int_nonempty_interior affine_imp_convex assms) corollary affine_hull_affine_Int_open: fixes S :: "'a::real_normed_vector set" assumes "affine S" "open T" "S \ T \ {}" shows "affine hull (S \ T) = affine hull S" by (simp add: affine_hull_convex_Int_open affine_imp_convex assms) corollary affine_hull_convex_Int_openin: fixes S :: "'a::real_normed_vector set" assumes "convex S" "openin (top_of_set (affine hull S)) T" "S \ T \ {}" shows "affine hull (S \ T) = affine hull S" using assms unfolding openin_open by (metis affine_hull_convex_Int_open hull_subset inf.orderE inf_assoc) corollary affine_hull_openin: fixes S :: "'a::real_normed_vector set" assumes "openin (top_of_set (affine hull T)) S" "S \ {}" shows "affine hull S = affine hull T" using assms unfolding openin_open by (metis affine_affine_hull affine_hull_affine_Int_open hull_hull) corollary affine_hull_open: fixes S :: "'a::real_normed_vector set" assumes "open S" "S \ {}" shows "affine hull S = UNIV" by (metis affine_hull_convex_Int_nonempty_interior assms convex_UNIV hull_UNIV inf_top.left_neutral interior_open) lemma aff_dim_convex_Int_nonempty_interior: fixes S :: "'a::euclidean_space set" shows "\convex S; S \ interior T \ {}\ \ aff_dim(S \ T) = aff_dim S" using aff_dim_affine_hull2 affine_hull_convex_Int_nonempty_interior by blast lemma aff_dim_convex_Int_open: fixes S :: "'a::euclidean_space set" shows "\convex S; open T; S \ T \ {}\ \ aff_dim(S \ T) = aff_dim S" using aff_dim_convex_Int_nonempty_interior interior_eq by blast lemma affine_hull_Diff: fixes S:: "'a::real_normed_vector set" assumes ope: "openin (top_of_set (affine hull S)) S" and "finite F" "F \ S" shows "affine hull (S - F) = affine hull S" proof - have clo: "closedin (top_of_set S) F" using assms finite_imp_closedin by auto moreover have "S - F \ {}" using assms by auto ultimately show ?thesis by (metis ope closedin_def topspace_euclidean_subtopology affine_hull_openin openin_trans) qed lemma affine_hull_halfspace_lt: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x < r} = (if a = 0 \ r \ 0 then {} else UNIV)" using halfspace_eq_empty_lt [of a r] by (simp add: open_halfspace_lt affine_hull_open) lemma affine_hull_halfspace_le: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x \ r} = (if a = 0 \ r < 0 then {} else UNIV)" proof (cases "a = 0") case True then show ?thesis by simp next case False then have "affine hull closure {x. a \ x < r} = UNIV" using affine_hull_halfspace_lt closure_same_affine_hull by fastforce moreover have "{x. a \ x < r} \ {x. a \ x \ r}" by (simp add: Collect_mono) ultimately show ?thesis using False antisym_conv hull_mono top_greatest by (metis affine_hull_halfspace_lt) qed lemma affine_hull_halfspace_gt: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x > r} = (if a = 0 \ r \ 0 then {} else UNIV)" using halfspace_eq_empty_gt [of r a] by (simp add: open_halfspace_gt affine_hull_open) lemma affine_hull_halfspace_ge: fixes a :: "'a::euclidean_space" shows "affine hull {x. a \ x \ r} = (if a = 0 \ r > 0 then {} else UNIV)" using affine_hull_halfspace_le [of "-a" "-r"] by simp lemma aff_dim_halfspace_lt: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x < r} = (if a = 0 \ r \ 0 then -1 else DIM('a))" by simp (metis aff_dim_open halfspace_eq_empty_lt open_halfspace_lt) lemma aff_dim_halfspace_le: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x \ r} = (if a = 0 \ r < 0 then -1 else DIM('a))" proof - have "int (DIM('a)) = aff_dim (UNIV::'a set)" by (simp) then have "aff_dim (affine hull {x. a \ x \ r}) = DIM('a)" if "(a = 0 \ r \ 0)" using that by (simp add: affine_hull_halfspace_le not_less) then show ?thesis by (force) qed lemma aff_dim_halfspace_gt: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x > r} = (if a = 0 \ r \ 0 then -1 else DIM('a))" by simp (metis aff_dim_open halfspace_eq_empty_gt open_halfspace_gt) lemma aff_dim_halfspace_ge: fixes a :: "'a::euclidean_space" shows "aff_dim {x. a \ x \ r} = (if a = 0 \ r > 0 then -1 else DIM('a))" using aff_dim_halfspace_le [of "-a" "-r"] by simp proposition aff_dim_eq_hyperplane: fixes S :: "'a::euclidean_space set" shows "aff_dim S = DIM('a) - 1 \ (\a b. a \ 0 \ affine hull S = {x. a \ x = b})" proof (cases "S = {}") case True then show ?thesis by (auto simp: dest: hyperplane_eq_Ex) next case False then obtain c where "c \ S" by blast show ?thesis proof (cases "c = 0") case True show ?thesis using span_zero [of S] apply (simp add: aff_dim_eq_dim [of c] affine_hull_span_gen [of c] \c \ S\ hull_inc dim_eq_hyperplane del: One_nat_def) apply (auto simp add: \c = 0\) done next case False have xc_im: "x \ (+) c ` {y. a \ y = 0}" if "a \ x = a \ c" for a x proof - have "\y. a \ y = 0 \ c + y = x" by (metis that add.commute diff_add_cancel inner_commute inner_diff_left right_minus_eq) then show "x \ (+) c ` {y. a \ y = 0}" by blast qed have 2: "span ((\x. x - c) ` S) = {x. a \ x = 0}" if "(+) c ` span ((\x. x - c) ` S) = {x. a \ x = b}" for a b proof - have "b = a \ c" using span_0 that by fastforce with that have "(+) c ` span ((\x. x - c) ` S) = {x. a \ x = a \ c}" by simp then have "span ((\x. x - c) ` S) = (\x. x - c) ` {x. a \ x = a \ c}" by (metis (no_types) image_cong translation_galois uminus_add_conv_diff) also have "... = {x. a \ x = 0}" by (force simp: inner_distrib inner_diff_right intro: image_eqI [where x="x+c" for x]) finally show ?thesis . qed show ?thesis apply (simp add: aff_dim_eq_dim [of c] affine_hull_span_gen [of c] \c \ S\ hull_inc dim_eq_hyperplane del: One_nat_def cong: image_cong_simp, safe) apply (fastforce simp add: inner_distrib intro: xc_im) apply (force simp: intro!: 2) done qed qed corollary aff_dim_hyperplane [simp]: fixes a :: "'a::euclidean_space" shows "a \ 0 \ aff_dim {x. a \ x = r} = DIM('a) - 1" by (metis aff_dim_eq_hyperplane affine_hull_eq affine_hyperplane) subsection\<^marker>\tag unimportant\\Some stepping theorems\ lemma aff_dim_insert: fixes a :: "'a::euclidean_space" shows "aff_dim (insert a S) = (if a \ affine hull S then aff_dim S else aff_dim S + 1)" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain x s' where S: "S = insert x s'" "x \ s'" by (meson Set.set_insert all_not_in_conv) show ?thesis using S apply (simp add: hull_redundant cong: aff_dim_affine_hull2) apply (simp add: affine_hull_insert_span_gen hull_inc) by (force simp add: span_zero insert_commute [of a] hull_inc aff_dim_eq_dim [of x] dim_insert cong: image_cong_simp) qed lemma affine_dependent_choose: fixes a :: "'a :: euclidean_space" assumes "\(affine_dependent S)" shows "affine_dependent(insert a S) \ a \ S \ a \ affine hull S" (is "?lhs = ?rhs") proof safe assume "affine_dependent (insert a S)" and "a \ S" then show "False" using \a \ S\ assms insert_absorb by fastforce next assume lhs: "affine_dependent (insert a S)" then have "a \ S" by (metis (no_types) assms insert_absorb) moreover have "finite S" using affine_independent_iff_card assms by blast moreover have "aff_dim (insert a S) \ int (card S)" using \finite S\ affine_independent_iff_card \a \ S\ lhs by fastforce ultimately show "a \ affine hull S" by (metis aff_dim_affine_independent aff_dim_insert assms) next assume "a \ S" and "a \ affine hull S" show "affine_dependent (insert a S)" by (simp add: \a \ affine hull S\ \a \ S\ affine_dependent_def) qed lemma affine_independent_insert: fixes a :: "'a :: euclidean_space" shows "\\ affine_dependent S; a \ affine hull S\ \ \ affine_dependent(insert a S)" by (simp add: affine_dependent_choose) lemma subspace_bounded_eq_trivial: fixes S :: "'a::real_normed_vector set" assumes "subspace S" shows "bounded S \ S = {0}" proof - have "False" if "bounded S" "x \ S" "x \ 0" for x proof - obtain B where B: "\y. y \ S \ norm y < B" "B > 0" using \bounded S\ by (force simp: bounded_pos_less) have "(B / norm x) *\<^sub>R x \ S" using assms subspace_mul \x \ S\ by auto moreover have "norm ((B / norm x) *\<^sub>R x) = B" using that B by (simp add: algebra_simps) ultimately show False using B by force qed then have "bounded S \ S = {0}" using assms subspace_0 by fastforce then show ?thesis by blast qed lemma affine_bounded_eq_trivial: fixes S :: "'a::real_normed_vector set" assumes "affine S" shows "bounded S \ S = {} \ (\a. S = {a})" proof (cases "S = {}") case True then show ?thesis by simp next case False then obtain b where "b \ S" by blast with False assms show ?thesis apply safe using affine_diffs_subspace [OF assms \b \ S\] apply (metis (no_types, lifting) subspace_bounded_eq_trivial ab_left_minus bounded_translation image_empty image_insert translation_invert) apply force done qed lemma affine_bounded_eq_lowdim: fixes S :: "'a::euclidean_space set" assumes "affine S" shows "bounded S \ aff_dim S \ 0" apply safe using affine_bounded_eq_trivial assms apply fastforce by (metis aff_dim_sing aff_dim_subset affine_dim_equal affine_sing all_not_in_conv assms bounded_empty bounded_insert dual_order.antisym empty_subsetI insert_subset) lemma bounded_hyperplane_eq_trivial_0: fixes a :: "'a::euclidean_space" assumes "a \ 0" shows "bounded {x. a \ x = 0} \ DIM('a) = 1" proof assume "bounded {x. a \ x = 0}" then have "aff_dim {x. a \ x = 0} \ 0" by (simp add: affine_bounded_eq_lowdim affine_hyperplane) with assms show "DIM('a) = 1" by (simp add: le_Suc_eq) next assume "DIM('a) = 1" then show "bounded {x. a \ x = 0}" by (simp add: affine_bounded_eq_lowdim affine_hyperplane assms) qed lemma bounded_hyperplane_eq_trivial: fixes a :: "'a::euclidean_space" shows "bounded {x. a \ x = r} \ (if a = 0 then r \ 0 else DIM('a) = 1)" proof (simp add: bounded_hyperplane_eq_trivial_0, clarify) assume "r \ 0" "a \ 0" have "aff_dim {x. y \ x = 0} = aff_dim {x. a \ x = r}" if "y \ 0" for y::'a by (metis that \a \ 0\ aff_dim_hyperplane) then show "bounded {x. a \ x = r} = (DIM('a) = Suc 0)" by (metis One_nat_def \a \ 0\ affine_bounded_eq_lowdim affine_hyperplane bounded_hyperplane_eq_trivial_0) qed subsection\<^marker>\tag unimportant\\General case without assuming closure and getting non-strict separation\ proposition\<^marker>\tag unimportant\ separating_hyperplane_closed_point_inset: fixes S :: "'a::euclidean_space set" assumes "convex S" "closed S" "S \ {}" "z \ S" obtains a b where "a \ S" "(a - z) \ z < b" "\x. x \ S \ b < (a - z) \ x" proof - obtain y where "y \ S" and y: "\u. u \ S \ dist z y \ dist z u" using distance_attains_inf [of S z] assms by auto then have *: "(y - z) \ z < (y - z) \ z + (norm (y - z))\<^sup>2 / 2" using \y \ S\ \z \ S\ by auto show ?thesis proof (rule that [OF \y \ S\ *]) fix x assume "x \ S" have yz: "0 < (y - z) \ (y - z)" using \y \ S\ \z \ S\ by auto { assume 0: "0 < ((z - y) \ (x - y))" with any_closest_point_dot [OF \convex S\ \closed S\] have False using y \x \ S\ \y \ S\ not_less by blast } then have "0 \ ((y - z) \ (x - y))" by (force simp: not_less inner_diff_left) with yz have "0 < 2 * ((y - z) \ (x - y)) + (y - z) \ (y - z)" by (simp add: algebra_simps) then show "(y - z) \ z + (norm (y - z))\<^sup>2 / 2 < (y - z) \ x" by (simp add: field_simps inner_diff_left inner_diff_right dot_square_norm [symmetric]) qed qed lemma separating_hyperplane_closed_0_inset: fixes S :: "'a::euclidean_space set" assumes "convex S" "closed S" "S \ {}" "0 \ S" obtains a b where "a \ S" "a \ 0" "0 < b" "\x. x \ S \ a \ x > b" using separating_hyperplane_closed_point_inset [OF assms] by simp (metis \0 \ S\) proposition\<^marker>\tag unimportant\ separating_hyperplane_set_0_inspan: fixes S :: "'a::euclidean_space set" assumes "convex S" "S \ {}" "0 \ S" obtains a where "a \ span S" "a \ 0" "\x. x \ S \ 0 \ a \ x" proof - define k where [abs_def]: "k c = {x. 0 \ c \ x}" for c :: 'a have *: "span S \ frontier (cball 0 1) \ \f' \ {}" if f': "finite f'" "f' \ k ` S" for f' proof - obtain C where "C \ S" "finite C" and C: "f' = k ` C" using finite_subset_image [OF f'] by blast obtain a where "a \ S" "a \ 0" using \S \ {}\ \0 \ S\ ex_in_conv by blast then have "norm (a /\<^sub>R (norm a)) = 1" by simp moreover have "a /\<^sub>R (norm a) \ span S" by (simp add: \a \ S\ span_scale span_base) ultimately have ass: "a /\<^sub>R (norm a) \ span S \ sphere 0 1" by simp show ?thesis proof (cases "C = {}") case True with C ass show ?thesis by auto next case False have "closed (convex hull C)" using \finite C\ compact_eq_bounded_closed finite_imp_compact_convex_hull by auto moreover have "convex hull C \ {}" by (simp add: False) moreover have "0 \ convex hull C" by (metis \C \ S\ \convex S\ \0 \ S\ convex_hull_subset hull_same insert_absorb insert_subset) ultimately obtain a b where "a \ convex hull C" "a \ 0" "0 < b" and ab: "\x. x \ convex hull C \ a \ x > b" using separating_hyperplane_closed_0_inset by blast then have "a \ S" by (metis \C \ S\ assms(1) subsetCE subset_hull) moreover have "norm (a /\<^sub>R (norm a)) = 1" using \a \ 0\ by simp moreover have "a /\<^sub>R (norm a) \ span S" by (simp add: \a \ S\ span_scale span_base) ultimately have ass: "a /\<^sub>R (norm a) \ span S \ sphere 0 1" by simp have aa: "a /\<^sub>R (norm a) \ (\c\C. {x. 0 \ c \ x})" apply (clarsimp simp add: field_split_simps) using ab \0 < b\ by (metis hull_inc inner_commute less_eq_real_def less_trans) show ?thesis apply (simp add: C k_def) using ass aa Int_iff empty_iff by blast qed qed have "(span S \ frontier(cball 0 1)) \ (\ (k ` S)) \ {}" apply (rule compact_imp_fip) apply (blast intro: compact_cball) using closed_halfspace_ge k_def apply blast apply (metis *) done then show ?thesis unfolding set_eq_iff k_def by simp (metis inner_commute norm_eq_zero that zero_neq_one) qed lemma separating_hyperplane_set_point_inaff: fixes S :: "'a::euclidean_space set" assumes "convex S" "S \ {}" and zno: "z \ S" obtains a b where "(z + a) \ affine hull (insert z S)" and "a \ 0" and "a \ z \ b" and "\x. x \ S \ a \ x \ b" proof - from separating_hyperplane_set_0_inspan [of "image (\x. -z + x) S"] have "convex ((+) (- z) ` S)" using \convex S\ by simp moreover have "(+) (- z) ` S \ {}" by (simp add: \S \ {}\) moreover have "0 \ (+) (- z) ` S" using zno by auto ultimately obtain a where "a \ span ((+) (- z) ` S)" "a \ 0" and a: "\x. x \ ((+) (- z) ` S) \ 0 \ a \ x" using separating_hyperplane_set_0_inspan [of "image (\x. -z + x) S"] by blast then have szx: "\x. x \ S \ a \ z \ a \ x" by (metis (no_types, lifting) imageI inner_minus_right inner_right_distrib minus_add neg_le_0_iff_le neg_le_iff_le real_add_le_0_iff) show ?thesis apply (rule_tac a=a and b = "a \ z" in that, simp_all) using \a \ span ((+) (- z) ` S)\ affine_hull_insert_span_gen apply blast apply (simp_all add: \a \ 0\ szx) done qed proposition\<^marker>\tag unimportant\ supporting_hyperplane_rel_boundary: fixes S :: "'a::euclidean_space set" assumes "convex S" "x \ S" and xno: "x \ rel_interior S" obtains a where "a \ 0" and "\y. y \ S \ a \ x \ a \ y" and "\y. y \ rel_interior S \ a \ x < a \ y" proof - obtain a b where aff: "(x + a) \ affine hull (insert x (rel_interior S))" and "a \ 0" and "a \ x \ b" and ageb: "\u. u \ (rel_interior S) \ a \ u \ b" using separating_hyperplane_set_point_inaff [of "rel_interior S" x] assms by (auto simp: rel_interior_eq_empty convex_rel_interior) have le_ay: "a \ x \ a \ y" if "y \ S" for y proof - have con: "continuous_on (closure (rel_interior S)) ((\) a)" by (rule continuous_intros continuous_on_subset | blast)+ have y: "y \ closure (rel_interior S)" using \convex S\ closure_def convex_closure_rel_interior \y \ S\ by fastforce show ?thesis using continuous_ge_on_closure [OF con y] ageb \a \ x \ b\ by fastforce qed have 3: "a \ x < a \ y" if "y \ rel_interior S" for y proof - obtain e where "0 < e" "y \ S" and e: "cball y e \ affine hull S \ S" using \y \ rel_interior S\ by (force simp: rel_interior_cball) define y' where "y' = y - (e / norm a) *\<^sub>R ((x + a) - x)" have "y' \ cball y e" unfolding y'_def using \0 < e\ by force moreover have "y' \ affine hull S" unfolding y'_def by (metis \x \ S\ \y \ S\ \convex S\ aff affine_affine_hull hull_redundant rel_interior_same_affine_hull hull_inc mem_affine_3_minus2) ultimately have "y' \ S" using e by auto have "a \ x \ a \ y" using le_ay \a \ 0\ \y \ S\ by blast moreover have "a \ x \ a \ y" using le_ay [OF \y' \ S\] \a \ 0\ apply (simp add: y'_def inner_diff dot_square_norm power2_eq_square) by (metis \0 < e\ add_le_same_cancel1 inner_commute inner_real_def inner_zero_left le_diff_eq norm_le_zero_iff real_mult_le_cancel_iff2) ultimately show ?thesis by force qed show ?thesis by (rule that [OF \a \ 0\ le_ay 3]) qed lemma supporting_hyperplane_relative_frontier: fixes S :: "'a::euclidean_space set" assumes "convex S" "x \ closure S" "x \ rel_interior S" obtains a where "a \ 0" and "\y. y \ closure S \ a \ x \ a \ y" and "\y. y \ rel_interior S \ a \ x < a \ y" using supporting_hyperplane_rel_boundary [of "closure S" x] by (metis assms convex_closure convex_rel_interior_closure) subsection\<^marker>\tag unimportant\\ Some results on decomposing convex hulls: intersections, simplicial subdivision\ lemma fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent(s \ t)" shows convex_hull_Int_subset: "convex hull s \ convex hull t \ convex hull (s \ t)" (is ?C) and affine_hull_Int_subset: "affine hull s \ affine hull t \ affine hull (s \ t)" (is ?A) proof - have [simp]: "finite s" "finite t" using aff_independent_finite assms by blast+ have "sum u (s \ t) = 1 \ (\v\s \ t. u v *\<^sub>R v) = (\v\s. u v *\<^sub>R v)" if [simp]: "sum u s = 1" "sum v t = 1" and eq: "(\x\t. v x *\<^sub>R x) = (\x\s. u x *\<^sub>R x)" for u v proof - define f where "f x = (if x \ s then u x else 0) - (if x \ t then v x else 0)" for x have "sum f (s \ t) = 0" apply (simp add: f_def sum_Un sum_subtractf) apply (simp add: sum.inter_restrict [symmetric] Int_commute) done moreover have "(\x\(s \ t). f x *\<^sub>R x) = 0" apply (simp add: f_def sum_Un scaleR_left_diff_distrib sum_subtractf) apply (simp add: if_smult sum.inter_restrict [symmetric] Int_commute eq cong del: if_weak_cong) done ultimately have "\v. v \ s \ t \ f v = 0" using aff_independent_finite assms unfolding affine_dependent_explicit by blast then have u [simp]: "\x. x \ s \ u x = (if x \ t then v x else 0)" by (simp add: f_def) presburger have "sum u (s \ t) = sum u s" by (simp add: sum.inter_restrict) then have "sum u (s \ t) = 1" using that by linarith moreover have "(\v\s \ t. u v *\<^sub>R v) = (\v\s. u v *\<^sub>R v)" by (auto simp: if_smult sum.inter_restrict intro: sum.cong) ultimately show ?thesis by force qed then show ?A ?C by (auto simp: convex_hull_finite affine_hull_finite) qed proposition\<^marker>\tag unimportant\ affine_hull_Int: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent(s \ t)" shows "affine hull (s \ t) = affine hull s \ affine hull t" apply (rule subset_antisym) apply (simp add: hull_mono) by (simp add: affine_hull_Int_subset assms) proposition\<^marker>\tag unimportant\ convex_hull_Int: fixes s :: "'a::euclidean_space set" assumes "\ affine_dependent(s \ t)" shows "convex hull (s \ t) = convex hull s \ convex hull t" apply (rule subset_antisym) apply (simp add: hull_mono) by (simp add: convex_hull_Int_subset assms) proposition\<^marker>\tag unimportant\ fixes s :: "'a::euclidean_space set set" assumes "\ affine_dependent (\s)" shows affine_hull_Inter: "affine hull (\s) = (\t\s. affine hull t)" (is "?A") and convex_hull_Inter: "convex hull (\s) = (\t\s. convex hull t)" (is "?C") proof - have "finite s" using aff_independent_finite assms finite_UnionD by blast then have "?A \ ?C" using assms proof (induction s rule: finite_induct) case empty then show ?case by auto next case (insert t F) then show ?case proof (cases "F={}") case True then show ?thesis by simp next case False with "insert.prems" have [simp]: "\ affine_dependent (t \ \F)" by (auto intro: affine_dependent_subset) have [simp]: "\ affine_dependent (\F)" using affine_independent_subset insert.prems by fastforce show ?thesis by (simp add: affine_hull_Int convex_hull_Int insert.IH) qed qed then show "?A" "?C" by auto qed proposition\<^marker>\tag unimportant\ in_convex_hull_exchange_unique: fixes S :: "'a::euclidean_space set" assumes naff: "\ affine_dependent S" and a: "a \ convex hull S" and S: "T \ S" "T' \ S" and x: "x \ convex hull (insert a T)" and x': "x \ convex hull (insert a T')" shows "x \ convex hull (insert a (T \ T'))" proof (cases "a \ S") case True then have "\ affine_dependent (insert a T \ insert a T')" using affine_dependent_subset assms by auto then have "x \ convex hull (insert a T \ insert a T')" by (metis IntI convex_hull_Int x x') then show ?thesis by simp next case False then have anot: "a \ T" "a \ T'" using assms by auto have [simp]: "finite S" by (simp add: aff_independent_finite assms) then obtain b where b0: "\s. s \ S \ 0 \ b s" and b1: "sum b S = 1" and aeq: "a = (\s\S. b s *\<^sub>R s)" using a by (auto simp: convex_hull_finite) have fin [simp]: "finite T" "finite T'" using assms infinite_super \finite S\ by blast+ then obtain c c' where c0: "\t. t \ insert a T \ 0 \ c t" and c1: "sum c (insert a T) = 1" and xeq: "x = (\t \ insert a T. c t *\<^sub>R t)" and c'0: "\t. t \ insert a T' \ 0 \ c' t" and c'1: "sum c' (insert a T') = 1" and x'eq: "x = (\t \ insert a T'. c' t *\<^sub>R t)" using x x' by (auto simp: convex_hull_finite) with fin anot have sumTT': "sum c T = 1 - c a" "sum c' T' = 1 - c' a" and wsumT: "(\t \ T. c t *\<^sub>R t) = x - c a *\<^sub>R a" by simp_all have wsumT': "(\t \ T'. c' t *\<^sub>R t) = x - c' a *\<^sub>R a" using x'eq fin anot by simp define cc where "cc \ \x. if x \ T then c x else 0" define cc' where "cc' \ \x. if x \ T' then c' x else 0" define dd where "dd \ \x. cc x - cc' x + (c a - c' a) * b x" have sumSS': "sum cc S = 1 - c a" "sum cc' S = 1 - c' a" unfolding cc_def cc'_def using S by (simp_all add: Int_absorb1 Int_absorb2 sum_subtractf sum.inter_restrict [symmetric] sumTT') have wsumSS: "(\t \ S. cc t *\<^sub>R t) = x - c a *\<^sub>R a" "(\t \ S. cc' t *\<^sub>R t) = x - c' a *\<^sub>R a" unfolding cc_def cc'_def using S by (simp_all add: Int_absorb1 Int_absorb2 if_smult sum.inter_restrict [symmetric] wsumT wsumT' cong: if_cong) have sum_dd0: "sum dd S = 0" unfolding dd_def using S by (simp add: sumSS' comm_monoid_add_class.sum.distrib sum_subtractf algebra_simps sum_distrib_right [symmetric] b1) have "(\v\S. (b v * x) *\<^sub>R v) = x *\<^sub>R (\v\S. b v *\<^sub>R v)" for x by (simp add: pth_5 real_vector.scale_sum_right mult.commute) then have *: "(\v\S. (b v * x) *\<^sub>R v) = x *\<^sub>R a" for x using aeq by blast have "(\v \ S. dd v *\<^sub>R v) = 0" unfolding dd_def using S by (simp add: * wsumSS sum.distrib sum_subtractf algebra_simps) then have dd0: "dd v = 0" if "v \ S" for v using naff that \finite S\ sum_dd0 unfolding affine_dependent_explicit apply (simp only: not_ex) apply (drule_tac x=S in spec) apply (drule_tac x=dd in spec, simp) done consider "c' a \ c a" | "c a \ c' a" by linarith then show ?thesis proof cases case 1 then have "sum cc S \ sum cc' S" by (simp add: sumSS') then have le: "cc x \ cc' x" if "x \ S" for x using dd0 [OF that] 1 b0 mult_left_mono that by (fastforce simp add: dd_def algebra_simps) have cc0: "cc x = 0" if "x \ S" "x \ T \ T'" for x using le [OF \x \ S\] that c0 by (force simp: cc_def cc'_def split: if_split_asm) show ?thesis proof (simp add: convex_hull_finite, intro exI conjI) show "\x\T \ T'. 0 \ (cc(a := c a)) x" by (simp add: c0 cc_def) show "0 \ (cc(a := c a)) a" by (simp add: c0) have "sum (cc(a := c a)) (insert a (T \ T')) = c a + sum (cc(a := c a)) (T \ T')" by (simp add: anot) also have "... = c a + sum (cc(a := c a)) S" apply simp apply (rule sum.mono_neutral_left) using \T \ S\ apply (auto simp: \a \ S\ cc0) done also have "... = c a + (1 - c a)" by (metis \a \ S\ fun_upd_other sum.cong sumSS') finally show "sum (cc(a := c a)) (insert a (T \ T')) = 1" by simp have "(\x\insert a (T \ T'). (cc(a := c a)) x *\<^sub>R x) = c a *\<^sub>R a + (\x \ T \ T'. (cc(a := c a)) x *\<^sub>R x)" by (simp add: anot) also have "... = c a *\<^sub>R a + (\x \ S. (cc(a := c a)) x *\<^sub>R x)" apply simp apply (rule sum.mono_neutral_left) using \T \ S\ apply (auto simp: \a \ S\ cc0) done also have "... = c a *\<^sub>R a + x - c a *\<^sub>R a" by (simp add: wsumSS \a \ S\ if_smult sum_delta_notmem) finally show "(\x\insert a (T \ T'). (cc(a := c a)) x *\<^sub>R x) = x" by simp qed next case 2 then have "sum cc' S \ sum cc S" by (simp add: sumSS') then have le: "cc' x \ cc x" if "x \ S" for x using dd0 [OF that] 2 b0 mult_left_mono that by (fastforce simp add: dd_def algebra_simps) have cc0: "cc' x = 0" if "x \ S" "x \ T \ T'" for x using le [OF \x \ S\] that c'0 by (force simp: cc_def cc'_def split: if_split_asm) show ?thesis proof (simp add: convex_hull_finite, intro exI conjI) show "\x\T \ T'. 0 \ (cc'(a := c' a)) x" by (simp add: c'0 cc'_def) show "0 \ (cc'(a := c' a)) a" by (simp add: c'0) have "sum (cc'(a := c' a)) (insert a (T \ T')) = c' a + sum (cc'(a := c' a)) (T \ T')" by (simp add: anot) also have "... = c' a + sum (cc'(a := c' a)) S" apply simp apply (rule sum.mono_neutral_left) using \T \ S\ apply (auto simp: \a \ S\ cc0) done also have "... = c' a + (1 - c' a)" by (metis \a \ S\ fun_upd_other sum.cong sumSS') finally show "sum (cc'(a := c' a)) (insert a (T \ T')) = 1" by simp have "(\x\insert a (T \ T'). (cc'(a := c' a)) x *\<^sub>R x) = c' a *\<^sub>R a + (\x \ T \ T'. (cc'(a := c' a)) x *\<^sub>R x)" by (simp add: anot) also have "... = c' a *\<^sub>R a + (\x \ S. (cc'(a := c' a)) x *\<^sub>R x)" apply simp apply (rule sum.mono_neutral_left) using \T \ S\ apply (auto simp: \a \ S\ cc0) done also have "... = c a *\<^sub>R a + x - c a *\<^sub>R a" by (simp add: wsumSS \a \ S\ if_smult sum_delta_notmem) finally show "(\x\insert a (T \ T'). (cc'(a := c' a)) x *\<^sub>R x) = x" by simp qed qed qed corollary\<^marker>\tag unimportant\ convex_hull_exchange_Int: fixes a :: "'a::euclidean_space" assumes "\ affine_dependent S" "a \ convex hull S" "T \ S" "T' \ S" shows "(convex hull (insert a T)) \ (convex hull (insert a T')) = convex hull (insert a (T \ T'))" apply (rule subset_antisym) using in_convex_hull_exchange_unique assms apply blast by (metis hull_mono inf_le1 inf_le2 insert_inter_insert le_inf_iff) lemma Int_closed_segment: fixes b :: "'a::euclidean_space" assumes "b \ closed_segment a c \ \ collinear{a,b,c}" shows "closed_segment a b \ closed_segment b c = {b}" proof (cases "c = a") case True then show ?thesis using assms collinear_3_eq_affine_dependent by fastforce next case False from assms show ?thesis proof assume "b \ closed_segment a c" moreover have "\ affine_dependent {a, c}" by (simp) ultimately show ?thesis using False convex_hull_exchange_Int [of "{a,c}" b "{a}" "{c}"] by (simp add: segment_convex_hull insert_commute) next assume ncoll: "\ collinear {a, b, c}" have False if "closed_segment a b \ closed_segment b c \ {b}" proof - have "b \ closed_segment a b" and "b \ closed_segment b c" by auto with that obtain d where "b \ d" "d \ closed_segment a b" "d \ closed_segment b c" by force then have d: "collinear {a, d, b}" "collinear {b, d, c}" by (auto simp: between_mem_segment between_imp_collinear) have "collinear {a, b, c}" apply (rule collinear_3_trans [OF _ _ \b \ d\]) using d by (auto simp: insert_commute) with ncoll show False .. qed then show ?thesis by blast qed qed lemma affine_hull_finite_intersection_hyperplanes: fixes s :: "'a::euclidean_space set" obtains f where "finite f" "of_nat (card f) + aff_dim s = DIM('a)" "affine hull s = \f" "\h. h \ f \ \a b. a \ 0 \ h = {x. a \ x = b}" proof - obtain b where "b \ s" and indb: "\ affine_dependent b" and eq: "affine hull s = affine hull b" using affine_basis_exists by blast obtain c where indc: "\ affine_dependent c" and "b \ c" and affc: "affine hull c = UNIV" by (metis extend_to_affine_basis affine_UNIV hull_same indb subset_UNIV) then have "finite c" by (simp add: aff_independent_finite) then have fbc: "finite b" "card b \ card c" using \b \ c\ infinite_super by (auto simp: card_mono) have imeq: "(\x. affine hull x) ` ((\a. c - {a}) ` (c - b)) = ((\a. affine hull (c - {a})) ` (c - b))" by blast have card1: "card ((\a. affine hull (c - {a})) ` (c - b)) = card (c - b)" apply (rule card_image [OF inj_onI]) by (metis Diff_eq_empty_iff Diff_iff indc affine_dependent_def hull_subset insert_iff) have card2: "(card (c - b)) + aff_dim s = DIM('a)" proof - have aff: "aff_dim (UNIV::'a set) = aff_dim c" by (metis aff_dim_affine_hull affc) have "aff_dim b = aff_dim s" by (metis (no_types) aff_dim_affine_hull eq) then have "int (card b) = 1 + aff_dim s" by (simp add: aff_dim_affine_independent indb) then show ?thesis using fbc aff by (simp add: \\ affine_dependent c\ \b \ c\ aff_dim_affine_independent card_Diff_subset of_nat_diff) qed show ?thesis proof (cases "c = b") case True show ?thesis apply (rule_tac f="{}" in that) using True affc apply (simp_all add: eq [symmetric]) by (metis aff_dim_UNIV aff_dim_affine_hull) next case False have ind: "\ affine_dependent (\a\c - b. c - {a})" by (rule affine_independent_subset [OF indc]) auto have affeq: "affine hull s = (\x\(\a. c - {a}) ` (c - b). affine hull x)" using \b \ c\ False apply (subst affine_hull_Inter [OF ind, symmetric]) apply (simp add: eq double_diff) done have *: "1 + aff_dim (c - {t}) = int (DIM('a))" if t: "t \ c" for t proof - have "insert t c = c" using t by blast then show ?thesis by (metis (full_types) add.commute aff_dim_affine_hull aff_dim_insert aff_dim_UNIV affc affine_dependent_def indc insert_Diff_single t) qed show ?thesis apply (rule_tac f = "(\x. affine hull x) ` ((\a. c - {a}) ` (c - b))" in that) using \finite c\ apply blast apply (simp add: imeq card1 card2) apply (simp add: affeq, clarify) apply (metis DIM_positive One_nat_def Suc_leI add_diff_cancel_left' of_nat_1 aff_dim_eq_hyperplane of_nat_diff *) done qed qed lemma affine_hyperplane_sums_eq_UNIV_0: fixes S :: "'a :: euclidean_space set" assumes "affine S" and "0 \ S" and "w \ S" and "a \ w \ 0" shows "{x + y| x y. x \ S \ a \ y = 0} = UNIV" proof - have "subspace S" by (simp add: assms subspace_affine) have span1: "span {y. a \ y = 0} \ span {x + y |x y. x \ S \ a \ y = 0}" apply (rule span_mono) using \0 \ S\ add.left_neutral by force have "w \ span {y. a \ y = 0}" using \a \ w \ 0\ span_induct subspace_hyperplane by auto moreover have "w \ span {x + y |x y. x \ S \ a \ y = 0}" using \w \ S\ by (metis (mono_tags, lifting) inner_zero_right mem_Collect_eq pth_d span_base) ultimately have span2: "span {y. a \ y = 0} \ span {x + y |x y. x \ S \ a \ y = 0}" by blast have "a \ 0" using assms inner_zero_left by blast then have "DIM('a) - 1 = dim {y. a \ y = 0}" by (simp add: dim_hyperplane) also have "... < dim {x + y |x y. x \ S \ a \ y = 0}" using span1 span2 by (blast intro: dim_psubset) finally have DIM_lt: "DIM('a) - 1 < dim {x + y |x y. x \ S \ a \ y = 0}" . have subs: "subspace {x + y| x y. x \ S \ a \ y = 0}" using subspace_sums [OF \subspace S\ subspace_hyperplane] by simp moreover have "span {x + y| x y. x \ S \ a \ y = 0} = UNIV" apply (rule dim_eq_full [THEN iffD1]) apply (rule antisym [OF dim_subset_UNIV]) using DIM_lt apply simp done ultimately show ?thesis by (simp add: subs) (metis (lifting) span_eq_iff subs) qed proposition\<^marker>\tag unimportant\ affine_hyperplane_sums_eq_UNIV: fixes S :: "'a :: euclidean_space set" assumes "affine S" and "S \ {v. a \ v = b} \ {}" and "S - {v. a \ v = b} \ {}" shows "{x + y| x y. x \ S \ a \ y = b} = UNIV" proof (cases "a = 0") case True with assms show ?thesis by (auto simp: if_splits) next case False obtain c where "c \ S" and c: "a \ c = b" using assms by force with affine_diffs_subspace [OF \affine S\] have "subspace ((+) (- c) ` S)" by blast then have aff: "affine ((+) (- c) ` S)" by (simp add: subspace_imp_affine) have 0: "0 \ (+) (- c) ` S" by (simp add: \c \ S\) obtain d where "d \ S" and "a \ d \ b" and dc: "d-c \ (+) (- c) ` S" using assms by auto then have adc: "a \ (d - c) \ 0" by (simp add: c inner_diff_right) let ?U = "(+) (c+c) ` {x + y |x y. x \ (+) (- c) ` S \ a \ y = 0}" have "u + v \ (+) (c + c) ` {x + v |x v. x \ (+) (- c) ` S \ a \ v = 0}" if "u \ S" "b = a \ v" for u v apply (rule_tac x="u+v-c-c" in image_eqI) apply (simp_all add: algebra_simps) apply (rule_tac x="u-c" in exI) apply (rule_tac x="v-c" in exI) apply (simp add: algebra_simps that c) done moreover have "\a \ v = 0; u \ S\ \ \x ya. v + (u + c) = x + ya \ x \ S \ a \ ya = b" for v u by (metis add.left_commute c inner_right_distrib pth_d) ultimately have "{x + y |x y. x \ S \ a \ y = b} = ?U" by (fastforce simp: algebra_simps) also have "... = range ((+) (c + c))" by (simp only: affine_hyperplane_sums_eq_UNIV_0 [OF aff 0 dc adc]) also have "... = UNIV" by simp finally show ?thesis . qed lemma aff_dim_sums_Int_0: assumes "affine S" and "affine T" and "0 \ S" "0 \ T" shows "aff_dim {x + y| x y. x \ S \ y \ T} = (aff_dim S + aff_dim T) - aff_dim(S \ T)" proof - have "0 \ {x + y |x y. x \ S \ y \ T}" using assms by force then have 0: "0 \ affine hull {x + y |x y. x \ S \ y \ T}" by (metis (lifting) hull_inc) have sub: "subspace S" "subspace T" using assms by (auto simp: subspace_affine) show ?thesis using dim_sums_Int [OF sub] by (simp add: aff_dim_zero assms 0 hull_inc) qed proposition aff_dim_sums_Int: assumes "affine S" and "affine T" and "S \ T \ {}" shows "aff_dim {x + y| x y. x \ S \ y \ T} = (aff_dim S + aff_dim T) - aff_dim(S \ T)" proof - obtain a where a: "a \ S" "a \ T" using assms by force have aff: "affine ((+) (-a) ` S)" "affine ((+) (-a) ` T)" using affine_translation [symmetric, of "- a"] assms by (simp_all cong: image_cong_simp) have zero: "0 \ ((+) (-a) ` S)" "0 \ ((+) (-a) ` T)" using a assms by auto have "{x + y |x y. x \ (+) (- a) ` S \ y \ (+) (- a) ` T} = (+) (- 2 *\<^sub>R a) ` {x + y| x y. x \ S \ y \ T}" by (force simp: algebra_simps scaleR_2) moreover have "(+) (- a) ` S \ (+) (- a) ` T = (+) (- a) ` (S \ T)" by auto ultimately show ?thesis using aff_dim_sums_Int_0 [OF aff zero] aff_dim_translation_eq by (metis (lifting)) qed lemma aff_dim_affine_Int_hyperplane: fixes a :: "'a::euclidean_space" assumes "affine S" shows "aff_dim(S \ {x. a \ x = b}) = (if S \ {v. a \ v = b} = {} then - 1 else if S \ {v. a \ v = b} then aff_dim S else aff_dim S - 1)" proof (cases "a = 0") case True with assms show ?thesis by auto next case False then have "aff_dim (S \ {x. a \ x = b}) = aff_dim S - 1" if "x \ S" "a \ x \ b" and non: "S \ {v. a \ v = b} \ {}" for x proof - have [simp]: "{x + y| x y. x \ S \ a \ y = b} = UNIV" using affine_hyperplane_sums_eq_UNIV [OF assms non] that by blast show ?thesis using aff_dim_sums_Int [OF assms affine_hyperplane non] by (simp add: of_nat_diff False) qed then show ?thesis by (metis (mono_tags, lifting) inf.orderE aff_dim_empty_eq mem_Collect_eq subsetI) qed lemma aff_dim_lt_full: fixes S :: "'a::euclidean_space set" shows "aff_dim S < DIM('a) \ (affine hull S \ UNIV)" by (metis (no_types) aff_dim_affine_hull aff_dim_le_DIM aff_dim_UNIV affine_hull_UNIV less_le) lemma aff_dim_openin: fixes S :: "'a::euclidean_space set" assumes ope: "openin (top_of_set T) S" and "affine T" "S \ {}" shows "aff_dim S = aff_dim T" proof - show ?thesis proof (rule order_antisym) show "aff_dim S \ aff_dim T" by (blast intro: aff_dim_subset [OF openin_imp_subset] ope) next obtain a where "a \ S" using \S \ {}\ by blast have "S \ T" using ope openin_imp_subset by auto then have "a \ T" using \a \ S\ by auto then have subT': "subspace ((\x. - a + x) ` T)" using affine_diffs_subspace \affine T\ by auto then obtain B where Bsub: "B \ ((\x. - a + x) ` T)" and po: "pairwise orthogonal B" and eq1: "\x. x \ B \ norm x = 1" and "independent B" and cardB: "card B = dim ((\x. - a + x) ` T)" and spanB: "span B = ((\x. - a + x) ` T)" by (rule orthonormal_basis_subspace) auto obtain e where "0 < e" and e: "cball a e \ T \ S" by (meson \a \ S\ openin_contains_cball ope) have "aff_dim T = aff_dim ((\x. - a + x) ` T)" by (metis aff_dim_translation_eq) also have "... = dim ((\x. - a + x) ` T)" using aff_dim_subspace subT' by blast also have "... = card B" by (simp add: cardB) also have "... = card ((\x. e *\<^sub>R x) ` B)" using \0 < e\ by (force simp: inj_on_def card_image) also have "... \ dim ((\x. - a + x) ` S)" proof (simp, rule independent_card_le_dim) have e': "cball 0 e \ (\x. x - a) ` T \ (\x. x - a) ` S" using e by (auto simp: dist_norm norm_minus_commute subset_eq) have "(\x. e *\<^sub>R x) ` B \ cball 0 e \ (\x. x - a) ` T" using Bsub \0 < e\ eq1 subT' \a \ T\ by (auto simp: subspace_def) then show "(\x. e *\<^sub>R x) ` B \ (\x. x - a) ` S" using e' by blast show "independent ((\x. e *\<^sub>R x) ` B)" using linear_scale_self \independent B\ apply (rule linear_independent_injective_image) using \0 < e\ inj_on_def by fastforce qed also have "... = aff_dim S" using \a \ S\ aff_dim_eq_dim hull_inc by (force cong: image_cong_simp) finally show "aff_dim T \ aff_dim S" . qed qed lemma dim_openin: fixes S :: "'a::euclidean_space set" assumes ope: "openin (top_of_set T) S" and "subspace T" "S \ {}" shows "dim S = dim T" proof (rule order_antisym) show "dim S \ dim T" by (metis ope dim_subset openin_subset topspace_euclidean_subtopology) next have "dim T = aff_dim S" using aff_dim_openin by (metis aff_dim_subspace \subspace T\ \S \ {}\ ope subspace_affine) also have "... \ dim S" by (metis aff_dim_subset aff_dim_subspace dim_span span_superset subspace_span) finally show "dim T \ dim S" by simp qed subsection\Lower-dimensional affine subsets are nowhere dense\ proposition dense_complement_subspace: fixes S :: "'a :: euclidean_space set" assumes dim_less: "dim T < dim S" and "subspace S" shows "closure(S - T) = S" proof - have "closure(S - U) = S" if "dim U < dim S" "U \ S" for U proof - have "span U \ span S" by (metis neq_iff psubsetI span_eq_dim span_mono that) then obtain a where "a \ 0" "a \ span S" and a: "\y. y \ span U \ orthogonal a y" using orthogonal_to_subspace_exists_gen by metis show ?thesis proof have "closed S" by (simp add: \subspace S\ closed_subspace) then show "closure (S - U) \ S" by (simp add: closure_minimal) show "S \ closure (S - U)" proof (clarsimp simp: closure_approachable) fix x and e::real assume "x \ S" "0 < e" show "\y\S - U. dist y x < e" proof (cases "x \ U") case True let ?y = "x + (e/2 / norm a) *\<^sub>R a" show ?thesis proof show "dist ?y x < e" using \0 < e\ by (simp add: dist_norm) next have "?y \ S" by (metis \a \ span S\ \x \ S\ assms(2) span_eq_iff subspace_add subspace_scale) moreover have "?y \ U" proof - have "e/2 / norm a \ 0" using \0 < e\ \a \ 0\ by auto then show ?thesis by (metis True \a \ 0\ a orthogonal_scaleR orthogonal_self real_vector.scale_eq_0_iff span_add_eq span_base) qed ultimately show "?y \ S - U" by blast qed next case False with \0 < e\ \x \ S\ show ?thesis by force qed qed qed qed moreover have "S - S \ T = S-T" by blast moreover have "dim (S \ T) < dim S" by (metis dim_less dim_subset inf.cobounded2 inf.orderE inf.strict_boundedE not_le) ultimately show ?thesis by force qed corollary\<^marker>\tag unimportant\ dense_complement_affine: fixes S :: "'a :: euclidean_space set" assumes less: "aff_dim T < aff_dim S" and "affine S" shows "closure(S - T) = S" proof (cases "S \ T = {}") case True then show ?thesis by (metis Diff_triv affine_hull_eq \affine S\ closure_same_affine_hull closure_subset hull_subset subset_antisym) next case False then obtain z where z: "z \ S \ T" by blast then have "subspace ((+) (- z) ` S)" by (meson IntD1 affine_diffs_subspace \affine S\) moreover have "int (dim ((+) (- z) ` T)) < int (dim ((+) (- z) ` S))" thm aff_dim_eq_dim using z less by (simp add: aff_dim_eq_dim_subtract [of z] hull_inc cong: image_cong_simp) ultimately have "closure(((+) (- z) ` S) - ((+) (- z) ` T)) = ((+) (- z) ` S)" by (simp add: dense_complement_subspace) then show ?thesis by (metis closure_translation translation_diff translation_invert) qed corollary\<^marker>\tag unimportant\ dense_complement_openin_affine_hull: fixes S :: "'a :: euclidean_space set" assumes less: "aff_dim T < aff_dim S" and ope: "openin (top_of_set (affine hull S)) S" shows "closure(S - T) = closure S" proof - have "affine hull S - T \ affine hull S" by blast then have "closure (S \ closure (affine hull S - T)) = closure (S \ (affine hull S - T))" by (rule closure_openin_Int_closure [OF ope]) then show ?thesis by (metis Int_Diff aff_dim_affine_hull affine_affine_hull dense_complement_affine hull_subset inf.orderE less) qed corollary\<^marker>\tag unimportant\ dense_complement_convex: fixes S :: "'a :: euclidean_space set" assumes "aff_dim T < aff_dim S" "convex S" shows "closure(S - T) = closure S" proof show "closure (S - T) \ closure S" by (simp add: closure_mono) have "closure (rel_interior S - T) = closure (rel_interior S)" apply (rule dense_complement_openin_affine_hull) apply (simp add: assms rel_interior_aff_dim) using \convex S\ rel_interior_rel_open rel_open by blast then show "closure S \ closure (S - T)" by (metis Diff_mono \convex S\ closure_mono convex_closure_rel_interior order_refl rel_interior_subset) qed corollary\<^marker>\tag unimportant\ dense_complement_convex_closed: fixes S :: "'a :: euclidean_space set" assumes "aff_dim T < aff_dim S" "convex S" "closed S" shows "closure(S - T) = S" by (simp add: assms dense_complement_convex) subsection\<^marker>\tag unimportant\\Parallel slices, etc\ text\ If we take a slice out of a set, we can do it perpendicularly, with the normal vector to the slice parallel to the affine hull.\ proposition\<^marker>\tag unimportant\ affine_parallel_slice: fixes S :: "'a :: euclidean_space set" assumes "affine S" and "S \ {x. a \ x \ b} \ {}" and "\ (S \ {x. a \ x \ b})" obtains a' b' where "a' \ 0" "S \ {x. a' \ x \ b'} = S \ {x. a \ x \ b}" "S \ {x. a' \ x = b'} = S \ {x. a \ x = b}" "\w. w \ S \ (w + a') \ S" proof (cases "S \ {x. a \ x = b} = {}") case True then obtain u v where "u \ S" "v \ S" "a \ u \ b" "a \ v > b" using assms by (auto simp: not_le) define \ where "\ = u + ((b - a \ u) / (a \ v - a \ u)) *\<^sub>R (v - u)" have "\ \ S" by (simp add: \_def \u \ S\ \v \ S\ \affine S\ mem_affine_3_minus) moreover have "a \ \ = b" using \a \ u \ b\ \b < a \ v\ by (simp add: \_def algebra_simps) (simp add: field_simps) ultimately have False using True by force then show ?thesis .. next case False then obtain z where "z \ S" and z: "a \ z = b" using assms by auto with affine_diffs_subspace [OF \affine S\] have sub: "subspace ((+) (- z) ` S)" by blast then have aff: "affine ((+) (- z) ` S)" and span: "span ((+) (- z) ` S) = ((+) (- z) ` S)" by (auto simp: subspace_imp_affine) obtain a' a'' where a': "a' \ span ((+) (- z) ` S)" and a: "a = a' + a''" and "\w. w \ span ((+) (- z) ` S) \ orthogonal a'' w" using orthogonal_subspace_decomp_exists [of "(+) (- z) ` S" "a"] by metis then have "\w. w \ S \ a'' \ (w-z) = 0" by (simp add: span_base orthogonal_def) then have a'': "\w. w \ S \ a'' \ w = (a - a') \ z" by (simp add: a inner_diff_right) then have ba'': "\w. w \ S \ a'' \ w = b - a' \ z" by (simp add: inner_diff_left z) have "\w. w \ (+) (- z) ` S \ (w + a') \ (+) (- z) ` S" by (metis subspace_add a' span_eq_iff sub) then have Sclo: "\w. w \ S \ (w + a') \ S" by fastforce show ?thesis proof (cases "a' = 0") case True with a assms True a'' diff_zero less_irrefl show ?thesis by auto next case False show ?thesis apply (rule_tac a' = "a'" and b' = "a' \ z" in that) apply (auto simp: a ba'' inner_left_distrib False Sclo) done qed qed lemma diffs_affine_hull_span: assumes "a \ S" shows "{x - a |x. x \ affine hull S} = span {x - a |x. x \ S}" proof - have *: "((\x. x - a) ` (S - {a})) = {x. x + a \ S} - {0}" by (auto simp: algebra_simps) show ?thesis apply (simp add: affine_hull_span2 [OF assms] *) apply (auto simp: algebra_simps) done qed lemma aff_dim_dim_affine_diffs: fixes S :: "'a :: euclidean_space set" assumes "affine S" "a \ S" shows "aff_dim S = dim {x - a |x. x \ S}" proof - obtain B where aff: "affine hull B = affine hull S" and ind: "\ affine_dependent B" and card: "of_nat (card B) = aff_dim S + 1" using aff_dim_basis_exists by blast then have "B \ {}" using assms by (metis affine_hull_eq_empty ex_in_conv) then obtain c where "c \ B" by auto then have "c \ S" by (metis aff affine_hull_eq \affine S\ hull_inc) have xy: "x - c = y - a \ y = x + 1 *\<^sub>R (a - c)" for x y c and a::'a by (auto simp: algebra_simps) have *: "{x - c |x. x \ S} = {x - a |x. x \ S}" apply safe apply (simp_all only: xy) using mem_affine_3_minus [OF \affine S\] \a \ S\ \c \ S\ apply blast+ done have affS: "affine hull S = S" by (simp add: \affine S\) have "aff_dim S = of_nat (card B) - 1" using card by simp also have "... = dim {x - c |x. x \ B}" by (simp add: affine_independent_card_dim_diffs [OF ind \c \ B\]) also have "... = dim {x - c | x. x \ affine hull B}" by (simp add: diffs_affine_hull_span \c \ B\) also have "... = dim {x - a |x. x \ S}" by (simp add: affS aff *) finally show ?thesis . qed lemma aff_dim_linear_image_le: assumes "linear f" shows "aff_dim(f ` S) \ aff_dim S" proof - have "aff_dim (f ` T) \ aff_dim T" if "affine T" for T proof (cases "T = {}") case True then show ?thesis by (simp add: aff_dim_geq) next case False then obtain a where "a \ T" by auto have 1: "((\x. x - f a) ` f ` T) = {x - f a |x. x \ f ` T}" by auto have 2: "{x - f a| x. x \ f ` T} = f ` {x - a| x. x \ T}" by (force simp: linear_diff [OF assms]) have "aff_dim (f ` T) = int (dim {x - f a |x. x \ f ` T})" by (simp add: \a \ T\ hull_inc aff_dim_eq_dim [of "f a"] 1 cong: image_cong_simp) also have "... = int (dim (f ` {x - a| x. x \ T}))" by (force simp: linear_diff [OF assms] 2) also have "... \ int (dim {x - a| x. x \ T})" by (simp add: dim_image_le [OF assms]) also have "... \ aff_dim T" by (simp add: aff_dim_dim_affine_diffs [symmetric] \a \ T\ \affine T\) finally show ?thesis . qed then have "aff_dim (f ` (affine hull S)) \ aff_dim (affine hull S)" using affine_affine_hull [of S] by blast then show ?thesis using affine_hull_linear_image assms linear_conv_bounded_linear by fastforce qed lemma aff_dim_injective_linear_image [simp]: assumes "linear f" "inj f" shows "aff_dim (f ` S) = aff_dim S" proof (rule antisym) show "aff_dim (f ` S) \ aff_dim S" by (simp add: aff_dim_linear_image_le assms(1)) next obtain g where "linear g" "g \ f = id" using assms(1) assms(2) linear_injective_left_inverse by blast then have "aff_dim S \ aff_dim(g ` f ` S)" by (simp add: image_comp) also have "... \ aff_dim (f ` S)" by (simp add: \linear g\ aff_dim_linear_image_le) finally show "aff_dim S \ aff_dim (f ` S)" . qed lemma choose_affine_subset: assumes "affine S" "-1 \ d" and dle: "d \ aff_dim S" obtains T where "affine T" "T \ S" "aff_dim T = d" proof (cases "d = -1 \ S={}") case True with assms show ?thesis by (metis aff_dim_empty affine_empty bot.extremum that eq_iff) next case False with assms obtain a where "a \ S" "0 \ d" by auto with assms have ss: "subspace ((+) (- a) ` S)" by (simp add: affine_diffs_subspace_subtract cong: image_cong_simp) have "nat d \ dim ((+) (- a) ` S)" by (metis aff_dim_subspace aff_dim_translation_eq dle nat_int nat_mono ss) then obtain T where "subspace T" and Tsb: "T \ span ((+) (- a) ` S)" and Tdim: "dim T = nat d" using choose_subspace_of_subspace [of "nat d" "(+) (- a) ` S"] by blast then have "affine T" using subspace_affine by blast then have "affine ((+) a ` T)" by (metis affine_hull_eq affine_hull_translation) moreover have "(+) a ` T \ S" proof - have "T \ (+) (- a) ` S" by (metis (no_types) span_eq_iff Tsb ss) then show "(+) a ` T \ S" using add_ac by auto qed moreover have "aff_dim ((+) a ` T) = d" by (simp add: aff_dim_subspace Tdim \0 \ d\ \subspace T\ aff_dim_translation_eq) ultimately show ?thesis by (rule that) qed subsection\Paracompactness\ proposition paracompact: fixes S :: "'a :: {metric_space,second_countable_topology} set" assumes "S \ \\" and opC: "\T. T \ \ \ open T" obtains \' where "S \ \ \'" and "\U. U \ \' \ open U \ (\T. T \ \ \ U \ T)" and "\x. x \ S \ \V. open V \ x \ V \ finite {U. U \ \' \ (U \ V \ {})}" proof (cases "S = {}") case True with that show ?thesis by blast next case False have "\T U. x \ U \ open U \ closure U \ T \ T \ \" if "x \ S" for x proof - obtain T where "x \ T" "T \ \" "open T" using assms \x \ S\ by blast then obtain e where "e > 0" "cball x e \ T" by (force simp: open_contains_cball) then show ?thesis apply (rule_tac x = T in exI) apply (rule_tac x = "ball x e" in exI) using \T \ \\ apply (simp add: closure_minimal) using closed_cball closure_minimal by blast qed then obtain F G where Gin: "x \ G x" and oG: "open (G x)" and clos: "closure (G x) \ F x" and Fin: "F x \ \" if "x \ S" for x by metis then obtain \ where "\ \ G ` S" "countable \" "\\ = \(G ` S)" using Lindelof [of "G ` S"] by (metis image_iff) then obtain K where K: "K \ S" "countable K" and eq: "\(G ` K) = \(G ` S)" by (metis countable_subset_image) with False Gin have "K \ {}" by force then obtain a :: "nat \ 'a" where "range a = K" by (metis range_from_nat_into \countable K\) then have odif: "\n. open (F (a n) - \{closure (G (a m)) |m. m < n})" using \K \ S\ Fin opC by (fastforce simp add:) let ?C = "range (\n. F(a n) - \{closure(G(a m)) |m. m < n})" have enum_S: "\n. x \ F(a n) \ x \ G(a n)" if "x \ S" for x proof - have "\y \ K. x \ G y" using eq that Gin by fastforce then show ?thesis using clos K \range a = K\ closure_subset by blast qed have 1: "S \ Union ?C" proof fix x assume "x \ S" define n where "n \ LEAST n. x \ F(a n)" have n: "x \ F(a n)" using enum_S [OF \x \ S\] by (force simp: n_def intro: LeastI) have notn: "x \ F(a m)" if "m < n" for m using that not_less_Least by (force simp: n_def) then have "x \ \{closure (G (a m)) |m. m < n}" using n \K \ S\ \range a = K\ clos notn by fastforce with n show "x \ Union ?C" by blast qed have 3: "\V. open V \ x \ V \ finite {U. U \ ?C \ (U \ V \ {})}" if "x \ S" for x proof - obtain n where n: "x \ F(a n)" "x \ G(a n)" using \x \ S\ enum_S by auto have "{U \ ?C. U \ G (a n) \ {}} \ (\n. F(a n) - \{closure(G(a m)) |m. m < n}) ` atMost n" proof clarsimp fix k assume "(F (a k) - \{closure (G (a m)) |m. m < k}) \ G (a n) \ {}" then have "k \ n" by auto (metis closure_subset not_le subsetCE) then show "F (a k) - \{closure (G (a m)) |m. m < k} \ (\n. F (a n) - \{closure (G (a m)) |m. m < n}) ` {..n}" by force qed moreover have "finite ((\n. F(a n) - \{closure(G(a m)) |m. m < n}) ` atMost n)" by force ultimately have *: "finite {U \ ?C. U \ G (a n) \ {}}" using finite_subset by blast show ?thesis apply (rule_tac x="G (a n)" in exI) apply (intro conjI oG n *) using \K \ S\ \range a = K\ apply blast done qed show ?thesis apply (rule that [OF 1 _ 3]) using Fin \K \ S\ \range a = K\ apply (auto simp: odif) done qed corollary paracompact_closedin: fixes S :: "'a :: {metric_space,second_countable_topology} set" assumes cin: "closedin (top_of_set U) S" and oin: "\T. T \ \ \ openin (top_of_set U) T" and "S \ \\" obtains \' where "S \ \ \'" and "\V. V \ \' \ openin (top_of_set U) V \ (\T. T \ \ \ V \ T)" and "\x. x \ U \ \V. openin (top_of_set U) V \ x \ V \ finite {X. X \ \' \ (X \ V \ {})}" proof - have "\Z. open Z \ (T = U \ Z)" if "T \ \" for T using oin [OF that] by (auto simp: openin_open) then obtain F where opF: "open (F T)" and intF: "U \ F T = T" if "T \ \" for T by metis obtain K where K: "closed K" "U \ K = S" using cin by (auto simp: closedin_closed) have 1: "U \ \(insert (- K) (F ` \))" by clarsimp (metis Int_iff Union_iff \U \ K = S\ \S \ \\\ subsetD intF) have 2: "\T. T \ insert (- K) (F ` \) \ open T" using \closed K\ by (auto simp: opF) obtain \ where "U \ \\" and D1: "\U. U \ \ \ open U \ (\T. T \ insert (- K) (F ` \) \ U \ T)" and D2: "\x. x \ U \ \V. open V \ x \ V \ finite {U \ \. U \ V \ {}}" by (blast intro: paracompact [OF 1 2]) let ?C = "{U \ V |V. V \ \ \ (V \ K \ {})}" show ?thesis proof (rule_tac \' = "{U \ V |V. V \ \ \ (V \ K \ {})}" in that) show "S \ \?C" using \U \ K = S\ \U \ \\\ K by (blast dest!: subsetD) show "\V. V \ ?C \ openin (top_of_set U) V \ (\T. T \ \ \ V \ T)" using D1 intF by fastforce have *: "{X. (\V. X = U \ V \ V \ \ \ V \ K \ {}) \ X \ (U \ V) \ {}} \ (\x. U \ x) ` {U \ \. U \ V \ {}}" for V by blast show "\V. openin (top_of_set U) V \ x \ V \ finite {X \ ?C. X \ V \ {}}" if "x \ U" for x using D2 [OF that] apply clarify apply (rule_tac x="U \ V" in exI) apply (auto intro: that finite_subset [OF *]) done qed qed corollary\<^marker>\tag unimportant\ paracompact_closed: fixes S :: "'a :: {metric_space,second_countable_topology} set" assumes "closed S" and opC: "\T. T \ \ \ open T" and "S \ \\" obtains \' where "S \ \\'" and "\U. U \ \' \ open U \ (\T. T \ \ \ U \ T)" and "\x. \V. open V \ x \ V \ finite {U. U \ \' \ (U \ V \ {})}" by (rule paracompact_closedin [of UNIV S \]) (auto simp: assms) subsection\<^marker>\tag unimportant\\Closed-graph characterization of continuity\ lemma continuous_closed_graph_gen: fixes T :: "'b::real_normed_vector set" assumes contf: "continuous_on S f" and fim: "f ` S \ T" shows "closedin (top_of_set (S \ T)) ((\x. Pair x (f x)) ` S)" proof - have eq: "((\x. Pair x (f x)) ` S) =(S \ T \ (\z. (f \ fst)z - snd z) -` {0})" using fim by auto show ?thesis apply (subst eq) apply (intro continuous_intros continuous_closedin_preimage continuous_on_subset [OF contf]) by auto qed lemma continuous_closed_graph_eq: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "compact T" and fim: "f ` S \ T" shows "continuous_on S f \ closedin (top_of_set (S \ T)) ((\x. Pair x (f x)) ` S)" (is "?lhs = ?rhs") proof - have "?lhs" if ?rhs proof (clarsimp simp add: continuous_on_closed_gen [OF fim]) fix U assume U: "closedin (top_of_set T) U" have eq: "(S \ f -` U) = fst ` (((\x. Pair x (f x)) ` S) \ (S \ U))" by (force simp: image_iff) show "closedin (top_of_set S) (S \ f -` U)" by (simp add: U closedin_Int closedin_Times closed_map_fst [OF \compact T\] that eq) qed with continuous_closed_graph_gen assms show ?thesis by blast qed lemma continuous_closed_graph: fixes f :: "'a::topological_space \ 'b::real_normed_vector" assumes "closed S" and contf: "continuous_on S f" shows "closed ((\x. Pair x (f x)) ` S)" apply (rule closedin_closed_trans) apply (rule continuous_closed_graph_gen [OF contf subset_UNIV]) by (simp add: \closed S\ closed_Times) lemma continuous_from_closed_graph: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "compact T" and fim: "f ` S \ T" and clo: "closed ((\x. Pair x (f x)) ` S)" shows "continuous_on S f" using fim clo by (auto intro: closed_subset simp: continuous_closed_graph_eq [OF \compact T\ fim]) lemma continuous_on_Un_local_open: assumes opS: "openin (top_of_set (S \ T)) S" and opT: "openin (top_of_set (S \ T)) T" and contf: "continuous_on S f" and contg: "continuous_on T f" shows "continuous_on (S \ T) f" using pasting_lemma [of "{S,T}" "top_of_set (S \ T)" id euclidean "\i. f" f] contf contg opS opT by (simp add: subtopology_subtopology) (metis inf.absorb2 openin_imp_subset) lemma continuous_on_cases_local_open: assumes opS: "openin (top_of_set (S \ T)) S" and opT: "openin (top_of_set (S \ T)) T" and contf: "continuous_on S f" and contg: "continuous_on T g" and fg: "\x. x \ S \ \P x \ x \ T \ P x \ f x = g x" shows "continuous_on (S \ T) (\x. if P x then f x else g x)" proof - have "\x. x \ S \ (if P x then f x else g x) = f x" "\x. x \ T \ (if P x then f x else g x) = g x" by (simp_all add: fg) then have "continuous_on S (\x. if P x then f x else g x)" "continuous_on T (\x. if P x then f x else g x)" by (simp_all add: contf contg cong: continuous_on_cong) then show ?thesis by (rule continuous_on_Un_local_open [OF opS opT]) qed -lemma continuous_map_cases_le: - assumes contp: "continuous_map X euclideanreal p" - and contq: "continuous_map X euclideanreal q" - and contf: "continuous_map (subtopology X {x. x \ topspace X \ p x \ q x}) Y f" - and contg: "continuous_map (subtopology X {x. x \ topspace X \ q x \ p x}) Y g" - and fg: "\x. \x \ topspace X; p x = q x\ \ f x = g x" - shows "continuous_map X Y (\x. if p x \ q x then f x else g x)" -proof - - have "continuous_map X Y (\x. if q x - p x \ {0..} then f x else g x)" - proof (rule continuous_map_cases_function) - show "continuous_map X euclideanreal (\x. q x - p x)" - by (intro contp contq continuous_intros) - show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of {0..}}) Y f" - by (simp add: contf) - show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of (topspace euclideanreal - {0..})}) Y g" - by (simp add: contg flip: Compl_eq_Diff_UNIV) - qed (auto simp: fg) - then show ?thesis - by simp -qed - -lemma continuous_map_cases_lt: - assumes contp: "continuous_map X euclideanreal p" - and contq: "continuous_map X euclideanreal q" - and contf: "continuous_map (subtopology X {x. x \ topspace X \ p x \ q x}) Y f" - and contg: "continuous_map (subtopology X {x. x \ topspace X \ q x \ p x}) Y g" - and fg: "\x. \x \ topspace X; p x = q x\ \ f x = g x" - shows "continuous_map X Y (\x. if p x < q x then f x else g x)" -proof - - have "continuous_map X Y (\x. if q x - p x \ {0<..} then f x else g x)" - proof (rule continuous_map_cases_function) - show "continuous_map X euclideanreal (\x. q x - p x)" - by (intro contp contq continuous_intros) - show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of {0<..}}) Y f" - by (simp add: contf) - show "continuous_map (subtopology X {x \ topspace X. q x - p x \ euclideanreal closure_of (topspace euclideanreal - {0<..})}) Y g" - by (simp add: contg flip: Compl_eq_Diff_UNIV) - qed (auto simp: fg) - then show ?thesis - by simp -qed - subsection\<^marker>\tag unimportant\\The union of two collinear segments is another segment\ proposition\<^marker>\tag unimportant\ in_convex_hull_exchange: fixes a :: "'a::euclidean_space" assumes a: "a \ convex hull S" and xS: "x \ convex hull S" obtains b where "b \ S" "x \ convex hull (insert a (S - {b}))" proof (cases "a \ S") case True with xS insert_Diff that show ?thesis by fastforce next case False show ?thesis proof (cases "finite S \ card S \ Suc (DIM('a))") case True then obtain u where u0: "\i. i \ S \ 0 \ u i" and u1: "sum u S = 1" and ua: "(\i\S. u i *\<^sub>R i) = a" using a by (auto simp: convex_hull_finite) obtain v where v0: "\i. i \ S \ 0 \ v i" and v1: "sum v S = 1" and vx: "(\i\S. v i *\<^sub>R i) = x" using True xS by (auto simp: convex_hull_finite) show ?thesis proof (cases "\b. b \ S \ v b = 0") case True then obtain b where b: "b \ S" "v b = 0" by blast show ?thesis proof have fin: "finite (insert a (S - {b}))" using sum.infinite v1 by fastforce show "x \ convex hull insert a (S - {b})" unfolding convex_hull_finite [OF fin] mem_Collect_eq proof (intro conjI exI ballI) have "(\x \ insert a (S - {b}). if x = a then 0 else v x) = (\x \ S - {b}. if x = a then 0 else v x)" apply (rule sum.mono_neutral_right) using fin by auto also have "... = (\x \ S - {b}. v x)" using b False by (auto intro!: sum.cong split: if_split_asm) also have "... = (\x\S. v x)" by (metis \v b = 0\ diff_zero sum.infinite sum_diff1 u1 zero_neq_one) finally show "(\x\insert a (S - {b}). if x = a then 0 else v x) = 1" by (simp add: v1) show "\x. x \ insert a (S - {b}) \ 0 \ (if x = a then 0 else v x)" by (auto simp: v0) have "(\x \ insert a (S - {b}). (if x = a then 0 else v x) *\<^sub>R x) = (\x \ S - {b}. (if x = a then 0 else v x) *\<^sub>R x)" apply (rule sum.mono_neutral_right) using fin by auto also have "... = (\x \ S - {b}. v x *\<^sub>R x)" using b False by (auto intro!: sum.cong split: if_split_asm) also have "... = (\x\S. v x *\<^sub>R x)" by (metis (no_types, lifting) b(2) diff_zero fin finite.emptyI finite_Diff2 finite_insert scale_eq_0_iff sum_diff1) finally show "(\x\insert a (S - {b}). (if x = a then 0 else v x) *\<^sub>R x) = x" by (simp add: vx) qed qed (rule \b \ S\) next case False have le_Max: "u i / v i \ Max ((\i. u i / v i) ` S)" if "i \ S" for i by (simp add: True that) have "Max ((\i. u i / v i) ` S) \ (\i. u i / v i) ` S" using True v1 by (auto intro: Max_in) then obtain b where "b \ S" and beq: "Max ((\b. u b / v b) ` S) = u b / v b" by blast then have "0 \ u b / v b" using le_Max beq divide_le_0_iff le_numeral_extra(2) sum_nonpos u1 by (metis False eq_iff v0) then have "0 < u b" "0 < v b" using False \b \ S\ u0 v0 by force+ have fin: "finite (insert a (S - {b}))" using sum.infinite v1 by fastforce show ?thesis proof show "x \ convex hull insert a (S - {b})" unfolding convex_hull_finite [OF fin] mem_Collect_eq proof (intro conjI exI ballI) have "(\x \ insert a (S - {b}). if x=a then v b / u b else v x - (v b / u b) * u x) = v b / u b + (\x \ S - {b}. v x - (v b / u b) * u x)" using \a \ S\ \b \ S\ True apply simp apply (rule sum.cong, auto) done also have "... = v b / u b + (\x \ S - {b}. v x) - (v b / u b) * (\x \ S - {b}. u x)" by (simp add: Groups_Big.sum_subtractf sum_distrib_left) also have "... = (\x\S. v x)" using \0 < u b\ True by (simp add: Groups_Big.sum_diff1 u1 field_simps) finally show "sum (\x. if x=a then v b / u b else v x - (v b / u b) * u x) (insert a (S - {b})) = 1" by (simp add: v1) show "0 \ (if i = a then v b / u b else v i - v b / u b * u i)" if "i \ insert a (S - {b})" for i using \0 < u b\ \0 < v b\ v0 [of i] le_Max [of i] beq that False by (auto simp: field_simps split: if_split_asm) have "(\x\insert a (S - {b}). (if x=a then v b / u b else v x - v b / u b * u x) *\<^sub>R x) = (v b / u b) *\<^sub>R a + (\x\S - {b}. (v x - v b / u b * u x) *\<^sub>R x)" using \a \ S\ \b \ S\ True apply simp apply (rule sum.cong, auto) done also have "... = (v b / u b) *\<^sub>R a + (\x \ S - {b}. v x *\<^sub>R x) - (v b / u b) *\<^sub>R (\x \ S - {b}. u x *\<^sub>R x)" by (simp add: Groups_Big.sum_subtractf scaleR_left_diff_distrib sum_distrib_left scale_sum_right) also have "... = (\x\S. v x *\<^sub>R x)" using \0 < u b\ True by (simp add: ua vx Groups_Big.sum_diff1 algebra_simps) finally show "(\x\insert a (S - {b}). (if x=a then v b / u b else v x - v b / u b * u x) *\<^sub>R x) = x" by (simp add: vx) qed qed (rule \b \ S\) qed next case False obtain T where "finite T" "T \ S" and caT: "card T \ Suc (DIM('a))" and xT: "x \ convex hull T" using xS by (auto simp: caratheodory [of S]) with False obtain b where b: "b \ S" "b \ T" by (metis antisym subsetI) show ?thesis proof show "x \ convex hull insert a (S - {b})" using \T \ S\ b by (blast intro: subsetD [OF hull_mono xT]) qed (rule \b \ S\) qed qed lemma convex_hull_exchange_Union: fixes a :: "'a::euclidean_space" assumes "a \ convex hull S" shows "convex hull S = (\b \ S. convex hull (insert a (S - {b})))" (is "?lhs = ?rhs") proof show "?lhs \ ?rhs" by (blast intro: in_convex_hull_exchange [OF assms]) show "?rhs \ ?lhs" proof clarify fix x b assume"b \ S" "x \ convex hull insert a (S - {b})" then show "x \ convex hull S" if "b \ S" by (metis (no_types) that assms order_refl hull_mono hull_redundant insert_Diff_single insert_subset subsetCE) qed qed lemma Un_closed_segment: fixes a :: "'a::euclidean_space" assumes "b \ closed_segment a c" shows "closed_segment a b \ closed_segment b c = closed_segment a c" proof (cases "c = a") case True with assms show ?thesis by simp next case False with assms have "convex hull {a, b} \ convex hull {b, c} = (\ba\{a, c}. convex hull insert b ({a, c} - {ba}))" by (auto simp: insert_Diff_if insert_commute) then show ?thesis using convex_hull_exchange_Union by (metis assms segment_convex_hull) qed lemma Un_open_segment: fixes a :: "'a::euclidean_space" assumes "b \ open_segment a c" shows "open_segment a b \ {b} \ open_segment b c = open_segment a c" proof - have b: "b \ closed_segment a c" by (simp add: assms open_closed_segment) have *: "open_segment a c \ insert b (open_segment a b \ open_segment b c)" if "{b,c,a} \ open_segment a b \ open_segment b c = {c,a} \ open_segment a c" proof - have "insert a (insert c (insert b (open_segment a b \ open_segment b c))) = insert a (insert c (open_segment a c))" using that by (simp add: insert_commute) then show ?thesis by (metis (no_types) Diff_cancel Diff_eq_empty_iff Diff_insert2 open_segment_def) qed show ?thesis using Un_closed_segment [OF b] apply (simp add: closed_segment_eq_open) apply (rule equalityI) using assms apply (simp add: b subset_open_segment) using * by (simp add: insert_commute) qed subsection\Covering an open set by a countable chain of compact sets\ proposition open_Union_compact_subsets: fixes S :: "'a::euclidean_space set" assumes "open S" obtains C where "\n. compact(C n)" "\n. C n \ S" "\n. C n \ interior(C(Suc n))" "\(range C) = S" "\K. \compact K; K \ S\ \ \N. \n\N. K \ (C n)" proof (cases "S = {}") case True then show ?thesis by (rule_tac C = "\n. {}" in that) auto next case False then obtain a where "a \ S" by auto let ?C = "\n. cball a (real n) - (\x \ -S. \e \ ball 0 (1 / real(Suc n)). {x + e})" have "\N. \n\N. K \ (f n)" if "\n. compact(f n)" and sub_int: "\n. f n \ interior (f(Suc n))" and eq: "\(range f) = S" and "compact K" "K \ S" for f K proof - have *: "\n. f n \ (\n. interior (f n))" by (meson Sup_upper2 UNIV_I \\n. f n \ interior (f (Suc n))\ image_iff) have mono: "\m n. m \ n \f m \ f n" by (meson dual_order.trans interior_subset lift_Suc_mono_le sub_int) obtain I where "finite I" and I: "K \ (\i\I. interior (f i))" proof (rule compactE_image [OF \compact K\]) show "K \ (\n. interior (f n))" using \K \ S\ \\(f ` UNIV) = S\ * by blast qed auto { fix n assume n: "Max I \ n" have "(\i\I. interior (f i)) \ f n" by (rule UN_least) (meson dual_order.trans interior_subset mono I Max_ge [OF \finite I\] n) then have "K \ f n" using I by auto } then show ?thesis by blast qed moreover have "\f. (\n. compact(f n)) \ (\n. (f n) \ S) \ (\n. (f n) \ interior(f(Suc n))) \ ((\(range f) = S))" proof (intro exI conjI allI) show "\n. compact (?C n)" by (auto simp: compact_diff open_sums) show "\n. ?C n \ S" by auto show "?C n \ interior (?C (Suc n))" for n proof (simp add: interior_diff, rule Diff_mono) show "cball a (real n) \ ball a (1 + real n)" by (simp add: cball_subset_ball_iff) have cl: "closed (\x\- S. \e\cball 0 (1 / (2 + real n)). {x + e})" using assms by (auto intro: closed_compact_sums) have "closure (\x\- S. \y\ball 0 (1 / (2 + real n)). {x + y}) \ (\x \ -S. \e \ cball 0 (1 / (2 + real n)). {x + e})" by (intro closure_minimal UN_mono ball_subset_cball order_refl cl) also have "... \ (\x \ -S. \y\ball 0 (1 / (1 + real n)). {x + y})" apply (intro UN_mono order_refl) apply (simp add: cball_subset_ball_iff field_split_simps) done finally show "closure (\x\- S. \y\ball 0 (1 / (2 + real n)). {x + y}) \ (\x \ -S. \y\ball 0 (1 / (1 + real n)). {x + y})" . qed have "S \ \ (range ?C)" proof fix x assume x: "x \ S" then obtain e where "e > 0" and e: "ball x e \ S" using assms open_contains_ball by blast then obtain N1 where "N1 > 0" and N1: "real N1 > 1/e" using reals_Archimedean2 by (metis divide_less_0_iff less_eq_real_def neq0_conv not_le of_nat_0 of_nat_1 of_nat_less_0_iff) obtain N2 where N2: "norm(x - a) \ real N2" by (meson real_arch_simple) have N12: "inverse((N1 + N2) + 1) \ inverse(N1)" using \N1 > 0\ by (auto simp: field_split_simps) have "x \ y + z" if "y \ S" "norm z < 1 / (1 + (real N1 + real N2))" for y z proof - have "e * real N1 < e * (1 + (real N1 + real N2))" by (simp add: \0 < e\) then have "1 / (1 + (real N1 + real N2)) < e" using N1 \e > 0\ by (metis divide_less_eq less_trans mult.commute of_nat_add of_nat_less_0_iff of_nat_Suc) then have "x - z \ ball x e" using that by simp then have "x - z \ S" using e by blast with that show ?thesis by auto qed with N2 show "x \ \ (range ?C)" by (rule_tac a = "N1+N2" in UN_I) (auto simp: dist_norm norm_minus_commute) qed then show "\ (range ?C) = S" by auto qed ultimately show ?thesis using that by metis qed subsection\Orthogonal complement\ definition\<^marker>\tag important\ orthogonal_comp ("_\<^sup>\" [80] 80) where "orthogonal_comp W \ {x. \y \ W. orthogonal y x}" proposition subspace_orthogonal_comp: "subspace (W\<^sup>\)" unfolding subspace_def orthogonal_comp_def orthogonal_def by (auto simp: inner_right_distrib) lemma orthogonal_comp_anti_mono: assumes "A \ B" shows "B\<^sup>\ \ A\<^sup>\" proof fix x assume x: "x \ B\<^sup>\" show "x \ orthogonal_comp A" using x unfolding orthogonal_comp_def by (simp add: orthogonal_def, metis assms in_mono) qed lemma orthogonal_comp_null [simp]: "{0}\<^sup>\ = UNIV" by (auto simp: orthogonal_comp_def orthogonal_def) lemma orthogonal_comp_UNIV [simp]: "UNIV\<^sup>\ = {0}" unfolding orthogonal_comp_def orthogonal_def by auto (use inner_eq_zero_iff in blast) lemma orthogonal_comp_subset: "U \ U\<^sup>\\<^sup>\" by (auto simp: orthogonal_comp_def orthogonal_def inner_commute) lemma subspace_sum_minimal: assumes "S \ U" "T \ U" "subspace U" shows "S + T \ U" proof fix x assume "x \ S + T" then obtain xs xt where "xs \ S" "xt \ T" "x = xs+xt" by (meson set_plus_elim) then show "x \ U" by (meson assms subsetCE subspace_add) qed proposition subspace_sum_orthogonal_comp: fixes U :: "'a :: euclidean_space set" assumes "subspace U" shows "U + U\<^sup>\ = UNIV" proof - obtain B where "B \ U" and ortho: "pairwise orthogonal B" "\x. x \ B \ norm x = 1" and "independent B" "card B = dim U" "span B = U" using orthonormal_basis_subspace [OF assms] by metis then have "finite B" by (simp add: indep_card_eq_dim_span) have *: "\x\B. \y\B. x \ y = (if x=y then 1 else 0)" using ortho norm_eq_1 by (auto simp: orthogonal_def pairwise_def) { fix v let ?u = "\b\B. (v \ b) *\<^sub>R b" have "v = ?u + (v - ?u)" by simp moreover have "?u \ U" by (metis (no_types, lifting) \span B = U\ assms subspace_sum span_base span_mul) moreover have "(v - ?u) \ U\<^sup>\" proof (clarsimp simp: orthogonal_comp_def orthogonal_def) fix y assume "y \ U" with \span B = U\ span_finite [OF \finite B\] obtain u where u: "y = (\b\B. u b *\<^sub>R b)" by auto have "b \ (v - ?u) = 0" if "b \ B" for b using that \finite B\ by (simp add: * algebra_simps inner_sum_right if_distrib [of "(*)v" for v] inner_commute cong: if_cong) then show "y \ (v - ?u) = 0" by (simp add: u inner_sum_left) qed ultimately have "v \ U + U\<^sup>\" using set_plus_intro by fastforce } then show ?thesis by auto qed lemma orthogonal_Int_0: assumes "subspace U" shows "U \ U\<^sup>\ = {0}" using orthogonal_comp_def orthogonal_self by (force simp: assms subspace_0 subspace_orthogonal_comp) lemma orthogonal_comp_self: fixes U :: "'a :: euclidean_space set" assumes "subspace U" shows "U\<^sup>\\<^sup>\ = U" proof have ssU': "subspace (U\<^sup>\)" by (simp add: subspace_orthogonal_comp) have "u \ U" if "u \ U\<^sup>\\<^sup>\" for u proof - obtain v w where "u = v+w" "v \ U" "w \ U\<^sup>\" using subspace_sum_orthogonal_comp [OF assms] set_plus_elim by blast then have "u-v \ U\<^sup>\" by simp moreover have "v \ U\<^sup>\\<^sup>\" using \v \ U\ orthogonal_comp_subset by blast then have "u-v \ U\<^sup>\\<^sup>\" by (simp add: subspace_diff subspace_orthogonal_comp that) ultimately have "u-v = 0" using orthogonal_Int_0 ssU' by blast with \v \ U\ show ?thesis by auto qed then show "U\<^sup>\\<^sup>\ \ U" by auto qed (use orthogonal_comp_subset in auto) lemma ker_orthogonal_comp_adjoint: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" shows "f -` {0} = (range (adjoint f))\<^sup>\" apply (auto simp: orthogonal_comp_def orthogonal_def) apply (simp add: adjoint_works assms(1) inner_commute) by (metis adjoint_works all_zero_iff assms(1) inner_commute) subsection\<^marker>\tag unimportant\ \A non-injective linear function maps into a hyperplane.\ lemma linear_surj_adj_imp_inj: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" "surj (adjoint f)" shows "inj f" proof - have "\x. y = adjoint f x" for y using assms by (simp add: surjD) then show "inj f" using assms unfolding inj_on_def image_def by (metis (no_types) adjoint_works euclidean_eqI) qed \ \\<^url>\https://mathonline.wikidot.com/injectivity-and-surjectivity-of-the-adjoint-of-a-linear-map\\ lemma surj_adjoint_iff_inj [simp]: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" shows "surj (adjoint f) \ inj f" proof assume "surj (adjoint f)" then show "inj f" by (simp add: assms linear_surj_adj_imp_inj) next assume "inj f" have "f -` {0} = {0}" using assms \inj f\ linear_0 linear_injective_0 by fastforce moreover have "f -` {0} = range (adjoint f)\<^sup>\" by (intro ker_orthogonal_comp_adjoint assms) ultimately have "range (adjoint f)\<^sup>\\<^sup>\ = UNIV" by (metis orthogonal_comp_null) then show "surj (adjoint f)" using adjoint_linear \linear f\ by (subst (asm) orthogonal_comp_self) (simp add: adjoint_linear linear_subspace_image) qed lemma inj_adjoint_iff_surj [simp]: fixes f :: "'m::euclidean_space \ 'n::euclidean_space" assumes "linear f" shows "inj (adjoint f) \ surj f" proof assume "inj (adjoint f)" have "(adjoint f) -` {0} = {0}" by (metis \inj (adjoint f)\ adjoint_linear assms surj_adjoint_iff_inj ker_orthogonal_comp_adjoint orthogonal_comp_UNIV) then have "(range(f))\<^sup>\ = {0}" by (metis (no_types, hide_lams) adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint set_zero) then show "surj f" by (metis \inj (adjoint f)\ adjoint_adjoint adjoint_linear assms surj_adjoint_iff_inj) next assume "surj f" then have "range f = (adjoint f -` {0})\<^sup>\" by (simp add: adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint) then have "{0} = adjoint f -` {0}" using \surj f\ adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint by force then show "inj (adjoint f)" by (simp add: \surj f\ adjoint_adjoint adjoint_linear assms linear_surj_adj_imp_inj) qed lemma linear_singular_into_hyperplane: fixes f :: "'n::euclidean_space \ 'n" assumes "linear f" shows "\ inj f \ (\a. a \ 0 \ (\x. a \ f x = 0))" (is "_ = ?rhs") proof assume "\inj f" then show ?rhs using all_zero_iff by (metis (no_types, hide_lams) adjoint_clauses(2) adjoint_linear assms linear_injective_0 linear_injective_imp_surjective linear_surj_adj_imp_inj) next assume ?rhs then show "\inj f" by (metis assms linear_injective_isomorphism all_zero_iff) qed lemma linear_singular_image_hyperplane: fixes f :: "'n::euclidean_space \ 'n" assumes "linear f" "\inj f" obtains a where "a \ 0" "\S. f ` S \ {x. a \ x = 0}" using assms by (fastforce simp add: linear_singular_into_hyperplane) end